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ABSTRACT
In this work, we theoretically study the differential capacitance of an aqueous electrolyte in contact with a planar electrode, using classical
density functional theory, and show how this measurable quantity can be used as a probe to better understand the structure and composition
of the electric double layer at play. Specifically, we show how small trace amounts of divalent ions can influence the differential capacitance
greatly and also how small ions dominate its behavior for high electrode potentials. In this study, we consider primitive model electrolytes
and not only use the standard definition of the differential capacitance but also derive a new expression from mechanical equilibrium in a
planar geometry. This expression reveals explicitly that the first layer of ions near the charged surface is key to its understanding. Our insights
might be used as a guide in experiments to better understand the electrolyte–electrode interface as well as the (composition of the) bulk
electrolyte.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0064315

I. INTRODUCTION

At the moment, energy storage is one of the major challenges
in the battle against climate change. There are many “green” meth-
ods nowadays to transform one energy form into another,1 with
electricity as the favored end product, but the options to store it effi-
ciently on a large scale are limited. With solar and wind energy on
the rise, the era of fossil energy sources will come to an end. How-
ever, sunshine and wind are intermittent, and therefore, the amount
of harvested energy is not constant and can fluctuate quite drastically
over time and geographic position, which requires an increasing
flexibility of the power system.2,3 Efficient ways of storing energy
can increase the flexibility of the power system,4–7 allowing us to
successfully make the transition toward renewable energy.

Technologies for energy storage vary immensely, and several
classifications can be considered, for instance, the actual technol-
ogy used (e.g., chemical, electrochemical, electrical, mechanical,
and thermal) or the scale of storage (e.g., small scale, short term,
large scale, and long term); each of these subcategories has its own

strengths, weaknesses, and range of applicability.6,8 One of these
technologies employs electric double layers (EDLs), in which the
spatial distribution of mobile charges of electrolytes in contact with
electrodes allows for storage of electric energy. Basically, such a
device comprises a charged conductor (an electrode) immersed in
an electrolyte, where the electron charge on the electrode is screened
by the ions in the electrolyte. Such a system behaves in some sense
similar to a conventional capacitor of two electric conductors, how-
ever, with a much smaller distance between the oppositely charged
entities, which in this case consists of an immobile electrode with,
say, a positive charge in close contact with a layer of mobile ions in
the electrolyte with a net negative charge. Generally, the electrodes
of EDL capacitors have a porous structure with a great surface-to-
volume ratio (up to 2000 m2 g−1),9 and no chemical reactions take
place at the surface. The large area leads to a large capacitance, and
therefore, a large amount of energy stored compared to conventional
capacitors and the absence of reactions lead to long lifetimes com-
pared to conventional batteries, which make them “greener” as well.
One of the disadvantages of EDL capacitors is the rather small energy
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density compared to common lithium-ion batteries (by roughly a
factor of 20).4

Within a density functional theory (DFT) that captures
Coulomb and hard-sphere interactions accurately,10 we calculate the
differential capacitance for several electrolytes, changing the size
and valency of the ions similar to the work done in Refs. 11–21.
However, we derive a new relation for the differential capacitance,
which explicitly shows that the response of the first layer of ions
near the electrode to the applied potential on the electrode is key
to its understanding. We utilize this insight to understand two- and
three-component electrolytes (the latter of which was also the sub-
ject of Ref. 21) and explain how impurities can have a large effect on
the differential capacitance.

II. DIFFERENTIAL CAPACITANCE
A. The system

As mentioned in the Introduction, we wish to focus on EDL
capacitors, of which there are a variety of different types, each having
a different electrode–electrolyte combination.22 For now, we con-
sider two porous (carbon) electrodes held at a potential difference
Ψ immersed in an aqueous electrolyte at room temperature T and
dielectric constant ε. We will focus on a single pore inside one elec-
trode and model it as two planar surfaces with the same static surface
potential Φ0, separated by a distance H,23,24 as depicted in Fig. 1.
We stress that the surface potential Φ0 on the surfaces of the pore is

with respect to a potential in a macroscopic electrolyte reservoir (the
space between the two electrodes), while Ψ is the potential difference
between the two electrodes in the EDL capacitor.

We will employ the primitive model (PM) in which the solvent
is treated as a continuous dielectric medium. The properties of the
solvent can then be completely captured by a single parameter: the
Bjerrum length λB = e2β/4πεε0, where e is the proton charge and
β = 1/kBT is the inverse temperature. The Bjerrum length of water
at room temperature is λB = 0.73 nm, which will be kept constant
throughout this work. The ions of species j are modeled as hard
spheres with diameter dj and a centro-symmetric charge ezj with zj
denoting the valency; the pair potential uij(r) between ions of species
i and j separated by a distance r is described by

βuij(r) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∞, r < dij,

zizj
λB

r
, r ≥ dij,

(1)

where dij = (di + dj)/2. Note that the PM neglects dispersion and
polarizability. We denote the bulk concentration of ion species j in
the macroscopic electrolyte reservoir between the two electrodes by
ρb,j and define the total ionic packing fraction in the bulk as

ηb =
π
6∑j

d3
j ρb,j. (2)

FIG. 1. An illustration of an EDL capacitor and its structure. The EDL capacitor within the dashed box contains two porous electrodes (black dots), held at a potential
difference Ψ, through which the electrolyte (blue) can flow. Zooming in on a porous electrode reveals a lot of structure, which is depicted on top. Throughout this article, the
focus lies on one tiny part of the electrode (the pore of interest), which we consider our system and model it as two parallel charged surfaces separated by a distance H
being part of the same electrode. Hence, the potential on the two surfaces, denoted by Φ0, is the same and measured with respect to the potential in the reservoir, which
we assume to be grounded. Invoking the primitive model reduces the solvent to a continuous dielectric medium at temperature T and with uniform dielectric constant ε.
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When all particles have the same diameter and valency, the model is
referred to as the Restrictive Primitive Model (RPM). The bulk RPM
is completely characterized by the ionic bulk concentration and the
dimensionless temperature T∗ = d/λB. We stress that the medium
and the diameters are chosen such that T∗ ≫ T∗c = 0.05 the critical
temperature,25 e.g., in our article, λB = 0.73 nm is fixed and the ion
diameters range from dj = 0.2 nm to dj = 1 nm, for which T∗ ranges
from T∗ = 0.27 to T∗ = 1.37, respectively.

