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Abstract

We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein

assembly prediction challenge. The Round comprised a total of twelve targets, includ-

ing six dimers, three trimers, and three higher-order oligomers. Four of these were

easy targets, for which good structural templates were available either for the full

assembly, or for the main interfaces (of the higher-order oligomers). Eight were
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difficult targets for which only distantly related templates were found for the individ-

ual subunits. Twenty-five CAPRI groups including eight automatic servers submitted

~1250 models per target. Twenty groups including six servers participated in the

CAPRI scoring challenge submitted ~190 models per target. The accuracy of the

predicted models was evaluated using the classical CAPRI criteria. The prediction per-

formance was measured by a weighted scoring scheme that takes into account the

number of models of acceptable quality or higher submitted by each group as part of

their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top

performing groups submitted such models for a larger fraction (70–75%) of the tar-

gets in this Round, but fewer of these models were of high accuracy. Scorer groups

achieved stronger performance with more groups submitting correct models for 70–

80% of the targets or achieving high accuracy predictions. Servers performed less

well in general, except for the MDOCKPP and LZERD servers, who performed on par

with human groups. In addition to these results, major advances in methodology are

discussed, providing an informative overview of where the prediction of protein

assemblies currently stands.

K E YWORD S

blind prediction, CAPRI, CASP, docking, oligomeric state, protein assemblies, protein complexes,
protein docking, protein–protein interaction, template-based modeling

1 | INTRODUCTION

Large protein assemblies and complexes of proteins with other pro-

teins and macromolecular components such as DNA or RNA, carry

out critical functions in many cellular processes. Their disruption or

dysregulation often causes disease.1,2 Characterizing the three-

dimensional (3D) structure and function of these interactions, at both

the molecular and cellular levels, and elucidating the underlying physi-

cal principles remains an important goal of biology and medicine.

Much of our current understanding of protein complexes has

been derived from the high-resolution 3D structures of protein com-

plexes determined by experimental methods3–6 and deposited in the

Protein Data Bank (PDB).7 But unfortunately, little or no structural

information is available for the majority of the protein complexes for-

ming in the cell that can be characterized by modern proteomics and

other methods.

The recent spectacular advances in single-molecule cryo-EM

techniques, specifically geared at determining the structure of large

macromolecular assemblies at atomic resolution8,9 should enable to

narrow the gap, but valuable help is also expected from steady pro-

gress in computational procedures.

Thanks to the continued success of structural biology in enriching

the structural repertoire of individual proteins, which form the build-

ing blocks of larger assemblies, and the recent explosion of the num-

ber of available protein sequences, computational approaches are

now capable of modeling the 3D structure of individual proteins with

increased accuracy from sequence information alone. This is most

commonly done by using structures of related proteins deposited in

the PDB as templates for the modeling task.10–12 The ability to predict

the 3D structure of proteins from sequence in absence of available

templates, commonly referred to as ab-initio modeling, has also signif-

icantly improved, thanks to computational methods that exploit multi-

ple sequence alignments of related proteins to predict residue-

residues contact crucial to defining the protein fold.13–15 Further sub-

stantial improvements in the performance of 3D protein structure

predictions by both template-based and ab-initio approaches, have

been achieved by recent Artificial Intelligence (AI)-Deep Learning

(DL) techniques,16,17 that afford more efficient means of leveraging
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and integrating information across the known landscape of protein

structures and sequences.18–21

The advantages afforded by these techniques were already

highlighted in the previous CASP challenge (CASP13)22,23 and dramat-

ically confirmed by the superb structure prediction performance of

AlphaFold2 from the Google DeepMind team in CASP14,24 whose

submitted models rivaled in accuracy with high-resolution crystal

structures. Strikingly furthermore, AlphaFold2 seemed to very accu-

rately predict the bound conformation of individual subunits of

homomeric assemblies (some of which are highly nonglobular) or indi-

vidual domains of larger proteins,25,26 that could not possibly adopt

this conformation in isolation. This is particularly relevant for the pre-

diction of protein assemblies, because it suggests that the AlphaFold2

DL-based procedure (of which not much has been revealed at the

time of writing this article) is picking up evolutionary signals that inte-

grate the stable native state of the multi-domain protein or the multi-

subunit assembly, where the latter involves preferentially homomeric

associations, which tend to be more highly conserved across

evolution.27,28

Computational approaches have also played an important role in

the efforts to populate the uncharted landscape of protein assemblies,

a role that will hopefully be further bolstered by more closely integrat-

ing AI-based techniques with the development of a sufficiently large

body of structural data on protein assemblies and their conforma-

tional diversity, which currently is still lacking. So far, however, the

problem of accurately predicting the 3D structure of protein com-

plexes remains a challenging undertaking, which very much depends

on the protein system at hand and may therefore be considered as

the next frontier in the quest of modeling the functionally relevant

states of proteins.

A classical approach to modeling the 3D structures of a protein

complex starts form the 3D structures of the individual protein com-

ponents and uses the so-called “docking” algorithms, and the associ-

ated energetic criteria to single out stable binding modes.29–31 CAPRI

(Critical Assessment of PRedicted Interactions) (https://www.ebi.ac.

uk/pdbe/complex-pred/capri/; http://www.capri-docking.org/) is a

community-wide initiative inspired by CASP (Critical Assessment of

protein Structure Prediction). Established in 2001, it has offered com-

putational biologists the opportunity to test their algorithms in blind

predictions of experimentally determined 3D structures of protein

complexes, the “targets,” provided to CAPRI prior to publication. Just

as CASP has been very instrumental in stimulating the field of protein

structure prediction, CAPRI has contributed to advancing the field of

modeling protein assemblies. Initially focusing on testing procedures

for predicting protein–protein complexes, CAPRI is now also dealing

with protein-peptide, protein-nucleic acids, and protein-

oligosaccharide complexes. In addition, CAPRI has organized chal-

lenges to evaluate computational methods for estimating binding

affinity of protein–protein complexes32–34 and predicting the posi-

tions of water molecules at the interfaces of protein complexes.35

Thanks to the growing ease with which structural templates can

be found in the PDB, docking calculations have evolved to routinely

take as input homology-built models of the individual components of

a complex with an increasing degree of success. It is furthermore not

uncommon to find templates for the entire protein assembly. Such

cases occur most often for assemblies of identical subunits

(homodimers, or higher order homo-oligomers), because their binding

modes (oligomeric states) tend to be conserved in related pro-

teins.27,28 In such instances, classical docking calculations may no lon-

ger be required because the protein assembly can be modeled directly

from the template, a task also called “template-based docking.”10,36,37

In a significant number of cases however, the modeling task

remains challenging because the template structure may differ signifi-

cantly from the structure of the protein to be modeled, or adequate

templates cannot be identified. Overcoming these important road-

blocks has called for a much closer integration of methods for

predicting the 3D structure of individual protein subunits and those

for modeling protein assemblies and developing means for improving

the accuracy of the resulting multi-subunit models. This has been the

motivation for establishing closer ties between the CASP and CAPRI

communities by running joint CASP-CAPRI assembly prediction exper-

iments. Three such experiments were conducted in the summers of

2014, 2016, and 2018, respectively, with results presented at the

CASP11, CASP12, and CASP13 meetings in Cancún, Mexico, and

Gaeta, Italy, and published in three special issues of proteins.38–41

Here, we present an evaluation of the results obtained in the

CASP14-CAPRI challenge, the 4th joint assembly prediction experi-

ment with CASP, representing Round 50 of CAPRI. This prediction

Round was held in the summer of 2020 as part of the CASP14 predic-

tion season. Like other CAPRI Rounds, Round 50 also included scoring

experiments, uniquely offered by CAPRI, where participants are

invited to identify the correct association modes from an ensemble of

anonymized predicted complexes generated during the assembly pre-

diction experiment.42,43 In addition, we also evaluate submitted

models in terms of their ability to correctly recapitulate the protein–

protein interface of the targets,39,44 that is, contain the amino acids

residues part of the recognition surfaces of each protein component

of the target complex. These evaluations are carried out using criteria

and evaluation protocols agreed upon by the CAPRI community. A

separate evaluation of the CASP14 assembly prediction performance,

reported at the CASP14 meeting and in this Special Issue,45 was per-

formed by the CASP assembly assessment team in collaboration with

the CASP prediction center. We wish to highlight the very fruitful col-

laboration that took place between the CASP teams and the CAPRI

assessment in defining the prediction problem for complex targets,

discussing evaluation strategies and comparing assessment results.

CAPRI Round 50 comprised a total of 16 targets, a lower number

than in some of the previous joint challenges. Experimental structures

for 4 of these were not available for evaluation, reducing to 12 the

number of targets for which predictions have been evaluated. The

12 targets included 6 dimers (5 homodimers and 1 heterodimer), 3 tri-

mers (2 homotrimers and 1 heterotrimer), and 3 large multi-protein

assemblies solved by cryo-EM comprising: the 27 subunits (rep-

resenting 4 distinct protein chains) of the T5 phase tail distal complex,

the 20 subunits homo-oligomeric assembly of a bacterial arginine

decarboxylase, and the full viral capsid of the duck hepatitis B virus,
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(with T = 4 icosahedral symmetry, totaling 240 subunits). The targets

of Round 50 were hand-picked by the CAPRI management as rep-

resenting tractable modeling problems for the CAPRI community. A

target was considered as tractable, when templates could be identi-

fied, for at least a portion of the components of the target complex,

using available tools such as HHblits/HHpred46,47 and applying very

lenient thresholds for sequence coverage and divergence. Targets for

which such templates could not be identified, were considered as dif-

ficult ab-initio fold prediction problems, since both the 3D structures

of the subunits and their association modes need to be predicted

simultaneously. Although the CASP14 challenge demonstrated that

the 3D structures of individual proteins chains may in a good number

of cases be predicted to high accuracy by groups such as Google

DeepMind, the corresponding models were not available to groups

participating in the assembly prediction Round, and CAPRI groups

mostly lack the expertise to generate such models. As in previous

Rounds, such targets where therefore not included in CAPRI

Round 50.

This may change in the future prediction challenges, as DL

methods are more closely integrated with assembly prediction and

docking procedures, or when groups such as DeepMind automate

their prediction method sufficiently to make their accurately modeled

3D structures of individual subunits available to docking experts dur-

ing the prediction Round. Using such accurate 3D models, which

often faithfully represent the bound conformation of the proteins, as

input to the docking calculations would be a game changer,

particularly in the prediction of homomeric assemblies. We know

indeed from earlier CAPRI Rounds and from various benchmark stud-

ies that docking calculations performed starting from the bound con-

formation of the individual subunits, achieve much superior

performance.42

2 | THE TARGETS

The 12 targets of the CASP14-CAPRI assembly prediction experi-

ment, which is henceforth denoted as Round 50, are listed in Table 1,

and illustrated in Figure 1. The targets are designated by their CAPRI

target ID followed by their corresponding CASP target ID.

