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We study the order-from-disorder transition and reentrant magnetism in La2−xSrxCu1−zZnzO4 within the
framework of a long-wavelength nonlinear sigma model that properly incorporates the Dzyaloshinskii-Moriya
and XY anisotropies. Doping with nonmagnetic impurities, such as Zn, is considered according to classical
percolation theory, whereas the effect of Sr, which introduces charge carriers into the CuO2 planes, is described
as a dipolar frustration of the antiferromagnetic order. We calculate several magnetic, thermodynamic, and
spectral properties of the system, such as the antiferromagnetic order parameter, �0, the Néel temperature, TN,
the spin-stiffness, �s, and the anisotropy gaps, �DM and �XY, as well as their evolution with both Zn and Sr
doping. We explain the nonmonotonic and reentrant behavior experimentally observed for TN�x ,z� by Hücker
et al., �Phys. Rev. B 59, R725 �1999��, as resulting from the reduction, due to the nonmagnetic impurities, of
the dipolar frustration induced by the charge carriers �order-from-disorder�. Furthermore, we find a similar
nonmonotonic and reentrant behavior for all the other observables studied. Most remarkably, our results show
that while for x�2% and z=0 the Dzyaloshinskii-Moriya gap �DM=0, for z=15% it is approximately �DM

�7.5 cm−1, and we expect it could be observed with one-magnon Raman spectroscopy.

DOI: 10.1103/PhysRevB.75.134507 PACS number�s�: 74.25.Ha

I. INTRODUCTION

High temperature superconductivity is obtained by intro-
ducing charge carriers �holes or electrons� into Cu-based
Mott-Hubbard insulators. At half-filling such systems exhibit
long range antiferromagnetic �AF� order in the ground state,
which is however rapidly suppressed by the introduction of
charge carriers. Consider, for example, the case of La2CuO4,
the simplest of the parent compounds. The replacement of
La3+ by Sr2+ ions in La2−xSrxCuO4, through which holes are
doped into the CuO2 planes, causes the destruction of the
canted Néel order already at x�0.02,1 showing that the
doped holes strongly frustrate the underlying AF order
within the CuO2 planes. Conversely, doping of isovalent
nonmagnetic impurities into La2CuO4 is known to have less
dramatic effects. For example, by replacing Cu2+ for Zn2+ in
La2Cu1−zZnzO4,2 the AF order is suppressed at much higher
impurity concentration and the monotonic and rather smooth
decrease of the Néel temperature TN with z can be described,
at least in the limit of low dilution, within classical percola-
tion theory.

The combined effect of adding holes and nonmagnetic
impurities into La2−xSrxCu1−zZnzO4 was studied experimen-
tally by Hücker et al.3 It has been found that, even though
each kind of impurity independently suppresses the AF order,
an enhancement of the antiferromagnetism can occur when
these impurities are combined. For example, in the presence
of Zn, z�0, the AF order survives for x�0.02.3 More inter-
estingly, it was also found that for x=0.017, the Néel tem-
perature exhibits a nonmonotonic behavior as a function of
Zn doping. In fact, TN is first enhanced from 125 K at z=0 to
144 K at z=0.05, and only then starts to be suppressed by the
dilution �see Fig. 4 of Ref. 3�.

This remarkable reentrant effect was immediately ad-
dressed theoretically by Korenblit et al.,4 who first suggested

that Zn reduces the frustration induced by Sr, through the
dilution of ferromagnetic bonds. These authors started from
the two-dimensional and isotropic Heisenberg spin system
and obtained a phenomenological expression for the Néel
temperature with the aid of a parameter � containing infor-
mation about the Dzyaloshinskii-Moriya �DM� and pseudo-
dipolar �XY� anisotropies, as well as the interplanar superex-
change J�. More recently, the same authors suggested that
J� has little or nothing to do with the suppression of the AF
order in La2−xSrxCu1−zZnzO4 �J� was shown to be almost x
and z independent�, which should be, instead, solely deter-
mined by intraplanar correlations.5 This is in agreement with
the recent findings of Juricic et al.,6 where it has been shown
that the robustness of the canted Néel state is determined by
the DM gap. The collinear long range AF order is destroyed
when the renormalized DM gap vanishes, at x��DM/J
�0.02, and for higher doping the magnetism becomes
incommensurate.6,7 The DM and XY anisotropies have also
been shown to be behind the unusual magnetic susceptibility
response in La2−xSrxCuO4,8,9 for a rather wide range in dop-
ing and temperature. In addition they are also responsible for
the appearance of a field-induced mode in the one-magnon
Raman spectrum of La2−xSrxCuO4.10,11 Thus it is clear that
any realistic description of the reentrant magnetism in
La2−xSrxCu1−zZnzO4 must properly take into account such
anisotropies.

In this paper we revisit the problem of the reduction of
frustration in La2−xSrxCu1−zZnzO4, first proposed by Koren-
blit et al.,4 within the framework of a long-wavelength non-
linear sigma model �NLSM� that properly includes DM and
XY anisotropies, dilution, and frustration. We show that in-
deed dilution weakens the frustration by reducing the
dipolar-magnon coupling constant. The result is a nonmono-
tonic behavior not only for TN, but also for other observables
like: order parameter, weak-ferromagnetic moment, and an-
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isotropy gaps. Moreover, since the destruction of the AF or-
der is directly related to the vanishing of the DM gap,6 we
find that the reentrant antiferromagnetism is accompanied by
a reentrant behavior for the DM gap itself. Finally, we show
that the NLSM formulation, together with classical percola-
tion theory, can also describe the experiments in the highly
Zn-diluted limit, provided the appropriate bond percolation
factor is used.