The (non-electrostatic part of the) external potential that deter-
mines the pore size reads

V j
ext(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞, x ≤
dj

2
,

0,
dj

2
< x < H −

dj

2
,

∞, x ≥ H −
dj

2
,

(3)

which describes two planar hard walls positioned at x = 0 and x = H.
Throughout this article, the surface separation is fixed at H = 5 nm.
Note that the electrostatic part of the external potential, due to the
surface charge on the electrodes, will be taken into account through
the Poisson equation, as discussed in Appendix A.

Within this simplification, we can controllably study the dif-
ferential capacitance as a function of the surface potential Φ0, for
several choices of the ion diameter dj, valency zj, and ionic bulk
concentrations in the reservoir ρb,j.

B. Thermodynamics in the pore
Let us now focus on a single pore as depicted in Fig. 1. The

remainder of the electrode and the space between the electrodes we
consider to be the ion and heat reservoir for the pore of interest.
Assuming that the space between the electrodes is large enough, we
can treat the pore of interest grand canonically. This justifies the
introduction of a bulk ionic concentration ρb,j (corresponding to a
fixed ionic chemical potential μj) in the reservoir that is indepen-
dent of the electric potential difference Ψ between the electrodes.
Exchange of ions between the system and reservoir takes place, and
we assume equilibrium. The surface potential Φ0 on the surfaces in
the pore is fixed, which allows exchange of electronic charge between
the electrode and a charge reservoir; however, no charge exchange
takes place between the electrode and ions, i.e., no electrochemistry
is considered. The pore also has a fixed volume V = AH/2 (rigid
electrode) with total surface area A and temperature T. To sum-
marize, the system is described by a {μ}, V , T, Φ0, A, H ensemble,
characterized by the grand potential Ω({μ}, V , T, Φ0, A, H),10 where
the brackets {μ} denote the set of chemical potentials of each of the
ion species. The differential of Ω for this system reads

dΩ = − pdV − SdT −∑
j

Njdμj

−QdΦ0 + γdA − f dH, (4)

where N j is the average number of ions of species j in the pore, p
the pressure, Q the electronic charge on both surfaces of the pore,
γ the surface tension, and f the force between the surfaces that are
separated by a distance H. It is convenient to separate the volumet-
ric and areal contributions in Eq. (4) and write Ω = −p(T,{μ})V

+ γ(T,{μ}, Φ0, H)A as two separate differentials,10

dp = sbdT +∑
j

ρb,jdμj, (5)

dγ = −ssdT −∑
j

Γjdμj − σdΦ0 −
f
A

dH, (6)

where S and N j have been separated into a volumetric and areal part
according to S = Vsb + Ass, and N j = Vρb,j + AΓj with ρb,j the bulk
concentration and Γj the adsorption of species j. The average elec-
tronic surface charge density is denoted by σ = Q/A and obeys the
charge neutrality condition

σ = −∑
j

ezjΓj. (7)

Equation (5) is the Gibbs–Duhem equation, and Eq. (6) is the
Lipmann equation.

Now, the question arises: what does this have to do with
capacitances? The short answer to this question is that the (areal)
differential capacitance is defined by

Cμ,T,H = (
∂σ
∂Φ0
)

μ,T,H
(8)

= −(
∂2γ
∂Φ2

0
)

μ,T,H
, (9)

which opens the door for the longer answer. First of all, it turns out
that there is not one differential capacitance C, but a whole set of
differential capacitances, one for each ensemble. This is similar to
constant-volume and constant-pressure heat capacities, and isother-
mal and isentropic compressibilities, for instance. Throughout this
article, we will study the differential capacitance at fixed temperature
T and surface separation H and simplify the notation: the ensem-
ble in Eq. (4) gives rise to Cμ, while an {N}, V , T, Ψ, H ensemble
would give rise to CN . Those two are, in fact, not unrelated and fol-
low similar thermodynamic identities as those of the heat capacities
at constant volume or pressure.10,26 We will focus on Cμ(Φ0,{μ}).

C. Differential capacitance revisited
Before tackling the primitive-model electrolyte confined

between two hard walls by density functional theory, let us first
discuss the mechanical equilibrium in a planar geometry. The xx
(normal) component of the pressure tensor within the pore follows
from the force balance,27,28

pxx(H) = ∑
j
∫

H

0
dxρj(x)F j

x(x), (10)

where ρj(x) is the local density of species j, F j
x(x) = −∂Vj(x)/∂x

the normal force on the surface due to the full interaction poten-
tial V j(x) (including the electrostatic interactions due to the surface
charge). If the integral in Eq. (10) does not depend on H, which is the
case when the range of F j

x is much smaller than H, then pxx(H) = p is
the actual bulk pressure of the electrolyte and Eq. (10) reduces to27,28

βp = ∑
j

ρj(
dj

2
) −

βσ2

2εε0
, (11)
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where it is understood that ρj(dj/2) is the limit limx↓dj/2ρj(x). This
sum rule relates the bulk pressure p of the ion reservoir to the
local contact densities ρj(dj/2) and the surface charge density σ. In
the case of two charged hard parallel surfaces separated by a finite
distance, the integral in Eq. (10) does depend on H, especially at
low ionic bulk concentrations. However, with the parameters cho-
sen throughout this article, this only plays a minor role and can
be neglected for all practical purposes. Let us note that for soft
particle–wall interactions, the integral in Eq. (10) does not reduce
to a contact value and needs to be fully evaluated. Nonetheless, the
gradient of the particle–wall interaction is by construction largest at
values close to the contact distance dj/2 at which it gives the largest
contribution to the integral.

