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Quantum Hall ferromagnetism in graphene: SU(4) bosonization approach

R. L. Doretto'-? and C. Morais Smith!
Unstitute for Theoretical Physics, Utrecht University, Postbus 80.195, 3508 TD Utrecht, The Netherlands
2Institut fiir Theoretische Physik, Universitit zu Koln, Ziilpicher Strasse 77, 50937 Koln, Germany
(Received 4 May 2007; revised manuscript received 5 October 2007; published 19 November 2007)

We study the quantum Hall effect in graphene at filling factors »=0 and v==1, concentrating on the
quantum Hall ferromagnetic regime, within a nonperturbative bosonization formalism. We start by developing
a bosonization scheme for electrons with two discrete degrees of freedom (spin-1/2 and pseudospin-1/2)
restricted to the lowest Landau level. Three distinct phases are considered, namely, the so-called spin-
pseudospin, spin, and pseudospin phases. The first corresponds to a quarter-filled (v=-1) lowest Landau level,
while the others to a half-filled (v=0) lowest Landau level. In each case, we show that the elementary neutral
excitations can be treated approximately as a set of n-independent kinds of boson excitations. The boson
representations of the projected electron density, the spin, pseudospin, and mixed spin-pseudospin density
operators are derived. We then apply the developed formalism to the effective continuous model, which
includes SU(4) symmetry breaking terms, recently proposed by Alicea and Fisher [Phys. Rev. B 74, 075422
(2006)]. For each quantum Hall state, an effective interacting boson model is derived and the dispersion
relations of the elementary excitations are analytically calculated. We propose that the charged excitations
(quantum Hall skyrmions) can be described as a coherent state of bosons. We calculate the semiclassical limit
of the boson model derived from the SU(4) invariant part of the original fermionic Hamiltonian and show that
it agrees with the results of Arovas et al. [Phy. Rev. B 59, 13147 (1999)] for SU(N) quantum Hall skyrmions.

We briefly discuss the influence of the SU(4) symmetry breaking terms in the skyrmion energy.
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I. INTRODUCTION

Graphene consists of a single atomic layer of carbon ar-
ranged in a honeycomb lattice."> When a uniform perpen-
dicular magnetic field is applied, the system displays an un-
conventional integer quantum Hall effect (QHE),>* where
the Hall conductivity o, =4(n+1/2)e*/h (n integer) and the
filling factor is defined as v=4(n+1/2). Such unusual behav-
ior of o, is understood within a single-particle model*’
which shows that each Landau level in graphene is approxi-
mately fourfold degenerate (valley, the so-called K and K’
points, and electron spin).

More interesting, experiments performed at higher mag-
netic fields showed new quantum Hall plateaus at v=0, 1,
and +4,% indicating that the degeneracies of the n=0 and n
=1 Landau levels are lifted. In particular, for v==+4, the
behavior of the minimum of the longitudinal resistance R,, in
terms of the total magnetic field suggests that here the quan-
tum Hall effect is due to the lifting of the spin degeneracy of
the n=1 Landau level.® However, the origin of the plateaus
at v=0 and v==1 is not completely understood. Different
scenarios were proposed. It was suggested that the effect is
due to Coulomb interaction, which favors a quantum Hall
ferromagnet ground state.” Alicea and Fisher® proposed that
the plateaus might be related to symmetry breaking terms,
such as Zeeman and underlying lattice interactions, which
give rise to a paramagnetic phase as it occurs at v==+4. An
explanation based on the so-called magnetic catalysis mecha-
nism was proposed by Gusynin et al.® This mechanism pre-
dicts that the long-range Coulomb interaction generates an
excitonic gap, which lifts the valley degeneracy only of the
lowest Landau level. In combination with the Zeeman split-
ting, the observed quantum Hall plateaus at v=0 and +1 are
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understood. More recently, Abanin et al.' argued that the
transport response of the quantum Hall state at v=0 is due to
countercirculating edge states.

In this paper, we study the quantum Hall ferromagnetism
in graphene via a nonperturbative bosonization method for
the case of electrons with spin-1/2 and pseudospin-1/2 re-
stricted to the lowest Landau level. It constitutes a generali-
zation of the formalism'! recently proposed by one of us to
study the two-dimensional electron gas at v=1 realized in
GaAs heterostructures.'>!3 Within this formalism, the el-
ementary neutral excitations (magnetic excitons) and the
skyrmion-antiskyrmion pair excitations of the system are de-
scribed in the same framework, namely, an effective interact-
ing boson model. Such method is quite general and was used
to calculate spin excitations of the fractional quantum Hall
systems at v=1/3 and v=1/5,"* as well as to study Bose-
Einstein condensation of magnetic excitons in the bilayer
quantum Hall system (QHS) at total filling factor vy=1
(spinless case).!?

Concerning the latter, the great majority of models pro-
posed to study this system assumes fully spin-polarized elec-
trons. However, nuclear magnetic resonance
measurements'®!7 indicate that the electron spin degree of
freedom might be relevant. Indeed, it was suggested that the
incompressible-compressible phase transition observed in
this system may involve a modification of the spin
polarization.16 Therefore, theoretical tools which allow us to
properly treat the electron-electron interaction and simulta-
neously take into account the electron spin and layer (pseu-
dospin) degrees of freedom are needed. The formalism de-
veloped here might be also useful to study the bilayer
quantum Hall system at vy=1 in GaAs heterostructures
(spinfull case).
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Our paper is organized as follows. In Sec. II, we define
the creation and annihilation boson operators and derive the
boson representation of the (projected) electron density, spin,
pseudospin, and mixed spin-pseudospin density operators.
Three distinct cases are considered, the so-called spin-
pseudospin phase, which occurs when the lowest Landau
level is quarter-filled, and the spin and pseudospin phases,
which are related to a half-filled lowest Landau level. In Sec.
III, we apply the generalized bosonization formalism to
study the QHE in graphene at »=0 and v=+1, focusing on
the quantum Hall ferromagnetic regime. Our starting point is
the effective continuous model recently proposed by Alicea
and Fisher.® For each quantum Hall state, an effective inter-
acting boson model is derived and the dispersion relations of
the elementary neutral excitations are analytically calculated.
We comment on some possible effects of the boson-boson
interaction and show how the quantum Hall skyrmion might
be described within this scheme. A summary of the main
results is presented in Sec. IV.

II. BOSONIZATION METHOD

In order to develop a bosonization scheme for electrons
with two discrete degrees of freedom (spin-1/2 and
pseudospin-1/2) and restricted to the lowest Landau level
subspace, we follow the lines of Ref. 11 and start by studying
the corresponding noninteracting model.

Let us consider N noninteracting electrons moving in the
xy plane under a perpendicular magnetic field B=BZ. In ad-
dition to the electronic spin (o, A=1, ), let us also include a
discrete pseudospin index «, B==. Restricting the Hilbert
space to the lowest Landau level, the kinetic energy is
quenched and, therefore, the Hamiltonian of the system is

1 .
H= HZ+ Hpg= - EE f d2r(a'EZ+ CZEP)\PLW_(I')\I’QU(I’).

(1)

In addition to the Zeeman term 7 z, we also include an extra
term (Hpz) which breaks the pseudospin degeneracy. As we
will see below, a finite Ep helps us to define a set of different
reference states. E,=gugB is the Zeeman energy, where g is
the effective electron g-factor and up is the Bohr magneton
(see Appendix A). \Ifjm(r) is a fermion field operator that can
be expanded in the (Schrodinger) lowest Landau level basis
|n=0 m) (symmetric gauge'') as

Wi, = (n=0 mir)c) .

The operator ¢/ (¢,.q0) creates (destroys) an electron in the
lowest Landau level, with guiding center m, pseudospin a,
and spin o. Substituting Eq. (2) into Eq. (1), one sees that the
Hamiltonian H is diagonal in the lowest Landau level basis,

i.e.,
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N1
13
H=-— E E (cE,+ aEP)cLMcmw. (3)

2 m=0 a,0

The above Hamiltonian has four highly degenerate energy
levels, whose energies are —(E,+Ep)/2, —(E,—Ep)/2, (E,
—Ep)/2, and (E;+Ep)/2, and the degeneracy of each level is
Ny= 1/2m[%. Here, I=\fc/eB is the magnetic length and we
assume that the total area of the system is 1. In the following,
we will concentrate on three distinct configurations of the
system: total number of electrons N=N, and E;> Ep, which
we call spin-pseudospin phase; N=2N,4 and E;>Ep (spin
phase); and N=2N,, and E;<Ep (pseudospin phase).

