
Vol.:(0123456789)

Machine Learning (2021) 110:1199–1231
https://doi.org/10.1007/s10994-021-05986-9

1 3

Toward optimal probabilistic active learning using a Bayesian 
approach

Daniel Kottke1  · Marek Herde1 · Christoph Sandrock1 · Denis Huseljic1 · 
Georg Krempl2 · Bernhard Sick1

Received: 20 November 2020 / Revised: 8 March 2021 / Accepted: 12 April 2021 /  
Published online: 4 May 2021 
© The Author(s) 2021

Abstract
Gathering labeled data to train well-performing machine learning models is one of the crit-
ical challenges in many applications. Active learning aims at reducing the labeling costs by 
an efficient and effective allocation of costly labeling resources. In this article, we propose 
a decision-theoretic selection strategy that (1) directly optimizes the gain in misclassifica-
tion error, and (2) uses a Bayesian approach by introducing a conjugate prior distribution to 
determine the class posterior to deal with uncertainties. By reformulating existing selection 
strategies within our proposed model, we can explain which aspects are not covered in cur-
rent state-of-the-art and why this leads to the superior performance of our approach. Exten-
sive experiments on a large variety of datasets and different kernels validate our claims.

Keywords Active learning · Classification · Probabilistic active learning

Editors: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautmann.

 * Daniel Kottke 
 daniel.kottke@uni-kassel.de

 Marek Herde 
 marek.herde@uni-kassel.de

 Christoph Sandrock 
 christoph.sandrock@uni-kassel.de

 Denis Huseljic 
 dhuseljic@uni-kassel.de

 Georg Krempl 
 g.m.krempl@uu.nl

 Bernhard Sick 
 bsick@uni-kassel.de

1 Intelligent Embedded Systems, University Kassel, Wilhelmshöher Allee 73, 34121 Kassel, 
Germany

2 Algorithmic Data Analysis, University Utrecht, Princetonplein 5, 3584, CC, Utrecht, 
The Netherlands

http://orcid.org/0000-0002-7870-6033
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05986-9&domain=pdf


1200 Machine Learning (2021) 110:1199–1231

1 3

1 Introduction

To train classifiers with machine learning algorithms in a supervised manner, we need 
labeled data. Whereas gathering unlabeled instances is easy, the annotation with class 
labels is often expensive, exhaustive, or time-consuming and needs, consequently, to be 
optimized. Active learning (AL) algorithms aim to reduce annotation costs efficiently and 
effectively (Settles 2009). For that purpose, a selection strategy successively chooses the 
most useful labeling candidate from the pool of unlabeled instances and acquires the corre-
sponding label from an oracle. Throughout this article, we focus on omniscient oracles that 
always provide labels according to the correct label distribution.

Many AL algorithms completely rely on the information provided by the classifier that 
is to be optimized (Settles 2009). This might lead to problems: Originally, classifiers are 
designed to get training data that is representative for the learning task. But this assumption 
is not valid for AL tasks, as the distribution of labeled instances is biased by the selection 
strategy (Dasgupta 2009). As a consequence, the estimates (e. g., the class probabilities) 
from a classifier are also biased, which may lead to a poor assessment of the usefulness of 
labeling candidates.

In this article, we propose to use a decision-theoretic approach to measure the useful-
ness of a labeling candidate in terms of (expected) performance gain. To determine the per-
formance of a classifier, we evaluate its predictions on what we know about the data from 
a data-driven perspective. Although we can estimate the data distribution, we are uncertain 
about the true class posterior probabilities. Accordingly, we model these class posterior 
probabilities as a random variable based on our current observations in the dataset. For this 
model, we use a Bayesian approach by incorporating a conjugate prior to our observations. 
Thereby, we obtain more robust usefulness estimates for the candidates.

Our approach builds on three pillars that also explain the title of this contribution. 
Although the general ideas of these pillars have been mentioned in literature before, this 
article should not be seen as a simple extension of these works as we changed the existing 
models substantially. (1) We approximate the usefulness of one candidate on a representa-
tive subset, as introduced in “toward optimal AL” by Roy and McCallum (2001). (2) We 
estimate the usefulness by determining the decision-theoretic gain in performance, as intro-
duced in “probabilistic AL” by Kottke et al. (2016). (3) We use a Bayesian approach and 
introduce a conjugate prior distribution to calculate the predictive posterior distribution. 
Thereby, we consider the certainty of a classifier on its predictions (Murphy 2006).

The contributions of this article are as follows:

• We propose a new decision-theoretic selection strategy xPAL, which calculates the gain 
in performance using a Bayesian approach over a set of unlabeled evaluation instances.

• The equations of xPAL can serve as a unifying model for decision-theoretic AL meth-
ods. Hence, we can describe other AL methods with simple replacements in xPAL and 
argue why these modifications impair the candidates’ selection.

• Our experiments on 29 datasets from different domains confirm our approach’s superi-
ority compared to several baselines across different kernels.

• We visualize how the selection strategies assess the usefulness of selection candidates 
differently on a toy dataset.

The remainder of this article is structured as follows: First, we discuss related work in 
Sect. 2. In Sect. 3, we define our problem and provide the foundations for our model. In 



1201Machine Learning (2021) 110:1199–1231 

1 3

Sect. 4, we propose our new method xPAL and show how it theoretically and empirically 
relates to state-of-the-art approaches in Sect. 5. We evaluate our results experimentally and 
discuss our key findings in Sect. 6. We close this article with a conclusion and an outlook 
on our future work in that field.

2  Related work

The central component of an AL algorithm is the selection strategy. The most naïve one 
is to choose the next candidate randomly  (Settles 2009). A common heuristic is uncer-
tainty sampling (Lewis and Gale 1994). The idea is to use, e. g., the estimated class poste-
riors of probabilistic classifiers or the distance to the decision boundary to build a useful-
ness score  (Settles 2012). This exploits the current classification hypothesis by labeling 
instances close to the decision boundary. In contrast to density-based approaches (Nguyen 
and Smeulders 2004), it ignores the representativeness of selected instances for the entire 
training set, and fails to perform exploration  (Bondu et  al. 2010; Osugi et  al. 2005). 
That is, it does not search the instance space for large regions with incorrect classifica-
tions. This might lead to even worse performance compared to random sampling (Settles 
2012). Hence, there exist variants that add random sampling (Žliobaitė et al. 2014; Thrun 
and Möller 1992), use reinforcement learning  (Osugi et  al. 2005) or simulated anneal-
ing (Zoller and Buhmann 2000) to balance exploitation and exploration, or combine it with 
a density weight (Donmez et al. 2007) and a variety of further factors, including sample 
diversity (Weigl et al. 2015; Xu et al. 2007; Brinker 2003) and class priors (Calma et al. 
2018).

Uncertainty sampling is a special case of adaptive submodular maximization  (Cuong 
et  al. 2014), and several works have established links between submodularity and 
AL (Cuong et al. 2014; Golovin and Krause 2010; Guillory and Bilmes 2010). An exam-
ple for a recent approach, built on these works, is filtered active submodular selection 
(FASS) (Wei et al. 2015). FASS combines uncertainty sampling with a submodular data 
subset selection framework, capturing both sample informativeness and representativeness. 
For Gaussian Process classifiers, a Bayesian information theoretic AL approach is Bayes-
ian Active Learning by Disagreement (BALD) (Houlsby et al. 2011). BALD aims to select 
instances with the highest marginal uncertainty about the class label but simultaneously 
high confidence for the individual settings of the model’s parameters.

The query by committee (QBC) method (Seung et al. 1992) builds classifier ensembles 
and aims to reduce the disagreement between them. To improve balancing of exploration 
and exploitation in ensembles of active learners, Baram et al. (2004) proposed a formula-
tion as a multi-armed bandit problem. Here, each active learner corresponds to one slot 
machine whose relative progress in performance is tracked over time, and on each trial 
one active learner is chosen for selecting an instance using the EXP4 algorithm. Further-
more, reinforcement learning approaches have been proposed that learn a policy for select-
ing active learners, for example by modelling active learning as a Markov decision pro-
cess (Konyushkova et al. 2018).

In 2001, Roy and McCallum (2001) proposed expected error reduction. As shortly 
addressed in the introduction, they aim to estimate the expected generalization error if a 
candidate gets an additional label. Thus, they simulate each label for each labeling can-
didate and evaluate the mean error using the unlabeled instances. To estimate the prob-
abilities, they use the class posteriors provided by probabilistic classifiers. Chapelle (2005) 



1202 Machine Learning (2021) 110:1199–1231

1 3

noticed that these estimates are highly unreliable (esp. at the beginning of the training) and 
therefore suggested the use of a beta prior.

Krempl et al. (2015) and Kottke et al. (2016) address the issue pointed out by Chapelle 
and named their approach probabilistic AL. They propose to use a distribution of the class 
posterior probability instead of using the classifier outputs directly. Calculating the expec-
tation over this posterior leads to a decision-theoretic approach and leads to a mathemati-
cally sound approach.

3  Problem formulation and foundations

In “The Nature of Statistical Learning Theory,” Vapnik (1995) introduced a holistic con-
cept on how to learn from examples. He defined three different components that take part 
in such a process, namely a generator, a supervisor, and a learning machine.1 The gen-
erator creates random vectors x ∈ ℝ

D (D-dimensional feature space) independently drawn 
from a fixed but unknown probability distribution p(x) . The supervisor provides class 
labels y ∈ Y = {1,… ,C} (C is the number of classes) for every instance x according to a 
conditional distribution p(y|x) which is also fixed but unknown. In our case, the learning 
machine is a classifier f�(x) with some parameters � . The goal is to choose that learning 
machine that approximates the supervisor’s response best.

We adopt the above definition for the active learning scenario by refining the role of the 
(omniscient) supervisor:

Definition 1 (Supervisor) A supervisor consists of:

1. A ground truth which is an unknown but fixed, deterministic function t ∶ ℝ
D
→ [0, 1]C 

that maps an instance x to a probability vector p = t(x) with 
∑C

i=1
pi = 1 . Each element 

describes the true probability for the corresponding class given the instance x.
2. An oracle which provides a class label y ∈ Y for every instance x according to the 

ground truth p = t(x) . Hence, the label is sampled from a categorical distribution 
y ∼ Cat(t(x)) . Note that this implies an omniscient oracle.

