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A B S T R A C T   

Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor 
interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development 
has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines 
for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS mo-
dalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects 
through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of 
action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated 
assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools 
for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon 
receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are pre-
sented with strong evidence amongst animals and human studies for non-EATS disruption and associations with 
wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals 
that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease 
represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are 
discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing 
a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel 
models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are 
proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing 
strategies that can be used in regulatory bodies to protect environmental, animal, and human health from 
harmful environmental chemicals.   

1. Evaluation and regulation of endocrine disruptors: the EATS 
and non-EATS pathways 

Worldwide investigations and decades of study into endocrine dis-
rupting chemicals (EDCs) have yielded iterative and tiered screening 
strategies, innovative applications in technologies, and has culminated 
into mandates to prioritize, screen, and regulate endocrine disruptors 

(Robitaille et al., this issue). At a time when society, governments, and 
industry are increasingly aware of wildlife and human health concerns 
related to perturbations in endocrine systems, regulations for EDC 
continue to be fiercely debated (e.g., what to regulate, how to regulate, 
and where to regulate) and concepts related to 
dose-response-thresholds, cumulative effects, and population-level 
consequences are actively discussed. In the European Union (EU), 
EDCs are regulated under Registration, Evaluation, Authorization and 
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Restriction of Chemicals (REACH), and continue to be high on the 
agenda for risk assessors, policy advisors, and lawmakers. EDCs are no 
longer recognized as a “country-specific issue”; in fact, scientists have 
recently called for a multifaceted international program to collate sur-
veillance data on EDCs worldwide to identify hazardous chemicals more 
expeditiously for subsequent regulation (Kassotis et al., 2020). 

Currently, there are several guidelines and specific programs 
designed to manage EDCs. The Organization for Economic Co-operation 
and Development (OECD) published a Revised Guidance Document 150 
on Standardized Test Guidelines for Evaluating Chemicals for Endocrine 
Disruption (updated in 2018) to harmonize approaches for chemical 
testing for EDC modalities. Guidance for the identification of endocrine 
disruptors in the context of Regulations (EU) (No 528/2012 and No 
1107/2009) formulates the criteria for labelling a substance an “EDC”, 
and proposes tiered testing strategies. Other programs addressing EDCs 
are the United States Environmental Protection Agency (USEPA) 
Endocrine Disruptor Screening Program (EDSP) Tier as well as programs 
under The Chemicals Management Plan (CMP) in Canada, tasked in 
prioritization and management of chemical substances. Consortia pro-
jects in Europe are addressing endocrinology, chemical exposures, and 
metabolic diseases (subsequently discussed below). There is increased 
urgency worldwide to expand screening capabilities to improve regu-
latory policies that protect wildlife and human health. 

Endocrine disruptors are detected in an array of environmental 

matrices (e.g., water, dust, soil, air particulates) (Metcalfe et al., this 
issue) and involve diverse chemical-receptor interactions which can 
perturb hormone signaling. As per the OECD “An endocrine disruptor is an 
exogenous substance or mixture that alters function(s) of the endocrine 
system and consequently causes adverse health effects in an intact organism, 
or its progeny, or (sub)populations”. Endocrine disruptors can act through 
different mechanisms that do not necessarily act independently from 
one another. EDCs (1) mimic/inhibit the binding of a hormone to its 
receptor; (2) disrupt the synthesis or metabolism of the hormone or 
signaling system; or (3) alter the transport of the hormone to and within 
the target tissue. These concepts have been formulated with input from 
academic, government, and industry-partner working groups within the 
OECD, aimed to provide guidance to environmental scientists and reg-
ulators on EDC testing methodology and background, standardization, 
and execution of bioassays to detect endocrine-disrupting activity and 
interpretation of the data. The OECD has validated several in vitro 
EDC-receptor based bioassays as well as in vivo bioassays to detect 
endocrine disruption (ED) activity of test chemicals; this has resulted in 
defined guidelines for EDCs such as xenoestrogens (e.g., the estrogen 
receptor transactivation assay (OECD TG 455 and TG 457) (Robitaille 
et al., this issue). Perhaps not unexpected, the primary focus of these 
scientific and regulatory efforts has been on the so called “EATS 
pathway”, which include several bioassays to detect activation/inhibi-
tion of estrogen, androgen, and thyroid receptor signaling as well as 

Abbreviation list 

ACE1 angiotensin converting enzyme-1 
ACTH adrenocorticotropic hormone 
AHR aryl hydrocarbon receptor 
ANGII angiotensin II 
AOs adverse outcomes 
AOP adverse outcome pathway 
AR androgen receptor 
ARNT AHR nuclear translocator 
BAIAP2 BAR/IMD domain containing adaptor protein 2a 
BaP benzo[a]pyrene 
BP-3 benzophenone 3 
BPA bisphenol A 
BPF bisphenol F 
BPS bisphenol S 
CARs constitutive androstane receptor 
CCL2 chemokine C–C motif ligand-2 
C/EBP-α: CAAT enhancer 507binding protein alpha 
CDKN1c cyclin-dependent kinase inhibitor 1C 
CVD cardiovascular disease 
CYP1A cytochrome P4501A 
CYP3A65 cytochrome P450, family 3, subfamily A, polypeptide 65 
DDT 1,1,1-trichloro-2,2-bis (p-chlorophenyl)ethan 
DEHP 2-ethylhexyl) phthalate 
EATS estrogen, androgen, thyroid, and steroidogenesis’ 

modalities 
EDC endocrine disrupting chemical 
EFSA European Food Safety Authority 
eNOS endothelial nitric oxide synthase 
iNOS inducible nitric oxide synthase 
ER estrogen receptor 
FKBP5 FKBP prolyl isomerase 5 
GCs glucocorticoids 
GILZ TSC22 domain family, member 3 
GR glucocorticoid receptor 
HPA hypothalamic-pituitary-adrenal 
LPL: lipoprotein lipase 

KE key event 
KER key event relationship 
MI (surgery) myocardial infarction 
MIE molecular initiating event 
MoA mode of action 
MBP monobutyl phthalate 
MMCPS mouse mast cell proteases 
MR mineralocorticoid receptor 
NRF2 nuclear factor erythroid 2-related factor 2 
OECD Organization for Economic Co-operation and Development 
p53 tumor protein P53 
PCBs polychlorinated biphenyls 
PEPCK phosphoenolpyruvate carboxykinase 
POPs persistent organic pollutants 
PFASs per- and polyfluoroalkyl substances 
PFDA perfluorodecanoic acid 
PFHxS perfluorohexanesulfonic acid 
PFNA perfluorononanoic acid 
PFOA perfluorooctanoic acid 
PFOS perfluorooctanesulfonic acid 
PPAR Peroxisome proliferator-activated receptor 
PR progesterone receptor 
PXR pregnane X receptor (encoding gene; a.k.a. nuclear 

receptor subfamily 1, group I, member 2) 
qAOPs quantitative adverse outcome pathways 
RAR retinoic acid receptor 
RORs RAR-related orphan receptors 
RXR retinoid X receptor 
SOX9b SRY-box transcription factor 9 b 
SREBP-1c sterol regulatory element binding protein-1c 
TBBA tetrabrominated bisphenol A 
TBT tributyltin 
TCDD 2,3,7,8-309tetrachlorodibenzo-p-dioxin 
TCS triclosan 
TDCIPP tris 517(1,3-dichloroisopropyl) phosphate 
VDR vitamin D receptor 
WBCs white blood cells 
XRE xenobiotic response element  

C.J. Martyniuk et al.                                                                                                                                                                                                                           



Environmental Research 204 (2022) 111904

3

steroidogenesis (“E-A-T-S”). Based upon efforts of the OECD and the 
Endocrine Disrupter Testing and Assessment (EDTA) program as well as 
the European Chemicals Agency, the “EATS modalities” were primarily 
conceptualized by the following OECD tests: E-modality, Output data 
from the ToxCastER Bioactivity Model or ‘Uterotrophic bioassay in ro-
dents’ (OECD test guideline 440); A-modality, Hershberger bioassay 
(OECD test guideline 441); S-modality: H295R steroidogenesis assay 
(OECD TG 456) and the aromatase assay (OPPTS 890.1200). Thyroid 
hormone assays were also included. The EATS modalities have been 
discussed recently for testing plant-based chemicals (Day et al., 2018) 
and has been effectively described recently by Kucheryavenko et al. 
(2020). While the EATS modalities for EDCs have been investigated 
intensively via tiered methodologies (Robitaille et al., this issue), this 
has not yet been the case for many other hormone systems (i.e., 
non-EATS). 

In recent years, chemicals that disrupt non-EATS modalities have 
garnered significant interest from regulators and industry, and there is a 
need to develop new test methods to screen chemicals that can poten-
tially alter these hormone signaling pathways. Non-EATS pathways 
include retinoic acid, peroxisome proliferator-activated receptors 
(PPARs), insulin receptor signaling, gastrointestinal hormones, and 
cardiovascular-related hormones among others, while the EATS mo-
dalities are primarily associated with reproduction (sex steroid hor-
mones and steroidogenesis) and development/metabolism (thyroid 
hormone). A focus on EATS is not surprising, given that decades of in-
vestigations into endocrine disruption in wildlife and mammals revealed 
reproductive impacts by chemicals such as organochlorine pesticides (e. 
g., DDT, dieldrin), polychlorinated biphenyls, and polybrominated bi-
phenyls (Gellert and Wilson, 1979; Jefferies and French, 1972; Jugan 
et al., 2010; Rolland, 2000; Tyler et al., 1998). Compared to sex steroids 
(hypothalamic-pituitary-gonadal axis) (Marlatt et al. this issue, Delbès et 
al. this issue, Lacouture et al. this issue) and thyroid hormones (hypo-
thalamus-pituitary-thyroid axis) (Thambirajah et al. this issue), less 
attention has been given to other endocrine signals required for ho-
meostasis in hormone regulated organs (e.g., brain, heart, gastrointes-
tinal system, liver, pancreas, and intestine) (Fig. 1). Validated in vitro 
and in vivo assays are thus needed to detect disruptions in endocrine 
systems associated with these tissues following chemical exposures or 
mixtures thereof. In addition, such assays are needed to monitor other 
environmental matrices, such as waste-water effluent for hormonally 
active agents that may act through non-EATS modalities, such as phar-
maceuticals, plant protection products, and industrial chemicals 
(Boberg et al., 2020). 