As discussed in Ref. 11, the creation and annihilation bo-
son operators are defined by considering the neutral (particle-
hole) excitations above a well-defined reference state. As
each one of the above phases has a different reference state
(noninteracting ground state), the three cases will be ana-
lyzed separately. However, before doing that, we should
firstly discuss the representation and the algebra of the elec-
tron density, spin, pseudospin and mixed spin-pseudospin
density operators projected into the lowest Landau level.

A. Density operators and the lowest Landau level
algebra

We start by defining the following projected density op-
erator:

Paopn (1) =Wl (1) W5 (r), (4)

where the fermion field operators are given by Eq. (2), and
whose Fourier transform is

Paa,ﬁx((I)=fd2”€_iq'rquw(r)q’m\(l')
= E fdzre"iq'r<m|r><r|m')cfnaacmrm

(l(l)cjy,agcm'ﬁ)\, (5)

2
= e—(lq) 12 2 Gm,m’
m,m’

with g=|q|. The function G,, ,,/(x) is defined as

G (1) = O’ _m)\/> ( - illg.~iq) zq)>

’ l 2 m’!
XL _’"(—( 9 ) +0m—-m')\|—
2 m!

—il +i m—m' A 2
><< l(qxE qu)) L (( ;1) ) ©)
'\/

7 (x) s the generalized Laguerre polynomial.'8
Due to the fact that the operators p,, 5\(q) are projected into

the lowest Landau level, their commutation relations are
modified, i.e.,

where L,
m
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[paa,ﬁ)\(q)’pa’u”,ﬁ’)\’(q,)]
o2 ; ’
=t ! /2[5[3,0/ 5)\,0"elq/\q /Zpau’,ﬁ')\’(q + q,)

— a,,B’60,)\’e_iq/\q,/2pa’g',ﬁ)\(q + q/)]’ (7)

where qak=[%*(q Xk)-Z.
It is convenient to introduce an isospin index [ such that

I= (avo-) = (+ ’T)s(+ 5l)5(_’T)’(_,l) = 1929354'

In this new representation, the commutator (7) simply reads
[ou(@).pr(a")] = 4428, 749 p5(q + q')
=65 (g +q)]. (@)
It is also useful to define a four-component spinor \IAfT(r) as
i) =[W],(r) ¥ (r) ¥ (r) ¥ ()], )
which, in the isospin language, assumes the form
Wi(r) = [W](r) Wi(r) Wir) Wir)]. (10)

The (projected) electron density operator can now be writ-
ten in terms of the spinor (10) as
4
p(r) = Ui(0) W (r) = 2 Wj(r)W(r) (11)
=1
and, therefore, its Fourier transform may be expressed in
terms of the density operators p;,(q) as

p(q) =[p11(q) + p2a(q) + p33(q) + paa(q)]. (12)

The same can be done for the spin-o and pseudospin-« elec-
tron density operators

PT(Q) =p11(q) + p33(q), PL(Q) = poo(qQ) + pas(q),

p+(q) = p11(q) + pn(q).  p_(q) = p33(q) + paulq). (13)

The definition (10) implies that the structure of the spin-
pseudospin space is SU(2) ysudospin ® SU(2) pin and, therefore,
the spin, pseudospin, and mixed spin-pseudospin density op-
erators (f=1) are respectively defined as

1 . ”
() = W (1) (10 © 60, (14)
P = S ()6 & L) V(). (15)
PS(r) = %@T(r)(& ® &)W (r), (16)

Here, 1,4, is the two-dimensional unit matrix and &
=(o, 0, 0,) is a vector whose components are the Pauli ma-
trices. Expanding the Fourier transform of the components of
S(r) and P(r) in terms of the density operators p;,(q), we
have

$40)= 3 1pu @) ~ prala) + prs(@) ~ pus(@)]
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S*(q) =[Sx(q) +iSy(q)] = p12(q) + p34(q),

S7(q) =[Sx(q) = iSy(q)] = p21(q) + ps3(q), (17)

and

1
Py(q) = E[Pu(Q) + p2o(q) — p33(q) — pasl(q)],

P*(q) = p13(q) + pralq),

P7(q) = p31(q) + pan(q). (18)

Similar considerations hold for the mixed operators PS(r), in
particular, we have

1
P;S7(q) = 5[p11(q) - p22(q) — p33(q) + pag(@)].  (19)

This component of PS(q) will be important in the next sec-
tions. We should mention that the representations (14)—(16)
do not correspond to the standard representation of the spe-
cial unitary group SU(4) (see Ref. 19 for details), but follow
the ideas presented in Appendix A of Ref. 20.

Finally, with the aid of the commutator (8), a long but
straightforward calculation shows that the density operators
(12), (14), and (15) obey the lowest Landau level algebra
(the same results have been derived in a more general way?')

[p(q),p(k)] = 2i sin(q A k/2)e""?p(q + k),
[7%(q),p(k)]=2i sin(q A k/2)e"¥1%(q + k),

[12(@). 1 ()] = (i/2) 8, sin(q A k/2)e*p(q + k)
+ i€ cos(q A k/2)e % [*(q + k),

[P.(q),S,(k)]=isin(q A Kk/2)e%%?P,S,(q+k). (20)

Here, a,b,c=X, Y, Z, and €®¢ is the Levi-Civita tensor.!8
u=S,P and, therefore, I‘Z(q) and If:(q) stand, respectively,
for S,(q) and P,(q). Due to the fact that the density operators
(12), (14), and (15) are projected into the lowest Landau
level, the algebra (20) is different from the usual one of the
generators of the SU(4) group.'®?°

B. Spin-pseudospin polarized state

Let us now study the noninteracting system described by
the Hamiltonian (3), assuming that the total number of elec-
trons N=N,, and E;>Ep. The four (highly degenerate) en-
ergy levels are schematically displayed in Fig. 1. In this case,
the noninteracting ground state of the system is a spin-
polarized pseudospin-polarized state,

N¢—l
IspEM) = [ cf,[0). (21)
m=0

where |0) is the fermion vacuum. Notice that the neutral
(particle-hole) excitations are created by applying the density
operators p,;(q), p3;(q), and p4(q) on the state [SPFM).
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FIG. 1. (Color online) Schematic representation of the four
highly degenerate lowest Landau levels when E;>Ep. The state
|SPFM) is obtained by completely filling the energy level (1). b1,
b2, and b3 are the elementary neutral excitations which are related
to the density operators p,;(q), p3;1(q), and p4;(q), respectively.

From Eq. (8), it follows that the commutator between
each one of the above density operators and its respective
Hermitian conjugate is

12 . !
[p1(@).pp(q')] = 49 [ %p) (g +q)
— T2 (g +q")], (22)

with /=2, 3, and 4. By expanding the density operators p;(q)
around the (reference) state (21),

pu(q) = <SPFM|P11(Q)|SPFM> + 9py(q)
=Ny0;,10q0+ Spu(q), (23)

and neglecting the fluctuations with respect to the average
value, the commutator (22) assumes the form

! 2
[p11(@),pr(a")] = Sy _q'Nge' . (24)

One can see that although the relations (22) do not corre-
spond to the usual canonical commutation relation between
the annihilation and creation boson operators, their expecta-
tion values in the ground state [SPFM) do. In other words, as
long as the number of particle-hole excitations in the system
is small, i.e., {p,;(q))> &p,(q), the density operators p,,(q),
p31(q), and p,;(q) may be approximately considered as bo-
son operators. Moreover, by noticing that

P32(q) = py(q) = ps3(q) =0,

which is related to the fact that the average values of the
above density operators with respect to the state defined by
Eq. (21) vanish, it turns out that the three kinds of boson
operators are independent.

Based on the above analysis, we define the following set
of creation and annihilation boson operators

bi(@) = a,pai(q@),  bi(q) = aypin(-q),
bi(@) = a,p31(@).  by(q) = aypi3(-q).

b;(‘l) = aqP41((I), bs(q) = aqPM(— qQ, (25)

. 2 Ive .
with aq=e(l‘1) "y VN 4. From now on, we will assume that the
above operators obey the usual canonical algebra

[b](a).b](K)]=[bi(q),b;(k)]=0,
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[b().b] (k)] = &, ;8 k. (26)

Finally, we should mention that the reference state |SPFM) is
indeed the boson vacuum as one can easily show that
b,(q)|SPFM)=0.

