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Percolation in networks with local homeostatic
plasticity
Giacomo Rapisardi1,2, Ivan Kryven 3,4 & Alex Arenas 1✉

Percolation is a process that impairs network connectedness by deactivating links or nodes.

This process features a phase transition that resembles paradigmatic critical transitions in

epidemic spreading, biological networks, traffic and transportation systems. Some biological

systems, such as networks of neural cells, actively respond to percolation-like damage, which

enables these structures to maintain their function after degradation and aging. Here we

study percolation in networks that actively respond to link damage by adopting a mechanism

resembling synaptic scaling in neurons. We explain critical transitions in such active networks

and show that these structures are more resilient to damage as they are able to maintain a

stronger connectedness and ability to spread information. Moreover, we uncover the role of

local rescaling strategies in biological networks and indicate a possibility of designing smart

infrastructures with improved robustness to perturbations.
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The resilience of complex networks to withstand failures and
attacks is one of their most intriguing properties1. When
edges have equal strengths, resilience can be studied with

the mathematical framework of percolation2—a stochastic process
akin to the permeation of a liquid through a porous membrane.
This process removes edges uniformly at random with some
given probability. The large-scale connectivity of the network is
then studied by tracking the size of the largest connected com-
ponent (LCC) as a function of this probability3,4. The size of LCC
indicates what fraction of the whole network stays connected after
damage, and in contexts such as transportation or communica-
tion—connected means functional. Studying percolation helps to
understand the contribution of the network structure to its resi-
lience, and both first- and second-order phase transitions in the
size of LCC have been observed across a wealth of studies1,4–8.
The most notable example refers to explaining the spreading of a
disease driven by the susceptible–infected–recovered contact
process. Percolation in a random network is identical to this
process when the infectious time is constant9 and leads to a useful
approximation otherwise10. Percolation has been also used to
understand the early stages of formation of the brain by probing
how resilient are interconnected neuronal cultures in vitro11,12.

When links feature different strengths (also called weights or
capacities), both the structure and link weights contribute to
network resilience, for example, as it happens with road and
airline networks, the Internet, electricity grid, and financial net-
works. The role of such weights in network resilience can be
mathematically studied with filtration13,14, a process that removes
all edges with a weight less than a given threshold. This process
can be thought of as a permeation of a liquid with insoluble
particles through a porous membrane, wherein the particles may
flow through a pore only after they have clogged it up, otherwise,
they remain filtrated.

Optimizing the distribution of link weights to secure a more
resilient network is an old problem: in epidemiology, it is known
as targeted immunization15, but it also occurs in electrical engi-
neering when designing efficient power grids, and urban planning
when improving the traffic flow capacity of road networks. Apart
from wide use in the top-down design, several biological complex
systems were also observed to employ local self-regulation of link
strengths with a positive effect on the global functioning of the
whole network16,17. Both brain networks and food webs are
believed to perform link strengths optimization by virtue of a self-
regulatory mechanism that is triggered in response to damage.

In such systems, filtration-like processes are accompanied by
an active response that mitigates the damage due to removed
links. Neurons are hypothesized to control their activity using
synaptic scaling18,19, a mechanism that allows neurons to adjust
their synaptic strengths to conserve the overall neural activity
despite external perturbations or damage19–21. In a similar fash-
ion, food webs representing the dynamical system for inter-
species mass/energy transporting have also been observed to
feature a high degree of coherence that may be a consequence of
self-regulation and adaptive rewiring22–25. Load redistribution
and rewiring mechanisms are thought to have shaped the core-
periphery structure of the world airline network26. At the same
time, self-regulation-inspired principles were also proposed to be
used in top-down intervention scenarios for preventing species
extinction in ecosystems27.

Results
In the remainder, we present a mathematical theory for damage-
response processes in complex networks that explains how
maintaining local conservation of the total in- (or out-) weights of
a node reflects on the global connectedness of the whole system.

To this end, we consider a directed random network model with
positive weights on edges. An instance of such a network is
defined by a weighted adjacency matrix Aij 2 Rþ if node i points
to node j, otherwise Aij= 0.