As in previous CASP-CAPRI challenges the majority of the targets

(9 out of 12) were homo-oligomers. The remaining three targets were

hetero complexes. A majority were proteins from bacteria and viruses,

with the size of individual subunits spanning a very wide range (93–

931 residues). Most targets (7) had their structure determined at high-

resolution by X-ray diffraction. The remaining five targets, T165/

H1036, T168/T1052, T170/H1060, T177/H1081, and T180/T1099,

were larger multi-protein assemblies determined by cryo-EM. Most of

the targets had annotated biological function and the majority had an

author-assigned oligomeric state of the protein.

The 12 targets of Round 50 were grouped into two categories:

easy targets (4 in total) for which good structural templates were

available either for the full assembly, or for the main interfaces (of the

TABLE 1 CASP14-CAPRI assembly targets

Target ID Stoich. #Int. Area (Å2) #Res. PDB Description

Dimers

T164e T1032 A2 1 1585 284 N/A SMCHD1 (human) residues 1616–1899

T166e H1045 A/B 1 765 157/173 N/A PEX4/PEX22 complex from Arabidopsis thaliana

T169d T1054 A2 1 1530 190 N/A Outer-membrane lipoprotein from Acinetobacter baumannii

T176d T1078 A2 1 1480 138 N/A Tsp1 from Trichoderma virens, small secreted cysteine rich

protein (SSCRP)

T178d T1083 A2 1 1650 98 6nq1 Helical segment from Nitrosococcus oceani

T179d T1087 A2 1 1620 93 N/A Helical segment Methylobacter tundripaludum

Trimers

T168e T1052 A3 1 2600 832 N/A Tail fiber of the Salmonella virus epsilon15

T165d H1036 A3H3L3 1 850* 931/128/106 6vn1 MC Ab 93 k bound to varicella-zoster virus glycoprotein gB

T174d T1070 A3 1 3000 335§ N/A Protein of attachment region to phage tail

Large assemblies

T170d H1060 A6/B3/C12/D6 9 550–1800* 464/298/140/142 N/A Component of the T5 phage tail distal complex

T177e T1081 A20 3 5000/1250/300 758 2vyc Arginine decarboxylase/bacteria

T180d T1099 A240 8 (4) 1110/1970 262 6ygh Capsid of duck hepatitis B virus

Note: The columns present, respectively, the CAPRI and CASP target ID, stoichiometry of the assembly, the number of interfaces, the surface area (or

range) of the interfaces, the number of residues per monomer, the PDB code (if available) and a textual description of the target. For target structures not

yet deposited in the PDB (N/A in column 7) structural details could not be revealed here. Dimeric and trimeric targets are listed with Easy targets first and

then Difficult targets. Difficulty of all targets is indicated by superscript “e” (Easy) or “d” (Difficult) in the CAPRI target ID column. (*) Target T170/H1060

comprises a total of nine interfaces, with buried surface areas of 1800/1650/1650/950/680/680/550/1200/750, for interfaces 1–9, respectively. (*)
T165 shows the area for the A/HL interface. (§) Only 324 residues were resolved in the structure.
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higher-order oligomers), and 8 difficult (to model) targets (Table 1).

Targets of both categories included dimers, trimers, and large

assemblies.

The easy targets were the human SMCHD1 homo dimer (T164/

T1032), the PEX4/PEX22 complex from Arabidopsis thaliana

(T166/H1045), the homo trimer of the Salmonella virus e15 tail fiber

(T168/T1052), and the 20 subunits assembly of the bacterial arginine

decarboxylase (T177/T0181) arranged as two stacked decameric

rings, each adopting D5 symmetry (Figures 1 and 2). The latter assem-

bly target was categorized as easy, because an excellent template was

available for the decameric rings.

The eight difficult targets include four homodimers, two trimers,

and two large assemblies (Table 1). The four homodimers comprise

two globular bacterial proteins (T169/T1054 and T176/T1078), and

two bacterial helical dimers (T178/T1083 and T179/T1087). For all of

these, distant templates were available only for the individual subunits

of each complex. The two difficult trimers include a hetero complex of

the varicella-zoster virus glycoprotein gB trimer, bound to a specific

monoclonal Ab (T165/T1036), where the main challenge was to pre-

dict the Ab binding interface, and the phage tail attachment regions

protein (T174/T1070). Of the two difficult to model large assemblies,

the first is a multi-protein component of the T5 phage distal complex

(T170/H1060), composed of four different chains with stoichiometry

A6;B3;C12;D6, totaling 27 subunits, arranged in four rings stacked on

top of one another, one of which is in fact composed of two concen-

tric rings the inner B3 ring and the outer C12 ring (see Figure 3A for

(A)

(B)

(C)

T177T170 T180

T165 T168 T174

T166T164 T169 T176 T178 T179

F IGURE 1 The Targets of Round 50.
(A) Dimeric targets, (B) trimeric targets,
(C) large assemblies. The dimeric targets are
divided into Easy (T164/T1032 and T166/
H1045) and Difficult (T169/T1054, T176/
T1078, T178/T1083, and T179/T1087)
targets. The trimeric targets T165/H1036
and T174/T1070 were Difficult, whereas
T168/T1052 was easy. The large assembly

target T177/T1081 was an easy target. The
remaining targets T170/H1060 and T180/
T0199 featured both Easy and Difficult to
predict interfaces

F IGURE 2 Evaluated interfaces of the bacterial Arginine
decarboxylate (T177/T1081). The two primary interfaces are within each
decameric ring, the third interface lies between the two rings. Individual
subunits illustrating the intra- and interdecamer interfaces are colored
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details and nomenclature used). The cryo-EM structure of the full

complex, included two additional rings, composed of subunits with

significantly disordered regions, for which adequate templates were

not available. These additional rings were not part of the prediction

challenge.

The second target of this category (T180/T1099) was the capsid

of the of the duck hepatitis B virus, adopting a T = 4 icosahedral sym-

metry with a total of 240 subunits (Figure 4). A template

corresponding to a distantly related hepatitis B virus capsid was avail-

able, but the corresponding capsid core protein was lacking an inser-

tion exhibited by the target protein, which contributes to the major

capsid interface as will be further detailed in our analysis.

3 | OVERVIEW OF THE PREDICTION
EXPERIMENT

As in previous CASP-CAPRI challenges and in standard CAPRI

Rounds, predictor groups were provided with the amino-acid

sequence or sequences of the target proteins, usually those of the

constructs used to determine the structures. In addition, predictors

were given information on the biologically relevant oligomeric state of

the protein, provided by the author for most targets, the stoichiome-

try of the complex and occasionally, some additional relevant details

about the protein.

Following the common practice in CAPRI, predictors were invited

to submit 100 models for each target, to be used for the scoring chal-

lenge (see below). It was stipulated however, that only the five top-

ranking models would be evaluated. To continue monitoring the abil-

ity of predictors to reliably rank their models, we also report the per-

formance of groups on the basis of their single top-ranking models.

Scoring experiments were run for all 12 targets. After the predic-

tor submission deadline, all the submitted models (100 per participat-

ing group) were shuffled and made available to all the groups

participating in the scoring experiment. The “scorer” groups were in

turn invited to evaluate the ensemble of uploaded models using the

scoring function of their choice, and to submit their own five top-

ranking ones. Scorer results based on their top-1 ranking models are

also reported. Typical timelines for the prediction and scoring experi-

ments were 3 weeks and 5 days, respectively.

Round 50 participants were invited to submit their models to the

CAPRI-EBI management system. In preparation for the CASP14

assembly prediction, the CAPRI management system was updated to

generate CASP compliant versions of the five top ranking models sub-

mitted to CAPRI by predictor and scorer groups, and these compliant

versions were automatically forwarded to CASP. With very few

exceptions, this procedure worked very well, affording a seamless

communication between the CASP and CAPRI management teams.

The number of CAPRI groups submitting predictions and the

number of models assessed for each target are listed in Table S1. For

Round 50 targets, 25 CAPRI groups submitted on average ~1250

models per target of which ~1500 were assessed here. On average

20 scorer groups submitted a total of ~190 models per target, of

which a total of ~1200 models were assessed.

4 | ASSESSMENT METRICS AND
PROCEDURES

For ready comparison with the results obtained in previous CAPRI

Rounds and previous CASP-CAPRI experiments,38,39 models were

evaluated using the standard CAPRI assessment protocol. This proto-

col was complemented with the DockQ score,48 a continuous quality

metric that integrates the main quality measures of the standard

CAPRI protocol (see details below).

In addition, we evaluated the quality of the predicted protein–

protein interfaces in the submitted models, namely the extent to

which residues from each of the contacting subunits that make up the

binding interface are correctly identified. This is a distinct problem

from that of accurately predicting the detailed atomic structure of the

F IGURE 3 Subunit arrangement and interfaces of the T5 phage tail distal complex (T170/H1060). (A) The rings A and B (rings are underlined)
consist of three identical copies of protein A (proteins are not underlined); ring C contains an inner Ci (3 copies of B) and outer Co (12 copies of C)
ring; ring D contains 6 copies of protein D. The best templates for each protein are shown in the image. (B) Shows the organization of the five
rings in the larger assembly as it was resolved by cryo-EM. To the right of the rings are listed the chain identifiers, with the number of residues in
each chain in parentheses. (C) Shows the nine different interfaces, the rings in or between which they occur, two exemplary chains of the
interface and the buried area between the two chains
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binding interface and of the protein complex (or assembly) as a whole.

It requires identifying only the residues from each subunit contribut-

ing to the interface (as opposed to predicting their contacts)44 and

was therefore assessed separately.