In this critical review, we discuss the need for validated assays that 
detect non-EATS modalities and discuss major international efforts un-
derway to develop such tools for regulatory purposes. We also present 
examples of environmental contaminants that alter specific non-EATS 
pathways, with the understanding that a comprehensive discussion of 
all non-EATS modalities is beyond the purview of this review. As such, 
we focus on some of the modalities of highest concern (i.e., retinoic acid, 
PPARs, aryl hydrocarbon receptor, and glucocorticoid signaling). 
Following this, we present two case studies with significant evidence 
amongst animals and human epidemiological studies for non-EATS 
disruption and disease. These include metabolic syndrome and insulin 
signaling (case study 1) and chemicals that affect the cardiovascular 
system (case study 2). Lastly, we consider emerging topics to improve 
knowledge regarding chemicals that act through non-EATS modalities, 
including recognition of crosstalk between the EATS and non-EATS axes, 
complex mixtures containing diverse EDCs, adverse outcome pathways 
for chemicals acting through non-EATS mechanisms, and novel ap-
proaches for testing chemicals. Lastly, we point out recommendations 
and considerations for non-EATS modalities. 

2. Why the need for validated assays to test non-EATS 
modalities? A disease perspective 

Global and national efforts, such as the high-throughput chemical 
screening initiatives of the United States Environmental Protection 
Agency (EPA) ToxCast/Tox21 programs, have revealed widespread 
promiscuity of chemical interaction with protein receptors and enzymes. 
Additional bioassays designed to test specific pathways should subse-
quently validate such data. For example, active hits in the database for 
dibutyl phthalate (Fig. 2) reveal that it may affecting many receptors, 
such as estrogen receptor, pregnane X receptor, and a number of cyto-
chrome p450 enzymes. As a result, our current understanding for most 
chemicals is that their biological activity can occur via different mo-
lecular initiating events (MIEs) dependent upon the specific target organ 
(e.g., liver versus the ovary) and physiologic status of the individual. 
Currently, there are several receptor-based assays that detect EATS- 
mediated effects via receptor transactivation assays (e.g., estrogen and 
androgen receptor agonism/antagonism) or protein binding assays (e.g., 
transthyretin binding, thyroid peroxidase inhibition) (Robitaille et al., 
this issue). However, there is growing recognition that validated bio-
assays are needed to interrogate pathways related to the non-EATS 
modalities (Andersson et al., 2018). Acetochlor for example is a herbi-
cide that, based upon ToxCast cell assay data for nuclear receptors, 
appears to activate pregnane X receptor, peroxisome 
proliferator-activated receptor gamma, retinoid X receptor alpha, and 
vitamin D response element (non-EATS modalities), but not estrogen, 
androgen, nor thyroid receptors (EATS modalities) (Fig. 3). Such in-
formation is increasingly important as environmental exposures to 
chemicals are associated with a myriad of animal and human diseases 
with complex etiology (Vaudin et al. this issue, Plante et al. this issue). 

The WHO in 2018 reported that more than half of the human deaths 
worldwide were primarily due to a short list of 10 conditions or diseases, 
and on this list were diabetes mellitus, heart disease and stroke, 

Fig. 1. The Non-EATS pathways include hormones understudied in environ-
mental toxicology, such as leptin, angiotensin, ghrelin, insulin, and other hor-
mones. Cell based assays to test for novel pathways of endocrine disruption are 
urgently needed moving forward. 
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Alzheimer’s disease, and dementia. Environmental pollution can exac-
erbate or may even initiate these human health issues (Dendup et al., 
2018; Hudda et al., 2021; Li et al., 2021). Global concerns about 
non-communicable disease prevalence have reached epidemic levels for 
cardiovascular disease, hypertension, and obesity; arguably, these dis-
eases, in addition to cancer, represent some of the most significant 
health-related crisis of our time. As such, a deeper understanding into 
risk factors associated with disease etiology is desperately needed to 
mitigate adverse health outcomes (Ho et al., this issue). Multiple risk 
factors exist for disease (e.g., age, diet, exercise, and lifestyle), and 
intertwined with these risk factors is dysfunction in endocrine systems. 
For example, a lack of exercise and poor diet can lead to obesity; un-
derlying this condition is diabetes type II and the loss in the ability to 
adequately regulate glucose. The obese phenotype involves several 
hormone systems including insulin, leptin, and gut-brain peptides (e.g., 
ghrelin, neuropeptide Y). As another example, hypertension and car-
diovascular disease often involve overactive signaling in the 
angiotensin-renin system (RAS) and dysfunction in the adrenal system 
(epinephrine and norepinephrine). Environmental chemical exposures 
can perturb the delicate balance in these endocrine systems over time, 
acting to exacerbate, accelerate, and worsen disease outcomes. Envi-
ronmental pollution is one of the main causes for human disease and 
premature deaths. Chemical exposures have been estimated to result in 
9 million premature deaths per year (estimated in 2015) (Landrigan 
et al., 2018). As such, there is a pressing global need for a battery of in 
vitro and in vivo assays that can detect diverse chemical MoAs. 

Here we note that disruption in non-EATS modalities also occurs in 
wildlife. Less is understood about diseases and the role of environmental 
pollution within the context of animal and wildlife health. Invertebrates, 
fish, amphibians, reptiles, birds, and mammals are different in hormone 
peptide structure and endocrine system organization. Investigations 
utilizing a comparative endocrinology approach will undoubtedly reveal 

differences in sensitivity and resilience to chemicals with non-EATS 
modalities across species, similar to that reported for the EATS modal-
ities (McArdle et al., 2020). It is also important to note that there are 
evolutionary conserved hormone-signaling pathways that are targets of 
hormonally active environmental toxicants. Based on this understand-
ing, efforts are needed to validate non-EATS bioassays in multiple spe-
cies, to capture the full scope and potential of chemicals for endocrine 
disruption. 

3. Current international undertakings for the Non-EATS 

Regulation of EDCs is high on the agenda for many countries in 
North/South America, Asia, and European Union (Barton-Maclaren et 
al. this issue). In the EU for example, EDCs are regulated under REACH, 
which oversees regulations related to biocides and pesticides (Kassotis 
et al., 2020). Current activities by the European Commission (EC) 
include rigorous Fitness Checks of EDCs and the organization of annual 
forums on EDCs. European efforts in the past have focused on EATS 
related endpoints and the EC rightly recognizes this as a gap in current 
EDC testing strategies. Therefore in 2017, the EC launched the call 
SC1–BHC-27-2018 ‘New testing and screening methods to identify endocrine 
disrupting chemicals (EDCs)’, to fill in gaps and to address the lack of 
validated test methods also for screening non-EATS endpoints, which 
resulted in eight funded projects. Three projects focus on metabolism 
disrupting chemicals (MDCs), which are EDCs that interfere with 
metabolism leading to altered energy balance. Such disruption in turn is 
associated with metabolic diseases such as obesity, type II diabetes and 
non-alcoholic fatty liver disease (Heindel et al., 2017; Nadal et al., 
2017). For these chemicals, the GOLIATH, OBERON and EDCMET 
consortia aim to develop assays targeting the main nuclear receptors and 
tissues involved in metabolic diseases (Audouze et al., 2020; Küblbeck 
et al., 2020; Legler et al., 2020). Although few test guidelines exist for 

Fig. 2. Number of active hits in the ToxCast database for dibutyl phthalate.  
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thyroid disruption (EATS modality), no validated in vitro alternatives 
exist and the ATHENA, ERGO and SCREENED projects are establishing 
methods on different modes of thyroid disruption using advanced cell 
cultures and alternative animal models (Holbech et al., 2020; Korten-
kamp et al., 2020; Moroni et al., 2020). The ENDpoiNTs project will aid 
in the understanding of the mode of action (MoA) of EDCs on the 
neuroendocrine axis by establishing new methodologies (Lupu et al., 
2020), whereas the FREIA project addresses the lack of test methods for 
female reproduction (Duursen et al., 2020). All projects focus on the 
development of novel methodologies, ranging from in silico (QSARs, 
molecular docking, PBTK), to in vitro and in vivo bioassays. Data from 
these models will be supplemented with multi-omics approaches to aid 
in elucidating MOA and Adverse Outcome Pathway (AOP) development. 
The most promising assays will be brought forward to OECD for vali-
dation. The overarching goal is to develop frameworks of integrated 
testing strategies for non-EATS, including AOPs and ultimately the 
development of Integrated Approaches to Testing and Assessment 
(IATA). To create synergies between the projects and to avoid overlap, 
the 8 projects formed the European Cluster on Identification of Endo-
crine Disruptors, EURION (https://eurion-cluster.eu). 

Over the past decade, several in vitro cell-based and in vivo animal 
assays (e.g., transgenic fish, amphibians, and mammals) have been 
established and validated for the EATS pathways, and investigations 
have compared the efficacy, detection limits, and robustness and reli-
ability of these receptor assays (Robataille et al., this issue). Nuclear 
hormone receptor-based transactivation assays, commonly used for 
EATS assessments, are also available for retinoid receptors (retinoid X 
receptor, retinoic acid receptor), the aryl hydrocarbon receptor and the 
PPARs (PPAR-α and PPAR-γ), are included in high throughput screens 
conducted by the US EPA and ToxCast (Villeneuve et al., 2019) (Fig. 3); 
these are recognized as Level 2 in vitro mechanistic screening assays by 
the OECD Conceptual Framework (Andersson et al., 2018). In the 

following section, we highlight some non-EATS modalities of concern, 
describing examples of in vitro and in vivo assays when available, dis-
cussing their strengths and limitations. 