We model the adaptive network degradation by several itera-
tions of the filtration stage, followed by an update of the weights
of the survived edges according to a homeostatic plasticity prin-
ciple, that is conservation of the sum of all in-weights for each
node. This principle is inspired by the conservation of the total
pre-synaptic strength observed in neurons20. Using this theory,
we show that a simple local self-regulatory mechanism actively
adjusting link weights in a fashion similar to the synaptic scaling
in neurons20, may significantly improve large-scale connectivity
of the whole network and hence maintain network functioning,
even if the damage has caused a loss of a large fraction of links.
Note that the concept of homeostatic plasticity we adopt here is
different from the one of homeostasis that usually appears in the
literature of dynamical systems28,29, which instead is generally
related to the properties of stable fixed points in systems of ODEs.

To consider a general setting, our directed network model is
defined by an arbitrary degree-weight distribution, fk(x), the
probability that a uniformly chosen directed edge has weight in
the interval [x, x+ dx] and terminates at the node of in-degree k.
The joint distribution can be factorized, fk(x)= lkwk(x), where the
excess-degree distribution lk,∑k≥0lk= 1 is the probability that a
randomly chosen edge terminates at a node of in-degree k, and
wk(x) satisfying

R1
0 wkðxÞdx ¼ 1 is the probability density func-

tion for edges that terminate at a node of in-degree k. One step of
the damage-response cycle is introduced as an operator A acting
on the degree-weight distribution, f 1kðxÞ ¼ Af 0kðxÞ; where f 0k is the
distribution before the edge removal and f 1k is the distribution
after the damage-response cycle. This operator can be further
decoupled as a convolution product of the damage Dk;y and
response Rk;y operators

Af kðxÞ ¼ ∑
n≥ k

Dk;yðf nðxÞÞ
h i

� Rk;yðf nðxÞÞ
h i

: ð1Þ

Here, the contribution to the probability density of degree-k
nodes comes from the nodes with higher degrees due to the fact
that some edges are removed but none are added, and the sur-
viving edges increase their weights as captured by the convolution
operation (“*”) along the weight dimension x. See the “Methods”
section for more details.

Our operator A provides a general framework for studying the
phenomenon of adaptive degradation. Let us now consider a
particular instance of degradation/response mechanism wherein
the former is represented by filtration, removing all edges with the
weight below a given threshold y, and the latter is given by the
following redistribution rule. For a node of degree k, the weights
of the in edges xi, i= 1, . . . , k are updated according to

xi ! xi þ Δ
m ; xi ≥ y;

xi ! 0; xi < y;

�
ð2Þ

where m is the total number of edges for which xi > y, and Δ ¼
∑fi;xi < ygxi is the sum of all removed weights. A simple check
shows that similarly to homeostatic response in neurons, ∑ixi is
conserved. Methods section provides the explicit forms of Dk;y
and Rk;y for this mechanism.

In the first panel of Fig. 1, we present a sketchy representation
of the process described by rule (2), while the second panel
illustrates multiple successive steps of the filtration process with
and without homeostatic response on an example of a small
synthetic network. One can see that the homeostatic response
mechanism mitigates the degradation process by enabling the
network to withstand larger filtration thresholds. In Fig. 2 we use
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master equation (1) to quantify the evolution of the degree-weight
distribution caused by the multi-step damage/response process in
a larger synthetic random network of N= 5 × 104 nodes, and
normally distributed weights. Validation of these predictions with

stochastic simulations shows that our equation is highly capable
to predict complex patterns revealed by the simulations.

From the structural point of view, the connectivity of the whole
network is characterized by the largest component in which

Fig. 1 Simple filtration vs. filtration with homeostatic response. a Pictorial representation of the damage–response process for a given node i. Here, in the
damaged state, one of the three initial in-edges is removed, hence its weight, w2, is equally redistributed among the surviving edges, in order to conserve
the local in-strength of the initial state. b Several snapshots illustrating an example of multi-step degradation on a small network, governed by: filtration,
where every edge is removed if its weight is below a given threshold (first row), and filtration with the homeostatic response that maintains the total weight
of in-edges at a constant level (second row). The bars below the panels indicate the distribution of edge weights (black) and the value of the threshold red.

