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ABSTRACT

Context. Accurate model predictions including the physics of baryons are required to make the most of the upcoming large cosmo-
logical surveys devoted to gravitational lensing. The advent of hydrodynamical cosmological simulations enables such predictions on
sufficiently sizeable volumes.
Aims. Lensing quantities (deflection, shear, convergence) and their statistics (convergence power spectrum, shear correlation func-
tions, galaxy-galaxy lensing) are computed in the past lightcone built in the Horizon-AGN hydrodynamical cosmological simulation,
which implements our best knowledge on baryonic physics at the galaxy scale in order to mimic galaxy populations over cosmic time.
Methods. Lensing quantities are generated over a one square degree field of view by performing multiple-lens plane ray-tracing
through the lightcone, taking full advantage of the 1 kpc resolution and splitting the line of sight over 500 planes all the way to red-
shift z ∼ 7. Two methods are explored (standard projection of particles with adaptive smoothing, and integration of the acceleration
field) to ensure a good implementation. The focus is on small scales where baryons matter most.
Results. Standard cosmic shear statistics are affected at the 10% level by the baryonic component for angular scales below a few
arcminutes. The galaxy-galaxy lensing signal, or galaxy-shear correlation function, is consistent with measurements for the redshift
z ∼ 0.5 massive galaxy population. At higher redshift z & 1, the effect of magnification bias on this correlation is relevant for separa-
tions greater than 1 Mpc.
Conclusions. This work is pivotal for all current and upcoming weak-lensing surveys and represents a first step towards building a
full end-to-end generation of lensed mock images from large cosmological hydrodynamical simulations.

Key words. large-scale structure of Universe – gravitational lensing: weak – methods: numerical

1. Introduction

Gravitational lensing has become a versatile tool for prob-
ing the cosmological model and scenarios of galaxy evolution.
From the coherent distortions, generated by the intervening mat-
ter along the line of sight, of the last scattering surface (e.g.
Planck Collaboration VIII 2018) or intermediate-redshift galax-
ies (Bartelmann & Schneider 2001; Kilbinger 2015), to the inner
parts of massive galaxies (Treu 2010), lensing directly mea-
sures the fractional energy density in matter of the Universe.
Because it does not rely on assumptions about the relative dis-
tribution between the galaxies and the underlying dark mat-
ter (DM), which drives the dynamical evolution of cosmolog-
ical structures, weak lensing plays a key role in recent, ongo-
ing, or upcoming ground-based imaging surveys, such as the
Canada France Hawaii Lensing Survey (Heymans et al. 2012),
the Dark Energy Survey (Dark Energy Survey Collaboration
2005; Abbott et al. 2016), the Kilo-Degree Survey (KiDS:
Kuijken et al. 2015), the Hyper Suprime-Cam Subaru Strate-
gic Survey (Miyazaki et al. 2012), and the Large Synoptic
Survey Telescope (LSST Science Collaborations 2009). It is also
at the centre of the planned Euclid and WFIRST satellites
(Laureijs et al. 2012; Spergel et al. 2015).

The statistical power of these experiments dramatically
increases and drives on its way enormous efforts for the con-
trol of systematic effects. One of them concerns the accuracy
to which theoretical predictions on the statistical properties of
the matter distribution when it has evolved into the non-linear
regime can be made on a small scale. Arguably, cosmologi-
cal N-body numerical simulations have been playing a key role
in solving the complex dynamical evolution of DM on scales
smaller than a few Megaparsec (e.g. Springel et al. 2006). The
upcoming Euclid or LSST missions require an extreme accu-
racy on the matter density power spectrum and the associ-
ated covariances that may enter a likelihood analysis of these
data. The effort is currently culminating with the Flagship sim-
ulation, for instance (Potter et al. 2017). It also motivated ear-
lier very large simulations such as Horizon-4π (Teyssier et al.
2009; Pichon et al. 2010), DEUS (Rasera et al. 2010), or MICE
(Fosalba et al. 2015a), however. It has early been envisioned
to propagate light rays through such DM simulations in order
to reproduce the deflection and distortions of light bundles in
a lumpy universe. The motivation is to derive lensing observ-
ables such as convergence maps and one-point probability dis-
tribution functions of this field or its topological properties
(peaks, voids, etc.) or two-point shear correlation functions
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(Jain et al. 2000; Pichon et al. 2010; Hamana & Mellier 2001;
Vale & White 2003; Hennawi & Spergel 2005; Hilbert et al.
2007, 2009; Sato et al. 2009). Much progress has since been
made on large and mildly non-linear scales with the production
of full-sky maps with an angular resolution of a few arcminutes
(e.g. Fosalba et al. 2015b; Giocoli et al. 2016; Takahashi et al.
2017).

In order to make the most of the upcoming surveys, the mat-
ter distribution for Fourier modes as large as k ∼ 10 h Mpc−1

must be predicted to the percent accuracy, which today still
represents a challenge (Schneider et al. 2016). Furthermore,
at these scales, the physics of baryons can differ from the
dynamics of DM, and even though it amounts to ∼17% of
the total cosmological matter budget, it has to be taken into
account (van Daalen et al. 2011). For weak-lensing statistics,
Semboloni et al. (2011) showed that the modelling of the two-
point shear correlation function can be significantly biased when
the baryons are simply treated like the collision-less DM. Even
the number of convergence peaks itself is altered by baryons, but
to a lesser extent than the power spectrum (Yang et al. 2013).

Recently, significant progress has been made on hydro-
dynamical simulations, which are now able to reproduce a
morphological mix of galaxies in a cosmological context by con-
sidering baryonic physics such as radiative cooling, star forma-
tion, and feedback from supernovae and active galactic nuclei
(AGN). Despite the balancing act that is required to be achieved
between the high-resolution needs for properly describing the
galaxies that formed at the centre of DM halos and the necessity
of simulating sizeable cosmological volumes, recent simulations
such as Horizon-AGN (Dubois et al. 2014), Illustris/Illustris-
TNG (Vogelsberger et al. 2014; Pillepich et al. 2018), or
EAGLE (Schaye et al. 2015) have now reached volumes of about
100 Mpc on a side and a resolution of about 1 kpc. This opens
the possibility to quantify the effect of baryons (experiencing
adiabatic pressure support, dissipative cooling, star formation,
feedback, etc.) on the total matter distribution and its effect
on lensing cosmological observables (see e.g. van Daalen et al.
2011; Tenneti et al. 2015; Hellwing et al. 2016; Springel et al.
2018; Chisari et al. 2018). Prescriptions to account for this
effect (e.g. Semboloni et al. 2013; Schneider & Teyssier 2015;
Mead et al. 2015; Rabold & Teyssier 2017) have been explored,
and some start to be incorporated into cosmic shear studies
(Hildebrandt et al. 2017).

In this paper, we further investigate the effect of baryons on
lensing observables in the Horizon-AGN simulation. By taking
advantage of the lightcone that is generated during the simu-
lation run, we are able to fully account for projection effects
(mixing physical scales) and small-scale non-linearities occur-
ring in the propagation of light rays (e.g., Born approximation,
lens-lens coupling, corrections for shear – reduced shear) that
may be boosted by the steepening of the gravitational potential
wells that are caused by cooled gas that sinks to the bottom of
DM halos. This extends the analysis of Chisari et al. (2018), who
mostly focused on the effect of baryons on the three-dimensional
matter power spectrum and compared the Horizon-AGN results
with those of Illustris, OWLS, EAGLE, and Illustris-TNG and
found a broad qualitative agreement. The common picture is
that hot baryons that are prevented from sinking into halos like
DM induce a deficit of power inside halos (in a proportion of
about Ωb/ΩM), and at still smaller scales (k & 30 h Mpc−1),
baryons in the form of stars (and to a lesser extent, cooled
gas) dramatically boost the amplitude of density fluctuations.
However, even though these results seem to converge from
one simulation to another, they substantially depend on the

assumptions about sub-grid physics, and in particular, about
AGN feedback.

