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In modified gravity the propagation of gravitational waves (GWs) is in general different from that in
general relativity. As a result, the luminosity distance for GWs can differ from that for electromagnetic
signals, and is affected both by the dark energy equation of state wDEðzÞ and by a function δðzÞ describing
modified propagation. We show that the effect of modified propagation in general dominates over the effect
of the dark energy equation of state, making it easier to distinguish a modified gravity model from ΛCDM.
We illustrate this using a nonlocal modification of gravity that has been shown to fit remarkably well
cosmic microwave background, supernovae, baryon acoustic oscillation, and structure formation data, and
we discuss the prospects for distinguishing nonlocal gravity from ΛCDM with the Einstein Telescope. We
find that, depending on the exact sensitivity, a few tens of standard sirens with measured redshift at z ∼ 0.4,
or a few hundreds at 1≲ z≲ 2, could suffice.
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I. INTRODUCTION

The observation of the GWs from the neutron star binary
coalescence GW170817 [1] and of the associated γ-ray
burst GRB 170817A [2–4] has marked the opening of the
era of multimessenger astronomy. In the near future more
events of this type are expected, while, on a time-scale of
1–2 decades, the space interferometer LISA [5] and a
third-generation ground-based interferometer such as the
Einstein Telescope (ET) [6] could extend these observa-
tions to large redshifts.
One of the most interesting targets of third-generation

detectors is the measurement of the luminosity distance
with standard sirens [7–20]. Currently, all the studies on the
subject have been performed using the standard expression
of the luminosity distance in a theory with a dark energy
(DE) density ρDEðzÞ,

dLðzÞ ¼
1þ z
H0

Z
z

0

dz̃
Eðz̃Þ ; ð1Þ

where

EðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩRð1þ zÞ4 þ ΩMð1þ zÞ3 þ ρDEðzÞ=ρ0

q
; ð2Þ

and, as usual, ρ0 ¼ 3H2
0=ð8πGÞ and ΩR and ΩM are the

radiation and matter density fractions, respectively. The
evolution of the DE density is determined by its equation of
state (EoS) function wDEðzÞ through the conservation
equation

_ρDE þ 3Hð1þ wDEÞρDE ¼ 0: ð3Þ

Then, all works on cosmological applications of standard
sirens either choose a simple phenomenological paramet-
rization of wDEðzÞ, such as the ðw0; waÞ parametrization
wDEðaÞ ¼ w0 þ ð1 − aÞwa [21,22] and provide forecasts
on the accuracy to which ðw0; waÞ can be measured, or
develop methods for attempting a model-independent
reconstruction of the function wDEðzÞ.
The most natural motivation for a nontrivial dark energy

EoS is the assumption that gravity is modified at cosmo-
logical scales. Here we point out, through the study of an
explicit model, that in a generic modified gravity theory
Eq. (1) is not necessarily the correct luminosity distance for
GWs (see also [23–28]), and we further show that the
difference between the GW luminosity distance dgwL and the
standard electromagnetic luminosity distance demL gives an
effect that can be significantly larger than that due to a
nontrivial dark energy EoS.

II. TENSOR PERTURBATIONS
IN MODIFIED GRAVITY

Let us first recall that, in GR, the free propagation of
tensor perturbations in a Friedmann-Robertson-Walker
(FRW) background is described by

h̃00A þ 2Hh̃0A þ k2h̃A ¼ 0; ð4Þ

where h̃Aðη;kÞ are the Fourier modes of the GWamplitude,
A ¼ þ;× labels the two polarizations, η denotes conformal
time, the prime denotes ∂η, and H ¼ a0=a. Introducing a
field χ̃Aðη;kÞ from
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h̃Aðη;kÞ ¼
1

aðηÞ χ̃Aðη;kÞ; ð5Þ

Eq. (4) becomes

χ̃00A þ ðk2 − a00=aÞχ̃A ¼ 0: ð6Þ

Both in matter dominance and in the recent DE dominated
epoch, a00=a ∼ 1=η2. For subhorizon modes, kη ≫ 1, and
therefore a00=a can be neglected compared to k2. For GWs
observed at ground- or space-based interferometers this
holds to huge accuracy: for instance, for a GW frequency
f ∼ 102 Hz,