Fig. 2 Impact of the homeostatic response on the weight distribution. Evolution of the total weight distribution w(x) on four successive instances of
filtration without response (upper panel), or with the homeostatic response (lower panel), on a large random regular graph of N= 5 × 104 nodes, degree
z= 4 and normally distributed edge weights, at increasing values for the threshold y. The network has been generated according to the directed
configuration model42, while the edge weights are distributed according to Gaussian distribution with mean μ= 0.5 and standard deviation σ= 0.1. Each
plot shows the empirical weight distribution from stochastic simulations (blue histogram) compared with the prediction derived from our model (orange
solid line). The vertical dashed red line in each plot represents the value of y.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27736-0 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:122 | https://doi.org/10.1038/s41467-021-27736-0 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


nodes are path-connected regardless of the direction of the links
—the largest weakly connected component. We estimate the size
of this component, SW, from the degree distributions for different
increasing values of the threshold y, using the theory introduced
by one of us30. In the multi-step setting, when the degradation
occurs in a series of filtration-response steps, we observe that the
disruption of SW is significantly postponed when compared to the
case of no active response.

Figure 3 illustrates the percolation transition being significantly
delayed as a result of the homeostatic response in a random graph
and an empirical brain network31,32. The values obtained from
direct numerical simulations of SW (colored markers) are well
captured by the estimates (black× and +markers) obtained by the
directed configuration model30 supplied with the degree-
distributions derived from the master equation (1).

Successive steps of the damage–response process may only
occur in a system that quickly responds to an external pertur-
bation. In some systems, synaptic scaling is reported to have a
typical time of hours/days after external damage20,33. Therefore,
we also analyze a single step of the process, mimicking a relatively
slow response. As explained in the “Methods” section, in the
single-step case, our model can be solved analytically provided
the initial network does not have weight-degree correlations.
Then even a single step introduces nontrivial correlations
between weights and degrees (see “Methods” section for details),
by which we lose the analytical tractability. Therefore letting
wk(x, y= 0)=w(x, y= 0) be the initial weight distribution, the
average weight after a single step of the damage–response process
at threshold y, �wðyÞ ¼ R1

0 xwðx; yÞdx, reads

�wðyÞ ¼ β1ðyÞ þ β2ðyÞ
FðyÞ � GðFðyÞÞ

1� FðyÞ

� �
; ð3Þ

where FðyÞ ¼ R y
0 wðxÞdx is the initial cumulative weight dis-

tribution

β1ðyÞ ¼
R1
y xwðxÞdx
1� FðyÞ ; ð4Þ

β2ðyÞ ¼
R y
0 xwðxÞdx
FðyÞ ; ð5Þ

and G(z)=∑k≥0lkzk—the generating function of lk.

The second term of Eq. (3) represents the contribution from
the homeostatic response. As a matter of fact, one may verify that
β1(y) coincides with the average weight in the case of no response
(see the “Methods” section). On the other hand, the average
degree after the damage is simply given by

�kðyÞ ¼ �kð0Þ½1� FðyÞ�; ð6Þ
where �kð0Þ stands for the initial average degree.

Figure 4 shows a very good agreement between our analytical
predictions and stochastic simulations for the values of the
average weight �wðyÞ and the average degree �kðyÞ, in both synthetic
and real networks.

Note that, by construction, our framework naturally takes into
account the correlation between weights and degrees. In the
“Methods” section we prove that, for a single instance of the
damage–response process, the sign of this correlation is strongly
affected by the underlying network topology, in particular, it is
positive for scale-free networks, e.g., edges pointing to higher
degree nodes have higher weights, while is negative for both
random regular and Erdös–Rényi networks, e.g., edges pointing
to higher degree nodes have lower weights.

From the results of Fig. 4, it is evident that �kðyÞ is a decreasing
function in y, while �w is an increasing function in y. One can
verify from equations (3) and (6) that this is true in general. In
the Methods section, we show that the product of the two, that is
�w�k, coincides with the network average strength �S. This quantity
tends to be quasi-conserved for small values of y in the absence of
low-degree nodes (see Methods section), which is easily under-
stood when we look back at the local rule (2): for each node i the
local strength is conserved only if at least one edge survives the
filtration process, otherwise, the lost weight is not redistributed.

We can use the analytical estimate for �S in order to approx-
imate the leading eigenvalue of the network λmax: in the case of
weighted directed networks, λmax is approximated by
SinSout=S34,35, which approaches the average strength as we
neglect in/out strength correlations.