4.1 | The CAPRI assessment and ranking protocols

The standard CAPRI assessment protocol42,43 was used to evaluate

the quality of the predicted homo- and hetero-complexes. This proto-

col uses three main parameters, f(nat), L_rms, and i_rms to measure the

quality of a predicted model. f(nat) is the fraction of native contacts in

the target that is recalled in the model. Atomic contacts below 3 Å are

considered clashes and predictions with too many clashes are dis-

qualified (for the definition of native contacts, and the threshold for

clashes see Reference 42). L_rms is the backbone rmsd (root means

square deviation) over the common set of residues (across all submit-

ted models) of the ligand protein, after the receptor protein has been

superimposed, and i_rms represents the backbone rmsd calculated

over the common set of interface residues after these residues have

been structurally superimposed. An interface residue is defined as

such, when any of its atoms (hydrogen atoms excluded) are located

within 10 Å of any of the atoms of the binding partner. On the basis

of the values of these three parameters models are ranked into four

categories: high quality, medium quality, acceptable quality, and incor-

rect, as previously described.38

For targets representing higher order oligomers featuring multiple

distinct interfaces, submitted models were evaluated by comparing each

pair of interacting subunits in the model to each of the relevant pairs of

interacting subunits in the target.38 The quality score for the assembly

as a whole, ScoreA was computed as a weighted average as follows:

ScoreA ¼ ω1nACCþω2nMEDþω3nHIGHð Þ ð1Þ

where nACC, nMED, and nHIGH are the number of interfaces of the

assembly for which at least one acceptable-, medium-, and high-

quality model respectively, was submitted among the top five ranking

models. The values of the weights “ω” were taken as ω1 = 1, ω2 = 2,

and ω3 = 3. For the purpose of ranking the performance of individual

groups across all targets we used the normalized version of

(A)

(B)

(D)

(C) (E)

C:D

[1] A:B

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[1]

A/B/C/D

[2']

[2']

F IGURE 4 Subunit interactions and quasi symmetry of the duck hepatitis B virus capsid (T180/T1099). (A) shows the entire capsid,
highlighting the five-fold and three-fold symmetry also shown in (B) that is exhibited by the assembly. The capsid contains 60 copies of the four-
chain asymmetric unit shown in (C), in which the chain pairs A:B and C:D form the tight, primary interface. The secondary interface, shown in (B),
is formed by interactions between chains A (green, forming the pentagon) and chains C (magenta, forming the triangle) of neighboring units. (D) A
difference in backbone conformation of chains A/C versus B/D (backbone rmsd 0.6 Å) results in a quasi-identical interface connecting the
pentagon and triangle together through interface [20] of (B). (E) shows the overlap of chain A of the target to its analogue in the template 3j2v,
highlighting the regions that needed to be modeled correctly for an accurate prediction of both interfaces
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Equation (1): < ScoreA > ¼ 1
K ScoreAð Þ, where K is the number of evalu-

ated interfaces. This was done in order to avoid large assemblies with

multiple interfaces weighing too heavily on the global score of individ-

ual groups (ScoreG of Equation [2] below).

The quality of the modeled 3D structure of individual subunits

was also evaluated by computing the “molecular” root mean square

deviation (M-rms), of backbone atoms of the model versus the target.

It was used mainly to gauge the influence of the quality of subunit

models on the predicted structure of the assembly. To further evalu-

ate the accuracy of the modeled protein–protein interface we also

computed the root mean square deviation of sidechain atoms (S-rms)

of residues at the binding interface. This measure uses the backbone

rms fit of the i_rms calculation, to compute rms values over side-chain

atoms only. It is not used in the classification of models.

The performance of predictor and scorer groups and servers was

ranked on the basis of their best-ranking model in the five-model sub-

mission for each target. The final score assigned to a group or a server

was expressed as an analogous weighted sum to that of Equation (1),

but considering the performance for individual targets, expressed in

each of the three categories (acceptable, medium, and high), achieved

by that group or server over all targets:

ScoreG ¼ω1NACCþω2NMEDþω3NHIGH ð2Þ

where NACC, NMED and, NHIGH are the number of targets of

acceptable-, medium-, and high-quality, respectively, and the values of

weights “ω” were taken as ω1 = 1, ω2 = 2, and ω3 = 3.

This ranking method was already used in the CASP13-CAPRI

challenge,41 and the latest CAPRI assessment.49 It takes into account

all models of acceptable quality or higher submitted by a given group.

For larger assemblies it takes into account the model quality as

defined by the value of <ScoreA > for the assembly, defined above.

4.2 | Additional assessment measures

To enable a higher-level analysis of the performance across targets,

we used a continuous quality metric as formulated by the DockQ

score, to evaluate each modeled interface48:

DockQ¼ f natð Þþ rmsscaled L_rms,d1ð Þþ rmsscaled i_rms,d2ð Þ½ �=3 ð3Þ

with rmsscaled ¼1= 1þ rms
di

� �2
� �

, where f(nat), i_rms, and L_rms are as

defined above. The rmsscaled represents the scaled rms deviations

corresponding to either L_rms or i_rms and di is a scaling factor, d1 for

L_rms and d2 for i_rms, which was optimized to fit the CAPRI model

quality criteria, yielding d1 = 8.5 Å and d2 = 1.5 Å (see Reference 48).

4.3 | Evaluating predicted interface residues

Models submitted by CAPRI predictor scorer and server groups were

also evaluated for the correspondence between residues in the

predicted interfaces and those observed in the corresponding struc-

tures of the 12 targets of Round 50. A total of 23 distinct protein–

protein interfaces, sometimes representing more than one interface

for each interacting component, were evaluated. The number of inter-

faces evaluated for individual targets in both categories (easy and dif-

ficult) are listed in Table 1. Interface residues of the receptor (R) and

ligand (L) components in both the target and predicted models were

defined as those whose solvent accessible surface area is reduced

(by any amount) in the complex relative to that in the individual com-

ponents.44 This is a more stringent definition of interfaces residues

than the one in the official CAPRI assessment protocol, where

residue–residue contacts and backbone conformation are being evalu-

ated. As in the official CAPRI assessment the surface area change was

computed from the structures of the individual components in their

bound form.

The agreement between the residues in the predicted versus the

observed interfaces was evaluated using the two commonly used

measures, Recall (sensitivity) and Precision (positive predictive value).

Recall is denoted as f(IR), the fraction of the residues in the target

interface that are part of the predicted interface. Precision = 1 � f

(OP), where f(OP) is the fraction of the residues in the predicted inter-

face that are not part of the target interface, that is, over-predicted or

false positives.

5 | RESULTS AND DISCUSSION

This section is divided into five main parts. The first part presents the

results of human predictors, servers and scorer groups for the 12 indi-

vidual CAPRI Round 50 targets for which the prediction and scoring

experiments were conducted. In the second part we present the rank-

ings of the same groups established on the basis of their performance

across all targets. In the third part we report results of the binding

interface predictions obtained by the different categories of partici-

pants for all targets. The fourth and final part analyzes methods and

factors that may have influenced the prediction performance.

5.1 | Predictor server and scorer results for
individual targets

Detailed results obtained by all groups (predictors, servers, and

scorers) for individual targets analyzed in this study can be found in

Tables S2 and S3. Results of the CAPRI evaluation for predictor

groups that submitted models only to the CASP prediction center are

also included, but will only briefly discussed, since their performance

is evaluated in a separate publication.45 Values of all the CAPRI quality

assessment measures for individual models submitted by CAPRI par-

ticipants for the 12 Round 50 targets have been communicated to the

participants and will be posted on the CAPRI website (URL: http://

pdbe.org/capri). Additional information on the performance of individ-

ual groups can be found in the Supporting Information (Individual

Group Summaries).
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5.2 | Easy dimer targets: T164 and T166

The two easy dimer targets were, the homodimer of SMCHD1 (Struc-

tural maintenance of chromosomes (SMC) flexible hinge domain-

containing protein 1 (T164/T1032), and the PEX4/PEX22 heterodimer

from A. thaliana (T166/H1045). The homodimer of T164 featured a

sizable interface (1585 Å2 buried area), and several medium quality

templates ~30% sequence identity; backbone rmsd values ~2.8 Å),

displaying similar interfaces to that of the target, were available. For

the hetero dimer (T166), which featured a rather small interface

(765 Å2), several good quality templates (21–39% sequence identity;

backbone rmsd values 0.5–1.6 Å) were available for each of the sub-

units, in addition to a good quality template for the complex as a

whole.

As expected for this type of targets, models of acceptable quality

or higher were submitted by a majority of the CAPRI predictor groups

and servers (19/23) for T164. However, only two predictor groups

(Gray and Seok) and one docking server (MDOCKPP) submitted at

least one medium quality model among their top five models, whereas

none of the groups or servers submitted a high-quality model

(Table S2). A better performance overall was obtained for T166. A

majority of the CAPRI predictor and server groups (18/24) submitted

correct models for his target, of which as many as 12 groups (but no

server) submitted at least 1 medium quality model and three groups

(Chang, Venclovas, and Takeda-Shitaka) submitted one high quality

model each (the model of Venclovas featured the highest f(nat) value

(0.81), that of Takeda-Shitaka the lowest i-rms (0.74 Å), and the Chang

model had the lowest L-rms (2.11 Å). Last, four servers

(GALAXYPPDOCK, MDOCKPP, SWARMDOCK, and HDOCK) sub-

mitted at least 1 acceptable model each among their top five models

(Table S2).

Of the eight servers submitting models for T164, 6 submitted cor-

rect models, whereas only 1 server (MDOCKPP) submitted a medium

quality model for this target. Of the seven servers submitting models

for T166, only the above mentioned four servers, each submitted one

correct model for this homodimer.

Seventeen groups and servers participated in the scoring exper-

iment for T164, and all of those submitted at least one correct

model or better among their top five ranking models, a rather good

performance. Two scorer groups (Bates and Huang), and three

scorer servers (SWARMDOCK, HDOCK, and MDOCKPP) submitted

medium quality models, whereas the remaining 12 groups and

servers submitted acceptable models. Interestingly, the 2 best per-

forming scorer groups and the SWARMDOCK servers (from the

Bates group) submitted a medium quality model as their top 1 rank-

ing one, whereas none of the manual predictor groups or servers

had such models ranked on top. Scorer groups and servers also per-

formed well for T166. Of the 19 groups participating in the scoring

experiment for this target 2 human scorer (Kihara and Takeda-Shi-

taka) and 1 scoring server (LZERD, by the Kihara group) produced

high quality models among their top 5 scoring models, 11 groups

and servers produced medium quality models, and 1 group submit-

ted an acceptable model.

5.3 | Difficult dimer targets: T169, T176, T178,
and T179

These difficult dimer targets included the outer-membrane lipoprotein

homodimer from Acinetobacter baumannii (T169/T1054), for which

only a distantly related template, adopting a different binding mode

from that of the target was available, and as a result no acceptable

models were submitted by any of the predictor groups, even though

the target dimer features a large buried surface area (1530Å2).

The prediction performance was a little better for T176/T1087,

the SSCRP protein, although only very distantly related templates

were available for this target (rmsd of 3.9–6.8 Å for the individual sub-

units; seq-ID of ~11–17%), which furthermore displayed binding

modes that differed from that of the target. Yet, two predictor groups

(Zou and Seok) and the server MDOCKPP submitted acceptable

models among their top five scoring predictions. On the other hand,

nearly half of the participating scorer groups and servers (8/19) were

able to identify a correct model in the shuffled set of models offered

for scoring, and these included three servers (SWARMDOCK,

MDOCKPP, and HAWKDOCK) in addition to five human scorer

groups.

Interestingly the AlphaFold2 procedure of Google DeepMind did

predict a highly accurate structure for the bound subunit for T176

(with 93% of the Cα atoms of the structure lying with 1 Å of their

positions in the target). Had this structure been available to partici-

pants for assembly modeling, medium to high quality models would

have been obtained, because docking calculations tend to yield more

accurate models when using as input the bound structures of the

interacting subunits.42

The difficulty with the remaining two targets of this category

(T178/T1083, T179/T1087) stemmed from the fact that they com-

prised two very long helical hairpin structures bound to one another,

where the main challenge resided in uniquely aligning the helical sub-

units relative to one another. The very distantly related templates,

available for these targets (rmsd 4.7–5.7 Å, seq-ID ~7%), were all of

higher order helical assemblies, and were therefore of limited

relevance.