One interesting feature of Eq. (11) is that the global bulk pres-
sure is independent of the surface potential Φ0, while the local quan-
tities are not. Therefore, taking the derivative of Eq. (11) with respect
to Φ0 leads to

0 = ∑
j
(
∂ρj(dj/2)

∂Φ0
)

μ
−

βσ
εε0
(
∂σ
∂Φ0
)

μ
, (12)

where we recognize the differential capacitance given in Eq. (8) in
the second term. Hence, Eq. (12) can be rewritten as

Cμ =
εε0

βσ∑j
(
∂ρj(dj/2)

∂Φ0
)

μ
, (13)

where in the summand one can recognize a fluctuation profile as
discussed in Ref. 29. Within the RPM, Eq. (13) simplifies to

Cμ =
εε0

βσ
(
∂ρN(d/2)

∂Φ0
)

μ
, (14)

where we introduce the total ion density

ρN(x) = ∑
j

ρj(x). (15)

Hence, the differential capacitance is to a large extent dictated by
the response of the number density ρN(d/2) at contact (first layer of
ions) to the potential Φ0. As stated previously, this key-concept will
stand even for soft particle–wall interactions; the contact value will
be replaced by an integral, whose integrand is peaked near x = dj/2.

Interestingly, another observation leads to yet another expres-
sion for the differential capacitance. Due to the ions having a hard
core interaction with the wall and a central charge, the charge density
for x < d/2 (also for x > H − d/2) vanishes, leading to a linear drop
of the electrostatic potential profile Φ(x) in that region. Hence, the
potential at x = d/2 is given by

Φ(d/2) = Φ0 +
∂Φ(x)
∂x

∣
x=0

d
2
= Φ0 −

d
2εε0

σ, (16)

where we used the Gauss law. Taking again the derivative with
respect to the surface potential Φ0 and reordering result in

Cμ =
2εε0

d
[1 − (

∂Φ(d/2)
∂Φ0

)
μ
], (17)

which was also derived in a slightly different form in Ref. 30. The
region between x = 0 and x = d/2 is sometimes referred to as the

Stern layer,31 with the corresponding Stern-layer capacitance17,32–34

Cs = 2εε0/d, although that will not be used in this work.35

The relations in Eqs. (13) and (17) will allow for a new and inde-
pendent investigation into the differential capacitance, which helps
in understanding the underlying physics.

D. Density functional theory
We will use classical DFT to study the PM electrolytes. We

refer to previous literature studies for the details.36–38 In short, DFT
involves a grand potential functional, which reads

Ω[{ρ}] =ℱ id[{ρ}] +ℱ
HS
ex [{ρ}] +ℱ

ES
ex [{ρ}]

−∑
j
∫ drρj(r)(μj − V j

ext(r)) −QΦ0, (18)

where V j
ext is the (non-electric) external potential of Eq. (3) acting

on particles of species j, and Q = σA is the total charge on the surface
in the pore. The first term ℱ id[{ρ}] is the Helmholtz free energy
functional for an ideal (non-interacting) system, the second term
ℱ HS

ex [{ρ}] accounts for the hard-sphere interactions and is dealt
with by fundamental measure theory White-Bear II,37 and the third
term ℱ ES

ex [{ρ}] describes the Coulombic interactions for which we
invoke the MSAc functional described extensively in Refs. 39 and 40
(see also Appendix A). Although there are more accurate DFTs to
deal with the electrostatics part,41,42 we deemed the MSAc functional
to be sufficiently accurate10 for our purposes.

The grand potential functional Ω[{ρ}] is, in fact, minimized by
the equilibrium density profiles {ρ0},

36 i.e.,

δΩ[{ρ}]
δρj(r)

∣

{ρ}={ρ0}

= 0. (19)

Moreover, the grand potential at its minimum is the actual grand
potential of the system, i.e., Ω[{ρ0}] = Ω({μ}, V , T, Φ0, H). Hence,
DFT is a powerful theoretical framework to combine thermodynam-
ics and structure as it gives access to the thermodynamics of the
system via the density profiles. Furthermore, it gives directly both
the ionic charge density profile q(x) = ∑j zjρj(x) and via the Pois-
son equation also the potential profile Φ(x) from which the surface
charge follows, where we note that in a planar geometry the pro-
files only depend on the out-of-plane coordinate x. In principle, we
thus have access to Cμ via any of the routes in Eqs. (8), (9), (13), and
(17) laid out in Secs. II B and II C; however, the results that will be
presented are calculated from Eq. (8), while the other definitions are
used as a tool to interpret the data. Nevertheless, we have validated
Eqs. (8), (9), (13), and (17) for the sake of consistency.

E. Simulations
Although DFT is a very powerful framework, the intrinsic func-

tionals ℱ HS
ex and ℱ ES

ex are approximate and need to be tested against
simulations or experiments. Although we do not go into detail here
on any specific type of simulation, we wish to present a novel sum
rule that connects quantities that can be measured in simulation but
not with DFT. The quantity of interest throughout this article is the
differential capacitance. From elementary statistical physics, one can
derive the relation26,43–45
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C(Φ0) =
β
A
(⟨Q2
⟩ − ⟨Q⟩2), (20)

where the brackets ⟨⋅ ⋅ ⋅⟩ indicate either a time or an ensemble
average.

Inspired by Ref. 29, we also found a new expression to calculate
the differential capacitance, namely,

C =
εε0

σ ∑j
[⟨ρ̂j(dj/2)Q⟩ − ⟨ρ̂j(dj/2)⟩⟨Q⟩], (21)

where ρ̂j(r) = ∑
Nj
i=1δ(r − ri) denotes the density operator. Note that

we use the notation σ = ⟨σ⟩ throughout the article, but it is impor-
tant to keep in mind that the surface charge σ = Q/A fluctuates as a
consequence of fixing the surface potential Φ0.

Employing DFT causes the loss of direct information on the
fluctuations because DFT only returns equilibrium density profiles.
Hence, within our DFT approach, one does not have direct access to
the quantities, such as ⟨Q2

⟩ and ⟨ρ̂j(dj/2)Q⟩. However, they can in
principle be measured within simulations.

