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Dynamics of lattice-pinned charge stripes
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We study the transversal dynamics of a charged stripe~quantum string!, and show that zero-temperature
quantum fluctuations are able to depin it from the lattice. If the hopping amplitudet is much smaller than the
string tensionJ, the string is pinned by the underlying lattice. Att@J, the string is depinned and allowed to
move freely, if we neglect the effect of impurities. By mapping the system onto a one-dimensional array of
Josephson junctions, we show that the quantum depinning occurs at (t/J)c52/p2. In addition, we exploit the
relation of the stripe Hamiltonian to the sine-Gordon theory, and calculate the infrared excitation spectrum of
the quantum string for arbitraryt/J values.@S0163-1829~99!00325-2#
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The existence of a striped phase in doped tw
dimensional~2D! antiferromagnets~AF’s! has recently been
a subject of intense experimental and theoretical invest
tions. Experimentally, elastic1,2 and inelastic3 neutron-
diffraction measurements in nickelates1 and cuprates2,3 have
revealed the presence of charge and spin order. In addi
muon spin resonance and nuclear quadrupole reson
results4 have also been successfully interpreted within
picture of charged domain walls separating antiferrom
netic domains. Striped phases have repeatedly been fou
numerical investigations oft-J and Hubbard models.5 It is
possible that the striped phase is responsible for many o
unusual properties of the cuprate superconductors.6

In the present paper, we study the transversal dynamic
a single stripe~quantum string! within a phenomenologica
model.7–9 By performing a canonical transformation in th
quantum string Hamiltonian, we map the system onto a
array of Josephson junctions, which is known to exhibit
insulator/superconductor transition at (t/J)c52/p2. This
transition is also known to represent the unbinding of vort
antivortex pairs10 in the equivalentXY model. Further, by
exploiting the relation of these models to the sine-Gord
~SG! theory,11 we study the spectrum of the quantum stri
in a sector of zero topological charge of its Hilbert space, a
reveal the meaning of the transition in the ‘‘string’’ lan
guage. At (t/J)c the ~insulating! pinned phase, correspond
ing to an energy spectrum with a finite gap, turns into
~metallic! depinned phase where the spectrum becomes
less. In doing this, we have connected two important a
different classes of problems, i.e., the transversal dynam
of stripes in doped AF’s and a system with the well-know
properties of the SG theory.
PRB 600163-1829/99/60~1!/88~4!/$15.00
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Let us consider a single vertical string on aN3L square
lattice@see Fig. 1~a!#. The linear concentration of holes in th
string is assumed to be one hole per site. The string is c
posed ofN charged particles elastically interacting with th
neighbor ones and constrained to move alongN horizontal
lines. The lattice constant is taken as the unit of length.

The classical state of the system is described by
N-dimensional vectorxW5$x1 ,x2 , . . . ,xN%. Herexn is the x
coordinate of thenth particle, xn51,2, . . . ,L. The corre-
sponding quantum stateuxW & is defined as an eigenstate of a
the coordinate operatorsx̂n , n51,2, . . . ,N: x̂nuxW &5xnuxW &.
The phenomenological Hamiltonian describing this system

Ĥ52t(
n

~ t̂n
11 t̂n

2!1
J

2 (
n

~ x̂n112 x̂n!2. ~1!

The translation operatorst̂n
6 are defined by their action on

the coordinate states,t̂n
6uxW &5uxW6eWn&, where (eWn)m5dnm .

FIG. 1. Two models of stripe:~a! discrete string model;~b!
continous sine-Gordon model.
88 ©1999 The American Physical Society
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The coefficientst and J denote the hopping amplitude an
the string tension, respectively. The operatorst̂n

6 can be ex-

pressed through the momentum operatorsp̂n , which obey
the canonical relation@ x̂n ,p̂m#5 idnm . We then find t̂n

6

5exp(6ip̂n), and Hamiltonian~1! becomes

Ĥ522t(
n

cosp̂n1
J

2 (
n

~ x̂n112 x̂n!2. ~2!

