
1.  Introduction
High riverine nitrate concentrations and loads from diffuse agricultural sources threaten drinking water quality 
and the health of freshwater as well as marine ecosystems (Carpenter et al., 1998; Elser, 2011; Mekonnen & 
Hoekstra, 2020). In this context, runoff events play a dominant role for the mobilization and transport of nitrate 
from catchments to the downstream receiving water resources (Blaen et al., 2017; Inamdar et al., 2006; Ockenden 
et al., 2016). Climate change is predicted to change the frequency and characteristics of such runoff events, and 

Abstract  Runoff events play an important role in nitrate export from catchments, but the variability of 
export patterns between events and catchments is high and the dominant drivers remain difficult to disentangle. 
Here, we rigorously asses if detailed knowledge on runoff event characteristics can help to explain this 
variability. To this end, we conducted a long-term (1955–2018) event classification using hydro-meteorological 
data, including rainfall characteristics, soil moisture and snowmelt, in six neighboring mesoscale catchments 
with contrasting land use. We related these event characteristics to nitrate export patterns from high-frequency 
nitrate concentration monitoring (2013–2017) using concentration-discharge (CQ) relationships. Our results 
show that low-magnitude rainfall-induced events with dry antecedent conditions exported lowest nitrate 
concentrations and loads but exhibited highly variable CQ relationships. We explain this by a low fraction 
of active flow paths, revealing the spatial heterogeneity of nitrate sources within the catchments and by an 
increased impact of biogeochemical retention processes. In contrast, high-magnitude rainfall or snowmelt-
induced events exported highest nitrate concentrations and loads and converged to similar chemostatic export 
patterns across all catchments, without exhibiting source limitation. We explain these homogeneous export 
patterns by high catchment wetness that activated a high number of flow paths and by higher nitrate availability 
during high-flow seasons. Long-term hydro-meteorological data indicated an increased number of events with 
dry antecedent conditions in summer and a decreased number of snow-influenced events. These trends will 
likely continue and cause increased nitrate concentration variability during low-flow seasons and changes in the 
timing of nitrate export peaks during high-flow seasons.

Plain Language Summary  Runoff events play an important role in nitrate export from catchments. 
However, the response of nitrate export to runoff events is highly variable and therefore difficult to understand. 
Here, we classified runoff events according to their inducing precipitation and antecedent soil moisture and 
related those event characteristics to nitrate export patterns. Our results show that small summer and autumn 
events exported lowest nitrate concentrations and loads with highly variable patterns, such as increasing or 
decreasing nitrate concentrations. We explain this variability with nitrate mobilization being restricted to near-
stream areas with variable nitrate availability and by an increased impact of biogeochemical nitrate retention. In 
contrast, larger winter and spring events exported highest nitrate concentrations and loads. These events showed 
only a small increase of nitrate concentrations compared to discharge, so that discharge dominated overall 
nitrate loads. This was similar in all catchments, which we explain by high catchment wetness connecting 
all nitrate sources within a catchment to the stream and higher nitrate availability. Long-term trends indicate 
a decrease of summer soil moisture and a decrease of snow-influenced events. These trends might cause 
increasing variability in nitrate concentrations during summer and change the timing of nitrate export peaks 
during winter and spring.
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these changes are in turn predicted to significantly alter water quality and nutrient export (IPCC, 2018; Marshall 
& Randhir, 2008; Sebestyen et al., 2009; Trang et al., 2017; Wagena et al., 2018). Therefore, an in-depth under-
standing of nitrate mobilization and transport during runoff events under different hydro-meteorological condi-
tions is needed to better predict and mitigate water quality deteriorations.

Hydro-meteorological data at a high temporal resolution (i.e., daily) has been readily available for many decades 
and allows for a robust characterization of catchment hydrologic functioning during runoff events on the long 
term (Kirchner et al., 2004; Tarasova et al., 2020). Those characterizations showed that with different antecedent 
wetness conditions, different flow paths within a catchment can become activated that connect different catch-
ment areas with the stream network (Jencso et al., 2009). For dry antecedent conditions, typically only a smaller 
fraction of the catchment area is connected to the stream network, often via deeper subsurface flow paths, which 
deliver older water with longer transit times. In contrast, during wet antecedent conditions, additional shallower 
and faster flow paths become activated and transport younger water (i.e., with shorter transit times) also from 
more distant locations to the stream (Jencso et al., 2009; Kumar et al., 2020; J. Yang, Heidbüchel, et al., 2018). 
Moreover, in a temperate climate, runoff events can be generated by precipitation events of different nature, such 
as rainfall or snowmelt (Tarasova et al., 2020). In such climates, rain-on-snow events (i.e., snowmelt in concur-
rence with rainfall and high antecedent soil moisture) often form the largest runoff events of the year and can 
activate all or most of the available flow paths within a catchment (Berghuijs et al., 2019; Jencso et al., 2009; 
Stieglitz et al., 2003).

It is most likely that the spatiotemporal variability in the hydrological land-to-stream connectivity causes different 
responses in nutrient mobilization and transport as well (Stieglitz et al., 2003). With the advent of high-frequency 
measurements for nitrate and other nutrient concentrations (Kirchner et al., 2004; Rode, Wade, et al., 2016), we 
can now measure water quality at the same temporal resolution as water quantity to analyze in detail the con-
nection of runoff event characteristics with nitrate export patterns. More specifically, we refer to runoff event 
characteristics as all related hydro-meteorological characteristics including antecedent conditions, the character-
istics of the inducing precipitation event and the characteristics of the runoff event hydrograph (for example peak 
discharge). This also includes the proposed different runoff formation processes (Tarasova et al., 2020) that can 
potentially connect different sources of nitrate to the stream network. For example, from available hydroclimat-
ic data, we can now distinguish events that are induced by rain-on-snow under wet antecedent conditions and 
low-magnitude rain-induced events with dry antecedent conditions (Tarasova et al., 2020). Note, that for the sake 
of consistency in the use of terms with previous studies (i.e., Musolff et al., 2015, 2021; Tarasova et al., 2020), 
we use the terms “discharge” and “runoff” synonymously, referring to the total volumetric water flow rate in the 
stream at a gauging point.

Several studies took advantage of high-frequency measurements and conducted a detailed analysis on nutri-
ent mobilization and transport during runoff events and generally confirmed the importance of runoff events 
for nutrient export (e.g., Blaen et al., 2017; Burns et al., 2019; Fovet et al., 2018; Knapp et al., 2020; Rose 
et al., 2018). For example, Casson et al. (2010) and Pellerin et al. (2012) showed that high-magnitude rain-
on-snow events can account for a disproportional amount of annually exported nitrate loads. These studies 
also revealed large inter-event and inter-catchment variability of nutrient export dynamics. For example, 
Blaen et  al.  (2017) found a positive correlation between antecedent wetness and event nitrate concentra-
tions in a catchment with mixed agricultural and forested land use. On the contrary, Knapp et al.  (2020) 
found a negative correlation between antecedent wetness and event nitrate concentrations in a small moun-
tainous catchment that is covered by forest and meadows. While both studies could explain parts of their 
findings by changes in the hydrological catchment connectivity, their differences might mainly be caused 
by different nitrate source availabilities, induced by different catchment characteristics such as land use. 
Knapp et  al.  (2020) summarized that the variability of event responses was driven by changes in source 
availability, hydrological connectivity, and biogeochemical reaction rates. The role of temperature- and 
soil-moisture-driven differences in biogeochemical reaction rates for nitrate export was also stressed by 
Lutz et al. (2020) and Rode, Angelstein et al. (2016). Both, hydrological connectivity and biogeochemical 
removal (or retention) are driven by environmental conditions and thus often have a similar seasonal timing 
in temperate climates. In consequence, connectivity and removal can be difficult to disentangle. For exam-
ple, rain-on-snow events with a high hydrological connectivity typically occur in colder periods of lower 
ecosystem nitrate uptake and hence a higher nitrate availability. All these examples show that nitrate export 
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patterns can be potentially related to hydrological event characteristics, such as the contribution of meltwater 
or antecedent conditions as well as to biogeochemically controlled source availability. The response of ni-
trate export to runoff events is obviously highly variable between catchments of different configurations for 
example, with regard to land use and nitrate availability. Therefore, we see a need for larger-scale studies 
that analyze the connection of event characteristics and nitrate export patterns across the entire annual cycle 
and in contrasting catchments.