ðkηÞ−2 ∼ ð500 km=H−1
0 Þ2 ∼ 10−41: ð7Þ

Then, we can write simply

χ̃00A þ k2χ̃A ¼ 0: ð8Þ

This shows that the dispersion relation of tensor perturba-
tions is ω ¼ k, i.e., GWs propagate at the speed of light
(which we have set to one). On the other hand, the factor
1=a in Eq. (5) tells us how the GW amplitude decreases in
the propagation over cosmological distances from the
source to the observer and, for inspiraling binaries, leads
to the standard dependence of the GW amplitude
h̃Aðη;kÞ ∝ 1=dLðzÞ; see e.g., Sec. 4.1.4 of [29].
In a generic modified gravity theory both the coefficient

of the k2 term and that of the 2H term in Eq. (4) (as well as
the source term, which we have not written explicitly) can
be different. This has already been observed in various
explicit models. In particular, in the DGP model [30]
(which, in the self-accelerated branch, is by now ruled
out by the presence of instabilities at the level of cosmo-
logical perturbations [31–34]), at cosmological scales
gravity leaks into extra dimensions, and this affects the
1=dLðzÞ behavior of a gravitational signal [23]. The same
effect has been found for Einstein-Aether models and for
scalar-tensor theories of the Horndeski class [24,25,27,28].
A modified propagation equation for tensor modes can be
included in the general effective field theory approach to
dark energy developed in [35], and the relevance of this
effect for standard sirens has already been pointed out, in a
scalar-tensor theory of the Horndeski class, in [25].1

A change in the coefficient of the k2 term in Eq. (4) gives
a propagation speed of GWs different from the speed of
light. The GW170817/GRB 170817A event now puts a

very stringent limit on such a modification, at the level
jcgw − cj=c < Oð10−15Þ [4], which rules out a large class of
scalar-tensor and vector-tensor modifications of GR [37–
40]. Let us then focus on the effect of modifying the
coefficient of the 2H term, i.e., let us consider a propa-
gation equation of the form

h̃00A þ 2H½1 − δðηÞ�h̃0A þ k2h̃A ¼ 0; ð9Þ

with δðηÞ some function (we will present in Sec. III an
explicit example of a modified gravity model where GW
propagation is described by such an equation). In this case
we introduce χ̃Aðη;kÞ from

h̃Aðη;kÞ ¼
1

ãðηÞ χ̃Aðη;kÞ; ð10Þ

where

ã0

ã
¼ H½1 − δðηÞ�; ð11Þ

and we get χ̃00A þ ðk2 − ã00=ãÞχ̃A ¼ 0. Once again, inside the
horizon the term ã00=ã is totally negligible, so GWs
propagate at the speed of light. However, in the propagation
across cosmological distances, h̃A now decreases as 1=ã
rather than 1=a. Then, in such a modified gravity model we
must distinguish between an electromagnetic luminosity
distance demL ðzÞ and a GW luminosity distance dgwL ðzÞ, and
the GW amplitude of a coalescing binary at redshift z will
now be proportional to 1=dgwL ðzÞ, where

dgwL ðzÞ ¼ aðzÞ
ãðzÞ d

em
L ðzÞ ¼ 1

ð1þ zÞãðzÞ d
em
L ðzÞ; ð12Þ

and demL ðzÞ≡ dLðzÞ is the standard luminosity distance
[Eq. (1)] for electromagnetic signals. Equation (11) is
equivalent to ðlog a=ãÞ0 ¼ δðηÞHðηÞ, which is easily inte-
grated and gives

dgwL ðzÞ ¼ demL ðzÞ exp
�
−
Z

z

0

dz0

1þ z0
δðz0Þ

�
: ð13Þ

III. MODIFIED PROPAGATION
IN NONLOCAL GRAVITY

To illustrate this effect, and the relative roles of wDEðzÞ
and δðzÞ in dgwL ðzÞ, we consider an explicit modified gravity
model, but, as will be clear, the results that we find are more
general. The model that we consider is a nonlocal modi-
fication of gravity that has been introduced and much
studied in recent years by our group. The underlying
physical idea is that, even if the fundamental action of
gravity is local, the corresponding quantum effective

1A general formalism for testing gravity with GW propagation
has been recently presented in [26]. Reference [36] gives a
detailed discussion of the constraints obtained from the first two
observations of black hole–black hole coalescences, GW150914
and GW151226, both on modified GW generation and on
modified GW propagation due to a nontrivial dispersion relation
of the graviton.
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action, which includes the effect of quantum fluctuations, is
nonlocal. These nonlocalities are well understood in the
ultraviolet regime, where their computation is by now
standard textbook material [41–43], but are much less
understood in the infrared (IR), which is the regime relevant
for cosmology. IR effects in quantum field theory in curved
space have been studied particularly in de Sitter space,
where strong effects, due in particular to the propagator of
the conformal mode [44], have been found. However, the
whole issue of IR corrections in de Sitter space is unsettled
because of the intrinsic difficulty of the problem. Given the
difficulty of a pure top-down approach, we have taken an
alternative and more phenomenological strategy. In gen-
eral, strong IR effects manifest themselves through the
generation of nonlocal terms, proportional to inverse
powers of the d’Alembertian operator, in the quantum
effective action. For instance, in QCD the strong IR
fluctuations generate a term [45–47]