Hereafter, we classify the state of the quantum string
the value of the topological chargeQ̂5(n( x̂n112 x̂n). In the
case of open boundary conditions~BC’s!, the topological
charge is an arbitrary integer,Q50,61,62, . . . . Thestates
with positive and negative charges are called kinks~K’s! and
antikinks ~AK’s !, respectively. Here we consider period
BC’s, x̂N115 x̂1. Hence, the total topological charge of th
string is zero.

Since we are interested in the conducting properties of
system, we have to determine the current operatorĵ n5ex̂̇n ,
wheree is the charge of the particle and the dot denotes
time derivative. Using the equation of motionx̂̇n5 i @Ĥ,x̂n#,
we obtain ĵ n52et sin p̂n .

At this point, it is convenient to perform a dual transfo
mation to new variables referring to the segments of
string, i.e., to a pair of neighbor holes,

x̂n2 x̂n215p̂n , p̂n5ŵn112ŵn . ~3!

The new local variables also obey the canonical relat

@ŵn ,p̂m#5 idnm . Furthermore, we take the limitL→` in
order to deal with all operators in thew representation,
ŵn⇒wn , p̂n⇒2 i ]/]wn . The continuous variablewn is re-
stricted to the interval 0<wn,2p. Finally, the Hamiltonian
and the transverse current operator acquire the forms

Ĥ522t(
n

cos~wn112wn!2
J

2 (
n

~]/]wn!2,

~4!
ĵ n52et sin~wn112wn!,

which are known from the theory of superconducting chai
Equations~4! describe a Josephson-junction chain, with t
Coulomb interaction taken into account. The solution of t
problem atT50 was found by Bradley and Doniach.12 De-
pending on the ratiot/J, the chain is either insulating~small
t/J) or superconducting~large t/J). The results arise from
the standard mapping of the 1D quantum problem onto
2D classical one. One obtains theXY model with Euclidean
action11

SE5A2t

J (
^rW,rW8&

cos~w rW2w rW8!, ~5!

where the vectorsrW5(n,t) form a rectangular lattice in
space and imaginary time.

At t/J52/p2 the Josephson chain undergoes a Kosterl
Thouless~KT! transition.10 For small t/J values, the two-
point correlator̂ expi(wrW2wrW8)& decays exponentially. The
the frequency-dependent conductivity exhibits a resona
y

e

e

e
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.
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Res(v)}d(v2J). Since there is no conductivity atv50,
this is an insulating state with a gapD5J. In the opposite
case, whent/J is large, the same correlator decays algeb
ically. Then the conductivity is singular atv50, Res(v)
52pe2td(v), and the array is superconducting.

These results are also valid for the quantum string on
lattice. Now, it remains to reveal their physical significan
for the striped phase. In order to achieve this aim, we fi
analyze the problem in two limiting cases:t!J and t@J.

In the limit of weak fluctuations,t!J, the energy spec-
trum is discrete with spacing'J. The first excitation is sepa
rated from the ground level by a gapD'J. This is the mini-
mal energy required to create the doublet K-AK excitatio
i.e., to change the initially flat configuration of the strin
Hence, the ground state is insulating and the elementary
citations are bound K/AK pairs. The dimension of the p
can be estimated as the correlation lengthj52/ln(J/2t)!1.

In the limit of strong fluctuations,t@J, we can expand the
cos term in the Hamiltonian~4! up to second order
cos(wn112wn)'12(wn112wn)

2/2, and diagonalize the qua
dratic Hamiltonian. Then we obtain the phononlike spectr
Ek522tN1A8tJusin(k/2)u with a finite bandwidthA8tJ
and no gap. Therefore, the ground state is conducting and
stripe is depinned. The calculations of the conductivity a
straightforward, since in this case the time dependence o
current ĵ n'2et(ŵn112ŵn) follows from the standard rela
tion

ŵn~t!5(
k
A J

2Nvk
@ei (kn2vkt)âk1ei (vkt2kn)âk

†#. ~6!