In addition to these encouraging successes at quantify-
ing the nuisance of baryons on cosmological studies, hydro-
dynamical simulations entail a wealth of information on the
relation between galaxies or galaxy properties and the halo
they live in. It is therefore a way to understand the large-
scale biasing of these galaxies with respect to the overall total
matter density field. We also explore the small-scale relation
between galaxies and their surrounding gravitational poten-
tial that sources the lensing deflection field. In particular, the
correlation between galaxies and the tangential distortion of
background sources (so-called galaxy-galaxy lensing signal,
GGL) has proven to be a way to constrain the galaxy-mass
correlation function (e.g. Brainerd et al. 1996; Guzik & Seljak
2001; Mandelbaum et al. 2006, 2013; Leauthaud et al. 2012;
Velander et al. 2014; Hudson et al. 2015; Coupon et al. 2015). In
this vein, Velliscig et al. (2017) recently showed that the GGL
around z ∼ 0.18 galaxies in the EAGLE simulation is consis-
tent with the GGL measured around the Galaxies And Mass
Assembly (GAMA) groups using KiDS data (Dvornik et al.
2017).

Finally, subtle observational effects entering GGL by high-
redshift deflectors (z & 0.8) are investigated from the lensing
information over the full past lightcone of the Horizon-
AGN simulation. The magnification bias affecting the selection
of deflectors (Ziour & Hui 2008) complicates the interpretation
of GGL substantially. Currently, no such high-z lens sample
has been studied because even higher faintly lensed sources
that carry the shear signal are scarce, but the situation may
change with Euclid. Its slit-less grism spectroscopy will provide
a large sample of Hα emitters in the 0.9 ≤ z ≤ 1.8 redshift
range. A thorough understanding of the clustering properties
of this sample may be achieved with the GGL measurement
of this sample by using the high-z tail of the shape catalogue
obtained with the visible imager (VIS) for Euclid. Some ray-
tracing through cosmological simulations (Hilbert et al. 2009;
Fosalba et al. 2015b) has briefly mentioned some aspects of the
problem of magnification bias that was raised by Ziour & Hui
(2008). The Horizon-AGN lightcone is a good opportunity to
quantify these effects in order to correctly interpret upcoming
GGLs. In this paper, cosmic shear or GGL quantities are directly
measured from the lensing quantities obtained by ray-tracing
methods. They are not inferred from the shape of galaxies, as
is done in observations. A forthcoming paper will present the
generation of mock wide-field images including lensing dis-
tortions from the full view of Horizon-AGN lightcone and the
light emission predicted for the simulated stars, taking us one
step closer to a full end-to-end generation of mock lensing
observations.

The paper is organised as follows. Section 2 presents the
Horizon-AGN hydrodynamical simulation, the structure of its
lightcone, and some properties of the galaxy population therein.
Section 3 describes the methods we implemented to generate
the deflection field on thin lens planes and to propagate light
rays through them. Section 4 describes the one- and two-point
statistics of the resulting convergence and (reduced-)shear fields.
The validity of the ray-tracing method is quantified by compar-
ing our results with independent methods. Section 5 measures
the GGL around the galaxies in the Horizon-AGN simula-
tion. A comparison with observations is made for low-redshift
deflectors. The problem of magnification bias is investigated for
future observations of high-z GGL. Section 6 summarises our
results.
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2. Horizon-AGN simulation lightcone

2.1. Characteristics

The Horizon-AGN simulation is a cosmological hydrodynam-
ical simulation performed with RAMSES (Teyssier 2002). The
details of the simulations can be found in Dubois et al. (2014).
We first briefly summarise the main characteristics. Horizon-
AGN contains 10243 DM particles with a mass resolution of 8×
107 h−1 M� in a box of comoving size Lbox = 100 h−1 Mpc on a
side. The gravity and hydrodynamics are treated in RAMSES with
a multiscale approach with adaptive mesh refinement (AMR):
starting from a uniform 10243 grid, cells are then adaptively
refined when the mass inside the cell exceeds eight times the ini-
tial mass resolution. Cells are recursively refined (or de-refined
according to the refinement criterion) down to a minimum cell
size of almost constant 1 proper kpc (an additional level is trig-
gered at each expansion factor a = 0.1, 0.2, 0.4, 0.8). The under-
lying cosmology is a standard ΛCDM model consistent with the
WMAP7 data (Komatsu et al. 2011), with total matter density
Ωm = 0.272, dark energy density ΩΛ = 0.728, amplitude of the
matter power spectrum σ8 = 0.81, baryon density Ωb = 0.045,
Hubble constant of H0 = 70.4 km s−1 Mpc−1, and scalar spectral
index ns = 0.967.

The evolution of the gas is solved on the RAMSES grid
using a Godunov method with the approximate Harten-
Lax-van Leer-Contact Riemann solver on the interpolated con-
servative hydrodynamical quantities, which are linearly inter-
polated at cell boundaries from their cell-centred values using
a MinMod total variation diminishing scheme. In addition,
accurate models of unresolved sub-grid physics have been
implemented. The gas heating comes from a uniform UV
background that started at the re-ionisation zreion = 10
(Haardt & Madau 1996). The cooling function of the gas follows
Sutherland & Dopita (1993), from H and He collision and from
the contribution of other metals. Star formation is modelled fol-
lowing the Schmidt law (Kennicutt 1998), with a constant star
formation efficiency of 2% per free fall time. It occurs when
the density of the gas exceeds the threshold 0.1 H cm−3. The
temperature at gas densities higher than 0.1 H cm−3 is modified
by a polytropic equation of state with polytropic index of 4/3
and scaling temperature of 104 K (Springel & Hernquist 2003).
Stellar evolution is performed assuming a Salpeter (1955) initial
stellar mass function. The sub-grid physics also includes stel-
lar winds and supernova feedback in the form of heating, metal
enrichment of the gas, and kinetic energy transfer to the ambi-
ent gas (see Kaviraj et al. 2017, for more details). Finally, black
holes (BH) are created when the gas density exceeds 0.1 H cm−3,
and when no other BH lies in the close environment. They grow
by direct accretion of gas following an Eddington-limited Bondi-
Hoyle-Littleton accretion rate, and by merger when BH binaries
are sufficiently close. The AGN feedback is treated by either an
isotropic injection of thermal energy, or by a jet as a bipolar out-
flow, depending on the ratio between the Bondi and the Edding-
ton accretion rates (see Dubois et al. 2012; Volonteri et al. 2016,
for details).

The past lightcone of the simulation was created on-the-fly
as the simulation was running. Its geometry is sketched in Fig. 1.
The opening angle of the cone is 2.25 deg out to redshift z = 1
and 1 deg all the way to z = 8. These two values correspond
to the angular size of the full simulation box at these redshifts.
We can therefore safely work in the flat sky (or infinitely remote
observer) approximation. Up to z = 1, the volume of the cone
is filled with about 7 replicates of the box. Between z = 0 and
z = 4, the narrow cone contains about 14 replicates of the box,

2750 3000 3250 3500 3750

-100

-50

0

50

100

radial distance [cMpc]

tr
an

sv
er

se
 d

is
ta

nc
e 

[c
M

pc
]

Fig. 1. 2D sketch of the past lightcone around redshift z = 1 (orange
vertical line). Each mesh is a replicate of the Horizon-AGN simulation
box (bounded with cyan lines). The tiling is performed all the way up
to redshift z ∼ 8.

and the union of the two cones contains about 19 copies. This
should be kept in mind when the statistical robustness of our
results is quantified.