The paper is organized as follows. In Sec. II we discuss
the different impurities to be considered, we review the deri-
vation of the anisotropic NLSM for La2CuO4, introduce di-
lution by Zn according to the classical percolation theory,
and include the dipolar frustration within the framework of
the Shraiman and Siggia model.12 In Sec. III we present our
general model and compute all the renormalizations of the
physical quantities. In Sec. IV we discuss the effect of the
reduction of frustration in different physical quantities and
propose experiments that could lead to the observation of
these effects. This section is written in such a way that the
reader not interested in the theoretical details can skip Secs.
II and III. In Sec. V we present our conclusions. In Appendix
A we review the continuum limit for the site and bond per-
colation factors, while in Appendix B we provide a detailed
derivation of the NLSM with dilution.

II. IMPURITIES IN HOST La2CuO4

La2CuO4 is a layered antiferromagnet with a rather large
XY anisotropy which below 530 K is in the low-temperature
orthorhombic �LTO� phase. Although the orthorhombicity re-
sulting from the staggered tilting of the CuO6 octahedra is
small, it is responsible for the presence of an antisymmetric
exchange of the DM type once the spin-orbit coupling is
considered. Together, these two anisotropies, DM and XY,
gap the transverse spin-wave excitations along the a and c
orthorhombic axis, respectively, and lead to a canted antifer-
romagnetic ordering along the b orthorhombic direction, see
Fig. 1�b�.

Theoretical studies of La2CuO4 concentrate on the Cu lat-
tice, because all the other atoms �La3+, O2−� are in a closed
shell configuration. In the crystal Cu2+ has a missing electron
in the dx2−y2 orbital, which carries a spin-1

2 and orders anti-

ferromagnetically below TN=325 K. There are two kinds of
impurities which, at some value of doping, destroy the anti-
ferromagnetic order in the layered La2CuO4 compound. Re-
placing La3+ with Sr2+ leads to a rapid suppression of the
antiferromagnetic order in the plane. This happens because
the holes donated to the planes form Zhang-Rice singlets
with the local moments of Cu2+,13 which act as effective
mobile holes in the spin lattice. Doping the crystal with Zn,
i.e., substituting Cu2+ with isovalent Zn2+, introduces vacan-
cies at the Cu positions. In fact, Cu2+ has an electronic con-
figuration �Ar�3d,9 while Zn2+ is �Ar�3d.10 This means that
there is no magnetic moment at the Zn position and therefore
the effect of Zn doping is simply to dilute the spins within
the plane.

The effect of the competition between Sr and Zn impuri-
ties in La2−xSrxCu1−zZnzO4 was experimentally investigated
in Ref. 3 and addressed theoretically in Refs. 4 and 14. Both
theoretical works have, as a starting point, an isotropic quan-
tum Heisenberg Hamiltonian on a square lattice. However,
recent experimental8,10,15 and theoretical9,11,16–18 studies have
emphasized the very important role of DM and XY anisotro-
pies and thus we shall now describe the effect of dilution and
frustration in an effective model including anisotropies.

A. Undoped La2CuO4

At long wavelengths, the isotropic Heisenberg Hamil-
tonian is well described, in the paramagnetic phase, by a
O�3� NLSM.19 In this paper, however, we use a generalized
NLSM, derived by Chovan and Papanicolaou in Ref. 16 and
Silva Neto et al. in Ref. 9, which includes the DM and XY
anisotropies. The action of the model reads

Stot =� d��LH + LDM + LXY + LWZ�,

= S2�
	i,j


J�i� j + Dij · ��i � � j� + �i�̂ij� j

− iS �
j	2Dlattice


� j · �� j � �0� j� . �1�

In Eq. �1�, LH, LDM, LXY, and LWZ are, respectively, the
Heisenberg, DM, XY, and Wess-Zumino terms, � is a unit
vector along the spin direction, S=S�, and S=1/2. The
super-exchange parameter is denoted by J. The DM vector

Dij and the anisotropy matrix �̂ij are defined on the Cu-Cu
bonds.20,21 In the �x ,y� coordinate system, see Fig. 1, Dx

= �0,d ,0�, Dy = �d ,0 ,0�, �̂x=diag��1+�2 ,�1−�2 ,�3�, and

�̂y =diag��1−�2 ,�1+�2 ,�3�. Here, the index x means along
the horizontal Cu-O-Cu bonds, y means along the vertical
Cu-O-Cu bonds, d�10−2 J, �1,2,3�10−4 J, and �1��3.

Our next step is to separate the fast l and slow n varying
spin components,

�i = �− 1�ini
�1 − �ali�2 + ali � �− 1�ini + ali −

�− 1�i

2
a2nili

2.

�2�

In Eq. �2� a is the lattice constant and i is an index on the 2D
lattice, i= �p ,q�; �−1�i should be understood as �−1�p+q, ni as

FIG. 1. �Color online� Left: Tetragonal �xyz� and orthorhombic
�abc� coordinate systems. Right: In the LTO phase the tilting axis of
the CuO6 octahedra, represented by the vector D+ �in green�, deter-
mines the orthorhombic a axis. The DM and XY anisotropies then
determine that the staggered order parameter n �in red� is oriented
along the orthorhombic b direction while the weak-ferromagnetic
moment L �in blue� is perpendicular to the CuO2 plane.
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np,q. After substituting Eq. �2� into Eq. �1� we find

Stot =� d2r
 JS2

2
���n�2 + 8l2� +

4S2

a
d+ · �n � l�

+
2S2

a2 ��1 − �3�nz
2 −

iS

a
l · �n � ṅ�� , �3�

where d+= �Dx+Dy� /2.

B. Effect of nonmagnetic impurities—Zn doping

Recently, an effective field theory for the Heisenberg an-
tiferromagnet with nonmagnetic impurities was derived by
Chen and Castro Neto.22 While in Ref. 22 the authors only
considered the isotropic case, here we generalize the results
of Ref. 22 to include the DM and XY anisotropies.

We introduce a function pi, which is 1 on a Cu site and
zero on a Zn site, with the property pi

2= pi. We then assume
this function to be smooth and expand pj in the neighbor-
hood of its nearest neighbor site. In a continuum limit, pi and
Kij = pipj are replaced, respectively, by p�r� and K�r�, which
are the so-called site and bond percolation factors. As it is
shown in Appendix A, for the case of a homogeneous distri-
bution of static impurities, they can be replaced by their av-
erage values, P��z�=1−z and K�z�=1−3z. In the following
we omit the z dependence in P� and K for the sake of short-
ening the notation.