Hereâk andâk
† are Bose operators. Using these expressio

we calculate the current-current correlator

P~k,v!52 i E
0

`

dt eivt^@ ĵ k
†~t!, ĵ k~0!#& ~7!

and the uniform conductivity

s~v!52
1

v
lim
k→0

Im P~k,v!52pe2td~v!. ~8!

The phase correlator exhibits quasi-long-range order,

^expi ~ ŵn2ŵm!&}un2mu2a, ~9!

with a5AJ/8p2t. Hence, in the limitt@J, the average di-
mension of the K/AK pair diverges,j→`, providing the
conducting ground state. Now the elementary excitations
phononlike excitations of the phase. This transformation
similar to what occurs in the Josephson-junction~JJ! array:
gapped charge excitations in the insulating state transf
into gapless phase excitations in the superconducting sta

Next, we consider the quantum dynamics of the stripe
arbitrary t/J. The calculation of the complete energy spe
trum corresponding to the string Hamiltonian~2! is a difficult
task. However, in the long-wavelength limitk→0 the phys-
ics of the stripe can be described by a continuous SG mo
@see Fig. 1~b!# with Hamiltonian
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Ĥx5E dnF t p̂n
21

J

2
S ] x̂n

]n
D 2

2h cos~2p x̂n!G . ~10!

Here the restriction to the integer values of the coordinatex̂n

is provided by the potential term2h cos(2px̂n).
It can be shown11 that the partition function of a 2DXY

model is the imaginary time version of the action cor
sponding to the real-time Lagrangian

L5
1

2
]mw]mw2

m4

l F12cosSAl

m
w D G , ~11!

where we have rescaled fields and coordinates asxn
→bw/2p and (n,t)→(n,t/c). Here, b25l/m2

5(2p)2A2t/J. In Eq. ~11!, m is the mass of the elementar
boson of the theory andl its coupling constant.

Although the equivalence of the SG model to our start
Hamiltonian~1! is strictly correct only near criticality, both
models are dominated by K/AK excitations, so that a
away from criticality, the two models should have very sim
lar properties. The SG model is further clearly a natu
choice to describe an elastic string in a periodic potential
our derivation of the SG model from the lattice model~1!
provides us with a relation of the phenomenological para
eters of the SG model to the more microscopic parameter
the lattice Hamiltonian.

The excitations of the SG theory are known exactly, a
consist of fermionic solitonlike excitations and boson
bound states. The quantization about the so-ca
‘‘breather’’ or ‘‘doublet’’ solution13 leads to a set of discret
states whose energies are the doublet masses

MN52Ms sinS Ng

16 D ,

~12!

g5
b2

12b2/8p

is the renormalized coupling constant of the SG model,Ms is
the soliton mass andN51,2, . . . ,8p/g. In the weak-
coupling regime,b2,4p, Ms.8m/g.

These results suggest that we could regard the double
a bound state of the quantum soliton-antisoliton pair. Thi
valid once g,8p (b2,4p); otherwise no bound stat
would survive in Eq.~12!. The present interpretation can b
further exploited if we use the equivalence of Eq.~11! with
the massive Thirring model~MTM !,14

LMT5 i C̄gm]mC2mFC̄C2
g

2
~C̄gmC!~C̄gmC!,

~13!

where g05sx , g152 isy , and C is a two-component
~right and left movers! fermionic field. The constantsmF and
g are, respectively, the mass of the fermions and the coup
constant for their self-interaction. This equivalence allows
to identify the soliton of the SG model with the fermion
the MTM, and thereby Eq.~12! can also be regarded as a s
of bound states of fermions and antifermions of the latte

The relationship between the coupling constants of
two models is13 4p/b2511g/p, which clearly shows us
-

g

o

l
d

-
of

d

d

as
is

g
s

t

e

that whenb2,4p, g.0. This implies that particles and
antiparticles should attract one another, in agreement w
our previous interpretation. Forb2→4p one hasg→0 and,
therefore, fermions and antifermions are about to decou
The last remaining bound state has massM152m/p, which
turns out to be twice the solitonic massMs58m/g for g
58p. At b254p fermions and antifermions are no long
bound and can freely move along the line.