m2
g

2
Tr

Z
d4xFμν

1

□
Fμν; ð14Þ

in the quantum effective action, where Fμν is the non-
Abelian field strength. This nonlocal term corresponds to
giving a mass mg to the gluons: indeed, choosing the
Lorentz gauge and expanding in powers of the gauge field
Aμ, the above terms gives a gluon mass term m2

gTrðAμAμÞ,
plus extra nonlocal interactions. Note that the use of a
nonlocal operator such as □

−1 allows us to write a mass
term without violating gauge invariance. However, this
only makes sense at the level of quantum effective actions,
where nonlocalities are unavoidably generated by quantum
loops whenever the theory contains massless or light
particles. The fundamental action of a quantum field theory,
in contrast, must be local. Thus, nonlocal terms of this form
describe dynamical mass generation by quantum fluctua-
tions at the level of the quantum effective action.
In a similar spirit, we have studied a model of gravity

based on the quantum effective action

ΓRR ¼ m2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

6
m2R

1

□
2
R

�
; ð15Þ

where mPl is the reduced Planck mass and m is a new mass
parameter that replaces the cosmological constant of
ΛCDM. This model was proposed in [48], following earlier
work in [49], and it can be shown that the nonlocal term in
Eq. (15) corresponds to a dynamical mass generation for
the conformal mode of the metric [50,51]. Recently, some
evidence for the nonlocal term in Eq. (15) has also been
found from nonperturbative studies in lattice gravity [52].
A detailed comparison with cosmological data and
Bayesian parameter estimation has been carried out in
[53–57], where it has been found that the model fits cosmic
microwave background (CMB), supernovae (SNe), baryon

acoustic oscillation (BAO), structure formation, and local
H0 measurements at a level statistically indistinguishable
from ΛCDM (with the same number of parameters, sincem
replaces Λ); furthermore, parameter estimation gives a
large value of the Hubble parameter, which basically
eliminates the tension between the Planck CMB data
[58] and the local H0 measurements [59]. The parameter
m is also fixed by Bayesian parameter estimation from
CMB, SNe, and BAO data, and turns out to be of order H0.
The model has been reviewed in [60] and, more recently, in
[57], to which we refer the reader for a detailed discussion
of conceptual aspects and phenomenological conse-
quences. We will refer to it as the “RR” model.
The equation of tensor perturbations in the RR model has

been derived in [55] and, for the free propagation, has
indeed the form Eq. (9), with

δ ¼ 3γðdV̄=d log aÞ
2ð1 − 3γV̄Þ ; ð16Þ

where V̄ is the background evolution of an auxiliary field
that is introduced to rewrite Eq. (15) in local form (see e.g.,
Sec. III of [57] for review), and γ ¼ m2=ð9H2

0Þ. For this
form of δðzÞ, the integral in Eq. (13) can be computed
analytically by transforming the integration over dz into an
integration over dV̄, which gives

dRR;gwL ðzÞ ¼ dRR;emL ðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3γV̄ð0Þ
1 − 3γV̄ðzÞ

s
; ð17Þ

so in the RR model the ratio dgwL ðzÞ=demL ðzÞ is a local
function of V̄ðzÞ. We plot this ratio in Fig. 1. In the RR
model, scalar perturbations obey a modified Poisson
equation with an effective Newton constant that, for modes
well inside the horizon, is given by [53]

GeffðzÞ ¼
G

1 − 3γV̄ðzÞ : ð18Þ

Then, Eq. (17) can be rewritten as
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FIG. 1. The ratio dgwL ðzÞ=demL ðzÞ in the RR model.
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dRR;gwL ðzÞ ¼ dRR;emL ðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GeffðzÞ
Geffð0Þ

s
; ð19Þ

that nicely ties modified GW propagation to the modifi-
cation in the growth of structures. Quite remarkably, this is
exactly the same relation found recently in a subclass of
Horndeski models [61].
In Fig. 2 we show the relative difference ΔdL=dL for