In the presence of dilution, the action �1� will be modified
as follows: the terms LH , LDM, and LXY, which contain
�	i,j
f��i ,� j�, will be multiplied by K. The Wess-Zumino
term, on the other hand, contains �i

3 and therefore it is pro-
portional to p3�r�= p�r�. Thus, within the homogeneous dis-
tribution assumption, it will be multiplied by P�. In this way,
K and P� appear simply as prefactors of the relevant
integrals.22 A detailed derivation of the NLSM in the pres-
ence of nonmagnetic impurities is given in Appendix B.

The next step is to integrate out l in Eq. �3� to obtain the
action in the presence of dilution �see Appendix B�

SZn =
1

2gc�K/P�� � d�� d2r����n�2

+ Z�c2��n�2 + ma
2na

2 + mc
2nc

2�� , �4�

where we have defined

Z =
K2

P�

, �5�

g is the usual NLSM coupling constant, and c is the spin-

wave velocity. Here we used that �2gcS2 /Ja2d+=2�2Sdea
�

=maea
� and �4gcS2 /a2���1−�3�=32JS2��1−�3�=mc

2, where

ea
� is the unit vector along the a orthorhombic direction.
Therefore, the last two terms in Eq. �4� correspond, respec-
tively, to the DM and XY anisotropy gaps, showing that the
spin ordering has an easy axis along the orthorhombic b
direction, see Fig. 1.

From the above action it is clear that when only Zn im-
purities are doped into La2Cu1−zZnzO4 the two anisotropy
gaps renormalize according to

Ma,c = �Zma,c, �6�

and thus decrease rather smoothly with dilution and vanish at
the percolation threshold.

In what follows we shall switch freely between �DM and
Ma, when referring to the DM or in-plane gap, and also
between �XY and Mc, when referring to the XY or out-of-
plane gap, without any loss of generality.

C. Derivation of the Néel temperature

Let us now derive an expression for the Néel temperature
in terms of the anisotropy gaps and spin stiffness. Our ap-
proach follows closely previous studies of the Néel tempera-
ture in easy axis23 and easy-plane24 antiferromagnets, but
now we consider also renormalization due to dilution. Start-
ing from the action in Eq. �4�, we split the n-field into its
longitudinal �0 and transverse n� components, n
= �na ,�0 ,nc�. Here n�= �na ,nc�, and �0=const is the order
parameter. The action then reads

Sd�n�� =
1

2gc

1

�
�

n

� d2k

�2��2n�Âdn�, �7�

with

Âd = I2��P�/K�
n
2 + Kc2k2� + diag�Kma

2,Kmc
2� , �8�

where 
n=2�n /� are the Matsubara frequencies, I2 is a 2D
identity matrix, and �=1/kBT is the inverse temperature. De-
fining Tr as �−1�
n

�d2k / �2��2 and introducing the fixed
length constraint into the action through a Lagrange multi-
plier, �, the partition function can be written as

Z =� Dn
�n2 − P��exp�− Sd�n��

=� D�0Dn�D� exp
−
1

2gc

�Tr�n�Âdn� + i���0
2 + n�

2 − P����
=� D�0D� exp�− Seff��,�0�� , �9�

where the effective action reads

Seff��,�0� =
1

2gc
Tr�i��0

2 − i�P�� +
1

2 �
�=a,c

Tr ln�A��
d + i�� .

�10�

In Eqs. �9� and �10� we used the average length of spin per
lattice site P� in the diluted case.22,25

The thermodynamic properties of the diluted system can
be determined, at the mean field level, by solving the saddle
point equations of the effective action �10�. From

Seff�� ,�0� /
�=0 we find
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P� − �0
2

gc
= �

�=a,c
Tr

1

A��
d + i�

. �11�

The only condition for the trace to converge is to choose
i�=m0

2, a real positive number. As usual, we interpret it as
the inverse correlation length, m0=1/�.

At the Néel critical point the order parameter �0 vanishes,
the correlation length � diverges, and the equation for the
critical temperature is

�P�
2

gcK
= �

�=a,c
�

n

� d2k

�2��2

1


n
2 + Zc2�k2 + m�

2/c2�
.

After performing the Matsubara summation and the integra-
tion over momenta, the last expression simplifies to

4��NP�K�s + �
�=a,c

ln�2 sinh
�N

2
�Zm��� = 0, �12�

where �N=1/kBTN and we defined the renormalized spin
stiffness for the diluted system

�s = c
 1

2g
−

1

gcKP�
� , �13�

with gc defined through the ultraviolet momentum cutoff �
=4� /gc, as usual.

The bond percolation factor K�z�=1−3z, proposed in Ref.
22, �see Appendix A� describes well the experimental data
for TN�z� only in the low doping range.3,22 For highly diluted
samples, however, single crystals were not available before
the work reported in Ref. 2. The experiments were usually
performed with single crystal samples below the doping
threshold of z�20%, while above 25% powder samples
were used. After Ref. 2, which used both single crystals and
powder samples, our conclusion is that for the heavily doped
samples the bond percolation factor should be modified ac-
cording to Refs. 26 and 27, which suggest that K�z�=1−�z
+�z2 /2. In this Watson-Leath �WL� prescription, TN is zero
at the percolation threshold, zp. Theoretical, experimental,
and numerical studies of highly diluted La2Cu1−z�Mn,Zn�zO4

are presented in Ref. 2. There the authors describe an experi-
ment where the critical point is found at z=42%. As it is
observed in Fig. 2, using the bond percolation factor as in the
WL prescription, we obtain the correct description in the
heavily doped regime.