Hence, by combining Eqs. (3) and (6) we can assess the
behavior of λmax as well as other spectral properties. To this end
we consider, as an example, the trace of the communicability
matrix, i.e., the Estrada index (EE)36, motivated by the recent
applications in the fields of both brain networks37,38 and traffic
flows in cities39. Note that in this case, since both λmax and EE

Fig. 3 Homeostatic response delays the disruption of the giant component. Evolution of the weak giant component’s size, SW, as a function of the
threshold y, for a a regular random graph of N= 2 × 104 nodes and degree z= 4 with Gaussian distributed weights (the same distribution of Fig. 2), and b a
brain network of N= 983 nodes representing a volume of the mouse neocortex31, 32 with uniformly distributed weights in the interval [0,1]. Colored
markers represent the outcome of Monte Carlo simulations, obtained by averaging over 100 realizations of the weight distribution for the regular graph,
and 1000 realizations for the real dataset. In both cases, we considered 20 successive steps of filtration without response (red circles) and with the
homeostatic response (blue squares). Black markers represent the corresponding estimates from the model for each value of y, while gray dashed and
dash-dotted lines represent linear interpolations between theoretical values, which serve only as visual guidelines.
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depend on the weights, the effect of the damage/response process
is observable also in the single-step case, while when we con-
sidered SW, because the giant component is determined by the
degree distribution only, the effect of the homeostatic response
can only be seen in the multi-step case, for which we are sure that
weight-degree correlations have formed.

Figure 5 shows that, similarly to the case of SW, the homeo-
static response has a clear effect of sustaining high values of both
λmax and EE, compared to the case where no response is present.
Moreover, in the case of a random regular network with uni-
formly distributed weights, the estimation of λmax by means of
�S ¼ �w�k is quite accurate, both in the single-step case (panel a)
and in the successive-steps case (panel b). Hence, we approximate
the value of EE ¼ ∑ne

λn36, by keeping the contribution of the
largest eigenvalue plus the 0th order of the remaining part of the
spectrum. Therefore, for this particular case we have
EE � N � 1þ eλmax � N � 1þ e�w

�k. From Fig. 5, we see that this
approximation is less accurate, but does not fail to capture the
general behavior emerging from stochastic simulations.

Discussion
To summarize, percolation-like processes that conceptualize
random damage in networks have been since long viewed as
prototypical models for complex systems resilience. However,
systems that actively maintain their homeostatic response tend to
have the means to respond and actively adapt to such damage.
We have presented a theory that naturally extends the classical
percolation framework to a more complex one that incorporates
the principle of homeostatic plasticity. Being a natural extension
of simple percolation, our framework is still a theoretical

abstraction but is not size-limited. Therefore, it is able to project
the effects of local homeostatic mechanisms, similar to the ones
observed in real biological systems at small sizes16,40, at arbitrarily
large scales, thus overcoming the practical limitations of labora-
tory experiments. By means of our model, it is possible to show
that a simple local self-regulatory mechanism may significantly
improve the large-scale functionality of the whole network
compared to the case in which such a mechanism is absent. Our
results reproduce the evolution of the joint weight-degree dis-
tribution of the network, which allows predicting the behavior of
several global indicators of network structure and dynamics, such
as the size of the largest connected component, the largest
eigenvalue, and the Estrada index.

Overall our results provide a first mathematical framework for
studying the link between local homeostatic plasticity rule in complex
networks and its effect on the global functionality, and may also shed
light on how the self-regulatory mechanisms observed in biological
systems might be transferred to improve the resilience of human-
designed infrastructures, for example, communication or transport
networks, wherein it is reasonable to assume that homeostatic
response might be adopted to mitigate external damage.