Nevertheless, of the 26 predictor and server groups submitting

prediction for T178/T1083, twelve groups including three servers

(LZERD, MDOCKPP, and HAWKDOCK) submitted an acceptable

quality model as one of their top five predictions, and only one other

group (Venclovas) submitted a medium quality model. The five

remaining participating servers submitted only incorrect models. The

performance of scorers and scoring server groups was somewhat bet-

ter than that of predictors. Half of the 19 participating groups submit-

ting at least 1 model of acceptable quality or better (among their top

five-ranking models), with however, two human scorers (Takeda-

Shitaka and Chang) and 1 server (HAWKDOCK) submitting medium

quality models (Table S2). Interestingly, the scorer group of Venclovas

was unable to identify their own medium quality model in the shuffled

set and ended up submitting only an acceptable model.

A very similar performance was obtained for T179/T1087. Ten

out of the twenty-four participating human predictor and server
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groups all submitted only one acceptable model for this target. Two of

these acceptable models were submitted by the LZERD and

MDOCKPP servers, whereas only incorrect models were submitted

by the remaining six participating servers.

It is again noteworthy that the AlphaFold2 procedure of Google

DeepMind did predict a highly accurate structure for the bound sub-

unit of this target (96% of the Cα atoms of the structure lying with

1 Å of their positions in the target). Had this structure been available

to participants, most likely more accurate models would have been

obtained.

5.4 | Trimer targets: T165, T168, and T174

These trimer targets include two difficult targets, the monoclonal Ab

bound to the varicella-zoster virus glycoprotein gB (T165/T1036), and

the phage tail attachment region protein (T174/T1070), and one easy

target, the tail fiber of the salmonella virus epsilon15 (T168/T1052).

For T165, the main challenge was to predict the binding mode of

the monoclonal Ab to the protein trimer, and not to model the viral

glycoprotein trimer itself, for which a closely related template was

available for the full trimer (backbone rmsd 1.0 Å, seq-id 60%). T174

was a difficult modeling problem, because templates could not be

identified even for the individual protein chain, whereas modeling the

timer in T168 was an easy problem, given that high quality templates

(backbone rmsd 0.76 Å, seq-id 42%) were available for the tail fiber

viral protein.

For T165/T1036, where we evaluated only the binding mode

with the monoclonal Ab, and for T174/T1070, where the full assem-

bly was evaluated, only incorrect models were submitted (see

Table S2). Unsurprisingly in contrast, a very good prediction perfor-

mance across predictors and servers was obtained for T168/T1051.

Of the 24 participating predictor and server groups, 16, including

4 servers (GALAXYPPDOCK, LZERD, MDOCKPP, and SWARMDOCK) sub-

mitted at least one medium quality model among their top five ranking ones,

and two additional predictor groups submitted one acceptable model each.

As expected from the good performance of predictors and

servers, who contributed many medium quality models to the shuffled

set offered for scoring, the scorer performance was very good as well,

with all but 2 of the 17 scorer groups submitting at least one medium

quality model among their top five ranking ones.

5.5 | Large assembly targets: T170, T177,
and T180

These three targets, the component of the T5 phage tail distal com-

plex (T170/H1060), the bacterial arginine decarboxylate from (T177/

T1081) and the duck hepatitis B virus capsid (T180/T1099), were all

large multi-protein complexes, whose 3D structure was determined

by cryo-EM. These large assemblies comprised between 20 and

240 subunits. They featured different internal symmetries, with pro-

tein subunits engaging in several distinct binding modes involving

interfaces of varying sizes. Therefore, correctly, not to mention accu-

rately, modeling the 3D structure of the full assembly for each of

these targets represented a very challenging prediction problem.

For multi-protein assemblies such as these, predictions were eval-

uated for individual interfaces of each target, as well as over the full

assembly. In the latter case the ScoreA expression of Equation (1) was

used. The prediction performance of predictor server and scorer

groups for individual interfaces of each target is provided in Table S2,

whereas the performance of the same individual groups for the

assembly as a whole, can be found in Table S3.

The T177/T1081 assembly of the two stacked decamers each

adopting D5 symmetry, was undeniably the easiest assembly model-

ing problem as at least one closely related template (backbone rmsd

0.46 Å, Seq-ID, 71%) was available for the entire decameric ring. The

assembly features a total of four distinct interfaces (I.1–I.4). Three of

these are within rings, comprising two quite larges interfaces, burying

respectively 5000 Å2 (I.1) and 1250 Å2 (I.2), and another very small

interface (180 Å2). Only one distinct quite small interface (300 Å2)

(I.3), formed diagonally between subunits in different rings and

repeated five times, affords the inter-ring contacts (Figure 2).

The prediction performance was evaluated for the two large

interfaces within each ring (I.1, I.2), and the intraring interface I.3.

Given that a high-quality template was available for the decameric

rings, the main challenge for this target was predicting the inter-ring

contacts (I.3).

Not too surprisingly, given the closely related template for the

decameric rings, an excellent prediction performance was obtained

for the two large intraring interfaces I.1, I.2, but a lower performance

was achieved for I.3 (Table S2). For example, of the 24 predictor and

server groups submitting models for I.1, 17 groups including 5 servers

(SWARMDOCK, HDOCK, MDOCKPP, CLUSPRO, and LZERD), sub-

mitted between 2 and 5 high quality models among their top five

ranking models. Another three groups (including one server:

GALAXYPPDOCK) submitted five medium quality models.

As expected, an excellent performance for I.1 was also obtained

by scorer groups, with 16 out the 18 scorer groups (six servers

included), all submitted between 3 and 5 high quality models among

their top 5 ranking predictions. A very similar tally of high-quality

models was obtained across different groups for I.2.

The main challenge posed by T177/T1081, namely, to correctly

predict the smaller inter-ring interfaces (I.3), was met by a smaller

number of groups and servers, and consequently by scorer groups as

well. Among the 24 predictors and server groups submitting model for

this inter-ring interface, only one server (MDOCKPP) submitted 1 high

quality model (and 4 medium quality ones) as their top 5 ranking ones

for this interface. This server thereby surpassed the performance of

other groups (Venclovas, Zou, Grudinin, Kozakov/Vajda) and the

CLUSPRO server that submitted at best 1–3 medium quality models

or only acceptable quality ones (Table S2). The best performing

servers were MDOCKPP, SWARMDOCK, and CLUSPRO. Somewhat

better performance was obtained by scorer groups, with three groups

(two servers: SWARMDOCK and HAWKDOCK, and the human

scorer Bates), submitting at least one high quality model for I.3, and
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seven additional groups (including the MDOCKPP and LZERD server)

obtained at least one medium quality model among their top five

ranking predictions.

Combining the performance across all three distinct interfaces of

T177/T1081, using the scoring scheme of Equation (1), yields the

overall ranking of predictor and scorer groups for the assembly (see

Table S3). Of the six top-ranking predictor groups and servers, submit-

ting models of medium quality or higher for all three interfaces, the

MDOCKPP ranked first. This server was the only participant submit-

ting high quality models for all three interfaces, including the more

challenging inter-ring interfaces (I.3). This top performer is followed

by four human predictors (Zou, Venclovas, Pierce, and Kozakov/Vajda)

and the CLUSPRO server, all submitting high quality models for the

two intraring interfaces, and a medium quality model for I.3. Four

additional CAPRI groups, and two servers (SWARMDOCK and

HDOCK), managed only an acceptable model for the I.3, in addition to

high quality models for Interfaces I.1 and I.2. Of the 13 CASP predic-

tors, only five groups submitted correct models for all three interfaces,

but only medium and acceptable quality models for interface I.3.

Not surprisingly, the scorer performance was excellent overall

(Table S3). Three scorer groups: two servers (HAWKDOCK and

SWARMDOCK) and the human scorer group of Bates (author of

SWARMDOCK), submitted high quality models for all three interfaces

of the target. Eight additional groups (including the LZERD and

MDOCKPP servers), submitted models of medium quality or better

for all three interfaces, and three groups also correctly predicted all

three interfaces albeit to lower accuracy.

On the basis of these combined results this assembly can be con-

sidered as quite successfully predicted overall. The best model overall

was submitted by MDOCKPP and the scoring server HAWKDOCK, as

their second-highest ranked model in both cases. It features an aver-

age DockQ value of 0.87 ± 0.02, corresponding to f(nat) values of

0.7–0.85, L_rms values of 0.8–1.2 Å and i_rms values of 0.6–0.7 Å for

the three interfaces.

Next in terms of the modeling challenge was T180/T1099, the

duck hepatitis B virus capsid. This capsid adopts a T = 4 icosahedral

symmetry with a total of 240 subunits, comprised of identical protein

chains. Structurally the subunits assemble into 60 identical copies of

an asymmetric unit composed of four helical proteins with slightly dif-

ferent conformations (backbone rmsd 0.4–0.74 Å). The icosahedral

capsid formed by these 60 identical copies engage in a total of 5 dis-

tinct interfaces (Figure 4B,C). But the high similarity between the two

dimers in the asymmetric unit, and the differences in backbone con-

formations of the four individual subunits of the asymmetric unit,

enable the formation of quasi-identical interfaces between the AB

dimers in the pentameric face and the CD dimers in the trimeric face

of the icosahedron (see Figure 4B,C). As a result, only two unique

interfaces had to be evaluated for this target: I.1, the larger interfaces

between the individual subunits in the AB and CD dimers (1970 Å2),

and I.2 the one between subunits B and D between dimers (1100 Å2).

Aware of the high degree of quasi symmetry between the differ-

ent interfaces forming the capsid of this target, the organizers

(of both CASP and CAPRI) invited predictors to submit the minimum

number of subunits necessary to include the unique interfaces defin-

ing the capsid assembly. As it turned out, many predictor groups were

unclear about what this minimum number should be. Only a third of

the 125 models submitted by the 25 predictor groups for this target

contained four subunits (chains), the number of subunits in the asym-

metric unit, that were indeed sufficient to define the two unique

interfaces of this target. A number of other groups submitted assem-

blies comprising with between 6 and 20 subunits, and a few groups

submitted models with only 2–3 chains.

Several templates of distantly related viral capsids were available

for this target. These included the reconstituted hepatitis B viral cap-

sid (3J2V) adopting the same icosahedral symmetry and featuring the

most closely similar subunit structure (backbone rmsd 2.0 Å). Unfortu-

nately, however, the template protein lacked the crucial insertion (res-

idues 75–125) present in the target protein, which contributes

significantly to the target dimer interfaces (I.1; Figure 4E). This

resulted in a very poor prediction performance, with only one predic-

tor group (Seok) submitting a single acceptable model for I.1 among

their top five submissions, representing a real feat (Table S2), which

was achieved with the help of published mutagenesis data on this

virus (see the Seok group summary in the Supporting Information). Of

the 18 groups participating in the scoring challenge for this target,

only 3 groups (Venclovas, Fernandez-Recio, and Huang) and 1 server

(Fernandez-Recio's PYDOCKWEB), were able to identify Seok's

acceptable models for this interface in the shuffled set of models.