Fig. 1  A schematic illustration of 
how to learn from examples

1 We adapt the terms and notation slightly. We use calligraphy for sets, bold font for vectors, and p(⋅) is 
either the probability density function or the probability mass of a discrete probability space. Please note 
the difference between p and p(⋅) (the latter is always a function).



1203Machine Learning (2021) 110:1199–1231 

1 3

We visualize the learning process in Fig. 1. The generator provides instances x for which 
the oracle provides the class label y based on the ground truth t(x) = p = (p1,… , pC) . 
Unfortunately, we solely have information about the instance-label-pair (x, y) but not on the 
generator, the ground truth, or the oracle.

In the technical community, the process of data generation is often described from a 
model-driven perspective: Then it is assumed that each class y has its own data generator 
p(x|y) . Hence, every instance x has exactly one label, which is also called ground truth. 
Due to noise during data generation, different classes might appear in the same region, 
but still, the true label exists. Our view (as given in Definition 1 and Fig. 1) is purely data-
driven: Looking at the data, we do not know why there are different labels in the same 
region. It could be due to noise in the data generation or due to the imperfectness of the 
oracle. When learning a classifier, the reason does not matter: We only observe that the 
oracle provides different labels for similar instances according to some proportion p which 
we call ground truth.

In the field of active learning, we assume to have an unlabeled dataset U = {x1,… , xN} 
(candidate pool) given by the generator. Labels are usually not available at the beginning 
but can be acquired from the oracle (Settles 2009), which chooses the label according to 
the ground truth.

A selection strategy selects an instance x ∈ U , and we acquire the corresponding label 
y ∈ Y from the oracle. We remove the newly labeled instance from the candidate pool 
U ← U ⧵ {x} , add the instance-label-pair to the labeled set L ← L ∪ {(x, y)} , and retrain 
the classifier on L.

We use a kernel-based classifier with kernel K which describes the similarity of two 
instances x and x′ . In our experiments, we use three different kernels (see Sect. 6) but our 
method is not restricted to these kernels.

Definition 2 (Kernel Frequency Estimate) The kernel frequency estimate kL
x
 of an 

instance x is determined using the set of labeled instances L . The y-th element of that 
C-dimensional vector describes the similarity-weighted number of labels of class y:2

We denote f L as a classifier which uses the labeled data L for training.3 Similar to the 
Parzen Window Classifier (PWC) used in Chapelle (2005), the classifier f L predicts the 
most frequent class:

Our method requires estimating kernel frequencies which is straight-forward for the PWC 
but also possible for other classifiers. For example, Beyer et  al. (2015) estimates kernel 
frequencies (called label statistics) for Naive Bayes, k-Nearest Neighbour, and Tree-Based 
classifiers.

(1)kL
x,y

=
∑

(x� ,y�)∈L

�y=y�K(x, x
�).

(2)f L(x) = argmax
y∈Y

(
kL
x,y

)
.

2 �cond denotes the indicator function which returns 1 if cond is true and 0 otherwise.
3 To simplify the notation, we do not mention the parameters �.



1204 Machine Learning (2021) 110:1199–1231

1 3

4  Toward optimal probabilistic active learning using a Bayesian prior

The idea of our approach is to estimate the expected performance gain that a new instance 
would provide if we would acquire its label from the oracle. Then, we select the most promis-
ing instance for actual labeling. Within the next subsections, we explain the necessary steps 
towards the final method.

4.1  Estimating the risk

In this article, we use the misclassification error as our performance measure (this can easily 
be changed). To optimize this performance, we minimize the estimated risk using the zero-one 
loss similarly to Vapnik (1995).

Definition 3 (Risk, Zero-one Loss) The risk describes the expected value of the loss L 
with respect to the joint distribution p(x, y) given a classifier f L:

The zero-one loss returns 0 if the prediction of the classifier f L(x) is equal to the true class 
y and 1 otherwise:

As the generator p(x) is not observable, we use a Monte-Carlo integration using a set of 
instances E which is able to represent the generator. For simplicity, we use the complete set 
of available instances, i.  e. the labeled and the unlabeled data ( E = {x ∶ (x, y) ∈ L} ∪ U ). 
Following the notation of Japkowicz and Shah (2011), we calculate the empirical risk RE as 
follows:

4.2  Introducing a conjugate prior

The conditional class probability p(y|x) from Eq. (7) depends on the ground truth t which is 
unknown (see Fig. 1):

As a consequence, the probability p(y|x) is exactly the y-th element of the unknown ground 
truth vector p . We can use the nearby labels from L (represented in kL

x
 , Definition 2) to 

(3)R(f L) = �
p(x,y)

[
L(y, f L(x))

]

(4)= �
p(x)

[
�

p(y|x)
[
L(y, f L(x))

]]
.

(5)L(y, f L(x)) = �fL(x)≠y.

(6)RE(f
L) =

1

|E|
∑
x∈E

�
p(y|x)

[
L(y, f L(x))

]

(7)=
1

|E|
∑
x∈E

∑
y∈Y

p(y|x)L(y, f L(x))

(8)p(y|x) = p(y|t(x)) = p(y|p) = Cat(y|p) = py.



1205Machine Learning (2021) 110:1199–1231 

1 3

estimate the ground truth p as the oracle provides the labels according to p (see Fig. 1). If 
we assume a smooth distribution p (in the sense that small changes of x do not change p 
much), the estimate with an appropriate kernel is close to the ground truth with sufficiently 
many labels. Although the latter cannot be assumed in all cases, domain experts usually 
have lots of experience when describing a kernel function for their data. Moreover, the 
results of our experiments in Sec. 6 show that our method also works with a kernel using a 
simple heuristic. For estimation, we use a Bayesian approach by determining the posterior 
predictive distribution, i.  e. calculating the expected value over all possible ground truth 
values p (see Murphy (2006) for details on predictive distributions):

To determine the posterior probability p(p|kL
x
) of the ground truth p at instance x , we use 

Bayes’ theorem in Eq. (10). The likelihood p(kL
x
|p) is a multinomial distribution as each 

label y has been drawn from Cat(y|p) (see Fig. 1).4 We introduce a prior p(p) which we 
choose to be a Dirichlet distribution with parameter � ∈ ℝ

C as this is the conjugate prior 
of the multinomial distribution. We choose an indifferent prior and set each element to 
the same value ( 𝛼1 = … = 𝛼C ∈ ℝ

>0 ) such that none of the classes is favoured. Using this 
prior can be seen as adding �y pseudo-instances to every class y (Bishop 2006, p. 77). This 
means that in case of high values of � , we need many labeled instances (i.  e., high fre-
quency estimates kL

x
 ) to get distinct posterior probabilities.

As we use the conjugate prior of the multinomial likelihood, there exists an analytic 
solution for the posterior which is a Dirichlet distribution (Murphy 2006).

Now, we determine the conditional class probability p(y|kL
x
) from Eq.  (9) by calculating 

the expected value of the Dirichlet distribution (Murphy 2006):

(9)p(y|x) ≈ p(y|kL
x
) = �

p(p|kL
x
)

[
py
]
= ∫ p(p|kL

x
) pydp.

(10)p(p|kL
x
) =

p(kL
x
|p)p(p)

p(kL
x
)

(11)=
Multinom(kL

x
|p) ⋅ Dir(p|�)

∫ Multinom(kL
x
|p) ⋅ Dir(p|�)dp

(12)= Dir(p|kL
x
+ �)

(13)p(y|kL
x
) = �

Dir(p|kL
x
+�)

[
py
]

(14)= ∫ Dir(p|kL
x
+ �) pydp =

(kL
x
+ �)y

||kL
x
+ �||1

.

4 Normally, the multinomial distribution only allows non-negative integers as observations. Hence, we use 
it as an analogy. As our probability is normalized, we can also calculate its density for real-valued observa-
tions kL

x
.



1206 Machine Learning (2021) 110:1199–1231

1 3

The last term describes the y-th element of the normalized vector kL
x
+ � . For normaliza-

tion, we use the sum of all elements denoted as the 1-norm || ⋅ ||1.

4.3  Risk difference using the conjugate prior

We insert Eq. (14) into the empirical risk (Eq. (7)). As we approximate p(y|x) with p(y|kL
x
) , 

this is an approximation of the empirical risk based on the labeled data L . Hence, we add L 
as an argument of the estimated empirical risk:

We now assume that we add a new labeled candidate (xc, yc) to the labeled set L and denote 
the new set L+ = L ∪ {(xc, yc)} . To determine how much this new instance-label-pair 
improved the performance of our classifier f, we estimate the gain in terms of risk differ-
ence using the probability p(y|kL+

x
) to estimate the ground truth. We here use the same 

observations kL
+

x
 to estimate the risk of both the current and the new classifier (with sim-

ulated labels) whereas Roy and McCallum (2001) use p(y|kL
x
) for estimating the perfor-

mance of f L and p(y|kL+

x
) for f L+ . We have two reasons to believe that we are correct: (1) 

When using different ground truth estimates for calculating the risks, we would not find 
out if a difference comes from the change in the classifier or from the change in the ground 
truth function. (2) In this article, we assume that the oracle is omniscient and, therefore, 
always correct. Consequently, we can assume that more labels should provide more accu-
rate estimates. Accordingly, p(y|kL+

x
) should also be used for the current classifier f L.

4.4  The expected probabilistic gain

If we reduce the error under the new model L+ , the risk difference in Eq.  (17) becomes 
negative. Therefore, we negate this term as we aim to maximize the gain in Definition 4.

Definition 4 (Expected Probabilistic Gain) The probabilistic gain describes the expected 
change in classification risk R when acquiring the label yc of candidate xc ∈ U . As the 
label yc and the corresponding ground truth t(xc) are unknown, we estimate p(yc|xc) with 
p(yc|kLxc ) according to Eq. (14) using Dir(�) as prior. We write L+ = L ∪ {(xc, yc)}.