III. CAPACITANCE CURVES
A. First glance: Symmetric electrolyte

The system that we investigate first is an RPM electrolyte con-
sisting of two monovalent species of ions (i.e., z+ = −z− = 1), so that
ρb,+ = ρb,− ≡ ρb. In Fig. 2, we show the differential capacitance, cal-
culated via Eq. (8), as a function of the applied voltage Φ0 for ions
with d = 0.5 nm at several ionic bulk packing fractions ranging from
ηb = 0.0001 to ηb = 0.4, corresponding to bulk ionic concentrations
ranging from ρb ≈ 1 mM to ρb ≈ 5M. As stated previously, the sur-
face separation is fixed at H = 5 nm and the solvent is character-
ized by λB = 0.73 nm. The foremost noticeable feature of Fig. 2 is
the crossover around a bulk packing fraction ηc ≈ 0.12 (blue line)
from the so-called camel-shaped (ηb < ηc) to the bell-shaped curves
(ηb > ηc). This crossover has been a subject in many theoretical and
experimental studies16,17,46–56 and is ascribed to excluded-volume

FIG. 2. The differential capacitance Cμ for the RPM with monovalent ions with
diameter d = 0.5 nm and for a surface separation H = 5 nm and Bjerrum length
λB = 0.73 nm. The curves are shown for concentrations ranging from ρb = 1.3 mM
(light-blue) to ρb = 5.1M (green) with several concentrations in between. The con-
centrations for the other colored lines are given in the legend; the concentrations
for the black lines are equally spaced to illustrate the trend. The legend also shows
the corresponding bulk packing fractions ηb.

effects. Let us, for convenience, introduce Φ∗ as the surface potential
at which the capacitance Cμ(Φ0) takes its maximum value at a given
ρb or ηb, i.e., Cμ(Φ∗) ≥ Cμ(Φ0). Then, the camel-shaped capacitance
curves correspond to a finite Φ∗, while the bell-shaped capacitance
curves are characterized by Φ∗ = 0.

To understand this crossover, one has to understand what
causes the maximum in Cμ(Φ0). Consider the orange camel-shaped
capacitance curve in Fig. 2 belonging to ρb ≈ 0.13M (i.e., ηb = 0.01
< ηc) with Φ∗ ≈ 0.2 V. For the same ρb (and in the same color), we
present in Fig. 3(a) the number density profiles ρN(x) for Φ0 = 0.1 V
(solid), Φ0 = 0.2 V (dashed), and Φ0 = 0.5 V (dotted). The inset
shows, for the same state points, the profile of the weighted packing
fraction, defined by57

η(x) = π∑
j
∫

x+dj/2

x−dj/2
dx′ρj(x′)[(

dj

2
)

2

− (x − x′)2
], (22)

which reduces to Eq. (2) in the homogeneous bulk. Interestingly,
while the density profile for Φ0 < Φ∗ (solid) only has one (contact)
peak at x = d/2 = 0.25 nm, the one for Φ0 > Φ∗ (dotted) has a second

FIG. 3. (a) The number density profiles ρN(x) for the surface potentials Φ0 = 0.1 V
(solid), Φ0 = 0.2 V (dashed), and Φ0 = 0.5 V (dotted) at a bulk concentration of
ρb ≈ 0.13M (i.e., ηb = 0.01). The inset shows the local packing fraction η(x) as
defined in Eq. (22). The potential at which the capacitance has its maximum is
Φ∗ ≈ 0.2 V. For Φ0 < Φ∗, the profiles only have one peak at x = d/2 = 0.25 nm,
while for Φ0 > Φ∗, the profiles have two peaks; the second located at x = 3d/2
= 0.75 nm. Around the maximum at Φ0 ≈ Φ∗, the second layer starts forming.
(b) The number density profiles ρN(x) for the surface potentials Φ0 = 0 V (solid)
and Φ0 = 0.2 V (dashed) at a bulk concentration of ρb ≈ 3.6M (i.e., ηb = 0.28).
The inset shows the local packing fraction η(x) as defined in Eq. (22). This bulk
concentration ρb ≈ 3.6M corresponds to the same-colored (purple) bell-shaped
capacitance curve in Fig. 2.
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peak at x = 3d/2 = 0.75 nm. Hence, the maximum in Cμ indicates
a structural change, analogous to peaks in the heat capacity indi-
cating (smooth) changes in the thermal occupancy of microstates.
When we consider the purple bell-shaped capacitance curve in Fig. 2,
belonging to ρb ≈ 3.6M (i.e., ηb = 0.28 > ηc), and investigate the cor-
responding ρN(x) and η(x) in Fig. 3(b) for Φ0 = 0 V (solid) and
Φ0 = 0.2 V (dashed), we find the presence of the second peak in
ρN(x) for both (and in fact for all) surface potentials. Hence, the
maximum in Cμ(Φ0) is clearly related to the onset of layering
of counterions near the surface, as is in fact also consistent with
Eq. (13). Moreover, considering the profile of the weighted packing
fraction [see the insets in Figs. 3(a) and 3(b)] at x = d/2 = 0.25 nm,
one finds that its value is close to or even larger than the packing
fraction at which hard-sphere freezing takes place in the bulk (i.e.,
around ηb ≈ 0.5). This suggests that the first layer of ions might in
fact even be frozen58 and invites a study into the in-plane structure
of ions at the charged surface. However, that is beyond the scope of
this article.

To characterize and interpret the crossover from camel- to
bell-shaped curves further, let us consider the crossover potential
Φ∗(ηb) as a function of the bulk packing fraction ηb plotted in Fig. 4,
for three ion diameters. The dashed line at ηc ≈ 0.12 represents for
d = 0.5 nm the capacitance curve crossing over from two maxima at
Φ0 = Φ∗ > 0 (camel) to one maximum at Φ0 = Φ∗ = 0 (bell). From
Fig. 4, it is evident that the crossover is rather gradual, and there-
fore, we refer to a crossover rather than a transition. This is in line
with the maximum in the capacitance curves being finite rather than
infinite, the latter case would imply a thermodynamic phase transi-
tion. This graduality is found in the density profiles as well: where
profiles for Φ0 ≪ Φ∗ and Φ0 ≫ Φ∗ can be easily discerned by the
absence and presence of a second peak at x = 1.5d = 0.75 nm [see
Fig. 3(a)], those for potentials close to Φ∗ cannot. The same holds
for density profiles at Φ0 = 0; for low bulk concentrations, layering
is almost absent, while at high bulk concentrations, layering is clearly
present [see Fig. 3(b)], but one cannot qualitatively discern the two
cases close to ηb ≈ ηc.