It is noteworthy that here too, AlphaFold2 of Google DeepMind

predicted a highly accurate model of the individual subunits of the

asymmetric unit of the capsid protein (including the extra insertion).

Using this model would have certainly enabled more of the participat-

ing predictor groups to produce highly accurate models for this inter-

face, and probably for the capsid as a whole, since rather good

predictions were obtained for I.2 of this target.

Indeed, a total of 13 groups predictor groups (out of 15) submit-

ted medium quality models for I.2 of T180/T1099, with one group

(Venclovas) also submitting 1 high quality model among their 5 top-

ranking models, and only 6 groups submitting only incorrect models.

Of the seven participating servers, three submitted medium quality

models, and one server submitted one acceptable model. Scorers per-

formed well on this interface, with 11 groups, including four servers

(LZERD, MDOCKPP, HDOCK, and SWARMDOCK) submitting at least

one medium quality model, and six other groups (including the

PYDOCKWEB server) submitting an acceptable model (Table S2). The

best performing groups for this interface were the LZERD and

MDOCKPP servers, and the group of Zou, but neither was able to

identify the high-quality model predicted by Venclovas.

Combining the performance across the two distinct interfaces of

T180/T1099, using the scoring scheme of Equation (1), yields the

overall ranking of predictor and scorer groups for the assembly (see

Table S3). The top-ranking groups for this target are Venclovas, who

submitted the only high-quality model for I.2, and Seok, with a

medium quality model for I.2 in addition to the single acceptable

models for the challenging I.1 interface. An additional 12 groups sub-

mitted medium quality model (only for I.2), followed by 6 groups who
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managed only 1 acceptable model for I.2. The best performing predic-

tion servers for this target were LZERD, CLUSPRO and

GALAXYPPDOCK. Of the eight CASP predictor groups for this target

(Table S3), four groups (Seok-assembly, Kihara-assembly, CoDock, and

Baker) performed best with 1 medium quality model each, for I.2.

The scorer performance for the assembly was good overall. The

best performance was achieved by Huang, the only group submitting

correct models for both interfaces: an acceptable model for I.1 and a

medium quality model for I.2 (Table S3). Only three other groups sub-

mitted correct models for both interfaces; all were only of acceptable

quality.

By all accounts, the 27-subunit component of the T5 phage tail

distal cryo-EM complex (T170/H1060), was the most challenging

assembly prediction problem of the entire Round. This component

included a total of four multi-subunit rings (A–D) stacked on top of

one another (Figure 3A). Rings A and B each comprise three copies

of protein A (464 residues). Ring C comprises two concentric rings:

an inner ring composed of three copies of protein B (298 residues),

and an outer ring with twelve copies of protein C (140 residues).

Ring D is composed of six copies of protein D (204 residues; bold

underlined capital letter are ring identifier; capital letters are protein

identifiers).

Closely related templates were available for proteins A and D

(monomeric forms), and a rather distantly related templates were

available for proteins B and C (see Figure 3B for details).

The 27 subunits of the assembly form a total of 9 unique pairwise

interfaces within and between rings. The area buried in these inter-

faces, the subunits that contribute to each interface (using the chain

identifiers provided by the authors) and the total area buried between

neighboring rings is listed alongside in Figure 3C.

On the basis of the available templates, and the buried areas

between the subunits, the three unique interfaces of ring C (inter-

faces I.5, I.6, and I.7), involving proteins B and C, were expected to

be the most difficult to predict, whereas the remaining six inter-

faces (I.1–I.4, I.8,and I.9) seemed to represent easier prediction

problems (see Figure 3C for details). These expectations were par-

tially borne out by the prediction results (Table S2). The best pre-

diction performance was obtained for interfaces I.1 (between

subunits within rings A and B), I.5 (between subunits within the

outer C ring), and I.8 (between subunits within ring D). For I.1,

13 out of the 22 predictors groups submitted at least 1 acceptable

model or better among their five top ranking models, among which

two servers (HDOCK and MDOCKPP), and three human predictors

(Huang, Shen, and Zou) submitted at least one medium quality

model. Scorers performed extremely well for this interface, with all

17 scorer groups submitting acceptable models or better, and

more than half of these submitting at least 1 medium quality

model. For interface I.5, more than half of the predictor groups

and one server (CLUSPRO) submitted a model of acceptable qual-

ity (seven models) or better (five medium quality models). Superior

performance was achieved by scorers for this interface. The major-

ity of the scorer groups (16/17) submitted models of acceptable

quality or better. Ten of these groups, including two servers

(MDOCKPP and PYDOCKWEB), submitted at least one medium

quality model among their top five ranking ones, with the groups

of Shen and Takeda-Shitaka as top performers (Table S2).

A weaker performance was observed for I.8, with only one pre-

dictor group (Venclovas) submitting a medium quality model, and six

groups including one server (LZERD) submitting at least one accept-

able model among their top five ranking ones. Scorer groups per-

formed overall better, with 13 out of the 17 scorer groups (including

three servers: LZERD, MDOCKPP, and PYDOCKWEB) submitting

acceptable quality models, of which only the Venclovas scorer group

submitting a medium quality model. The only intraring interface with

a very weak prediction performance was that between the subunit

within the inner C ring (I.3), due to the more distant relationship of

the B protein to the available template (the latter was more closely

related to the A proteins forming the A and B rings; see Figure 4A,B).

For this interface only acceptable models were obtained by four pre-

dictor groups (Venclovas, Seok, Zou, and Shen) and one server

(MDOCKPP). Many of these models were identified by a majority of

the scorer groups, including two servers (MDOCKPP and LZERD;

Table S2).

For the remaining five unique interfaces of T170/H1060, the best

prediction performance was obtained for I.4 and I.9. For I.4, the inter-

face between ring B and Ci (the C inner ring), three predictor groups

(Venclovas, Chang, and Bates) and one server (HDOCK) submitted at

least one acceptable model, and scorers did quite well with slightly

more than half of the groups submitting at least one acceptable

model. For I.9 the interface contributing to the contacts between ring

D and the inner ring of ring C (Figure 4C,D), five predictor groups

(Huang, Shen, Chang, Kihara, and Seok,) and one server (HDOCK) sub-

mitted at least one acceptable quality model, whereas scorers did

quite well with a majority (13 out of 17), submitting at least one

acceptable model (Table S2). For the remaining three interfaces (I.2,

I.6, and I.7), all of which are inter-rings, only a single but different

group each time, submitted an acceptable model for each of these

interfaces, with a commensurate poor performance exhibited by

scorer groups (Table S2).

Combining the performance across all nine distinct interfaces of

T170, using our scoring scheme yields the overall ranking of predictor

and scorer groups for the assembly (Table S3). The Shen predictor

group ranks first, with correct models submitted for six of the nine

unique interfaces of T170, of which two were of medium quality.

Venclovas and Chang both correctly predicted five of the unique

interfaces, of which one (a different one for each group) was of

medium quality. These are followed by the groups of Changs, Seok,

Kihara, Huang, and HDOCK (the best performing server), with accept-

able models for five interfaces, or correct models for four interfaces

including a medium quality model for one of those. A further six

groups (and two servers: CLUSPRO and MDOCKPP) submitted cor-

rect predictions for only two interfaces, including a medium accuracy

prediction for interfaces I.1 or I.5. Of the CASP groups, only those of

DATE, Baker and Takeda-Shitaka, submitted correct models for two

interfaces, followed by two other groups with only one correctly

predicted interface.
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Interestingly, scorer groups overall outperformed predictors

for the full assembly (Table S3). Two groups (Shen and Zou) cor-

rectly predicted six of the nine interfaces of T170, including

2 medium quality models for two of these, while the groups of

Chang and Kihara, also with six correctly predicted interfaces,

albeit of lower accuracy. Most of the remaining scorer groups pro-

duced correct models of lesser accuracy for between 4 and 5 inter-

faces of T170.

5.6 | Performance of CAPRI predictors servers and
scorers across targets

Groups (predictors, servers, and scorers) were ranked according to

their prediction performance for the 12 assembly targets of Round

50. All the rankings presented here consider, as usual, the best model

submitted by each group among the five top ranking models for each

evaluated interface. For dimer targets or other targets where only one

interfaces was evaluated, this amounted to considering the best

model submitted for the corresponding target. For higher order

assemblies where more than one interface was evaluated, the group

score of Table S3 normalized by the number of evaluated interfaces

for the target was used (see Section 4.1). To avoid bias from the

poorer overall performance for T170, the most difficult assembly of

this Round with nine distinct interfaces, this target was sub-divided

into three sub-targets: T170.1 (assembly defined by interfaces I.1-I.4),

T170.2 (assembly defined by interfaces I.5–I.7), and T170.2 (I.8, I.9),

with each of the sub-targets evaluated as a distinct assembly target,

as outlined above. Taking into account the three sub-targets of T170,

the total number of evaluated “targets” amounts to 14. Table 2 pre-

sents the ranking of groups that submitted predictions for a total of

10 targets or more out of the 14 targets and sub-targets. The full

ranked list can be found in Table S4. We did not generate separate

ranking across easy and difficult targets this time, given the small

number of targets overall, and the fact that they included large assem-

blies, like the T5 phase tail (T170), which features multiple different

subunits and interaction interfaces of varying level of difficulty.

Trends among predictor and scorer groups in their ability to tackle

more difficult modeling problems, will be discussed in the subsequent

sections describing global trends.

5.6.1 | Predictor performance

The four top ranking predictor groups submitted correct models or

better for at least eight out of the fourteen targets, as defined here.

These include the group of Seok, with a total of nine correctly

predicted target, of which four were predicted to medium accuracy.

Next in rank is the group of Venclovas, with eight correctly predicted

targets, including three predicted to medium accuracy and one to high

accuracy, and finally those of Chang and Zou, with eight correctly

predicted targets including three medium quality ones. Immediately

following are the MDOCKKPP server and the groups of Kihara and

Pierce, with seven correctly predicted targets, including at least three

targets of medium quality or better. Of the predictor groups who sub-

mitted models only to CASP, Baker ranked equal to the best CAPRI

predictors, with eight correctly targets of which four were predicted

at medium accuracy or higher, and CoDock ranked somewhat lower

with six correctly predicted targets of which two were predicted to

medium accuracy.

5.6.2 | Server performance

A total of eight automatic servers participated Round 50. The ranked

performance of 6 of these (each submitting predictions for 14 targets

and sub-targets) is listed in Table 2. The best performing server is

MDOCKPP, with seven correctly predicted targets, of which three

were predicted to medium accuracy or better. The LZERD server fol-

lows closely with six correctly predicted targets, of which two were

predicted at medium accuracy. These servers outperform HDOCK

and CLUSPRO, two servers that performed particularly well in the

CASP13-CAPRI challenge. However, in general, the performance of

servers was inferior to that of human predictors, as also highlighted in

the individual contributions of participants (see Supporting

Information).

