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In 2008, Klemm–Pandharipande defined Gopakumar–Vafa type invariants of a Calabi–

Yau 4-folds X using Gromov–Witten theory. Recently, Cao–Maulik–Toda proposed a

conjectural description of these invariants in terms of stable pair theory. When X

is the total space of the sum of two line bundles over a surface S, and all stable

pairs are scheme theoretically supported on the zero section, we express stable pair

invariants in terms of intersection numbers on Hilbert schemes of points on S. As an

application, we obtain new verifications of the Cao–Maulik–Toda conjectures for low-

degree curve classes and find connections to Carlsson–Okounkov numbers. Some of our

verifications involve genus zero Gopakumar–Vafa type invariants recently determined

in the context of the log-local principle by Bousseau–Brini–van Garrel. Finally, using

the vertex formalism, we provide a few more verifications of the Cao–Maulik–Toda

conjectures when thickened curves contribute and also for the case of local P3.

1 Introduction

1.1 GW/GV invariants of Calabi–Yau 4-folds

Gromov–Witten invariants are rational numbers, which are virtual counts of stable

maps from curves to a fixed algebraic variety. Due to multiple cover contributions, they
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are in general not integers. For Calabi–Yau 4-folds, Klemm–Pandharipande [26] defined

Gopakumar–Vafa type invariants using Gromov–Witten theory and conjectured their

integrality. More specifically, let X be a smooth projective Calabi–Yau 4-folds. Gromov–

Witten invariants vanish for genus g � 2 for dimensional reasons and one only needs to

consider the genus zero and one cases.

The genus zero Gromov–Witten invariants of X for class β ∈ H2(X,Z) are defined

using an insertion. Consider the evaluation map ev: M0,1(X, β) → X. For γ ∈ H4(X,Z),

one defines

GW0,β(γ ) =
∫

[M0,1(X,β)]vir
ev∗(γ ).

The genus zero Gopakumar–Vafa type invariants

n0,β(γ ) ∈ Q (1.1)

are defined in [26] by the identity

∑
β>0

GW0,β(γ ) qβ =
∑
β>0

n0,β(γ )

∞∑
d=1

d−2qdβ ,

where the sum is over all non-zero effective classes in H2(X,Z). For the genus one case,

the virtual dimension of M1,0(X, β) is zero and one defines

GW1,β =
∫

[M1,0(X,β)]vir
1 ∈ Q.

The genus one Gopakumar–Vafa type invariants

n1,β ∈ Q (1.2)

are defined in [26] by the identity

∑
β>0

GW1,β qβ =
∑
β>0

n1,β

∞∑
d=1

σ(d)

d
qdβ + 1

24

∑
β>0

n0,β(c2(X)) log(1 − qβ)

− 1

24

∑
β1,β2

mβ1,β2
log(1 − qβ1+β2),
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Stable Pair Invariants of Local CY 4-folds 4755

where σ(d) = ∑
i|d i and mβ1,β2

∈ Z are called meeting invariants, which can be

inductively determined by the genus zero Gromov–Witten invariants of X. In [26], both of

the invariants (1.1) and (1.2) are conjectured to be integers. Using localization techniques

and mirror symmetry, they calculate the Gromov–Witten invariants of X in numerous

examples in support of their integrality conjecture. The genus zero integrality conjecture

has been proved by Ionel–Parker using symplectic geometry [25, Theorem 9.2].

1.2 Stable pair invariants of Calabi–Yau 4-folds

Stable pairs were introduced in general by Le Potier [39] and used by Pandharipande–

Thomas to define virtual invariants of smooth projective three-folds [35–37]. Stable pair

invariants of three-folds are related to Gromov–Witten invariants by the celebrated

GW/PT correspondence [31, 35], which has been proved in many cases by Pandhari-

pande–Pixton [33, 34].

In [14], Cao–Maulik–Toda studied stable pair theory of a smooth projective

Calabi–Yau 4-folds X. They used stable pair invariants of X to give a sheaf theoretical

interpretation of the Gopakumar–Vafa type invariants (1.1) and (1.2). In [13, 16],

the authors also proposed a sheaf theoretical interpretation of (1.1) and (1.2) using

Donaldson–Thomas type counting invariants of one-dimensional stable sheaves on X.

Let Pn(X, β) be the moduli space of stable pairs {s : OX → F} with ch(F) =
(0, 0, 0, β, n). There exists a virtual class

[Pn(X, β)]vir ∈ H2n

(
Pn(X, β),Z

)
, (1.3)

in the sense of Borisov–Joyce [3], which depends on the choice of an orientation of a

certain (real) line bundle over Pn(X, β) [7]. For γ ∈ H4(X,Z), we define primary insertions

τ : H4(X,Z) → H2(Pn(X, β),Z), τ(γ ) = πP∗(π∗
Xγ ∪ ch3(F)),

where πX and πP are projections from X × Pn(X, β) to the corresponding factors and

I• = {O → F}

is the universal stable pair on X × Pn(X, β). Note that ch3(F) is Poincaré dual to the

fundamental cycle of F. The stable pair invariants of X with primary insertions are
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defined by

Pn,β(γ ) :=
∫

[Pn(X,β)]vir
τ(γ )n. (1.4)

When n = 0, we simply denote this invariant by P0,β . We set P0,0 := 1 and n0,0(γ ) := 0.

Conjecture 1.1. ([14]) Let X be a smooth projective Calabi–Yau 4-folds, β ∈ H2(X,Z),

γ ∈ H4(X,Z), and n � 1. Then there exist choices of orientations such that

Pn,β(γ ) =
∑

β0+β1+···+βn=β
β0,β1,...,βn�0

P0,β0
·

n∏
i=1

n0,βi
(γ ),

where the sum is over all effective decompositions of β.

Conjecture 1.2. ([14]) Let X be a smooth projective Calabi–Yau 4-folds. Then there exist

choices of orientations such that

∑
β�0

P0,β qβ =
∏
β>0

M
(
qβ

)n1,β ,

where M(q) = ∏
k�1(1 − qk)−k denotes the MacMahon function.

Conjecture 1.1 can be interpreted as a wall-crossing formula in the category of

D0–D2–D8 bound states in Calabi–Yau 4-folds [15], while Conjecture 1.2 seems to be

more mysterious. In [14], these conjectures were verified in the following cases (modulo

some minor assumptions in some of the cases). In each case, Conjecture 1.1 was only

verified for n = 1.

• X is a general sextic and β = [�], 2[�], where � ⊆ X is a line.

• X is a Weierstrass elliptic fibration and β = r[F], where [F] is the fibre class

and r > 0 (in the case of Conjecture 1.1 only for r = 1).

• X = Y × E, where Y is a smooth projective Calabi–Yau three-fold, E is an

elliptic curve, and β is the push-forward of an irreducible class on Y × {pt}.
• X = Y × E, where Y is a smooth projective Calabi–Yau three-fold, E is

an elliptic curve, and β = r[E], where [E] is the fibre class and r > 0

(Conjecture 1.2 only).
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When X is either the total space of a smooth projective Fano three-fold, or the total

space of O(−1) ⊕ O(−2) on P2, or O(−1, −1) ⊕ O(−1, −1) on P1 × P1, the moduli

spaces Pn(X, β) are projective and it makes sense to consider Conjectures 1.1 and 1.2.

In this setting, the conjectures were verified in some cases for irreducible curve classes

in [14].

One of the main goals of this paper is to provide more verifications for these

local geometries for more general low degree curve classes.

1.3 Stable pair invariants of local surfaces

Let S be a smooth projective surface and let L1 and L2 be two line bundles on S satisfying

L1 ⊗ L2
∼= KS. Then the total space X of L1 ⊕ L2 over S is a non-proper Calabi–Yau 4-

folds, which we refer to as a local surface. Consider the moduli space Pn(X, β) of stable

pairs (F, s) with χ(F) = n and such that F has proper scheme theoretic support in class

β ∈ H2(X,Z). Although Pn(X, β) is in general non-proper, it can be proper in several

interesting cases (Propositions 3.1 and 3.8). Then we can define virtual classes (1.3) and

corresponding stable pair invariants (1.4).

Example 1.3. For (S, L1, L2) = (P2,O(−1),O(−2)) and (P1 × P1,O(−1, −1),O(−1, −1)),

the moduli space Pn(X, β) is projective for all n, β (see Proposition 3.1).

Example 1.4. For (S, L1, L2) = (P1 × P1,O(−1, 0),O(−1, −2)), Pn(X, β) is in general non-

proper. For example, let H1 := {pt} × P1, take β = [H1], and n = χ(OH1
) = 1. Then

NH1/X
∼= O ⊕ O ⊕ O(−2) has sections in the 1st fibre direction, so H1 ⊆ P1 × P1 ⊆ X can

move off the zero section P1 × P1 ⊆ X and P1(X, [H1]) is non-proper. On the other hand,

for H2 := P1×{pt} and β = [H2], we have β ·L1 < 0 and β ·L2 < 0, so P1(X, [H2]) is projective

by Proposition 3.1.

When S is toric, the local surface X is toric and the vertex formalism for

calculating stable pair invariants of X has been developed in [9, 10] in analogy with

[36]. Let T ⊆ (C∗)4 denote the 3-dimensional subtorus preserving the Calabi–Yau volume

form, then the fixed locus Pn(X, β)T consists of finitely many isolated reduced points

[9, Section 2.2], though the number of fixed points is typically very large making

calculations using the vertex formalism cumbersome.

Although we perform a few new calculations using the vertex formalism as

well, we mainly focus on another approach, where we use the global geometry of S.
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We consider the case when all stable pairs on X are scheme theoretically supported on

the zero section ι : S ↪→ X, that is, we have an isomorphism

ι∗ : Pn(S, β) ∼= Pn(X, β).

Under this isomorphism, we have (Proposition 4.2)

[Pn(X, β)]vir = (−1)β·L2+n · e
( − RHomπPS

(F,F� L1)
) · [Pn(S, β)]vir, (1.5)

where [Pn(S, β)]vir is the virtual class of the pairs obstruction theory on S, e(·) denotes

Euler class, πPS
: S × Pn(S, β) → Pn(S, β) is the projection, RHomπPS

= RπPS∗ ◦ RHom,

and F is the universal one-dimensional sheaf on S × Pn(S, β). The sign (−1)β·L2+n =
(−1)β·c1(Y)+n, where Y = TotS(L1), comes from a preferred choice of orientation on

Pn(X, β) which was discussed in a similar situation in [6].

In order to use (1.5) for calculations, we need the fact that Pn(S, β) is isomorphic

to a relative Hilbert scheme. More precisely, assume b1(S) = 0 and denote by |β|
the linear system determined by β. Denote by C → |β| the universal curve, then [37,

Proposition B.8] gives

Pn(S, β) ∼= Hilbm(C/|β|),

where Hilbm(C/|β|) denotes the relative Hilbert scheme of m points on the fibres of

C → |β| and

m = n + g(β) − 1 = n + 1
2β(β + KS).

This isomorphism was exploited in order to determine the surface contribution to

stable pair invariants of local surfaces TotS(KS) in [30]. The relative Hilbert scheme

Hilbm(C/|β|) is an incidence locus in a smooth ambient space

Hilbm(C/|β|) ⊆ S[m] × |β|,

where S[m] denotes the Hilbert scheme of m points on S. More precisely, Hilbm(C/|β|)
is cut out tautologically by a section of a vector bundle on S[m] × |β| as we recall

in Section 4.1. This allows us to express the stable pair invariants of X in terms of

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/6/4753/6246796 by U
trecht U

niversity Library user on 26 July 2022



Stable Pair Invariants of Local CY 4-folds 4759

intersection numbers on S[m] × |β|, or more precisely, on the “virtual” ambient space

S[m] × Pχ(β)−1, where

χ(β) := χ(OS(β)).