In order to limit projection effects, a non-canonical direction
was chosen for the past lightcone, but in order to preserve peri-
odic boundary conditions between replicates, no random rotation
was applied. Projection effects will still be present and induce
characteristic spectral distortions on large scales that must be
taken into account. Particles and AMR cells were extracted on-
the-fly at each coarse simulation time step (when all levels were
synchronized in time because a factor 2 of subcycling is used
between levels) of the simulation according to their proper dis-
tance to a fiducial observer located at the origin of the simula-
tion box. The lightcone of the simulation thus consists of 22 000
portions of concentric shells. Each of them contains stellar BH
DM particles (with their position and velocity, mass, and age),
along with AMR Eulerian cells storing the gas properties (posi-
tion, density, velocity, temperature, chemical composition, and
cell size) and the total gravitational acceleration vector.

2.2. Properties of galaxies and host halos

The AdaptaHOP halo finder (Aubert et al. 2004) was run on
the lightcone to identify galaxies from the stellar particle dis-
tribution. The local stellar particle density was computed from
the 20 nearest neighbours, and structures were selected with a
density threshold equal to 178 times the average matter den-
sity at that redshift. Galaxies resulting in fewer than 50 particles
('108 M�) were not included in the catalogue. Because the iden-
tification technique is redshift dependent, AdaptaHOP was run
iteratively on thin lightcone slices. Slices overlapped to avoid
edge effects (i.e. cutting galaxies in the extraction) and dupli-
cates were removed. In a second step, DM haloes were extracted
independently from the DM particle distribution, with a density
threshold of 80 times the average matter density, and keeping
only haloes with more than 100 particles. The centre of the halo
was temporarily defined as the densest particle in the halo, where
the density was computed from the 20 nearest neighbours. In
a subsequent step, a sphere of the size of the virial radius was
drawn around it and a shrinking sphere method (Power et al.
2003) was implemented to recursively find the centre of mass
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of the halo. In each iteration, the radius of the halo was reduced
by 10%. The search was stopped when a sphere three times
larger than our spatial resolution was reached. Each galaxy was
matched with its closest halo.

The simulation contains about 116 000 galaxies and halos in
the simulation box at z = 0, with a limit of about M∗ & 2 ×
109 M�. These yields have been extensively studied in previous
papers of the Horizon-AGN series. For instance, Kaviraj et al.
(2017) compared the statistical properties of the produced galax-
ies, showing a reasonable agreement with observed stellar mass
functions all the way to z ∼ 6. The colour and star formation his-
tories are also well recovered, and so are the BH – bulge relations
and duty-cycles of AGNs (Volonteri et al. 2016).

Following up on an earlier work (Dubois et al. 2013) that
focused on a handful of zoomed galaxy simulations with
RAMSES, Dubois et al. (2016) confirmed with a much greater
statistical significance in Horizon-AGN that the morphological
diversity of galaxies is well reproduced (fraction of rotation-
versus dispersion-supported objects, and how this dichotomy
maps into the star-forming versus quiescent dichotomy).
Taking advantage of a parallel simulation run with the same
initial conditions and in which the AGN feedback is turned off
(Horizon-noAGN), the key role of the latter in shaping the galaxy
morphology was emphasised. Furthermore, Peirani et al. (2017)
studied the effect of AGN feedback on the innermost density
profiles (stars, gas, DM, and total) and found a good agreement
of the density profile, size-mass relation, and DM fraction inside
the effective radius of galaxies with observations. In particular,
Peirani et al. (2019) showed that the innermost parts of Horizon-
AGN galaxies are consistent with strong-lensing observations of
Sonnenfeld et al. (2013) and Newman et al. (2013, 2015).

Populating the lightcone yields a volume-limited sample of
1.73 × 106 galaxies in the narrow 1 deg cone. However, a large
portion of the low-mass high-redshift galaxies would not be of
much practical use in a flux-limited survey, as shown in Fig. 2,
which plots the redshift-dependent limit in stellar mass that is
attained with several i-band apparent limiting magnitudes. This
was obtained using the COSMOS2015 photometric catalogue of
Laigle et al. (2016).

3. Ray-tracing through the lightcone

After briefly describing the basics of the propagation of light
rays in a clumpy universe and the numerical transcription of
this formalism, we now describe the ray-tracing computation in
the Horizon-AGN lightcone. Our implementation of the multi-
ple lens plane (but also the Born approximation) builds on sim-
ilar past efforts (Hilbert et al. 2008; Metcalf & Petkova 2014;
Petkova et al. 2014; Barreira et al. 2016). It has been tailored
for the post-treatment of the Horizon-AGN past lightcone, but
provided the flat-sky approximation holds, our implementation
could readily be applied to any other RAMSES lightcone output
(Teyssier et al. 2009).

As detailed below, two methods are investigated to infer
deflection angles from either the distribution of various particle-
like matter components or the total gravitational acceleration
stored by RAMSES. The light rays are then propagated plane by
plane (both within and beyond the Born approximation) for these
two different estimates of the deflection field.

3.1. Thin lens plane

We define β the (un-perturbed and unobservable) source plane
angular position and θ the observed angular position of a light
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Fig. 2. Distribution in the redshift – stellar mass plane of the 1.7 million
galaxies in the Horizon-AGN lightcone. For guidance, the stellar mass
limit for completeness is shown as well as fiducial cuts in mass that
would be obtained with a flux-limited survey of various i-band limiting
magnitudes.

ray. Considering a unique thin lens plane, the relation between
the angular position of the source β, the deflection angle α, and
the image θ is

β = θ −
Dls

Ds
α(θ), (1)

where Dls and Ds are the angular diameter distance between the
source and the lens, and between the observer and the source,
respectively. The deflection angle α(θ) is obtained by integrat-
ing the gravitational potential Φ(r) along the line of sight (here,
radial proper coordinate x3),

α(θ) =
2
c2

∫
∇⊥Φ(θ, x3) dx3. (2)

Hence, across a thin lens plane, the lensing potential φ(θ) is
related to the deflection field by the Poisson equation:

∆φ = ∇ · α ≡ 2κ, (3)

where the convergence κ is the projected surface mass density
Σ(θ) in the lens plane expressed in units of the critical density
Σcrit

Σcrit κ(θ) = Σ(θ) ≡
∫

ρ(θ, z) dz. (4)

The critical density reads

Σcrit =
c2

4πG
Ds

DlDls
, (5)

with Dl, the angular diameter distance between the observer and
the lens. In the above equations, all distances and transverse gra-
dients are expressed in physical (proper) coordinates.

A Taylor expansion of the so-called lens Eq. (1) yields the
Jacobian of the θ → βmapping, which defines the magnification
tensor (e.g. Bartelmann & Schneider 2001)

ai j(θ) =
∂β

∂θ
=

(
δi j − φ,i j

)
≡

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
, (6)

where δi j is the Kronecker symbol, and the two components γ1/2
of the complex spin-2 shear have been introduced. We note that
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subscripts following a comma denote partial derivatives along
that coordinate. Both shear and convergence are first derivatives
of the deflection field α (or second derivatives of the lensing
potential)

κ =
1
2

(α1,1 + α2,2), (7)

γ1 =
1
2

(α1,1 − α2,2), (8)

γ2 = α1,2 = α2,1. (9)

Therefore, starting from pixelised maps of the deflection
field α1/2(i, j) in a thin slice of the lightcone, we can easily derive
γ1/2(i, j) and κ(i, j) with finite differences or fast Fourier trans-
forms (FFTs), even if α is only known on a finite aperture, with-
out periodic boundary conditions. Conversely, starting from a
convergence map κ(i, j), it is impossible to integrate Eq. (3) with
FFTs to obtain α (and then differentiate again to obtain γ) with-
out introducing edge effects if the periodic boundary conditions
are not satisfied. Additionally, we also introduce the scalar mag-
nification µ, which is the inverse determinant of the magnifica-
tion tensor ai, j of Eq. (6).