5.6.3 | Scorer performance

The scorer performance was overall rather good, and stronger than

the performance of predictors and prediction servers. The seven

best performing scorer groups (with score >10 in Table 2) include

the MDOCKPP server as top performer, followed by the groups of

Zou, Chang, Takeda-Shitalka, the LZERD server, and the groups of

Shen and Huang. These scorer groups submitted correct models for

at least seven (Huang) and ten (Zou) targets, including 2–4 targets

predicted at medium accuracy, and 2 groups (the LZERD server and

the groups of Takeda-Shitaka), with 1 target predicted at high

accuracy.

Last it is noteworthy, that the data on the global group ranking

of Table 2, and those of Tables S2 and S3, indicate that most pre-

dictor groups have improved their ability to rank models. The num-

ber of targets for which these groups have a model of acceptable

quality or higher ranked on top (top 1) is often only slightly lower

than when their top-5 ranking models are considered. Prediction

servers, and even more so, scorers and scoring servers, are less

consistently successful in having their best quality models ranked

on top.

5.7 | Prediction of binding interfaces

Interface predictions were evaluated for 23 binary association modes

in the top 5 scoring models submitted for the 12 targets by CAPRI

predictors groups (human and servers), as well by CAPRI scorer
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TABLE 2 Overall group performance

Rank Predictors Participation Top-1 Top-5 Score

1 Seok 14 8/2** 9/4** 13

Venclovas 14 7/2** 8/1***/3** 13

3 Chang 14 7/2** 8/3** 11

Zou 14 5/3** 8/3** 11

5 Kihara 14 5/3** 7/3** 10

Pierce 13 6/3** 7/3** 10

7 Huang 14 5/3** 5/3** 8

Bates, Kozakov/Vajda 14 4/3** 5/3** 8

Fernandez-Recio 14 3/2** 5/3** 8

11 Shen 14 3/1** 6/1** 7

Vakser 14 3** 4/3** 7

13 Nakamura 11 2/1** 3/2** 5

14 Liwo 12 2 3 3

Czaplewski 13 2/1** 2/1** 3

Grudinin 13 1 1 1

CASP-only predictors Participation Top-1 Top-5 Score

Baker 14 7/4** 8/1***/3** 13

CoDock 10 5/1** 6/2** 8

Takeda-Shitaka 14 2/1** 4/1***/1** 7

Seok-assembly 14 5/1** 5/1** 6

Kiharalab-assembly 13 3/1** 5/1** 6

Lamoureux 11 3** 3** 6

UNRES 13 2 3 3

DATE 11 1 2/1** 3

Risoluto 14 2 2 2

Elofsson 13 1 2 2

VoroCNN-select 13 1 1** 2

Ornate-select 10 1 1** 2

SBROD 11 0 1 1

Rank Servers Participation Top-1 Top-5 Score

1 MDOCKPP 14 4/2** 7/1***/2** 11

2 LZERD 14 4/2** 6/2** 8

3 GALAXYPPDOCK 14 5/1** 5/1** 6

SWARMDOCK 14 3/2** 4/2** 6

5 HDOCK, CLUSPRO 14 2/1** 3/1** 4

Rank Scorers and scoring servers Participation Top-1 Top-5 Score

1 Zou 14 5/3** 10/3** 13

Chang 14 6/3** 9/4** 13

MDOCKPP 14 5/3** 9/4** 13

Takeda-Shitaka 14 5/1***/2** 8/1***/3** 13

5 Shen 14 5/3** 9/3** 12

LZERD 14 7/1***/2** 8/1***/2** 12

7 Huang 14 5/4** 7/4** 11

8 Oliva 14 6/3** 7/3** 10

Fernandez-Recio 14 5/2** 7/3** 10

PYDOCKWEB 14 5/1** 7/3** 10
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groups (human and server). The correspondence between the residues

defining the interfaces of the individual protein components of each

binary association mode in the predicted models and those in the tar-

get structure was evaluated using the Recall and Precision measures

(see Section 4, for further detail).

5.7.1 | Global trends

Figure 5 presents scatter plots of the recall and precision values of

predicted interfaces for components (receptor and ligand) of the

top five models submitted for each of the 23 evaluated association

TABLE 2 (Continued)

Rank Scorers and scoring servers Participation Top-1 Top-5 Score

Kihara 14 5/1***/1** 7/1***/1** 10

Bates, SWARMDOCK 14 4/3** 6/1***/2** 10

HAWKDOCK 10 3/2** 6/1***/2** 10

15 Venclovas 13 6/2** 7/2** 9

HDOCK 14 5/3** 5/4** 9

17 Grudinin 14 1 5/1** 6

Bonvin 14 3/2** 4/2** 6

Note: Ranking is determined on the combined score (ScoreG of Equation (2)) of the top-5 submission, but performance for top-1 is also listed. Performance

is shown as the total number of targets for which an acceptable prediction or better was achieved, with the number of better than acceptable target

predictions specified after the slash. The number of targets that a particular group participated in is listed in the column Participation. Ranking is divided

between CAPRI predictors, servers, and scorers and scoring servers. The performance of CASP-only predictors is listed (in italic font) but they are not

ranked. Their score can however be directly compared to those of the CAPRI predictor groups. Only groups participating in 10 targets of more are shown;

the full Table is given as Table S4.

F IGURE 5 Global landscape of the interface prediction performance. Scatter plot showing the average Recall and Precision values (see main
text for definition) of the interfaces in models submitted by all predictors (A) and scorers (B) for the 12 targets of Round 50. Each point represents
the average Recall and Precision values for the interfaces of the individual protein components (i.e., the receptor and ligand proteins, respectively)
in the five models submitted by each participant for one binary association mode. Averaging was performed separately over models in the four
CAPRI accuracy categories (incorrect, acceptable, medium, and high). For example, for a participant submitting five models or which two were
incorrect, two of medium quality and one of high quality, average Recall and Precision values were computed for the two incorrect models, and
the two medium-quality ones, respectively, whereas those for the single high-quality models were used as such. Individual points are color-coded
by the CAPRI model quality category (as indicated in the legend displayed in the upper left corner of each graph). The upper right-hand quadrant
of the graph, with Recall and Precision values above 0.5, contains all points corresponding to “correct” interface predictions. The two salient
outlier green points in (A) correspond to the medium accuracy models with high f(non-nat) values submitted by Kozakov/CLUSPRO for the
T170.5 interface. The two salient outlier red points in (B), correspond to the high accuracy models with however high f(non-nat) values submitted
by the group of Zou for the T177.2 interface
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modes by predictor and scorer groups. Individual points

represent values averaged separately over interfaces of

association modes in each of the four categories (incorrect, accept-

able, medium, and high) submitted by a given group for a given

target.

Inspection of the scatter plots reveals that predicted interfaces in

the models submitted by both predictors (Figure 5A) and scorers

(Figure 5B) span a wide range of recall and precision values. Confirming

our previous reports39,44 we observe that a sizable fraction of the points

corresponding to interfaces of incorrect models cluster loosely along the

diagonal at very low values, whereas the vast majority of acceptable and

higher quality models feature interfaces with recall and precision values

≥50% (upper-right quadrant of the scatter plots in Figure 5), which we

consider here as the threshold for correct interface predictions. At the

same time, a sizable fraction of the points in Figure 5 is spread widely

above and below the diagonal. In addition, we see that the fraction of

models with higher Recall than Precision values submitted by predictors

is smaller (36%; Figure 5A) than for models submitted by scorers (53%)

(Figure 5B). This difference is more pronounced for the incorrect

models, and for a fraction of the acceptable models, but becomes much

less pronounced for models in the upper right quadrants for points rep-

resenting models with both Precision and Recall ≥50%. Higher precision

than recall values correspond to predicted interfaces of smaller size that

capture only a fraction of the native interfaces, while including only a

few additional residues, and may hence be of predictive value. Interfaces

with lower precision than recall values, corresponding to points located

below the diagonal, and more particularly the points in the lower left

quadrant of the plots in Figure 5 are problematic, and with a few excep-

tions correspond to incorrect models.

We confirm previous findings that, (a) a fraction of incorrect

models features in fact correctly predicted interfaces and (b) a fraction

of correctly predicted interfaces corresponds to incorrect models.39,44

We find indeed that in Round 50, 15.25% the incorrect models sub-

mitted by predictors and servers have recall and precision values

above 0.5, hence representing correctly predicted interfaces as

defined here. For models submitted by scorers this fraction is nearly

twice as high (26.35%). Both values are roughly in the range observed

earlier: in the CASP13-CAPRI challenge the values ranged between

~11 and 12% for models of predictors and scorers,41 they were 16%

in the CASP12-CAPRI challenges37 and 24% in the initial CAPRI eval-

uation in 2010.42 At the same time, the fraction of incorrect assembly

models in the submissions with correctly predicted interfaces is 29%,

compared to 19%, and ~27% in the CASP13-CAPRI and

CASP12-CAPRI challenges, respectively.

The fractions of acceptable and higher quality models featuring

correctly predicted interfaces are now 68% and 87%, respectively

(reaching 100% for only high-quality models), essentially the same

as in the CASP13-CAPRI challenge, and lower than earlier values:

87 and 98% (CASP12),37 and 92 and 100%, respectively, in 2010.42

We also see that medium quality models tend to have higher recall

than precision values (although both values are mostly above 0.5),

whereas the opposite trend is displayed by acceptable models which

are of lower accuracy.

5.7.2 | Performance of predictor server and scorer
groups

The ranking of groups by their interface prediction performance is

listed in Table S5. Group performance was ranked on the basis of the

fraction of correctly predicted interfaces (interfaces with both recall

and precision ≥0.5), in the top five submitted models for each target.

Nine CAPRI human predictors (Huang, Liwo, Czaplewski,

Venclovas, Kozakov/Vajda, Shen, Zou, and Bates Grudinin), seven

CASP ones (Risoluto, Elofsson, Seok-assembly, UNRES, Kihara-assem-

bly, Ornate-select, Lamoureux), and four prediction servers

(MULTICOM- CLUSTER, HDOCK, GALAXYPPDOCK, and LZERD)

submitted correct predictions for at least 20% of the interfaces. The

best performing CAPRI predictor groups were Huang, Liwo, and

Czaplewski with correct predictions for 27% of the evaluate interfaces,

followed by Venclovas who correctly predicted 24% of the interfaces

but to a higher accuracy as judged by the corresponding average recall

and precision values (Table S5), which remained unmatched by the top

seven CASP predictors, or the four CAPRI prediction servers. Like in

the CASP13-CAPRI evaluation, some of the human scorers and scoring

servers outperformed human predictors and servers, albeit to a more

limited extent. Eight human scorer groups had correct prediction for at

least 20% of the interfaces, with Bonvin (30% of correct interfaces),

followed by Zou (24%), whose models achieved higher average recall

and precision values. Only two scoring servers (MDOCKPP and

HDOCK) submitted correct predictions for at least 20% of the inter-

faces, achieving average recall and precision values of 50–57%.