(15)R̂E(f
L,L) =

1

|E|
∑
x∈E

∑
y∈Y

(kL
x
+ �)y

||kL
x
+ �||1

L(y, f L(x)).

(16)𝛥R̂E(f
L+

, f L,L+) = R̂E(f
L+

,L+) − R̂E(f
L,L+)

(17)
=

1

|E|
∑
x∈E

∑
y∈Y

(kL
+

x
+ �)y

||kL+

x
+ �||1

⋅

(
L(y, f L

+

(x)) − L(y, f L(x))
)
.

(18)xgain(xc,L, E) = �
p(yc|kLxc )

[
−𝛥R̂E(f

L+

, f L,L+)
]



1207Machine Learning (2021) 110:1199–1231 

1 3

For simplicity, we set � = �.

We define the selection strategy xPAL to choose the candidate that optimizes the xgain 
score.

Definition 5 (Selection Strategy: xPAL) The selection strategy xPAL (Expected Probabil-
istic Gain for AL) chooses this candidate x∗

c
∈ U with:

5  Theoretical and qualitative comparison

To provide an understanding of how the xPAL selection strategy works, we compare our new 
method to the most similar selection strategies by reformulating their approaches within our 
mathematical framework wherever possible. We provide the proofs for all theorems in the 
supplemental material. In Table 1, we summarize the primary differences and show the com-
putational complexity.

In Fig. 2, we illustrate how the theoretical differences affect the actual choice of eight can-
didates on a toy dataset with two classes (blue diamonds and red rectangles). For classifica-
tion, we use the same setup as in Sect. 6. The first eight labeled instances, chosen by the selec-
tion strategy, are marked with a gray circle. The background color shows how the respective 
selection strategy rates the usefulness of an area—darker areas are considered more useful 
than brighter areas.

5.1  Expected probabilistic gain for AL (xPAL)

As seen in Fig. 2, the currently labeled set L of xPAL is evenly spaced across the input space. 
That is, xPAL queried representative samples of the data set in the more explorative phase at 
the beginning, which leads to a rather good decision boundary with only eight labels. Focus-
ing on the current usefulness scores indicated by green background color, we see that regions 
close to the decision boundary and regions with very few labels (green area at the bottom) are 
preferred. Moreover, we notice more usefulness at the right decision boundary compared to 
the left one as this area is seen as being more relevant (due to the higher density).

5.2  Expected error reduction (EER)

Theorem 1 The selection criterion of expected error reduction (EER) byRoy and McCal-
lum (2001) can be written as follows. The extension of adding a beta-prior � proposed by 
Chapelle (2005) is given in blue color.

(19)

= −
∑
yc∈Y

(kL
xc
+ �)yc

||kL
xc
+ �||1

⋅

1

|E|
∑
x∈E

∑
y∈Y

(kL
+

x
+ �)y

||kL+

x
+ �||1

⋅

(
L(y, f L

+

(x)) − L(y, f L(x))
)

(20)x∗
c
= argmax

xc∈U

(
xgain(xc,L, E)

)
.



1208 Machine Learning (2021) 110:1199–1231

1 3

Comparing Eqs.  (21) to (19), we see that there are only a few differences high-
lighted in orange color. The main difference is the optimization objective as expected 
error reduction tries to query instances that minimize the expected error instead of the 

(21)

Fig. 2  Visualization of acquisition behavior for different selection strategies. The green color indicates how 
useful a selection strategy considers a region. The usefulness depends on the selection criterion of the strat-
egy. The eight labeled instances have been selected by the corresponding selection strategy. Thereby, one 
can see where the selection strategy selected instances in the past and how the usefulness is spatially dis-
tributed to select the next instance for labeling

Table 1  Summary of differences between xPAL and the four most similar methods evaluated on four cri-
teria: (1) Is the usefulness estimated on a representative subset? (2) Does the method consider the perfor-
mance gain? (3) Is some sort of prior included to handle uncertainties? (4) What is the asymptotic time 
complexity for determining the usefulness of one candidate sample?

Method E Gain Prior O(⋅)

xPAL ✓ ✓ ✓ |E| ⋅ |Y|2
PAL ✗ ✓ ✓ |Y|2
EER (✓) ✗ (✓) |U| ⋅ |Y|2
US ✗ ✗ ✗ |Y|



1209Machine Learning (2021) 110:1199–1231 

1 3

expected gain as in xPAL. Originally, Roy and McCallum (2001) also introduced the 
reduction in error as the optimization criterion. By using p(y|kL

x
) to estimate the risk 

for the current classifier, the corresponding term is constant for all candidates and can 
be omitted (see also the discussion in Sect.  4.3). Second, EER neglects the labeled 
instances L as it only uses U  for Monte-Carlo integration. They assume that the unla-
beled instances approximate the generator p(x) sufficiently well. In the original version, 
Roy and McCallum (2001) point out that the posterior estimates need to be reliable. 
Later, Chapelle (2005) addresses this limitation by introducing a beta-prior  � (high-
lighted in blue), which serves a similar goal as our prior �.

Although the theoretical differences of the two strategies seem to be small, we see 
a clear difference in the acquired instances and in the usefulness estimation in Fig. 2. 
Interestingly, the region close to the decision boundary is considered the least useful. 
Accordingly, EER neglects information there. Hence, this detail in the model has a huge 
impact on the selection and also the performance.

5.3  Probabilistic active learning (PAL)

Theorem 2 The selection criterion of (multi-class) probabilistic active learning (PAL) by 
Kottke et al. (2016) can be written as follows.

The probabilistic active learning approach by Kottke et al. (2016) does not consider a 
set E for risk estimation but estimates the risk locally only for the candidate xc . Hence, 
we set E = {xc} . Instead, they include an estimated density weight p̂(xc) for their local 
gain. As a prior distribution, they use the indifferent prior � . The original method is 
non-myopic. As xPAL is myopic, we ignored this for the theoretical discussion. Note 
that the original PAL version also uses p(y|kL

x
) to estimate the performance of the cur-

rent classifier similarly to Roy and McCallum (2001). Due to a difference in calculat-
ing the performance estimate, we can show that the original PAL equations can also be 
written as in Eq. 22. So in fact, they were using p(y|kL+

x
) without knowledge. The com-

plete 2-pages proof is given in the appendix.
In general, we see a similar acquisition behavior of PAL and xPAL (see Fig. 2). We 

see areas of high usefulness near the decision boundary and in sparely labeled regions. 
It seems that xPAL is more sensitive to the actual position of the instances as it con-
siders the set E , and PAL only approximates this by using the density p̂(xc) . Hence, 
the influence of a new label on the complete classification task is only approximated in 
PAL.

(22)



1210 Machine Learning (2021) 110:1199–1231

1 3

5.4  Uncertainty sampling (US)

Theorem  3 The selection criterion of confidence-based uncertainty sampling (US) by 
Lewis and Gale (1994) can be written as follows.

Uncertainty sampling does not consider a set for risk estimation, but it solely estimates 
the error at the candidate xc based on the current observations without any prior. Hence, 
it completely relies on the class posterior estimates from the classifier. Therefore, it might 
overestimate its certainty.

We observe this problem in Fig. 2 as US only finds one decision boundary and sticks at 
exploiting this. As it is not aware that the class posteriors on the left are highly unreliable 
(no labeled data here), it will only consider this region if the labels of all other candidates 
have been acquired. We notice a lack of exploration.

5.5  Active learning with cost embedding (ALCE)

The approach proposed by Huang and Lin (2016) uses an embedding with some special 
distance measure in a hidden space with non-metric multidimensional scaling. As this fol-
lows an entirely different way of approaching the problem, it is not possible to transfer this 
algorithm to our framework. As shown in Fig.  2, this approach explores the data space 
quite uniformly and is rather exploratory than exploitative.

5.6  Query by committee (QBC)

Query by committee (Seung et  al. 1992) uses an ensemble of classifiers that are trained 
on bootstrapped replicates of the labeled set L . With few labels, the strategy explores the 
dataset due to high randomness in the subsets (see Fig. 2). Later, it starts exploiting more.

6  Experimental evaluation

To evaluate the quantitative performance of xPAL, we conduct experiments on real-world 
datasets.5 We provide information on the used datasets, algorithms, and the experimental 
setup. We compare xPAL to state-of-the-art methods using scikit-activeml6 (Kottke et al. 
2021) and show how the prior parameter affects the results.

6.1  Datasets and competitors

We selected 27 datasets from the openML library (Vanschoren et al. 2013) and two pre-
processed text datasets from Hernández-González et al. (2018) with TF-IDF features. For 

(23)

5 https:// github. com/ dakot/ probal.
6 https:// github. com/ scikit- activ eml/ scikit- activ eml.

https://github.com/dakot/probal
https://github.com/scikit-activeml/scikit-activeml


1211Machine Learning (2021) 110:1199–1231 

1 3

the latter, we assigned the majority vote as the true class. In the supplemental material, we 
list all used datasets with their openML-identifier and show specific characteristics such as 
the number of instances, features, and instances per class.

Next to xPAL, we use multi-class probabilistic AL (PAL) by Kottke et al. (2016), confi-
dence-based uncertainty sampling (US) by Lewis and Gale (1994), active learning with cost 
embedding (ALCE) by Huang and Lin (2016), query by committee (QBC) by Seung et al. 
(1992), expected error reduction (EER) by Chapelle (2005), and a random selector. We set all 
parameters according to the default values in the paper. For QBC, the disagreement within the 
randomly drawn sets, measured by the Kulback-Leibler divergence, describes the usefulness 
of a candidate. We use 25 classifiers as the committee and each of them is trained on a boot-
strapped version of L with only a selection of features according to (Shi et al. 2008).

Additionally, we implemented a baseline that has additional access to all labels of the unla-
beled set U . It successively (greedily) selects the candidate, which minimizes the true empiri-
cal risk on U and L , called GREEDY-ALL. It is equal to xPAL where the estimated class 
probability from Eq. 8 is set to one for the true class.

6.2  Experimental setup

To evaluate our experiments, we randomly split each dataset into a training set consisting of 
60% of the instances and a test set containing the remaining 40% and repeat that 100 times. As 
we start without any labeled instances, U contains the whole training set at the beginning, and 
L is empty. We acquire 200 labels for every dataset or stop when U is empty.