It should be remarked at this point that the quantum
Monte Carlo simulations by Sandvik28 can also correctly de-
scribe the behavior of the staggered order parameter and
two-dimensional �2D� correlation length, as a function of
dilution, within the framework of a bilayer square-lattice
Heisenberg model. Here, instead, we consider only a single
CuO2 layer, but we include the DM and XY anisotropies
which are enough to stabilize the long range Néel order at
finite temperature. The importance of the DM and XY
anisotropies can be understood from the recent results by
Korenblit et al.,5 who demonstrated that J� has little to do
with the suppression of the AF order in Sr and Zn doped
La2−xSrxCu1−zZnzO4, which should be, instead, completely
determined by intraplanar correlations.

For the plot in Fig. 2 we used J=100 meV, which is much
smaller than the real value of �135 meV, but is the value
that gives TN �x=0,z=0�=325 K within our saddle-point ap-
proximation. The inclusion of fluctuations away from the
saddle point can allow for the more realistic value of J to be
used. In the next section we discuss the effect of Sr doping
and in the following we shall concentrate our studies on
single crystals doped simultaneously with Sr and Zn.

D. Effect of frustration—Sr doping

In order to incorporate the effect of Sr doping in
La2Cu1−zZnzO4, we adopt the Shraiman and Siggia model.12

In this model the holes introduced in the system
�La2−xSrxCu1−zZnzO4� via Sr doping are represented by an
effective dipolar field that couples to the background magne-
tization current.12 In Ref. 6 it was shown that this interaction
leads to a reduction of the magnon gaps and spin stiffness, in
agreement with the experiments.10 As we shall now demon-
strate, such reduction is not as strong if the compound is
additionally doped with Zn, since in the presence of nonmag-
netic impurities the effective dipole-magnetization-current
interaction should be multiplied by the bond dilution factor.
This mechanism of reduction of frustration by nonmagnetic
impurities has been considered earlier by Korenblit et al.4

within the isotropic O�3� NLSM. Here we discuss the role of
anisotropies.

In the Shraiman-Siggia model the interaction between
magnons and the dipolar field in the absence of dilution can
be written as

Sint = − 2�� d�� d2rP� · n � ��n , �14�

where

P� = i���̄��� + H.c., �15�

P� is the dipolar field representing the spin current of the
holes, � is the spinor wave function of the doped holes with
dispersion centered at �� /2 , ±� /2� and symmetry related

FIG. 2. �Color online� Néel temperature �in K� as a function of
Zn concentration for x=0 up to the highly diluted regime. The
experimental data for either powder and crystal samples was taken
from Refs. 2 and 3.
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points in the Brillouin zone, �� are the three Pauli matrices,
and � is a lattice index. The origin of such dipolar field is
simple. As the doped holes hop, they produce a transverse
dipolar distortion �a twist� in the staggered order parameter
field, as described by Eq. �14�. Such twist occurs in order to
minimize the hole’s kinetic energy and originates from the
coupling of two spin currents: the hole’s spin current �here
represented by the dipolar field P�� and the magnetization
current J�=n���n.12

In the presence of dilution the above dipole-magnon in-
teraction will also have to be modified following the proce-
dure described in Appendix B. Essentially, one can represent
the semiclassical background spin distortion as a slowly
varying SU�2� rotation of the Néel state Rr. The hopping
term for the doped holes involves the product RrRr+a

+ , and
since these are rotations in neighboring sites, i.e., RiR j

+, in
the presence of dilution this product must be replaced by

RiR j
+ → RiR j

+pipj , �16�

where i, j are nearest neighbor sites. Consequently, the cou-
pling constant � between the dipolar field and the back-
ground magnetization current in Eq. �14� should be changed
according to

� → K� , �17�

because �14� comes from �16�.12 Here K is the bond dilution
factor which in the homogeneous approximation is given by
K= 	pipj
.

III. GENERAL MODEL

The complete action describing the simultaneous effect of
magnetic dilution by Zn and frustration by Sr reads

S =
1

2gc�K/P�� � d�� d2r����n�2 + Z�c2��n�2 + ma
2na

2

+ mc
2nc

2�� − 2�K� d�� d2r �P� · n � ��n) + Sd,

�18�

where

Sd =
1

2
� d�� d2rP�GD

−1P� �19�

describes the fluctuations of the dipolar field. Since the dipo-
lar field is a pseudo-fermionic composite field, it is an opera-
tor that represents the spin current of the doped holes, the
dipolar susceptibility �inverse dipole propagator� can be ob-
tained from a polarization diagram �see Fig. 3�.

In what follows we adopt the same procedure used by
Sachdev in Ref. 29 and we use the results from the Fermi
liquid polarization diagram in two dimensions. However,
while in Ref. 29 the ballistic limit �clean system� was used in
the calculation of the polarization diagram, see the left-hand
diagram in Fig. 3, here we consider the diffusive limit �dirty
system� because of the scattering of the doped holes by the
Sr impurities, see middle diagram in Fig. 3. This assumption

is consistent with recent results from Lüscher et al.18 who
have shown that the dynamics of these dipolar fields is
highly diffusive. Thus, we shall write for the dipole propa-
gator in the diffusive limit �see the right-hand diagram in
Fig. 3�

GD�q,
n� = �d
Dq2

Dq2 + �
n�
, �20�

where �d is proportional to the inverse static susceptibility
and D is the diffusion constant, which is assumed to be large.

Because of the peculiar dipolar-magnon coupling from
Eq. �14�, the magnon propagator will be renormalized by the
fluctuations of the dipolar field �see Fig. 3�. The self-energy
correction to the magnon propagator is

�M
� �q,
n� = �d��2K2�

gcK

P�

� �
���

1

�
�

n

d2k

�2��2

�k + 2q�2


n
2 + Zc2�k + q�2 + Zm�

2

Dk2

Dk2 + �
n�
.