The last four columns of Table S5 list the average recall and preci-

sion values for interfaces of individual models (top 5) submitted by

each group, as well as the corresponding standard deviations. It is

noteworthy that the average recall and precision values achieved by

the best performing groups or servers rarely exceed 50%, compared

to 60% in the CASP12-CAPRI challenge.39 With a few exceptions,

higher values obtained by some groups correspond to a lower fraction

of correctly predicted interfaces overall. The standard deviations are

also larger, routinely between 25 and 30%, and only somewhat lower

than in the CASP13-CAPRI challenge. These results indicate that

models for individual targets (even those by the best performing

groups) tend to vary substantially in terms of the interface prediction

accuracy, and that the interface prediction accuracy has in general

declined, relative to achievements in previous CAPRI Rounds.

Last, we note that most published interface prediction methods

reach average recall and precision levels of ~50% and ~25%, respec-

tively, when applied to transient complexes (see reference 50 for

review). The best-performing groups of Round 50 achieve somewhat

lower recall levels (33–52%) but higher precision (30–56%; Table S5),

for what is most likely a mixture of transient and obligate interfaces of

the evaluated targets (especially in the large assemblies with signifi-

cant multi-valency involving weaker individual association modes).

These results support the conclusions that interface prediction

methods, which model the association modes with the cognate bind-

ing partner retain an advantage over interface prediction methods,

which do not use such information.
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5.8 | Global overview of the quality of predicted
models

A global overview of the quality of models submitted by predictor

(and server) groups for the two targets categories is presented in

Figure 6. Figure 6A displays the DockQ model scores, color-coded by

the CAPRI model quality categories for all the interfaces in individual

models submitted by predictors (left column) and scorers (right col-

umn) for each of the 23 binary interfaces of the 12 evaluated targets

of Round 50. The predictor and scorer DockQ values are compared

with those obtained for the best models submitted by respectively,

the predictor and scorer versions of the MDOCKPP server (Zou

group), the top performing automatic server in this evaluation. Models

produced by these servers are used to gauge the baseline perfor-

mance, analogous to that by the “naïve” predictions,39 or by the best

performing HDOCK server,41 used in previous evaluations. Figure 6B

presents the same data using box plots, illustrating the DockQ score

distributions per model quality and target interface.

Not too surprisingly, the models produced by predictors and

servers for the two easy dimer targets (T164 and T166) were overall

superior to those for the four more difficult ones (T169, T176, T178,

and T179). A good number of medium quality models and two high-

quality ones were submitted for the heterodimer of T166, but mostly

acceptable quality models and only a few medium quality ones were

obtained for the T164 homodimer. On the other hand, only incorrect

models were obtained for the more difficult T169 dimer, while a small

number of acceptable models was generated for T176. For the two

helical dimers of T178/T179, acceptable quality models were submit-

ted by a good fraction of the groups, whereas a much smaller fraction

submitted only medium quality models.

The performance for the three trimer targets was mixed. It was

poor overall (no correct model) for the two difficult targets: for T165,

where only the interface with the monoclonal antibody was evaluated,

and for T174, the phage tail attachment region protein. But the per-

formance for the easy trimer of T168 was much better, with a major-

ity of the groups (including servers) submitting models of acceptable

or medium, although none were of high quality.

The performance across the 14 single interfaces of the large

assembly targets was overall above those for the dimer and trimer tar-

gets, most likely because adequate templates were available for sev-

eral of the subcomplexes of these assemblies (e.g., for the ring

structures in T170, and T177). A rather good performance was

achieved for T177, the arginine decarboxylase, where the main chal-

lenge was to correctly predict the inter-ring interface (I.3 or T177/3 in

Figure 6), since an excellent template was available for the individual

decamer. As expected therefore, the two intraring interfaces were

well predicted by a majority of the groups and servers, with a high

fraction of the groups submitting models of medium accuracy or bet-

ter. The performance was in general lower for the inter-ring interface

(I.3, T177/3), with only a single high-quality model submitted by the

MDOCKPP server. The global prediction performance for T180, the

viral capsid, was disappointing, mainly due to the poor overall perfor-

mance for interface I.1. The insertion in the target protein was lacking

in the available template, resulting in incorrect models being submit-

ted by most groups, except the group of Seok, who submitted the

only acceptable quality model for this interface. A much better overall

performance was achieved for I.2, for which a large fraction of groups

submitted correct models of acceptable quality or better, including

the submission of at least 1 high-quality model each, by the groups of

Venclovas and Kihara (see Table S2 for detail).

Last but not least, a lower overall performance is observed for

T170, the component of the T5 phage tail distal complex, which com-

prised a total of nine interfaces. Not unexpectedly, better perfor-

mance was obtained for the interfaces I.1, I.5, and I.8, all of which are

intraring (see Figure 4B,C). These were the only interfaces of T170 for

which a fraction of the predictor groups managed to produce medium

accuracy models. For five of the remaining six interfaces, often a

smaller fraction of the groups managed to submit at best acceptable

models, whereas only incorrect models were submitted for I.2, the

interface between the A and B rings (Figure 4B,C).

We also observe that human predictors produced in general

higher quality models than the best performing automatic server

(MDOCKPP). This was most prominently the case for interfaces of the

large assemblies (interfaces T170/3-9 and T180/1,2), where the

F IGURE 6 Global overview of the prediction performance for
targets of Round 50. Shown are the distributions of the DockQ values
computed for the top-5 models submitted by all predictor and scorer
groups for individual targets of Round 50. (a) Scatter plots of DockQ
values for individual models submitted by predictors (left column) and
scorers (right column) for individual targets. The targets are labeled by
their CAPRI target number and interface rank. Individual points are
color-coded according to the CAPRI model quality category; yellow:
incorrect; blue: acceptable; green: medium; red: high. For each target,

a baseline-level prediction, represented by the best model of the top-
performing automatic server (MDOCKPP; see Table 2), is represented
by black triangles. (b) The same information presented as boxplot
distributions (Whiskers at 9th and 91st percentiles) of models
submitted for each target and prediction category; color coding is as
for the upper panel, but with a lighter shade of blue for better
visibility
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server mainly produced incorrect models (Figure 6A). On the other

hand, the baseline models produced by the MDOCKPP automatic

server were in general on par with those of the best performing man-

ual predictors for the easier-to-model interfaces.

Comparing the quality of models produced by predictors and

scorers for the 23 analyzed interfaces, confirms that the best per-

forming scorer groups produce models of similar and sometimes supe-

rior quality to those submitted by predictors. This suggests in turn

that these scorer groups successfully identify the best models in the

shuffled set and often improve their quality through refinement. For

about a third of the interfaces, corresponding mainly to the easy-to-

model ones, the models of the baseline MDOCKPP scoring server

were of similar quality, or better, than those of human scorers

(Figure 6A). In addition, the box plots of Figure 6B, which illustrate

the DockQ distributions for models in the different CAPRI quality cat-

egories, indicate that the distributions for individual categories (incor-

rect, acceptable, medium, and high) tend to be narrower and better

separated for the models produced by scorers than those of

predictors.

An alternative overview of the quality of the best models submit-

ted by predictors and servers is afforded by plotting the f1 score of

the submitted models (a function of the recall, and precision in model-

ing the residue-residue contact at the binding interface), as a function

of the root mean square deviation of the sidechain atoms (S-rms) of

interface residues in the model versus the target (see Figure 7 and leg-

end). This plot clearly illustrates that the bulk of the CAPRI “accept-
able” models are in fact of rather low quality. Many display low f1

values due mainly to their generously low recall threshold (f

(nat) ≥ 0.1),42 and rather high S-rms values, indicating an overall poor

correspondence between the models and target sidechain conforma-

tions at the binding interface. A better correspondence with the target

interface is displayed by the medium quality models, with most of

these models displaying f1 values of 0.4 or higher, and S-rms values

<3.0 Å. Nearly all the high-quality models correspond to f1 value >0.7

with some ranging between 0.8 and 2.5 Å, confirming their high accu-

racy status. Figure 7 also illustrates the important contribution made

by the three best human predictors (Seok, Venclovas, and Baker), and

two best servers (MDOCKPP and LZERD), to the more accurate

models, and more particularly to the high-quality ones, and that these

more accurate models also feature higher residue contact precision

and more accurate interface sidechain conformations.

5.9 | Gauging progress

An important goal of community-wide challenges such as CAPRI and

CASP, which are repeated over time, is to gauge the progress that is

being achieved by the community as a whole in the prediction task

that is being evaluated. Assessing progress in predicting the structure

of protein–protein complexes and large protein assemblies from blind

prediction challenges such as this one is however not straightforward.

The problem lies with the small number of targets, in comparison, for

example, to the number of targets offered in CASP for the prediction

of individual protein chains. This problem is further exacerbated by

the substantial variability in the degree of modeling difficulty that

these targets represent, leading to significant fluctuations when differ-

ences in performance between successive challenges are considered.

Plots quantifying the performance of the 29 top-ranking groups

participating in this assembly prediction Round (CASP14-CAPRI) and

in the CASP13-CAPRI Round 2-years earlier, respectively (Figure 8),

illustrate these problems, while at the same time providing useful

insights. A clear difference between the two challenges is the total
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F IGURE 7 f1 as a function of S-rms.
Each point in the figure represents the
best model of a predictor group for each
of the 23 interfaces. Individual points are
color-coded following the CAPRI model
quality as in Figure 6. The results for the
best predictors (Baker, Seok, and
Venclovas) and servers (LZERD,
MDOCKPP) are highlighted. See main

text for definition of f1 and S-rms. The
upper left quadrant features the best
models, with S-rms values below 3.5 Å
and f1 values above 0.3, corresponding to
mostly medium and high-quality models
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number of assembly targets, which as 20 in CASP13 and 12 in this

Round. Another is the much larger number of high-quality models (red

bars in Figure 8) submitted by the listed groups for many more targets

in CASP13, than in CASP14, indicating in turn that most of the targets

in the present Round represented more difficult modeling problems.

Interestingly however, despite the increased target difficulty, the

best performing group(s) in the present Round produced acceptable

or better models for a higher fraction of the targets (70–75%), than

the top performers in CASP13 (65%). Seeing this difference roughly

maintained across the ranked predictor groups in both challenges,

suggests that the lower overall quality of the models submitted in this

Round was counter balanced by more targets being predicted less

accurately.

The data in Figure 8 also confirm the consistently high relative

performance in both CASP13 and CASP14 of several veteran CAPRI

predictor groups, such as those of Seok, Venclovas, Zou, and Kihara. It

also indicates the progress achieved by servers such as LZERD and

MDOCKPP, developed respectively, by the group of Kihara and Zou.