three different cases. The upper curve is the relative
difference between the electromagnetic luminosity distance
in the RR model and the luminosity distance of ΛCDM,
when we use the same fiducial values for h0 andΩM. In this
case we see that, over a range of redshifts relevant for third-
generation interferometers, the relative difference is of
order 2%. However, this is not the quantity relevant to
observations. For each model, the actual predictions are
those obtained by using its own best-fit values (or the mean
values, or the priors) of the cosmological parameters, which
are found by comparing the model with a set of cosmo-
logical data and performing Bayesian parameter estimation.
For the RR model, as well as for ΛCDM, this is obtained by
computing the cosmological perturbations of the model,
inserting them in a Boltzmann code, and constraining the
model with observations by using a Markov Chain
Monte Carlo. For the RR model this has been done in
[54–57]. Here we will use for definiteness the values in
Table 3 of [57], where we used as data sets the Planck CMB
data, a compilation of BAO data, the SNe data from the
JLA dataset, and the local measurement of H0. In this case
for ΛCDM we get the mean values h0 ¼ 0.681ð5Þ and
ΩM ¼ 0.305ð7Þ, while for the “minimal” RR model (in
which a parameter u0 that determines the initial condition
of an auxiliary field is set to zero; the limit of large u0
brings the model closer and closer to ΛCDM) we get h0 ¼
0.701ð7Þ and ΩM ¼ 0.292ð8Þ. The corresponding result for

ðdRR;emL − dΛCDML Þ=dΛCDML is given by the dashed, magenta
curve in Fig. 2, and we see that, at redshifts z≳ 1, it is one
order of magnitude smaller than the green curve. This is
easily understood. Parameter estimation is basically per-
formed by comparing the predictions of each model to a set
of fixed distance indicators, such as those given by the
peaks of the CMB or by the BAO scale. Thus, the
parameters in each model are adjusted to reproduce these
distance measurements at large redshift, and therefore have
the tendency to compensate the differences in luminosity
distance (or in comoving distance or in angular diameter
distance) induced by the different functional forms of
wDEðzÞ. As a result, at redshifts z≳ 0.5, jΔdLj=dL is
reduced by about one order of magnitude, to a value
(0.2–0.4)%, which is much more difficult to observe. It is
clear, from the above physical explanation, that this effect is
quite general in modified gravity models, and we have
detected it in the RR model simply because in this case a
detailed Bayesian parameter estimation was already
available.
The two upper curves in Fig. 2 give the relative differ-

ence of the electromagnetic luminosity distances, which is
relevant for standard candles. For standard sirens we rather
need to compare the GW luminosity distance of the RR
model, dRR;gwL , to the luminosity distance dΛCDML of ΛCDM
(which, in contrast, is the same for GWs and for electro-
magnetic signals). The result of this comparison, using
again the respective mean values of the parameters for the
RR model and for ΛCDM, is given by the lower curve
(blue, solid line) in Fig. 2. We see that the difference, in
absolute value, now raises again to values of order 3%, and
the sign of the difference is opposite.
From these results we can draw some interesting con-

clusions. First, the existence in generic modified gravity
theories of a notion of GW luminosity distance, a priori
different from the electromagnetic luminosity distance, in
principle makes possible a conceptually clean test of mod-
ifications ofGR. If the luminosity distance derived from a set
of standard candles turns out to be different from the result
obtained with standard sirens, this will be a “smoking gun”
evidence for modified gravity (see also [24–26]). A second
point is that, at the redshifts z≳ 1 relevant for LISA and ET,
the deviation from the ΛCDM prediction induced by δðzÞ is
much larger than that induced by wDEðzÞ, i.e., in absolute
value, in Fig. 2 the blue solid curve is larger than themagenta
dashed curve.2 Note also that, if one measures a deviation
from ΛCDM of the type of the blue solid curve in Fig. 2 and
tries to interpret it as due to a nontrivial dark-energy equation

0 1 2 3 4 5 6
–0.03

–0.02

–0.01

0.00

0.01

0.02

z

Δ
d L

/ d
L

FIG. 2. The relative differences ΔdL=dL between the RR model
and ΛCDM for three different cases. Green, dotted-dashed curve:
The relative difference ðdRR;emL − dΛCDML Þ=dΛCDML using the same
values of h0 and ΩM (taken for definiteness as h0 ¼ 0.7013 and
ΩM ¼ 0.2922). Dashed magenta curve: The same, but using for
each model its own mean values of h0 and ΩM. Blue solid line:
The relative difference ΔdgwL =dL ≡ ðdRR;gwL − dΛCDML Þ=dΛCDML
using again for each model its own mean values of h0 and ΩM.