Once the boson operators are defined, the boson represen-
tation of any operator O is determined by examining the
commutators [O,b}(k)] (i=1, 2, and 3) and the action of O
in the reference state |[SPFM). For instance, let us consider
the density operator p;;(q). From Egs. (8) and (25), we have

[p11(q),b](k)]=- e_(lq)zMe_iqu/zblT(q +Kk),
with i=1, 2, and 3. Moreover,

Using the fact that the three kinds of boson operators (25) are
independent, the above relations are satisfied if the density
operator p;;(q) is expanded in terms of the bosons b,(q) as

P11(q) =N ySq 0~ e‘(@z"‘E e N2pT (g + K)by(K).
ki

27)
Similarly, it is possible to show that
pr(q) = 1Y, 92T (g +K)b, (K),
k
p33(q) = Y N2} (g 4+ K)by(K),
k
pau(@) = DY Nl (qr K)by(K),  (28)
k

i.e., the expansions of all density operators p;(q) in terms of
bosons are quadratic.

With the aid of the relations (27) and (28), one can easily
write down the boson representation of the electron density
[Eq. (12)], the z component of the spin [Eq. (17)] and pseu-
dospin [Eq. (18)] density operators, and the mixed spin-
pseudospin density operator P,S,(q) [Eq. (19)], namely,

p(Q) = NSy + 2ie™ 194> sin(q A k/2)b] (q + K)b;(k),
ik

(29)

1
1(@) = SNgSy0+ 2 f1(a. Kb (a +K)bi(K),  (30)
i,k

with I4(q)=S,(q), P,(q), and S,P,(q), and the form factors
f¥(x) are given by

2
£(q.k) =f3(q.k) =— e 97 cos(q A k/2),

fq.k) = je~(1)%14 sin(q A k/2),

f(g.k) = e~ sin(q A k/2),
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k) =gk =—e W cos(qak/2),  (31)

and

2
5(q.k) = f25(q.k) = — 7974 cos(q A k/2),

155(q.k) = i~ sin(q A k/2).

In addition to the set of density operators analyzed above,
the boson representation of the density operators p,,(q) and
p34(q) and the respective Hermitian conjugates p;,(—q) and
paz(—q) will be useful in the next section, where the
bosonization scheme will be applied to study the QHE in
graphene. Sometimes, the expressions are not so simple as
the one presented above (see Appendix B). Another impor-
tant point is that sometimes the Hermiticity requirement is
not fulfilled. For instance, in the spin-pseudospin phase, the
expansion of p,;(q) in terms of bosons does not correspond
to that of pj,(—q). As was already discussed in Ref. 11, it
does not constitute a major problem because the boson ex-
pressions (29), (30), (B1), and (B2), derived within the pro-
cedure outlined above, satisfy the lowest Landau level alge-
bra (20).

The asymmetric boson representation found for some op-
erators might be related to the fact that the bosonization
method explicitly breaks some symmetries. For instance, in
the spin-pseudospin phase, the spin “directions” up and
down are no longer equivalent because the bosons b,(q) are
defined with respect to the reference state |SPFM). As a con-
sequence, the bosonic expressions of the spin density opera-
tors S7(q)=p,(q)+p43(q) and S*(q)=pi2(q)+pss(q) [see
Eq. (17)] are asymmetric. We will see later in Sec. II D that
the bosonic representation of the spin density operators sat-
isfies the condition S*(q)=[S"(-q)]" because for the pseu-
dospin phase only the pseudospin symmetry is explicitly bro-
ken.

C. Spin phase

In this phase, E,>Ep and the total number of electrons
N=2N,. The ground state of the noninteracting Hamiltonian
(3) is a spin-polarized pseudospin-singlet state,

Ny-1
ISEM) = [ ¢} _ic)i/0). (32)
m=1

The particle-hole excitations are now created by the density
operators p,;(q), p23(q), pa;(q), and ps3(q) as it is illustrated
in Fig. 2.

The commutation relations between p;,(q) (I=1, 3 and J
=2,4) and their respective Hermitian conjugates p;;(—q) read

[see Eq. (8)]
12 . !
[p1/(Q). psi(q')] = €%V [ 99 2p(q +q')
—e 192, (q +q")]. (33)

Here, the expansions of p;(q), p»(q), p33(q), and pyu(q)
around the reference state [SFM) are given by
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FIG. 2. (Color online) Schematic representation of the four
highly degenerate lowest Landau levels when E;>Ep. The state
|SFM) is obtained by completely filling the energy levels (1) and
(3). bl, b2, b3, and b4 are the elementary neutral excitations which
are related to the density operators p,(q), p23(q), psi(q), and
p13(q), respectively.

pu(q) = <SFM|P11((1)|SFM> + 9py(q)
=Ny(1 + 613) 8q0+ Sp(Q), (34)

and, therefore, the commutation relations (33) reduce to [ne-
glecting the density fluctuations Spy(q)]

2
L), ps(q")] = 5q,—kN¢e(ql) 2. (35)

Using the same arguments of the previous section, we as-

sume that py;(q), p41(q), p23(q), and pys(q) are approxi-
mately boson operators. Indeed, they are independent opera-
tors because

p(q) = (SEM|p(q)|SEM) + 8p;(q) =0,  (36)

for (1,J)=(3,1) and (4,2).
To sum up, the spin phase is characterized by a set of four
independent boson operators defined as

bi(@) = apn(@).  bi(q) = aypin(-q),
b3(q) = a,pr3(q).  ba(q) = aypi(-q).
b;(q) = aqp41(q)» b3(q) = aqpl4(_ q),

bi(@) = apu3(q),  by(q) = agpsu(-q),  (37)

with aq=e(’q)2’4/ VN, and obeying the canonical boson alge-
bra (26).

The introduction of new boson operators implies that the
expansions of the density operators p;(q) in terms of the
bosons are no longer given by Egs. (27) and (28). Following
the same procedure discussed in the previous section, it is
possible to show that

P(@) =Nydyo— > e WP (g L K)b(K),
k,i=1,3

pul@)= 3 0 (q 4 )b K),
k,i=1,2

p33(Q) = Nydyo— X e 09T (q 1 k)b (K),

k,i=2,4
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pa(q) = 2 e_(lq)z/“iql\k/zbj(q +Kk)b(K). (38)
k.i=3,4

By adding up the four terms above, one can see that the
electron density operator p(q) [Eq. (12)] also has the form
(29) with the replacements 37, —3%, and Ny,
— 2N 464 0- However, the boson representation of the z com-
ponent of the spin and pseudospin density operators and the
mixed operator P,S,(q) are modified, i.e.,

S/Q) = Nydy0— e 1943, cos(q A k/2)b](q+K)b;(k),
i,k

(39)

(q) = 2 fq.K)b}(q +K)b,(K), (40)
ik

where E,:E?:l, 15(q)=P,(q) and S,P,(q), and the form fac-

tors are given by

. e
f1(q.k) =— f4(q,k) = ie™ 9" sin(q A k/2),

L@k =- (g k) =e D cos(qak/2),  (41)

and

2
A5(q.k) == £25(q.k) = — 7974 cos(q A k/2),

U4
55(q.k) = = £25(q.k) = — ie™ "D sin(q A k/2).

Finally, the new bosonic expressions of p;(q), p.i(q),
p34(q), and pys(q) are shown in Appendix B [see Egs. (B3)
and (B4)].

D. Pseudospin phase

The situation here is quite similar to the one discussed in
the previous section, because, again, N=2N,, but now E,
< Ep. As a consequence, the ground state of the noninteract-
ing model (3) is a spin-singlet pseudospin-polarized state,

Nyl
IPEM) = [ ¢}, c}.i10), (42)
m=1

and the elementary neutral excitations are now related to
p31(Q), p32(q), p41(q), and pyy(q) (see Fig. 3).