3.2. Propagation of rays in a continuous lumpy universe

On cosmological scales, light rays cross many over- or under-
dense extended regions at different locations. Therefore, the
thin lens approximation does not hold. The transverse deflec-
tion induced by an infinitely thin lens plane is still given by the
above equations, but the trajectory of rays along their path needs
to be fully integrated. For a given source plane at comoving dis-
tance χs, the source plane position of a ray, initially observed at
position θ, is therefore given by the continuous implicit (Voltera)
integral equation (Jain & Seljak 1997)

β(θ, χs) = θ −
2
c2

∫ χs

0
dχ

χs − χ

χs χ
∇βφ (β(θ, χ), χ) . (10)

To first order, the gravitational potential along an unper-
turbed path can be evaluated, so that

β(θ, χs) = θ −
2
c2

∫ χs

0
dχ

χs − χ

χs χ
∇θφ (θ, χ) . (11)

This is known as the Born approximation, which is common
in many diffusion problems of physics. An interesting property
of the Born approximation is that the relation between β and
α can be reduced to an effective thin lens identical to Eq. (1)
allowing the definition of an effective convergence, which is the
divergence of the effective (curl-free) deflection field: 2κeff =
∇ · αeff .

When the approximation does not hold, the relation between
β and α can no longer be reduced to an effective potential and
some curl-component may be generated, implying that the mag-
nification tensor is no longer symmetric but requires the addition
of a rotation term ω and so-called B-modes in the shear field. In
this more general framework, the magnification tensor should be
rewritten

ai j(θ) =

(
1 − κ − γ1 −γ2 − ω
−γ2 + ω 1 − κ + γ1

)
. (12)

3.3. Multiple lens planes approximation

The numerical transcription of Eq. (10) in the Horizon-AGN past
lightcone requires the slicing of the latter into a series of paral-
lel transverse planes, which could simply be the 22 000 slabs
dumped by RAMSES at runtime every coarse time step. These are
too numerous and can safely be stacked into thicker planes by
packing together 40 consecutive slabs1. Here 500 slices of vary-
ing co-moving thickness were produced all the way to redshift
z = 7 to compute either the deflection field or the projected sur-
face mass density as described below.

The discrete version of the equation of ray propagation (10)
for a fiducial source plane corresponding to the distance of the
plane j + 1 reads

β j+1 = θ −

j∑
i=1

Di; j+1

D j+1
αi(βi), (13)

where αi is the deflection field in the lens plane i, D j+1 is the
angular diameter distance between the observer and the plane
j + 1, and Di; j+1 is the angular diameter distance between planes
i and j + 1. Therefore, as sketched in Fig. 3, rays are recursively
deflected one plane after the other, starting from unperturbed
positions on a regular grid θ ≡ β1.

The practical implementation of the recursion in Eq. (13) is
computationally cumbersome and demanding in terms of mem-
ory because the computation of the source plane positions β j+1

requires holding all the j previously computed source plane posi-
tions. Instead, this paper follows the approach of Hilbert et al.
(2009), who showed that Eq. (13) can be rewritten as a recursion
over only three consecutive planes2

β j+1 =

(
1 −

D j

D j+1

D j−1; j+1

D j−1; j

)
β j−1+

D j

D j+1

D j−1; j+1

D j−1; j
β j
−

D j; j+1

D j
α j(β j).

(14)

In addition to this thorough propagation of light rays, the
source plane positions and associated quantities (convergence κ,
shear γ, and rotation ω) were additionally computed using the
Born approximation, following the discrete version of Eq. (11):

β j+1 = θ −

j∑
i=1

Di; j+1

D j+1
αi(θ). (15)

The deflection maps in each lens plane were computed on
a very fine grid of pixels of constant angular size. In order to
preserve the spatial resolution of about 1 kpc that is allowed by
the simulation at high redshift, 36 000 × 36 000 deflection maps
were built in the narrow 1 deg lightcone. The deflection maps
in the low-redshift 2.25 sq deg wide cone that reach z = 1 were
computed on a coarser 20 000 × 20 000 pixel grid because the
actual physical resolution of the simulation at low redshift does
justify the 0.1 arcsec resolution of the narrow 1 sq deg field of
view. Even though the image plane positions θ = β1 are placed
on the regular pixel grid, the deflections they experience must be
interpolated in between the nodes of the regular deflection map
as they progress backward to a given source plane. This was done
with a simple bilinear interpolation scheme.

1 This number was chosen as a tradeoff between the typical number
of CPU cores in the servers used to perform the calculations and the
preservation of the line-of-sight native sampling of the lightcone.
2 This recursion requires the introduction of an artificial β0

≡ β1 = θ
slice in the initial setup.
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Fig. 3. Schematic view of the propagation of a light ray through a
lightcone sliced into multiple discrete lens planes. The ray (red line)
is deflected at each intersection with a thin lens plane. The deflection
field is defined for each plane depending of the angular position on this
plane α j(β j).

3.4. Total deflections from the RAMSES accelerations

We now describe how we obtained α that we used in Eqs. (14)
and (15). The first method uses the gravitational acceleration
field, which is registered on each (possibly refined) grid loca-
tion inside the lightcone. The very same gravitational field that
was used to move particles and evolve Eulerian quantities in
RAMSES was interpolated at every cell position and was therefore
used to consistently derive the deflection field. The merits of the
complex three-dimensional multi-resolution Poisson solver are
therefore preserved and the transverse components of the accel-
eration fields can readily be used to infer the deflection field. By
integrating the transverse component of the acceleration along
the light of sight, we can compute the deflection field according
to Eq. (2).

To do so, gas cells that intersect the ray were considered for
each light ray, and the intersection length along the line-of-sight
li was computed. Knowing the cell size δi, and its orientation with
respect to the line of sight, we deduced li with an oriented-box-
boundary (OBB) algorithm (e.g. Akenine-Möller et al. 2008) that
assumes that all cells share the same orientation (flat-sky approx-
imation), and we factorised out expensive dot products between
normals to cell edges and the line of sight,

α(θ) =
2
c2

∑
i∈V(θ)

∇⊥φi(θ) li, (16)

where V(θ) denotes the projected vicinity of a sky position θ.
As shown in Fig. 4, a fiducial light ray is drawn: at each lens
plane, the deviation of the light is calculated as the direct sum
of the transverse acceleration components recorded on the cells
i, weighted by the intersection length li. Here, the field of view
is small and we can safely assume that light rays share the same
orientation (flat-sky approximation) and are parallel to the line
of sight.

This method has the main advantage that it preserves the
gravitational force that was used when the simulation was
evolved. In particular, the way shot noise is smoothed out in

light ray
(θ1, θ2)

Missing cells

Cells in excess

lightcone slice at tlightcone slice at t+dt

Time

l1 l2 l3

Fig. 4. Schematic view of the problem induced by cells at the boundary
of slabs j and j + 1, which become refined between time t and t + dt.
Missing cells (devoid of dots) or cells in excess (overlapping dotted
cells of different colour) can end up as lightcone particles. A fiducial
light ray is drawn to illustrate the intersection length li between the ray
and RAMSES cells.

the simulation to recover the acceleration field from a mix-
ture of Lagrangian particles and Eulerian gas cells is faithfully
respected in the ray-tracing. In other word, the force felt by pho-
tons is very similar to the force felt by particles in the simulation.
Acceleration is also local, in the sense that the deflection experi-
enced by a light ray (and related derivatives leading to e.g. shear
and convergence) depends only on the acceleration of cells that
this ray crosses. The mass distribution outside the lightcone is
therefore consistently taken into account through the accelera-
tion field.

However, this method is sensitive to small artefacts that are
present at the lightcone generation stage (i.e. simulation run-
time) and that could not be corrected without a prohibitive post-
processing of the lightcone outputs. When the simulation dumps
two given neighbouring slabs at two consecutive time steps,
problems can arise if cells on the boundary between the two slabs
have been (de-)refined in the mean time. As illustrated in Fig. 4,
such cells can be counted twice or can be missing if they are
refined (or de-refined) at the next time step. These bumps and
dips in the deflection map translate into saw-tooth patterns in
the convergence maps. They are quite scarce and of very modest
amplitude, however.