In what follows, Z ⊆ S × S[m] denotes the universal subscheme and I is the correspond-

ing ideal sheaf. For any line bundle L on S, the corresponding tautological bundle is

defined by

L[m] := p∗q∗L,

where p : Z → S[m] and q : Z → S are projections. Moreover, we consider the “twisted

tangent bundle” [17]

TS[m](L) := R�(S,L) ⊗ O − RHomπ (I, I � L), (1.6)

where π : S × S[m] → S[m] denotes projection. Finally, we denote the total Chern class

by c and the tautological line bundle on Pχ(β)−1 by O(1). We prove the following result

(Theorem 4.4).

Theorem 1.5. Let S be a smooth projective surface with b1(S) = pg(S) = 0 and L1, L2 ∈
Pic(S) such that L1 ⊗ L2

∼= KS. Suppose β ∈ H2(S,Z) and n � 0 are chosen such that

Pn(X, β) ∼= Pn(S, β) for X = TotS(L1 ⊕ L2). Denote by [pt] ∈ H4(X,Z) the pull-back of the

Poincaré dual of the point class on S. Let Pn(X, β) be endowed with the orientation as in

(1.5). Then

Pn,β([pt])=(−1)β·L2+n
∫

S[m]×Pχ(β)−1
cm(OS(β)[m](1))

hn(1+ h)χ(L1(β))(1− h)χ(L2(β)) c(TS[m](L1))

c(L1(β)[m](1)) · c((L2(β)[m](1))∨)
,

when β2 � 0. Here m := n + g(β) − 1 and h := c1(O(1)). Moreover, Pn,β([pt]) = 0 when

β2 < 0.

The main assumption in this theorem is Pn(X, β) ∼= Pn(S, β). For (S, L1, L2) with

S minimal and toric, L1 ⊗ L2
∼= KS with L−1

1 , L−1
2 non-trivial and nef, we classify all

cases for which n � 0, Pn(X, β) ∼= Pn(S, β), and Pn(S, β) is non-empty (Proposition 3.9,

Remark 3.10). Note that Pn(X, β) ∼= Pn(S, β) more or less forces pg(S) = 0, because as

soon as L1 or L2 has non-zero sections this isomorphism does not hold. See Remark 4.5

for an extension to the case b1(S) > 0.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/6/4753/6246796 by U
trecht U

niversity Library user on 26 July 2022



4760 Y. Cao et al.

1.4 Verifications

In this paper, we apply Theorem 1.5 to examples for which S is in addition toric (to our

knowledge, all local surfaces that are Calabi–Yau 4-folds and for which Gopakumar–

Vafa type invariants have been calculated so far are toric). Then the integrals on S[m]

of Theorem 1.5 can be calculated using Atiyah–Bott localization for the lift of the 2-

dimensional torus action from S to S[m] as described in Section 4.4. This leads to the

tables for stable pair invariants in Appendix A.

Denote by [H] ∈ H2(P2,Z) the class of a line and let [H1], [H2] ∈ H2(P1 × P1,Z)

be as in Example 1.4. In [26, Section 3], Klemm–Pandharipande determined the Gromov–

Witten invariants of X = TotS(L1 ⊕ L2) for (S, L1, L2) = (P2,O(−1),O(−2)) and (P1 ×
P1,O(−1, −1),O(−1, −1)). They tabulated the corresponding values of the Gopakumar–

Vafa type invariants for β = d[H] with d � 10 resp. β = d1[H1] + d2[H2] with d1, d2 � 6.

Combining their calculations and the tables in Appendix A, we deduce the following:

Corollary 1.6. In the following cases, Conjectures 1.1 and 1.2 are true for

X = TotS(L1 ⊕ L2).

• (S, L1, L2) = (P2,O(−1),O(−2)), d = 1, and any n � 0.

• (S, L1, L2) = (P2,O(−1),O(−2)), d = 2, 3, 4, and n = 0, 1.

• (S, L1, L2) = (P2,O(−1),O(−2)), d = 2, 3, and n = 2.

• (S, L1, L2) = (P1 × P1,O(−1, −1),O(−1, −1)), (d1, d2) = (1, 0), (0, 1), (1, 1), any

n � 0.

• (S, L1, L2) = (P1×P1,O(−1, −1),O(−1, −1)), (d1, d2) = (0, d), (d, 0) with d � 2,

and 0 � n � d.

• (S, L1, L2) = (P1×P1,O(−1, −1),O(−1, −1)), (d1, d2) = (1, d), (d, 1) with d � 2,

and n = 0, 1, 2.

• (S, L1, L2) = (P1 × P1,O(−1, −1),O(−1, −1)), (d1, d2) = (2, 2), (2, 3), (3, 2),

(2, 4), (4, 2), (3, 3), and n = 0.

• (S, L1, L2) = (P1 × P1,O(−1, −1),O(−1, −1)), (d1, d2) = (2, 2), (2, 3), (3, 2), and

n = 1.

• (S, L1, L2) = (P1 × P1,O(−1, −1),O(−1, −1)), (d1, d2) = (2, 2), and n = 2.

Remark 1.7. In all these cases Pn(X, β) ∼= Pn(S, β). In fact, these are all (S, L1, L2) with

L1 ⊗ L2
∼= KS for which L−1

1 , L−1
2 are ample, n � 0, and Pn(X, β) ∼= Pn(S, β) by Propositions

3.2 and 3.9. Calculations based on Theorem 1.5 are often more efficient than the vertex

formalism [9, 10]. For instance, for (S, L1, L2) = (P1 ×P1,O(−1, −1),O(−1, −1)), (d1, d2) =
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(2, 4) and n = 0, Pn(X, β) has 182 T-fixed points, whereas Theorem 1.5 only involves an

integral over S[2] × P14.

Bousseau–Brini–van Garrel [4] recently determined the genus zero Gromov–

Witten (and hence Gopakumar–Vafa type) invariants of several local surfaces for their

verifications of the log-local principle conjectured in general in [22]. Combining their

numbers with the tables for stable pair invariants in Appendix A allows us to provide

some further verifications of Conjecture 1.1 as we will now describe. For any a � 1,

consider the Hirzebruch surface

Fa = P(OP1 ⊕ OP1(a)).

We denote by [F] the class of a fibre and by [B] the class of the unique section satisfying

B2 = −a. We write O(m, n) := O(mB + nF) and consider curve classes β := d1[B] + d2[F],

d1, d2 � 0.

Corollary 1.8. In the following cases, Conjecture 1.1 is true for X = TotS(L1 ⊕ L2).

• (S, L1, L2) = (P1 × P1,O(−1, 0),O(−1, −2)), (d1, d2) = (0, 1), and any n � 1.

• (S, L1, L2) = (P1 × P1,O(−1, 0),O(−1, −2)), (d1, d2) = (0, d) with d � 2, and

n = d.

• (S, L1, L2) = (P1 × P1,O(−1, 0),O(−1, −2)), (d1, d2) = (2, 2), (2, 3), (1, d), (d, 1)

with d � 1, and n = 1.

• (S, L1, L2) = (P1 × P1,O(−1, 0),O(−1, −2)), (d1, d2) = (1, d) with d � 2, and

n = 2.

• (S, L1, L2) = (F1,O(−1, −1),O(−1, −2)), (d1, d2) = (0, 1), and any n � 1.

• (S, L1, L2) = (F1,O(−1, −1),O(−1, −2)), (d1, d2) = (0, d) with d � 2, and

n = d.

• (S, L1, L2) = (F1,O(−1, −1),O(−1, −2)), (d1, d2) = (2, 2), (2, 3), (2, 4), (1, d)

with d � 1, and n = 1.

• (S, L1, L2) = (F1,O(−1, −1),O(−1, −2)), (d1, d2) = (1, d) with d � 2, and

n = 2.

• (S, L1, L2) = (F1,O(0, −1),O(−2, −2)), (d1, d2) = (2, 2), (2, 3), (1, d) with d � 1,

n = 1.

• (S, L1, L2) = (F2,O(−1, −2),O(−1, −2)), (d1, d2) = (0, 1), and any n � 1.

• (S, L1, L2) = (F2,O(−1, −2),O(−1, −2)), (d1, d2) = (0, d) with d � 2, and

n = d.
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• (S, L1, L2) = (F2,O(−1, −2),O(−1, −2)), (d1, d2) = (2, 3), (2, 4), (2, 5), (1, d)

with d � 1, and n = 1.

• (S, L1, L2) = (F2,O(−1, −2),O(−1, −2)), (d1, d2) = (1, d) with d � 2, and

n = 2.

In all these cases Pn(X, β) ∼= Pn(S, β) and n > 0. Since Bousseau–Brini–van

Garrel only determined the genus zero Gopakumar–Vafa type invariants for the above

geometries, we can only verify Conjecture 1.1 in these cases. In fact, in Proposition 3.9

and Remark 3.10, we classify all cases (S, L1, L2) such that S is minimal toric, L1 ⊗ L2
∼=

KS, L−1
1 , L−1

2 are non-trivial and nef, n � 0, Pn(X, β) ∼= Pn(S, β), and Pn(S, β) is non-

empty. Using Theorem 1.5, we determined the stable pair invariants in all these cases,

including the n = 0 case (see Appendix A).

Remark 1.9. For all calculations done in Appendix A for which Pn(X, β) ∼= Pn(S, β) and

the invariant is non-zero, we have

Pn,β([pt]) = ±
∫

S[m]
e(TS[m](L1)). (1.7)

These numbers were calculated by Carlsson–Okounkov [17] and are determined by the

formula

∞∑
m=0

qm
∫

S[m]
e(TS[m](L1)) =

∞∏
m=1

(1 − qm)−c2(TS⊗L1),

where c2(TS ⊗ L1) = c2(S) − L1L2. We do not know whether (1.7) is a mere coincidence.

1.5 Vertex calculations

Although most calculations in this paper are based on Theorem 1.5, we also did some

computations using the vertex formalism.

Proposition 1.10. For the following cases, Conjectures 1.1 and 1.2 are true.

• X = TotP3(KP3), d = 1, and any n � 0.

• X = TotP3(KP3), d = 2, 3, and n = 0, 1.

• X = Tot
P3(KP3), d = 2, and n = 2.

For the following cases Conjecture 1.1 is true for X = TotS(L1 ⊕ L2).

• (S, L1, L2) = (P2,O(−1),O(−2)), d = 2, and n = 3.
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• (S, L1, L2) = (P1×P1,O(−1, −1),O(−1, −1)), (d1, d2) = (0, 2), (2, 0), (1, 2), (2, 1),

and n = 3.

• (S, L1, L2) = (F1,O(−1, −1),O(−1, −2)), (d1, d2) = (0, 2), and n = 3.

The invariants in this proposition are defined by localization on the fixed locus

[9, 10]. In the cases above where X = TotP3(KP3), we have Pn(X, β) ∼= Pn(P3, β) and

[Pn(X, β)]vir = (−1)β·c1(P3)+n · [Pn(P3, β)]vir
pair,

where [Pn(P3, β)]vir
pair is the virtual class of the pairs perfect obstruction theory on P3

(discussed in (4.9), see also [14, Lemma 3.1] in a similar setting). The sign in this

formula is a preferred choice of orientation on Pn(X, β) similar to (1.5). Then the Graber–

Pandharipande virtual localization formula [24] can be applied to the right-hand side to

show that the local invariants of Proposition 1.10 are equal to the global invariants (1.4).

The same method works for the local surface case (S, L1, L2) = (P2,O(−1),O(−2)), d = 2,

n = 3, because then all stable pairs are scheme theoretically supported in the three-fold

TotS(L1). For the other local surfaces cases of Proposition 1.10, equating our invariants

to the global invariants requires a more general virtual localization formula. Recently,

Oh–Thomas announced such a formula [32]. See Remark A.2 for more details.

We remark that most stable pair invariants of local surfaces calculated in this

paper are small (see Section A.1). For X = Tot
P3(KP3), the numbers are rather big:

P0,3[�] = 11200, P1,2[�]([�]) = −820, P1,3[�]([�]) = −68060, P2,2[�]([�]) = 400,

where [�] ∈ H2(P3,Z) ∼= H2(X,Z) denotes the class of a line � ⊆ P3 and we also write

[�] ∈ H4(X,Z) for the pull-back of its Poincaré dual from P3 to X. This provides further

good evidence for Conjectures 1.1 and 1.2.