4. Non-EATS modalities of concern for hormonally active agents 

4.1. Retinoic acid 

Retinoic acid (RA) is a natural derivative of vitamin A and is an 
essential dietary requirement in vertebrates. Retinoic acid acts as a 
morphogen in vertebrate development, regulating the development of 
the retina, brain, and the heart. Retinoic acid is also involved in meta-
bolism, reproduction, immune response, and cell proliferation (Cun-
ningham and Duester, 2015; Hall et al., 2011; Maden, 2001). Therefore, 
RA acts via multiple signaling pathways, requiring high coordination 
along both temporal and spatial scales. Production of RA is mediated in 
two consecutive steps: (1) Retinol, directly derived from Vitamin A, is 
converted to retinal by alcohol dehydrogenases (ADHs) and retinol de-
hydrogenases (RDHs); (2) Following an oxidation step, retinal is con-
verted to RA by retinaldehyde dehydrogenases (RALDH). RA availability 
is also regulated by a family of CYP26 enzymes which metabolize RA 
into more polar metabolites. RA biological activity is mediated via 
binding to retinoid receptors: the retinoic acid receptors (RARs) and the 
retinoid X receptors (RXR). When activated, RXR and RAR form heter-
odimers (RAR/RXR) and are translocated to the nucleus to bind to ret-
inoic acid response elements (RAREs) to regulate transcription of target 
genes. On the other hand, in the absence of RA, RARs can act as active 
repressors. The fine tuning of heterodimer activity is regulated by the 
interplay between RAR- and RXR-ligands, where each subunit retains its 
intrinsic properties in terms of ligand and co-regulators binding (Le 
Maire et al., 2019). RXR can also form heterodimeric complexes with 
many other nuclear receptors. Interestingly, heterodimers can be 
divided in two categories: permissive (activated by ligands of either RXR 
or its partner) and non-permissive (only activated by the partner’s 
ligand while RXR is silent). While transcriptional regulation of 
non-permissive heterodimers is under tight control and directly medi-
ated by hormones (similar to that of TRs and RARs), permissive heter-
odimers result in a cooperative and synergistic responses whereby a 
relatively small change in the abundance of ligand can trigger robust 
transcriptional activation. This activation results in robust biological 
responses, as is the case for PPARs and constitutive androstane receptor 
(CARs) among others (Evans and Mangelsdorf, 2014). 

Although binding assays are useful to assess interactions between 
nuclear receptors and EDCs, as demonstrated for organotins such as TBT 
that have strong binding affinities to human RXR (Nishikawa et al., 
2004), they do not inform about the functionality and consequences of 
binding. In contrast, RAR and RXR transactivation reporter assays and 
cis-activation of the retinoic acid response element (RARE) by RAR/RXR 
heterodimers include the use of reporter genes, which can be used to 
assess agonistic and antagonistic activities. For example, a yeast two 
hybrid-assay using recombined human RXR gene and reporter gene 
yeast was used to test RXR agonistic and antagonistic potency of 
different families of chemicals including phenols, bisphenol A de-
rivatives, and pesticides. Results showed that 10 out of the 16 chemicals 
tested showed agonistic activities (Li et al., 2008). RAR assays were 
identified as one of the most positive predictors when developing a rat 
predictive model that associated in vitro high-throughput screening data 
from ToxCastDB and in vivo adverse outcomes from developmental 
toxicity studies from ToxRefDB (Sipes et al., 2011). Moreover, analysis 
of the ToxCastDB and ToxRefDB data have identified the retinoid 
pathway as a major component in models for male reproductive devel-
opmental defects (Leung et al., 2016). Therefore, the study of the RA 
pathway has been proposed as a target to identify molecular initiation 
events (MIEs) of altered RA homeostasis. As such, RA in vitro bioassays 
can be a useful tool for the study of non-EATs MoA of EDCs. 

Fig. 3. Activation of nuclear receptor reporter assays for the herbicide aceto-
chlor. Several non-EATS modalities are active below cytotoxicity for the 
chemical. Orange circles indicate specific assays, and the Scaled Top values are 
the relative response activity for all tests. AC50 (activity concentration at 50% 
of maximal activity) is calculated based upon the Hill and Gain-Loss models. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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4.2. Aryl-hydrocarbon receptor 

The aryl hydrocarbon receptor (AHR) is a member of the basic helix- 
loop-helix (bHLH), Per-Arnt-Sim (PAS) family known for its high bind-
ing affinity to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Sato et al., 
2008). Inactive AHR exists in the cytoplasm bound to chaperones such as 
HSP90 and ARA9. Upon binding to dioxin, AHR forms a heterodimer 
with the AHR nuclear translocator (ARNT) in the nucleus (Reyes et al., 
1992). This complex then transactivates specific target genes such as 
xenobiotic-metabolizing enzymes like cytochrome P4501A (Cyp1A) by 
binding to xenobiotic response element (XRE) sequences in their pro-
moter region. In addition to direct transcriptional regulation, AHR 
controls genes involved in immune and reproduction through in-
teractions with other transcription factors such as nuclear factor-kappa 
B or estrogen receptor (Wada et al., 2016). It is now well accepted that 
AHR participates in dozens of signaling pathways involved in essential 
life processes including development and metabolism (Nebert, 2017). A 
recent study in human also found an association between AHR activa-
tion and obesity (Shahin et al., 2020). Multispecies studies suggest that, 
among metabolic pathways, lipid metabolism appears markedly affected 
by AHR activation. Some of the first evidence of AHR involvement in 
lipid metabolism came from a rodent ARH knock-down model which 
appeared to be protected against diet-induced obesity and diet-related 
metabolic complications such as liver steatosis (Xu et al., 2015; Zhu 
et al., 2019; Gourronc et al., 2020). However, tissue specific models of 
AHR loss provide different results compared to whole body knockouts. 
For example, tissue-specific inhibition of AHR through expression of Cre 
from an adiponectin promoter (i.e., in mature adipocytes) caused an 
increase in obesity in mice on a high fat diet (Baker et al., 2015). In 
addition, other studies demonstrate that inhibition of AHR by the AHR 
antagonist α-naphthoflavone prevents obesity and fatty liver in male and 
female mice (Moyer et al., 2017; Rojas et al., 2020). On the contrary, 
AHR activation in rodents by environmental contaminants is associated 
with spontaneous hepatic steatosis characterized by the accumulation of 
triglycerides (Dong et al., 2019; Lee et al., 2010; Nebert, 2017), 
cholesterol biosynthesis impairments (Dornbos et al., 2019; Sato et al., 
2008; Zhu et al., 2019) and systemic metabolic dysfunction (Zhang 
et al., 2015). The effects of AHR ligand like dioxin on lipogenesis appear 
to be concentration dependent and non-monotonous like other effects of 
endocrine disruptors (Baker et al., 2015). Indeed, low concentrations 
(<0.1 nM) of dioxin, as well as coplanar PCBs (3.4 μM), promote dif-
ferentiation of adipocytes in mice, whereas higher concentrations of 
these AHR ligands (10 nM dioxin and 34 μM coplanar PCBs) inhibited 
adipocyte differentiation. Taken together, these results suggest that 
AHR-mediated regulation of body weight may result from the combined 
effects of activation of AHR in various cell types (Baker et al., 2015) and 
that AHR expression and AHR ligand doses has to be considered. Envi-
ronmental data linking AHR activation and lipid metabolism impair-
ments are scarce, despite strong foundational understanding of AHR 
pathway in sentinel species like fish or amphibians (Reynaud and 
Deschaux, 2006; Reynaud et al., 2012). However, pioneering studies 
using Xenopus tropicalis demonstrated the capacity of benzo[a]pyrene 
(50 ng/L) at inducing liver steatosis and metabolism impairments in 
frogs (Regnault et al., 2016), suggesting that AHR-regulation of meta-
bolic pathways are conserved among species. 

AHR involvement in metabolic disruption has been largely neglected 
despite a considerable amount of literature linking its activation by 
environmental contaminants to (eco)-toxicological aspects. AHR is now 
considered as an endocrine disruptor target like other EATS receptors 
(Tq et al., 2020); despite this knowledge, much remains unknown about 
the link between AHR-elicited gene expression and metabolic impair-
ments, and cell-based bioassays are needed to highlight potential 
metabolic disruptors acting through AHR binding. In this way, luciferase 
reporter gene assays for AHR have been developed for chemical 
screening and have proven their efficacy to detect potential AHR acti-
vators in environmental mixture (Boonen et al., 2020). 

4.3. Peroxisome proliferator-activated receptors (PPAR): focus on PPARγ 

Peroxisome proliferator-activated receptors are nuclear receptors 
activated by fatty acids, pharmacological ligands, and other xenobiotics 
involved in energy homeostasis (glucose and fatty acid metabolism), 
inflammation, cell proliferation, adipose tissue differentiation and 
essentially, all aspects of development. There are three distinct PPARs in 
mammals, chicken, Xenopus and up to four have been found in some fish 
species, each one expressed in different tissues which carry unique and 
diverse functions. For example, PPARα plays a key role in regulating 
signals in the liver and brown adipose tissue. However, for brevity we 
focus primarily on PPARγ. Obesogens are EDCs that are capable of 
binding to and activating PPARγ/RXRα heterodimer complexes (Grun 
et al., 2006). The PPARγ/RXRα complex is known to be a positive 
regulator of adipocyte differentiation and lipid biosynthesis (Rosen 
et al., 1999). Organotins have been found to cause obesogenic pheno-
types in rodents by binding to and activating both PPARγ and more 
potently RXRα (Kanayama et al., 2005) and can alter lipid homeostasis, 
adipogenesis, and lipid accumulation (Grun et al., 2006). Reproduction 
in mammals is also regulated by the coordination of PPARs and RXR, for 
example during oocyte and spermatocyte maturation by regulating 
steroidogenesis or the levels of inflammatory lipids contained in milk 
produced in the mammary glands (Wan et al., 2007; Yang et al., 2006). 
Several chemicals are activators of PPARs in both mammalian and 
non-mammalian species (reviewed in (Abbott, 2009)). Various in vitro 
assays have been developed to test disruption of the PPAR signaling and 
this is a focus of the EU program GOLIATH; however, currently there are 
no validated methods and PPAR assays are proposed candidates outlined 
in OECD DRP No.178. As for other nuclear receptors, transactivation 
reporter assays demonstrate functional activation of PPARs when 
screening EDCs, allowing for the identification of molecular initiation 
events leading to adverse outcomes (Seimandi et al., 2005). 