A 100 arcsec wide zoom into the convergence map obtained
with this method is shown in the left panel of Fig. 5. The source
redshift is zs = 0.8. A few subdominant artefacts due to miss-
ing acceleration cells are spotted. They induce small correlations
on scales smaller than a few arcseconds and are otherwise com-
pletely negligible for our cosmological applications.

3.5. Projection of smoothed particle density

The second method of computing the deflection maps in thin
lens planes is more classical: it relies on the projection of parti-
cles onto surface density maps that are then turned into deflec-
tion maps. If the line-of-sight integration is performed under the
Born approximation, the Fourier inversion going from the pro-
jected density to the deflection is just done once starting from
the effective convergence. Otherwise, with the full propagation,
many FFT inversions on projected density maps that do not fulfil
the periodic boundary condition criterion imply an accumulation
of the inaccuracies in the Fourier inversion.
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Fig. 5. Comparison of zs = 0.8 convergence maps obtained with the OBB method (integration of transverse accelerations in cells, left) and with
the SPL method (projection of particles onto convergence planes after adaptative Gaussian smoothing, right). The latter method applies a more
aggressive smoothing that better erases shot noise. Inaccuracies of long-range deflections in the SPL method that are due to edge effects translate
into a global shift for some galaxies, as compared to OBB. With this method, some missing acceleration cells occasionally produce modest artefacts
on a small scale.

First of all, this method allows us to separate the contribution
of each matter component from the total deflection field. We can
therefore compute the contribution of stars or gas to the overall
lensing near a given deflector. This is not possible with the accel-
eration method because only the total acceleration is computed
by the simulation.

In addition, particles can be projected with an efficient and
adaptive smoothing scheme. Instead of a standard nearest grid
point or cloud-in-cell projection, a Gaussian filter (truncated at
four times the standard deviationσ) is used in which the width of
the smoothing filter σ is tuned to the local density, hence follow-
ing the smooth particle lensing (SPL) method of Aubert et al.
(2007). Because the AMR grid of RAMSES is adaptive, the
resolution level around a given particle position from the neigh-
bouring gas cells can be recovered. This thus bypasses the time-
consuming step of building a tree in the distribution of particles,
which is at the heart of the SPL method.

To illustrate the merits of this method and for comparison
with the previous one, we show the same region of simulated
convergence fields for a source redshift zs = 0.8 in the right panel
of Fig. 5. This adaptive Gaussian smoothing (referred to as SPL
method below) seems more efficient at smoothing the particle
noise out. Between the two methods, we note small displace-
ments of some galaxies of a few arcseconds. They are due to the
long-range inaccuracies generated by the Fourier inversions.

3.6. Lensing of galaxy and halo catalogues

In order to correlate galaxies (or halos) in the lightcone with
the convergence or shear field around them and, hence, mea-
sure their GGL, their catalogue positions β (which are intrinsic
source plane coordinates) need to be shifted and their observed
lensed image plane positions θ need to be inferred. These are
related by the thorough lens Eq. (10), or its numerical transla-
tion (13). However, this equation is explicit only for the θ → β
mapping. The inverse relation, which can be multi-valued when

strong lensing occurs, has to be solved numerically by testing
for every image plane mesh θi j whether it surrounds the coordi-
nates βgal of the deflected galaxy when cast into the source plane
βi j (e.g. Schneider et al. 1992; Keeton 2001; Bartelmann 2003).
Because the method should work in the strong-lensing regime,
regular rectangular meshes may no longer remain convex in the
source plane and it is therefore preferable to split each mesh
into two triangles. These triangles will map into triangles in the
source plane and we can safely test whether βgal is inside them.
In order to speed up the test on our large pixel grids, the image
plane was partitioned into a quad-tree structure that recursively
explores finer and finer meshes. The method is very fast and
yields all the image plane antecedents of a given galaxy position
βgal. This provides us the updated catalogues of halos and galax-
ies. Obviously, when the GGL signal is measured in the Born
approximation, catalogue entries do not need to be deflected
and therefore source plane and image plane coordinates are
identical.

3.7. Summary of the generated deflection maps

Table 1 summarises the main advantages and drawbacks of the
OBB and SPL methods. Altogether, 2 × 2 (OBB/SPL and Born
approximation/full propagation) deflection maps were generated
for each of the 246 source planes all the way to z = 1 in the
wide opening angle field. Likewise, we obtained 2 × 2 maps for
each of the 500 source planes all the way to z = 7 in the narrow
opening angle field.

4. Cosmic shear

This section assesses the validity of our ray-tracing methods by
measuring one- and two-point statistics of the lensing quantities
such as convergence and (reduced-)shear. It also compares these
finding with other methods.
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Table 1. Summary of the main properties of the SPL and OBB methods ray-tracing methods.

OBB SPL

Deflection (per plane) Integration of transverse acceleration Particles adaptively smoothed and projected
onto density planes

Large scale Matter outside the lightcone is taken into account Edge effects due to Fourier transforms
Small scale Uses the multi-scale RAMSES potential Smoothing reduces small-scale features

Cells missing/in excess Produces small-scale artefacts Unaffected
Matter component Only for the total matter Can individually consider DM, stars, and gas
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Fig. 6. Left panel: convergence map generated with a 0′′.1 pixel grid over a 2.25 × 2.25 sq. deg. field of view for a fiducial source plane at zs ∼ 1.
Right panel: convergence map with a field of view of 1 sq. deg. at zs ∼ 2, and its corresponding convergence PDF showing the characteristic
skewed distribution.

The focus is on the effect of baryons on small scales for mul-
tipoles ` & 2000 to check whether the baryonic component is
connected to other non-linear effects like the shear – reduced
shear correction and beyond-Born treatments.

4.1. Convergence of one-point statistics

The most basic quantity that can be derived from the conver-
gence field shown in the right panel of Fig. 6 is the probability
distribution function (PDF) of the convergence. The Fig. 6 shows
this quantity, which is extremely non-Gaussian at the ∼1′′ reso-
lution of the map. The skewness of the field is visible, with a
prominent high-end tail and a sharp decrease in negative conver-
gence values.

4.2. Convergence power spectrum

In Fourier space, the statistical properties of the convergence
field are commonly characterised by its angular power spectrum
Pκ(l),

〈κ̂(`) κ̂∗(`′)〉 = (2π)2 δD(` − `′) Pκ(`), (17)

where δD(` is the Dirac delta function. For two fiducial source
redshifts (zs = 0.5 and zs = 1), Fig. 7 shows the angular power
spectrum of the convergence obtained with the two ray-tracing
techniques: the OBB and SPL methods (solid magenta and solid
cyan curves, respectively). The low-redshift methods are based
on the 2.25 deg wide lightcone. They are thus more accurate on
larger scales ` . 103, even though the large sample variance
will not permit quantitative statements. On small scales (` ∼ 2 ×
105), the additional amount of smoothing implied by the SPL
projection of particles onto the lens planes induces a deficit of
power with respect to the less aggressive softening of the OBB
method in which shot noise has not been entirely suppressed (see
Fig. 5).