2 Background

2.1 DT invariants of Calabi–Yau 4-folds

Let X be a smooth projective Calabi–Yau 4-folds with ample divisor ω and take a

cohomology class v ∈ H∗(X,Q). The coarse moduli space Mω(v) of ω-Gieseker semistable

sheaves E on X with ch(E) = v is a projective scheme. We always assume that Mω(v) is

a fine moduli space, that is, any point [E] ∈ Mω(v) is stable and there exists a universal

family E on X×Mω(v) flat over Mω(v). For instance, the moduli space of one-dimensional
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stable sheaves E with [E] = β, χ(E) = 1 and Hilbert schemes of closed subschemes

satisfy this assumption [8, 9, 13, 16].

Borisov–Joyce [3] (in general) and Cao–Leung [11] (in special cases) constructed

a virtual fundamental class

[Mω(v)]vir ∈ H2−χ(v,v)(Mω(v),Z), (2.1)

where χ(·, ·) denotes the Euler pairing. In order to construct the above virtual class (2.1)

with coefficients in Z (instead of Z2), we need an orientability result for Mω(v), which

can be stated as follows. Let

L := det(RHomπM
(E , E)) ∈ Pic(Mω(v)), πM : X × Mω(v) → Mω(v)

be the determinant line bundle of Mω(v), which is equipped with the nondegenerate

symmetric pairing Q induced by Serre duality. An orientation of (L, Q) is a reduction of

its structure group from O(1,C) to SO(1,C) = {1}. In other words, we require a choice of

square root of the isomorphism

Q : L ⊗ L → OMω(v). (2.2)

Existence of orientations was first proved when the Calabi–Yau 4-folds X satisfies

Hol(X) = SU(4) and Hodd(X,Z) = 0 in [12] and was recently generalized to arbitrary

Calabi–Yau 4-folds in [7, Corollary 1.17]. Notice that the collection of orientations forms

a torsor for H0(Mω(v),Z2). The virtual class (2.1) depends on the choice of orientation,

but we suppress it from the notation.

Roughly speaking, in order to construct (2.1), one chooses at every point [E] ∈
Mω(v), a half-dimensional real subspace

Ext2+(E, E) ⊆ Ext2(E, E)

of the usual obstruction space Ext2(E, E), on which the quadratic form Q defined by

Serre duality is real and positive definite. Then one glues local Kuranishi-type models

of the form

κ+ = π+ ◦ κ : Ext1(E, E) → Ext2+(E, E),

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/6/4753/6246796 by U
trecht U

niversity Library user on 26 July 2022



Stable Pair Invariants of Local CY 4-folds 4765

where κ is the Kuranishi map for Mω(v) at [E] and π+ denotes projection on the 1st factor

of the decomposition Ext2(E, E) = Ext2+(E, E) ⊕ √−1 · Ext2+(E, E).

In [11], local models are glued in three special cases:

(1) when Mω(v) consists of locally free sheaves only,

(2) when Mω(v) is smooth,

(3) when Mω(v) is a shifted cotangent bundle of a quasi-smooth derived scheme.

In each case, the corresponding virtual classes are constructed using either gauge

theory or algebro-geometric perfect obstruction theory.

The general gluing construction, due to Borisov–Joyce [3], is based on Pantev–

Töen–Vaquié–Vezzosi’s theory of shifted symplectic geometry [38] and Joyce’s theory

of derived C∞-geometry. The corresponding virtual class is constructed using Joyce’s

D-manifold theory (a machinery similar to Fukaya–Oh–Ohta–Ono’s theory of Kuranishi

space structures used for defining Lagrangian Floer theory).

Examples computed in this paper only involve virtual class constructions in (2)

and (3) mentioned above. We briefly review them:

• When Mω(v) is smooth, the obstruction sheaf Ob → Mω(v) is a vector bundle

endowed with a quadratic form Q via Serre duality. Then the virtual class is

given by

[Mω(v)]vir = PD(e(Ob, Q)),

where PD(·) denotes Poincaré dual and e(Ob, Q) is the half-Euler class of

(Ob, Q), that is, the Euler class of its real form Ob+. In this case, a choice

of orientation (2.2) is equivalent to a choice of orientation of Ob+. The half-

Euler class satisfies

e(Ob, Q)2 = (−1)
rk(Ob)

2 e(Ob), if rk(Ob) is even,

e(Ob, Q) = 0, if rk(Ob) is odd.

• Suppose Mω(v) is the classical truncation of the shifted cotangent bundle of

a quasi-smooth derived scheme. Roughly speaking, this means that at any

closed point [E] ∈ Mω(v), we have a Kuranishi map of the form

κ : Ext1(E, E) → Ext2(E, E) = VE ⊕ V∗
E ,
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where κ factors through a maximal isotropic subspace VE of (Ext2(E, E), Q).

Then the virtual class of Mω(v) is essentially the virtual class of the perfect

obstruction theory formed by {VE}[E]∈Mω(v). When Mω(v) is furthermore

smooth as a scheme, then it is simply the Euler class of the vector bundle

{VE}[E]∈Mω(v) over Mω(v).

2.2 Stable pair invariants of Calabi–Yau 4-folds

As in [35], a stable pair (F, s) on a smooth projective Calabi–Yau 4-folds X consists of

• a pure dimension 1 sheaf F on X,

• a section s ∈ H0(X, F) with 0-dimensional or trivial cokernel.

For β ∈ H2(X,Z) and n ∈ Z, denote by Pn(X, β) be the moduli space of stable pairs

(F, s) on X such that F has scheme theoretic support with class β and χ(F) = n. By [35],

it can alternatively be seen as the moduli space parametrizing 2-term complexes

I• = {OX
s→ F} ∈ Db(Coh(X))

in the bounded derived category of coherent sheaves on X. This viewpoint produces an

obstruction theory on Pn(X, β), which is however not perfect because Ext2(I•, I•)0 is in

general non-vanishing. Nonetheless, using the methods of Borisov–Joyce [3], one can

construct a virtual class (see [14, Theorem 1.4])

[Pn(X, β)]vir ∈ H2n

(
Pn(X, β),Z

)

depending on a choice of orientation. Existence of orientations was proved in [7,

Corollary 1.17].

3 Moduli Spaces

3.1 Compactness I

In the previous section, we assumed X is a smooth projective Calabi–Yau 4-folds. As we

will discuss in more detail in Section 4.2, the previous section also applies to certain

cases where X is a smooth quasi-projective Calabi–Yau 4-folds and Pn(X, β) is proper.

Suppose S is a smooth projective surface and L1, L2 ∈ Pic(S) satisfy

L1 ⊗ L2
∼= KS.
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Then X = TotS(L1 ⊕ L2) is a smooth quasi-projective Calabi–Yau 4-folds, which we refer

to as a local surface. One way to ensure the properness of Pn(X, β) is as follows.

Proposition 3.1. Suppose S is a smooth projective surface with L1, L2 ∈ Pic(S)

satisfying L1 ⊗ L2
∼= KS and let X = TotS(L1 ⊕ L2). Let β ∈ H2(S,Z) and suppose for

any 0 �= β ′ � β (the notation β ′ � β means that there exist effective curve classes

β ′, β ′′ ∈ H2(S,Z) such that β = β ′ + β ′′), we have β ′ · Li < 0 for i = 1, 2. Then Pn(X, β) is

projective for any n ∈ Z.

Proof. Let [(F, s)] ∈ Pn(X, β). We first show that F is set theoretically supported on the

zero section S ⊆ X. Let D be an irreducible component of the scheme theoretic support

of F, then we want to show Dred ⊆ S. Let Y = TotS(L1) and consider the projection p :

X = TotY(L2) → Y (here and below, we suppress the pull-back of L2 along the projection

Y → S). Since Dred is a proper irreducible reduced curve, ODred
is stable. By the spectral

construction, it corresponds to a stable Higgs pair (p∗ODred
, φ), where

φ : p∗ODred
→ p∗ODred

⊗ L2.

Denote the curve class of the scheme theoretic support of p∗ODred
by β ′ ∈ H2(Y,Z) ∼=

H2(S,Z). Then 0 �= β ′ � β, so β ′ · L2 < 0. Combined with stability of the Higgs pairs

(p∗ODred
, φ) and (p∗ODred

⊗ L2, φ ⊗ idL2
), this implies φ = 0 so Dred ⊆ Y = TotS(L1) (see

[43, Proposition 7.4] for a similar argument). Reversing the roles of L1, L2, we deduce

Dred ⊆ Y = TotS(L2), so Dred ⊆ S.

Since each element of Pn(X, β) is set theoretically supported on S, we conclude

that Pn(X, β) is projective. Indeed, there is a d � 0 such that every element of Pn(X, β)

is scheme theoretically supported in dS, where dS denotes the d times thickening of the

zero section S ⊆ X, that is, the closed subscheme of X defined by Id ⊆ OX , where I ⊆ OX

denotes the ideal of the zero section. Therefore Pn(X, β) ∼= Pn(dS, β), �

Suppose L−1
1 and L−1

2 are ample. Then K−1
S is ample, that is, S is del Pezzo, and

Pn(X, β) is projective for all β, n by Proposition 3.1. As noted in [14, Section 4.2], there

are only two possibilities:

Proposition 3.2. Let S be a smooth projective surface and L1, L2 ∈ Pic(S) such that

L1 ⊗ L2
∼= KS. Suppose L−1

1 and L−1
2 are ample. Then, up to permutating L1, L2, we only

have (S, L1, L2) = (P2,O(−1),O(−2)) or (S, L1, L2) = (P1 × P1,O(−1, −1),O(−1, −1)).
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Proof. Suppose S contains a (−1)-curve C. Then the Nakai criterion and adjunction

imply

− 2 � deg(L1|C) + deg(L2|C) = deg(KS|C) = −1,

so S does not contain (−1)-curves. The classification of del Pezzo surfaces yields the

result. �

For both geometries of this proposition, the Gromov–Witten (and hence Gopaku-

mar–Vafa type) invariants were determined in [26, Section 3].

Let us go back to an arbitrary smooth projective surface S with L1, L2 ∈ Pic(S)

satisfying L1 ⊗ L2
∼= KS. Consider the moduli space Pn(S, β) of stable pairs (F, s) on S

with χ(F) = n and scheme theoretic support of F in class β ∈ H2(S,Z). Any stable pair

I• = {OS → F} gives rise to a stable pair

{OX → ι∗OS → ι∗F}

on X = TotS(L1 ⊕ L2), where ι : S ↪→ X denotes inclusion of the zero section. This gives a

closed embedding

Pn(S, β) ↪→ Pn(X, β). (3.1)

We refer to elements of Pn(X, β) in the image as “stable pairs which are scheme

theoretically supported on S.” Requiring Pn(X, β) to be proper poses restrictions on n, β.

The following result is very useful for finding “candidates” for proper moduli spaces

Pn(X, β) (as we will see later in this section in Proposition 3.8).

Proposition 3.3. Let S be a smooth projective surface, L1, L2 ∈ Pic(S) such that L1⊗L2
∼=

KS and let X = TotS(L1 ⊕ L2). Let β ∈ H2(S,Z) and n ∈ Z such that Pn(X, β) is proper and

Pn(S, β) �= ∅. Suppose C1, C2 ⊆ S are effective divisors satisfying

• C1
∼= P1 and [C1 + C2] = β,

• Li · C1 = 0 for i = 1 or i = 2.

Then

− 1
2β(β + KS) � n � −1

2C2(C2 + KS).
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Proof. Suppose Pn(S, β) �= ∅, Pn(X, β) is proper, and let C1, C2 ⊆ S be as stated. Then

for any element [(F, s)] ∈ Pn(S, β) with underlying scheme theoretic support C, we have

n = χ(F) � χ(OC) = −1
2β(β + KS).

Suppose

n � 1 − 1
2C2(C2 + KS).

Since C1
∼= P1 and deg(Li|C1

) = Li ·C1 = 0, for i = 1 or i = 2, the line bundle Li|C1
is trivial.

Hence we can take a nowhere vanishing section D1 of the line bundle Li|C1
∼= P1 × C. In

particular, D1 and C2 are disjoint. Therefore

χ(OD1�C2
) = χ(OD1

) + χ(OC2
)

= 1 − 1
2C2(C2 + KS).