Again, one can show that the above four density operators
give rise to four independent boson operators, i.e.,

bi(q) = a,p31(0).  bi(q) = apis(-q).

bi(@) = ayps(@),  by(q) = a,ps(-q),

bi(q) = apun(@),  bi(q) = a,piu(-q),

bi(Q) = apin(@), by(@) = apu(-q).  (43)

which satisfy the boson algebra (26). Indeed, the commutator
of each density operator with its corresponding Hermitian
conjugate is also given by Eq. (33) with /=1,2 and J=3,4.
The expansion (34) is replaced by
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FIG. 3. (Color online) Schematic representation of the four
highly degenerate lowest Landau levels when E;<Ep. The state
|[PFM) is obtained by completely filling the energy levels (1) and
(2). bl, b2, b3, and b4 are the elementary neutral excitations which
are related to the density operators p3;(q), p3a(q), psi(q), and
p1(q), respectively.

pu(q) = <PFM|P11(‘1)|PFM> + 9py(q)
=Ny(p1 + 612) 8q0+ Spu(a), (44)

while Eq. (36) is preserved, but now (1,J)=(1,2) and (4,3).
The set of creation and annihilation boson operators (43)
implies that Egs. (38) should be replaced by

pii(Q) =Nydgo— > e a+-9%2pT(q L k)b (K),
k,i=1,3

p22(q) =N ySq 0~ > €_(IQ)2/4_iqu/2b,T(q +Kk)b;(k),
k.i=2.4

pi(@)= > e TN (g 4 1D (K),

k,i=1,2
pu(@)= X TN (g L )b (k). (45)
k,i=3.4

Again, expression (29) for the electron density operator is
preserved, apart from the changes =7, —37  and NySq0
— 2N 464,0- When compared with the results of Sec. II C, the
boson representation of the z component of the spin, pseu-
dospin, and mixed spin-pseudospin density operators are in-
terchanged, i.e.,

(q) = 2 f4q.k)b; (q + k)bi(k), (46)
i,k

PAQ) = Nydy0— e 94, cos(q A k/2)b](q +K)b,(k),
ik
(47)
with 1£(q)=S,(q) and P,S,(q), and

 _(aYh
£3(q.kK) = - £3(q.k) = ie"'9"* sin(q A k/2),

2
£(q.k) =-f3(q.k) = e 97 cos(q A k/2),

and

2
5(q.k) == f1%(q.k) = — e 1974 cos(q A k/2),
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FIG. 4. (Color online) Schematic representation of the honey-
comb lattice. The triangular sublattices A and B are respectively
represented by blue (filled) and red (empty) circles. a and b are the
primitive vectors of the underline triangular sublattice A and d is
the basis vector.

155(q.K) = - £5(q.k) = — ie™ 19" sin(q A k/2).

We again refer the reader to Appendix B for the boson rep-
resentation of the operators p;(q), p2i1(q), ps3a(q), and
Pa3(q).

The generalization of the bosonization method!' for the
case of electrons restricted to the lowest Landau level and in
the presence of two discrete degrees of freedom is con-
cluded. The next sections will be devoted to an application of
the formalism.

III. QUANTUM HALL FERROMAGNETISM IN
GRAPHENE

In this section, we apply the methodology developed
above to study the QHE at »=+1 and v=0 in graphene. We
will follow the lines of Ref. 11 and derive an effective boson
model for the system. Our starting point is the continuous
model for graphene recently proposed by Alicea and Fisher.?
Before outlining the derivation of this model, we will briefly
review some aspects of the Landau level spectrum in
graphene.

A. Preliminaries on graphene

Graphene is a collection of carbon atoms which are ar-
ranged in a two-dimensional honeycomb lattice, as illus-
trated in Fig. 4.2 The lattice structure is triangular with two
atoms per unit cell located at the positions (0,0) and d
=a,(0,1/+3). The lattice spacing is a,=2.46 A. It might also
be seen as two interpenetrating triangular sublattices A and
B. The primitive vectors of the (A) triangular lattice are a
=ay(1,0) and b=qay(-1/ 2.3/ 2), and, therefore, the primi-
tive vectors of the reciprocal lattice are a" =27/ ay)
X(1,1/y3) and b*=(27r/a0)(0,2/\53). In this atomic ar-
rangement, the carbon atoms are connected by strong cova-
lent o bonds, derived from the sp2 hybridization of the
atomic orbitals. The remaining p. orbitals (perpendicular to
the plane) have a weak overlap and, therefore, they form a
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narrow band of 7 orbitals, through which the Fermi level
passes.?? By describing the 7 electrons within a tight-binding
model

Hy=—1> 2 (a] b, +Hc), (48)

(i) o=T.1

where r=2.7 eV is the nearest-neighbor hopping energy and
the operators aia and bZU create a spin o electron on site i of
the sublattices A and B, respectively, one can show that the
single-particle electron energy varies linearly with momen-
tum (e,=+Av|q|, with vp=ag\3t/2~10° m/s) around the
six corners of the (hexagonal) Brillouin zone, i.e., the band
structure consists of six Dirac cones. Only two of them are
inequivalent, and here, we consider the ones around the
points K=(27/a)(2/3,0) and K'=—(27/ay)(2/3,0). In the
undoped case, there is only one 7 electron per carbon atom,
the Fermi level lies at the Dirac points and, therefore, the
system is semimetallic. By using a gate voltage, it is possible
to modify the carriers, either p type or n type (doped case).

The fact that the electronic structure of the system may be
described by an effective massless (continuous) Dirac model
has some important consequences. In particular, when a per-
pendicular magnetic field is applied, a different Landau level
structure emerges when compared to the Schrodinger-like
one observed in the two-dimensional electron gas in GaAs
heterostructures. Indeed, one can show that the energy of the
(Dirac) Landau levels are given by

1 [2hv2B
E,,= ¥ EEZ+ sign(n) Sopinl |n|’ (49)
c

respectively, for o=7 and |, which are associated with the
two-component spinor eigenvectors (n # 0)

. 1 |n m)
|q)n,m,0',a=+> = ( ) 5

\’_E sign(n)|n—1 m)
. 1 (sign(n)|n—1 m)
Dy .= = \_5( In m) ) (50)
For n=0, we have
| >=(|0 m>) and | >=( ! )
o 0 0ma= N0 m) )
(51)

Here, a==+ corresponds, respectively, to K and K’ points, m
is the guiding center quantum number, and |nm) are the
Schrddinger Landau level eigenvectors. Each spinor compo-
nent is related to one of the triangular sublattices A and B.
For n#0, each eigenvector |®,,, ,,) and |®,,, ,_) has a
weight (probability) equally distributed between the two sub-
lattices, while the lowest Landau level eigenvectors |(f)o,m,(,, M)
and |(130,m,0,—> are respectively localized on sublattices A and
B. The results (49)—(51) show that the Dirac Landau levels
are approximately fourfold degenerate due to the electronic
spin and valley (a==) degrees of freedom.

Let us concentrate on the integer quantum Hall states in
the lowest Landau level (n=0). Apart from the fact that the

fermion field operator \f’(r) is a two-component spinor and

195431-7



R. L. DORETTO AND C. MORAIS SMITH

the momenta q are measured with respect to the K and K’
points (we refer the reader for a detailed discussion in Ap-
pendix C), the methodology developed in the previous sec-
tion can be used to study the QHE at v=—1 and v=0. In fact,
the former, which corresponds to a quarter-filled lowest Lan-
dau level, is associated with the spin-pseudospin polarized
phase (Sec. Il B), whereas the latter, characterized by a half-
filled lowest Landau level, is associated with either the spin
(Sec. IT C) or the pseudospin (Sec. II D) phase.

B. Alicea-Fisher model

The effective continuous model proposed by Alicea and
Fisher to study the quantum Hall effect in graphene goes
beyond the tight-binding approximation (see Ref. 8 for de-
tails). In addition to H, [Eq. (48)], it also includes the on-site
electron-electron repulsion term 7 and the (long range)
Coulomb interaction Hc,;, namely,

HzHl+HU+HC0u1, (52)
where
1., 1
Hy=U2| (i)’ = 3S;-S; (53)
and
1 A
Heou = _E V(r; - l'j)”i e (54)
25#,’

Here, U is the on-site repulsion energy and V(r)=e?/ er is the
Coulomb potential, with an estimated dielectric constant €
~35 (the energy scales for graphene are listed in Appendix
A). The electron number operator is ﬁFCZTCm"'CLCm S;
=(1/ Z)EU,ACLT&U)\C,-)\ is the spin operator, where & is a vector
of Pauli matrices, and czazaz(r or bZU depending on whether
i is on sublattice A or B.

Starting from the Hamiltonian (52), a continuous interact-
ing theory was derived by expanding the fermion operators
azg and bzg around the two Dirac points K and K'. After
adding a perpendicular magnetic field B=BZ and projecting
into the lowest Landau level, the model may be rewritten as

H=Hsus + Hsp. (55)
where
1
Hsus =2 2 v(@)p(@)p(-a) (56)
q

is the SU(4) invariant part of the Hamiltonian, with v(g)
=2me*/ eq (the Fourier transform of the Coulomb potential
in two dimensions), and??