For classification, we use the Parzen window classifier for all selection strategies. We 
applied three different kernels depending on the type of data. For numerical data, we z-stand-
ardize all features and use a radial basis function (RBF) kernel with bandwidth � which is 
defined as follows:

We set the bandwidth of the kernel ( � = 1∕(2s2) ) according to the mean criterion proposed 
by Chaudhuri et al. (2017) with �p = 1:

For categorical data, we use the hamming-distance kernel proposed by Hutter et al. (2014) 
:

where the hyperparameter � is again determined through the mean bandwidth criterion.
For the text datasets which contain TF-IDF features, we apply the cosine similarity kernel

(24)Krbf(x, x
�) = exp

(
−�||x − x�||2).

(25)s =

����� 2N
∑D

j=1
�2
p

(N − 1) ln
N−1

�2

,
� =

√
2 ⋅ 10−6,

N = min (�U ∪ L�, 200).

(26)Kham(x, x
�) = exp

(
−�

D∑
d=1

�xd=x
�
d

)
,

(27)Kcos(x, x
�) =

xT ⋅ x�

||x||2 ⋅ ||x�||2 .



1212 Machine Learning (2021) 110:1199–1231

1 3

6.3  Comparison between xPAL and competitors

We visualize our results using learning curves in Fig. 3 and rank statistics in Figs. 4, 5, and 
6. More results are given in the appendix. The learning curves show the misclassification 
error (averaged over the 100 repetitions) on the test set after each label acquisition for every 
combination of an algorithm and a dataset. The learning curve that reaches a low error fast 
is considered best. For each curve, we show the standard error �√

N
 over all repetitions. Due 

to space limitations, we only show xPAL with � = ��−� and � = � . In Sect. 6.4, we show 
that xPAL is superior for all tested priors and that the results do not change much.

Fig. 3  Learning curves for six selected datasets. Each plot shows the misclassification error of xPAL and 
the competing algorithms w. r. t. the number of acquired labels. The learning curve that reaches a low error 
fast is considered best. The bars denote the standard error ( �√

n

 ). The plots of the remaining 16 datasets are 
given in the supplemental material



1213Machine Learning (2021) 110:1199–1231 

1 3

Almost all learning curves show that the supervised baseline (GREEDY-ALL) per-
forms perfectly in an early phase. This is not surprising as it knows all labels (even from the 

Fig. 4  The mean rank for all combinations of selection strategies and numerical datasets (RBF kernel) 
across 100 repetitions. The best strategy is printed in bold. Three stars (***) indicate significantly better 
results of xPAL with p value .001, two stars (**) indicate a p-value of 0.01 and one star (*) of .05. Analo-
gously, significantly better performance of a competitor is shown with †

Fig. 5  The mean rank of selec-
tion strategies on datasets with 
categorical features using the 
hamming kernel 

Fig. 6  The mean rank of selec-
tion strategies on text datasets 
using the cosine kernel 



1214 Machine Learning (2021) 110:1199–1231

1 3

unlabeled set U ) to optimize the error on the training set. As seen in steel-plates-fault, this 
baseline does not achieve the best performance in all cases because of the greedy selection 
(no look-ahead). In that example, an optimal baseline would need to create a strategy for 
more than just the upcoming candidate. Also, the xPAL approach (green, bold line) with 
� = ��−� performs well. For convenience, we plotted the xPAL also with � = � as another 
alternative. The differences between both curves are rather small.

As it remains difficult to quantitatively assess the performance due to the large 
amount of datasets, we provide the mean rank plot in Figs. 4, 5, and 6. For this pur-
pose, we calculated the rank of the area under the learning curve for each of the 100 
repetitions and average this rank for every combination of a selection strategy and a 
dataset. As stated in Sect. 6.2, we calculated the performance for up to 200 labels. From 
this point, most learning curves do not change much anymore, as one can see in Fig. 3. 
Hence, the area under the learning curve provides a good overview of the whole learn-
ing process. To investigate the learning process at one specific point (e.g., at the begin-
ning), the learning curves (Figs. 3, 10, 11 and 12) are more meaningful. We use color 
to visualize the performance: blue color means good rank, and red color indicates bad 
performance. The rank of the best algorithm is printed in bold. Moreover, we performed 
a Wilcoxon-signed-rank test to assess if the pairwise differences between xPAL and 
its competitors are significant. Three stars (***) indicate significantly better results of 
xPAL with a p value of .001, two stars (**) indicate a p value of 0.01 and one star (*) 
of .05. Analogously, significantly better performance of a competitor is shown with † . 
We yield the mean column (right) by averaging the ranks over all datasets. The pattern 
(a/b/c) in the second row of each cell summarizes a) the number of highly significant 
wins, c) the number of highly significant losses, and b) neither of both.

We separated the ranking plots w. r. t.  the kernel function. Figure 4 shows results with 
the RBF kernel, Fig. 5 with the hamming-distance kernel, and Fig. 6 with the cosine simi-
larity kernel. One can observe that xPAL has the lowest mean rank for all kernels and is 
always printed in blueish color across the datasets. No other algorithm performs as robust. 
The strongest competitor is PAL. But on the categorical data, we observe a clear perfor-
mance difference between PAL and xPAL. One reason might be the difficulty of obtaining 
a reliable density estimation for categorical data.

6.4  Robustness of prior parameter

In Fig. 7, we show the mean ranking over all numerical datasets for different choices of pri-
ors � . Compared to the other strategies (left image), there is only a small difference across 
all choices. Comparing xPAL with � = ��−� to the other priors (right image), we see that 
there are datasets where the selected xPAL is significantly outperformed, but in general, 
the effect is negligible. Also, all mean ranks are between 3.27 and 3.63, which validates the 
robustness of our parameter. We propose to use � = ��−� as default.

6.5  Computation time

In Table  1, we already showed the theoretical time complexity. In this section, we now 
show the actual computation time which of course also depends on the efficiency of the 
implementation. Therefore, we artificially generated datasets with 500, 1000,… , 2500 



1215Machine Learning (2021) 110:1199–1231 

1 3

instances and 2,  4,  6 classes. With every selection strategy, we acquired 200 labels and 
report the mean computation time on a personal computer in Fig. 8. For EER and xPAL, 
we clearly see the dependence on |U| and |E| , respectively. As xPAL only needs to calculate 
the loss difference on instances, where the decision actually changes, we can reduce the 
computation time by a significant amount. Because of the inefficient optimization in PAL, 
we are even comparably fast to PAL for dataset with less than 1000 instances.

7  Conclusion

In this article, we moved toward optimal probabilistic AL by proposing xPAL. It is a deci-
sion-theoretic approach that determines the expected performance gain for labeling a can-
didate using a conjugate prior. We used this model to show the similarities and differences 
to the most related approaches and compared them by showing how each method selects 

Fig. 7  The mean rank averaged 
over all numerical datasets for 
different parameters � . The 2nd 
row shows (wins/ties/losses) 
based on the results of the 
Wilcoxon-signed-rank test

Fig. 8  Mean computation time 
per label acquisitions on artificial 
data (2, 4, 6 classes) with varying 
dataset size



1216 Machine Learning (2021) 110:1199–1231

1 3

their instances in a synthetic example. Moreover, we provide an exhaustive experimental 
evaluation indicating the superiority of xPAL and the robustness of its prior parameter.

In future work, we aim to apply this idea to other cost-sensitive loss functions and for error-
prone annotators as this is a current limitation of this article. Moreover, we research possibili-
ties to use the concept of xPAL to define a stopping criterion and to apply it for other classifier 
types. The combination of xPAL with methods of deep learning is also promising. However, 
several challenges need to be addressed, such as unreliable estimates of the class probabilities 
and the estimation of the vector kL

xc
 . The former might be solvable by using techniques that 

improve the returned probabilities (e. g., by using Bayesian neural networks). The latter could 
be addressed by transforming samples into a latent representation (e. g., by using variational 
autoencoders). The resulting features would allow for a kernel density estimation. To extend 
this idea to regression problems, it will be necessary to combine the normally distributed out-
put with a conjugate prior distribution (e. g., Gaussian-Wishart). This would allow for an ana-
lytic solution of the posterior which enables reliable estimation of the risk.

Appendix

Proof for Theorem 1

In Sect. 2, Roy and McCallum (2001) describe the algorithm: The estimate the expected loss 
from Eq. (4) using a Monte-Carlo approach over P . They describe to use the unlabeled pool 
for that. In our work, we call this the candidate set U . Their algorithm consists of 4 steps: In 
short, they calculate the average expected loss for every instance xc ∈ U . Therefor, they con-
sider every possible label yc ∈ Y and add the pair (xc, yc) to the training set D (here: L ). They 
call the resulting set D∗ (here L+ ). The resulting expected losses are averaged, weighted with 
the respective posterior probability p(yc|xc).

The posterior probabilities for our kernel-based classifier are determined using Eq.  28. 
Chapelle (2005) proposed to include a beta-prior and thereby extended the approach by 
Roy and McCallum (2001).

The resulting equation can be simplified as follows:

(28)p(yc|xc) =
(�L

�c
)yc

||�L
�c
||1

(29)p(yc|xc) =
(�L

�c
+ �)yc

||�L
�c
+ �||1

(30)eer(xc,L,U) =
∑
yc∈Y

p(yc|xc,L) ⋅ 1

|U|
∑
x∈U

(
1 −max

y∈Y
p(y|x,L+)

)

(31)=
∑
yc∈Y

(�L
�c
+ �)yc

||�L
�c
+ �||1

⋅

1

|U|
∑
x∈U

(
1 −max

y∈Y

(�L
+

�c
+ �)y

||�L+

�c
+ �||1

)



1217Machine Learning (2021) 110:1199–1231 

1 3

  ◻

Proof of Theorem 2

Multi-class probabilistic active learning (PAL) by Kottke et  al. (2016) describes the 
expected gain in accuracy. Instead of evaluating this gain on a representative subset, they 
solely consider the gain locally. To proof Theorem 2, we need to set the m parameter of 
PAL to m = 1 , which means that we only consider one possible label acquisition in each 
iteration. Kottke et al. (2016) model the hypothetical labels using a labeling vector � ∈ ℕ

C 
which describes the number of potentially added labels for each class. As we only consider 
one label at a time ( m = 1 ), these vectors are unit vectors with a 1 at element of the consid-
ered class yc and 0 otherwise. Hence, l ∈ {�1,… , �C}.