When considering PPAR pathways related to obesity and meta-
bolism, the OECD proposes to assess in vitro transactivation of different 
PPARs in reporter gene assays and adipocyte differentiation in models 
like 3T3-L1 cells and in vivo peroxisome proliferation, and lipid accu-
mulation (LeBlanc et al., 2011). Similarly, to the case of glucocorticoids 
(see below), the OECD proposed the addition of these new endpoints to 
existing guidelines in birds, amphibians, fish, and mammals (TG 206, 
229, 230, 415, 416, 440, 441, and 443). In addition to the study of 
weight gain, which could certainly assess the obesogenic properties of 
the studied compounds, both the PPARγ-RXRα system and its down-
stream cascades provide excellent targets to assess considering the 
obesity epidemic. The binding of PPARγ-RXRα heterodimer to peroxi-
some proliferators response elements (PPREs) triggers the expression of 
several genes, including several apolipoproteins, phosphoenolpyruvate 
carboxykinase (pepck), and/or lipoprotein lipase (lpl), among others 
(Berger and Moller, 2002; IJpenberg et al., 1997), which could serve as 
biomarkers of exposure. Several obesogens, like TBT, exert multiple 
effects in mammalian, fish, and amphibian models through PPARγ-RXRα 
(Capitão et al., 2017; Heindel et al., 2017). Some of these effects may 
also be trans-generationally inherited, most likely via epigenetic 
mechanisms. 

4.4. Glucocorticoids/mineralocorticoids 

As pointed out above, obesity is arguably one of the most concerning 
scientific issues to be addressed for the non-EATS MoA of environmental 
chemicals. The condition can be induced at different levels of biological 
organization, for example via altered adipocyte differentiation and 
deposition, disruption in glucose metabolism, lipid and energy homeo-
stasis, or dysregulation of appetite and satiety, among other mecha-
nisms. The OECD proposes three main routes of chemical disruption that 
could lead to chemical-induced weight gain. The first involves estro-
genic receptor (ER-) activation. This is discussed in Robataille et al. (this 
issue) and will not be discussed here, although this connection is a 
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strong example of how EATS and non-EATS pathways can intersect to 
determine health outcomes. The second involves the formation of 
PPARγ-RXRα heterodimer, and the third mechanism involves gluco-
corticoid receptor -GR- signaling (LeBlanc et al., 2011). While the acti-
vation of PPARγ-RXRα complex by obesogens (e.g., bisphenols, 
organotin, PCBs or some perfluorinated compounds) are well docu-
mented and primarily lead to increased adipogenesis via increased 
expression of apolipoproteins, activation/inhibition of GR involves 
perhaps a more intricate network of downstream signaling pathways. 
These pathways are not yet fully elucidated when it comes to EDCs and 
represent an understudied receptor-mediated mechanism. This is a sig-
nificant knowledge gap as glucocorticoids (GCs) are involved, not only 
in gluconeogenesis, lipolysis, and food intake regulation, but also with 
the immune system, stress, and development. Noteworthy is that the 
related nuclear receptor mineralocorticoid receptor (MR) is also impli-
cated with adipogenesis and obesity in mice (LeBlanc et al., 2011), along 
with salt and water retention which are significant risk factors for hy-
pertension. Since both gluco- and mineralocorticoids are synthesized by 
the HPA (hypothalamic-pituitary-adrenal) axis, the HPA axis is currently 
underrepresented in non-EATS toxicity tests. This is concerning because 
the occurrence of both natural and synthetic glucocorticoids in the 
environment has been reported. This pathway, along with the 
PPARγ-RXRα pathway, has been recommended by the EFSA (Commit-
tee, 2013) as pathways of concern and those that should be further 
developed in EDC screening. 

Regarding the HPA axis, OECD recommends performing in vivo 
bioassays to assess: (1) stress response, (2) adrenal corticosteroid syn-
thesis, and (3) ACTH release (LeBlanc et al., 2011). Nevertheless, the 
proposed addition of these new endpoints to the guidelines in birds, 
amphibians, fish, and mammals (TG 206, 229, 230, 231, 408, 415, 440, 
441, and GD 140) which are focused on classical EATS modalities could 
be insufficient, considering the complexity and the wide spectrum of 
effects that EDCs could mediate via non-EATS disruption. For example, 
GCs exposure can alter behavior, plasma glucose concentration and 
glycogen storage, energy expenditure, and triglycerides accumulation in 
fish including gilthead seabream, fathead minnows and zebrafish (Jer-
ez-Cepa et al., 2019; Kugathas et al., 2013; McNeil et al., 2016). It can 
also increase plasma corticosterone, decrease GR activity (in brain) and 
increase food intake in amphibians (Xenopus laevis) (Hu et al., 2008). In 
several species of mammals, GCs exposure has been related to 
long-lasting and deleterious effects on body, brain, behavior, and HPA 
axis (Edwards and Burnham, 2001). Similarly, hypercorticosteronemia 
and 11β-Hydroxysteroid dehydrogenase disruptions have been reported 
in obese rats (Livingstone et al., 2000). Moreover, glucocorticoid 
exposure together with stress seems to play a major role in the devel-
opment and maintenance of obesity in humans (van der Valk et al., 
2018), which also seems to be a side effect in GCs treatments (Wung 
et al., 2008). Although several transcriptomic and metabolic biomarkers 
require further validation, some in vivo bioassays have been proposed. 
For example, 11 glucocorticoid-responsive genes (pepck, baiap2, pxr, 
several mmcps, cdkn1c, fkbp5, cyp3a65, sox9b or gilz) have been reported 
in zebrafish, both in adults and larvae after exposure to GCs (Chen et al., 
2016). 

4.5. Other non-EATS modalities 

Lastly, we note that modalities discussed above are by no means 
complete and there exist several hormone systems that have yet to be 
addressed in the context of environmental risk assessment of EDCs. The 
neuroendocrine system for example has been reviewed by others, 
highlighting the interaction of specific environmental chemicals with 
neuropeptides and neurohormones (i.e., neuroendocrine disruption) 
(León-Olea et al., 2014, Vaudin et al. this issue). Another non-EATS axis 
that is understudied is the gastrointestinal hormonal system. Secretin, 
glucagon, vasoactive intestinal peptide, gastrin, cholecystokinin, and 
somatostatin are major signaling molecules regulating the 

gastrointestinal track and chemical exposures can also disrupt these 
hormones (Lee et al., 2000). In addition, research into the gut-brain axis 
has revealed relationships between gut dysbiosis, the neuroendocrine 
system, and obesity (Wu et al., 2019), suggesting that neuroendocrine 
disruption may affect gut physiology and vice versa. Another component 
to be addressed is that of the gastrointestinal microbiota. Environmental 
chemical exposures involve oral routes of exposure, and the microbiota 
is often the first line of defense against mitigating toxicity through 
biotransformation and metabolism of chemicals. Undoubtedly, the 
microbiota has a key role for EDC action and constitutes a novel 
mechanism yet to be explored (Gálvez-Ontiveros et al., 2020; Roman 
et al., 2019). Incorporating such knowledge into chemical screening 
strategies are anticipated to become more prevalent over time. 

5. Case study 1: metabolic syndrome and non-EATS modalities 

There is good evidence from both epidemiological and experimental 
studies that EDCs can affect cellular metabolism, and data suggest these 
effects can manifest early in utero. Because adverse effects by EDC may 
also lead to metabolic diseases such as metabolic syndrome and type 2 
diabetes, this subclass of EDC has been referred to as metabolic dis-
ruptors (Casals-Casas and Desvergne, 2011) and later metabolic dis-
rupting chemicals (Heindel et al., 2017). Similar to the effects of 
chemicals that act through the EATS modalities, the capacity of EDCs to 
interact with nuclear receptors or hormone signaling explains the wide 
range of metabolic perturbations reported in multiple studies, rein-
forcing the concept of associating endocrine and metabolic disruption 
(Casals-Casas and Desvergne, 2011). Most surprising perhaps is that 
epidemiology data suggest critical periods of EDC exposure during 
development that influence the later-life onset of type 2 diabetes, 
including preconception and gestation, early infancy, the adiposity 
rebound period between 5 and 7 years of age, and puberty (Heindel 
et al., 2017; Mimoto et al., 2017). EDCs implicated in diabetes patho-
genesis include various inorganic and organic molecules of synthetic 
origin, including arsenic, bisphenol A, phthalates, polychlorinated bi-
phenyls, and organochlorine pesticides (see (Sargis and Simmons, 2019; 
Simhadri et al., 2020). Thus, a broad range of chemicals found in the 
environment can exert metabolic effects in organisms. 

Early evidence that developmental EDC exposure alters metabolic 
health came from studies exposing pregnant rats to bisphenol A (BPA). 
BPA exposure (0.1 and 1.2 mg BPA/kg/day) resulted in increases in 
offspring body weights that persisted into adulthood (Rubin et al., 2001) 
and caused metabolic syndrome in offspring (50 μg/kg/day), including 
obesity, dyslipidemia, hyperleptinemia, hyperglycemia, hyper-
insulinemia, glucose intolerance and insulin resistance (Dunder et al., 
2018; Wei et al., 2011). Several mechanisms have been proposed to 
explain these effects including epigenetic modifications (Alavian-Gha-
vanini and Rüegg, 2018) and placental transfer during the prenatal life 
(Akash et al., 2020). Different mechanisms have been also proposed to 
explain the direct effects of BPA including the estrogen-receptor 
dependent alteration of adipogenic gene expression (Ariemma et al., 
2016; Ohlstein et al., 2014), mitochondrial-dependent apoptosis 
resulting in pancreatic β-cell dysfunction (Lin et al., 2013) and its ca-
pacity to interact with insulin signaling (Le Magueresse-Battistoni et al., 
2018). 