Hsp=—EzS7(q=0) - 42 vi(qQ)Pzq)Pz(-q)
q

|
+ 1o 2P Op(- @)+ P(@) Py~ )
q

1
. §S(q> SCa)-3PS@ PSCa)| (57)
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contains terms that break the SU(4) symmetry. The param-
eter u, is related to the on-site repulsion energy (u
=\53a%U /4) and v,(q) is the Fourier transform of

—
_ \r'3a(2)
8

{V<r+ #ﬁ)—(l—ﬁ,,O)V(r)} (58)
V3

The model (55) was analyzed in two distinct situations: (i)
the quantum Hall ferromagnetic regime, which corresponds
to an ideal, completely clean sample, and (ii) the quantum
Hall paramagnetic regime, where disorder effects are very
strong (very dirty sample). Here, we will only focus on the
quantum Hall ferromagnetic regime. The interplay between
disorder and electron-electron interactions will be postponed
for a future publication.

In order to derive an effective boson model for the quan-
tum Hall states at v=—1 and v=0, we just need to substitute
the respective boson representation of the electron density,
the spin, pseudospin, and mixed spin-pseudospin density op-
erators into the Hamiltonian (55) and normal order the re-
sulting expression. Although the expansion of the electron
density operator is similar for the three phases, each quantum
Hall state should be treated separately because the expan-
sions in terms of bosons of the spin and/or pseudospin den-
sity operators vary from phase to phase.

1. Filling factor v=-1

We start by considering the QHE at v=-1. The state at
v=+1 is related to it by particle-hole symmetry and will not
be discussed here.

SU(4) invariant terms. Let us, firstly, analyze the SU(4)
invariant part of the Hamiltonian (55). Substituting the boson
representation of the electron density operator [Eq. (29)] in
Hsus [Eq. (56)] and normal ordering the boson operators,
apart from a constant related to the positive background, we
arrive at the following interacting boson model

HE L =HE+ HE, (59)
where the quadratic part is given by
3
Ho =2 2 web! (@)bi(q) (60)
i=l q

and the quartic term reads

3
Hy =2 2 vg(k.p)bj(k+q)b](p - q)b,(p)bi(K).
i,j=1q,p.k
(61)

The effective boson model (59) is the SU(4) counterpart
of the boson model derived in Ref. 11 for the two-
dimensional electron gas at v=1 realized in GaAs hetero-
structures (hereafter called 2DEG at v=1). The ground state
of the model (59) is the boson vacuum, which is the spin-
pseudospin polarized state [SPFM). Notice that this state is
indeed a spin-polarized charge density wave because the
electronic distribution is concentrated only in one sublattice
[see Egs. (51) and the discussion below this equation]. Hg
describes three well-defined branches of bosonic excitations,
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characterized by the same dispersion relation

et | 2 (Ig)?
wy= g 5 1 —e @ /410 T s (62)

where I,(x) is the modified Bessel function of the first kind.'®
Equation (62) is equal to the dispersion relation of the el-
ementary neutral excitations (magnetic excitons) of the
2DEG at »=1.""%_In the long wavelength limit, w,
~ egllq|*> with eg=1\7/32(e*/€l), and therefore, the branch
i=1 corresponds to spin wave excitations, while the branches
i=2 and i=3 correspond to pseudospin wave and mixed
spin-pseudospin wave excitations, respectively (see Fig. 1).
At short wavelengths, w, = \7/2(e?/ €l), which is the energy
of a very well separated particle-hole pair.>* Finally, the
boson-boson interaction potential is given by

vq(k,p) = 2v(q)e_(l‘1)2/2 sin(q A k/2)sin(q A p/2). (63)

Apart from the fact that Eq. (61) describes scattering pro-
cesses between bosons within the same (i=j) and different
(i # j) branches, the interaction potential (63) is similar to the
one derived in Ref. 11. It is worth mentioning that our ap-
proach also provides an interaction between the bosonic ex-
citations, which is not captured by the analysis presented in
Ref. 8.

Due to the similarities between the quantum Hall system
in graphene at v=-1 and the 2DEG at v=1, we would expect
that the charged excitations of the former might be described
by topological solitons>>?® (quantum Hall skyrmions) as
well. In fact, the situation here is formally identical to the
one in the (spinfull) bilayer QHS at v;=1 in GaAs hetero-
structures. The similarity clearly appears when the upper-
layer and down-layer electronic states are combined into the
bounding and antibounding states. In this case, there are four
possible kinds of charged excitations with topological charge
Qr=+1 (and corresponding electric charge Q,=eQ7),
namely, one skyrmion (Q;=1 and Q,=¢) and three types of
antiskyrmions (Qy=-1 and Q,=-¢). Indeed, they might be
considered as SU(4) skyrmions because the topological ex-
citation created by introducing an extra electric charge
should involve the three branches of neutral excitations in
order to minimize the total energy [see Ref. 20 for a detailed
description of SU(4) skyrmions in the context of the bilay-
ers].

For the SU(2) version of the model (59), we know that the
boson-boson interaction potential (63) gives rise to bound
states of two bosons which are related to small [SU(2)]
skyrmion-antiskyrmion pair excitations.!' The fact that Eq.
(63) describes scattering processes between different bosonic
branches indicates that, here, we would expect bound states
constituted by bosons belonging to the same and distinct
branches. Moreover, it was also shown that by describing the
topological excitation as a coherent state of bosons [sk) [see
Eq. (64) of Ref. 11], the expectation value of the SU(2) bo-
son model with respect to the state |sk) is equal to the energy
functional derived from the phenomenological theory of
Sondhi et al.? for the quantum Hall skyrmion, i.e., the semi-
classical limit of the SU(2) boson model agrees with the
theory of Sondhi et al. for the quantum Hall skyrmion.
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It is quite straightforward to derive the semiclassical limit
of the interacting boson model (59). We start by writing
down the SU(4) counterpart of the state |sk),

3
|sk) = exp(BE 2 Qpl(-q)+ ﬁabxq)) |SPFM),

i=1 q
(64)

where ((_liq)*:ﬂfl and the constant B will be determined
later. With the aid of the Baker-Hausdorff formula, one can
show that the expectation value in the state |sk) of normal
ordered boson operators is obtained just by replacing each
b!(q) and b,(q), respectively, with iB(_lfl and —iBQiq. Defin-
ing the excess charge Sp(q)=(sk|p(q)|sk)—Nyd, o, where
p(q) is the electron density operator (29), we have

3
op(@)=2i> X 72 sin(q Ak/I2) D, k. (65)

i=1 k

Assuming that the Fourier transform of (_lil and Qfl vary
slowly in space, we can restrict ourselves to the long wave-
length limit of Eq. (65), i.e., we can consider
2 sin(qAk/2) = qAak/2. Within this approximation, the
Fourier transform of Jp(q) is given by

Sp(r) =iB Y, 2- VQi(r) X VQi(r), (66)

which is in agreement with the expression for the topological
charge density derived by Arovas et al.?’ in their studies of
SU(N) quantum Hall skyrmions. Indeed, by comparing Eq.
(66) with Eq. (3) from Ref. 27, one concludes that B
=1/y27I2. Once the constant B is fixed, we can now calcu-
late (sk|H%,|sk) and show that

(Hus) = 2052 f d*r|lVQi(r)?

. f Prdr (- ) Sp(r) 8p(x'),  (67)

where p(s)=[1/(16\e“';r)](e2/el) is the stiffness and uv(r)
=e?/er is the Coulomb potential. The energy functional
E[Qi(r)]=(H8,) [Eq. (67)], which corresponds to the SU(4)
counterpart of the model of Sondhi et al., agrees with the
findings of Arovas et al.?’ This analysis shows that the boson
model (59) can, indeed, be used to study SU(4) quantum
Hall skyrmions in graphene.

Symmetry breaking terms. The degeneracy of the three
branches of boson excitations is lifted when the SU(4) sym-
metry breaking term Hgp is taken into account. Following
the same procedure used above, we can derive an effective
boson model from the Hamiltonian (57). The task here is
slightly more difficult because Hgp involves more complex
expressions.