�21�

By summing up the one-loop corrections to the magnon
Green’s function, we obtain

G˜M = GM�
i=0

�

��MGM�i = �GM
−1 − �M�−1. �22�

Writing this expression explicitly, we get for the magnon
propagator

GM
�̃ −1�q,
n� = �gcK/P��−1�
n

2 + Zc2q2 + Zm�
2� − ��M

� �0�

−
1

2
q�q�

�2���q�
�q���

�
q=0

, �23�

where we expanded the self-energy around zero momentum
up to the second order term, in order to obtain a correction to
the gaps and spin stiffness, and thus

GM
�̃ −1�q,
n� = 
gcK

P�
�−1


n
2 + �Kc

g
− �
��

2

�2�M
� �q,0�

�q� � q�

�
q=0
�q2

+ 
gcK

P�
�−1�Zm�

2 −
gcK

P�

���0,0�� . �24�

From the above equation the expressions for the mass and
the spin stiffness renormalizations are readily derived

FIG. 3. �Color online� Contribution to the magnon propagator
from the dipolar fields. The figure on the left �A� contains the po-
larization diagram of the doped holes. In �B� we introduce disorder
through the scattering of the holes by impurities and this is repre-
sented effectively by the magnon-dipole bubble diagram �C� where
we use the diffusive dipole propagator.
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M�
2�x,z� = Zm�

2 −
gcK

P�

���0,0� and

�s�x,z� = �K�s − �
�=a,c


��

2

�2�M
� �q,0�

�q� � q�
�

q=0

,

�25�

where �s=c /2g is the bare spin stiffness in a clean system.
Explicitly, the mass renormalization due to Sr and Zn impu-
rities reads

M�
2�x,z� = Z�m�

2 − �d�gc��2ZI��z�� , �26�

where

I��z� = �
���

1

�
�

n

� d2k

�2��2

k2


n
2 + Zc2k2 + Zm�

2

Dk2

Dk2 + �
n�
.

�27�

The spin stiffness, on the other hand, renormalizes according
to the formula

�s�x,z� = K�s�1 − �
�=a,c

1

2�
�

n

� d2k

�2��2

�
� �2

�q2

�k + 2q�2


n
2 + Zc2�k + q�2 + Zm�

2 �
q=0

�
�

Dk2

Dk2 + �
n�� . �28�

The new momentum cutoff � for the dipoles, which renor-
malizes the spin stiffness, is set by kF=��x, because our
theory should be valid at distances much larger than the av-
erage distance between the Sr impurities.

In the zero temperature, T→0, and highly diffusive, D
→�, limits the expressions for M� and �s read

M�
2�x,z;T → 0� = Z�m�

2 − �d�gc��2 �
���

Z1/2 m�
3

4�c4

��1

3
�
1 +

kF
2c2

m�
2 �3/2

− 1�
− �
1 +

kF
2c2

m�
2 �1/2

− 1��� , �29�

and

�s�x,z;T → 0� = K�s�1 − �
�=a,c

�d�gc��2Z1/2m�

4�c4

��1 +


 kF
2c2

m�
2 �2

+
1

2

kF
2c2

m�
2 − 1


1 +
kF

2c2

m�
2 �3/2 �� . �30�

IV. OBSERVABLES

Equations �29� and �30� are the most important results of
this paper. As we can clearly see, although both M� and �s
are reduced when only Sr ���0 and Z=1� or only Zn ��
=0 and Z�1� are doped independently into La2CuO4, when
combined a nonmonotonic and reentrant behavior can indeed
occur due to the �2�Z coefficient in the self-energy correc-
tion �see Eqs. �29� and �30��.

In what follows we discuss the evolution with both Zn
and Sr doping of several spectral, thermodynamic, and mag-
netic properties of the La2−xSrxCu1−zZnzO4 system using the
results obtained from the preceding section. As we shall see,
the nonmonotonic behavior of different physical observables,
such as the order parameter, the Néel temperature, and the
weak-ferromagnetic moment, all follow from the nonmono-
tonicity induced by the competition between dilution and
frustration in M� and �s.

A. Dzyaloshinskii-Moriya or in-plane gap

Juricic et al.6 have recently studied the evolution of the
DM gap with Sr in La2−xSrxCuO4 �see also Lüscher et al.18�.
One of the most important findings reported in Ref. 6 was
that the DM gap gives robustness to the canted Néel state
and vanishes at a critical concentration given by x=const
��DM/J��2%, where const is O�1� �see also curves in Figs.
4 and 5�. The mechanism for the reduction of the DM gap
was traced back to the self-energy corrections due to the
dipolar frustration introduced by Sr doping, M� with Z=1
�z=0�, and the theoretical curve was shown to agree quite
well with the one-magnon Raman experiments of Gozar et
al.10

In fact, these experiments, performed at 10 K, show that
at x=z=0 the Dzyaloshinskii-Moriya �or in-plane� gap is
ma=17.5 cm−1 �or 2.16 meV�, whereas it is reduced by al-
most 30% at x=1%, and it vanishes at x=2%. In Fig. 4 we
exhibit the Sr dependence of the DM gap for various fixed
Zn concentrations �the DM gap is given in units of J�. As it is
evident from the plot, for small x and z the DM gap is always
reduced. At large x, however, a reentrant behavior is ob-
served already for very small Zn concentration. This increase

FIG. 4. �Color online� Dependence of the DM gap ��DM=Ma, in
units of J� on Sr doping x at various fixed Zn concentration: z
=0,0.05, 0.1, 0.15, 0.2. Although Zn and Sr independently reduce
Ma, when combined an enhancement of Ma does occur.
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of the DM gap is largest close to the Zn-free critical concen-
tration x=2%. In fact, while for x=2% and z=0 the DM gap
is zero,6,10 we find that for x=2% and z=15% the DM gap is
�DM�7.5 cm−1. Thus, we predict that low-energy Raman
experiments in La2−xSrxCu1−zZnzO4 samples with x�2% and
z=15% should observe a clear signal of a one-magnon mode
with energy close to 7.5 cm−1 in the B1g scattering
geometry,11,30 such as the ones performed by Gozar et al.10 in
Zn-free samples.

Figure 5 shows the evolution of the DM gap as a function
of Zn doping for various fixed Sr concentrations. The non-
monotonic �for x=0.0198� and reentrant �for x�0.02� be-
haviors predicted by our theory for the DM gap are also
evident from this plot. As expected, all curves collapse into a
single curve in the highly Zn-diluted regime. For complete-
ness we show in Fig. 6 a three-dimensional �3D� plot with
the evolution of the DM gap with both Zn and Sr doping.