BPA is not the only EDC with such effects on metabolism in mam-
mals. Other EDCs have been experimentally validated to have a role in 
metabolic disorders. For example, in vivo studies also demonstrate that 
prenatal exposure to tributyltin (0.1 μg/kg/day) results in lipid accu-
mulation in adipose tissues and hepatic steatosis in newborn mice via 
the RXR-PPARγ pathway (Bertuloso et al., 2015). Other studies also 
reveal metabolic effects of EDCs. Prenatal exposure of rats to non-
ylphenol (200 mg/kg/day) induces glucose metabolism disorder in male 
F1 rats through abnormal pancreatic expression of glucokinase and 
uncoupling protein-2 (Heindel and Blumberg, 2019; Yang et al., 2017). 
Exposure of pregnant rats to 4-tert-octylphenol (100 or 500 mg/kg/day) 
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negatively regulates the expression of lipogenic enzymes and associated 
transcription factors such as C/EBP-α (CAAT enhancer binding protein 
alpha) and SREBP-1c (sterol regulatory element binding protein-1c) in 
both liver and adipose tissue, resulting in altered fat metabolism (Kim 
et al., 2015). Gestational exposure of rats to di(2-ethylhexyl) phthalate 
(1, 10 and 100 mg/kg/day) induces pancreatic beta-cell dysfunction and 
gluco-metabolic abnormalities in the F1 offspring (Rajesh and Balasu-
bramanian, 2015). Perinatal exposure to 1,1,1-trichloro-2,2-bis 
(p-chlorophenyl)ethane (DDT, 1.7 mg/kg/day) induced impaired 
glucose tolerance later in life in mice (La Merrill et al., 2014). Thus, 
there are several chemicals that can exert metabolic effects in mammals. 

Metabolic disruption by EDCs has also been reported in non- 
mammalian models. In zebrafish (Danio rerio), recent studies indicate 
that TBT (10 and 50 ng/L), bisphenol A (100 μg/L), triclosan (TCS, 200 
μg/L), tetrabrominated bisphenol A (TBBPA, 0.5 μmol/L), tris (1,3- 
dichloroisopropyl) phosphate (TDCIPP, 0.5 μmol/L), benzophenone 3 
(BP-3, 0.5 μmol/L), (2-ethylhexyl) phthalate (DEHP, 50 μg/L) and 
monobutyl phthalate (MBP, 10 mg/L) markedly affect lipid metabolism 
and energetic metabolic processes in larvae and adult liver (Lyssi-
machou et al., 2015; Mu et al., 2018; Sun et al., 2020; Tao et al., 2020). A 
comparative analysis using zebrafish eleutheroembryos exposed to BPA, 
TBT, PFOS and E2 showed that the yolk sac area of exposed embryos 
increased in size with increasing concentrations of all tested compounds 
(Martínez et al., 2019a). Considering the yolk sac is the main reservoir of 
lipids in the embryo, this observation suggests that multiple chemicals 
can affect lipid stores. In the case of BPA (0.1–4 mg/L), results showed 
its effects were beyond their well-known estrogenicity, showing com-
plex patterns of toxic effects that included visual disruption and obe-
sogenic effects as evident from the appearance of yolk sac malabsorption 
syndrome and lipid and metabolism disruption at the transcriptomic and 
metabolomic level (Martínez et al., 2019a; Ortiz-Villanueva et al., 
2017). Several mechanisms have been proposed to explain these 
observed effects on lipid metabolism, which could differ along the 
different lipid classes (Martínez et al., 2020a), but also disruption in 
some energetic metabolic processes seemed to be maintained during 
part of the life cycle (Martínez et al., 2020b). On the other hand, TBT 
alteration of the yolk sac area was partially attributed to developmental 
disruption, since TBT exposures (1–32 mg/L) caused a general devel-
opmental delay (diapause-arrest effect) which affected steroids and cell 
cycle metabolic pathways (Martínez et al., 2020c). Despite the observed 
distinct effects at the morphological and molecular level, similar un-
derlying metabolic responses to BPA, TBT and PFOS were observed that 
affected the metabolism of glycerophospholipids, which was associated 
with altered absorption of the yolk sac (Ortiz-Villanueva et al., 2018). 
TBT significantly affects the transcription of key factors and enzymes 
involved in adipogenesis and lipogenesis including pparγ and srebp1 
(Lyssimachou et al., 2015) accompanied with increased adiposity at 15 
days post fertilization (den Broeder et al., 2017). The exact mode of 
action of TBT remains elusive, but recent studies point in the direction of 
RXRα mediated alterations in the epigenetic modifier enhancer of zeste 
2 (Ezh2) (den Broeder et al., 2020). TCS and BPA impair lipid 
beta-oxidation, increasing the expression of liver fatty acid synthetase 
and promoting hepatic inflammation (Sun et al., 2020). DEHP as 
another example exerts its obesogenic action by up-regulating hepatic 
pparα and srebp proteins and by stimulating de novo fatty acid synthesis 
(Migliarini et al., 2011), and its metabolite MEHP has been shown to 
alter epigenetic pathways in eleutheroembryos linked to metabolic 
endpoints (Legler et al., 2017). These mechanisms present new oppor-
tunities for potential assays in chemical screening programs. 

There are also some data from studies in amphibians that point to 
metabolic disruption via non-EATS modalities. These include studies 
investigating TBT exposure (10–100 nM) in Xenopus, which demon-
strated its ability to activate RXR/PPARγ pathways and suggested 
evolutionary conservation of these signals among vertebrates (Grun 
et al., 2006; Maradonna and Carnevali, 2018). Moreover, both acute and 
chronic exposure to BaP and TCS induce marked metabolic disorders in 

Xenopus tropicalis associated with impaired lipid and carbohydrate 
metabolism (Regnault et al., 2016, 2018; Usal et al., 2019). Molecular 
mechanisms clearly demonstrate that insulin-regulated processes are 
affected by EDC exposure. Indeed, female Xenopus tropicalis exposed 
from the tadpole stage to benzo(a)pyrene or TCS at concentrations of 50 
ng/L display glucose intolerance syndrome, liver steatosis, liver mito-
chondrial dysfunction, liver transcriptomic signature, and pancreatic 
insulin hypersecretion, each of which indicate a prediabetes state. The 
exposed animals produce progeny that metamorphose later, are smaller 
and lighter at metamorphosis, and have reduced reproductive success 
(Regnault et al., 2018; Usal et al., 2019) in addition to displaying 
metabolic impairments at the adult stage (Usal et al., 2021). In addition, 
disruption of lipid, carbohydrate and protein metabolism following 
insecticide or pesticide mixture exposure has also been reported in 
amphibians (Glinski et al., 2018; Gurushankara et al., 2007; Wolmarans 
et al., 2018). 

Taken together, metabolic disruption appears to be a frequent phe-
nomenon observed in animal taxa as an outcome to chemical exposure. 
Mechanisms involved in metabolic dysfunction are varied, and include 
PPAR signaling, effects on insulin, crosstalk with estrogen receptors and 
EATS pathways, among others. Clinical signs observed amongst verte-
brates indicate obesogenic phenotypes (i.e., dyslipidemia, hyperglyce-
mia, etc.) following exposure to ubiquitous chemicals like BPA and 
phthalates. We point out that these examples are from vertebrate 
studies, however it is important to state that metabolic disruption has 
also been reported extensively in invertebrates (Fuertes et al., 2019; 
Jordão et al., 2015). As mentioned, EDCs exert effects on multiple sys-
tems, through non-EATS modalities. In the second case study, we discuss 
BPA and phthalates in more detail as EDCs that affect the cardiovascular 
system. 

6. Case study 2: cardiovascular disease (CVD) and non-EATS 
modalities 

6.1. Bisphenols and cardiovascular disease 

In the case of BPA, most early studies detected a significant increase 
in risk for angina, myocardial infarction, and coronary heart disease in 
people with the highest levels in urine (Lang et al., 2008; Melzer et al., 
2010, 2012). Later studies confirmed these findings (Cai et al., 2020; 
Moon et al., 2020) in several countries (Bae et al., 2012; Jiang et al., 
2020; Salamanca-Fernández et al., 2020). Additional concerns have also 
been reported for analogs of BPA, bisphenol S (BPS) and bisphenol F 
(BPF) (Jiang et al., 2020) and revealed country-specific differences in 
human exposure to EDCs (Wang et al., 2020). These data support the 
point that EDC exposure is not uniform worldwide and that differences 
in epidemiological findings may reflect the amount and types of chem-
ical exposure in the test populations. 

Experimental evidence supports epidemiological studies that 
demonstrate a negative association between EDC exposure and CVD. 
CVD is associated with chronic increased inflammation. In rodent ex-
periments designed to replicate long term exposure from low dose 0.5 
μg/kg/day to the multiple doses used in the CLARITY-BPA study BPA 
found increased oxidative stress (Gear et al., 2017; Kasneci et al., 2017; 
Patel et al., 2014) and increased infiltration of pro-inflammatory innate 
immune cells in mice exposed to 50 mg/kg/day BPA in the absence of 
external stress (Reventun et al., 2020). Whereas treatment with an ERβ 
antagonist obliterated the pro-inflammatory impact of BPA on macro-
phage polarization in vitro, ERβ-deficient mice chronically exposed to 
BPS exposure displayed increased expression of inflammatory markers 
in the infarct (Kasneci et al., 2017). Exposure of cardiomyocytes derived 
from embryonic stem cells of human or mouse origin can test for the 
direct effects of EDCs and analogs. Exposure of BPA at levels detected in 
human blood, ~8 ng/ml, human cardiomyocytes derived from male 
(H1, XY karyotype) and female (H9, XX karyotype) stem cells found 
increased expression of genes known to be involved in cardiac 
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development, increased cardiac cell size indicating hypertrophy, 
reduced ATP content and increased calcineurin signaling, a key regu-
lator of energy metabolism which is modulated by calcium (Cheng et al., 
2020; Lee et al., 2019). This pattern is distinct from that of estrogen 
where E2 reduced calcineurin signaling. Inclusion of an inhibitor of 
mitochondrial fission, Mdivi-1, effectively ablated the BPA effects sug-
gesting BPA-stimulated modification of the calcineurin - DRP1 pathway. 