Methods
Notation and master equation. We consider a general model for homeostatic
plasticity in a random directed network wherein all edges have a weight x > 0.
According to this process, the network updates the edges' weights in a response to
filtration, which is a deterministic and simultaneous removal of all edges with a
weight strictly below a certain threshold y. Such a response can be adopted, for
example, to mitigate further damage due to filtration in the future20,41. We con-
sider networks wherein each node has at most one in-edge and possibly many out-
edges and adopt the following notation to analyze the evolution of the network
structure:

Fig. 4 Average degree and average weight for single instances of the damage–response process. Colored markers represent the outcome of a single
stochastic simulation. Solid and dashed lines represent the analytical results for average weight and degree (derived in the Methods section). Red dots and
continuous lines represent the average degree (left scale), while blue triangles and dashed lines represent the average weight (right scale). a Poisson
network of N= 25 × 103 nodes and uniform weights. b Random regular graph with N= 25 × 103 nodes and normally distributed weights (same distribution
of Fig. 2). c Scale-free network of N= 25 × 103 nodes with power-law exponent γ= 2.5 and uniform weights. d Empirical network with uniform distributed
weights (same network as in Fig. 3b).
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● pk is the in-degree distribution. Related to this quantity is �k :¼ ∑k≥ 0kpk—
the average degree, and lk :¼ kpk=

�k—the excess degree distribution, which
denotes the probability of uniformly at random picking an edge sitting on a
node of in-degree k.

● wk(x) is the probability density function such that Pðw>xjdeg ¼ kÞ ¼R1
x wkðτÞdτ is the probability of picking an in-edge with a weight greater
than x, given that it points to a node with in-degree k. Note that plasticity
may result in weight-degree correlation (see the last section), therefore
Pðw> xjdeg ¼ kÞ≠Pðw> xÞ.

● fk(x)≔ lkwk(x) is the joint probability density function, corresponding to
the event of picking an edge with weight w∈ [x, x+ dx] pointing to a node
of in-degree k. Let us denote the marginal distributions of fk(x) as

lk :¼
Z 1

0
f kðxÞdx;

wðxÞ :¼ ∑
k≥ 0

f kðxÞ:

Since the response mechanism involves the weights of in-edges only, we refer to the
in-degree as k. Response of degree-weight density function f 0kðxÞ to filtration with
threshold y > 0 is given by

f 1kðxÞ ¼ Af 0k;

where

Af kðxÞ ¼ ∑
n≥ k

Dk;yðf nðxÞÞ �Rk;yðf nðxÞÞ; ð7Þ

In Eq. (7), the contribution to the kth-degree nodes after filtration comes from
nodes with degree n ≥ k. For these nodes, Damage operator Dk;y conceptualizes the

effect of filtration on the node degrees and edge weights, whereas the Response
operator Rk;y represents the response to filtration by increasing weights of
surviving edges. The convolution operation � is defined by
ðf � gÞðxÞ :¼ R1

�1 f ðτÞgðx � τÞdτ.

The Damage operator. The Damage on the network is represented by a filtration
process in which all the edges with weight below a fixed threshold y are removed.
In order to get the explicit form of Dk;yf nðxÞ we compute the damaged excess
degree distribution lk(y) and the damaged weight distributions wD

k ðx; yÞ. The latter
is simply given by the original weight distribution wk(x, 0) cut and renormalized

wD
k ðx; yÞ ¼

wkðx; 0Þθðx � yÞ
1� FkðyÞ

; ð8Þ

where Fk(y) indicates the cumulative distribution function of wk(x, 0), defined as

FkðyÞ ¼
Z y

0
wkðx; 0Þdx: ð9Þ

On the other hand by definition lkðyÞ ¼ kpkðyÞ=�kðyÞ, hence we just need to com-
pute the damaged degree distribution. For every node of degree n, each of the n in-
edges may be removed with probability Fn(y), therefore we have

pkðyÞ ¼ ∑
n≥ k

Bðk; n; 1� FnðyÞÞpnð0Þ; ð10Þ

where B(k, n, 1− Fn(y)) denotes a binomial distribution with parameters
(k, n, 1− Fn(y)).

The average degree after damage is then given by

�kðyÞ ¼ �kð0Þð1� hFnðyÞi0Þ; ð11Þ
were we defined hf kiy :¼ ∑k≥ 0f klkðyÞ.