The middle panel of Fig. 7 shows the difference between
power spectra inferred using the Born approximation or with
the full multiple lens plane approach for the OBB method. For
angular scales ` . 8 × 104, we find differences between the two
propagation methods that are smaller than about 0.5%, which
is totally negligible given possible numerical errors and sam-
pling variance limitations. At lower angular scales ` & 105,
departures rise above the few percent level. We note that this
scale also corresponds to the scale where shot noise (from
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Fig. 7. Upper panel: convergence power spectra for source redshift
zs = 1 (top) and zs = 0.5 (bottom) derived with the OBB (magenta) and
the SPL (green) methods. The more aggressive smoothing of this latter
method translates into a faster high-` fall-off. The cyan curves (DM)
only account for the DM component (rescaled by 1 + Ωb/ΩM). The red
curve corresponds to the direct integration of the three-dimensional total
matter power spectrum (Limber approximation) in the Horizon-AGN
simulation (Hz-AGN). The blue curves are the direct integration of
the Horizon-DM (DM-only) matter power spectrum (Hz-DM). Dashes
reflect regimes where the three-dimensional spectra of Chisari et al.
(2018) were extrapolated by a simple power law (extrapolation). The
yellow lines show the particle shot-noise contribution at two differ-
ent redshifts. Middle panel: ratio of the zs = 0.5 convergence power
spectra obtained with the Born approximation and the proper multiple
lens plane integration showing only very small changes up to ` ∼ 105.
Bottom panel: ratio of the DM-only to total convergence power spectra
at zs = 0.5, 1.0, and 1.5 for the SPL method.

DM particles) and convergence power spectral are of equal
amplitude (yellow shaded area). Below these very small scales,
close to the strong-lens regime, the Born approximation may
start to break down (Schäfer et al. 2012).

Under the Limber and Born approximations, the conver-
gence power spectrum can be expressed as an integral of the
three-dimensional non-linear matter power spectrum Pδ (Limber
1953; Blandford et al. 1991; Miralda-Escudé 1991; Kaiser 1992)
from the observer to the source plane redshift or corresponding
co-moving distance χs:

Pκ(`) =

3ΩmH2
0

2c2

2 ∫ χs

0
dχ

(
χ(χs − χ)
χsa(χ)

)2

Pδ

(
`

χ
, χ

)
, (18)

where a is the scale factor and where no spatial curvature
of the universe was assumed for conciseness and because the
cosmological model in Horizon-AGN is flat. As a validation
test of our light-deflection recipes, the lensing power spectrum
derived from the actual ray-tracing was compared to an inte-
gration of the three-dimensional matter power spectrum mea-
sured by Chisari et al. (2018) in the Horizon-AGN simulation
box. The red curve is the direct integration of Pδ(k) power spec-
tra, and the dashed parts of the lines corresponds to a power-law

extrapolation of the Pδ(k) down to smaller scales. In the range
3000 . ` . 3 × 105, an excellent agreement is found between
the red curve and the spectra inferred with our two ray-tracing
techniques. On larger scales, the cosmic variance (which is dif-
ferent in the full simulation box and the intercept of the box with
the lightcone) prevents any further agreement. This is also the
case for ` & 3 × 105 , where some possibly left-over shot noise
in the ray-tracing maps and the hazardous high-` extrapolation
of the three-dimensional power spectra complicate the compari-
son. In addition, the low-` oscillations of the spectrum is likely
to originate from the replicates of the simulation box throughout
the past lightcone.

Chisari et al. (2018) also measured matter power spectra in
the Horizon-DM simulation at various redshifts. This simulation
is identical to Horizon-AGN in terms of initial conditions, but
has been run without any baryonic physics in it after the mass
of DM particles was rescalded to conserve the same total mat-
ter density (Peirani et al. 2017; Chisari et al. 2018). The inte-
gration of this DM-only power spectrum allows us to obtain a
sense on the effect of baryons in the DM-distribution itself. In
the same way as the red curve showed the result of the Lim-
ber integral in Eq. (18) for Horizon-AGN, the dark blue curve
shows the same integral for Horizon-DM. The latter has much
less power for ` & 2 × 104 than either the integration of the
full physics Horizon-AGN matter power spectrum (red) or that
derived directly from ray-tracing (purple or green). The boost of
spectral amplitude is due to cool baryons in the form of stars
at the centre of halos. Moreover, we note a deficit of power
on scales 2 × 103 . ` . 2 × 104 for the full physics sim-
ulation. As pointed out by Semboloni et al. (2011), the pres-
sure acting on baryons prevents them from falling onto halos
as efficiently as DM particles, hence reducing the depth of the
potential wells when compared to a DM-only run. This effect
has previously been investigated with more sensitivity on the
three-dimensional matter power spectrum in the Horizon-AGN
simulation (Chisari et al. 2018), and a clear dip in the matter den-
sity power spectrum of the full physics simulation is observed
on scales 1 . k . 10 h Mpc−1. Here, the projection some-
what smears out this dip over a larger range of scales, but a
∼15% decrease in amplitude is typically observed for ` = 104

at zs = 0.5. In order to show the changes due to the inclu-
sion of the baryonic component more clearly, we traced rays
through the lightcone by considering only the DM particles of
the Horizon-AGN run with the SPL method. For this particu-
lar integration of rays trajectories, we multiplied the mass of the
DM particules by a factor 1 + Ωb/ΩDM (where ΩDM = Ωm −Ωb)
to obtain the same overall cosmic mean matter density. The cyan
curve in the upper panel shows the resulting convergence power
spectrum. The ratios between the total full physics convergence
power spectrum and the rescaled DM contribution of this power
spectrum at zs = 0.5, 1.0 and 1.5 are shown in the bottom panel
and further illustrate the two different effects of baryons on inter-
mediate and small scales.

By considering two raytracing methods to derive the conver-
gence power spectrum, and by asserting that consistent results
are obtained by integrating the three-dimensional matter power
spectrum, we now search for small scale effects that involve the
possible coupling between the baryonic component and shear –
reduced shear corrections.

4.3. Shear – reduced shear corrections to two-point functions

In practical situations, rather than the convergence power spec-
trum, which is not directly observable, wide field surveys give
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Fig. 8. Upper panel: two-point shear correlation functions ξ+ (solid
lines) and ξ− (dotted lines) for a fiducial source redshift zs = 0.5. We
either correlate actual shear (red) or reduced shear (green) in the calcu-
lation to highlight the small-scale effect of baryons on this non-linear
correction. Middle panel: ratio of shear correlation functions for the
two cases. Bottom panel: ratio of shear correlation functions for a ray-
tracing that only includes rescaled DM particles or all the components.

access to the angular correlation of pairs of galaxy ellipticities.
The complex ellipticity3 ε is directly related to the shear γ. The
relation between the ensemble mean ellipticity and the shear is

〈ε〉 = g ≡
γ

1 − κ
' γ, (19)

with g the so-called reduced shear. Therefore, the two point cor-
relations of ellipticities and shear only match when the conver-
gence κ is small. Because the regions of large convergence are
typically the centres of halos where the contribution of cooled
baryons is highest, we might expect a coupling between the
inclusion of baryons and the shear – reduced-shear corrections
needed to properly interpret the cosmological signal carried by
the two-point statistics (e.g. White 2005; Kilbinger 2010)

Owing to the spin-2 nature of ellipticity, we can define the
angular correlation functions ξ±

ξ±(θ) = 〈γ+(ϑ + θ)γ+(ϑ)〉ϑ ± 〈γ×(ϑ + θ)γ×(ϑ)〉ϑ,

= 2π
∫

d` `J0/4(θ`)Pκ(`), (20)

where γ+ and γ× are defined with respect to the separation vector
between two galaxies or, here, any two image plane positions
at separation θ. J0 and J4 are zeroth- and fourth-order Bessel
functions.

Instead of the shear, observers can only measure associated
ellipticities ε, which should thus replace γ in Eq. (20) in practical
measurements. The reduced shear maps were computed together
with shear and convergence maps, so as to measure the modified

3 ε = (a − b)/(a + b)e2iϕ, with a and b the major and minor axis of a
given galaxy, respectively, and ϕ is the orientation of the major axis.

ξ+ and ξ− angular correlations to compare them with the actual
correlation functions. For efficiency, the Athena code4 was used
to compute correlation functions.