A common tool to reveal the relevant sources and flow paths for nitrate transport under changing hydrolog-
ical conditions are concentration-discharge (CQ) relationships, which represent the directional relationship 
between concentrations and discharge (e.g., Bieroza et  al.,  2018; Bowes et  al.,  2015; Musolff et  al.,  2021; 
Vaughan et al., 2017). A negative slope of the CQ relationship can indicate high base flow concentrations that 
are diluted by water from newly activated flow paths (Bowes et al., 2015) or a depletion of nutrient sources 
(Vaughan et al., 2017). A positive CQ slope can indicate the additional activation of more shallow and younger 
(Musolff et al., 2015) or more distant nutrient source zones (Bowes et al., 2015). A chemostatic pattern is in-
stead described by a CQ slope close to zero (Godsey et al., 2009; Musolff et al., 2015; Thompson et al., 2011) 
and is mainly attributed to ubiquitous and uniformly distributed N sources in agricultural catchments (Basu 
et al., 2010). The CQ slope is not necessarily consistent across time scales and can thus reveal complemen-
tary information on nutrient export during single runoff events compared to CQ relationships across seasons 
that integrate several events (e.g., Godsey et  al.,  2019; Knapp et  al.,  2020; Minaudo et  al.,  2019; Musolff 
et al., 2021).

Yet, a rigorous assessment of how much of the inter-event variability of nutrient export patterns can be ex-
plained by a more thorough understanding of runoff event characteristics and classifications of runoff formation 
processes is still missing and has not yet been applied across a range of hydro-climatic conditions and land use 
settings (Knapp et al., 2020; Tarasova et al., 2020). Studies that relate hydrological runoff events with nutrient 
transport are typically limited to single catchments and/or to relatively short time periods, which is often not more 
than one or two years, frequently excluding the cold seasons (e.g., Blaen et al., 2017; Carey et al., 2014; Knapp 
et al., 2020). Therefore, the full range of runoff event characteristics is not always covered and it remains unclear 
if analyzed event characteristics are representative across catchments and for the long-term catchment behavior. 
Moreover, it is largely unknown if runoff event characteristics are changing over longer time scales. In this study, 
we conduct an extensive assessment across catchments and time scales to explore to what extent runoff event 
characteristics and runoff formation processes govern nitrate export during and across runoff events. To this end, 
we related event characteristics such as the wetness state of a catchment, the nature of an inducing precipitation 
event and the temporal distribution of rainfall to nitrate concentrations and loads. For this, we used a 5-yr period 
of high-frequency water quality and hydro-meteorological data from six mesoscale Central European catchments 
with different land use settings. We classified runoff events according to their different hydro-meteorological 
conditions (Tarasova et al., 2020) and utilized CQ relationships to infer the relevant flow paths and source areas 
for nitrate transport and mobilization. We then combined the findings from such analysis with the changes in 
event characteristics and catchment state conditions over past decades obtained from long-term daily hydro-me-
teorological time-series to identify possible trends in the long-term runoff event characteristics that could impact 
nitrate export dynamics in the future.

2.  Materials and Methods
2.1.  Study Area

Event characteristics and nitrate export patterns were analyzed in six sub-catchments of the Bode River catch-
ment (Figure 1), which is an intensively monitored catchment within the network of the TERestrial Environ-
mental Observatories (TERENO, Wollschläger et al., 2017). Warme Bode (WB), Rappbode (RB) and Hassel 
(HS) are part of the Rappbode Reservoir Observatory (Rinke et al., 2013), whereas Silberhütte (SH), Meisdorf 
(MD) and Hausneindorf (HD) are three subsequent gauging stations of the nested Selke River catchment. 
All six catchments are located in the Harz Mountains and the Harz foreland in Saxony-Anhalt, Germany 
(Figure 1). They have contrasting characteristics in regard to their size, land use, elevation, and mean annual 
precipitation (Table 1).
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2.2.  Data

2.2.1.  Long-Term Daily Data

We used long-term daily hydro-meteorological data (Figures S1–S6 in Supporting Information S1) to classify 
runoff events and to analyze potential trends in the characterization of runoff events. Daily discharge data was 
provided by the State Office of Flood Protection and Water Management of Saxony-Anhalt (LHW) and calcu-
lated to specific discharge [mm d−1]. In all catchments except HS and HD, discharge data is available from 1955 
until 2018. In HS and HD, discharge data records started in 1968 and 1980, respectively, and lasted until 2018. 
Daily precipitation data over these time periods were provided by Germany's National Meteorological Service 
(Deutscher Wetterdienst, DWD) as interpolated station data at a spatial resolution of 1 km2 (REGNIE; Rauthe 
et al., 2013). Daily average temperatures were interpolated to a 4 km grid from the DWD stations by External 
Drift Kriging using elevation as an explanatory variable (Zink et al., 2017). Daily soil moisture and snow water 
equivalent were calculated using the mesoscale Hydrological Model (mHM, Kumar et  al.,  2013; Samaniego 
et al., 2010; Zink et al., 2017).

Figure 1.  Map of the study site, showing all six mesoscale catchments (WB, RB, HS, SH, MD, and HD) with their respective land use.

Catchment

Area
Mean annual 
precipitation

Mean annual 
temperature

Land use and land cover
Elevation 

range
Mean 
slopeAgriculture Forest Urban Other

[km2] [mm yr−1] [°C] [%] [%] [%] [%] [m.a.s.l.] [%]

WB 101.1 1,111.9 6.6 5.9 90.2 2.9 1.0 429–957 7.7

RB 39.1 969.3 7.1 19.5 74.7 4.1 1.7 454–636 6.8

HS 42.0 820.9 7.0 59.8 35.6 4.5 0.1 436–604 4.8

SH 102.5 726.6 6.7 34.6 62.2 3.2 0.0 335–597 6.9

MD 178.6 693.0 7.2 23.2 73.6 3.1 0.1 196–597 8.4

HD 460.1 589.4 8.1 54.8 36.7 6.1 2.4 68–597 4.9

Table 1 
Characteristics of the Six Studied Mesoscale Catchments Within the Bode River Catchment
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2.2.2.  High-Frequency Hourly Data

High-frequency hourly data were used to analyze exported nitrate loads and CQ relationships within and between 
runoff events from 2013 to 2017. Discharge data at a temporal resolution of 15 min were provided by the LHW, 
which we aggregated to hourly values [mm h−1]. Similar to nitrate concentration data (see below), a moving 
average was applied over a 5-hr window to reduce noise in the raw data and to stay consistent with the proce-
dure applied in previous studies that used parts of the same data (e.g., Musolff et al., 2021; Rode, Angelstein, 
et al., 2016). Hourly precipitation data as reprocessed radar data were provided by the DWD with precipitation 
amounts adjusted to station observations and a spatial resolution of 1 km2 (RADOLAN; Winterrath et al., 2017). 
Due to a lack of hourly temperature data, we reconstructed those from the daily data by using hourly weights 
based on month-specific sine functions obtained from long-term minimum and maximum temperatures to resem-
ble the diurnal cycle of temperature. Hourly snow water equivalent and soil moisture data were simulated using 
mHM (Zink et al., 2017).