Twisting OD1�C2
by an effective divisor of appropriate length, we obtain a stable pair

[(F, s)] ∈ Pn(X, β) \ Pn(S, β) with underlying scheme theoretic support D1 � C2. Since

D1 does not lie in the zero-section, using the C∗-scaling action on Li, we get a family

of stable pairs with part of the support (i.e., D1) moving off to infinity, contradicting

properness of Pn(X, β). �

We want to apply this proposition to smooth projective surfaces S with L1,

L2 ∈ Pic(S) such that L1 ⊗ L2
∼= KS and L−1

1 , L−1
2 non-trivial and nef. These surfaces

were recently studied in the context of the log-local principle by Bousseau–Brini–van

Garrel [4]. In particular, they determined the genus zero Gromov–Witten (and hence

Gopakumar–Vafa type) invariants of TotS(L1 ⊕ L2) in many new cases.

Smooth projective surfaces S with K−1
S nef and big are called weak del Pezzo

surfaces. The weak toric del Pezzo surfaces are: P2, P1 × P1, F1, F2, or certain repeated

toric blow-ups of P2 in at most 6 points as specified in [41]. In this paper, we only

consider the minimal cases, that is, the 1st four cases. Using the notation for Hirzebruch

surfaces from the introduction, the only possibilities for L1, L2 ∈ Pic(S) such that L1 ⊗
L2

∼= KS with L−1
1 , L−1

2 non-trivial and nef are (up to permutations of L1, L2):

• (S, L1, L2) = (P2,O(−1),O(−2)),

• (S, L1, L2) = (P1 × P1,O(−1, −1),O(−1, −1)) or (P1 × P1,O(−1, 0),O(−1, −2)),

• (S, L1, L2) = (F1,O(−1, −1),O(−1, −2)) or (F1,O(0, −1),O(−2, −2)),

• (S, L1, L2) = (F2,O(−1, −2),O(−1, −2)).
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Example 3.4. Suppose (S, L1, L2) = (P1 ×P1,O(−1, 0),O(−1, −2)). Let H1 = {pt}×P1 and

H2 = P1 × {pt}. We define (d1, d2) := d1H1 + d2H2. For all d1, d2 ∈ Z, (d1, d2) is effective

if and only if d1, d2 � 0. For (0, d) with d � 1, the moduli space Pn(X, (0, d)) is projective

for all n by Proposition 3.1. Now suppose d1 > 0, d2 � 0, and n � 0. Let C1 ∈ |H1|
and C2 ∈ |(d1 − 1)H1 + d2H2|. Then L1 · C1 = 0 and the inequalities of Proposition 3.3

reduce to

d1 + d2 − d1d2 � n � d1 + 2d2 − d1d2 − 1.

These inequalities have the following solutions:

• (d1, d2) = (3, 2), (2, d) with d � 2 and n = 0,

• (d1, d2) = (d, 1), (1, d) with d � 1 and n = 1, or (d1, d2) = (2, d) with d � 1

and n = 1,

• (1, d) with 2 � n � d.

Example 3.5. Suppose (S, L1, L2) = (F1,O(−1, −1),O(−1, −2)) and use the notation for

Hirzebruch surfaces from the introduction, so (d1, d2) := d1B + d2F for all d1, d2 ∈ Z.

Then (d1, d2) is effective if and only if d1, d2 � 0 (this holds for all Hirzebruch surfaces).

For (0, d) with d � 1, the moduli space Pn(X, (0, d)) is projective for all n by Proposition

3.1. Suppose d1 > 0, d2 � 0, and n � 0. Let C1 ∈ |B| and C2 ∈ |(d1 − 1)B + d2F|. Then

L1 · C1 = 0 and the inequalities of Proposition 3.3 reduce to

1
2d1(d1 + 1) − d2(d1 − 1) � n � 1

2d1(d1 − 1) − d2(d1 − 2).

These inequalities have the following solutions:

• (d1, d2) = (3, 3), (2, d) with d � 3 and n = 0,

• (d1, d2) = (2, d) with d � 2 and n = 1,

• (1, d) with 1 � n � d.

Example 3.6. Suppose (S, L1, L2) = (F1,O(0, −1),O(−2, −2)). Suppose d1 > 0, d2 � 0,

and n � 0. Taking C1, C2 as in Example 3.5 leads to the same list. Additionally, we can

take d1 � 0, d2 > 0, n � 0, C1 ∈ |F| and C2 ∈ |d1B + (d2 − 1)F|. Then L1 · C1 = 0 and the

inequalities of Proposition 3.3 reduce to

1
2d1(d1 + 1) − d2(d1 − 1) � n � 1

2d1(d1 + 1) − (d2 − 1)(d1 − 1).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/6/4753/6246796 by U
trecht U

niversity Library user on 26 July 2022



Stable Pair Invariants of Local CY 4-folds 4771

The solutions to these inequalities and the ones from Example 3.5 are the following:

• (d1, d2) = (2, 3), (2, 4), (3, 3) and n = 0,

• (d1, d2) = (2, 2), (2, 3), (1, d) with d � 1 and n = 1.

Example 3.7. Suppose (S, L1, L2) = (F2,O(−1, −2),O(−1, −2)). For (0, d) with d � 1,

the moduli space Pn(X, (0, d)) is projective for all n by Proposition 3.1. Suppose d1 > 0,

d2 � 0, and n � 0. Let C1 ∈ |B| and C2 ∈ |(d1 − 1)B + d2F|. Then L1 · C1 = 0 and the

inequalities of Proposition 3.3 reduce to

d2
1 − d2(d1 − 1) � n � (d1 − 1)2 − d2(d1 − 2).

These inequalities have the following solutions:

• (d1, d2) = (2, d), d � 4, and n = 0,

• (d1, d2) = (2, d), d � 3, and n = 1,

• (1, d) with 1 � n � d.

In these examples we listed, for given (S, L1, L2), all the cases for which n � 0

and potentially Pn(X, β) is proper and Pn(S, β) �= ∅ (Proposition 3.3). For β = (0, d) with

d � 1, Pn(S, β) �= ∅ if and only if n � d, and Pn(X, β) is proper by Proposition 3.1. For

all other cases listed, Pn(S, β) is also non-empty since |β| �= ∅ and n � χ(OC) for any

C ∈ |β|. Indeed adding sufficiently many points to C one obtains a stable pair (F, s) on S

with χ(F) = n. We now prove that in each of the cases listed, Pn(X, β) is indeed proper.

Proposition 3.8. In each of the cases listed in Examples 3.4–3.7, Pn(X, β) is projective.

Proof. We write out the proof for Example 3.4. The other cases are analogous. Recall

that H1 := {pt} × P1, H2 := P1 × {pt}, L1 := O(−H1), L2 := O(−H1 − 2H2), and β := d1H1 +
d2H2. Suppose n, β are as listed in Example 3.4. As in Proposition 3.1, it is enough to

show that all elements of Pn(X, β) are set theoretically supported on S. Suppose [(F, s)] ∈
Pn(X, β) has scheme theoretic support C and let D be an irreducible component of C

which is not set theoretically supported on S. Then we claim Dred is a proper irreducible

reduced curve with class [Dred] ∈ H2(X,Z) ∼= H2(S,Z) satisfying [Dred] · L1 � 0 or [Dred] ·
L2 � 0. Indeed suppose [Dred] · L1 < 0 and [Dred] · L2 < 0. Using the spectral construction

as in the proof of Proposition 3.1, stability of ODred
, then implies Dred ⊆ S contrary to

our assumption.
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The only non-zero effective curve classes β ′ on S such that β ′ ·L1 � 0 or β ′ ·L2 � 0

are β ′ = mH1 for some m > 0. Hence there exists a � ∈ |H1| such that

p|Dred
: Dred → � ⊆ S,

where p : X → S denotes the projection. Note that L1|� ∼= O and L2|� ∼= O(−2). Since

[Dred]·L2 < 0, a similar argument as above shows that Dred ⊆ Tot�(L1) ∼= P1×C. Therefore

Dred is a non-zero section of Tot�(L1) ∼= P1 × C.

Denote the irreducible components of C, which are not set theoretically sup-

ported on S by D1, . . . , D� and let D′ be the union of the remaining components. Above,

we showed each Di,red
∼= P1 and Di,red is a non-zero section of Tot�i

(L1) ∼= P1 × C for

some �i ∈ |H1|. It follows that D1,red, . . . , D�,red, D′
red are mutually disjoint. Denote the

multiplicity of Di at Di,red by δi � 1. Consider the classes p∗[Di], p∗[D′] ∈ H2(S,Z), where

p : X → S is the projection. Then

p∗[Di] := δiH1, p∗[D′] := β − δH1,

where δ := ∑�
i=1 δi. We claim

χ(ODi
) � 1, χ(OD′) � 1 − g(p∗[D′]) = −1

2 (β − δH1)(β − δH1 + KS), (3.2)

for all i = 1, . . . , �, where the last equality is by the Riemann–Roch formula. When Di

(resp. D′) are reduced, these inequalities are equalities. In general, since NDi,red/X
∼= O ⊕

O⊕O(−2) and NS/X
∼= L1 ⊕ L2 with L−1

1 , L−1
2 nef, we have inequalities as stated. One way

to see this is by using filtrations by thickenings of Di,red ⊆ X and S ⊆ X as in the proof

of Proposition 3.9 below. From (3.2) and the fact that D1, . . . , D�, D′ are mutually disjoint,

we deduce

n = χ(F) � χ(OC) =
�∑

i=1

χ(ODi
) + χ(OD′)

� δ − 1
2 (β − δH1)(β − δH1 + KS)

= δ − 1
2 (d1 − δ)(d2 − 2) − 1

2d2(d1 − δ − 2).

However, for each of the cases listed in Example 3.4, it is easy to see that n � δ − 1 −
1
2 (d1 − δ)(d2 − 2) − 1

2d2(d1 − δ − 2) for all 1 � δ � d1 by explicit calculation. We have

reached a contradiction. �
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Conclusion. For any (S, L1, L2) with L1 ⊗ L2
∼= KS, L−1

1 , L−1
2 non-trivial and nef, S minimal

and toric, we classified all n � 0, β ∈ H2(S,Z) such that Pn(X, β) is proper and

Pn(S, β) �= ∅.

3.2 Compactness II

In the previous section, we studied properness of Pn(X, β) for local surfaces. In

particular, for (S, L1, L2) = (P2,O(−1),O(−2)) or (P1 × P1,O(−1, −1),O(−1, −1)), the

moduli space Pn(X, β) is always proper (Proposition 3.1). We are now interested in

the cases where Pn(X, β) ∼= Pn(S, β), that is, the embedding (3.1) is an isomorphism.

For the three-fold Tot(KP2), this question was considered by Choi–Katz–Klemm in [19,

Proposition 2]. In the proof of the following proposition, we use some of their techniques

(adapted to the 4-folds setting).

Proposition 3.9. Let X = TotP2(O(−1) ⊕ O(−2)), β = d[H] with d � 1, and n � 0. Then

Pn(X, β) ∼= Pn(P2, β)

if and only if

(1) d = 1 and any n � 0, or

(2) d = 2, 3, 4 and n = 0, 1, or

(3) d = 2, 3 and n = 2.

Let X = Tot
P1×P1(O(−1, −1) ⊕ O(−1, −1)), β = d1[H1] + d2[H2] �= 0 with d1, d2 � 0, and

n � 0. Then

Pn(X, β) ∼= Pn(P1 × P1, β),

if and only if

(1) (d1, d2) = (1, 0), (0, 1), (1, 1) and any n � 0, or

(2) (d1, d2) = (0, d), (d, 0) with d � 2 and 0 � n � d, or

(3) (d1, d2) = (1, d), (d, 1) with d � 2 and n = 0, 1, 2, or

(4) (d1, d2) = (2, 2), (2, 3), (3, 2), (2, 4), (4, 2), (3, 3) and n = 0, or

(5) (d1, d2) = (2, 2), (2, 3), (3, 2) and n = 1, or

(6) (d1, d2) = (2, 2) and n = 2.
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4774 Y. Cao et al.