As we have discussed in the preceding section, the key
mechanism for such nonmonotonic and reentrant behavior
observed in the DM gap, through dilution by Zn, is the de-
crease of the effective dipolar-magnon coupling constant �
→K� in Eq. �17�, which therefore reduces the self-energy
corrections to the magnon gaps, see Eq. �29�.

Let us now list a number of predictions from our studies,
for a few selected doping concentrations of Sr and Zn, that
can be verified experimentally.

�1� For La2Cu0.96Zn0.04O4, that is x=0 and z=0.04 where

�Z�0.9, we estimate that the reduction of the DM gap will
be of about 10% from the undoped x=z=0 value.

�2� For La1.99Sr0.01Cu0.97Zn0.03O4, that is x=0.01 and z
=0.03 where �Z�0.92, the reduction of the DM gap will be
smaller than the naive 36% expected from the 8% reduction,
due to Zn, over the 30% reduction due to Sr. This is due to
the dilution of frustration in the dipole-magnon coupling and
we thus predict that the reduction will be of only 27% from
the undoped x=z=0 value.

�3� For La1.98Sr0.02Cu0.85Zn0.15O4, that is x=0.02 and z
=0.15 where �Z�0.6, we predict that the Dzyaloshinskii-
Moriya gap is actually nonzero. In fact, due to the reduction
of 40% in the dipole-magnon interaction, the DM gap is
found to be 7.5 cm−1 and thus large enough, so that it can be
accessed with one-magnon Raman spectroscopy.

B. XY or out-of-plane gap

The mechanism for the reduction of the XY gap is the
same as the one discussed in the preceding section, see Eq.
�29�. For the XY gap the available data also comes from
one-magnon Raman spectroscopy experiments.10 For x=z
=0 and at 10 K the XY gap is mc=36 cm−1 �or 4.3 meV�, and
is reduced by almost 15% at x=1%.

The dependence of the XY gap on Sr doping, according to
our theory, is shown in Fig. 7. We find that at x=1% and z
=0 the XY gap is reduced by almost 10%, which is not far
from the experimentally measured value, and it vanishes at
x=0.04. When Zn is also included in the calculations we
obtain a similar nonmonotonic and reentrant behavior, as ob-
served for the DM gap �see the 3D plot in Fig. 8�.

The vanishing of the XY gap at x=4% for z=0 has an-
other very interesting consequence. As it has been proposed
by Juricic et al.,6 for z=0 and x�0.02, after the DM gap has
disappeared, the magnetism becomes incommensurate �the
staggered moment becomes helicoidal along the b axis� with
an incommensurate wave vector Q �b and with magnitude

Q = �x2 − M̃c�x,0�2, �31�

where M̃c=Mc /J is dimensionless. As a consequence of the
nonzero character of Mc, the incommensurability for 0.02
�x�0.04 deviates from the linear behavior Q=x, see Fig. 9,

FIG. 5. �Color online� Dependence of the DM gap ��DM=Ma, in
units of J� on Zn doping z at various fixed Sr concentrations: x=0,
0.01, 0.0198, 0.0202, 0.03. The nonmonotonic and reentrant behav-
iors for Ma is evident.

FIG. 6. 3D plot with the dependence of the DM gap ��DM

=Ma, in units of J� on both Sr and Zn doping.

FIG. 7. Dependence of the XY gap ��XY =Mc, in units of J� on Sr
doping x at zero Zn concentration, z=0.
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as indeed observed experimentally.31 For higher Sr doping,
however, when Mc�x�0.04�=0, the linear relation Q=x be-
comes exact.31

When Zn is codoped into the Sr doped sample, for ex-
ample, 20% �z�40% and x=5%, the reentrant behavior for
the XY gap, Mc�x ,z��0, depicted in Fig. 8, suggests that the
incommensurability should decrease as the Zn concentration
is increased �see Eq. �31��. Such decrease of the incommen-
surability due to the enhancement of the magnetism through
dilution of frustration has been predicted earlier by Hassel-
mann et al. in Ref. 32 and has been recently confirmed with
neutron scattering by Matsuda et al. in Ref. 33.

C. Order parameter

Because of the DM and XY anisotropies, at zero applied
magnetic field the staggered order parameter is oriented
along the orthorhombic b axis with magnitude �0�x ,z�. In the
presence of a longitudinal magnetic field, B �b, the spins start
to rotate on the bc plane as described theoretically by Silva

Neto and Benfatto in Ref. 11 �see also Benfatto et al. in Ref.
30� and experimentally measured with neutron diffraction by
Reehuis et al. in Ref. 15. At a critical field determined by the
DM gap,

Hc�x,z� = Ma�x,z� , �32�

a spin-flop transition occurs, where the in-plane component
of the order parameter becomes oriented along the ortho-
rhombic a axis. Thus, any nonmonotonic and reentrant be-
havior of the DM gap will result on a similar reentrant be-
havior for the critical field. This is a prediction that could be
detected by neutron scattering experiments.

D. Néel temperature

In the case of single crystals doped with Sr and Zn, the
available data from Ref. 3 were obtained with samples which
contained less than 30% of Zn. Therefore, in this doping
range the dependence of TN�z� is linear and is well described
with the bond percolation factor K�z�=1−3z.

The Néel temperature, TN�x ,z�, where the order parameter
vanishes, is given by Eq. �12�, with the stiffness and magnon
gaps renormalized by the impurities, see Eqs. �29� and �30�.
As it happens with the DM gap, we find that TN exhibits a
nonmonotonic and reentrant behavior as the Zn concentra-
tion is increased, see Fig. 10. In particular, we find a mono-
tonic decrease in the slope of the curves TN�x ,z=0� and
TN�x ,z=0.15�, in qualitative agreement with the experiments
of Hücker et al.,3 see Fig. 11. Since we neglect the self-
consistent renormalization of the magnon gaps with tempera-
ture, the agreement of our theoretical curves for TN with
experiments is only qualitative, in contrast to the low-
temperature results for the DM gap discussed above, which
are quantitative.