Nitrate concentration data were collected between 2013 and 2017 via TRIOS ProPS-UV sensors at 15 min in-
tervals (Kong et al., 2019; Rode, Angelstein, et al., 2016), which we aggregated to hourly averages. Data from 
the WB catchment were previously published by Kong et al.  (2019) and Musolff et al.  (2021), data from the 
three Selke catchments (SH, MD, and HD) were previously published by Musolff et al. (2021), Rode, Angel-
stein, et al.  (2016), Winter et al.  (2021), and X. Yang, Jomaa, et al.  (2018). For the processing of the nitrate 
concentration data, we refer to the references above and to our Supporting Information (Text S1 in Supporting 
Information S1). Briefly, raw data was restricted to a realistic range (0–100 mg N L−1), outliers were removed 
(Grubbs, 1950), a moving average was applied over a 5-hr window to smooth the data and concentrations were 
calibrated against grab samples analyzed in the lab (R2 0.80–0.91, Figures S7 and S8 in Supporting Informa-
tion S1). Note that the LHW gauging station at HS, where long-term and high-frequency discharge data were 
measured, is located upstream of the measurement point for concentration data, thus delineating a catchment size 
of around 29 km2 for discharge data compared to 42 km2 for measured concentration data (Figure 1, Table 1). 
Nevertheless, area-specific discharge data [mm h−1] from upstream and downstream measurement points (availa-
ble downstream between 2013 and 2014) showed a good agreement in their temporal dynamics with a R2 of 0.88 
and in absolute values with a small percentage bias of −3.0% (Figure S9 in Supporting Information S1). We thus 
found area-specific discharge from the upstream station data to be suitable for further analysis at the downstream 
station.

2.3.  Runoff Event Identification and Classification

Runoff events were separated and classified using the recently developed approach by Tarasova et al. (2018, 2020), 
which allows for an automated separation and classification of runoff events. The approach is explained in detail 
in the cited studies and is, therefore, only briefly described here. As a first step, events from daily long-term and 
high-frequency data were identified using an automated event separation approach from Tarasova et al. (2018). 
Then, we adopted the event classification framework from Tarasova et al. (2020), developed for daily data res-
olution (Figure 2). Each runoff event was classified by the characteristics of the inducing precipitation event 
(Figure 2a, Layer 1) and the pre-event wetness state of the catchment (Figure 2a, Layer 2). The nature of precip-
itation events was identified by the ratio of meltwater volume (Mvol) and total precipitation volume (i.e., sum of 
rainfall and snowmelt, Pvol). Using a threshold of Mvol/Pvol = 0.05 (Figure 2a), events were classified as Rain or 
Snow-influenced events. The temporal distribution of precipitation was characterized by means of the temporal 
coefficient of variation of the precipitation rate (CVtemp) and by the ratio between the maximum precipitation 
rate during an event and precipitation volume (Pmax/Pvol). Events with a CVtemp > 1 and Pmax/Pvol > 0.5 were 
defined as intensity-dominated and all other events as volume-dominated (Figure 2a). Third, the wetness state of 
a catchment was characterized by means of antecedent soil moisture (SMant). Using a threshold of maximum κ, 
with κ representing the catchment-specific curvature of the nonlinear relationship between event runoff coeffi-
cients and soil moisture (Tarasova et al., 2020), events were classified as Wet or Dry events (Figure 2a). In total, 
this classification resulted in five event classes (Figure 2b): (a) snow-influenced events (Snow), (b) rain-induced 
events that were volume-dominated and occurred under wet antecedent soil moisture conditions (Rain-Wet-Vol), 
(c) rain-induced events that occurred under wet antecedent conditions and were intensity dominated (Rain-Wet-
Int), (d) rain-induced events that occurred under dry antecedent conditions and were volume-dominated (Rain-
Dry-Vol) and (e) rain-induced events that occurred under dry antecedent conditions and were intensity dominated 
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(Rain-Dry-Int). To assure comparability of event classes between two data sets of different resolutions, we classi-
fied events using the daily time series (1955–2018) and then assigned the respective classes to the corresponding 
events from the hourly time series (2013–2017).

2.4.  Long-Term Trends in Event Characteristics

We used the non-parametric Mann-Kendall test (Kendall, 1998; Mann, 1945) to detect monotonic trends in the 
continuous event characteristics and event classes with a significance level of 5%. We considered the following 
continuous event characteristics: (a) antecedent soil moisture (SMant), (b) the ratio of meltwater volume and 
precipitation volume (Mvol/Pvol), and (c) the ratio of maximum precipitation and precipitation volume (Pmax/Pvol), 
which is an indicator for intensity- or volume-dominated events, respectively (Figure 2a). To reduce inter-event 
variability between those characteristics, we calculated seasonal averages for each year and analyzed these for 

Figure 2.  (a) Event characteristics and thresholds for the classification of events. Threshold for the wetness state of the catchments is defined by the maximum of κ, 
which represents the catchment-specific curvature of the nonlinear relationship between event runoff coefficients and soil moisture. (b) The resulting event classes. 
Modified from Tarasova et al. (2020, CC BY 4.0).
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seasonal long-term trends. Similarly, we analyzed seasonal trends in the annual contribution and total number 
of (a) Snow events (vs. Rain events), (b) Rain-Dry (vs. Rain-Wet) events, and (c) Intensity-dominated (vs. Vol-
ume-dominated) events.

2.5.  Nitrate Export

2.5.1.  Descriptors of Nitrate Export

To characterize nitrate transport from the high-frequency data, we chose four descriptors for the event scale: (a) 
median nitrate concentration (Cmed in mg N L−1), (b) average loads per event in kg N ha−1 yr−1 (this unit was cho-
sen for a better comparison between catchments and events of different duration), (c) inter-event CQ slopes and 
(d) event-specific CQ slopes. Event-specific CQ slopes were assessed by fitting the parameter b from the follow-
ing power-law relationship after Godsey et al. (2009) and Musolff et al. (2015) to the data of the individual events:

𝐶𝐶(𝑡𝑡) = 𝑎𝑎𝑎𝑎(𝑡𝑡)
𝑏𝑏� (1)

where C(t) represents the time series of nitrate concentrations during a specific event in mg N L−1, Q(t) represents 
the time series of discharge in mm h−1, and a and b represent the intercept and linear slope of the CQ relationship 
in the log-log space. A parameter b < 0 describes a negative CQ slope, that is, decreasing concentrations with 
increasing discharge and therefore a dilution pattern. A parameter b > 0 describes a positive CQ slope, that is, 
increasing concentrations with increasing discharge and therefore an accretion pattern. Both scenarios are ac-
counted for as chemodynamic patterns (Godsey et al., 2009; Musolff et al., 2015, 2017). If parameter b is close to 
zero, there is no clear directional relationship. This pattern can be described as chemostatic under the assumption 
that the coefficient of variation of concentrations is much smaller than that of discharge (Godsey et al., 2009; 
Musolff et al., 2015, 2017). Similar to the event-specific CQ slope, we analyzed the CQ relationship across all 
events within each catchment (i.e., the inter-event CQ slope) using the power law model from Equation 1 with 
Cmed and Qmed of each event instead of C(t) and Q(t) within each specific event.