Proof. Let [(F, s)] ∈ Pn(X, β) be a stable pair with scheme theoretic support C :=
supp(F). The stable pair (F, s) is set theoretically supported on the zero section S ⊆ X

by Proposition 3.1. Let Yi = TotS(Li) for i = 1, 2. We consider the ideals of C ⊆ X and

Y1 ⊆ X:

J := IC⊆X ⊆ OX , I2 := IY1⊆X ⊆ OX .

Note that I2 is a line bundle on X. Since (F, s) is set theoretically supported on S ⊆ X

(and therefore Y1 ⊆ X), there exists an � � 0 such that J + I�+1
2 = J and we have

χ(OC) =
�∑

j=0

χ
( J + Ij

2

J + Ij+1
2

)
. (3.3)

For each j, we have a surjective map

p∗L−j
2

∼= Ij
2

Ij+1
2

→ J + Ij
2

J + Ij+1
2

,

where p : Y1 → S denotes projection. Hence
J+Ij

2

J+Ij+1
2

∼= OCj
⊗ p∗L−j

2 for some closed

subscheme Cj ⊆ Y1 of dimension � 1. Moreover, we have Cj ⊇ Cj+1 for all j, which

follows from the natural surjection OCj
⊗p∗L−j−1

2
∼= J+Ij

2

J+Ij+1
2

⊗ I2
I2
2
� J+Ij+1

2

J+Ij+2
2

∼= OCj+1
⊗p∗L−j−1

2 .

From the fact that C is Cohen–Macaulay, it also follows that, when non-empty, Cj is not

0-dimensional.

For a fixed j, we consider the ideals of Cj ⊆ Y1 and S ⊆ Y1:

Jj := ICj⊆Y1
⊆ OY1

, I1 := IS⊆Y1
⊆ OY1

.

Note that I1 is a line bundle on Y1. As above, there exists an �j � 0 such that Jj+I
�j+1
1 = Jj

and we have

χ(OCj
) =

�j∑
i=0

χ
( Jj + Ii

1

Jj + Ii+1
1

)
.

As above, for all i, we have
Jj+Ii

1

Jj+Ii+1
1

∼= OCij
⊗ L−i

1 for some closed subscheme Cij ⊆ S

of dimension � 1. As above, we also have Cij ⊇ Ci+1,j for all i. This time, we leave
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open the possibility that Cij is 0-dimensional, because Cj need not be Cohen–Macaulay.

Nonetheless, denoting βij := [Cij], we have

β =
�∑

j=0

�j∑
i=0

βij ∈ H2(S,Z).

Consider the torsion filtration

0 → T0 → OCij
→ OCpure

ij
→ 0

and the exact sequence

0 → OS(−Cpure
ij ) → OS → OCpure

ij
→ 0.

The support of T0 is 0-dimensional. Applying the Hirzebruch–Riemann–Roch formula

gives

χ
( Jj + Ii

1

Jj + Ii+1
1

⊗ p∗L−j
2

)
= χ(OCij

⊗ L−i
1 ⊗ L−j

2 ) � χ(OCpure
ij

⊗ L−i
1 ⊗ L−j

2 )

= −1
2βij(βij + KS) − (iL1 + jL2)βij.

Combining with (3.3), we obtain

χ(F) � χ(OC) � −
�∑

j=0

�j∑
i=0

(1
2βij(βij + KS) + (iL1 + jL2)βij)

� −1
2β(β + KS) − β(L1 + L2)

+ 1
2

∑
((i,j),(i′,j′))
(i,j) �=(i′,j′)

βijβi′j′ + β00(L1 + L2) + L1

�∑
j=1

β0j + L2

�0∑
i=1

βi0,

(3.4)

where we used that L1 and L2 are nef line bundles.

Case 1. Let (S, L1, L2) = (P2,O(−1),O(−2)), β = d[H] with d � 1, and n � 0. Suppose

there exists an element [(F, s)] ∈ Pn(X, β) \ Pn(S, β). We use the notation above for its
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scheme theoretic support C and the associated schemes Cij. Let βij = dij[H], then (3.4)

gives

χ(F) � −1
2d2 + 9

2d − 3d00 −
�∑

j=1

d0j − 2
�0∑

i=1

di0 + 1
2

∑
((i,j),(i′,j′))
(i,j) �=(i′,j′)

dijdi′j′

� −1
2d2 + 5

2d − d00 + 1
2

∑
((i,j),(i′,j′))
(i,j) �=(i′,j′)

dijdi′j′

� −1
2d2 + 5

2d,

where the last inequality uses that there exists an (i, j) �= (0, 0) with dij � 1, because

we assumed C is not scheme theoretically supported in the zero section S ⊆ X. Hence

n � −1
2d2 + 5

2d − 1 implies Pn(S, β) ∼= Pn(X, β). In particular, we find that for the cases

(1)–(3) we have Pn(S, β) ∼= Pn(X, β). For case (1) this is obvious from Proposition 3.1 and

the fact that β is irreducible.

For β, n other than (1)–(3), it is easy to construct a (C∗)4-fixed stable pair in

Pn(X, β) \ Pn(S, β)

using the combinatorial description of stable pairs in [9, 36], where (C∗)4 denotes the

torus of the toric Calabi–Yau 4-folds X.

Case 2. Let (S, L1, L2) = (P1 × P1,O(−1, −1),O(−1, −1)), β = d1[H1] + d2[H2] for some

d1, d2 � 0 not both zero, and n � 0. Suppose there exists an element [(F, s)] ∈ Pn(X, β) \
Pn(S, β). We use the notation above for its scheme theoretic support C and the associated

schemes Cij. Let βij = d1,ij[H1] + d2,ij[H2], then (3.4) gives

χ(F) � 3d1 + 3d2 − d1d2 − 2d1,00 − 2d2,00 −
�∑

j=1

(d1,0j + d2,0j) −
�0∑

i=1

(d1,i0 + d2,i0)

+ 1
2

∑
((i,j),(i′,j′))
(i,j) �=(i′,j′)

(d1,ijd2,i′j′ + d1,i′j′d2,ij)

� 2d1 + 2d2 − d1d2 − d1,00 − d2,00 +
∑

((i,j),(i′,j′))
(i,j) �=(i′,j′)

d1,ijd2,i′j′

� d1 + d2 − d1d2 + 1 +
∑

((i,j),(i′,j′))
(i,j) �=(i′ ,j′)

d1,ijd2,i′j′ ,

(3.5)
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where the last inequality uses that C does not lie scheme theoretically in S. Suppose

d1, d2 � 2, then

∑
((i,j),(i′,j′))
(i,j) �=(i′,j′)

d1,ijd2,i′j′ � 2. (3.6)

Therefore n � d1 + d2 − d1d2 + 2 implies Pn(S, β) ∼= Pn(X, β). In particular, for β, n as in

(4)–(6), except for (d1, d2) = (3, 3) and n = 0 (!), we deduce that Pn(S, β) ∼= Pn(X, β). Cases

(1)–(3) can be found from (3.5) by a similar reasoning.

For (d1, d2) = (3, 3), we still use (3.5), but we need to sharpen (3.6). Recall that

the schemes Cj and Cij constructed in the 1st part of the proof are nested. This implies

d1,ij � d1,i+1j and d2,ij � d2,i+1j for all i, j. Using these inequalities for (d1, d2) = (3, 3),

one can show that

∑
((i,j),(i′,j′))
(i,j) �=(i′,j′)

d1,ijd2,i′j′ � 3.

It follows that for [(F, s)] ∈ Pn(X, (3, 3)) \ Pn(S, (3, 3)), we have χ(F) � 1. Hence

P0(S, (3, 3)) ∼= P0(X, (3, 3)).

For β, n other than (1)–(6), it is easy to construct a (C∗)4-fixed stable pair in

Pn(X, β) \ Pn(S, β) using the combinatorial description of stable pairs in [9, 36]. �

Remark 3.10. For (S, L1, L2) as in Examples 3.4–3.7, we found all cases for which n � 0,

Pn(X, β) is proper, and Pn(S, β) �= ∅ (Propositions 3.3 and 3.8). A similar reasoning as in

the proof of Proposition 3.9 (using (3.4)) can be applied to find out when Pn(X, β) ∼=
Pn(S, β). In the following cases, we have n � 0, Pn(X, β) ∼= Pn(S, β):

• (S, L1, L2) = (P1 × P1,O(−1, 0),O(−1, −2)), (d1, d2) = (0, 1) and any n � 0, or

(d1, d2) = (0, d) for any d � 2 and n = d, or (d1, d2) = (2, 2), (2, 3), (3, 2), (2, 4)

and n = 0, or (d1, d2) = (2, 2), (2, 3), (1, d), (d, 1) for any d � 1 and n = 1, or

(d1, d2) = (1, d) for any d � 2 and n = 2.

• (S, L1, L2) = (F1,O(−1, −1),O(−1, −2)), (d1, d2) = (0, 1) and any n � 0, or

(d1, d2) = (0, d) for any d � 2 and n = d, or (d1, d2) = (2, 3), (2, 4), (3, 3), (2, 5)

and n = 0, or (d1, d2) = (2, 2), (2, 3), (2, 4) and n = 1, or (d1, d2) = (1, d) for

n = 1, 2 and any d � n.

• (S, L1, L2) = (F1,O(0, −1),O(−2, −2)), (d1, d2) = (2, 3), (2, 4), (3, 3) and n = 0,

or (d1, d2) = (2, 2), (2, 3), (1, d) with d � 1 and n = 1.
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4778 Y. Cao et al.

• (S, L1, L2) = (F2,O(−1, −2),O(−1, −2)), (d1, d2) = (0, 1) and any n � 0, or

(d1, d2) = (0, d) for any d � 2 and n = d, or (d1, d2) = (2, 4), (2, 5), (2, 6)

and n = 0, or (d1, d2) = (2, 3), (2, 4), (2, 5) and n = 1, or (d1, d2) = (1, d) for

n = 1, 2 and any d � n.

Furthermore, in all cases listed in Examples 3.4–3.7 but not in the above list, one can

easily construct a (C∗)4-fixed stable pair in Pn(X, β) \ Pn(S, β) using the combinatorial

description of stable pairs on toric varieties [9, 36].

Conclusion. For any (S, L1, L2) with L1 ⊗ L2
∼= KS, L−1

1 , L−1
2 non-trivial and nef, and S

minimal and toric, we have classified all β ∈ H2(S,Z) and n � 0 such that Pn(X, β) ∼=
Pn(S, β) �= ∅.

In the next section, we develop a method to determine the stable pair invariants

Pn,β([pt]) in all of these cases (tabulated in Appendix A).

4 Invariants

4.1 Virtual classes of relative Hilbert schemes

For S a smooth projective surface, β ∈ H2(S,Z), and n ∈ Z, the moduli space Pn(S, β) has

a nice description in terms of relative Hilbert schemes due to Pandharipande–Thomas

[37]. Given a stable pair [(F, s)] ∈ Pn(S, β), one has a short exact sequence

0 → OC → F → Q → 0,

where C is the scheme theoretic support of F. Dualizing on C yields a short exact

sequence

0 → F∗ → OC → Ext1(Q,OC) → 0,

where we used Ext1(F,OC) = 0 by [37, Lemma B.2]. Hence Ext1(Q,OC) ∼= OZ for some

0-dimensional subscheme Z ⊆ C of length

m = n + g(β) − 1 = n + 1
2β(β + KS).

As shown in [37, Proposition B.8.], the family version of this argument gives an

isomorphism

Pn(S, β) ∼= Hilbm(C/Hβ), (4.1)
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where Hilbm(C/Hβ) denotes the relative Hilbert scheme of m points on the fibres of

the universal curve C → Hβ and Hβ denotes the Hilbert scheme of effective divisors on

S in class β. The description in terms of relative Hilbert schemes helps to establish

smoothness. Although we do not need it for this paper, we include the following

observation.

Proposition 4.1. In all the cases listed in Proposition 3.9 and Remark 3.10, Pn(S, β) is

smooth.