It suggests progress in performance by groups such Chang, and Pierce,

and reveals new high ranking CASP groups, such as Baker and

CoDock, which were not included in the published evaluation of the

CASP13-CAPRI challenge. Last, some high-ranking servers in CASP13,

such as HDOCK, CLUSPRO, and SWARMDOCK, or predictor groups

such as Kozakov/Vajda and Bates do not maintain their rank in this

Round, which probably illustrates the fluctuations associated with this

type of limited analyses, and the particular challenges posed by the

targets in this Round.

5.10 | Factors influencing the prediction
performance

Round 50 comprised 12 targets that spanned a range of modeling dif-

ficulties. These targets included three large multiprotein assemblies

involving a total of 14 binary protein–protein interfaces. By choice,

the majority of the targets had some templates available in the PDB.

The majority of the evaluated interfaces were between homomers, or

paralogs. For the “easy” targets, for which templates were available

for the entire complex (e.g., the dimers of T164, T166; the T168 tri-

mer, or the decameric ring of T177), the prediction task boiled down

to template-based modeling of the entire complex and model refine-

ment. For the more difficult targets, where templates, often more dis-

tantly related ones, were available only for the individual subunits, the

prediction of the complex required modeling the structures of

F IGURE 8 Gauging progress. Panel (A) shows the performance score of the top 29 ranking predictor and server groups (both CAPRI and

CASP-only groups; server groups are listed in capital letters). The height of the bar is the ScoreG value of Equation (2), with individual
contributions from high, medium, or acceptable-quality models indicated. The total number of targets for which at least an acceptable quality
model was produced is indicated in the graph by a diamond. Panel (B) shows the same data from the previous CASP13-CAPRI Round
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individual subunits, followed by docking calculations and usually some

form of model refinement.

Critical factors influencing the prediction performance were

therefore (1) the ability to identify templates whose 3D structure and

association modes were similar enough to those of the target, to

enable building an accurate model of the target assembly, and (2) the

extent to which these models were adequately optimized.

Figure 9 displays the backbone rms values of the individual sub-

units (M-rms) of the submitted models versus those of the experimen-

tal structures for all targets of Round 50. Confronting these values

with the DockQ scores of models submitted for the corresponding

targets (Figure 6), confirms once more the critical impact that model

accuracy of the individual subunits has on the prediction performance.

For the easy targets such as, T164, T166, T168, or T177, the majority

of the M-rms values do not exceed 2.3–3 Å. On the other hand, the

subunits of poorly predicted complexes such as the T169 dimer, the

T174 trimer, or the T180 viral capsid protein, are much less accurately

modeled, with M-rms values commonly reaching 10–15 Å, because

only poor templates (T169, T180), or no templates (T174) could be

identified even for the individual subunits.

Evidently, identifying the most adequate template is often not

straightforward, as multiple templates are often available either for

the full complex or for the independent subunits, requiring strategies

for optimally exploiting these data. As described in the summaries by

the individual CAPRI groups co-authors of this article (see Supporting

Information), a variety of approaches were used to tackle this crucial

step. A number or groups successfully exploited homology models

generated by the best performing CASP14 servers, made available

during the prediction Rounds, or used publicly available tools such as

Modeler.51 Successful approaches involved searching a database of

known structures, clustered on the basis of sequence and structure

similarity, and relying on various scoring schemes to select the most

suitable templates, or a reduced set of templates, for further refine-

ment. Querying the PPI3D web server52 (by Venclovas), consulting an

in-house database of heterodimers (by Seok) for suitable subsets of

templates, or running HHblits46 against a sequence profile database

of known structures clustered at 70% sequence identity, as done by

many groups, are good examples of such approaches. When no tem-

plates could be found for individual subunits, some CAPRI predictors

performed structure-based searches against the PDB by submitting

CASP server models to the DALI server53 (by Venclovas), or used third

party servers, such as the MULTICOM-CLUSTER, recently updated to

include Deep Learning approaches to predict the 3D structure of indi-

vidual subunits (see Zou—Supporting Information). New in this Round,

some CAPRI groups such as the one of Kihara, used their own

recently developed deep learning algorithm to predict ab-initio the

structure of individual subunits.54

Further filtering and refining models built from identified tem-

plates is likewise important, and here too, different approaches were

rather successful (see Supporting Information–Individual Group Sum-

maries). The Venclovas group ranked models based on the combina-

tion of the VoroMQA scores for the full structure and for the

interaction interface55 whereas the consensus values of several scor-

ing functions were employed by the group of Zou to select top scor-

ing templates. For some targets, close integration of classical

template-based modeling with docking calculation (the so-called

hybrid docking strategy), carried out by groups like those of Chang,

Venclovas, and Seok, was likewise quite effective.

For the more difficult targets (Table 1), the full assembly was

predicted using models of the individual subunits, often built on the

basis of more distantly related templates and performing ab-initio

docking calculations. Interestingly, a number of groups relied on

T
1
6
4

T
1
6
6
.A .B

T
1
6
9

T
1
7
6

T
1
7
8

T
1
7
9

T
1
6
5
.A .B

T
1
6
8

T
1
7
4

T
1
7
0
.A .B .C .D

T
1
7
7

T
1
8
0

Target.Chain

0

5

10

15

20

25

30

M
-r

m
s
 (

Å
)

Dimers Large assembliesTrimers

F IGURE 9 Model quality of individual
protein subunits in assembly models of
the 12 targets of Round 50. Shown are
whisker plots (displaying the median, 1st
and 3rd quartile, and 9th and 91st
percentile) representing the distributions
of M-rms values of individual protein
subunits in models submitted for each of
the targets of Round 50. Targets are
labeled by their CAPRI target number;
chain identifiers (A, B, etc.) are used for
the different proteins in the hetero-
complexes

1820 LENSINK ET AL.



reputable CAPRI docking servers such as CLUSPRO,56 HEX,57

HADDOCK,58 or ZDOCK59 developed by other CAPRI groups, to gen-

erate their docking poses. Some teams like those of Grudinin, and

Venclovas exploited the fast-sampling speed of the HEX and SAM60

docking programs, to perform cross-docking calculations, whereby

sets of models are docked to one another, yielding a large set of

assembly models that are then scored and optimized. Increasing use

was also made of docking algorithms that incorporate symmetry oper-

ations (e.g., HSYMDOCK-lite,61 SymDock2,62) or of algorithms that

handle multiple chains (e.g., Multi-LZerD63,64). Promising new devel-

opments were also reported on incorporating protein conformational

flexibility, by capturing backbone motions of putative interface resi-

dues on-the-fly, using replica exchange methods (Gray)65 or normal

mode analysis (Shen),66 a lingering challenge that still needs to be

effectively addressed.

Several of the best-performing CAPRI groups underscored the

importance of specialized functions for scoring and ranking protein–

protein interfaces for the entire modeled assembly. But the type of

functions differed substantially between participants. Examples are

the VoroMQA score developed by the Venclovas group,67 the com-

bined use of three scoring functions, GOAP,68 Dfire,69 and ITScore70

by the Kihara group, or the multi-term scoring function of the Vakser

group, additionally complemented with sequence-based measures for

individual subunits71 and with functional annotations. The quite suc-

cessful scoring performance of the groups of Chang and Zou/

MDOCKPP relied on an older knowledge-based scoring function for

protein–protein recognition,72 which the latter group recently aug-

mented by a deep learning model. In addition, several groups (Cheng,

Huang), made good use of deep learning methods for predicting inter-

subunit residue-residue contacts from multiple sequence alignments.

For further information on factors potentially influencing the per-

formance of individual groups see Supporting Information (Individual

Group Summaries).

As noted in previous assessments41 the difficult targets, which

involved ab-initio docking of homology-built models, gave an advan-

tage to groups with expertise in ab-initio docking and those with more

powerful specialized scoring functions. The latter groups clearly had

an advantage in the scoring challenge. We also note that the perfor-

mance of predictors and scorer groups on the set of difficult inter-

faces weighed more heavily on their ranking for the full set of targets

in Round 50, since about 40% of the 23 unique interfaces across the

different targets (~9/23) correspond to difficult modeling problems.

The impact on the ranking of groups from their performance on the

difficult interfaces in the larger assemblies such as that of T170, was

however mitigated by applying the normalized weighted scoring

scheme of Equation (1).

6 | CONCLUDING REMARKS

The assessment of the results presented here for the 12 targets of

Round 50, the 4th CASP-CAPRI challenge, provides an informative

snapshot of the performance of current methods for the prediction of

the 3D structure of protein complexes and larger protein assemblies.

It shows that a good number of these methods are capable of produc-

ing correct to medium accuracy models for homo-oligomers, ranging

from dimers to larger assemblies when templates for the full assembly

are available. But generating models that accurately reproduce the

native interface is still more an exception than the rule, indicating that

further efforts are needed to improve model refinement.

Prediction methods are also increasingly successful when closely

related templates for individual subunits are available, thanks to better

exploitation of data on templates, more efficient integration of dock-

ing procedures, and more powerful scoring functions, although, here

too, model refinement remains suboptimal.

On the other hand, producing an accurate 3D structure of protein

assemblies, for which only distantly related templates are available for

the individual components, or where no templates can be found,

remains out of reach for modeling tools such as those currently avail-

able to the CAPRI community. To tackle the very challenging problem

of predicting protein assemblies from sequence information and lim-

ited prior information on the structures of the individual subunits,

novel approaches are needed. These approaches must integrate more

closely the prediction of the 3D structure of individual protein chains

with that of their association modes. That this might be within reach

in the near future at least for homomeric assemblies, is suggested by

the observation that the novel Deep Learning-based approach by

AlphaFold2 appears to accurately predict the bound structure of the

individual subunits of these assemblies from their amino acid

sequences, at least in cases where residue-residue contacts can be

predicted from the amino acid sequence data available in public data-

bases. Very preliminary tests performed by the CAPRI predictor

groups of Kozakov/Vajda and Seok (see Supporting Information) sug-

gest that using subunit models produced by AlphaFold2 as input to

ab-initio docking calculations, may indeed increase the number of

interfaces predicted to acceptable or medium accuracy levels. Addi-

tional tests on a larger and more diverse set of targets and, most likely,

significant further efforts will be needed to develop Deep Learning

methods capable of predicting the structure of protein complexes,

including heterocomplexes, to high accuracy. Several CAPRI groups

have already started to address the challenge by developing their own

Deep-Learning-based methods to directly tackle key bottleneck in the

assembly prediction pipeline.66,73–75 As the revision of this manuscript

was being completed, DeepMind released an open-source version of

their successful AlphaFold2 software76 and the teams of Baker & coll.

released RoseTTAFold, a new protein structure prediction tool

inspired by AlphaFold 2, that also seems to be able to handle the pre-

diction of protein complexes.77 Future CAPRI and CASP prediction

Rounds will monitor the impact of these developments.
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