2.5.2.  Statistical Analysis

All computations and statistical analyses were conducted in R (R Core Team, 2020). We used the non-parametric 
Kruskal-Wallis test (Kruskal & Wallis, 1952) to test for differences in loads, Cmed, Qmed and the CQ slope between 
event classes and the Pairwise Wilcoxon Test (Wilcoxon, 1945) with Holms correction for multiple comparisons 
(Holm, 1979) to test for differences in-between the event classes, both at the significance level of 5%. In order to 
test the impact of event classes on the inter-event CQ slope, we tested the simple linear ln(Cmed)-ln(Qmed) regres-
sion against a linear regression model that includes event classes and their interactions with ln(Qmed). Both mod-
els were compared via the sample-size corrected Akaike Information Criterion (AICc; Akaike, 1973; Hurvich & 
Tsai, 1989; Sugiura, 1978). If accounting for event classes led to a substantial improvement (i.e., AICc decreased 
at least by 2, similar to Marinos et al., 2020) their impact was regarded as considerable. Otherwise, the added 
value from event classes compared to a simple CQ model was negligible for nitrate export estimations.

3.  Results
3.1.  Long-Term and High-Frequency Runoff Event Characteristics

In total, we identified and classified 5,872 events over the long-term period (on average 14.5–19.0 events per 
catchment and year) and 388 events over the high-frequency time period (on average 9.6–16.2 events per catch-
ment and year). Event classes generally differed more strongly between seasons than between catchments (Fig-
ure 3). In both long-term and high-frequency event classes, winter (December–February) was dominated by Snow 
and Rain-Wet-Vol events. Spring (March–May) showed the most even distribution of event classes and was the 
season with the highest percentage of Rain-Wet-Vol and Rain-Wet-Int events. Summer (June–August) and autumn 
(September–November) were dominated by Rain-Dry-Vol events and Rain-Dry-Int events. Differences between 
catchments reflect a decreasing percentage of Snow events and an increasing percentage of Rain-Dry-Vol and 
Rain-Dry-Int events from west to east (WB to HD catchment; Figure 3). Across all seasons of the long-term event 
classes, more than half of all events in the six catchments were classified as Rain-Dry events (from 51.2% in WB 
to 61.9% in HD). Around a fifth up to a quarter of all observed events were classified as Snow events (from 17.7% 
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in MD to 25.0% in WB), and the proportion of Rain-Wet events ranged between 14.0% in HS and 23.9% in WB. 
Rain-induced events were more frequently volume-than intensity-dominated.

Runoff events had an average duration of 11.2 ± 9.1 days for long-term data and 11.2 ± 8.9 days during the 
period of high-frequency data, with considerable differences between event classes (Figure S10 in Supporting 
Information S1). Intensity-dominated events (Rain-Dry-Int and Rain-Wet-Int) were shortest, lasting in average 
5.5 ± 4.7 days and 8.6 ± 6.5 days for long-term data, respectively, followed by Rain-Dry-Vol events that lasted 
in average, 10.0 ± 8.1 days. Rain-Wet-Vol and Snow events were the longest events, lasting in average 14.4 ± 8.8 
and 18.2 ± 10.2 days.

3.1.1.  Long-Term Trends and Changes in Event Characteristics

In agreement with increasing temperature due to climate change (IPCC, 2013), Mann Kendall trends analysis 
indicated a decrease in the number and proportion of Rain-Wet events in summer, which was significant in half 
of the catchments (WB, SH, and MD; Table S1 in Supporting Information S1). This decrease goes along with 
a significant decrease in antecedent soil moisture in spring and/or summer in WB, RB, and MD catchments. 
Moreover, the number and/or proportion of Snow events decreased significantly in spring in WB, RB, SH, and 
MD catchments (Table S1 in Supporting Information S1). These trends go along with a significant decrease in 
the proportion of meltwater volume per event (Mvol/Pvol) in winter and spring in all catchments except HS. Only 
one catchment (WB) showed a significant decrease in the number and proportion of intensity- vs. volume-domi-
nated events, which occurred during summer. In contrast, the RB, SH, and MD catchments showed a significant 

Figure 3.  Seasonal absolute frequency of event classes (y-axis) in the six study catchments, showing (a) long-term changes between 8-year periods from 1955 until 
2018 and (b) the period of high-frequency data from 2013 until 2017. Periods in panel (a) with no or very few events in HS and HD indicate missing discharge data.
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increase in Pmax/Pvol during summer, but no significant trend in the total number or proportion of intensity- or 
volume-dominated events (Table S1 in Supporting Information S1).

3.2.  Nitrate Export During Runoff Events

Runoff event and nitrate export characteristics differed between catchments. Event runoff decreased roughly from 
west to east, along the precipitation gradient (Table 1) with highest average Qmed in the WB catchment (1.1 mm 
hr−1) and lowest average Qmed in the HD catchment (0.3 mm hr−1). Nitrate export during runoff events varied 
across catchments in line with their land use patterns (Table 1). Catchments with the highest percentage of agri-
cultural land use exported in average highest Cmed (HS and HD with 2.5 mg N L−1 and 2.3 mg N L−1), followed 
by mixed land use catchments (MD and SH with 1.6 mg N L−1 and 1.5 mg N L−1) and lowest average Cmed was 
observed in the dominantly forested catchments RB and WB (0.6 mg N L−1 and 0.7 mg N L−1).

3.2.1.  Nitrate Loads

Runoff events had a prominent role for annual nitrate export. The cumulative duration of all identified events 
from the high-frequency data was on average 39.6% (30.8%–48.1% depending on the catchment) of the analyzed 
time period (2013–2017), while they accounted on average for 51.2% (44.8%–63.3%) of all nitrate loads (Text 
S2 in Supporting Information S1). In relation to catchment area (Table 1), the HS catchment transported high-
est median nitrate loads across all event classes (5.5 kg N ha−1 yr−1) followed by HD (1.8 kg N ha−1 yr−1), MD 
(1.7 kg N ha−1 yr−1), WB (1.6 kg N ha−1 yr−1), SH (1.4 kg N ha−1 yr−1) and lowest median loads were exported 
from RB catchment (1.0 kg N ha−1 yr−1). Between event classes, lowest loads were transported during Rain-Dry-
Int and Rain-Dry-Vol events, which were responsible for around 25.6% (14.8% in MD up to 41.6% in HD) of all 
event-driven loads. Highest loads were transported during Rain-Wet and Snow events, which were responsible 
for around 74.4% (58.4%–85.2%) of all event-driven loads (Figure 4). Kruskal Wallis test showed significant dif-
ferences in exported nitrate loads between the event classes in all catchments. Results of the pairwise Wilcoxon 
Test indicated that these differences are mainly driven by the differences between Rain-Dry-Int or Rain-Dry-Vol 
events and Rain-Wet-Vol or Snow events, whereas no significant difference between Rain-Dry-Vol and Rain-Dry-
Int events, nor between Rain-Wet-Vol and Snow events were detected. Rain-Wet-Int events were generally too low 
in their frequency (n = 1–7) to be compared reliably (Figure 4).

Figure 4.  Nitrate loads per area (on logarithmic scale) transported during runoff events, divided into catchments and runoff event classes.
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3.2.2.  Inter-Event Concentration-Discharge Relationships

The inter-event CQ relationship is characterized by the slope between ln(Cmed) and ln(Qmed) of all events within 
one catchment. It shows consistently positive CQ relationships in the log-log space, indicating that Cmed increased 
with Qmed but with a different slope depending on the catchment (Figure 5). In line with transported loads (Fig-
ure 4), Rain-Dry-Vol and Rain-Dry-Int events are mainly located in the lower part of the CQ relationship, repre-
senting low-magnitude events (low Qmed) with low concentrations (low Cmed) that occur mainly during summer 
and autumn (Figure 3). Rain-Wet-Vol and Snow events that occurred mainly in winter and spring (Figure 3) are 
located on the upper part of the CQ relationship, showing the highest Qmed and Cmed (Figure 5). Additionally, 
some Rain-Dry-Vol events are located at the upper end of the CQ relationship. These events occurred mainly 
during autumn and often extended into the winter period with higher Qmed and Cmed. Rain-Wet-Int events occurred 
only occasionally and represent mainly events of a lower magnitude in winter and spring with medium Cmed and 
Qmed, plotting in between the other event classes.