The results so far were all for ions with a common diame-
ter d = 0.5 nm and λB = 0.73 nm. Let us now investigate the effect

FIG. 4. The surface potential Φ∗ at which Cμ(Φ0) has its maximum as a function
of the bulk concentration expressed as the bulk packing fraction ηb, for the RPM
with ion diameter d = 0.2 nm (yellow), d = 0.5 nm (blue), and d = 1 nm (orange).
The vertical dashed line is located at ηb = 0.12 and represents the crossover
for ions with d = 0.5 nm from camel-shaped capacitance curves to bell-shaped
capacitance curves.

of the ion size, keeping λB fixed at λB = 0.73 nm. To this end, we
next consider ions of a common diameter d = 0.2 nm and d = 1
nm, for which Cμ(Φ0) is presented in Fig. 5 for a variety of ionic
bulk concentrations. There is little qualitative difference in Cμ(Φ0)

for the different ion sizes. However, quantitatively, one finds that
the smaller the ions, the larger Cμ(Φ0) at a given bulk packing
fraction ηb. It is important to note that ionic bulk concentration
ρb and packing fraction ηb, although linearly related, are not the
same quantity; small ions have a higher molarity at the same pack-
ing fraction, and the balance between packing and electrostatics is
quite different. Experimentally, one often characterizes bulk con-
centrations in molarity rather than packing fractions, which renders
the ion diameter an important fit parameter. Figure 5 shows that
the ion size can determine the shape of Cμ(Φ0) at a given molar-
ity ρb. We note, for instance, that the camel–bell crossover pack-
ing fraction ηc only changes slightly from ηc ≈ 0.1 for d = 1 nm to
ηc ≈ 0.15 for d = 0.2 nm, while the crossover bulk concentration
changes by two orders of magnitude from ρc ≈ 32M for d = 0.2 nm
to ρc = 0.16M for d = 1 nm. Figure 5 also shows a bell-shaped capac-
itance curve for sufficiently concentrated electrolytes, and a camel-
to-bell crossover for dilute electrolytes at a sufficiently high electrode
potential, with a higher Φ∗ for lower ηb and smaller d. The generally
lower capacitance for larger ions can be understood qualitatively in
terms of the close proximity of smaller ions to the electrode. This
is explicit in Eq. (17), in which Cμ is inversely proportional to the

FIG. 5. The differential capacitance for ions with diameter (a) d = 0.2 nm and (b)
d = 1 nm for a surface separation H = 5 nm and Bjerrum length λB = 0.73 nm.
The bulk concentration/packing fraction at which the camel–bell crossover occurs
is depicted in dark blue, i.e., ηc ≈ 0.1 (ρc ≈ 32M) for d = 0.2 nm and ηc ≈ 0.16
(ρc ≈ 0.16M) for d = 1 nm.
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ion diameter d. Hence, a larger ion diameter results in an overall
smaller Cμ(Φ0).

The results presented in this section evidently show that ion
size is a key parameter that largely determines the magnitude of the
differential capacitance at a given ionic bulk concentration.

B. Second glance: Asymmetric electrolytes
Let us now consider an asymmetric electrolyte consisting

of cations with diameter d+ = 0.4 nm and anions with diameter
d− = 0.6 nm. The voltage-dependent differential capacitance for this
system is presented in Fig. 6(a), again for bulk packing fractions
ranging from ηb = 0.0001 (ρb ≈ 1.1 mM) to ηb = 0.4 (ρb ≈ 4.5M).
The asymmetry in the electrolyte is reflected by the asymmetry of
Fig. 6(a) with respect to Φ0 → −Φ0; the smaller cations can approach
the surface to closer distances than the anions, causing a larger
capacitance for negative potentials compared to positive poten-
tials. The capacitance Cμ(Φ0) at its maximum for the camel-shaped
curves at Φ0 < 0 is therefore larger than that at Φ0 > 0, which moti-
vates the introduction of the notation Φ∗+ and Φ∗− for the maxima
located at positive and negative potentials, respectively. For high
bulk concentrations with only one maximum (bell-shaped curves),
we keep using the notation Φ∗, which is not necessarily close to zero
now that the symmetry is broken. In Fig. 6, we see that Φ∗ does
indeed not vanish in the asymmetric electrolyte, rather it is located at
negative potentials, and seems for the present choice of parameters

FIG. 6. (a) The differential capacitance for an asymmetric electrolyte with d+ = 0.4
nm and d− = 0.6 nm for a surface separation H = 5 nm and Bjerrum length
λB = 0.73 nm. The thick black curves in (b) correspond to the colored ones in (a)
and are compared with the differential capacitance of the RPM with d+ = d− = 0.4
nm (red) and d+ = d− = 0.6 nm (blue) at the same bulk concentration ρb.

to converge to Φ∗ ≈ −0.03 V at high bulk concentrations. This also
implies that the potential of zero charge takes non-vanishing values.

In Fig. 6(b), the differential capacitance of the asymmetric elec-
trolyte of Fig. 6(a) is compared to those of the symmetric RPM. We
replot the six colored differential capacitance curves of the asym-
metric electrolyte of Fig. 6(a) in black now, while in blue (Φ0 > 0)
and red (Φ0 < 0) we plot those for the RPM with d = 0.6 nm and
d = 0.4 nm, respectively, at the same bulk concentration ρb. For the
three lowest bulk concentrations ρb = 1.1 mM, ρb = 11 mM, and
ρb = 0.11M, we see that the differential capacitance of the asymmet-
ric electrolyte with d+ = 0.4 nm and d− = 0.6 nm (black) is indistin-
guishable from those of the RPM with d = 0.4 nm (red) at negative
potentials and d = 0.6 nm (blue) at positive potentials. Hence, Cμ at
negative potentials is fully dictated by the cations, while at positive
potentials it is fully dictated by the anions. However, at higher bulk
concentrations, close to the camel–bell transition, one finds differ-
ences between the RPM approximation and the actual asymmetric
electrolytes, although primarily only for ∣Φ0∣ < 100 mV. This can be
explained by considering Eq. (13), where packing of asymmetric-
sized ions in the first layer ∑j ρ(dj/2) is evidently different from
the RPM. Nevertheless, at higher surface potentials, the differential
capacitance of the asymmetric electrolyte follows again that of the
RPM because the counterions are fully repelled, resulting in a similar
packing to that in the RPM.