The region where 4p,b2,8p @see Eq.~12!# means the
very strong-coupling regime of the SG theory. The coupli
constantg is negative, which means that particles and an
particles should now repel each other. The spectrum of
citations still presents a gap15 that vanishes as we approac
b258p (g→`), and beyond this point, the quantum
mechanical SG potential becomes unbounded below.14

Actually, it has been shown by many authors10,16 that the
system undergoes a Kosterlitz-Thouless phase transitio
b258p or g52p/2. Close to this transition, the SG mod
can be obtained from a model consisting of two differe
kinds of relativistic massless fermions which is nothing bu
spinful Luttinger model~LM !.16 Actually, the fermions to
which we refer above can be thought of as spin excitation
the LM, once backscattering processes are considered. W
the latter becomes relevant, the corresponding excitation
the SG model as a fixed point.

In the string language~see Fig. 2!, we find that fort!J,
the excitation spectrum is basically given byMN'Nm,
which meansN elementary bosons of the SG theory. It al
allows us to identifym5J ~the lowest elementary excitatio
for t50) and consequentlyl5(2p)2A2tJ3. As t is in-
creased these turn intoN particle bound states which are ju
the excited states of the K/AK pairs. We can imagine t
string being pinned by the lattice, and at least an energyM1
would be necessary to create a bound K/AK pair~the el-
ementary boson of the SG theory!. At t/J51/2p2 (b2

54p) the pair K/AK becomes free. Whent/J.1/2p2 there
still exists a gap for the formation of the pair but this boson
gap vanishes as one approaches the critical value (t/J)c
52/p2. Beyond this point the SG potential is irrelevant; th
string is no longer pinned and can freely move over the
tiferromagnetic plane. Hence it exhibits a Gaussian dyna
ics, with associated logarithmic wandering. The spontane
symmetry breaking of the discrete system is removed,
the string becomes invariant with respect to arbitrary tra
versal translations. In principle, a transversal sliding mo

FIG. 2. Infrared energy spectrum of the quantum string and
effective masses of its doublet excitations. Every line shows
lower infrared boundary of continuum. The insulating gapD turns
to zero att/J52/p2.
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exists. The invariance of the state to transversal transla
gives rise to acoustic excitations of the formv5c* k, with a
renormalized velocityc* ,c.

The behavior of correlator~9! is in complete agreemen
with the interpretation that above (t/J)c the spectrum of the
quantum string should be the same as for the LM we m
tioned above. As is well known, all the correlation functio
of a LM should present an algebraic decay.15 Whereas for
the equivalent model of a JJ chain this really means
insulator-superconductor transition, here it only reflects
depinning of the string or, in other words, an insulator/me
transition. It would only require a vanishingly small electr
field perpendicular to the string to depin it. This fact is al
reflected in our expression~8! for the perfect conductivity of
the system.

Based on the Josephson chain, as well as on the s
Gordon results, it follows that at (t/J)c52/p2 the quantum
string undergoes a KT transition. This transition has be
previously predicted,7,9 and treated as roughening of th
string. In addition, Viertio¨ and Rice17 calculated the energy
for creating a K/AK pair, and showed that for larget/J val-
ues this energy becomes negative, leading to a prolifera
of K/AK pairs. Here we have shown that at the transiti
point the gapD vanishes, and the bosonic excitation disa
pears. Notice that our results are based on the single s
picture, and we do not necessarily expect them to rem
valid at higher doping concentrations.