The inter-event CQ relationship could account for most of the variance in Cmed with an R2 varying between 0.51 
and 0.91 (Figure 5). Except for the SH catchment, adding information on event classes to the model did not im-
prove its performance in terms of AICc compared to a simple CQ model. This indicates that Qmed was the most 
powerful predictor of Cmed and no or only a small part of additional variance was explained by the event classes 
themselves. In the SH catchment, event classes clearly improved the linear regression model (AICc decreased by 
13.6 units). While no clear differences between Rain-Dry-Vol and Rain-Dry-Int events nor between Rain-Wet-Vol 
and Snow events are visible (Figure S11 in Supporting Information S1), the main event class differences in SH 
was a higher intercept of Rain-Wet-Vol and Snow events compared to Rain-Dry-Int and Rain-Dry-Vol events.

Figure 5.  Median discharge (Qmed) and nitrate concentrations (Cmed) for each runoff event with log-scale x- and y-axis, separated into the six catchments (a–f). Colors 
indicate the five different event classes, gray lines show the linear relationship between ln(Cmed) and ln(Qmed) and colored lines show individual linear relationships 
between ln(Cmed) and ln(Qmed) for each event class, only shown when event classes clearly improved the linear regression model (differences in AICc >2; (d)).
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3.2.3.  Event-Specific Concentration-Discharge Relationships

Across all catchments, most events (72.4%) were characterized by a positive event-specific CQ slope, indicating 
an increase of nitrate concentrations with increasing discharge (Figure 6). We found that event-specific CQ slopes 
in all catchments showed a large variability between low-magnitude events (low Qmed), whereas CQ slopes for 
high-magnitude events (higher Qmed) collapse to a slightly positive CQ slope that is roughly between 0.1 and 0.3, 
close to a chemostatic pattern (Figure 6a). Some catchment-specific differences can be observed between CQ 
slopes during low-magnitude events (Figure 6b). The more forested and pristine catchments dominantly showed 
positive CQ slopes, whereas the agriculturally dominated catchments HS and HD tended toward close-to-zero or 
negative CQ slopes.

Rain-Dry-Int and Rain-Dry-Vol events cause most of the variability between event-specific CQ slopes (Figure 6). 
These two event classes are distinguished by the temporal distribution of the inducing rainfall, being either inten-
sity- or volume-dominated. To assess whether the difference in the temporal distribution of rainfall explains any 
additional variability in event-specific CQ slopes of low-magnitude events, we compared both classes using the 
Kruskal-Wallis test (Kruskal & Wallis, 1952). We found significantly higher event-specific CQ slopes for Rain-
Dry-Int events compared to Rain-Dry-Vol events in half of the catchments (Figure 7; WB, SH, and MD), all of 
them showing >60% forest cover (Table 1). Median event-specific CQ slopes for Rain-Dry-Vol events were 0.18, 
0.32, and 0.05 in WB, SH, and MD, respectively, and 0.39, 0.51, and 0.35 for Rain-Dry-Int events. In contrast, no 

Figure 6.  Event-specific CQ slopes (slope of nitrate concentrations and discharge in the log-log space) against the specific median discharge (Qmed) of each event 
shown for all catchments in one plot (a) and with logarithmic x-axis and separated by catchments to visualize differences in events with low Qmed between catchments 
(b). Colors of dots indicate the five event classes, dot sizes indicate the event load. Gray-shaded areas indicate event-specific CQ slopes close to zero (between −0.1 and 
0.1).
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significant difference in Cmed and Qmed between Rain-Dry-Int and Rain-Dry-Vol events could be detected (Figure 
S12 in Supporting Information S1), except for the SH catchment, where Cmed and Qmed were significantly higher 
during Rain-Dry-Vol events.

4.  Discussion
4.1.  Impact of Runoff Event Characteristics on Nitrate Export

The aim of this study was to thoroughly assess how much of the inter-event variability in nitrate export patterns 
can be explained by event characteristics and runoff formation classes across a range of hydro-meteorological 
conditions and different types of catchments. We argue that the extensive data set used in combination with a sys-
tematic runoff event classification and a nitrate export characterization using CQ relationships leads to a broader 
transferability of the identified, dominant drivers of event-scale nitrate export patterns beyond the catchments 
analyzed in this study.

Our results show that the average level of exported nitrate concentrations and loads during an event are catchment 
specific, depending on the land use and related N input. Higher export was observed in catchments with more 
agricultural land use, which have a higher N input through fertilizer application, whereas lower export was found 
in the more forested catchments, were N input, stemming from atmospheric deposition and biological fixation, 
is typically lower (Ebeling et al., 2021). However, we could also show very similar patterns in event-scale ni-
trate export across all catchments that were strongly dependent on the event magnitude (in regard to runoff) and 
season (Figure 8). Low-magnitude events during summer and autumn exported lowest concentrations and loads 
and high-magnitude events in winter and spring exported highest nitrate concentrations and loads (Figure 8a). 
The variability of event-specific CQ slopes decreased with increasing event magnitude, indicating an increasing 
homogenization of the dominant drivers for nutrient export for increasing event magnitudes (Figure 8b).

In the following, we discuss the impact of runoff event characteristics on nitrate export during those different 
conditions in more detail. Furthermore, we discuss the transferability of results to other areas and how well the 
analyzed runoff event characteristics from the high-frequency period (2013–2017) represent the long-term runoff 
event characteristics. Moreover, we discuss the observed trends in long-term runoff event characteristics and their 
implications for future nitrate export.

4.1.1.  Low-Magnitude Events

Low-magnitude and often relatively short rain-induced events occurred mainly during summer and autumn and 
coincided with dry antecedent soil moisture conditions, classified as Rain-Dry-Int or Rain-Dry-Vol. These events 

Figure 7.  Event-specific CQ slopes (slope between nitrate concentrations and discharge in the log-log space) for all six study catchments and the two event classes 
Rain-Dry-Int and Rain-Dry-Vol, representing rain-induced runoff events that occurred under dry antecedent soil moisture conditions with either intensity- or volume-
dominated rainfall. Orange asterisks in the header indicate significant (p < 0.05) differences between the event classes for a particular catchment. Gray-shaded areas 
indicate event-specific CQ slopes close to zero (between −0.1 and 0.1).
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exported lowest nitrate concentrations and loads and showed highly variable event-specific CQ slopes. We can 
explain these relatively low nitrate loadings by a decreased hydrological connectivity (i.e., a low fraction of 
activated flow paths) with lower antecedent soil moisture and by a lower nitrate availability due to higher bio-
geochemical removal and biological uptake in summer and autumn, compared to winter and spring. As a result 
from decreased hydrological connectivity, only nitrate sources in close proximity to the stream network and from 
sources connected via deeper groundwater flow paths are connected to the stream network (Musolff et al., 2015; 
Stieglitz et al., 2003; J. Yang, Heidbüchel, et al., 2018). These flow paths during the dry period are generally 
characterized by longer transit times and thus enable more nitrate uptake and removal via denitrification (Ebeling 
et al., 2021; Ehrhardt et al., 2019; Kumar et al., 2020; Nguyen et al., 2021). As a result from increased biological 
activity with higher temperatures, nitrate uptake and removal increases, especially in streams and in the riparian 
zones (Baird et al., 1995; Lutz et al., 2020; Rode, Angelstein et al., 2016), which can lead to reduced nitrate 
availability compared to colder seasons. While certainly both nitrate availability and hydrological connectivity 

Figure 8.  Framework of the relationship between runoff event classification and nitrate export characteristics. (a) The inter-event CQ relationship with median 
event-scale nitrate concentrations and discharge (Cmed and Qmed). Gray lines show the inter-event CQ slope for the individual catchments in this study. Catchments 
with higher N input (i.e., more agricultural land use) show a higher intercept than catchments with lower N input (i.e., more forest). (b) The event-specific CQ slopes 
for all catchments and their decreasing variability with higher event magnitude (Qmed). Event-specific CQ slopes for low-magnitude events tended to be more positive 
for catchments with low N input and more negative for catchments with high N input. (c) Concept of potential underlying mechanisms in regard to catchment wetness 
enhancing hydrological connectivity and biogeochemically controlled nitrate source availability in catchments of overall low vs. high N input (i.e., forest vs. agricultural 
land use).
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play a role for event-scale nitrate export, it is beyond the scope of this study to fully disentangle their individual 
contributions.