Fig. 5 Leading eigenvalue and Estrada index for both single and multiple instances of the damage-response process. Continuous and dashed black lines
represent the values from our model in the case of homeostatic response and no response respectively, while colored markers and colored shaded areas
represent mean values and interquartile ranges derived from stochastic simulations. We averaged the damage-response process over 200 realizations of a
random regular network of N= 103 nodes and average degree z= 10 with uniform weights. a, c Single instances of the damage–response process. In this
case �w�k is simply given by combining Eqs. (3) and (6). b, d Successive instances of the damage–response process. Here, both �w and �k are computed at
each step from the master equation (1). In every panel, β1 is computed from Eq. (4).
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With this notation one can rewrite Eq. (10) in terms of the excess degree
distribution lk, which, combined with Eq. (8), finally yields the explicit form of the
Damage operator

Dk;yf nðxÞ ¼
k
n Bðk; n; 1� FnðyÞÞθðx � yÞ
ð1� hFnðyÞi0Þð1� FnðyÞÞ

f nðx; 0Þ: ð12Þ

The Response operator. Here, we present the explicit form for the response
operator Rk;y introduced in Eq. (7) for our particular case in which the response is
locally specified by the rule (2). In terms of a probability distribution, similarly to Eq.
(8) we first compute the distributions of the deleted weights wc

kðx; yÞ which is given by

wc
kðx; yÞ ¼

wkðx; 0Þθðy � xÞ
FnðyÞ

: ð13Þ

From Eq. (13) we get the explicit form of Rk by considering the distribution asso-
ciated with the sum of n− k deleted edges scaled by a factor k

Rk;yf nðxÞ ¼ ½kwc
nðkx; yÞ��n�k ¼ wnðkx; 0Þθðy � kxÞ

FnðyÞ=k

� ��n�k

: ð14Þ

Overall we can now write the explicit form of the master equation (7) for this process

f kðx; yÞ ¼ ∑
n ≥ k

k
n Bðk; n; 1� FnðyÞÞθðx � yÞ
ð1� hFnðyÞi0Þð1� FnðyÞÞ

f nðxÞ
� �

� wnðkx; 0Þθðy � kxÞ
FnðyÞ=k

� ��n�k

:

ð15Þ
By repetitively applying Eq. (15) at increasing values for y we get the evolution of fk(x)
for a multi-step process. The plots presented in Figs. 2 and 3 of the Results section are
derived by computing the marginals of fk(x, y) at each step. In particular, the in-degree
distribution is derived from lk ¼

R1
0 f kðxÞdx, combined with Eq. (11) and the defi-

nition pk ¼ �klk=k. On the other hand, the weight distribution is given by w(x, y)=
∑kfk(x, y). Finally, the out-degree distribution is simply given by directly applying Eq.
(10) to the initial poutk at any value for y, since the response mechanism involves
weights of in-edges only, hence no additional correlation between out-degrees and
edge weights is introduced in the process. With both in and out-degree distributions,
we then estimate the size of the weakly largest connected component, SW, for a
directed configuration model30, as threshold y is increased.

Single-step from an initial state with no weight-degree correlation. Here, we
show that if the initial configuration is given by a network with no weight-degree
correlation, the outcome of a single damage-response step is analytically tractable.

Let wk(x, 0)= w(x, 0), so that the initial weight-degree distribution is given by
fk(x, 0)= lk(0)w(x, 0) and the only cumulative weight distribution is given by
FðyÞ ¼ R y

0 wðxÞdx.
Under these assumptions, Eq. (15) can be rewritten as

f kðx; yÞ ¼ ∑
n≥ k

k
n

n
k

� �
ð1� FðyÞÞk�1FðyÞn�klnð0Þ

wðx; 0Þθðx � yÞ
1� FðyÞ

� �

� wðkx; 0Þθðy � kxÞ
FðyÞ=k

� ��n�k

;

ð16Þ

where we highlighted in the square brackets the damaged weight distribution and
the response operator. Let the convolution of the two be Wk,y(x). Its Laplace

transform, defined as LðgðxÞÞ ¼ R1
0 gðxÞe�sxdx, reads

LðWk;yðxÞÞ ¼
R1
y wðx; 0Þe�sxdx

1� FðyÞ

" # R y
0 wðx; 0Þe�

sx
k

FðyÞ

� �n�k

:

From the properties of the Laplace transform, it is then straightforward to obtainZ 1

0
xWk;yðxÞdx ¼ β1ðyÞ þ

n� k
k

� �
β2ðyÞ; ð17Þ

where we defined

β1ðyÞ ¼
R1
y xwðx; 0Þdx
1� FðyÞ β2ðyÞ ¼

R y
0 xwðx; 0Þdx

FðyÞ : ð18Þ

After having introduced the two functions above, we can conveniently write �wðyÞ as

�wðyÞ ¼ β1ðyÞ þ β2ðyÞ
FðyÞ � GðFðyÞÞ

1� FðyÞ

� �
; ð19Þ

where GðzÞ ¼ hzki0 ¼ ∑klkð0Þzk is the generating function of lk(0).
The results were obtained by testing the predictions of Eqs. (19) and (11) on

several networks (both synthetic and real) are shown in Fig. 4 of the main article.