The results are shown in Fig. 8 for a fiducial source red-
shift zs = 0.5. Here ξ

g
+ and ξ

γ
+ only depart from one another

at the ∼2−3% level on angular separations ∼1′. The effect is
slightly stronger for ξ− , which is known to be more sensitive
to smaller non-linear scales than ξ+, but is also more difficult
to measure in the data because of its lower amplitude. On 1′
scales, ξg−/ξ

γ
− − 1 ' 7−8%. Like for the power spectra in the

previous subsection, the cyan curves represent the correlations
ξ
γ
± for the rescaled DM contribution. The bottom panel shows

the ratio of rescaled DM over full physics reduced shear correla-
tion functions, further illustrating the effect of baryons on small
scales. Again, ξ− responds more substantially to the inclusion of
baryons. The deficit of correlation amplitude when baryons are
taken into account peaks at 3−4′ and is of about 10%. Below 1′,
the effect starts to increase, but those scales are never used in
practical cosmic shear applications. We show in the next section
that these scales remain perfectly relevant for galaxy evolution
studies by means of the galaxy-galaxy weak-lensing signal.

5. Galaxy-galaxy lensing

Focussing further on DM halos, we now investigate the yields
of the simulation in terms of the galaxy-galaxy weak-lensing
signal. The tangential alignment of background galaxies around
foreground deflectors is substantially altered by the aforemen-
tioned baryonic physics, and we also expect a strong signature
in this particular lensing regime.

For a circularly symmetric mass distribution Σ(R), we can
relate shear, convergence, and the mean convergence enclosed
inside a radius R centred on a foreground galaxy or halo as

κ̄(<R) =
2

R2

∫ R

0
κ(R′)R′dR′ = κ(R) + γ(R). (21)

Using the definition of the critical density given in Eq. (5),
we can define the excess density

∆Σ(R) =
M(<R)
πR2 − Σ(R),

= Σcritγ(R). (22)

The previous section has shown that the lensing conver-
gence or shear maps have adequate statistical properties, and in
Sect. 3.6 we showed how to use the associated deflection maps
to map our lightcone galaxy catalogue into the image plane. In
addition, galaxies are also expected to become magnified when
lensed. Future extensions of this work will include the realistic
photometry of the Horizon-AGN galaxies. We can easily account
for the magnification bias by multiplying stellar masses by the
magnification µ, however, as if luminosity or flux were a direct
proxy for stellar mass. In the following, we refer to M∗ for the
intrinsic and µM∗ for the magnified mass proxy.

For any given source redshift, we average the tangential
shear around galaxies of any given stellar mass M∗ (or more
realistically magnified stellar mass µM∗), in order to estimate
the GGL around Horizon-AGN galaxies. This is done around
deflected galaxy positions.

4 http://www.cosmostat.org/software/athena

A72, page 10 of 14

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834199&pdf_id=8
http://www.cosmostat.org/software/athena


C. Gouin et al.: Ray-tracing through the Horizon-AGN lightcone

5.1. Comparison with CMASS galaxies

We first compared the GGL around Horizon-AGN galaxies
with the GGL excess mass profiles obtained by Leauthaud et al.
(2017), who analysed the spectroscopic CMASS sample of
massive galaxies in the footprint of the CFHTLS and CS82
imaging surveys, which covered ∼250 deg2. These authors paid
particular attention to quantifying the stellar mass of the CMASS
galaxies that are centred around lens redshift z ∼ 0.55. The
CMASS sample is not a simple mass selection, and includes a
set of colour cuts, which makes this just a broad comparison.
These results are somewhat sensitive to the detailed distribution
in stellar mass above that threshold. The sample mean mass only
slightly changes with redshift, but remains close to 3 × 1011 M�.

In order to match this lens sample, we extracted from the
wide low-redshift lightcone the galaxies in the redshift range
0.4 ≤ z ≤ 0.70, and with a stellar mass above a threshold that was
chosen to match the CMASS mean stellar mass. Even though
these galaxies centred around lens redshift z ∼ 0.52 were treated
as lens galaxies, they experience a modest amount of magnifi-
cation (they behave like sources behind the mass distribution at
yet lower redshift, see Sect. 5.2). We therefore chose galaxies
that satisfy µM∗ > 1.7 × 1011 M�. At this stage, selecting for M∗
or µM∗ does not make any significant difference (.4%) because
of the relatively low redshift of the lens sample. By doing so,
we obtained the same sample mean stellar mass as the CMASS
sample.

We then measured the mean tangential shear around these
galaxies for a fiducial unimportant source redshift zs = 1 and
converted shear into excess density ∆Σ. The result is shown
in Fig. 9. A good agreement between our predictions (OBB
method, green with lighter envelope) and the observations of
Leauthaud et al. (2017) (blue dots) is found, further suggesting
that Horizon-AGN galaxies live in the correct massive halos
(Mh ' 1013 M�), or at the very least, produce the same shear
profile as CMASS galaxies around them. We note that we split
the 2.25 deg field of view into four quadrants and used the dis-
persion in these areas to compute a rough estimate of the model
uncertainties.

On scales R . 0.2 h−1 Mpc, the shear profile is 10−15%
above the observations. Answering whether the discrepancy is
due to faulty subgrid baryonic physics, a missing cosmologi-
cal ingredient (or not perfectly adequate cosmological param-
eters), or leftover systematics in the data will certainly require
more GGL observations, possibly combined with yet smaller
scale strong-lensing and kinematical data (e.g. Sonnenfeld et al.
2018). Small-scale GGL clearly is a unique tool for addressing
these issues (e.g. Velliscig et al. 2017), and asserting that the
galaxy-halo connection is correctly reproduced by the simula-
tions all the way to z & 1 is arguably one of the foremost goals
of galaxy formation models.

Figure 9 also shows our GGL results for the same popula-
tion of lenses at the same redshift, but as inferred from the SPL
method (solid black), which allows us to split the total lensing
signal into its DM (blue and baryonic components (red). First of
all, the agreement between the two methods for the total lensing
signal is remarkable, except on scales &2 Mpc∼ 5′ , where dif-
ferences begin to exceed the percent level. As we described in
the previous section, this is due to inaccuracies of the Fourier
transforms performed with the SPL method. We can use this
latter technic to compare the contribution of DM and baryons
(stars+gas), however. Clearly, the total and DM profiles look
very similar beyond ∼0.2 Mpc up to a ∼17% renormalisation of
the matter density. Only below these scales begin cooled baryons
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Fig. 9. Comparison of the GGL tangential shear signal around z = 0.55
Horizon-AGN galaxies (green curve surrounded by a light green rib-
bon) and the GGL observations of Leauthaud et al. (2017) (blue dots
with error bars). Units are all physical (and not comoving!). Model
uncertainties in the simulation past lightcone are roughly estimated by
splitting the 2.25 deg wide field of view into four quadrants. They may
be underestimated beyond 1 h−1 Mpc. Cuts in stellar mass are expressed
in units of 1011 M�. Black, blue, and red curves show the GGL shear
signal predicted with the SPL method for the total, DM, and baryonic
mass distributions, respectively. For clarity, uncertainties are omitted.
They are similar to those in the case of the OBB method (green).

(stars) to contribute substantially. We predict an equal contri-
bution of DM and stars to the total shear signal near a radius
∼15 kpc. We refer to Peirani et al. (2017) for further details about
the innermost density profiles around Horizon-AGN galaxies in
the context of the cusp-core problem.

5.2. High-redshift magnification bias

For zl & 0.6, the lens population begins to be lensed by yet nearer
structures. This can lead to a magnification bias, which was stud-
ied by Ziour & Hui (2008).