Seasonal differences in discharge and concentrations shaped the inter-event CQ relationship that was positive 
across catchments, reflecting higher concentrations during high flow in winter and spring and lower concentra-
tions during low-flow conditions in summer and autumn. At the event level, CQ slopes can reveal complementary 
information on the underlying processes of nitrate mobilization and transport within seasons (Godsey et al., 2019; 
Musolff et al., 2021; Winter et al., 2021). We found large variability in event-specific CQ slopes during low-mag-
nitude events, which we explain by an increased relevance of different environmental factors such as (a) catch-
ment characteristics and the spatial distribution and connectivity of N sources within a catchment, (b) riparian 
and in-stream biogeochemical processes and (c) the spatial and temporal distribution of the inducing precipitation 
event. In regard to catchment characteristics, we could show that the more forest-dominated catchments (WB, 
RB, SH, MD, Figure 1) showed mainly positive event-specific CQ slopes during low-magnitude events, whereas 
the more agriculturally dominated catchments (HS and HD) tended towards negative event-specific CQ slopes 
(Figure 6b). The dilution patterns in the agricultural catchments can be explained by relatively high base-flow 
concentrations (reflecting high N input from fertilization) and the spatial distribution of N sources within these 
catchments. For example, Musolff et al. (2021) argued that due to large buffer strips (100 m) in the HS catchment, 
there are no or only few nitrate sources in the riparian zones. Hence, events of low magnitude that activate only 
proximate flow paths from this area could cause the observed dilution pattern. In the HD catchment, Winter 
et al. (2021) found that a disproportionally large part of event runoff is generated in the upstream area that is 
mainly covered by forests and thus exports lower nitrate concentrations. Runoff from this area can thus dilute 
higher concentrations in base flow, which are largely generated by groundwater from the downstream agricul-
tural areas. Hence, the preferential mobilization from certain areas of lower N availability, here riparian zones or 
upstream areas, can cause a dilution pattern in catchments with an overall high N input. In contrast, the dominant 
accretion pattern in the more forested catchments might be explained by a flushing of proximate shallow nitrate 
sources, likely from the upper soil layers of the riparian zones as also suggested by Musolff et al. (2021) for the 
WB catchment and a sub-catchment of RB. In regard to in-stream and near-stream processing, several studies 
argued that biogeochemical processes such as nitrate uptake and denitrification in-stream or in the riparian zones 
have a stronger relative impact on nitrate export during low-magnitude events (e.g., Marinos et al., 2020; Moatar 
et al., 2017). Hence, variability in these processes through, for example, varying instream temperature (Rode, 
Angelstein, et al., 2016) or in the riparian zone partly due to stream water infiltration (Lutz et al., 2020; Nogueira 
et al., 2021) might be responsible for the observed higher variability between event-specific CQ slopes. This 
is supported by a study from Heathwaite and Bieroza (2021), who found that nutrient export dynamics during 
low-magnitude events can be considerably influenced by diurnal cycling.

By separating runoff event classes into intensity- and volume-dominated precipitation, we could show that the 
impact of the temporal distribution of precipitation can explain another part of the variability in mobilization 
patterns during low-magnitude events. Intensity-dominated events (Rain-Dry-Int) showed higher event-specific 
CQ slopes compared to volume-dominated events (Rain-Dry-Vol) in half of the catchments. Those catchments 
comprise forested or mixed land use and showed overall positive event-specific CQ slopes for both Rain-Dry-Int 
and Rain-Dry-Vol events (Figures 1 and 7). Both event classes are rain-induced with dry antecedent conditions. 
During Rain-Dry-Int events however, runoff is generated by a shorter and rather intense rainfall, whereas during 
Rain-Dry-Vol events, the duration of rainfall is typically longer with a lower ratio of the maximum precipitation 
rate compared to the total precipitation volume (Tarasova et al., 2020). As argued further above, nitrate mobilized 
during low-magnitude events in those forested catchments may mainly stem from shallow and proximate N sourc-
es (Musolff et al., 2021). One possible explanation for the difference in event-specific CQ slopes might be that 
relatively short but intensive runoff events preferentially activate proximate and shallow flow paths and mobilize 
those shallow N sources. This mobilization then causes an increase in nitrate concentrations that is reflected 
by the positive event-specific CQ slope. Longer volume-dominated events might create a higher, yet delayed 
hydrological connectivity with more distant sources than those near-stream N source zones, which is reflected 
in a decreasing event-specific CQ slope. As such, CQ slopes during volume-dominated events approximate more 
chemostatic patterns and show a higher similarity with higher-magnitude runoff events under wet antecedent 
conditions (see Section 4.1.2).
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4.1.2.  High-Magnitude Runoff Events

In contrast to low-magnitude events in summer and autumn, runoff events in winter and spring were main-
ly snow-influenced (Snow) or rain-induced (<5% snowmelt) and generated by volume-dominated precipitation 
under wet antecedent conditions (Rain-Wet-Vol, Figures 2 and 3). These two event classes were found to be the 
largest runoff events in regard to median discharge (Qmed) and caused the highest nitrate concentrations and 
loads (Figures 4 and 5). Approximately three quarters of all event-driven loads were exported during Snow and 
Rain-Wet-Vol events, which is in agreement with other studies that reported exceptionally high nitrate export 
during large rain-on-snow events (Crossman et al., 2016; Koenig et al., 2017; Sebestyen et al., 2009; Seybold 
et al., 2019). These results underline the important role of Snow and Rain-Wet-Vol event classes for nitrate export 
and show that missing information on the winter period, which is often the case (e.g., Blaen et al., 2017; Carey 
et al., 2014; Knapp et al., 2020; Wollheim et al., 2017), can lead to a lack of information about the most relevant 
events for the export of nitrate loads.

In temperate climates, rain-on-snow events often form the largest runoff events of the year due to the cumulative 
effect of rainfall and additional input from snowmelt (Casson et al., 2014; Pellerin et al., 2012). Nevertheless, we 
identified Rain-Wet-Vol events (not influenced by snowmelt) that caused comparable or even higher Qmed, espe-
cially in the Selke catchment (Figures 5d–5f). Those events transported comparably high nitrate loads (Figure 4), 
fell on the same or a very similar inter-event CQ slope (Figure 5) and showed similar event-specific CQ slopes 
(Figure 6) as the Snow events. This indicates that both event classes, Snow and Rain-Wet-Vol, activate the same or 
very similar N sources within a catchment, despite their differences in the meltwater fraction.