Proof. The method in this proof was also used in [28]. Let S = P2, then for any β = d[H]

with d � 1, and any n ∈ Z, we have a morphism

Pn(S, β) ∼= Hilbm(C/|O(d)|) → S[m], (4.2)

where m = n+ 1
2d(d−3). The fibre over Z ∈ S[m] is the projectivization of the kernel of the

evaluation map H0(P2,O(d)) → H0(Z,O(d)|Z). It suffices to show that for n and d �= 1

as in Proposition 3.9, this map is surjective. Then it follows that the fibres of (4.2) are

equi-dimensional projective spaces and Pn(S, β) is smooth, because S[m] is also smooth.

Surjectivity of the evaluation map for all Z ∈ S[m] is equivalent to (m−1)-very ampleness

of O(d) (by definition, [2]). Beltrametti–Sommese showed that O(d) is (m−1)-very ample

if and only if m − 1 � d, that is,

n � d − 1
2d(d − 3) + 1.

This inequality is satisfied for all n and d �= 1 in Cases (2), (3) of Proposition 3.9.

Smoothness of Pn(S, β) for d = 1 and any n is clear, because in this case the fibres

of (4.2) are Symm(P1) ∼= Pm.

For S = P1 × P1, O(d1H1 + d2H2) is k-very ample if and only if k � min{d1, d2}
[2]. For S = Fa (for any a � 1), O(d1B + d2F) is k-very ample if and only if k �
min{d1, d2 − ad1} [2]. The proof in the remaining cases of Proposition 3.9 and Remark

3.10 then follows similarly. �

Let Z ⊆ S × S[m] be the universal subscheme and denote the pull-back of Z to

S × S[m] × Hβ by the same symbol (and similarly for C ⊆ S × Hβ ). Consider the rank m

vector bundle

O(C)[m] := π∗(O(C)|Z )
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on S[m] × Hβ , where π : S × S[m] × Hβ → S[m] × Hβ is the projection. By [29, Appendix A],

there exists a tautological section s of O(C)[m] cutting out Hilbm(C/Hβ) from its ambient

space

In general Hβ is not smooth (or smooth but not of expected dimension). Therefore, this

construction only provides a relative perfect obstruction theory on Hilbm(C/Hβ) → Hβ .

The Hilbert scheme of divisors Hβ has a natural perfect obstruction theory

(Rp∗OC(C))∨ → LHβ
,

where p : S × Hβ → Hβ denotes projection. This is the perfect obstruction theory

used to define the Poincaré/Seiberg–Witten invariants of S in [18, 20]. Taken together,

these provide an absolute perfect obstruction theory on Pn(S, β) ∼= Hilbm(C/Hβ) by [29,

Appendix A.3]. The virtual tangent bundle of this absolute perfect obstruction theory is

RHomπS
(I•S,F)

where I•S = {O → F} denotes the universal stable pair on S × Pn(S, β) and πS : S ×
Pn(S, β) → Pn(S, β) is the projection. By [27, Proposition 2.1], the resulting virtual class

satisfies

j∗[Hilbm(C/Hβ)]vir = (S[m] × [Hβ ]vir) · e
(
O(C)[m]). (4.3)

The corresponding virtual class on Pn(S, β), via the isomorphism (4.1), is denoted by

[Pn(S, β)]vir.

4.2 Comparison of virtual classes

Let S be a smooth projective surface and L1, L2 ∈ Pic(S) such that L1 ⊗ L2
∼= KS. We

consider the local surface X = TotS(L1 ⊕ L2), which is a Calabi–Yau 4-folds. Fix n ∈ Z

and β ∈ H2(S,Z) such that Pn(X, β) is proper. Then it has a virtual class

[Pn(X, β)]vir ∈ H2n

(
Pn(X, β),Z

)
, (4.4)
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in the sense of Borisov–Joyce [3], which depends on a choice of orientation on Pn(X, β).

In order to apply [3] to our case, we need the existence of a (−2)-shifted symplectic

structure on Pn(X, β) and an orientability result as reviewed in Section 2.1. The existence

of a (−2)-shifted symplectic structure on Pn(X, β) was shown in [5, Theorem 7.3.2] and

[40, Theorem 4.0.8]. By [14, Theorem 5.3], the existence of orientations on Pn(X, β) can

be reduced to the existence of orientations on the moduli stack Mn(X, β) of coherent

sheaves F on X with one-dimensional proper support of class β and χ(F) = n. Taking Y =
TotS(L1), we have X = TotY(KY). By considering the derived enhancement of Mn(X, β), it

is the (−2)-shifted cotangent bundle of a derived moduli stack of sheaves on Y. Therefore

Mn(X, β) has an orientation (see e.g., [44, Lemma 4.3] for a similar argument in the case

of Calabi–Yau three-folds).

We denote by [pt] ∈ H4(X,Z) the pull-back along π : X → S of the Poincaré dual

of the point class on S. Using the same notation as in Section 1.2, we define stable pair

invariants

Pn,β([pt]) :=
∫

[Pn(X,β)]vir
τ([pt])n ∈ Z. (4.5)

When n = 0, we simply write P0,β := P0,β([pt]).

Assuming Pn(X, β) ∼= Pn(S, β), we can compare the virtual class (4.4) to the virtual

class on the relative Hilbert scheme (4.3) studied in [29, 30]. In Proposition 3.9 and

Remark 3.10 we gave a list of examples where this assumption is satisfied.

Proposition 4.2. Let S be a smooth projective surface, L1, L2 ∈ Pic(S) such that L1⊗L2
∼=

KS and let X = TotS(L1 ⊕ L2). Suppose β ∈ H2(S,Z) and n � 0 are chosen such that

Pn(X, β) ∼= Pn(S, β). Then there exists a choice of orientation such that

[Pn(X, β)]vir = (−1)β·L2+n · e
( − RHomπPS

(F,F� L1)
) · [Pn(S, β)]vir.

Here [Pn(S, β)]vir is the virtual class induced from the relative Hilbert scheme (Section

4.1), I•S = {O → F} denotes the universal stable pair on S×Pn(S, β), and πPS
: S×Pn(S, β) →

Pn(S, β) is the projection. The sign results from a preferred choice of orientation.

Proof. Let Y = TotS(L1). Then X = TotY(KY) is the total space of the canonical bundle

of Y. By the assumption, we have isomorphisms of moduli spaces

Pn(S, β) ∼= Pn(Y, β) ∼= Pn(X, β). (4.6)
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Let ι : S ↪→ Y denote the zero section. A stable pair I•
S = {s : OS → F} ∈ Pn(S, β) on S

induces a stable pair

I•
Y = {OY → ι∗OS

ι∗s→ ι∗F}

on Y. Consider the distinguished triangle

I•
Y → OY → ι∗F. (4.7)

Applying RHomY(I•
Y , ·) and taking out trace gives a distinguished triangle

RHomY(I•
Y , ι∗F) → RHomY(I•

Y , I•
Y)0[1] → RHomY(ι∗F,OY)[2].

Applying adjunction and the isomorphism

Lι∗I•
Y

∼= I•
S ⊕ F ⊗ L−1

1 (4.8)

gives a long exact sequence

· · · → Exti
S(I•

S, F) ⊕ Exti
S(F, F ⊗ L1) → Exti+1

Y (I•
Y , I•

Y)0 → Exti+2
Y (ι∗F,OY) → · · · .

Note that Ext1
Y(ι∗F,OY) ∼= Ext2

Y(OY , ι∗F ⊗ KY)∨ = 0. Furthermore, the isomorphism (4.6)

induces an isomorphism on Zariski tangent spaces

Ext0
S(I•

S, F) ∼= Ext1
Y(I•

Y , I•
Y)0.

Therefore, we deduce HomS(F, F ⊗L1) = 0 (similarly HomS(F, F ⊗L2) = 0). This vanishing

allows us to conclude that the natural (Le Potier) pair obstruction theory

(RHomπPY
(I•Y , ιPY∗F))∨ → LPn(Y,β) (4.9)

is perfect, that is, 2-term, as we will now show (this was proved for irreducible β in [14,

Lemma 3.1]). Here I•Y = {O → ιPY∗F} denotes the universal stable pair on Y × Pn(Y, β),

ιPY
: S × Pn(Y, β) ↪→ Y × Pn(Y, β) is the base change of the zero section, and πPY

: Y ×
Pn(Y, β) → Pn(Y, β) denotes the projection.
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From the distinguished triangle

RHomY(ι∗F, ι∗F) → RHomY(OY , ι∗F) → RHomY(I•
Y , ι∗F), (4.10)

we obtain an exact sequence

0 = H2(Y, ι∗F) → Ext2
Y(I•

Y , ι∗F) → Ext3
Y(ι∗F, ι∗F) → 0 → Ext3

Y(I•
Y , ι∗F) → 0.

Moreover, by adjunction and Lι∗F ∼= F ⊕ F ⊗ L−1
1 [1], we have

Ext3
Y(ι∗F, ι∗F) ∼= Ext3

S(F, F) ⊕ Ext2
S(F, F ⊗ L1) ∼= HomS(F, F ⊗ L2)∨ = 0.

Hence Ext2
Y(I•

Y , ι∗F) ∼= Ext3
Y(ι∗F, ι∗F) = 0. Also note that HomY(ι∗F, ι∗F) → HomY(OY , ι∗F)

is injective. Therefore Exti
Y(I•

Y , ι∗F) = 0 unless i = 0, 1 and the complex (4.9) is 2-term.

We denote the corresponding virtual class by [Pn(Y, β)]vir
pair.

We can now use the argument of [14, Proposition 4.3] to deduce that the 4-

folds virtual class [Pn(X, β)]vir of (4.4) equals the pairs virtual class [Pn(Y, β)]vir
pair. For

completeness, we repeat the argument. Just like pushing forward from S to Y gives (4.7)

and (4.8), pushing forward further to X gives

RHomX(I•
X , j∗ι∗F) → RHomX(I•

X , I•
X)0[1] → RHomX(j∗ι∗F,OX)[2],

Lj∗I•
X

∼= I•
Y ⊕ ι∗F ⊗ K−1

Y ,

where

I•
X = {OX → j∗ι∗OS

j∗ι∗s→ j∗ι∗F}

and we denote the zero section by j : Y ↪→ X. Let T be the cone of the composition

RHomY(I•
Y , ι∗F) → RHomX(I•

X , j∗ι∗F) → RHomX(I•
X , I•

X)0[1].

Then T fits in the distinguished triangles

RHomY(I•
Y , ι∗F) → RHomX(I•

X , I•
X)0[1] → T,

RHomY(ι∗F, ι∗F ⊗ KY) → T → RHomX(j∗ι∗F,OX)[2].
(4.11)
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Applying Serre duality to the 1st and 3rd term of the 2nd distinguished triangle,

dualizing, and shifting gives the following distinguished triangle:

RHomY(ι∗F, ι∗F)[2] → RHomX(OX , j∗ι∗F)[2] → T∨.

Comparing to (4.10), we obtain T ∼= RHomY(I•
Y , ι∗F)∨[−2]. Hence from (4.11) we get a

short exact sequence

0 → Ext1
Y(I•

Y , ι∗F) → Ext2
X(I•

X , I•
X)0 → Ext1

Y(I•
Y , ι∗F)∨ → 0,

where we crucially used Ext2
Y(I•

Y , ι∗F) = 0, which was shown above. This way, we

obtain a half-dimensional subspace Ext1
Y(I•

Y , ι∗F) of Ext2
X(I•

X , I•
X)0. One can show that it is

isotropic by the exact same argument as in the proof of [14, Proposition 3.3, Proposition

2.11]. From this, it is concluded in loc. cit. that

[Pn(X, β)]vir = (−1)β·L2+n · [Pn(Y, β)]vir
pair.

Here the sign comes from a choice of preferred orientation discussed in a similar setting

in [6].