For simplicity, we use k instead of writing kxc as PAL solely considers the candidate xc and 
no other instance. Moreover, we know that kL

+

= k + �yc
 , as we increment the frequency 

estimate of the simulated class yc by 1 (the similarity of xc to xc is always 1). Additionally 
to � , Kottke et al. (2016) model the classifier’s decision using a vector � , which is 1 for the 
class of the future decision and 0 otherwise.

For simplicity, we do not write the iterators at sums and products if they iterate from i = 1 
to C. Based on the old classifier f L and the new classifier f L+ , we write ŷ = f L(xc) and 
ŷ+ = f L

+

(xc) for the old and the new prediction.

(32)=
∑
yc∈Y

(�L
�c
+ �)yc

||�L
�c
+ �||1

⋅

1

|U|
∑
x∈U

(∑
y∈Y

�

{
y = f L

+

(x)
}(

1 −
(�L

+

�c
+ �)y

||�L+

�c
+ �||1

))

(33)=
∑
yc∈Y

(�L
�c
+ �)yc

||�L
�c
+ �||1

⋅

1

|U|
∑
x∈U

(∑
y∈Y

�

{
y ≠ f L

+

(x)
}
⋅

(�L
+

�c
+ �)y

||�L+

�c
+ �||1

)

(34)=
∑
yc∈Y

(�L
�c
+ �)yc

||�L
�c
+ �||1

⋅

1

|U|
∑
x∈U

(∑
y∈Y

(�L
+

�c
+ �)y

||�L+

�c
+ �||1

⋅ L(y, f L
+

(x))

)

(35)li =

{
1 i = yc
0 else

(36)di =

{
1 argmax

y

(kL
+

y
) = i

0 else

(37)

pal(xc,L)

= p̂(xc) ⋅
�
�

⎛⎜⎜⎜⎜⎜⎝

�∑
(ki+li+di+1)−1�
j=
∑
(ki+1)

1

j

�

�����������������������
=I

⋅

C�
i=1

�
ki+li+di�
j=ki+1

j

�

���������������
=II

⋅

𝛤 ((
∑

li) + 1)∏
(𝛤 (li + 1))

���������������
=III

⎞⎟⎟⎟⎟⎟⎠

−
(k + �)ŷ

��k + ���1



1218 Machine Learning (2021) 110:1199–1231

1 3

We now insert I, II, III back into Eq. 37.

We divide the sum into two parts: (A) The subset of all labels ( Y≠ ) that change the deci-
sion, (B) and the labels ( Y= ) that do not change the decision. Please remember that a new 
label yc could change the decision of ŷ+ as it includes the new label. They are defined as 
follows:

Now, we consider both cases independently.
A) Labels that change the decision For all yc ∈ Y with ŷ ≠ ŷ+ , we know that ŷ+ = yc.
It follows that L(yc, ŷ+) − L(y, ŷ) = −1.

(38)I =

�∑
(ki+li+di+1)−1�
j=
∑
(ki+1)

1

j

�
=

�
1�
j=0

1∑
(ki + 1) + j

�
=

1∑
(ki + 1)

⋅

1∑
(ki + 1) + 1

(39)=
1

||k + 1||1 ⋅ ||kL
+

+ 1||1

(40)II =

C�
i=1

�
ki+li+di�
j=ki+1

j

�
=

C�
i=1

�
li+di�
j=1

ki + j

�
=

C�
i=1

⎧⎪⎨⎪⎩

1 li + di = 0

(ki + 1) li + di = 1

(ki + 1)(ki + 2) li + di = 2

(41)=

C∏
i=1

{
(ki + 1) li + di = 1

(ki + 1)(ki + 2) li + di = 2
=

{
(k + 1)yc ⋅ (k + 2)yc ŷ+ = yc
(k + 1)yc ⋅ (k + 1)ŷ+ else

(42)III =
� ((

∑
li) + 1)∏

(� (li + 1))
=

� (2)

1
= 1

(43)

pal(xc,L)

= p̂(xc) ⋅
∑
�

1

||k + �||1 ⋅ ||kL
+

+ �||1
⋅

{
(k + �)yc ⋅ (k + �)yc ŷ+ = yc
(k + �)yc ⋅ (k + �)ŷ+ else

−
(k + �)ŷ

||k + �||1

(44)

= p̂(xc) ⋅
∑
yc∈Y

1

||k + �||1 ⋅ ||kL
+

+ �||1
⋅

{
(k + �)yc ⋅ (k + �)yc ŷ+ = yc
(k + �)yc ⋅ (k + �)ŷ+ else

−
(k + �)ŷ

||k + �||1

(45)= p̂(xc) ⋅
∑
yc∈Y

(k + 1)yc

||k + �||1 ⋅ ||kL
+

+ �||1
⋅

{
(k + �)yc ŷ+ = yc
(k + �)ŷ+ else

−
(k + �)ŷ

||k + �||1

(46)Y = Y≠ ∪̇Y= = {yc ∈ Y ∶ ŷ ≠ ŷ+} ∪̇ {yc ∈ Y ∶ ŷ = ŷ+}



1219Machine Learning (2021) 110:1199–1231 

1 3

B) Labels that do not change the decision Here, we can use the following implications to 
rewrite the cases from Eq. 45 into the sum:

• yc = ŷ ⇒ ŷ+ = yc
• yc ≠ ŷ ⇒ ŷ+ ≠ yc

(47)

∑
yc∈Y≠

(k + �)yc

||k + �||1 ⋅ ||kL
+

+ �||1
⋅

{
(k + �)yc ŷ+ = yc
(k + �)ŷ else

=
∑
yc∈Y≠

(k + �)yc

||k + �||1 ⋅

(k + �)yc

||kL+

+ �||1

(48)

=
∑
yc∈Y≠

(k + �)yc

||k + �||1 ⋅

(kL
+

+ �)yc

||kL+

+ �||1

= −
∑
yc∈Y≠

(k + �)yc

||k + �||1
∑

y∈{yc}

(kL
+

+ �)y

||kL+

+ �||1
⋅ (L(y, ŷ+) − L(y, ŷ))

(49)
∑
yc∈Y=

(k + �)yc

||k + �||1 ⋅ ||kL
+

+ �||1
⋅

{
(k + �)yc ŷ+ = yc
(k + �)ŷ else

−
(k + �)ŷ

||k + �||1

(50)=

( ∑
yc∈Y=⧵{ŷ}

(k + �)yc ⋅ (k + �)ŷ

||k + �||1 ⋅ ||kL
+

+ �||1

)
+

(k + �)ŷ ⋅ (k + �)ŷ

||k + �||1 ⋅ ||kL
+

+ �||1
−

(k + �)ŷ

||k + �||1

(51)

=

( ∑
yc∈Y=⧵{ŷ}

(k + �)yc ⋅ (k + �)ŷ

||k + �||1 ⋅ ||kL
+

+ �||1

)
+

(k + �)ŷ ⋅ (k + �)ŷ

||k + �||1 ⋅ ||kL
+

+ �||1

−
(k + �)ŷ ⋅ ||kL

+

+ �||1
||k + �||1 ⋅ ||kL

+

+ �||1

(52)=
(k + �)ŷ

||k + �||1 ⋅ ||kL
+

+ �||1

( ∑
yc∈Y=⧵{ŷ}

(k + �)yc

)
+ (k + �)ŷ − (||k + �||1 + 1)

(53)=
(k + �)ŷ

||k + �||1 ⋅ ||kL
+

+ �||1

( ∑
yc∈Y=⧵{ŷ}

(k + �)yc

)
+ (k + �)ŷ − ||k + �||1

(54)=
(k + �)ŷ

||k + �||1 ⋅ ||kL
+

+ �||1

( ∑
yc∈Y=

(k + �)yc

)
−

(∑
yc∈Y

(k + �)yc

)



1220 Machine Learning (2021) 110:1199–1231

1 3

In the last step, we use that ŷ ≠ ŷ+ ⟹ L(ŷ, ŷ+) − L(ŷ, ŷ) = 1 . Additionally, we use that 
yc ≠ ŷ applies and thus kŷ = kL

+

ŷ
 . Next, we combine both cases:

Because of L(y, ŷ+) − L(y, ŷ) = 0 for y ∉ {yc, ŷ} and for yc ∈ Y= , we can change this equa-
tion to

  ◻

Proof of Theorem 3

According to Settles (2009), the usefulness score for “least confidence uncertainty sam-
pling” is determined by the following equation and can easily be rewritten. We denote: 
ŷ = f L(xc).

  ◻

(55)= −
∑
yc∈Y≠

(k + �)yc

||k + �||1 ⋅

(k + �)ŷ

||kL+

+ �||1

(56)= −
∑
yc∈Y≠

(k + �)yc

||k + �||1
∑
y∈{ŷ}

(kL
+

+ �)y

||kL+

+ �||1
⋅ (L(y, ŷ+) − L(y, ŷ))

(57)pal(xc,L) = −p̂(xc) ⋅

( ∑
yc∈Y≠

(k + �)yc

||k + �||1
∑

y∈{yc}

(kL
+

+ �)y

||kL+

+ �||1
⋅ (L(y, ŷ+) − L(y, ŷ))

(58)+
∑
yc∈Y≠

(k + �)yc

||k + �||1
∑
y∈{ŷ}

(kL
+

+ �)y

||kL+

+ �||1
⋅ (L(y, ŷ+) − L(y, ŷ))

)

(59)= −p̂(xc) ⋅
∑
yc∈Y≠

(k + �)yc

||k + �||1
∑

y∈{yc ,ŷ}

(kL
+

+ �)y

||kL+

+ �||1
⋅ (L(y, ŷ+) − L(y, ŷ))

(60)pal(xc,L) = −p̂(xc) ⋅
∑
yc∈Y

(k + �)yc

||k + �||1
∑
y∈Y

(kL
+

+ �)y

||kL+

+ �||1
⋅ (L(y, ŷ+) − L(y, ŷ)).