Similar to Stieglitz et al. (2003), we argue that high-magnitude events during winter and spring can activate all 
relevant nitrate sources within a catchment, including distant sources (Bowes et al., 2015) and shallow and young-
er N sources (Fovet et al., 2018; Musolff et al., 2017, 2015; J. Yang, Heidbüchel, et al., 2018). During winter 
and spring, discharge and antecedent soil moisture are generally higher, which leads to more active flow paths 
compared to summer and autumn (Stieglitz et al., 2003; J. Yang, Heidbüchel, et al., 2018). At the same time, 
lower temperatures cause a reduced N demand of ecosystems that can result in a higher nitrate source availability 
(Baird et al., 1995; Rode, Angelstein, et al., 2016). Together, the flow path activation in a highly saturated catch-
ment and a relatively high nitrate availability can explain the high nitrate concentrations and loads observed in the 
studied catchments (Figures 4 and 5). Moreover, they can explain the low variability in event specific-CQ slopes 
(Figure 6), because if all flow paths are activated and sufficient nitrate sources are available, no changes in nitrate 
mobilization through bypassing, activation of additional N sources or source depletion can occur.

Remarkably, the event-specific CQ slopes during high-magnitude events did not show any signs of dilution (Fig-
ure 6). Other studies have reported such dilution pattern during precipitation events across the whole year includ-
ing high-magnitude events, which might indicate source depletion (Kincaid et al., 2020; Vaughan et al., 2017) or 
high base flow concentrations from deeper groundwater that are diluted by water with lower concentration from 
newly activated zones (Fovet et al., 2018; Rose et al., 2018). Here, we consistently reported slightly positive CQ 
slopes (roughly 0.1–0.3) that reflect a milder increase of concentrations compared to that of discharge, indicat-
ing increasingly chemostatic export patterns with increasing event runoff. This is further supported by the fact 
that the event-specific coefficient of variation of concentrations is much smaller than that of discharge (Musolff 
et al., 2015) with a median ratio of 0.28 for high-magnitude events (Qmed > 1 mm hr−1). These patterns provide 
strong evidence for a transport rather than a source limitation of nitrate in all six catchments (Basu et al., 2010), 
even in the forest dominated catchments, which is alarming in terms of water quality. In the agricultural catch-
ments (HS and HD), fertilization is likely the main nitrate source. In the mixed land use catchments (SH and MD) 
and the more forested catchments (WB and RB) smaller patches of agriculture and the overall high atmospheric 
N deposition in the Harz Mountains (Kuhr et al., 2014; Winter et al., 2021) are likely to be the dominant nitrate 
sources. In addition, long transit times and chemostatic export patterns in the agricultural lowland catchment HD 
indicate substantial N legacies belowground, which might keep nitrate concentrations at a high level independ-
ent from the event size (Winter et al., 2021). On the contrary, shorter transit times in the upper Harz Mountain 
catchments likely prevent such accumulation of long-term legacies (Ehrhardt et al., 2019; Nguyen et al., 2021; 
Winter et al., 2021; J. Yang, Heidbüchel, et al., 2018). Still, our results suggest that even without such long-term 
legacies, younger nitrate sources that get connected to the stream network during high-magnitude events pro-
vide sufficient supply to maintain chemostatic export patterns. Additionally, Ohte et al. (2004) and Sebestyen 
et al.  (2009) showed that atmospheric N stored in the snowpack can considerably contribute to nitrate export 
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during snow-influenced events in a forested catchment. However, the strikingly similar nitrate export patterns 
during Snow and Rain-Wet-Vol events with comparable event size hint at similar nitrate sources for both event 
classes and thus not at the melting snowpack as a key source.

4.2.  Long-Term Trends of Event Characteristics and Their Implications for Nutrient Export Patterns

We analyzed nitrate export patterns for a 5-yr period of high-frequency nitrate concentration data (2013–2017), 
which is not sufficient to estimate any long-term trends. However, in this study, we bring together a short-term 
high-frequency analysis with long-term runoff event characterization and classification from daily data, which 
allowed us to detect long-term trends in runoff event characteristics and to discuss their possible impact on nitrate 
export patterns.

We found a decrease of soil moisture in summer, which aligned along a decrease of wet compared to dry events. 
This is in agreement with increasing summer temperatures over Europe (Briffa et al., 2009; IPCC, 2013) and 
other studies that report a decreasing contribution of summer precipitation (Szwed, 2019) and an increased risk 
for summer droughts in large parts of Europe (Hari et al., 2020; Pal et al., 2004). Here, we found that runoff 
events generated during dry catchment conditions are associated with a lower event magnitude (i.e., lower event 
runoff) proportionally lower nitrate concentrations and loads and a higher variability in event-specific CQ slopes, 
compared to wet conditions. Therefore, possibly drier antecedent conditions resulting from increasing future 
temperatures (IPCC, 2018; Pal et al., 2004) might lead to a decrease in nitrate export in summer periods but 
also to a higher variability in concentrations, due to more variable and partly higher event-specific CQ slopes. 
However, also nitrate availability is likely to be affected by changing climatic conditions with nitrate uptake and 
removal rates, but also mineralization, either increasing with increasing temperatures or decreasing because of 
soils drying out (Hartmann et al., 2013; Mosley, 2015). N that is not exported nor taken up during dry seasons is 
accumulated in the catchment and can be mineralized and flushed with rewetting in autumn (Mosley, 2015). First 
runoff events after especially dry summer periods were often reported to cause disproportionally high nitrate ex-
port peaks, which can cause severe water quality deteriorations and further increase the inter-annual variability of 
nitrate concentrations (Jarvie et al., 2003; Morecroft et al., 2000; Mosley, 2015; Oborne et al., 1980). In summary, 
we see evidence for an increased variability of nitrate concentrations and export dynamics with increasingly dry 
conditions in summer and autumn.

In addition to the increasingly dry summer conditions, we found a decrease in the contribution and number of 
snow-influenced events (Snow) as well as a decrease in the proportion of meltwater during winter and spring. 
These events exported highest nitrate loads; hence from the perspective of hydrological transport, a decrease of 
high nitrate export peaks could be expected, which was also reported by Sebestyen et al. (2009) for a mountainous 
forested catchment. However, winter precipitation is predicted to substantially increase in most of Europe (Stahl 
et al., 2010). The resulting larger rain-induced events could potentially counterbalance the decreased number of 
Snow events and trigger similarly high event runoff and nitrate export, as observed in the SH, MD, and HD catch-
ments (Figures 5d–5f). As such, the timing of nitrate export peaks would not be restricted to the melting period 
but to the entire high flow season in winter and early spring, given sufficient nitrate supply. Additionally, several 
studies predict that an earlier start of snowmelt due to increasing temperatures causes a time shift of discharge and 
nitrate export peaks towards earlier in the year (Clow, 2010; IPCC, 2014; Sebestyen et al., 2009). In summary, we 
do not see clear evidence for a change in nitrate loading during high-magnitude winter and spring events but we 
do see evidence for a change in the timing of nitrate export peaks.