We want to emphasize that at finite temperatures (TÞ0),
thermal fluctuations will ‘‘spoil’’ the quasi-long-range or
hy

,

n

-

n
e
l

e-

n

n

-
pe
in

dered phase. In this case, the Euclidean action~5! describes
an XY model on a 2D lattice, which is finite in thet direc-
tion, with lengthL52p/T. Then the KT transition disap
pears, and the long-range phase correlations are suppre

Finally, we can summarize our results: att50, the ground
state ~GS! of the string is the kink vacuum. At 0,t/J
,2/p2, the energy spectrum is gapped and the system
insulating. Att/J.2/p2 there is no gap anymore, the pha
is quasi-long-range ordered, the GS is that of the LM, a
the system is a perfect conductor. Thus our results at
critical region agree with the ones obtained from the m
ping onto the Josephson chain, with the advantage that
clarify the physical meaning of the insulating and superc
ducting states for the quantum string. In addition, we prop
a phenomenological model which provides us with the sp
trum of a quantum string forany valueof t/J.
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schü~Germany! and 053/97~Brazil!. N.H. acknowledges fi-
nancial support from the Gottlieb Daimler und Karl Ben
Stiftung and the Graduiertenkolleg ‘‘Physi
nanostrukturierter Festko¨rper,’’ Universität Hamburg. Y.D.
acknowledges financial support from the Otto Benec
Stiftung. A.O.C. was also partly supported by CNPq~Con-
selho Nacional de Desenvolvimento Cientı´fico e
Tecnológico/Brasil!.
O.

Y.

a

1P. Wochner, J. M. Tranquada, D. J. Buttrey, and V. Sachan, P
Rev. B57, 1066~1998!, and references therein.

2J. M. Tranquadaet al., Nature~London! 375, 561 ~1995!; Phys.
Rev. B54, 7489~1996!; Phys. Rev. Lett.78, 338 ~1997!.

3K. Yamadaet al., J. Supercond.10, 343 ~1997!; G. Aepli et al.,
Science278, 1432 ~1997!; P. Dai, H. A. Mook, and F. Dogan
Phys. Rev. Lett.80, 1738~1998!.

4F. Borsaet al., Phys. Rev. B52, 7334~1995!; A. H. Castro Neto
and D. Hone, Phys. Rev. Lett.76, 2165~1996!.

5D. Poilblanc and T. M. Rice, Phys. Rev. B39, 9749 ~1989!; J.
Zaanen and O. Gunnarsson,ibid. 40, 7391~1989!; K. Machida,
Physica C158, 192 ~1989!; H. J. Schulz, Phys. Rev. Lett.64,
1445~1990!; T. Giamarchi and C. Lhuilier, Phys. Rev. B42, 10
641 ~1990!; M. Inui and P. B. Littlewood,ibid. 44, 4415~1991!;
P. Prelovsˇek and X. Zotos,ibid. 47, 5984 ~1993!; S. R. White
and D. J. Scalapino, Phys. Rev. Lett.80, 1272~1998!.

6V. J. Emery and S. A. Kivelson, Physica C209, 597~1993!; V. J.
Emery, S. A. Kivelson, and O. Zachar, Phys. Rev. B56, 6120
~1997!; A. H. Castro Neto and F. Guinea, Phys. Rev. Lett.80,
4040 ~1998!.
s.7H. Eskeset al., Phys. Rev. B54, R724~1996!; 58, 6963~1998!.
8C. Morais Smith, Yu. A. Dimashko, N. Hasselmann, and A.

Caldeira, Phys. Rev. B58, 453 ~1998!.
9N. Hasselmann, A. H. Castro Neto, C. Morais Smith, and

Dimashko, Phys. Rev. Lett.82, 2135~1999!.
10J. M. Kosterlitz and D. J. Thouless, J. Phys. C5, L124 ~1972!.
11Claude Itzykson,Statistical Field Theory~Cambridge University

Press, Cambridge, 1989!.
12R. M. Bradley and S. Doniach, Phys. Rev. B30, 1138~1984!.
13R. Rajaraman,Solitons and Instantons~North-Holland, Amster-

dam, 1982!.
14S. Coleman, Phys. Rev. D11, 2088~1975!.
15V. J. Emery, inHighly Conducting One Dimensional Solids, ed-

ited by J. T. Devreese, R. P. Evrard, and V. E. van Doren~Ple-
num Press, New York, 1979!.

16Jean Zinn-Justin,Quantum Field Theory and Critical Phenomen
~Clarendon, Oxford, 1989!.
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