Likewise, in mouse stem cell-derived cardiomyocytes, BPA, and 
BPAF at doses from 8 to 1000 ng/ml, increased production of reactive 
oxygen species via increases in eNOS (Yang et al., 2020). When antag-
onism testing was expanded to include non-ER inhibiting chemicals, in 
contrast to the results in other systems, PR antagonists reduced 
BPA-mediated reductions in calcium homeostasis and arrhythmogenesis 
downstream of CamKII activation (Lee et al., 2019; Ma et al., 2017). In 
other studies, inflammation is apparent in the cardiovascular system 
with BPA exposure. For example, vascular smooth muscle cells treated 
with BPA at 10 nM had increased expression of proinflammatory 
markers TNFα and IL-6. These increases were attributed to increased 
AngII were reduced by Losartan, an angiotensin II type 1 receptor 
antagonist treatment (Gao et al., 2019). Supporting these findings, 
BPA-exposure of female rats at levels from 5 to 500 μg/kg/day revealed 
increased in eNOS and angiotensin converting enzyme 1 (ACE1) and 
exposure of human cardiomyocytes to 10 nM BPA increased eNOS, ACE1 
as well as proinflammatory IL-8 and NFkB (Klint et al., 2017). Similarly, 
BPA-mediated increases in serum ANGII and increased angiotensin 1 
receptor found after liver ischemia/reperfusion injury in rats was 
reduced by Losartan (Zhang et al., 2020). Thus, experimental evidence 
points to BPA-mediated inflammation and oxidative damage via ANGII 
as a potential mechanism for adverse effects on the heart. 

Non-mammalian studies support observations of BPA-induced car-
diotoxicity via increased in oxidative stress. Danio rerio (zebrafish) have 
been used to study in vivo effects of EDCs. BPA, its metabolites and BPAF 
exposure reduced heart size, increased expression of genes predicted to 
activate innate immune cells, reduced expression of antioxidant enzyme 
expression, altered heart valve architecture and impaired heart function 
(Brown et al., 2019; Gu et al., 2020; Moreman et al., 2018). RNA-Seq 
data from zebrafish embryos exposed to BPS indicated increases in 
iNOS, and identified genes predicted to lead to activation of innate 
immune cells (Qiu et al., 2020). Importantly, the level of BPS in these 
last experiments was below the level US FDA guideline for BPA amounts 
permitted in drinking water. These data support the idea that the impact 
of bisphenols may be in part conserved and replicated in zebrafish and 
rodents. The data support the notion that multiple models are necessary 
to fully describe the range of EDC effects. 

Despite many years of dedicated study knowledge gaps remain, and 
with increased use of bisphenol analogs, are expanding. In silico docking 
experiments have confirmed expected BPA binding to ER and ERR re-
ceptors but also identified the potential for binding with other receptors 
such as RAR, RXR, CAR, PPAR-γ, enzymes such as MMP9, clock regu-
lating proteins, such as CLK1, signaling pathway proteins such as PKCa, 
ECM regulating proteins such as TGF-β and VCAM1, immune cell ligands 
such as CCL2 and CXCL10 (Cavaliere et al., 2020; Delfosse et al., 2012; 
Montes-Grajales and Olivero-Verbel, 2013). All these proteins are 
detected in heart tissue and cells and are linked to pathology. Predicted 
binding of bisphenols to PPARs and RXRs is analog specific. In a study of 
18 analogs, predicted PPAR-α and PPAR-γ binding of BPPH, BPG and 
BPC2 was similar to the known ligand fenofibrate and greater than that 
predicted for BPA or BPS (Sharma et al., 2018). In predicted binding to 
RXR-α, BPPH, BPAF and BPZ binding was scored as similar to that of 
prostacyclin and predicted binding to RXR-γ, BPAF and BPC was similar 
to that of the score for rosiglitazone. These differences have been 
independently verified in zebrafish (Pinto et al., 2019), where BPA an-
alogs such as BPC did not replicate the parent compound. Importantly, 
some species differences in receptor response to BPA complicate deter-
mination of mechanism. For example, BPA does not interact with mouse 
PXR, but is an agonist with murine PXR. Thus, BPA-mediate increased of 

atherosclerosis were only demonstrable in mice which expressed the 
human PXR protein (Sui et al., 2018). Thus, BPA and its analogs may 
have a species dependent, individual receptor binding and different 
toxicity profiles across multiple receptors. 

6.2. Phthalates and cardiovascular disease 

Phthalate exposure is also a potential contributor to cardiovascular 
dysfunction (Just et al., 2012; Mariana et al., 2018). Maternal exposure 
to DEHP results in congenital heart defects and altered expression of 
important cardiac transcription factors in children (Snijder et al., 2012; 
Tang et al., 2019; Wang et al., 2015). Similarly, early life phthalate 
exposure can lead to vascular adaptations that increase the risk of car-
diovascular disease later in life (Sol et al., 2020). For example, an 
increased urinary phthalate concentration was associated with elevated 
systolic blood pressure (Gao and Wang, 2014). In elderly populations, 
the risk of coronary heart disease, atherosclerosis, and downstream 
complications, including MI, increases with the concentration of circu-
lating phthalates (Lind and Lind, 2011; Olsén et al., 2012). 

Experimental data links phthalate exposure and cardiac dysfunction. 
The impact of phthalate exposure on cardiac electrophysiology and 
contractile performance is well documented in ex vivo preparations and 
isolated mammalian cells. Cardiomyocytes are connected to each other 
via a highly organized framework consisting of mechanical and elec-
trical connections (Vermij et al., 2017). DEHP from 1 to 50 μg/ml slowed 
electrical conduction in rat cardiomyocytes in a dose-dependent 
manner, with increased exposure exacerbating an arrhythmogenic 
phenotype (Gillum et al., 2009). Phthalate exposure at doses expected in 
the pediatric patient population, of ~0.17 μg/kg/day, increased NOS3 
expression, interfered with cardiac electrophysiology, induced heart 
rate variability and reduce cardiovascular reactivity in male mice 
(Jaimes et al., 2017). Similarly, in isolated and intact rat hearts, 
phthalate exposure decreased heart rate in a concentration-dependent 
manner. Furthermore, phthalate exposed hearts show edema of 
myocardial tissue, and increased inflammatory cell infiltration and 
myocardial cell necrosis (Wang et al., 2018). Other experiments reveal 
direct adverse effects on cardiomyocytes. In human stem-cell derived 
cardiomyocytes, exposure to phthalates at clinically relevant doses 
affected calcium handling and intercellular cardiomyocyte connectivity 
(Jaimes et al., 2019; Posnack et al., 2015). 

Similar to BPA, alternative animal models support phthalate-induced 
cardiotoxicity. For example, acute exposure to DEHP inhibited con-
tractile function of chick embryonic cardiomyocytes and induced cell 
death after 24 h (Rubin and Jaeger, 1973). DEHP exposure in male quail 
results in increased cardiomyocyte swelling and muscle fiber dilation 
(Wang et al., 2019). Phthalate treatment of chicken cardiomyocytes 
induces cardiomyocyte hypertrophy via mitochondrial dysfunction (Cai 
et al., 2019). As in testing to assess BPA toxicity, developmental expo-
sure of zebrafish to phthalates induces cardiac morphological abnor-
malities, pericardial edema, and reduced cardiac function (Pu et al., 
2020; Sun and Li, 2019; Sun and Liu, 2017). 

Taken together, there is strong evidence from epidemiological, mo-
lecular to phenotypic viewpoints that the cardiovascular system is 
significantly impacted by chemicals detected in the environment. EDCs 
appear to affect the cardiovascular system via an array of signaling 
pathways and bioassays in utilizing cardiomyocytes will be increasingly 
important as additional contaminants are revealed and associate with 
increased risk to CVD. 

7. Emerging topics and considerations for Non-EATS modalities 
and risk assessment of EDCs 

7.1. Endocrine crosstalk with other systems 

Hormones do not operate in isolation, and there can be significant 
crosstalk amongst systems. Interaction between the non-EATS and EATS 
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axes following exposures to EDCs are evidenced through metabolic 
disruption or AHR activation and reproductive function. Indeed, life- 
history theory states that animals must partition limited resources be-
tween growth metabolic homeostasis, and reproduction (Lardner and 
Loman, 2003). For many EDCs, a direct link between metabolism and 
reproductive deficits are difficult to establish as some chemicals can 
exert effects on both processes. For example, triphenyltin has been 
shown in mammals and aquatic species to impair endocrine, meta-
bolism, neurological and reproductive dysfunction (He et al., 2020). 
More recently, transgenerational metabolic impairments induced by the 
EDCs benzo[a]pyrene and triclosan have been associated with repro-
duction defects in frogs (Regnault et al., 2018; Usal et al., 2020). In this 
way, the metabolic effects via non-EATS modalities should be consid-
ered within the context of the EATS axis to appreciate the full scope of 
organismal impact. Here we provide three brief examples of how 
chemicals acting through EATS and non-EATS modalities can impact 
reproduction, metabolism, and the immune system. 