(61)us(xc,L) = 1 − p(ŷ|xc) =
∑
yc∈Y

�yc=f
L(x)

(
1 − p(yc|xc)

)

(62)=
∑
yc∈Y

�yc=f
L(x)

(
1 −

(�L
�c
+ �)yc

||�L
�c
+ �||1

)

(63)=
∑
yc∈Y

�yc≠fL(x)
(

(�L
�c
+ �)yc

||�L
�c
+ �||1

)
=

∑
yc∈Y

(�L
�c
+ �)yc

||�L
�c
+ �||1

⋅ L(yc, f
L(xc)



1221Machine Learning (2021) 110:1199–1231 

1 3

Description of datasets

A detailed description of the datasets is available in Tab. 2. We provide the openML iden-
tifier7, the dataset’s name, the number of instances and features, and the distribution of 
classes (the list describes the fraction of class 1 in the first element, the fraction of class 2 
in the second element, etc).

Table 2  Description of datasets

openML name inst. feat. class distribution

61 iris 150 4 [0.33, 0.33, 0.33]
187 wine 178 13 [0.33, 0.4, 0.27]
1488 parkinsons 195 22 [0.25, 0.75]
446 prnn_crabs 200 7 [0.5, 0.5]
40 sonar 208 60 [0.53, 0.47]
1500 seismic-bumps 210 7 [0.33, 0.33, 0.33]
1499 seeds 210 7 [0.33, 0.33, 0.33]
41 glass 214 9 [0.33, 0.36, 0.06, 0.14, 0.04, 0.08]
1523 vertebra-column 310 6 [0.19, 0.32, 0.48]
39 ecoli 336 7 [0.43, 0.23, 0.01, 0.01, 0.1, 0.06, 0.01, 0.15]
59 ionosphere 351 34 [0.36, 0.64]
1508 user-knowledge 403 5 [0.25, 0.32, 0.3, 0.06, 0.06]
814 chscase_vine2 (v2) 468 2 [0.45, 0.55]
1063 kc2 522 21 [0.8, 0.2]
1510 wdbc 569 30 [0.63, 0.37]
11 balance-scale 625 4 [0.08, 0.46, 0.46]
1464 blood-transfusion-s. 748 4 [0.76, 0.24]
37 diabetes 768 8 [0.65, 0.35]
54 vehicle 846 18 [0.26, 0.25, 0.26, 0.24]
1494 qsar-biodeg 1055 41 [0.66, 0.34]
1462 banknote-auth. 1372 4 [0.56, 0.44]
1504 steel-plates-fault 1941 33 [0.65, 0.35]
40669 corral 160 6 [0.56, 0.44]
1495 bankruptcy 250 6 [0.43, 0.57]
333 monks 556 6 [0.5, 0.5]
50 tic 958 9 [0.35, 0.65]
40664 car 1728 21 [0.7, 0.22, 0.04, 0.04]
- reports-mozilla 675 100 [0.23, 0.09, 0.43, 0.25]
- reports-compendium 962 56 [0.09, 0.33, 0.23, 0.35]

7 https:// www. openml. org/.

https://www.openml.org/


1222 Machine Learning (2021) 110:1199–1231

1 3

More experimental results

In this section, we provide more plots from our experimental evaluation. Please refer to the 
original paper for the detailed explanation of the experimental setup and the discussion of 
the results.

Usefulness plots with randomly selected labels

See Fig. 9.

Learning curves

See Figs. 10, 11 and 12.

Fig. 9  Visualization of acquisition behavior for different selection strategies. The green color indicates how 
useful a selection strategy considers a region. The usefulness depends on the selection criterion of the strat-
egy. The eight labels have been randomly selected and are similar for all strategies to emphasize how differ-
ent selection strategies assess the usefulness of different regions



1223Machine Learning (2021) 110:1199–1231 

1 3

Fig. 10  Mean accuracy learning curves comparing xPAL to its competitors. High values and fast conver-
gence is considered best. The bars denote the standard error ( �√

n

)



1224 Machine Learning (2021) 110:1199–1231

1 3

Fig. 11  Mean accuracy learning curves comparing xPAL to its competitors. High values and fast conver-
gence is considered best. The bars denote the standard error ( �√

n

)



1225Machine Learning (2021) 110:1199–1231 

1 3

Fig. 12  Mean accuracy learning curves comparing xPAL to its competitors. High values and fast conver-
gence is considered best. The bars denote the standard error ( �√

n

)



1226 Machine Learning (2021) 110:1199–1231

1 3

Ta
bl

e 
3 

 A
ve

ra
ge

d 
ar

ea
 u

nd
er

 th
e 

le
ar

ni
ng

 c
ur

ve
 p

er
fo

rm
an

ce
s i

nc
lu

di
ng

 st
an

da
rd

 d
ev

ia
tio

ns

xP
A

L(
�
�
−
�
)

PA
L

U
S

A
LC

E
Q

B
C

EE
R

R
A

N
D

iri
s (

v1
)

.0
84

 ( ±
.0

22
)

.0
80

 ( ±
.0

22
)†
†
†

.1
99

 ( ±
.0

96
)*

**
.0

96
 ( ±

.0
24

)*
**

.0
99

 ( ±
.0

24
)*

**
.1

23
 ( ±

.0
50

)*
**

.1
13

 ( ±
.0

29
)*

**
w

in
e 

(v
1)

.0
67

 ( ±
.0

17
)

.0
79

 ( ±
.0

19
)*

**
.0

77
 ( ±

.0
20

)*
**

.0
77

 ( ±
.0

17
)*

**
.0

82
 ( ±

.0
17

)*
**

.0
66

 ( ±
.0

19
)

.0
84

 ( ±
.0

22
)*

**
pa

rk
in

so
ns

 (v
1)

.1
22

 ( ±
.0

28
)

.1
31

 ( ±
.0

25
)*

**
.1

41
 ( ±

.0
32

)*
**

.1
41

 ( ±
.0

25
)*

**
.1

56
 ( ±

.0
30

)*
**

.1
40

 ( ±
.0

30
)*

**
.1

47
 ( ±

.0
27

)*
**

pr
nn

_c
ra

bs
 (v

1)
.1

84
 ( ±

.0
38

)
.1

62
 ( ±

.0
30

)†
†
†

.2
07

 ( ±
.0

42
)*

**
.1

70
 ( ±

.0
30

)†
†
†

.2
20

 ( ±
.0

34
)*

**
.2

70
 ( ±

.0
47

)*
**

.2
37

 ( ±
.0

40
)*

**
so

na
r (

v1
)

.2
06

 ( ±
.0

31
)

.2
07

 ( ±
.0

29
)

.2
22

 ( ±
.0

28
)*

**
.2

39
 ( ±

.0
28

)*
**

.2
55

 ( ±
.0

29
)*

**
.2

27
 ( ±

.0
40

)*
**

.2
40

 ( ±
.0

33
)*

**
se

ed
s (

v1
)

.0
97

 ( ±
.0

21
)

.0
96

 ( ±
.0

21
)†

.1
33

 ( ±
.0

53
)*

**
.1

07
 ( ±

.0
23

)*
**

.1
08

 ( ±
.0

23
)*

**
.1

06
 ( ±

.0
26

)*
**

.1
11

 ( ±
.0

22
)*

**
se

is
m

ic
-b

um
ps

 (v
1)

.0
97

 ( ±
.0

21
)

.0
96

 ( ±
.0

21
)†

.1
33

 ( ±
.0

53
)*

**
.1

07
 ( ±

.0
23

)*
**

.1
08

 ( ±
.0

23
)*

**
.1

06
 ( ±

.0
26

)*
**

.1
11

 ( ±
.0

22
)*

**
gl

as
s (

v1
)

.3
78

 ( ±
.0

37
)

.4
06

 ( ±
.0

36
)*

**
.4

11
 ( ±

.0
41

)*
**

.4
11

 ( ±
.0

37
)*

**
.4

14
 ( ±

.0
38

)*
**

.4
37

 ( ±
.0

42
)*

**
.4

23
 ( ±

.0
41

)*
**

ve
rte

br
a-

co
lu

m
n 

(v
1)

.2
31

 ( ±
.0

31
)

.2
35

 ( ±
.0

32
)*

*
.2

39
 ( ±

.0
33

)*
**

.2
39

 ( ±
.0

31
)*

**
.2

40
 ( ±

.0
29

)*
**

.2
52

 ( ±
.0

33
)*

**
.2

46
 ( ±

.0
33

)*
**

ec
ol

i (
v1

)
.1

66
 ( ±

.0
24

)
.1

77
 ( ±

.0
22

)*
**

.1
78

 ( ±
.0

23
)*

**
.1

89
 ( ±

.0
26

)*
**

.1
87

 ( ±
.0

21
)*

**
.1

72
 ( ±

.0
25

)*
.1

91
 ( ±

.0
26

)*
**

io
no

sp
he

re
 (v

1)
.1

52
 ( ±

.0
28

)
.1

60
 ( ±

.0
29

)*
**

.1
72

 ( ±
.0

28
)*

**
.1

80
 ( ±

.0
35

)*
**

.1
68

 ( ±
.0

27
)*

**
.1

40
 ( ±

.0
23

)†
†
†

.1
94

 ( ±
.0

36
)*

**
us

er
-k

no
w

le
dg

e 
(v

1)
.2

73
 ( ±

.0
21

)
.2

86
 ( ±

.0
24

)*
**

.3
07

 ( ±
.0

32
)*

**
.2

94
 ( ±

.0
21

)*
**

.3
30

 ( ±
.0

24
)*

**
.3

17
 ( ±

.0
26

)*
**

.3
17

 ( ±
.0

27
)*

**
ch

sc
as

e_
vi

ne
2 

(v
2)

.2
23

 ( ±
.0

21
)

.2
21

 ( ±
.0

21
)

.2
87

 ( ±
.0

63
)*

**
.2

21
 ( ±

.0
23

)
.2

94
 ( ±

.0
30

)*
**

.3
03

 ( ±
.0

39
)*

**
.2

53
 ( ±

.0
23

)*
**

kc
2 

(v
1)