2Of course, in a given specific modified gravity model, the
function δðzÞ could simply be zero, or such that
jδðzÞj ≪ j1þ wDEðzÞj, in which case the main effect would
come from wDEðzÞ. What our argument shows is that, in a
generic modified gravity model where the deviation of δðzÞ from
zero and the deviation of wDEðzÞ from −1 are of the same order,
the effect of δðzÞ dominates.

BELGACEM, DIRIAN, FOFFA, and MAGGIORE PHYS. REV. D 97, 104066 (2018)

104066-4



of state, neglecting the possibility of modified GW propa-
gation, one would conclude that this is a signature of a
nonphantom wDEðzÞ (which results in a negative value for
ΔdL=dL). However, this interpretation could be totally
wrong. In our case, the blue solid curve in Fig. 2 is produced
in a model, such as the RR model, that has a phantom DE
equation of state, and the effect is not due to wDEðzÞ, but is
rather dominated by δðzÞ.

IV. COMPARISON WITH THE
EINSTEIN TELESCOPE

In a generic modified gravity model there will be both
differences in thepropagationofGWsand in their production
mechanism, compared toGR. The two effects are decoupled,
the former affecting the luminosity distance, aswe have seen,
and the latter the phase of theGWsignal. Themodification to
the production mechanism depends on how much the
modified gravity theory differs from GR at the distance
scaleL of the binary system (and onwhether it contains extra
radiative degrees of freedom). In the RR model there are no
extra radiative degrees of freedom, and the static
Schwarzschild solution of the theory reduces smoothly to
that of GR at distances L ≪ m−1 ≃H−1

0 , with corrections of
order ðmLÞ2 [48,62]. For L of the order of the size of an
astrophysical binary this correction is utterly negligible and
does not affect GW production. A more subtle point is
whether the time dependence (18) of the effective Newton
constant, found on cosmological scales, can be extrapolated
down to the scale of a coalescing binary (see [63] and
Appendix B of [55] for discussion). In any case, the effect on
the waveform due to modifications of GW propagation in
general dominates over modification of GW production,
since the former gives an effect that accumulates over the
distance to the source [36], and here we focus on it.
In Fig. 3 we show

����Δd
gw
L

dL

����≡ jdRR;gwL − dΛCDML j
dΛCDML

; ð20Þ

and we compare it with an estimate of the total error in
ET due to instrumental noise plus lensing [13], and with
the separate contribution to the error due to lensing [12].
While the instrumental error is inversely proportional to
the signal-to-noise ratio of the source, and can in principle
be decreased by improving the detector sensitivity, the
error due to lensing is due to intervening matter structures
that affect the GW propagation, and it provides a lower
limit on the error of a third-generation interferometer
(unless suitable delensing techniques are applied). Note
that at very low redshifts, z≲ 0.05, the error in the

uncertainty in the local Hubble flow (not shown in
Fig. 3) will eventually dominate. Given that with N
measurements we improve the accuracy by a factorffiffiffiffi
N

p
, from this plot we find that, to reach a sensitivity

of the order of the signal, we need about 7 standard sirens
(with measured redshift) at z ≃ 0.4, or about 44 standard
sirens at z ≃ 1, or 130 at z ≃ 2. Thus, a significant signal-
to-noise ratio could be obtained with a few tens of
standard sirens at z ∼ 0.5, or a few hundreds at
z ∼ 1–2. Of course, these numbers should only be taken
as indicative, since the sensitivity of third-generation
interferometers is still quite tentative. Note also that
current errors on the estimate of cosmological parameters
such as h0 and ΩM are of order 2%. This induces a
corresponding theoretical error in the prediction, which is
not negligible compared to the predicted value of
jΔdgwL =dLj. However, by the time that third-generation
interferometers will operate, further improvement in
cosmological parameter estimation is expected from
mid-future observations such as the EUCLID mission
[64], DESI [65] or SKA [66]; otherwise, a larger number
of sources will be necessary. In any case, a third-
generation interferometer such as ET is expected to detect
millions of binary mergers, of which possibly Oð103 −
104Þ could have an electromagnetic counterpart. Prospects
for dark energy studies using standard sirens therefore
look bright.
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FIG. 3. The absolute value of ΔdgwL =dL ≡ ðdRR;gwL − dΛCDML Þ=
dΛCDML , where both dRR;gwL and dΛCDML are computed using the
respective mean values of the parameters (blue solid line),
compared with an estimate of the total error on ΔdgwL =dL for
ET (magenta, dashed) and the contribution to the error due to
lensing (green, dotted-dashed).
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