Average strength quasi-conservation. From Eq. (2) it is easily verified that the
local strength is conserved if at least one edge survives. Here we show that from Eq.
(19), one can verify that under certain assumptions the average strength of the
whole network �S is quasi-conserved. We start by showing that �S ¼ �w�k. By defini-
tion, the in/out strength of a node Si is defined by the sum of all the in/out weights.
The strength distribution P(S= x) (either in or out) can therefore be written as

PðS ¼ xÞ ¼ ∑
k
pk½wkðxÞ��k:

Note that we allow the presence of weight-degree correlation for the most general
case. However, we do not allow the correlation between weights belonging to the
same neighborhood.

The average strength, �S, therefore reads

�S ¼ ∑
k
pkE½w�k

k � ¼ ∑
k
kpk �wk ¼ �k∑

k
lk �wk ¼ �k�w:

Let us now consider Eq. (19). We note that since F(y) ∈ [0, 1], the contribution
given by G(F(y)) can be neglected if low degree nodes are not present and F(y) is
small enough. Under these assumptions, Fk(y)≪ 1, i.e., the probability that for a
node of degree k there are no surviving edges after damage, is very small. Therefore
Eq. (19) can be approximated by

�wðyÞ ’ �wð0Þ
1� FðyÞ ¼

�wð0Þ
�kðyÞ=�kð0Þ ;

where we used Eq. (11) with Fn(y)= F(y).
The above equation then implies

�wðyÞ�kðyÞ ’ �wð0Þ�kð0Þ; ð20Þ
meaning that �S is quasi-conserved by the response mechanism.

The emergence of weight-degree correlation. In this last section, we show that a
single instance of the damage response process generates either positive or negative

Fig. 6 Weight-degree covariance as a function of threshold y for a single instance of the damage–response process. The initial configurations are given
by: a a N= 25 × 103 nodes random regular graph with uniform weight distribution and b a N= 25 × 103 nodes scale-free network with exponent γ= 2.5,
with uniform weight distribution (right panel). In both plots red markers represent the results from a single stochastic simulation, while continuous black
lines show the analytical values from the theory. As we can see in the regular graph case the covariance is always negative, while the opposite happens in
the scale-free network case.
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weight-degree correlations. Since the sign of the correlation coefficient is deter-
mined by the one of covariance, we can focus ourselves on the covariance only. By
definition cov ðk;wÞ ¼ E½kw� �E½k�E½w�, which in our notation reads
hk�wkiy � hkiy �wðyÞ. Note that in our notation 〈k〉 is not the average degree, but
it’s the first moment of the excess-degree distribution. By using again Eq. (17), one
can obtain

hk�wkiy ¼ β1ðyÞhkiy þ β2ðyÞðhki0 � hkiyÞ; ð21Þ
which combined with the previous results yields

cov ðw; k; yÞ ¼ β2ðyÞ hki0G FðyÞ	 � FðyÞð1� GðFðyÞÞÞ
1� FðyÞ

� �
: ð22Þ

Note that β2(y)= 0⇒ cov(w, k; y)= 0, meaning that in the case of no response no
additional weight-degree correlation is introduced, as expected.

From the last equation, we derive the condition

cov ðw; k; yÞ≥ 0 () GðFðyÞÞ≥ FðyÞ
hkiy

: ð23Þ

One can verify the condition above is never satisfied for either Erdös–Rényi or
Random Regular networks (for the case of Random Regular networks although the
strict inequality is never satisfied, the equality holds for extreme case of constant
degree z= 1), while for Scale-Free networks the opposite result holds.

In Fig. 6, we show the comparison between the analytic theory and stochastic
simulations on a random regular network and a scale-free one, both with uniform
weight distribution.

Data availability
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