Finally, we express the pairs virtual class on Y in terms of the pairs virtual class

on S. By adjunction, we have

RHomπPY
(I•Y , ιPY∗F) ∼= RHomπPS

(Lι∗PY
I•Y ,F)

∼= RHomπPS
(I•S,F) ⊕ RHomπPS

(F,F� L1),

where πPS
: S × Pn(S, β) → Pn(S, β) ∼= Pn(Y, β) denotes the projection. From the vanishing

HomS(F, F ⊗ L1) = HomS(F, F ⊗ L2) = 0, for all [(F, s)] ∈ Pn(S, β), we deduce that

− RHomπPS
(F,F� L1) ∼= Ext1

πPS
(F,F� L1)

is locally free on Pn(Y, β) ∼= Pn(S, β). Hence the two virtual tangent bundles on Pn(Y, β) ∼=
Pn(S, β) differ by a locally free sheaf (in degree 1). Therefore, by [42, Theorem 4.6], we

have

[Pn(Y, β)]vir
pair = e

( − RHomπPS
(F,F� L1)

) · [Pn(S, β)]vir.

�
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Remark 4.3. Let S be a smooth projective surface satisfying b1(S) = pg(S) = 0. Let

L1, L2 ∈ Pic(S) such that L1 ⊗ L2
∼= KS and X = TotS(L1 ⊕ L2). Suppose Pn(X, β) is proper.

Once the virtual localization formula for stable pair theory on Calabi–Yau 4-folds is

established (in the special case S is moreover toric and Pn(S, β) ∼= Pn(X, β) is smooth,

a virtual localization formula was proved in [9, Theorem A.1, while a general virtual

localization formula has been announced by Oh–Thomas [32]), we expect that it will

induce a virtual class on each of the connected components of Pn(X, β)C
∗
, where C∗ is

the one-dimensional subtorus, preserving the Calabi–Yau volume form, inside the torus

C∗×C∗ acting on the fibres of X. When Pn(S, β) ⊆ Pn(X, β)C
∗

is open and closed, this gives

a virtual class, which we expect to be given by (for an appropriate choice of orientation)

(−1)β·L2+n · e
( − RHomπPS

(F,F� L1) ⊗ t1

) · [Pn(S, β)]vir, (4.12)

where [Pn(S, β)]vir is the virtual class induced from the relative Hilbert scheme (Section

4.1), t1 is a primitive character corresponding to the 1st component of the action of

C∗ ×C∗, and e(·) denotes equivariant Euler class. When Pn(X, β) is non-proper, one could

define the contribution of Pn(S, β) to the stable pair invariants of X by (4.12) (capped

with appropriate insertions).

4.3 Main theorem

We are now ready to prove the theorem of the introduction. Recall from (1.6) that we

denote by TS[m](L) the twisted (by L) tangent bundle of S[m].

Theorem 4.4. Let S be a smooth projective surface with b1(S) = pg(S) = 0 and L1, L2 ∈
Pic(S) such that L1 ⊗ L2

∼= KS. Suppose β ∈ H2(S,Z) and n � 0 are chosen such that

Pn(X, β) ∼= Pn(S, β) for X = TotS(L1 ⊕ L2). Denote by [pt] ∈ H4(X,Z) the pull-back of the

Poincaré dual of the point class on S. Let Pn(X, β) be endowed with the orientation as in

(1.5). Then

Pn,β([pt])= (−1)β·L2+n
∫

S[m]×Pχ(β)−1
cm(OS(β)[m](1))

hn(1+ h)χ(L1(β))(1 −h)χ(L2(β)) c(TS[m](L1))

c(L1(β)[m](1)) · c((L2(β)[m](1))∨)
,

when β2 � 0. Here m := n + g(β) − 1 and h := c1(O(1)). Moreover, Pn,β([pt]) = 0 when

β2 < 0.
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Proof. Suppose β is an effective divisor and m � 0, otherwise Pn(S, β) ∼= Hilbm(C/Hβ) =
∅ and Pn,β([pt]) = 0. Consider the closed embedding

j : Hilbm(C/Hβ) ↪→ S[m] × Hβ ,

as in Section 4.1. Below, we will show that there exists a class ψ ∈ K0(S[m] × Hβ)

restricting to e(−RHomπPS
(F,F � L1)) · τ([pt])n on Hilbm(C/Hβ). By Proposition 4.2, it

follows that

Pn,β([pt]) =
∫

S[m]×[Hβ ]vir
cm(O(C)[m]) · ψ . (4.13)

Since b1(S) = pg(S) = 0, we have [20, 30]

[Hβ ]vir = |β|vir = hh1(O(β)) ∩ |β| ∈ H2χ(β)−2(|β|),

where h denotes the class of the hyperplane on Hβ = |β|. Furthermore, we have

O(C)[m] := π∗(O(C)|Z ) ∼= O(β)[m](1),

which follows from the isomorphism O(C) ∼= OS(β)�O(1) on S×|β|. Therefore Pn,β([pt]) =
0, unless χ(β) � 1, which we assume from now on.

Recall from the proof of Proposition 4.2 that −RHomπPS
(F,F�L1) ∼= Ext1

πPS
(F,F�

L1) is locally free on Pn(S, β) and its rank is β2. Therefore Pn,β([pt]) = 0 unless β2 � 0,

which we assume from now on. Next, we extend the complex −RHomπPS
(F,F� L1) from

Pn(S, β) to S[m] × |β|. In K-theory, we have I•S = O − F and

−RHomπPS
(F,F� L1) = −χ(L1) ⊗ O + RHomπPS

(O, I•S � L1)

+ RHomπPS
(I•S, L1) − RHomπPS

(I•S, I•S � L1)

= −χ(L1) ⊗ O + RHomπPS
((I•S)∨, L1)

+ RHomπPS
(O, (I•S)∨ � L1) − RHomπPS

((I•S)∨, (I•S)∨ � L1)
)
,

where we suppressed some obvious pull-backs. On S × |β| × S[m], we have the sheaf

I �OS(β) �O(1), where we use the notation from the introduction. By [29, Lemma A.4],
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we have

(I•S)∨ ∼= I �OS(β) �O(1)|Hilbm(C/|β|)×S.

Next we can replace I by O−OZ in K-theory. Then −RHomπPS
(F,F�L1) is the restriction

of the following element in the K-group of S[m] × |β|

− χ(L1) ⊗ O + RHomπ

(
(O − OZ ) � (OS(β) ⊗ L−1

1 ) �O(1),O
)

+ RHomπ

(
O, (O − OZ ) � (OS(β) ⊗ L1) �O(1)

) − RHomπ (I, I � L1)

= −χ(L1) ⊗ O + χ(L1(β)) ⊗ O(1) + χ(L2(β)) ⊗ O(−1)

− (L1(β))[m] �O(1) − (
(L2(β))[m])∨ �O(−1) − RHomπ (I, I � L1),

(4.14)

where π : S × S[m] × |β| → S[m] × |β| denotes the projection and we used Serre duality,

L1 ⊗ L2
∼= KS, and Li(β) := OS(β) ⊗ Li.

Finally, we consider primary insertions

τ : H4(X,Z) → H2(Pn(X, β),Z), τ(γ ) = πP∗(π∗
Xγ ∪ ch3(ι∗F)),

where πX , πP are projections from X × Pn(X, β) to corresponding factors, and ι :

S × Pn(S, β) ↪→ X × Pn(S, β) ∼= X × Pn(X, β) is the base change of the inclusion of

the zero section. Note that ch3(ι∗F) is Poincaré dual to the fundamental class of the

scheme theoretic support of ι∗F, which we denote by [ι∗F]. The fundamental class

of the scheme theoretic support of F, which we denote by [F], equals j∗[C] where

C ⊆ S×S[m]×|β| is the pullback of the universal curve over |β|. Consider the commutative

diagram
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For γ := p∗[pt] ∈ H4(X,Z), where [pt] denotes the Poincaré dual of the point class on S,

we work our way through the diagram

τ(γ ) = πP∗(π∗
Xγ ∪ [ι∗F])

= πP∗ p∗(p∗π∗
S [pt] ∪ ι∗[F])

= πP∗(π∗
S [pt] ∪ [F])

= j∗(π∗(π∗
S [pt] ∪ [C])

)
.

(4.15)

Using, once more, that on S × |β| we have O(C) ∼= OS(β) �O(1), we conclude

π∗(π∗
S [pt] ∪ [C]) = h

∫
S

pt = h.

Therefore τ([pt])n is simply the restriction of the class hn on S[m] × |β|.
Since rk(−RHomπPS

(F,F � L1)) = β2 = 2m + χ(β) − 1 − m − n, we can replace

Euler class by total Chern class. The result now follows from (4.13), (4.14), and (4.15). �

Remark 4.5. For surfaces with pg(S) = 0 and b1(S) > 0, we can still use the formula

for the virtual class from Proposition 4.2. Suppose h2(L) = 0 for all L ∈ Picβ(S). Then

the virtual class [Hβ ]vir can be calculated by fixing a sufficiently ample effective divisor

A on S and considering the embedding Hβ ↪→ H[A]+β as in [20] (see also [29, Proposition

A.2], [30]). Therefore the invariant can be expressed as an integral over S[m] × H[A]+β ,

where H[A]+β is a projective bundle over Pic[A]+β(S) via the Abel–Jacobi map. Pushing

forward along the Abel–Jacobi map, the invariant can be expressed as an integral over

S[m] × PicA+β(S).

4.4 Atiyah–Bott localization

In Corollary 3.9 and Remark 3.10, we gave examples of (S, L1, L2) for which the assump-

tions of Theorem 4.4 are satisfied. In all of these cases, S is a toric surface. As a

consequence, X = TotS(L1 ⊕ L2) is also toric, so in principle one could calculate the

invariant Pn,β([pt]) using the vertex formalism for stable pair invariants on toric Calabi–

Yau 4-folds developed in [9, 10]. In loc. cit. it is assumed that the fixed locus Pn(X, β)(C
∗)4

is at most 0-dimensional; this is the case for all local Calabi–Yau 4-folds surfaces.

However, the number of (C∗)4-fixed points is typically very large. For instance, for

(S, L1, L2) = (P1 × P1,O(−1, −1),O(−1, −1)), (d1, d2) = (2, 4), and n = 0, we have 182

fixed points, whereas Theorem 4.4 only involves an integral over S[2] × P14.
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The calculation of intersection numbers on Hilbert schemes of points on toric

surfaces is a classical subject (see e.g., [21]). Let S be a smooth projective toric surface

with torus T = (C∗)2. The action of T on S lifts to an action of T on S[m] for any m. Let P

be a polynomial expression in Chern classes of

R�(L) ⊗ O − RHomπ (I, I � L), L[m], (4.16)

for various choices of T-equivariant line bundles L on S and where π : S × S[m] → S[m]

denotes the projection. Note that this includes Chern classes of the tangent bundle,

which can be expressed as −RHomπ (I, I)0 (since Exti(IZ, IZ)0 = 0 for Z ∈ S[m] and i �= 1).

Suppose also that the degree of P, as a class in the Chow ring A∗(S[m]), equals dim S[m] =
2m. By the Atiyah–Bott localization formula [1], we have

∫
S[m]

P =
∫

(S[m])T

P|(S[m])T

e(N(S[m])T/S[m])
,

where e(·) denotes the T-equivariant Euler class and N(S[m])T/S[m] is the normal bundle of

the fixed point locus (S[m])T ⊆ S[m]. Furthermore, in this formula, one has to choose a

T-equivariant lift of P. More precisely, one can choose a T-equivariant structure on all

(complexes of) sheaves appearing in P and replace all Chern classes appearing in P by

T-equivariant Chern classes.

The fixed point locus consists of isolated reduced points, which can be described

combinatorially. Consider a cover by maximal T-invariant affine open subsets:

{
Uσ

∼= SpecC[xσ , yσ ]
}e(S)

σ=1.

Then the fixed locus (S[m])T precisely consists of the closed subschemes of S defined by

collections of monomial ideals

{
Iσ ⊆ C[xσ , yσ ]

}e(S)

σ=1

of total colength m. The monomial ideals of finite colength in C[x, y] are in bijective

correspondence with partitions. Explicitly, λ = (λ1 � · · · � λ�) corresponds to the ideal

(
yλ1 , xyλ2 , . . . , x�−1yλ� , x�

)
,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/6/4753/6246796 by U
trecht U

niversity Library user on 26 July 2022



4790 Y. Cao et al.

where �(λ) = � is the length of λ. Hence we can index the points of the fixed locus (S[m])T

by collections of partitions

λ = {
λ(σ)

}e(S)

σ=1

of total size

e(S)∑
σ=1

|λ(σ)| =
e(S)∑
σ=1

�(λ(σ))∑
i=1

λ
(σ)

i = m.