4.3.  How Representative Are the Obtained Results for These and Other Catchments?

The classification of runoff events from long-term time series in this study allowed for a consistent characteriza-
tion of typical hydro-meteorological and catchment-state conditions, their seasonality, and temporal changes (i.e., 
trends) in their configuration beyond the limited time period of available high-frequency nitrate measurements. 
To our knowledge, this placement of short-term nitrate export dynamics into a larger context of long-term runoff 
event characteristics has never been conducted before. Runoff event classes from the shorter and more recent 
high-frequency period (with available nitrate concentration data) deviated from the long-term average runoff 
event classes mainly in their proportion of Rain-Dry events (which mainly increased in summer) and in their pro-
portion of snow-influenced events (which mainly decreased in spring). These deviations can help us understand 
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possible trajectories of runoff event characteristics and their impact on nitrate export in the future. Additionally, 
these long-term runoff event characteristics allow us to embed the observed catchments into a larger group of 
catchments with very similar runoff event characteristics, classified by Tarasova et al. (2020). The six studied 
catchments match well with the clusters that characterize runoff events in the Central Uplands of Germany 
(including the Harz Mountains where this study is located) and in the Alpine Foreland (Tarasova et al., 2020). 
Over a time period from 1979 to 2002, the majority of runoff events in these clusters were Rain-Dry events, 
while approximately 15%–25% were snow-influenced events (Snow) and the number of events characterized by 
volume-dominated rainfall prevailed over intensity-dominated rainfall (Tarasova et al., 2020). This is well in line 
with our results that include more recent years (until 2018) and show >50% Rain-Dry events, 18%–25% Snow 
events, and more events characterized by volume-dominated rainfall than intensity-dominated rainfall. Based on 
this, we argue that our observed runoff event classes are representative for many upland areas and forelands of 
higher mountain ranges in a temperate climate.

To get a representative picture of nitrate export during those runoff events, one needs to consider that export 
also depends on additional factors, such as the amount and distribution of N sources within a catchment, which 
are strongly driven by land use patterns (Dupas et al., 2019; Musolff et al., 2017) as well as biogeochemical 
processing. By analyzing the impact of these representative runoff event characteristics on nitrate export across 
different hydro-climatic conditions and in six catchments that span a significant range of different land use types 
and other characteristics (Table 1), we are confident that the presented results are generally transferable to other 
upland areas and mountain forelands in a temperate climate. However, the analysis of long-term runoff event 
characteristics in combination with concentration data of five years only, does not allow inference on long-term 
trajectories of nitrate transport. We cannot easily assume a biogeochemical stationarity at decadal or longer time 
scales. However, there is evidence of this stationarity in catchments with high N loadings and thus ubiquitous 
and strong N sources that reflect in chemostatic export patterns (Basu et al., 2010). This may be the case in our 
catchments but may not be transferable to catchments with limited N availability or a different N input history.

Nonetheless, by including an extended set of hydro-meteorological variables that goes beyond the limited set 
of event characteristics used in previous studies, we could disentangle a large part of the variability in nitrate 
export patterns and create results that are better transferable to other catchments and time periods, assuming that 
catchment functioning for nitrate cycling and retention remains similar. A hydrological classification can thus 
be seen as one prerequisite for creating transferrable results to better compare the partly contradicting results 
between different studies (e.g., Knapp et al., 2020; Koenig et al., 2017; Rose et al., 2018; Vaughan et al., 2017; 
Winter et al., 2021) and to create a more coherent picture of the hydrological processes that shape nitrate export 
dynamics.

5.  Conclusions
In this study, we conducted a rigorous assessment of the impact of runoff event characteristics and their classes 
on high-frequency nitrate export across multiple years, hydro-climatic conditions, and across six contrasting 
mesoscale catchments. We used long-term runoff event characteristics to embed the relationship between event 
runoff and nitrate export into a larger hydrological description of events and catchments. This new framework 
allowed us to identify potential long-term trends in nitrate export and their implications under a changing climate. 
We found that nitrate export differed substantially between runoff events with different characteristics, and strong 
drivers being event magnitude and a pronounced seasonality. With our findings, we argue that the variability and 
timing of nitrate export is likely to change with a changing frequency of event types that is driven by future global 
warming that is, projected changes in temperatures and other hydro-meteorological conditions.

Lowest nitrate concentrations and loads were transported during low-magnitude rain-induced events with dry 
antecedent soil moisture (Rain-Dry-Int and Rain-Dry-Vol), which occurred mainly during summer and autumn. 
These lower nitrate loadings, compared to high-flow seasons, can be explained by a small fraction of active 
flow paths, longer transit times, and a lower nitrate availability through higher uptake and denitrification rates 
during the vegetation period. Additionally, we found an increasing variability of event-specific CQ slopes with 
decreasing event size. We explain this high variability by an increased relevance of different environmental fac-
tors for nitrate export dynamics, such as the spatial distribution of nitrate sources and their connectivity to the 
streams, as well as the spatial and temporal distribution of precipitation (i.e., volume- or intensity-dominated) and 
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biogeochemical processes in-stream and in the riparian zone. Consequently, more frequent dry spells will likely 
lead to more variable and less predictable water quality in rivers and streams.

In contrast, highest nitrate concentrations and loads were exported during high-magnitude snowmelt-induced 
(Snow) or volume-dominated rain-induced events under wet antecedent conditions (Rain-Wet-Vol), which oc-
curred mainly during winter and spring. Nitrate mobilization, represented by event-specific CQ slopes, was 
surprisingly homogeneous among high-magnitude events across all catchments and land-use types, showing a 
relatively small increase of nitrate concentrations compared to discharge (approximately chemostatic conditions). 
We explain this by the activation of all relevant flow paths within a catchment that facilitate the land-to-stream 
connection of all relevant N sources and by higher, not limiting, nitrate availability during the dormant seasons. 
As classes for high-magnitude events, that is, Snow and Rain-Wet-Vol, showed a very similar nitrate export be-
havior, we suggest that not the meltwater fraction, but instead other common characteristics such as event size, 
catchment saturation, and nitrate availability are the main drivers of nitrate export during high-magnitude runoff 
events. No dilution patterns (negative event-specific CQ slope) were observed for those events; hence, even for-
est-dominated catchments showed no sign of N source depletion, which could be a warning sign for future water 
quality trends. Increasing temperatures might cause a change in the timing of large nitrate export peaks within 
the high flow season, but we could not find evidence for a change in the amount of nitrate export in regard to 
hydrological transport, because declining snowfall (and consequently snow-influenced events) could potentially 
be compensated for by increasing winter rainfall.

Runoff event characteristics in this study are generic and hence comparable between catchments. Therefore, we 
argue that they are also representative for other upland or foreland areas in temperate climates. Covering a range 
of different catchment characteristics, for example, dominantly forested vs. mainly agricultural land cover, al-
lowed us to analyze various catchment configurations and the respective event-driven nitrate export patterns and 
thus to represent a range of possible generic relationships between runoff event types and nitrate export. The po-
tential of a hydrological event classification to create transferable results should be further exploited by analyzing 
event-driven nitrate export across even wider ranges of catchment characteristics and climatic conditions and by 
applying this approach to event-driven export of other solutes and particulates. Establishing robust relationships 
between runoff event characteristics and water quality dynamics, and relating them to long-term trends in runoff 
event characteristics, as introduced here, would be an informative tool for understanding possible directions of 
future changes in water quality.

Data Availability Statement
Supplementary figures and tables are available as Supplementary Information. The raw discharge data can be 
freely obtained from the State Office of Flood Protection and Water Quality of Saxony-Anhalt (LHW) under 
https://gld-sa.dhi-wasy.de/GLD-Portal/. The raw meteorological data sets can be freely obtained from Germanys 
National Meteorological Service (Deutscher Wetterddienst, DWD) under https://opendata.dwd.de/climate_en-
vironment/CDC/grids_germany/daily/regnie/ (daily precipitation) and https://opendata.dwd.de/climate_environ-
ment/CDC/grids_germany/hourly/radolan/reproc/2017_002/ (hourly precipitation). Gridded products based on 
Zink et al. (2017) are available from https://www.ufz.de/index.php?en=41160. Raw nitrate concentration data are 
archived in the TERENO database and are available upon request through the TERENO-Portal (www.tereno.net/
ddp). All runoff event characteristics from the long-term and from the high-frequency data are available under 
http://www.hydroshare.org/resource/8409b4a5d40541b684d4bdafc0b16b43.
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