.1
74

 ( ±
.0

18
)

.1
73

 ( ±
.0

17
)*

.1
74

 ( ±
.0

19
)

.1
85

 ( ±
.0

24
)*

**
.1

79
 ( ±

.0
19

)*
**

.1
73

 ( ±
.0

19
)

.1
77

 ( ±
.0

19
)*

*
w

db
c 

(v
1)

.0
45

 ( ±
.0

09
)

.0
58

 ( ±
.0

09
)*

**
.0

58
 ( ±

.0
11

)*
**

.0
66

 ( ±
.0

14
)*

**
.0

59
 ( ±

.0
12

)*
**

.0
72

 ( ±
.0

19
)*

**
.0

69
 ( ±

.0
14

)*
**

ba
la

nc
e-

sc
al

e 
(v

1)
.1

88
 ( ±

.0
17

)
.1

94
 ( ±

.0
16

)*
*

.1
99

 ( ±
.0

17
)*

**
.2

00
 ( ±

.0
15

)*
**

.1
82

 ( ±
.0

16
)†
†

.2
29

 ( ±
.0

22
)*

**
.1

95
 ( ±

.0
18

)*
*

bl
oo

d-
tra

ns
fu

si
on

-s
. (

v1
)

.2
31

 ( ±
.0

17
)

.2
45

 ( ±
.0

21
)*

**
.2

39
 ( ±

.0
17

)*
**

.2
44

 ( ±
.0

22
)*

**
.2

39
 ( ±

.0
18

)*
**

.2
59

 ( ±
.0

29
)*

**
.2

50
 ( ±

.0
19

)*
**

di
ab

et
es

 (v
1)

.3
03

 ( ±
.0

20
)

.3
11

 ( ±
.0

18
)*

**
.3

01
 ( ±

.0
21

)
.3

10
 ( ±

.0
26

)*
.2

96
 ( ±

.0
30

)†
†

.3
09

 ( ±
.0

21
)*

*
.2

98
 ( ±

.0
21

)†
ve

hi
cl

e 
(v

1)
.3

75
 ( ±

.0
18

)
.3

87
 ( ±

.0
16

)*
**

.4
12

 ( ±
.0

26
)*

**
.3

78
 ( ±

.0
18

)
.4

12
 ( ±

.0
19

)*
**

.4
36

 ( ±
.0

26
)*

**
.4

09
 ( ±

.0
23

)*
**

qs
ar

-b
io

de
g 

(v
1)

.1
98

 ( ±
.0

16
)

.2
14

 ( ±
.0

14
)*

**
.2

06
 ( ±

.0
19

)*
**

.2
61

 ( ±
.0

33
)*

**
.2

54
 ( ±

.0
30

)*
**

.2
39

 ( ±
.0

25
)*

**
.2

24
 ( ±

.0
21

)*
**

ba
nk

no
te

-a
ut

h.
 (v

1)
.0

19
 ( ±

.0
03

)
.0

18
 ( ±

.0
02

)†
†
†

.0
25

 ( ±
.0

05
)*

**
.0

24
 ( ±

.0
05

)*
**

.0
48

 ( ±
.0

10
)*

**
.0

70
 ( ±

.0
22

)*
**

.0
46

 ( ±
.0

10
)*

**
ste

el
-p

la
te

s-
fa

ul
t (

v1
)

.0
56

 ( ±
.0

05
)

.0
84

 ( ±
.0

08
)*

**
.0

85
 ( ±

.0
17

)*
**

.1
13

 ( ±
.0

13
)*

**
.1

92
 ( ±

.0
30

)*
**

.1
27

 ( ±
.0

13
)*

**
.1

28
 ( ±

.0
16

)*
**

co
rr

al
 (v

1)
.0

79
 ( ±

.0
23

)
.0

98
 ( ±

.0
28

)*
**

.0
76

 ( ±
.0

20
)†

.0
98

 ( ±
.0

27
)*

**
.0

87
 ( ±

.0
22

)*
**

.1
31

 ( ±
.0

32
)*

**
.1

21
 ( ±

.0
32

)*
**

qu
al

ita
tiv

e-
ba

nk
ru

pt
cy

 (v
1)

.0
12

 ( ±
.0

04
)

.0
48

 ( ±
.0

12
)*

**
.0

16
 ( ±

.0
06

)*
**

.0
21

 ( ±
.0

07
)*

**
.0

17
 ( ±

.0
06

)*
**

.0
13

 ( ±
.0

05
)*

.0
23

 ( ±
.0

09
)*

**
m

on
ks

-p
ro

bl
em

s-
1 

(v
1)

.1
69

 ( ±
.0

14
)

.1
90

 ( ±
.0

20
)*

**
.1

48
 ( ±

.0
19

)†
†
†

.2
06

 ( ±
.0

22
)*

**
.1

78
 ( ±

.0
19

)*
**

.2
48

 ( ±
.0

26
)*

**
.2

18
 ( ±

.0
22

)*
**

tic
-ta

c-
to

e 
(v

1)
.1

75
 ( ±

.0
12

)
.2

17
 ( ±

.0
19

)*
**

.1
77

 ( ±
.0

14
)

.2
13

 ( ±
.0

16
)*

**
.1

86
 ( ±

.0
15

)*
**

.2
31

 ( ±
.0

23
)*

**
.2

13
 ( ±

.0
16

)*
**

ca
r-e

va
lu

at
io

n 
(v

1)
.2

32
 ( ±

.0
10

)
.2

51
 ( ±

.0
13

)*
**

.2
58

 ( ±
.0

16
)*

**
.2

43
 ( ±

.0
14

)*
**

.2
56

 ( ±
.0

17
)*

**
.2

58
 ( ±

.0
14

)*
**

.2
43

 ( ±
.0

14
)*

**



1227Machine Learning (2021) 110:1199–1231 

1 3

Ta
bl

e 
3 

 (c
on

tin
ue

d)

xP
A

L(
�
�
−
�
)

PA
L

U
S

A
LC

E
Q

B
C

EE
R

R
A

N
D

re
po

rts
-m

oz
ill

a
.3

97
 ( ±

.0
27

)
.3

99
 ( ±

.0
26

)
.4

04
 ( ±

.0
20

)*
*

.5
59

 ( ±
.0

68
)*

**
.5

08
 ( ±

.0
30

)*
**

.6
25

 ( ±
.0

70
)*

**
.4

61
 ( ±

.0
43

)*
**

re
po

rts
-c

om
pe

nd
iu

m
.4

90
 ( ±

.0
21

)
.5

17
 ( ±

.0
19

)*
**

.5
32

 ( ±
.0

22
)*

**
.5

63
 ( ±

.0
32

)*
**

.5
28

 ( ±
.0

22
)*

**
.5

83
 ( ±

.0
30

)*
**

.5
16

 ( ±
.0

23
)*

**

 L
ow

 v
al

ue
s a

re
 c

on
si

de
re

d 
be

st
Th

re
e 

st
ar

s (
**

*)
 in

di
ca

te
 si

gn
ifi

ca
nt

ly
 b

et
te

r r
es

ul
ts

 o
f x

PA
L 

w
ith

 p
 v

al
ue

 .0
01

, t
w

o 
st

ar
s (

**
) i

nd
ic

at
e 

a 
p 

va
lu

e 
of

 0
.0

1 
an

d 
on

e 
st

ar
 (*

) o
f .

05
A

na
lo

go
us

ly
, s

ig
ni

fic
an

tly
 b

et
te

r p
er

fo
rm

an
ce

 o
f a

 c
om

pe
tit

or
 is

 sh
ow

n 
w

ith
 †



1228 Machine Learning (2021) 110:1199–1231

1 3

Area under the learning curve

Table 3 describes the averaged area under the learning curve including standard deviations 
and significance testing with the Wilcoxon signed rank test. The notation is similar to the 
one from the paper.

Detailed ranking plots for different parameters

Figure 13 is the detailed version of Fig. 7 (right) in the original paper.

Execution times and computing infrastructure

Table  4 provides an overview of the execution times over the different selection strate-
gies and datasets. The execution times are averaged over 100 repeated runs each with a 
maximum number of 200 instance selections. A single execution time entry indicates the 
average time in seconds to select a single instance for a given dataset and selection strategy. 
The execution times are primarily depended on the number of instances but also on aspects 
like the number of features and classes as calculations might become more complex.

All experiments were run on an heterogeneous computer cluster which might lead to 
irregular results as the speed between the cluster nodes vary.

Fig. 13  The mean rank for xPAL with different parameters and datasets across 100 repetitions. The best 
parameter is printed in bold. The Wilcoxon signed rank test shows pairwise significance between xPAL 
with � = ��−� and its competitor



1229Machine Learning (2021) 110:1199–1231 

1 3

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Table 4  Execution times in seconds for one single instance averaged over all repetitions and acquisitions

dataset instances xPAL 
(� = ��−�)

PAL OPT US ALCE QBC EER RAND

iris (v1) 150 0.0763 0.0089 0.0124 0.0009 0.0034 0.0329 0.0961 0.0001
wine (v1) 178 0.0824 0.0105 0.0160 0.0010 0.0038 0.0349 0.1184 0.0001
parkinsons 

(v1)
195 0.0726 0.0101 0.0234 0.0020 0.0029 0.0354 0.0994 0.0002

prnn_crabs 
(v1)

200 0.0717 0.0063 0.0193 0.0010 0.0030 0.0349 0.0919 0.0001

sonar (v1) 208 0.0865 0.0137 0.0459 0.0018 0.0032 0.0365 0.1631 0.0002
seismic-bumps 

(v1)
210 0.0941 0.0113 0.0179 0.0012 0.0042 0.0342 0.0305 0.0001

seeds (v1) 210 0.0991 0.0126 0.0186 0.0010 0.0041 0.0352 0.1459 0.0001
glass (v1) 214 0.3196 0.0616 0.0193 0.0011 0.0067 0.0355 0.2980 0.0001
vertebra-col-

umn (v1)
310 0.1737 0.0189 0.0308 0.0013 0.0056 0.0369 0.2515 0.0001

ecoli (v1) 336 0.5243 0.2307 0.0466 0.0028 0.0064 0.0388 0.8007 0.0002
ionosphere 