The spatial density of a lensed population of back-
ground sources can be enhanced or decreased by magni-
fication as light rays travel through over- or under-dense
sight-lines (e.g. Moessner & Jain 1998; Moessner et al. 1998;
Ménard & Bartelmann 2002; Scranton et al. 2005). Further-
more, the fraction of sources that are positively or negatively
magnified depends on the slope of the luminosity function of
the population. If it is very steep (typically the bright end of a
population), we can observe a dramatic increase in the number
of bright lensed objects. These deflectors appear brighter than
they actually are Fig. 10 shows the mean magnification experi-
enced by Horizon-AGN lightcone galaxies above a given stellar
mass threshold (mimicking a more realistic flux limit) as a func-
tion of redshift and minimum mass. The upper panel does not
take into account the effect of magnification bias, whereas the
lower panel does. Those that are consistently magnified and pass
a given threshold (bottom panel) are slightly magnified on aver-
age, whereas the top panel only shows a tiny constant µ ∼ 1−3%
systematic residual magnification. This residual excess does not
depend on wether the SPL or OBB method are used, or whether
we properly integrate rays or use the Born approximation. This
is likely because the replicates of the simulation box fill up the
lightcone, which slightly increases the probability of rays leav-
ing an over-dense region to cross other over-dense regions on
their way to the observer. This residual magnification is however
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Fig. 10. Average magnification experienced by presumably foreground
deflectors including (bottom) or excluding (top) for magnification bias
effect that mostly affects the rapidly declining high end of the stellar
mass function. Without magnification bias, a flat nearly unity mean
magnification at all redshifts is recovered to within ∼1%. When the
magnification bias is turned on, as expected in actual observations, no
rapid rise is found (∼10% at z ∼ 1 for the most massive or luminous
galaxies). Cuts in stellar mass are expressed in units of 1011 M�.

tiny for sight-lines that are populated by galaxies, and it com-
pletely vanishes for rays coming for random positions.

The massive end of the galaxy stellar mass function appears
tobe significantly magnification biased. A ∼8% effect for galax-
ies at 0.6 ≤ z ≤ 1.2 and M∗ & 2 × 1011 M� is typical. It can be
as high at ∼20−50% at 1.5 ≤ z ≤ 2 for µM∗ & 3 × 1011 M�.
A thorough investigation of the effect of this magnification bias
when we try to place constraints on the high end of the z & 2
luminosity function from observations is left for a forthcoming
paper.

Taking the magnification bias into account, we now explore
three fiducial populations of massive deflectors to highlight the
changes induced in the projected excess density profiles. The
first population consists of the CMASS galaxies at z = 0.54
and µM∗ ≥ 1.7 × 1011 M�, the second case corresponds to the
same lower limit on the mass, but pushed to z = 0.74. In both
cases, the excess density is measured for source redshift zs = 0.8.
The last lens sample corresponds to the population of Hα emit-
ters in the 0.9 ≤ z ≤ 1.8 redshift range that will be detected
by the Euclid slit-less grism spectrograph above a line flux of
∼2 × 10−16 erg s−1 cm−2. About 2000 such sources per square
degree are expected; therefore the 2000 most massive Horizon-
AGN lightcone sources are picked in that redshift interval to
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Fig. 11. Upper panel: effect of magnification bias on GGL for several
high-z fiducial lens samples showing an increase in excess density ∆Σ
(or tangential shear) for R & 1 Mpc. Solid curves ignore the magnifica-
tion, whereas dotted lines account for it. Lower panel: dependence of
this effect on the source redshift. In both panels, cuts in stellar mass are
expressed in units of 1011 M�.

crudely mimic an Hα line flux selection. To account for magnifi-
cation bias, the selection was also made on µM∗, and the source
redshift for this populations was set to zs = 2. Results for these
three populations are shown in the top panel of Fig. 11, where
we distinguish the excess density profiles that include (dotted) or
exclude (solid) for magnification. As anticipated, no significant
change is obtained for the z = 0.54 CMASS-like sample (green),
but differences are more noticeable as lens redshift increases, and
on large scales (R & 1 Mpc), we observe a 20−50% increase in
∆Σ, consistent with the large-scale linear scale-invariance bias
model used by Ziour & Hui (2008). Between z = 0.54 and
z = 0.74, galaxies of the same mass seem to live in halos of the
same mass (very little evolution of the M∗ − Mh relation), lead-
ing to no evolution of ∆Σ below ∼200 kpc. The only difference
occurs farther out where the two-halo term starts to be important
in this galaxy-mass correlation function. There, galaxies of the
same mass at z = 0.54 and z = 0.74 live in rarer excursions of
the initial density field, and are thus more highly biased, which
leads to an increase of ∆Σ on the large scale. For the Euclid-like
distant lens population, the trend is similar, and the amplitude
of the magnification bias effect would suggest a bias of the lens
population about 30% higher than it really is.

The lower panel of Fig. 11 shows the evolution of the
magnification-bias-induced excess density profile with source
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redshift for massive deflectors at z = 0.74. In principle, accord-
ing to Eq. (22), the excess density should not depend on source
redshift. However, the magnification bias favours over-densities
in front of deflectors. The response of distance sources carry-
ing shear to these over-densities will depend on the source red-
shift in a way that is not absorbed by Eq. (22). Hence, a scale-
dependent distortion of the profiles is observed. The closer the
source redshift from the deflector, the smaller the scale it kicks
in. As already stressed by Ziour & Hui (2008), this hampers a
direct application of shear-ratio tests with high-redshift deflec-
tors (e.g. Jain & Taylor 2003).

6. Summary and prospects

Using two complementary methods for projecting the density
or gravitational acceleration field from the Horizon-AGN light-
cone, we propagated light rays and derived various gravitational
lensing observables in the simulated field of view. The simu-
lated area was 2.25 deg2 out to z = 1 and 1 deg2 all the way to
z = 7. The effect of baryons on the convergence angular power
spectrum Pκ(`) was quantified, together with the two-point shear
correlations ξ±(θ) and the galaxy-galaxy lensing profile around
massive simulated galaxies.

For cosmic shear, the inclusion of baryons induces a deficit
of power in the convergence power spectrum of about 10% for
103 < ` < 104 at zs = 0.5. The amplitude of the distortion
is about the same at zs = 1, but is slightly shifted to roughly
twice as high ` multipole values. On yet higher multipoles, the
cooled baryons, essentially in the form of stars, produce a dra-
matic boost of power, nearly a factor 2 for ` ∼ 105. As empha-
sised in Chisari et al. (2018), it is worth stressing that detailed
quantitative statements on such small angular scales may still
depend on the numerical implementation of baryonic processes.

For galaxy-galaxy lensing, the projected excess density pro-
files for a sample of simulated galaxies consistent with the
CMASS sample at z ∼ 0.52 (analysed by Leauthaud et al. 2017)
were found to be in excellent agreement. To properly analyse
this signal around high-redshift deflectors, the magnification bias
affecting the bright end of a population of distant galaxies was
carefully taken into account, showing a large-scale increase of
the signal as high as 30% beyond 1 Mpc for lenses at z & 1. This
type of effect is particularly pronounced for future samples of
distant deflectors, such as the spectroscopic Euclid sources that
are detected based on their Hα line intensity.

Peirani et al. (2019) have shown that the innermost parts of
Horizon-AGN galaxies are consistent with strong-lensing obser-
vations of Sonnenfeld et al. (2013) and Newman et al. (2013,
2015) at zlens . 0.3. We intend to make more predictions on
the optical depth for strong lensing in the Horizon-AGN light-
cone with our implemented ray-tracing machinery. Likewise, in
a forthcoming paper we will present the results of the deflection
field applied to simulated images derived from the light that is
emitted by the stars that are produced in the simulation, hence
enabling the possibility of measuring lensing quantities (shear,
magnification, etc.) in the very same way as in observations:
shape measurement in the presence of noise, PSF, pixel sam-
pling, photometric redshift determinations, realistic galaxy bias-
ing, and more generally, directly predicted galaxy-mass relation,
and also the intrinsic alignment of galaxies and their surrounding
halos (Codis et al. 2015; Chisari et al. 2015, 2016).
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