It is worth emphasizing that the nonmonotonic behavior
exhibited by our theoretical curve x=0.0198 in Fig. 10 is
experimentally observed already at x=0.017. Moreover, the
2D-Ising-like behavior of the curves in Fig. 11 are actually
an artifact of the dimensionality �we are considering an easy-
axis 2D NLSM� and of the approximation �we are neglecting
the thermal renormalizations of the gaps�. We expect that by

FIG. 8. 3D plot with the dependence of the XY gap ��XY =Mc, in
units of J� on both Sr and Zn doping.

FIG. 9. �Color online� Plot of the incommensurability Q

=�x2−M̃c
2 as a function of doping x. The dashed line is the Q=x

line. Notice that as the XY gap vanishes Mc→0, the IC peaks
should approach the linear relation Q=x, as observed experimen-
tally. The vertical line at x�0.055 separates the insulating �left� and
metallic �right� phases. The data points are from Ref. 31.

FIG. 10. Dependence of TN �in K� on Zn doping z at various
fixed Sr concentrations x=0, 0.01, 0.0198, 0.0202, 0.03. The non-
monotonic and reentrant behaviors are evident.
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including the self-consistent thermal renormalizations and
interlayer coupling, the agreement between theory and ex-
periment in Fig. 11 will be satisfactory. Nevertheless, the
qualitative agreement with experiments gives strong support
to the model and mechanisms considered here.

E. The weak-ferromagnetic moment

The staggered pattern of tilted octahedra in La2CuO4 is
known to be responsible for a weak-ferromagnetism, sig-
naled by a cusp in the low-field magnetic susceptibility.34

Within the language of the NLSM �see Ref. 9�, such weak-
ferromagnetic moment is proportional to the Néel order pa-
rameter via the equation

	L
 =
1

2J
�	n
 � D+� . �33�

Since within the Néel phase the average value of the stag-
gered magnetization is 	n
= �0,�0 ,0� �in the abc orthorhom-
bic coordinate system�, any nonmonotonic and reentrant be-
havior observed in �0 will cause also a similar effect in the
weak-ferromagnetic moment, and this can be accessed in
magnetic susceptibility experiments.

V. CONCLUSIONS AND OUTLOOK

In this paper we revisited the problem of the dilution of
frustration in La2−xSrxCu1−zZnzO4, within the framework of a
generalized NLSM that includes DM and XY anisotropies.
We showed that dilution by Zn weakens the frustration by Sr
through the reduction of the dipole-magnon coupling con-
stant, see Eq. �17�. This leads to a nonmonotonic and reen-
trant behavior not only for TN but also for other observables
like the order parameter, the weak-ferromagnetic moment,
and the anisotropy gaps.

Most remarkably, we predict that for x�2% and z
=15% the DM gap is approximately 7.5 cm−1, and thus
likely to be observed in one-magnon Raman scattering. Fur-
thermore, when the WL expression for the bond percolation
factor is incorporated into our NLSM description, not only as
a reduction factor for the spin stiffness but also and most

importantly for the reduction of the anisotropy gaps, we find
that our NLSM with dilution describes correctly the data for
TN�x=0,z�, also in the highly Zn-diluted regime. Finally, we
have also found that the XY gap vanishes, in the absence of
dilution, for x=0.04 and this is consistent with the deviation
from linearity, for 0.02�x�0.04, of the incommensurate
peaks seen in neutron scattering within the spin-glass phase
of La2−xSrxCuO4.
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APPENDIX A: DERIVATION OF SITE AND BOND
PERCOLATION FACTORS

This derivation can be found also in Ref. 25, but for the
sake of completeness we will go through the basic steps of
the derivation.

Averaging the site percolation factor we obtain

P� = P��z� =
1

Na2 � d2rp�r� =
a2�N − NZn�

Na2

= 1 − NZn/N = 1 − z , �A1�

where averaging p�r� over a 2D volume implies that we must
normalize it with Na2, N being the number of sites in the Cu
lattice.

We consider pj to be smooth, and thus we can expand it in
the neighborhood of the ith site pj = pi+a�pi. Hence, the
bond percolation factor Kij = pipj in the continuum limit be-
comes

K�r� = p�r��p�r� + a � p�r�� = p�r� +
1

2
a � p�r� ,

leading to

K = K�z� =
1

Na2 � d2r�p�r� +
1

2
a � p�r��

= 1 − z +
a

2Na2 � d2r � p�r�

= 1 − z +
a

2Na2 �− 1��
Zn
� contours

= 1 − z −
aNZn4a

2Na2 = 1 − 3z �A2�

Using Stoke’s theorem in the above formula we obtained the
integration over a contour of the 2D volume, which splits
into the sum of contours over Zn impurities. The minus sign
accounts for the opposite orientation of the small contours
with respect to the larger one.

FIG. 11. Dependence of TN �in K� on Sr doping x at two differ-
ent Zn concentrations, z=0 and z=0.15. The slope of the curves
decreases monotonically with increasing Zn content.
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APPENDIX B: NONLINEAR SIGMA MODEL WITH
DILUTION

In La2CuO4 the DM vectors are in good approximation
perpendicular to the Cu-Cu bonds and change sign from one
bond to another, while the XY matrices provide an easy-plane
anisotropy. It is worth noting that the pure 2D system defined
by the action �1� does not display a rotational symmetry, so it
can have order at finite temperature without violating the
Mermin-Wagner theorem.