(v1)
351 0.2497 0.0525 0.1307 0.0095 0.0046 0.0404 0.7586 0.0002

user-knowl-
edge (v1)

403 0.4468 0.0858 0.0524 0.0015 0.0094 0.0425 0.7438 0.0001

chscase_vine2 
(v2)

468 0.2468 0.0182 0.0730 0.0017 0.0046 0.0457 0.4156 0.0001

kc2 (v1) 522 0.4760 0.1127 0.2549 0.0173 0.0053 0.0491 2.9201 0.0003
wdbc (v1) 569 0.4808 0.1655 0.3257 0.0258 0.0054 0.0523 4.8052 0.0005
balance-scale 

(v1)
625 0.6702 0.0664 0.1512 0.0045 0.0074 0.0531 0.4069 0.0003

blood-transfu-
sion-s. (v1)

748 0.8058 0.0801 0.3079 0.0128 0.0056 0.0574 1.3400 0.0006

diabetes (v1) 768 0.8174 0.1688 0.4503 0.0287 0.0059 0.0594 8.3075 0.0009
vehicle (v1) 846 2.2947 0.5192 1.9738 0.0384 0.0122 0.0664 35.5409 0.0010
qsar-biodeg 

(v1)
1055 1.9238 0.3374 1.2020 0.0712 0.0077 0.0789 38.2082 0.0016

banknote-auth. 
(v1)

1372 1.9130 0.3116 5.4191 0.0996 0.0085 0.0868 69.2271 0.0023

steel-plates-
fault (v1)

1941 5.8124 0.6423 26.3854 0.2050 0.0118 0.1242 38.3739 0.0022

http://creativecommons.org/licenses/by/4.0/


1230 Machine Learning (2021) 110:1199–1231

1 3

References

Baram, Y., Yaniv, R. E., & Luz, K. (2004). Online choice of active learning algorithms. Journal of Machine 
Learning Research, 5, 255–291.

Beyer, C., Krempl, G., & Lemaire, V. (2015). How to select information that matters: A comparative study 
on active learning strategies for classification. In Proceedings of the 15th international conference on 
knowledge technologies and data-driven business, association for computing machinery, i-KNOW ’15, 
New York, NY, USA.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Bondu, A., Lemaire, V., & Boullé, M. (2010). Exploration vs. exploitation in active learning: A Bayesian 

approach. In International joint conference on neural networks (IJCNN) (pp. 1–7). IEEE.
Brinker, K. (2003). Incorporating diversity in active learning with support vector machines. In Proceedings 

of the 20th international conference on machine learning (ICML) (pp. 59–66).
Calma, A., Reitmaier, T., & Sick, B. (2018). Semi-supervised active learning for support vector machines: A 

novel approach that exploits structure information in data. Information Sciences, 456, 13–33.
Chapelle, O. (2005). Active learning for parzen window classifier. In Proceedings of the 10th international 

workshop on artificial intelligence and statistics (AISTATS) (Vol. 5, pp. 49–56).
Chaudhuri, A., Kakde, D., Sadek, C., Gonzalez, L., & Kong, S. (2017). The mean and median criteria for 

kernel bandwidth selection for support vector data description. In International conference on data 
mining workshops (ICDMW) (pp. 842–849). IEEE.

Cuong, N. V., Lee, W. S., & Ye, N. (2014). Near-optimal adaptive pool-based active learning with gen-
eral loss. In Proceedings of the 30th conference on uncertainty in artificial intelligence (UAI) (pp. 
122–131).

Dasgupta, S. (2009). The two faces of active learning. In International conference on discovery science (pp. 
35–35). Springer.

Donmez, P., Carbonell, J. G., & Bennett, P. N. (2007). Dual strategy active learning. In Proceedings of the 
European conference on machine learning (ECML) (pp. 116–127). Springer.

Golovin, D., & Krause, A. (2010). Adaptive submodularity: A new approach to active learning and sto-
chastic optimization. In Proceedings of the 23rd conference on algorithmic learning theory (ALT) (pp. 
333–345).

Guillory, A., & Bilmes, J. (2010). Interactive submodular set cover. In Proceedings of the 27th International 
conference on machine learning (ICML).

Hernández-González, J., Rodriguez, D., Inza, I., Harrison, R., & Lozano, J. A. (2018). Two datasets of 
defect reports labeled by a crowd of annotators of unknown reliability. Data in Brief, 18, 840–845.

Houlsby, N., Huszár, F., Ghahramani, Z., & Lengyel, M. (2011). Bayesian active learning for classification 
and preference learning. arXiv: 1112. 5745 [stat.ML].

Huang, K., & Lin, H. (2016). A novel uncertainty sampling algorithm for cost-sensitive multiclass active 
learning. In Proceedings of the 16th international conference on data mining (ICDM) (pp. 925–930). 
IEEE.

Hutter, F., Xu, L., Hoos, H. H., & Leyton-Brown, K. (2014). Algorithm runtime prediction: Methods & 
evaluation. Artificial Intelligence, 206, 79–111.

Japkowicz, N., & Shah, M. (2011). Evaluating learning algorithms: A classification perspective. Cambridge 
University Press.

Konyushkova, K., Sznitman, R., & Fua, P. (2018). Discovering general purpose active learning strategies. 
arXiv: 1810. 04114 v2 [cs.LG].

Kottke, D., Krempl, G., Lang, D., Teschner, J., & Spiliopoulou, M. (2016). Multi-class probabilistic active 
learning. In Proceedings of the European conference on artificial intelligence (ECAI) (pp. 586–594). 
IOS Press.

Kottke, D., Herde, M., Minh, T. P., Benz, A., Mergard, P., Roghman, A., Sandrock, C., & Sick, B. (2021). 
scikit-activeml: A library and toolbox for active learning algorithms. Preprints, 2021030194.

Krempl, G., Kottke, D., & Lemaire, V. (2015). Optimised probabilistic active learning (OPAL). Machine 
Learning, 100(2–3), 449–476.

Lewis, D. D., & Gale, W. A. (1994). A sequential algorithm for training text classifiers. In Proceedings 
of the 17th annual international conference on research and development in information retrieval 
(SIGIR) (pp. 3–12). Springer.

Murphy, K. P. (2006). Binomial and multinomial distributions. Technical report, University of British 
Columbia.

Nguyen, H. T., & Smeulders, A. (2004). Active learning using pre-clustering. In Proceedings of the 21st 
international conference on machine learning (ICML) (pp. 79–86). ACM Press.

http://arxiv.org/abs/1112.5745
http://arxiv.org/abs/1810.04114v2


1231Machine Learning (2021) 110:1199–1231 

1 3

Osugi, T., Kim, D., & Scott, S. (2005). Balancing exploration and exploitation: A new algorithm for active 
machine learning. In Proceedings of the 5th international conference on data mining (ICDM) (pp. 
330–337). IEEE.

Roy, N., & McCallum, A. (2001). Toward optimal active learning through Monte Carlo estimation of error 
reduction. In Proceedings of the 18th international conference on machine learning (ICML) (pp. 
441–448).

Settles, B. (2009). Active learning literature survey. Technical report, University of Wisconsin-Madison 
Department of Computer Sciences.

Settles, B. (2012). Active learning. No. 18 in Synthesis lectures on artificial intelligence and machine learn-
ing. Morgan and Claypool Publishers.

Seung, H. S., Opper, M., & Sompolinsky, H. (1992). Query by committee. In Proceedings of the 5th annual 
workshop on computational learning theory (COLT) (pp. 287–294). ACM.

Shi, S., Liu, Y., Huang, Y., Zhu, S., & Liu, Y. (2008). Active learning for kNN based on bagging features. 
In Proceedings of the 4th international conference on natural computation (pp. 61–64), Jinan, China.

Thrun, S. B., & Möller, K. (1992). Active exploration in dynamic environments. In Advances in neural 
information processing systems (pp. 531–538).

Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2013). Openml: Networked science in machine 
learning. SIGKDD Explorations, 15(2), 49–60.

Vapnik, V. N. (1995). The nature of statistical learning theory. Springer.
Wei, K., Iyer, R., & Bilmes, J. (2015). Submodularity in data subset selection and active learning. In Pro-

ceedings of the 32rd international conference on machine learning (ICML) (pp. 1954–1963).
Weigl, E., Heidl, W., Lughofer, E., Radauer, T., & Eitzinger, C. (2015). On improving performance of sur-

face inspection systems by online active learning and flexible classifier updates. Machine Vision and 
Applications, 27(1), 103–127.

Xu, Z., Akella, R., & Zhang, Y. (2007). Incorporating diversity and density in active learning for relevance 
feedback. In Proceedings of the European conference on information retrieval (ECIR) (pp. 246–257). 
Springer.

Zoller, T., & Buhmann, J. M. (2000). Active learning for hierarchical pairwise data clustering. In Proceed-
ings 15th international conference on pattern recognition (ICPR) (pp. 186–189). IEEE.

Žliobaitė, I., Bifet, A., Pfahringer, B., & Holmes, G. (2014). Active learning with drifting streaming data. 
Transactions on Neural Networks and Learning Systems, 25(1), 27–39.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Toward optimal probabilistic active learning using a Bayesian approach
	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation and foundations
	4 Toward optimal probabilistic active learning using a Bayesian prior
	4.1 Estimating the risk
	4.2 Introducing a conjugate prior
	4.3 Risk difference using the conjugate prior
	4.4 The expected probabilistic gain

	5 Theoretical and qualitative comparison
	5.1 Expected probabilistic gain for AL (xPAL)
	5.2 Expected error reduction (EER)
	5.3 Probabilistic active learning (PAL)
	5.4 Uncertainty sampling (US)
	5.5 Active learning with cost embedding (ALCE)
	5.6 Query by committee (QBC)

	6 Experimental evaluation
	6.1 Datasets and competitors
	6.2 Experimental setup
	6.3 Comparison between xPAL and competitors
	6.4 Robustness of prior parameter
	6.5 Computation time

	7 Conclusion
	References