Another type of asymmetric electrolyte that we consider is a 1:2
electrolyte in which z+ = 1 and z− = −2, for convenience with equal
diameter d+ = d− = 0.5 nm. The capacitance curves for this system
are given in Fig. 7, again for H = 5 nm and λB = 0.73 nm. First, let us
note that the maximum at positive potentials for bulk concentrations
below ρb,− = 0.85M is larger than that of the monovalent RPM at
the same packing fraction (see Fig. 2 or consider the negative poten-
tials). This is a consequence of the higher valency of the anions; fewer
ions are needed to screen the charge on the surface, and therefore,
layering/packing requires higher surface potentials, allowing more
charge to be stored within the first layer. One peculiar feature that
was not present in all previous monovalent cases is the minimum
capacitance around Φ0 ≈ 0.4 V (and therefore also a second max-
imum at Φ0 = Φ∗++ ≈ 0.6), which is caused by overscreening.17 At
such relatively high surface potentials, the positively charged surface

FIG. 7. The differential capacitance for an asymmetric 1:2 electrolyte with
d+ = d− = 0.5 nm. The bulk concentrations for the colored lines are given in the
legend and range from ρb,− = ρb,+/2 = 0.85 mM to ρb,− = ρb,+/2 = 3.4M.
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attracts the divalent anions to such an extent that it creates a layer
of anions with negative charge that exceeds the magnitude of the
charge on the surface. Therefore, the ions further away from the elec-
trode perceive the surface as being negatively charged, rather than
positive, which causes a net attraction of positive ions. This is shown
in Figs. 8(b) and 8(c), which presents the anion and cation den-
sity profiles, respectively, at the surface potentials indicated by the
vertical lines in the capacitance curve of Fig. 8(a), for the bulk con-
centration of ρb,− = ρb,+/2 ≈ 85 mM (ηb = 0.1). The inset in Fig. 8(b)
shows the local packing fraction as defined by Eq. (22). For low sur-
face potentials Φ0 < Φ∗+ ≈ 0.14 V (dashed-dotted lines), the behavior

FIG. 8. In (a), the Cμ curve of the asymmetric 1:2 electrolyte for which the anion
and cation density profiles are portrayed in (b) and (c), respectively, at the sur-
face potentials Φ0 = 0.05 V (dashed-dotted), Φ0 = 0.3 V (dotted), Φ0 = 0.5 V
(dashed), and Φ0 = 0.7 V (solid), as indicated by the vertical lines in (a). The
bulk concentration corresponding to these results is ρb,+ = ρb,−/2 = 85 mM
(ηb = 0.01). The inset in (b) shows the local packing fraction. Φ∗

+
and Φ∗

++
are

the surface potentials at which Cμ has a maximum.

is similar to the RPM, but upon increasing the surface potential to
Φ∗+ < Φ0 = 0.3 V < Φ∗++ (dotted line), a clear peak in the cation den-
sity profile is formed, as if the surface is negatively charged. Note
that in this case, there is still only one dense layer of anions near
the surface. Increasing the surface potential to Φ0 = 0.5 V (dashed
lines) causes a dense second layer of anions, while the cations are
repelled. Overscreening is found again at Φ0 = 0.7 V > Φ∗++ (solid
lines). Hence, the structural changes of the EDL are manifested in the
differential capacitance, from a diffuse EDL to overscreening with
one layer of cations and anions (up to the first maximum in Cμ),
to two layers of anions and a diffuse cation layer (between the first
maximum and the first minimum in Cμ), to overscreening with two
layers of anions (beyond the second maximum in Cμ). This is also
visible in the local packing fraction [see the inset in Fig. 8(b)], which
shows that a densely packed first layer is formed for Φ0 > Φ∗+ and a
second dense layer for Φ0 > Φ∗++.

C. Impurities
It is extremely difficult to experimentally study an aqueous

electrolyte in which only one type of salt is dissolved. Generally,
there are always “impurities,” with a much lower bulk concentra-
tion than that of the dominant species. Common cations in water
are calcium (Ca2+), magnesium (Mg2+), sodium (Na+), and potas-
sium (K+), while the most common anions are carbonate (CO2−

3 ),
chloride (Cl−), and sulfate (SO2−

4 ). Although there are techniques to
obtain purified (deionized, demineralized) water, extracting all ion
types is challenging.59–61 One particular example would be the pres-
ence of divalent ions, such as calcium (Ca2+) and carbonate (CO2−

3 ),
which typically have concentrations ranging from below 0.01 mM
(purified water) to 0.5 mM (recommended amount of calcium in tap
water) to 2 mM (very hard water).62,63

Let us therefore now consider three-component electrolytes
(see also Ref. 21) consisting of one cation species and two anion
species, with an asymmetry between the anions. First, we consider
a 1:1:2 electrolyte of equisized ions with diameter d = 0.5 nm and
ρb,+ = ρb,− + 2ρb,2−, where the anion composition is characterized by
ν = ρb,2−/ρb,−. The differential capacitance for this system with a bulk
packing fraction ηb = 0.1 is presented in Fig. 9, where ν takes the val-
ues∞, 10−1, 10−2, 10−3, 10−4, 10−5, and 0, where ν = 0 corresponds
to a 1:1 electrolyte and ν = ∞ to a 1:2 electrolyte. Interestingly,
even for ν = 10−6 (corresponding to ρb,2− ≈ 1.3 ⋅ 10−6M), we find
the divalent anion species to be predominant for surface potentials
Φ0 > 0.3 V. Again, this can be explained by using Eq. (13), which for
a 1:2 electrolyte can be written in terms of the effective composition
ν̃ ≡ νeeβΦ(d/2) that indicates whether or not the divalent ions domi-
nate the surface composition, i.e., for ν̃≪ 1, the monovalent anions
dominate, while for ν̃≫ 1, the divalent anions dominate. Because
(eβ)−1