Before we proceed with the derivation of the NLSM, let
us recall some technical details: d+ is a vector in the a ortho-
rhombic direction; and i is an index on a 2D lattice, so i
should be understood as �p ,q� and �−1�i as �−1�p+q. Further-
more, we shall use that

�
	i,j


Dij = �
i

Di,x + Di,y = 2�
i

d+,i, �B1�

�i = �− 1�ini + ali − 1
2 �− 1�ia2nili

2, �B2�

with ni · li=0,

n j = ni − rij
l �lni +

1

2
rij

l rij
m�l�mni, �B3�

and finally

a2�
i

=� d2r . �B4�

Let us first transform the Heisenberg term of the Hamil-
tonian. Using Eqs. �B2� and �B3� and neglecting O�a3� terms
we get

HH = JS2�
	i,j


�i� j = JS2�
	i,j



1

2
rij

l rij
m�lni�mni + 2a2li

2�
= JS2a2�

i

1

2
��ni�2 + 4li

2� . �B5�

In the continuum limit the Heisenberg Hamiltonian reads

HH =
JS2

2
� d2r���n�2 + 8l2� . �B6�

In the diluted case, we should multiply �i with pi. Hence,
Eq. �B5� would be modified as follows:

HH
d = JS2�

	i,j

pipj�i� j ,

where the index “d” stands for “diluted.” We want to treat
the static impurities as an average effect, thus we substitute
pipj in the above equation with 	pipj
=K�r�, the bond perco-
lation factor �for more details, see Chap. 3 of Ref. 25�. We
simplify the problem even more by considering the averaged
one, taking 	K�r�
=K�z� �for the shortening of the notations
in what follows we will use K instead of K�z��, where z is the
Zn concentration. Thus, in the diluted case Eq. �B6� reads

HH
d =

JS2K

2
� d2r���n�2 + 8l2� . �B7�

Following a similar procedure, we may transform the DM
and XY terms of the Hamiltonian. For the DM Hamiltonian
we get

HDM
d =

4S2K

a
� d2r�d+ · �n � l�� . �B8�

For the XY Hamiltonian in the continuum limit we find

HXY
d =

2S2K

a2 � d2r���1 − �3�nz
2� , �B9�

where we neglected the small terms like ���n�2 and �l2.
Now, we will discuss in detail a Wess-Zumino term in 2D

for the diluted case, since it did not appear in the literature.
For the 1D case we refer the reader to Ref. 35 �clean system�
and Ref. 25 �diluted system�.

Following Fradkin �see Appendix A or Ref. 35�, we write
the Wess-Zumino action on a lattice �notice that �p ,q� are the
indices along x and y directions respectively, in contrast with
i and j, which take values on a 2D lattice�


SWZ = 
� · � � �0� , �B10�

SWZ = S�
0

T

dx0�
p,q

SWZ���p,q��

=
S

2
�

0

T 
�
p=1

Nx/2

�
q=1

Ny

�S���2p,q�� + S���2p − 1,q���

+ �
p=1

Nx

�
q=1

Ny/2

�S���p,2q�� + S���p,2q − 1���� .

�B11�

In the second and third lines of Eq. �B11� we recognize

SWZ, which can be expressed through �. Using the spin
decomposition �B2�, we get


x��p,q� = ��2p,q� + ��2p − 1,q�

= �− 1�2p�n�2p,q� − n�2p − 1,q��

+ 2al�2p,q� + O�a2� = a�xn + 2al . �B12�

Analogously, we transform the third line of Eq. �B11�,


y��p,q� = a�yn + 2al . �B13�

Let us note that

�
p=1

Nx/2

�
q=1

Ny

=
1

2 �
all sites

=
1

2�
i

→
1

2a2 � d2r . �B14�

Setting �B10�, �B12�, and �B13� into �B11� and having in
mind �B14�, we obtain for the Wess-Zumino action �decom-
posing �B10� into staggered and uniform components, we
keep only first order terms in a�
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SWZ =
Sa

4
�

0

T

dx0�
i

���ni + 4li� · �ni � �0ni�� . �B15�

The first term in Eq. �B15� is a topological term. It was
demonstrated by Haldane36 that in D�1 this term sums to
zero in the AF background.

The total Euclidean action reads

SE = − iSWZ + SH + SDM + SXY . �B16�

Now we are ready to write a Wess-Zumino Lagrangian,

LWZ = − i
S

a
� d2r�l · n � ��n� . �B17�

In the presence of dilution the action �B17� will be multi-
plied with P�. The explanation is the following: in the ex-
pression for 
SWZ �B10� we will have a factor p3, which by
definition is equal to p �and we further simplify the problem
by taking 	p
= P��. We can carefully do the procedure in Eq.
�B11� in the diluted case, but since we neglect O�a2� terms,
the answer will be the same.

Let us now summarize the results obtained so far. The
total Euclidean action in the diluted system reads

S =� d�Ltot, �B18�

with Ltot=LWZ+LH+LDM+LXY and

LWZ =
− iSP�

a
� d2r�l · �n � ��n�� ,

LH =
JS2K

2
� d2r���n�2 + 8l2� ,

LDM =
4S2K

a
� d2r�d+ · �n � l�� ,

LXY =
2S2K

a2 � d2r���1 − �3�nz
2� . �B19�

Now we integrate out l in a sense of a saddle-point solution.
We must find a solution of an equation


Ltot


l
= 0

and plug it into Eq. �B18�. Doing this, we get

l =
iP�

8JSaK
�n � ��n� +

1

2Ja
�n � d+� �B20�

and

S =
1

2gc
� d�� d2r
P�

K
���n�2 + Kc2��n�2 + KD+

2na
2

+ K�cnc
2� , �B21�

where we defined

gc = 8Ja2 �bare� inverse transverse susceptibility,

c = 2�2JSa �bare� spin-wave velocity,

D+ = �2gcS2/Ja2d+ = 2�2Sde�a DM vector,

�c = �4gcS2/a2���1 − �3� XY anisotropy.

It is convenient to introduce the notations D+=ma and �c
=mc

2. Setting this into Eq. �B21� and rewriting it in a con-
ventional way we get a final expression for the total action in
the presence of dilution,

S =
1

2gcK/P�
� d�� d2r����n�2

+ Z�c2��n�2 + ma
2na

2 + mc
2nc

2�� , �B22�

where

Z =
K2

P�

. �B23�
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