7.1.1. Crosstalk between estrogen and aryl hydrocarbon receptors: focus on 
reproduction 

AHR and estrogen receptor signaling has been widely described in 
literature and it is now acknowledged that AHR ligands affect repro-
ductive function considerably (Tarnow et al., 2019). AhR appears to 
modulate estrogen signaling both positively and negatively depending 
on the cellular context (Ohtake et al., 2011). For example, dioxin has 
been shown to inhibit the estrogen-induced vitellogenin response 
through AHR, leading to reproduction deficits in zebrafish (Bugel et al., 
2013). Human exposure to dioxin has been shown to induce adverse 
endocrine effects, such as alterations in sex ratio in children of exposed 
parents (Karmaus et al., 2002). Dioxins have also been shown to have 
estrogenic effects including the stimulation of uterine enlargement, and 

the induction of estrogen-responsive genes (Brauze et al., 1997; Boveroff 
et al., 2006). Different mechanisms have been proposed to explain Ah-R 
and estrogen receptor (ER) cross-talk. Ah-R and ER may compete for 
common cofactors needed for ER and AHR signaling like the AHR nu-
clear translocator (ARNT). AHR may regulate the levels of circulating E2 
by controlling the gene expression of cytochromes P450 involved in 
estrogen production from cholesterol. AHR may regulate the levels of 
circulating E2 by controlling the gene expression of cytochromes P450 
involved in estrogen production from cholesterol. AHR has been also 
shown to mediate the assembly of a CUL4B-based ubiquitin ligase 
complex and promotes the degradation of ER (Ohtake et al., 2011) 
Finally, AHR may compete with ER for promoter binding leading to 
inhibition of transcription (Swedenborg and Pongratz, 2010). In 
conclusion, the physiological role of the AHR and ER as well as their 
complex mutual crosstalk remain to be determined as do resulting im-
pacts on human health. With more and more endogenous AHR ligands 
being discovered, the potential impact of such substances on estrogen 
signaling must be studied in more detail (Tarnow et al., 2019). 

7.1.2. Phthalate-mediated cross talk among the EATS and non-EATS 
pathways 

Phthalates are chemicals that are used as plastic additives to protect 
material from degradation, UV damage, and to improve structural 
flexibility and resilience. In terms of toxicity assessments, perhaps the 
two most well studied processes impacted by exposure to phthalates 
include reproduction and metabolism (Fig. 4). Another example is that 
of phthalates and the cardiovascular system. Phthalates are reported to 
act as anti-androgens (EATS pathway) but are also EDCs implicated in 
interfering with PPAR activation and expression (Casals-Casas and 
Desvergne, 2011). DEHP, a high-production phthalate representative 
has been implicated as a PPAR-γ activator (Ito et al., 2019). DEHP 

Fig. 4. Multiple non-EATS pathways are altered by exposure to phthalates. AHR, aryl hydrocarbon receptor; AMH, anti-Mullerian hormone; AR, androgen receptor; 
CYP11A1, cytochrome P450 family 11 subfamily A member 1; CYP17A1, cytochrome P450 family 17 subfamily A member 1; FSHR, follicle stimulating hormone 
receptor; HSD11B2, hydroxysteroid 11-beta dehydrogenase 2; HSD17B3, hydroxysteroid 17-beta dehydrogenase 3; INS, insulin; PPARA, peroxisome proliferator 
activated receptor alpha; PPARD, peroxisome proliferator activated receptor delta, STAR, steroidogenic acute regulatory protein. 
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exposure upregulates PPAR-γ, which results in a metabolic remodeling 
of cardiomyocytes (Posnack Nikki et al., 2012). Disruption in car-
diomyocyte metabolism by DEHP exposure has led to elevated inflam-
matory and oxidative stress markers that can sensitize the heart to 
ischemic injury and ventricular dysfunction (Amara et al., 2019). While 
phthalates show a high binding efficiency with PPARs, they demonstrate 
a greater preference for RXRs, as well as their downstream target genes 
in vitro (Cocci et al., 2015; Sarath Josh et al., 2014). In other settings, 
such as in the nervous system, the toxicity of phthalates is mediated via 
the aryl hydrocarbon receptor (AhR) (Wójtowicz et al., 2017, 2019). 
Thus, phthalates likely interfere with different receptors depending on 
the context. However, more work is needed to elucidate between the 
different pathways of interference depending on the mode of phthalate 
toxicity. 

7.1.3. Crosstalk between sex steroids, glucocorticoids, and the immune 
system 

EDCs that act as estrogens and androgens can modulate the immune 
system following classical EATS modalities (LeBlanc et al., 2011). 
However, the immune system can also be modulated through additional 
mechanisms, e.g., non-EATS pathways. For example, there is significant 
crosstalk between the immune system, sex steroid signaling, and the 
HPA axis (e.g., glucocorticoids repress the expression of 
pro-inflammatory cytokines and increase the transcription of 
anti-inflammatory proteins) or vitamin D pathway (e.g. the VDR regu-
lation and function in T cells) (Feldman et al., 2013; Newton et al., 
2017). Indeed, not only do GR and VDR play an important role in 
regulation of immunity, but they can also modulate other nuclear re-
ceptors, including AhR, PPARs, RARs, RXRs or RORs (Arakawa, 2014). 
Nevertheless, the current in vivo bioassays that assess the immunotox-
icity of chemicals (for example, OECD TG 407 and 443, and others 
(Dusinska et al., 2017) mainly focus on “downstream effects” (e.g., 
immunoglobulin levels, lymphocyte proliferation, cytokine expression, 
resistance against infection) rather than “upstream effects” which could 
more clearly reveal the MoA of the chemical being tested. 

Vitamin D and PPAR signaling pathways are two of the seven main 
routes proposed to be assessed by OECD in endocrine disruption and 
their roles are well documented in the regulation of the immune system 
(LeBlanc et al., 2011). For non-EATS immunotoxic EDCs, we highlight 
per- and polyfluoroalkyl substances (PFAS) which exert their action 
mostly via PPARα (Corsini et al., 2014). Exposure to PFOS, PFOA, PFNA 
and PFDA have been associated with immune suppression (reduced 
hemocyte cell viability) in invertebrates (Perna viridis) (Liu and Gin, 
2018). Immunoglobulin levels were also observed to decrease in birds 
(Gallus gallus) after exposure to PFOS, while their plasma lysozyme ac-
tivity was increased (Peden-Adams et al., 2009). In another study, 
PFHxS increased trematode infections in amphibian larvae (Lithobates 
pipiens) (Brown et al., 2020). In mammals (rodents), several PFASs 
exerted a wide spectrum of effects, e.g. suppressed antibody production 
and altered T-cell populations in mice exposed to PFOA and/or PFOS 
(Corsini et al., 2014). 

In addition, epidemiological studies link PFASs exposure in humans 
to alterations in cytokines and interleukins, autoimmune responses as 
asthma, allergies and dermatitis, and viral infections; and several cor-
relations between their concentrations with WBCs and immunoglobulins 
levels were reported (Liew et al., 2018). We point out here isoforms of 
PPAR are involved in modulating the immune specifically (PPARγ) 
(Martin, 2010), thus EDCs that exert immune system dysregulation via 
PPAR-α/γ isoforms are also expected to disrupt lipid and adipogenesis 
pathways. 

Along with PFASs, other chemicals have also been reported to alter 
the immune system via non-EATS modality, as GCs via HPA axis and TBT 
via vitamin D pathway (as above mentioned), phthalates (probably via 
PPARα/γ (Hurst and Waxman, 2003), bisphenol A (although in this case 
is more difficult to discern if the stronger effect is via PPAR -non-EATS- o 
via ER -EATS-), several phenols (not only via ER -EATS- but also via 

direct impact on signaling pathways (Nowak et al., 2019), and dioxins 
and PCBs (via AhR (Larigot et al., 2018) to name a few. As such, PPAR 
(specially α isoform), AhR, vitamin D and HPA axis pathways along with 
classical immunotoxicology endpoints should be considered in the 
assessment of non-EATS immunotoxicity by EDCs. 

7.2. Screening complex mixtures in the natural environment 

The impact of the chemical environment is often more complex than 
the sum or synergistic effects of the individual chemicals present. Given 
that organisms are unlikely ever exposed to a single chemical, deter-
mining the overall impact of mixture exposures becomes compelling. 
Exposure studies in zebrafish exposed to chemicals identified in river 
water revealed that the effects of the mixture were not mediated by a 
single receptor and could not be predicted based on the readout of the 
individual chemicals (Kinch et al., 2016). In contrast, exposure of 
zebrafish embryos to a mixture of POPs revealed PFOS as the sole 
chemical responsible for behavioral effects (Khezri et al., 2017), with to 
a disruption in calcium signaling (Christou et al., 2020). The concen-
trations of known chemicals detected in a source of drinking water in 
Belgium were tested for agonistic and antagonistic effects using a panel 
of rat and human cells expressing AhR, ER, AR, PR and GR promoters 
linked to a luciferase reporter gene (Tq et al., 2020). Similarly, mixtures 
of BPA, BPS and BPF had greater agonistic on ER activity and antagonist 
activity on AR activity with no activity on AhR in reporter cells lines 
than individual chemicals (Park et al., 2020). 

Other examples underscoring exposures to mixtures include food 
packaging products and medical devices. In one study, extractions from 
a set of 20 different food packaging materials identified between 16 and 
47 compounds per material; these were analyzed using AR, ER, AhR, 
PPAR-γ, Nrf2, p53 and Ames mutagen assays using a suite of cell lines 
(Rosenmai et al., 2017). These analyses revealed that the response of 
mixtures could not be predicted from analyses of the single chemicals. 
Another example includes plasticizers. Bisphenols are used in medical 
devices and can leach into patients. Studies in newborns and those un-
dergoing surgery to repair heart malformations revealed significant 
exposure to BPA and DEHP that was attributed to medical devices 
(Gaynor et al., 2019; Stroustrup et al., 2020). Increased BPA and DEHP 
were detected in adults within 12 h of cardiac surgery that required a 
cardiopulmonary pump (Huygh et al., 2015; Shang et al., 2019). Expo-
sure of mice to this mixture while recovering from MI surgery found a 
reduced ability to recover fully when compared with control unexposed 
mice (Shang et al., 2019). 