Let us start by expanding the operators S(q) and P,S(q)
in terms of the density operators p;;(q). It is possible to show
that
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S(q) -S(-q) + P;S(q) - P,S(-q)
=SAq)S2(=q) + PzSq) P27~ q) + p12(q)p21 (- )
+021(@)p12(= @) + p3a(@)pa3(= @) + pa3(qQ) p3a(=q).

The boson representations of the above density operators
p(q) are shown in Appendix B [see Egs. (B1) and (B2)].
After a lengthy but straightforward calculation, one can show
that Hgp is also mapped into an interacting boson model.
Adding Eq. (59), which was derived from the SU(4) invari-
ant term, the total effective boson model may be written as

HP =T + . (68)
The quadratic term now reads
3
Hy=2 2 @(@)b](a)bi(q), (69)
i=l q

where @;(g) are the renormalized boson dispersion relations,

_ _ 2
wl(Q) = EZ+ 2(“0 - MI)N¢(1 —-e (lg) /2) + Wq’

@5(q) = 4u,N g — 42, v, (K)e™ W72 cos(k A q/2) +w,,
k

w3(q) = Ez+ @y(q), (70)

with w, given by Eq. (62) and u;=v,(q=0) [see Eq. (58)]. In
the small momentum region, we have

2 k
”(k p)=96, ZO _(Zq)z/z{sm(q%)sin<q%

3

+ 230 —igA(k—p )/2[5 (1 - 5 De —Plq+k2 _

with the form factors f7(q,k) given by Egs. (31) and 3,]
=1-6;;. Finally, it is worth mentioning that the ground state
of the system is still the boson vacuum |SPFM>. Indeed, this
result is corroborated by exact diagonalizations on small
systems.?®

The introduction of new terms in the boson-boson inter-
action potential might modify the two-boson spectrum, for
instance, one particular kind of bound state may have a lower
energy than the others. As a consequence, one specific type
of skyrmion-antiskyrmion pair excitation will be more favor-
able. Indeed, it was argued that a pseudospin skyrmion-
antiskyrmion excitation should determine the charge gap due

p) (q/\k
—Cos

+4<@—u|>ff(q’k)ff(—q,p)+&,.f?e‘””)z/{z (qu) (
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(71)

wq) =

where the excitation gaps A; and the renormalized stiffnesses
are given by

Al = Ez, A2 =\ 77'3/24(610/1)I/llN¢,
A3 = Al + Az,
ps= N y(ug = uy)/4m+ Py,

p§=p§=u1N¢/47T+ Py (72)

Notice that @,(¢=0)<®,(¢=0) and @3(¢=0). Both small
and large momentum limits of Egs. (70) agree with the re-
sults derived by Alicea and Fisher.® The interaction term as-
sumes the form

3

HY = 2 > 05/(k.p)b](k + )bl (p - )b (p)bi(k).
i,j=1 q,p.k

(73)
where the total boson-boson interaction potential Eiij (k,p),

which is richer than the one derived only from the SU(4)
invariant part of the Hamiltonian (55), is given by

:| 15 2140 —12|q+k\2/2 |:q/\(k—p):|
qn

2
p ) zq/\(k p)/2:|

25 e—lz|q +k - p\2/2] (74)

to the smallness of the excitation gap @,(¢=0).}

Although Eiij (k,p) is quite complex, it is possible to make
a simple analysis by considering the SU(2) limit of the
bosonic Hamiltonian (68) and then by calculating the semi-
classical limit of this reduced boson model. In this case, Eq.
(64)  simplifies to |sk>:exp[BEqulbf(—q)+(_2ilbi(q)]
|SPFM), i.e., we assume that only the ith bosonic branch is
excited, while the others are kept frozen. Following the same
steps  which led to Eq. (67) and approximating
-1’2 cos(qak/2)cos(qap/2) = e~ 712 one can show that
the functional energy for the different skyrmion flavors as-
sumes the form
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E[n(r)]=E[n]+ E{[n] + E[n] + E{[n]
= J r{2B1 — An*(r)] + 2p4[Vn(r) T}

1 '
+ 2 f dzrdzr'B“l’i,-e“r_ r ‘2/2]2[1 —n*(r)]

2

X[1-nir")]+ % f d2rd2r'<

er—r'|

+ el f"W) Sp(r)Sp(r’). (75)

where i=1, 2, and 3 refer respectively to spin, pseudospin,
and mixed spin-pseudospin-like skyrmions. n(r) is a unit
vector defined by the relation (r)=Z X n(r) (see Ref. 11 for
details). A; and p§ are given by Eqgs. (72), i;=0, il,=il3
:32N¢(M0/6—M1), 171 :2N¢(2M0/3—M1), and 172:53:N¢M0/3.

Notice that the SU(4) symmetry breaking part of the
Hamiltonian (55) adds to the energy functional for the skyr-
mion a Zeeman-like term (EiA[n]) and provides small contri-
butions to both the stiffness and the topological-charge—
topological-charge interaction potential. In fact, 0, and 03
>0, while 0 can be either positive or negative depending on
the value of the on-site repulsion energy U. For the pseu-
dospin and the mixed spin-pseudospin-like skyrmions (boson
branches i=2 and 3, respectively), there is an extra contribu-
tion given by E“[n]. This term favors excitations with
n“(r)<0 because 4N,4(uy/6-u;)<0 when 2<U<I12eV
(see Appendix A). Remembering that a quantum Hall skyr-
mion is characterized by n%(r)—1 when r— o, one might
conclude that EiZZ[n] contributes to an increase of the radius
of the skyrmion and, hence, its stability.

It is still difficult to predict which type of skyrmion has
the lowest energy without performing careful calculations.
What we can easily see is that if the on-site repulsion energy
is U= 10 eV, then the scenario proposed in Ref. 8, that a
pseudospin skyrmion should be the lowest energy one, is
confirmed. In this case, péz p§ =~ pg and 0, =0,~03<<€.. As
the skyrmion energy is 4mps+O(A,/ €0),>2° the lowest en-
ergy soliton should be the one related to the excitation
branch which has the smallest A;, i.e., the pseudospin branch
(i=2). Notice that the presence of E““[n] for i=2 and 3 does
not alter the above conclusions because this term should re-
duce the total energy.

Finally, it is worth mentioning that Eq. (74) contains
cos(qak/2)cos(qap/2) like terms, which are also present
in the boson-boson interaction potential derived for the bi-
layer QHS at vy=1 (spinless case) within the SU(2)
bosonization method.'> Such similarity implies that, in prin-
ciple, a Bose-Einstein condensate could be realized here. Let
us consider again the SU(2) limit of the boson model (68)
and focus, for instance, on the mixed spin-pseudospin branch
(i=3). The phase with N,/2 bosons should then correspond
to the antiferromagnetic one proposed by Herbut.3! Assum-
ing that the bosons condense in their lowest energy mode
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(q=0) and treating the reduced boson model within the Bo-
goliubov approximation, one arrives at a model similar to
Eq. (8) from Ref. 15 with the replacement Aq— 8(u/6
—u,)exp[—(Ig)*/2]. As was shown in the last paragraph,
uy/6—u; <0, and therefore, such a phase should be unstable.
Similar considerations hold for the pseudospin branch. The
situation is more delicate for the spin wave branch, and it
will not be discussed here.

2. Filling factor v=0

The analysis of the quantum Hall state at »=0 follows the
same lines of the previous section with the difference that
now either the spin or the pseudospin phases can be realized.

Spin phase. Let us, firstly, assume that the system is in the
spin phase. In this case, an effective boson model can be
obtained from the fermionic Hamiltonian (55) with the aid of
the expressions calculated in Sec. II C and Egs. (B3) and
(B4). Due to the fact that the boson representation of the
electron density operator (12) does not change from phase to
phase, the boson model derived from the SU(4) invariant
part of the total Hamiltonian [Eq. (56)] is similar to Eq. (59)
with the replacement =7, — 37 . The ground state of the
system is also the boson vacuum, which now corresponds to
the state |[SFM). There are four branches of well-defined
bosonic excitations. In the small momentum region, the
branches i=1 and 4 describe spin wave excitations, whereas
the branches i=2 and 3 correspond to mixed spin-pseudospin
wave excitations (see Fig. 2).