≈ 25 mV, one finds for Φ0 = 0.3 V ≈ 12/eβ that Boltzmann
factor exp(eβΦ(d/2)) is large, such that 𝒪 (ν̃) ≈ 1, even if ν = 10−6.
That is, the two anion species compete with each other on who may
fill the first layer near the surface, and since a divalent ion has a
much stronger interaction with the surface charge it wins over the
monovalent ion for large surface charges, even if their bulk concen-
tration is much lower (see also Appendix B). To conclude, even a
trace amount of divalent ions, like Ca2+ or CO2−

3 , in a predominant
monovalent electrolyte can play a dominant role in the differential
capacitance at high surface potentials.
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FIG. 9. (a) The differential capacitance for a mixture of anions, in which one
species is monovalent and the other divalent. The parameter ν gives the ratio
between the bulk density of those two anion species and ranges from ∞ (one
divalent anion species) to 0 (on monovalent anion species), while the packing
fraction for all curves is fixed at ηb = 0.01. (b) Similar to (a), but there are two
monovalent anions with different sizes, one being d− = d+ = 0.5 nm, and the
other dlarge

= 2d = 1 nm. The parameter ν is the ratio between the bulk density
of the large anion with respect to the small anion, i.e., ν = 0 represents the RPM,
while ν = ∞ represents the system with one large anion species, while the bulk
packing fraction for all curves is fixed at ηb = 0.4.

For two species of anions, which differ in size rather than
valency, the story is quite different. Let us again consider a three-
component system with monovalent ion species with different ion
diameters specified by d ≡ d+ = 0.5 nm, dsmall

− = d, and dlarge
−
= 2d.

Figure 9 shows the differential capacitance for this system for dif-
ferent anion composition ratios ν = ρlarge

b,− /ρ
small
b,− ranging from ν = 0

(one anion species with d− = d) to ν = ∞ (one anion species with
d− = 2d) at a bulk packing fraction of ηb = 0.4. Similar to the previ-
ous three-component case with different valencies, there is a com-
petition between the two anion species; smaller anions can approach
the surface to closer distances than the larger anions, obviously,
and therefore, the two anion species again compete on who may
fill the first layer. For ν < 1, the smaller anions dominate at all sur-
face potentials, and Fig. 9(b) only shows one discernible peak in
the capacitance profile. When ν is increased to ν > 1 (the bulk con-
centration of the larger anions exceeds that of the smaller anions),
the larger anions fill the first layer up to a certain surface potential
beyond which the smaller anions take over (see also Appendix B).
This point is indicated by a peak in the differential capacitance, after
which the smaller anions, although having a much lower bulk con-
centration, are the dominating factor for the differential capacitance.

Again, this can be explained from Eq. (13), where it becomes appar-
ent that the competition is between ρsmall

− (d/2) and ρlarge
−
(d). For

ν > 1 and for surface potentials at which the lager anions make up the
first layer, the quantity ρlarge

−
(d) is similar to the case of which there

is only one large cation species. However, when the surface potential
is increased such that the smaller ions make up the first layer, then
ρlarge
−
(d) basically vanishes, due to the presence of the smaller anions

that repel the larger ones. Hence, the differential capacitance of the
impurity system then follows the curve of the differential capacitance
of the system for which there is only one anion species with d− = d.
Looking at Fig. 9, it becomes apparent that a camel-shaped curve can
occur at very large packing fractions, although its minimum does not
coincide with the potential of zero charge.

IV. CONCLUSION
We have carefully investigated the differential capacitance for

primitive model electrolytes within classical DFT. A new equation
[Eq. (13)] to interpret the differential capacitance was introduced,
which greatly helped to understand its behavior, because it explic-
itly showed the importance of the first layer of ions near the surface.
Specifically, it helped to further rationalize the camel–bell crossover,
which has been a topic of interest across many studies, as a (smooth)
structural change in the density profiles near the electrode. Anal-
ogous to peaks in the heat capacity indicating (smooth) changes
of the thermal occupancy of microstates, peaks in the differential
capacitance indicate structural changes. This can either be the for-
mation of dense-packed layers of counterions near the surface or
can be the reorganization of layers of cations and anions as we
showed for the 1:2 electrolyte with divalent anions, in which over-
screening causes a rich structural behavior that seeped through in
the capacitance curves. When the impurities in three-component
electrolytes were studied, we again found that the competition for
the first layer of ions near the surface determined the behavior of
the capacitance curves. This three-component electrolyte that was
studied, with one species of cations and two species of anions in
which the relative concentration of the anions was changed, gave
much richer physics than perhaps anticipated. The asymmetry in
the anion valency as well as in the anion diameter was considered.
Surprisingly at first, even when the composition of the bulk mix-
ture is very asymmetric, both anion species still have their regime
in which they fill up the first layer. For anion asymmetry in the
valency, where the relative concentration of the divalent anions is
very small, we found that the divalent anions can still fill up the first
layer when the surface potential is large enough, due to the much
stronger interaction with the charged surface. For diameter asym-
metry of the anions, with a low relative concentration of the small
anions, we found that they can still fill up the first layer at large
surface potential because they can screen the charge on the surface
more efficiently. For both cases, it is the competition between the
two anion species that shapes the differential capacitance. Hence,
impurities, as we call them, have a rather strong effect on the dif-
ferential capacitance. The differential capacitance can thus be used
as a probe for the electrolyte composition. Knowing that the differ-
ential capacitance is largely determined by the first layer of adsorbed
ions, and that peaks in the differential capacitance indicate structural
changes, can therefore help to distinguish the components in the
electrolyte.
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Although Eq. (13) for the differential capacitance that we
derived strictly only holds for the primitive model electrolytes in
contact with charged hard walls, the physics that the first layer
of ions near the surface dominates its behavior still holds when
the conditions are loosened up. Important is that the ion–ion and
ion–surface interactions are strongly repulsive at short separations;
our results will be modified if dispersion forces are relevant.