7.3. Adverse outcome pathways and the Non-EATS 

One approach for integrating EATS and non-EATS modalities into 
risk assessment include quantitative adverse outcome pathways 
(qAOPs) which incorporate quantitative descriptors for key event re-
lationships (KERs) (Perkins et al., 2019). Indeed, dose-response patterns 
(and sometimes also temporal patterns) are assessed between key events 
which not only reinforced the linkages between KEs (causality vs coin-
cidence) but also ease the decision making in regulatory contexts 
(Conolly et al., 2017). The modelling approaches for descriptors can 
vary from probabilistic to deterministic and are accompanied by 
mathematical expressions that can present different equations (Spinu 
et al., 2020). 

Although a relatively new concept, several qAOPs have already been 
proposed for both EATS and non-EATS. For EATS modalities, qAOPs 
have been developed for reproductive impairment in fish via aromatase 
inhibition, altered swimming performance in fish via inhibition of thy-
roid hormone synthesis/degradation, and diverse adverse outcomes 
(AOs) involved in reproduction and development in vertebrates via 
activation of ERα (Knapen et al., 2020). For non-EATS modalities, 
qAOPs concerning immunosuppression and decreased egg production in 
fish because of GR signaling have been developed (Margiotta-Casaluci 

C.J. Martyniuk et al.                                                                                                                                                                                                                           



Environmental Research 204 (2022) 111904

12

et al., 2016), as well as early life stage mortality in birds and fishes via 
AhR (Doering et al., 2018), and liver steatosis in humans via PPARα 
(Perkins et al., 2019), among others. It is important to note that both 
AOPs and qAOPs are extended and cover more than one MIE, several 
interconnected KEs and several AOs (Conolly et al., 2017). In this way 
and taken into consideration all the receptors that a certain EDC can 
interact with at the same time, both EATS and non-EATS modalities can 
become integrated into the same qAOP. For example, Margiotta-Casa-
luci et al. (2016) proposed the qAOP of the active metabolite of a syn-
thetic glucocorticoid (beclomethasone dipropionate) that lead to 
immunosuppression not only via AR, but also via PR and GR. Although 
EATs and non-EATS present different MIEs and early-KEs, they could 
exert the same late-KEs and AOs. For example, in Fig. 5 we present a 
simplified AOP for liver steatosis both via EATS and non-EATS (adapted 
from [(Mellor et al., 2016), with information from AOPwiki 36, 57, 60, 
318]). AOP Wiki (https://aopwiki.org/wiki/index.php/Aop:34) for 
example describes the key events include mitochondrial impairment, 
triglyceride accumulation, and cytoplasm distortion. Underlying 
mechanisms involve inhibition of beta-oxidation and the de novo in-
creases in fatty acids (Fig. 5). 

7.4. Research models and computational approaches for the Non-EATS 

There are new opportunities using genetic engineering, computa-
tional toxicology, and multi-omics data sets to elucidate non-EATS 
modalities for EDCs. CRISPR-based gene editing approaches show 
great promise for screening EDCs for mechanisms of action, as in the 
case of TCS and liver cells (Xia et al., 2016) and CRISPR/Cas9 knock-in 
models of zebrafish have shown promise for detecting EDCs in waste-
water (Abdelmoneim et al., 2020). High throughput molecular and 
biochemical assays are also playing a key role in elucidating EDC effects 
across cell and animal models. These methods include transcriptomics, 
proteomics, and metabolomics, each of which aims to capture the full 
repertoire of transcripts, proteins, or metabolites respectively within the 
cell. The use of omics technologies has led to new research on non-EATS 
endocrine pathways, drawing attention to those pathways not previ-
ously suspected as targets for chemicals traditionally categorized into 

EATS modalities. The use of omics technologies has led to new research 
and adds evidence on existing data on non-EATS endocrine pathways, 
drawing attention to those pathways not previously suspected as targets 
for chemicals traditionally categorized into EATS modalities (Franco 
et al., 2020; Jordão et al., 2015). Two examples include immune system 
effects (predicted to act via vitamin D signaling) and MoA of PFOS 
(predicted to act via PPARα) (Martínez et al., 2019b, 2020c) (Fig. 6). 

The strength of leveraging computational and omics methodology 
into high throughput chemical screening is that novel hormone 
signaling pathways are potentially revealed, generating new hypotheses 
for investigations (i.e., non-EATS pathways). Moreover, this approach 
can be useful for complex environmental mixtures. In this regard, 
concentration-dependent transcriptomic studies in vitro bioassays, have 
been used following a tiered approach to identify and select bioassays 
based on nuclear receptors (AhR, ER, AR and Nrf2) for water quality 
assessment (Fang et al., 2020). 

8. Final recommendation 

Test guidelines based on the examination of specific phenotypic 
endpoints, e.g., effects on reproduction, growth or development, and the 
study of single molecular pathways mostly related to estrogenic, 
androgenic, thyroidal and steroidogenic (EATS) related pathways are 
currently those most prevalent in literature and chemical screening 
programs (Kucheryavenko et al., 2020). To date however, testing 
methodologies are insufficient at addressing specific aspects of EDCs. 
Computational insight from Tox21 and ToxCast highlights the extent of 
receptor promiscuity and hormone crosstalk for several chemicals and 
novel MoAs through the non-EATS modality. Table 1 summarizes 
several non-EATS interactions between chemicals and receptors. 
Although these high-throughput approaches show great promise in 
identifying chemicals that act for example, as obesogens, care must be 
taken by extrapolating results to higher biological levels as data do not 
always correlate between HTS receptor activation to phenotypic assays 
(Auerbach et al., 2016; Janesick et al., 2016). Several software tools are 
also available to predict endocrine activity related to both EATS and 
non-EATS modalities. Andersson and colleagues (Andersson et al., 2018) 

Fig. 5. Generalized AOP for liver steatosis both via EATS and non-EATS (adapted from [(Mellor et al., 2016), with information from AOPwiki 36, 57, 60, 318]). ER, 
estrogen receptor; LXR, liver X receptor; PXR, pregnane X receptor; PPARγ/β/α, peroxisome proliferator activated receptor gamma/beta/alpha, respectively; AhR, 
aryl hydrocarbon receptor; GR, glucocorticoid receptor; RAR, retinoic acid receptor. 
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highlight useful software tools available for predictive toxicology 
regarding the non-EATS, which include MolCode Toolbox (AhR), Virtual 
Toxab (GRs, AhRs, PPARs), Endocrine Disruptome (GRs, PPAR, RXRs), 

and Danish (Q)SATR DB (PXR) to name but a few. Recommendations 
and consideration for evaluating non-EATS modalities include the 
following:  

1) Imperative to detect potential disruptions and non-EATS pathways to 
develop new regulations for developing safer chemicals and protect 
environmental, animal, and human health.  

2) A non-targeted approach to toxicity testing is needed to reveal the 
multiplicity of chemical interactions to non-EATS pathways.  

3) Multiple tissues in multiple species and the inclusion of males and 
females in testing is essential to fully describe non-EATS chemical 
toxicities.  

4) Consideration that analogs may have different affinities or even no 
affinity for their non-EATS interactions. Class effects should not be 
assumed without testing. 

5) Relevant dosing to reflect levels experienced by the general popu-
lation, those occupationally exposed should be a focal point for non- 
EATS interactions.  

6) The use of reporter cell lines should be expanded in testing of 
endocrine disruptors to reflect the possibility for non-EATS in-
teractions. However, there can be limitations as cell lines do not 
completely recapitulate in vivo exposures, nor do they necessarily 
yield accurate data for all species. Nevertheless, such assays coupled 
to other approaches like omics, have provided viable targets of 
endocrine disruptors for obesogens and cardiovascular 
dysregulation. 

Fig. 6. Perfluorooctane sulfonate is predicted to affect proteins and functional classes related to immune, steroidogenesis, and metabolism. Abbreviations: HSD17B3, 
hydroxysteroid 17-beta dehydrogenase 3; ABCB4, ATP binding cassette subfamily B member 4; ALB, albumin; APOA1, apolipoprotein A1; CYP2A6, cytochrome P450 
family 2 subfamily A member 6; FABP1, fatty acid binding protein 1; HNF4A, hepatocyte nuclear factor 4 alpha; HSD11B1, hydroxysteroid 11-beta dehydrogenase 1; 
HSD11B2, hydroxysteroid 11-beta dehydrogenase 2; MIR155, microRNA 155; NR1I3, nuclear receptor subfamily 1 group I member 3; PPARA, peroxisome pro-
liferator activated receptor alpha; PPAR-Γ, peroxisome proliferator activated receptor gamma; RXRA, retinoid X receptor alpha; UCP1, uncoupling protein 1. 

Table 1 
Examples of Non-EATS modalities perturbed by different chemical classes and 
specific chemicals.  

Chemical Receptor and/or enzyme 

General Examples 
Coplanar PCBs AhR 
Dioxins AhR 
Organotins PPARγ, RXRα 
Bisphenols PPARγ, RXRα 
Polychlorinated biphenyls (PCBs) PPARγ, RXRα 
Phthalates PPARs, RXRs, AHR 
Polyfluoroalkyl substances (PFAS) PPARα 
Specific Examples 
Dibutyl phthalate PXR, cytochrome p450 enzymes 
TBT (tributyltin) PPARγ, RXRα 
BPA (bisphenol A) PPAR, RXR, RAR, CAR 
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) AhR 
Di(2- ethylhexyl) phthalate PPARγ 
α-naphthoflavone AHR (inhibition) 
Benzo[a]pyrene AhR 
Bisphenol AF RXR-γ 
Bisphenol Z RXR-γ 
Prostacyclin RXR-γ 
Beclomethasone dipropionate PR, GR 
Perfluorooctane sulfonic acid PPARα  
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Taken together, while much data has been generated regarding 
chemicals with novel targets related to endocrine disruption, the re-
mains a significant number of hormones (non-EATS modalities) for 
which we know little in terms of chemical interactions and perturbation. 
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