The total effective boson model, which also includes the
terms obtained from H g, reads

HE =HE + HE+ V5. (76)
The quadratic term 5 is again given by Eq. (69) with

1(q) = @4(q) = Ez + 2(ug— u)Ny(1 - e—(lq)2/2) + Wy,

(l_)z(q) = (;)3(q) = EZ + 2MON¢ - 2M1N¢(1 + e—(lq)2/2) + Wq,
(77)

where w, is given by Eq. (62). In the small momentum re-
gion, @;(¢) assume the form (71), with the following excita-
tion gaps A; and stiffness pi:

A] = A4=Ez,
Azz A3 =Ez+ 2N¢(M0-2M|),
ps= pé:N¢(u0 —uy)/47+ pg,

ps = p3 =Ny /47 + pg. (78)

Notice that the introduction of the symmetry breaking terms
does not modify the ground state of the system |SFM).
The boson-boson interaction part of the total Hamiltonian

has two distinct terms. The first one, 7?(53 is equal to Eq. (73),
but now the interaction potential 17;’ (k,p) reads
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17£ij(k, p)= uoe_(l‘])z/2 { sin(

-
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q/\k> ) (q/\p) 1 (q/\k) (q/\p)
sin — —Cos cos| —
2 2 3 2 2

Uy 2 2 2 qgnr(k-p) u
i,jgo[e 14772 - 2(8,, + 8,4)e 1+ K ’ZJCOS{T] +4(—0 - ul)ff’(q,k)fj (-q.p)

3

+ Ei,j?{hi,je_([q)z/z cos|: M} + E,-,j<ie—(/q)2/2 Sm{w} + e—lz\q + k|2/2e—i(— 1)'+qu(k—p)/2) } , (79)

2

with the form factors f'(q.k) given by Egs. (41), h;
= 51"] 6.1"44' 61"45]"1 + 51"25]"3 + 51"3 5.]"2, and I;i,j: 1 _hi,j' The SecC-
ond term, V&, can be written as

Vo= 2 vi(k.p)b](k+q)bi(p - q)bs(p)by(k). (80)
q.p.k

where
, 2uq , ik + @, -lip - @)
v(k,p) = 5 explig A (p —Kk)/2](e7M TV 4 7P,

(81)

Pseudospin phase. Turning to the pseudospin phase, simi-
lar considerations show that this phase is also characterized
by an effective boson model analogous to Eq. (76). The
ground state is the boson vacuum [PFM) [Eq. (42)] and the
dispersion relations of the four branches of bosonic excita-
tions are

_ 5,2) - 2M0N¢ + 2u1N¢(3 _ e—(lq)2/2) + Wy,
(82)

@(q) = Ez(6;3

for i=1, 2, 3, and 4. The long wavelength limit behavior of
w;(q) is also given by Eq. (71) with

A=Ay =2Ny(2u; - up),

A2=—E2+A1, A3=E2+A1,

ps=Nyu/4m+p], i=1,2,3, and 4. (83)

Here, the branches i=1 and 4 describe pseudospin wave ex-
citations, while i=2 and 3 correspond to mixed spin-
pseudospin wave excitations (see Fig. 3). The boson-boson

12 (232
“Jeo 57

_@g%+@%cm{11&;£4
3 :

_ k-
+ (si,_j@{hi,je_(lq)z/ 2 cos[—q - (2 p) ]

interaction potential in H? is

Efij(k,p) = e‘(l">2/2[uo sin(

A
+ (ug — 4u1)cos( 4

2

_ " k-
+ h,-,j<i(— 1)'”6_([‘1)2/2 sin[—q ~ (2 p)]

_ e Plat k= pl12,-i- I)quA(k-P)/Z) } . (84)
Finally, the interaction term V? can be written as

Vo= 2 vi(k.p)[b](k + q)bi(p — q)bs(p)by(k)
q.pk

+bi(k + q)b(p — q)by(p)b; (K)], (85)

" l( 0 —(lq)2/2 —(l‘q +k - p\)2/2 —i(]A([)—k)/Z
U q( s p) = 3 (e e )e .

(86)

The small and large momentum expansions of Egs. (77)
and (82) are in agreement with the results of Alicea and
Fisher,® who presented a detailed discussion about the stabil-
ity of each phase. Here, we just want to point out that the
behavior of the smallest excitation gap indicates which phase
should set in. For instance, in the spin phase, @,(¢=0) and
@3(¢=0) are smaller than ®,(¢=0) and w4(¢=0) as long as
ug—2u; <0. This result implies that the spin phase is stable
only if

0 < @,5(q=0)=Ez+2N4up—2u,),

where the estimated values of the parameters E, u,, and u,
are shown in Appendix A. It is possible to show that the spin
phase sets in only if U> U~ 3.25 eV. The opposite condi-
tion is found by carrying out the same analysis in the pseu-
dospin phase. It is difficult to conclude which phase is more
favorable due to the uncertainties in the determination of the
on-site repulsion term U.

Charged excitations. Concerning the elementary charged
excitations, the similarities between the effective boson
model derived from Hgys [Eq. (56)] and the SU(2)
counterpart!! indicate that, in both phases, the lowest energy
charged excitations should be described by quantum Hall
skyrmions as well. Again, within our formalism, such kind of
topological excitation is given by the state (64). This sce-
nario agrees with the numerical calculations of Yang et al.,”
who showed that skyrmions should occur in the n=0 as well
as n=1, 2, and 3 Dirac Landau levels.
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We can carry out the same analysis of the previous section
and calculate the semiclassical limit of the corresponding
SU(2) boson models for the spin and pseudospin phases in
order to estimate how H gz changes the skyrmion energy. It is
easy to show that the energy functional E[n(r)] is the same
as in Eq. (75). For the spin phase, the parameters of E,[n(r)]
are ity =ity=0, r=it3=32N 4(uy/6—u,), 01=0,4=2N42uy/3
~uy), U,=03=N 4o/ 3, and A; and Pl are given by Egs. (78).
Again, if U~10 eV, the corrections due to the SU(4) sym-
metry breaking terms are such that all stiffnesses are equal
and so does the topological-charge—topological-charge inter-
action potential. In this case, we also have A|=A,~A,=A;,
and therefore, both mixed spin-pseudospin and spin skyrmi-
ons can be realized.

For the pseudospin phase, E[n(r)] is characterized by
171 =1/72=ﬁ3=1,74=32N¢,(u0/6—u1), 171 217221732174=N¢M0/3,
and A, and p§ given by Egs. (83). Here, the SU(4) symmetry
breaking terms equally affect the four excitation branches,
independent of the value of the on-site energy U. The mixed
spin-pseudospin skyrmions should have a larger radius (and,
therefore, lower energy) than the pseudospin ones because
A,/ e.<A,/€. and A,/ €. as was already pointed out in Ref.
8. The term EZ“[n(r)] will even reduce the energy of the
texture with larger radius.

Finally, we should emphasize that our bosonization
method is designed to study only bulk excitations. The recent
proposal of Abanin et al.'® that the finite value of the longi-
tudinal conductivity at v=0 is related to the existence of
charged gapless excitations at the edge of the system cannot
be addressed with our formalism.

IV. SUMMARY

We presented here a nonperturbative bosonization scheme
for electrons restricted to the lowest Landau level in the pres-
ence of two discrete degrees of freedom, spin-1/2 and
pseudospin-1/2. We analyzed the cases when the lowest
Landau level is quarter-filled and half-filled. For the latter,
two distinct phases can be realized, the so-called spin and
pseudospin phases, whereas in the former, only the spin-
pseudospin phase sets in. In each case, a set of n-independent
kinds of creation and annihilation boson operators was de-
fined and the boson representations of the projected electron,
spin, pseudospin, and mixed spin-pseudospin density opera-
tors were calculated. The derived bosonic expressions obey
the lowest Landau level algebra.

We then applied the formalism to study the QHE at =0
and v=-1 in graphene. We concentrated on very clean
samples, assuming that the system is in the quantum Hall
ferromagnetic regime. For each quantum Hall state, the con-
tinuous fermionic model proposed by Alicea and Fisher® was
mapped into an effective interacting boson model. We
showed that the quadratic term of this model describes n
well-defined branches of bosonic excitations, whose disper-
sion relations are in agreement with the asymptotic ones cal-
culated by Alicea and Fisher.® Our formalism allows us to go
beyond the analysis presented in Ref. 8 as we are able to
calculate the interaction between the n bosonic excitation
branches.
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TABLE 1. Energy scales for the QHE in graphene.