The next step would be to confront the knowledge gained from
this analysis to experimental data, allowing interpretation of the
measured differential capacitance in terms of the EDL structure and
bulk electrolyte composition. This could, in turn, lead to a better
understanding of the differential capacitance, and consequently to
an improved performance of real EDL capacitors. An ultimate goal is
to provide knowledge to create sustainable alternatives for lithium-
ion batteries,64,65 which would contribute directly to the transition
toward renewable energy.
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APPENDIX A: MEAN SPHERICAL APPROXIMATION

The electrostatic Helmholtz free energy functional is given by

ℱ ES
ex [{ρ}] = ℱ

MF
ex [{ρ}] +ℱ

MSAc
ex [{ρ}], (A1)

ℱ MF
ex [{ρ}] =

1
2 ∫

drq(r)Φ(r), (A2)

ℱ MSAc
ex [{ρ}] = −

kBT
2 ∑ij

∫ dr∫ dr′ρi(r)

× ΔcMSAc
ij (∣r − r′∣;{ρb})ρj(r′), (A3)

where ΔcMSAc
(r,{ρb}) is a correction on top of mean-field theory

based on the mean spherical approximation (MSA). The potential
profile Φ(r) is obtained from solving the Poisson equation,

∇
2Φ(r) = −

qtot(r)
εε0

, (A4)

where qtot(r) = q(r) + q f (r) is the total charge density counting
both the ionic charge density q(r) = ∑j zjρj(r) and the fixed charges
q f (r). Solving Eq. (A4) for fixed surface potentials in a planar geom-
etry requires the boundary conditions Φ(0) = Φ(H) = Φ0, which
give rise to the surface charge densities via ∂xΦ(0+) = −∂xΦ(H−)
= −4πλBσ. Therefore, the electrostatic part of the external poten-
tial arises from the Poisson equation and is taken care of within
ℱ MF

ex [{ρ}]. In the bulk, ΔcMSAc
(r) is given by66

ΔcMSAc
ij (r,{ρb}) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cMSAsh
ij (r,{ρb}) + zizj

λB

r
, 0 ≤ r ≤ Δdij,

cMSAl
ij (r,{ρb}) + zizj

λB

r
, Δdij < r ≤ dij,

0, r > dij,
(A5)

where Δdij = ∣di − dj∣/2 and dij = (di + dj)/2. For di < dj, the first
term for short (sh) separations reads

cMSAsh
ij (r;{ρb}) = 2λB[ziNj + diζ(Xi +

1
3

d2
i ζ)], (A6)

with

Xj =
zj − d2

j ζ
1 + Υdj

, (A7)

Nj =
Xj − zj

dj
, (A8)

Υ = πλB∑
j

ρb,jX
2
j , (A9)

ζ =
1
H∑j

ρb,jdjzj

1 + Υdj
, (A10)

H = ∑
j

ρb,jd3
j

1 + Υdj
+

2
π
(1 − ηb). (A11)

The second term in Eq. (A5) for the longer-ranged part (l) for Δdij
< r ≤ dij is given by

cMSAl
ij (r;{ρb}) =

λB

r
[Aij + Bijr + Cijr2

+ Fijr4
], (A12)

with
Aij = −Δd2

ij[ζ(Xi + Xj) + ζ2d2
ij −NiNj], (A13)

Bij = − (Xi − Xj)(Ni −Nj) − (X2
i + X2

j )Υ

− 2dijNiNj +
1
3

ζ2
(d3

i + d3
j ), (A14)

Cij = −ζ(Xi + Xj) +NiNj −
1
2

ζ2
(d2

i + d2
j ), (A15)

Fij =
1
3

ζ2. (A16)

These rather involved expressions become more tractable for the
monovalent RPM, where cMSAsh

ij (r; ρb) = 0, ζ = 0, and Δdij = 0, such
that

cMSAl
ij (r; ρb) =

λB

r
[(−(Xi − Xj)(Ni −Nj) − 2X2Υ

− 2dNiNj)r +NiNjr2
], (A17)

which can be simplified by introducing D = d + 1/Υ, so that with

Xj =
zj

ΥD
, (A18)

Nj = −
zj

D
, (A19)
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one finds

cMSAl
ij (r; ρb) = zizj

λB

r
−2Dr + r2

D2 . (A20)

For a planar geometry, one integrates out the planar coordinates:
c(x) = ∫ dydzc(

√
x2 + y2 + z2).

APPENDIX B: DENSITY PROFILES: IMPURITIES

The density profiles for the three-component system with
one monovalent anion species (blue) and one divalent anion
species (red) for the relative bulk concentration ν = ρb,2−/ρb,− = 10−3

and surface potentials Φ0 = 0.1 V (dashed), Φ0 = 0.2 V (dotted),
Φ0 = 0.5 V (dashed-dotted), and Φ0 = 0.7 V (solid) are presented in
Fig. 10(a). At low surface potentials, the divalent anion density pro-
file (dashed red) has low values at any x. Upon increasing the surface
potential, the divalent anion species take in place of the monovalent
anion species, up to the point where the first layer only contains the
divalent anion species (dashed-dotted and solid), and the monova-
lent anion species are moved into the second layer (dashed-dotted).
Increasing the surface potential even more causes a second layer of
divalent ions (solid).

The density profiles for the three-component system with one
small anion species (blue) and one large anion species (red) for
the relative bulk concentration ν = ρlarge

b,− /ρ
small
b,− = 100 and surface

FIG. 10. (a) The density profiles for the monovalent (blue) and divalent (red) anion
species for the relative concentration ν = 10−3 and surface potentials Φ0 = 0.1 V
(dashed), Φ0 = 0.2 V (dotted), Φ0 = 0.5 V (dashed-dotted), and Φ0 = 0.7 V
(solid). (b) The density profiles for the small (blue) and large (red) anion species
for the relative concentration ν = 100 and surface potentials Φ0 = 0.1 V (dotted),
Φ0 = 0.3 V (dashed-dotted), and Φ0 = 0.5 V (solid).

potentials Φ0 = 0.1 V (dotted), Φ0 = 0.3 V (dashed-dotted), and
Φ0 = 0.5 V (solid) are presented in Fig. 10(b). For low surface poten-
tials, the concentration of the small anion species is negligible (dot-
ted line). Upon increasing the surface potential, the concentration
of the smaller anion species near the charged surface increases dra-
matically, pushing away the larger anion species. This results in the
appearance of a (red) peak at x = 1 nm instead of one at x = 0.5 nm,
shifting the phase of oscillations in the density profile (compare the
solid line with the dashed-dotted line).
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