Denote the closed subscheme corresponding to λ by Zλ.

In order to calculate integrals such as the one in Theorem 4.4 by Atiyah–Bott

localization, we need to consider Chern classes of

L[m]|Zλ
= H0(L|Zλ

) ∈ KT
0 (pt) = Z[t±1

1 , t±1
2 ],

(
R�(L) ⊗ O − RHomπ (I, I � L)

)∣∣∣
Zλ

= R�(L|Zλ
) − RHomS(IZλ

, IZλ
⊗ L) ∈ KT

0 (pt),
(4.17)

where t1, t2 are the equivariant parameters of T.

Suppose Zλ is a 0-dimensional T-equivariant subscheme supported entirely on

a maximal T-invariant affine open subset Uσ and set λ := λ(σ). Suppose we choose

coordinates such that Uσ = SpecC[x, y] and the torus action (on coordinate functions) is

given by (t1, t2)·(x, y) = (t1x, t2y). Denote the character corresponding to L|Uσ
by χ(t1, t2).

Then

H0(L|Zλ
) = χ(t1, t2) · Zλ,

where Zλ :=
�(λ)∑
i=1

λi∑
j=1

ti−1
1 tj−1

2 .
(4.18)

Now suppose Wμ is a 2nd 0-dimensional T-equivariant subscheme supported entirely

on Uσ and write μ := μ(σ). The following formula can be deduced from a well-known

calculation using Čech cohomology (e.g., see [23, Proposition 4.1]):

RHomS(OWμ
,OZλ

⊗ L) = χ(t1, t2) W∗
μZλ

(1 − t1)(1 − t2)

t1t2
∈ KT

0 (pt),

where Wμ :=
�(μ)∑
i=1

μi∑
j=1

ti−1
1 tj−1

2 .

(4.19)

Here (·)∗ is the involution defined by dualizing.
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For arbitrary Zλ, the K-group classes of (4.17) can be determined from (4.18) and

(4.19) by using the following equalities in K-theory

OZλ
=

e(S)∑
σ=1

OZ
λ(σ)

,

IOZλ
= OS − OZλ

,

where Zλ(σ) denotes the 0-dimensional closed subscheme supported on Uσ determined

by λ(σ).

Consider Theorem 4.4 for the examples of (S, L1, L2) listed in Proposition 3.9 and

Remark 3.10. In each case, we calculated the invariant Pn,β([pt]) by first integrating out

the linear system Pχ(β)−1. This amounts to expanding the integrand in powers of h =
c1(O(1)) and taking the coefficient of hχ(β)−1. This gives a polynomial expression P in

Chern classes of complexes of the form (4.16). The integral
∫

S[m] P is then calculated by

Atiyah–Bott localization as described. The resulting stable pair invariants are tabulated

in Appendix A.

With the numbers of Appendix A, we are able to do various new checks of

the Cao–Maulik–Toda conjectures (Conjectures 1.1 and 1.2). Combining our tables in

Appendix A with the tables for n0,β([pt]), n1,β in [26, Section 3] gives Corollary 1.6 of

the introduction.

Bousseau–Brini–van Garrel [4] determined all the genus zero Gromov–Witten

(and therefore Gopakumar–Vafa type) invariants of X = TotS(L1 ⊕ L2) with (S, L1, L2) as

in Remark 3.10 (as well as for other cases). Note that the method of Bousseau–Brini–van

Garrel does not produce genus one Gopakumar–Vafa type invariants, so we can only do

verifications of Conjecture 1.1 in these cases. Combining the tables in Appendix A with

the values for genus zero Gopakumar–Vafa type invariants provided to us by Bousseau–

Brini–van Garrel gives Corollary 1.8 of the introduction.

Recall that for (S, L1, L2) with L1 ⊗ L2
∼= KS, L−1

1 , L−1
2 non-trivial and nef, and

S minimal and toric, we classified all values of n � 0 for which Pn(S, β) ∼= Pn(X, β),

and Pn(S, β) �= ∅ (Remark 3.10). In these cases we therefore calculated all stable pair

invariants Pn,β([pt]).
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A Tables

A.1 Local surfaces

In this section, we list the stable pair invariants Pn,β([pt]) of X = TotS(L1 ⊕ L2) for the

cases mentioned in Proposition 3.9 and Remark 3.10, and for a few additional cases. We

use the following conventions and notation:

• P0,0 := 1 and Pn,0([pt]) = 0 for all n > 0.

• Entries decorated with � were defined by a virtual localization formula on

the fixed locus and have been calculated using the vertex formalism as

discussed in [9, 10]. In these cases Pn(X, β) \ Pn(S, β) �= ∅. See Remark A.2

for a comparison to the globally defined invariants. All other entries have

been computed using Theorem 4.4.

• Zeroes decorated with † have non-empty underlying moduli space Pn(X, β).

In this sense, they are “non-trivial” zeroes.

For (S, L1, L2) = (P2,O(−1),O(−2)), we calculated the following values for P0,d := P0,d[H]

and Pn,d([pt]) := Pn,d[H]([pt]) (for n > 0).

d \ n 0 1 2 3 4

1 0 −1 0† 0† 0†

2 0 1 1 0�,†

3 −1 −1 −2

4 2 3
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Pn,1([pt]) = 0†, ∀ n � 2.

For (S, L1, L2) = (P1 × P1,O(−1, −1),O(−1, −1)) and P0,(d1,d2) := P0,d1[H1]+d2[H2] and

Pn,(d1,d2)([pt]) := Pn,d1[H1]+d2[H2]([pt]) (for n > 0), where H1, H2 are defined in Example 1.4,

we have

P0,(d1,d2) 0 1 2 3 4 P1,(d1,d2)([pt]) 0 1 2 3 4

0 1 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 1 1 1 1 1

2 0 0 1 2 5 2 0 1 2 5

3 0 0 2 10 3 0 1 5

4 0 0 5 4 0 1

P2,(d1,d2)([pt]) 0 1 2 3 4 P3,(d1,d2)([pt]) 0 1 2 3 4

0 0 0† 1 0 0 0 0 0† 0�,† 1 0

1 0† 2 2 2 2 1 0† 0† 3�

2 1 2 5 2 0�,† 3�

3 0 2 3 1

4 0 2 4 0

P0,(1,d) = P0,(d,1) = 0, ∀ d � 0

P1,(1,d)([pt]) = P1,(d,1)([pt]) = 1, ∀ d � 0

P2,(1,d)([pt]) = P2,(d,1)([pt]) = 2, ∀ d � 1

Pn,(0,d)([pt]) = Pn,(d,0)([pt]) = δn,d, ∀ 0 � n � d

Pn,(1,1)([pt]) = 0†, ∀ n � 3,

Pn,(0,1)([pt]) = Pn,(1,0)([pt]) = 0†, ∀ n � 2.
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For (S, L1, L2) = (P1 × P1,O(−1, 0),O(−1, −2)), we have the following:

P0,(2,2) = 1, P0,(2,3) = 2, P0,(2,4) = 5, P0,(3,2) = 2,

P1,(2,2)([pt]) = 2, P1,(2,3)([pt]) = 5,

P1,(d,1)([pt]) = P1,(1,d)([pt]) = 1, ∀ d � 1

P2,(1,d)([pt]) = 2, ∀ d � 2,

Pn,(0,1)([pt]) = 0†, ∀ n � 2

Pn,(0,n)([pt]) = 1, ∀ n � 1.

Recall the notation for Hirzebruch surfaces from the introduction. Consider (S, L1, L2) =
(F1,O(−1, −1),O(−1, −2)). We write P0,(d1,d2) := P0,d1[B]+d2[F] and, for n > 0,

Pn,(d1,d2)([pt]) := Pn,d1[B]+d2[F]([pt]). In the tables below, the rows are for d1 and the

columns for d2.

P0,(d1,d2) 0 1 2 3 4 5 6 7 P1,(d1,d2)([pt]) 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 −1 −1 −1 −1 −1 −1 −1

2 0 0 0 1 2 5 2 0 0 1 2 5

3 0 0 0 −1 3 0 0 0

P1,(1,d)([pt]) = −1, ∀ d � 1

P2,(1,d)([pt]) = −2, ∀ d � 2

P3,(0,2)([pt]) = 0�,†,

Pn,(0,1)([pt]) = 0†, ∀ n � 2

Pn,(0,n)([pt]) = 1, ∀ n � 1.

Remark A.1. Denoting the exceptional curve of F1 by B, we have NB/X = O(−1) ⊕
O ⊕ O(−1), which has sections in the direction of L1. Therefore P1(X, [B]) is non-proper,

which explains the gap in the table for P1,(1,0)([pt]).

For (S, L1, L2) = (F1,O(0, −1),O(−2, −2)), we have

For (S, L1, L2) = (F2,O(−1, −2),O(−1, −2)), we have
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P0,(d1,d2) 0 1 2 3 4 P1,(d1,d2)([pt]) 0 1 2 3 4

0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 −1 −1 −1 −1

2 0 0 0 1 2 2 0 0 1 2

3 0 0 0 −1 3 0 0 0

P0,(d1,d2) 0 1 2 3 4 5 6 7 P1,(d1,d2)([pt]) 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

2 0 0 0 0 1 2 5 2 0 0 0 1 2 5

P1,(1,d)([pt]) = 1, ∀ d � 1

P2,(1,d)([pt]) = 2, ∀ d � 2

Pn,(0,1)([pt]) = 0†, ∀ n � 2

Pn,(0,n)([pt]) = 1, ∀ n � 1.

A.2 Local P3

Consider X = Tot
P3(KP3). Let P0,d := P0,d[�] and Pn,d([�]) := Pn,d[�]([�]) (for n > 0),

where [�] ∈ H2(P3,Z) ∼= H2(X,Z) denotes the class of a line � ⊆ P3 and we also

write [�] ∈ H4(X,Z) for the pull-back of its Poincaré dual from P3 to X. Obviously,

X = TotP3(KP3) is not a local surface so Theorem 4.4 does not apply. All stable pair

invariants in this section have been calculated using the vertex formalism of [9, 10] (this

is stressed by decorating the invariants with �). We determined the following values of

P0,d and Pn,d([�]).

Pn,1([�]) = 0, ∀ n � 2.

Remark A.2. For X = Tot
P3(KP3) and all the cases in this table, we have Pn(P3, β) ∼=

Pn(X, β). This can be deduced from a filtration argument similar to Proposition 3.9

combined with the fact that all degree 2 Cohen–Macaulay curves C on P3 satisfy
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d \ n 0 1 2 3 4

1 0� −20� 0�,† 0�,† 0�,†

2 0� −820� 400�

3 11200� −68060�

χ(OC) � 1 (see also [16, p. 20]). Therefore, the reasoning of Proposition 4.2 yields

[Pn(X, β)]vir = (−1)β·c1(P3)+n · [Pn(P3, β)]vir
pair, (A.1)

where [Pn(P3, β)]vir
pair is the virtual class of the pair perfect obstruction theory (4.9) on P3

(see also [14, Lemma 3.1] in a similar setting). The sign in this formula is a preferred

choice of orientation on Pn(X, β) as for (1.5). Now we are in the world of “ordinary”

perfect obstruction theories and the torus action on P3 can be used to apply the Graber–

Pandharipande virtual localization formula [24] to the right hand side of (A.1). Similar

to the argument for [9, Theorem A.1], it then follows that the invariants in this table

(defined by localization on the fixed locus [9, 10]) are equal to the global invariants (4.5).

This reasoning also works for the local surface case (S, L1, L2) = (P2,O(−1),O(−2)),

d = 2, n = 3, because then all stable pairs are scheme theoretically supported in the

three-fold Y = TotS(L1).
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