Energy scales (K)
fiwe \2fiv2B/c 380.60VB
E, gusB 1.08B

ec e/ el 150.12\B
Nt \V3Ua}/ 8wl 0.08UB
N gity aplec/\3 0.4B

The boson model H4§;, derived from the SU(4) invariant
part of the fermionic Hamiltonian is similar to its SU(2)
counterpart obtained before in our studies of the 2DEG at
v=1. Based on this analogy, we argued that the charged ex-
citations for the quantum Hall states in graphene should be
describe by topological solitons (quantum Hall skyrmions),
and proposed that such excitation can be written as a bosonic
coherent state |sk), generalizing the SU(2) expression of Ref.
11. We then calculated the semiclassical limit of Ha;, and
showed that the derived energy functional is equal to the one
calculated by Arovas et al. for SU(N) quantum Hall
skyrmions.?’

We briefly discussed how the SU(4) symmetry breaking
terms modify the skyrmion energy functional by taking
SU(2) limits of the total boson model and then calculating
the semiclassical limit of the reduced models, i.e., focusing
on one specific skyrmion flavor. We showed that both the
stiffness and the topological-charge—topological-charge inter-
action potential are renormalized and that an extra term
(EiZZ[n]), which favors a larger skyrmion radius, is intro-
duced. More detailed studies of the boson-boson interaction
potential as well as of the disorder effects are deferred to a
later publication.

The method presented here is quite general. It might be
used to study bilayer quantum Hall systems at vy=1 and
vp=2 realized in GaAs heterostructures. In particular, it will
allow us to address questions related to the electronic spin,
which seems to play an important role in the behavior of
these systems at vy=1.
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APPENDIX A: ENERGY SCALES

The relevant energy scales for the QHE in graphene are
presented in Table I. The cyclotron (fiw), Zeeman (E), and
Coulomb (ec) energies as well as the parameters N 4u, and
N 4u, [see Sec. IIl B] are given in terms of the magnetic field
B, which is measured in Tesla. We consider the following
estimated parameters for graphene: effective g-factor g=~2,
dielectric constant e=~5, and on-site repulsion energy 2
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<U<12 eV.® The magnetic length [=\#c/eB=256/ VB is
measured in angstroms and ay=2.46 A is the lattice spacing
of the triangular underlying lattice.

APPENDIX B: BOSON REPRESENTATION OF THE
DENSITY OPERATORS py,(q), p21(q)s p34(q), AND py3(q)

Let us concentrate on the spin-pseudospin phase. Al-
though the boson operators b,(q) and b{(q) are respectively
defined by p;»(—q) and p,,(q), the boson representations
of these density operators are not necessarily p;,(q)
:a;lbl(—q) and pzl(q):a;bi(q). If it were the case, we
would have [p»(q), p21(k)]=a;25q,_k, in complete disagree-
ment with the commutator (8). The same procedure de-
scribed in Sec. II B should be employed in this case as well.
Due to the similarities between the steps involved here and
in the calculation of the boson representation of the spin
density operators S*(q) and S7(q) of the SU(2) case, we refer
the reader to Sec. II C of Ref. 11 for all the details, and just
display the final results here. We have

/_ —_ 2
p21(q) = VN4 19 pi(q),

p12(q) = Ny @974, (- q)

— > f(q.k.p)b](k +q +p)b(p)b,(Kk),
ik,p

(B1)

where the form factors are given by

2
f1(q.k.p) =N;%e 97 cos[(q + k) A (p+q)/2],

fiz(q,k,p) =f§2(q,k,p) =N(—ﬁl/28—(lq)2/4e—i(q+k)/\(p+q)/2’

and
2 . o
p34(Q) = pyy(— @) = € 9T 1 4W2pT (1 Kby (K).
k

(B2)

Similar considerations hold for the spin phase. In this case,
the boson representation of both p,;(q) and pys3(q) are de-
fined respectively by the creation boson operators b{(q) and
bZ(q), while more involve expressions are derived for their
Hermitian conjugates. We have

2
pa(q) = \'/174)6_(1'1) "bi(q),

— 2
p12(q) = VN ye 97p (- q)
3

-2 2 f1Ha.k,p)b] (k +q + p)b,(p)b; (K)
i=1 k,p

— > /(q.k.p)bi(k +q+p)bs(p)by(k), (B3)

k.p

where the form factors are

2
fi(a.k.p) =N, %97 cos[(q + k) A (p+q)/2],
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fiz(q,k,p) :f12(q,k,p) _ N(—i)l/Ze—(lq)2/4e+i(q+k)/\(p+q)/2’

2 .
f%z(q,k,p) — N(—bl/Ze—(lq) /46—1(q+k)/\(p+q)/2’

and

Ny —(g) %4yt
ps3(q) = VN 4~ pl(q),

’,_ —_ 2
p3a(q) = \Nye "D (- q)
4

-2 2 f(a.k,p)b](k + q + p)bi(p)by(K)
i=2 k,p

— > PHa.k.p)b(k+q+p)by(p)bs(k), (B4)

k.p

with the following form factors:

f§4(q,k,p) =]_‘34(q,k,p) — N;l/26_(]")2/4e_i(q+k)A(p+q)/2,
£ q.k.p) = N(—ﬁl/Z 1D g+ pra)2

2
fia.k.p) =N, e " cos[(q + k) A (p +q)/2].

Finally, the pseudospin phase is characterized by the fol-
lowing expressions:

p1o(q) =— e—(lq)2/42 eI pl(q + k)b, (k)
K

+bj(q +Kk)b3(K)],

pa(q) = 1D N7 (q + K)bs (k) + bh(q + K)by(K)],
k

(B5)

with p,(q)=p;,(—q) and p,3(q)=p;,(—q). The derivation of
the above expressions is analogous to the one involved in the
calculations of Eq. (B2).

APPENDIX C: BOSONIZATION AND DIRAC LANDAU
LEVELS

For electrons in graphene subject to a perpendicular mag-
netic field, the fermion field operator is a two-component
spinor, which may be written in Dirac Landau level basis as

\sz.(l') = e—iaK-rE <(I)nma|r>chInaU’

n,m

\IralT(r) = elaKrE <r|q)nma>cnmaa"

n,m

(C1)

where K=(27/a)(2/3,0) and the spinors |®,,,,) are given
by Egs. (50) and (51).
Defining the density operator p,,. g\(r) as

P pr(1) = WL (1) W 5 (r), (C2)

one can calculate its Fourier transform in the same way as it
is done in Eq. (5), i.e.,
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ﬁao’,ﬁ)\(q)

= E E <(f)nma|e_i(q+(a_B)K)'r|d\)n’m’ﬁ>clma0cn’m’ﬁ)\'

’ ’
n.n' mm

(C3)

The projection into the nth Dirac Landau level is obtained by
taking the component n=n’ in Eq. (C3). For the lowest Lan-
dau level, the fact that the eigenvectors (51) have only one
nonzero entry implies that

_ _ 2
pao’,ﬁ)\(q) =e () /ZFZ(:BO 2 Gm,m’(lq)c(-];maO'COm’B)\

!
m,m

= :fopaa,ﬁx((I), (C4)

where F,‘ffozéa,/; and p,, p\(q) is given by Eq. (5). In the
isospin language, p;;(q)=p;;(q) and does not vanish only if
1,0)=(1,1), (1,2), (2,1), (3,4), and (4,3). Notice that these
are the density operators which appear in the effective con-
tinuous model (55). Therefore, the expressions derived in
Secs. I B-II D can be directly employed to study the fermi-
onic model (55).

The situation is more complex for higher Landau levels
(n#0). From Egs. (50), it is possible to show that?°
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ﬁaa,ﬁ)\(q) = e_llq N lKlz/ZF;D:B(q) E Gm,m’(lq - lK)Cjzmaa'anl’,B)\

m,m’

= Fy%(Q)paopr(lq + 1K), (C5)
where the form factors F,‘fﬁ(q) read
N (l9)* (lg)°
F%(q) = E[LM(T L\ ) |
! S
F; (Q) - /__(qu le)L‘n‘ 1 B (C6)
V2n 2

and F,*(q)=F, (-q) with K—-K. In the expressions
above, we used the fact that 2K=K’=-K. The connection
with the formulas derived in Secs. II B-II D is obtained via
the relation

Paon(1q - 1K) = F3P(1q - IK)poy p(1q).  (C7)
We refer the reader to Ref. 30 for a detailed analysis of the
form factors F Z‘B(q) and theirs implications in the dynamics
of the quantum Hall states in higher Dirac Landau levels.
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