Bet v 1 from birch pollen is a hypoallergen with vitamin D3 in the pocket

To the Editor,

Based on our previous molecular studies with ligands for lipocalin and lipocalin-like proteins, we predicted that the active vitamin D metabolite vitamin D3 (VD3) could bind into the intramolecular pocket of the major birch pollen allergen Bet v 1 (Bet v 1.0101), transforming it from apo (empty) to holo-Bet v 1. As VD3 per se is able to modulate innate and adaptive immune responses, we hypothesized that the binding of this immunomodulatory molecule would modify the allergenicity of Bet v 1.

In a first step, we analysed VD3 binding to Bet v 1 by in silico docking analysis, in vitro ANS competition assay and IZ-VDRE cell reporter assay (Figure 1). In silico calculations based on the crystal structure of the Bet v 1-naringenin complex (PDB entry 4A87) (Figure 1A) rendered an affinity energy of ~9.9 kcal/mol, corresponding to a dissociation constant of 0.055 μmol/L. The calculated affinity of VD3 to Bet v 1, being thus 6-times stronger than of vitamin A metabolite retinoic acid, could be supported by in vitro assays. First, in an ANS competition assay, VD3 dose-dependently displaced ANS from Bet v 1 (Figure 1B). For the second assay, we used the human IZ-VDRE cell line stably transfected with vitamin D response elements VDRE-I from the human CYP24A1 promoter and expressing the gene for luciferase under the control of VDRE. The

FIGURE 1 VD3 is a ligand to Bet v 1. (A) In silico docking analysis: crystal structure (left) and close-up view of the cavity (right) of Bet v 1 with ligand VD3 (sticks in turquoise); (B) ANS competition assay (left, RFU: relative fluorescence units) and IZ-VDRE reporter cell assay (right) with luciferase activity shown as fold change to medium control as means +/− SD from three independent experiments: (VD3 concentrations for stimulation and preincubation: salmon bars 0.1 μmol, violet bars 1 μmol); (C) Geometry of Bet v 1-VD3 complex and localization of B-cell epitopes: left diagram shows side chains of amino acids in both B-cell epitopes as sticks with carbons in slate blue (epitope 1: residues 29–58) and salmon (epitope 2: residues 73–103). Ligand VD3 is shown as stick with carbons in green. Red labels indicate all epitope residues that are within 4 Å of the ligand (epitope 1: F31, K55, I57; epitope 2: Y82, Y84, V86, P91, I99). Right diagram displays partially transparent renderings of surface views of the geometries shown in the left diagram

Abbreviations: ANS, 1-anilino-8-naphthalene sulfonate; BCA, bicinchoninic acid; BP, birch pollen; E_{aff}, affinity energy; FCS, foetal calf serum; IL, interleukin; K_{D}, binding constant; kDa, kilodalton; MFI, mean fluorescence intensity; OD, optical density; PBMCs, peripheral blood mononuclear cells; PDB, protein data bank; RA, retinoic acid; RFUs, relative fluorescence units; VD3, Vitamin D3; VDRE, vitamin D response element.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2021 The Authors. *Allergy* published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
Luciferase activity was dose-dependently activated by VD3 (Figure S1), ensuring the functionality of the assay. Incubation of IZ-VDRE cells with holo-Bet v 1 (preincubated with 1 µmol or 0.1 µmol VD3) induced luciferase expression comparable to the signal from the positive control VD3 alone, while empty apo-Bet v 1 did not elicit luciferase activity (Figure 1B). We hypothesized that shuttling of VD3 via Bet v 1 induced the luciferase activity, although we cannot exclude intracellular dissociation of VD3 from Bet v 1. Nevertheless, our results so far proposed that Bet v 1 is able to bind VD3 into its intramolecular cavity in vitro.

We then investigated the influence of VD3 in holo-Bet v 1 on the cellular immune response. Stimulation of PBMCs from birch pollen (BP)-allergic donors with apo-Bet v 1 induced significant upregulation of Th1 (IFNγ) and Th2 (IL-10, IL-13) cytokines in supernatants compared to medium control (Figure 2A). In contrast, holo-Bet v 1-treated cells displayed significantly decreased IFNγ,
IL-10 and IL-13 levels in comparison with apo-Bet v 1 stimulated cells, similar to treatment with VD3 alone (Figure 2A). When transported in holo-Bet v 1, VD3 more than VD3 alone, reduced the expression of co-stimulatory molecules HLA-DR+ and CD86+ on CD14+ monocytes, indicating their reduced activation status (Figure 2B left). Remarkably, in the T-cell compartment, only holo-Bet v 1 treatment led to significant reduction of CD3+CD4+ cells expressing the Th2 marker CRTh2 (Figure 2B right). Prostaglandin D2 receptor CRTh2 is expressed by Th2 lymphocytes, eosinophils, basophils and innate lymphoid cells (ILC2s) and involved in recruitment of these cell types and Th2 cytokine production during allergic response. The CD3+CD4+CD25+CD127- regulatory T cells were significantly increased by both apo- and holo-Bet v 1 treatments (Figure 2B middle). In the B-cell compartment, we found significantly reduced numbers of CD19+ B cells after treatment with the holo- but not with the apo-form of Bet v 1 (Figure 2C left).

Reduction of IgE committed B cells may be one mechanism why VD3 previously inhibited IgE synthesis in vitro.

The holo-Bet v 1 also showed significantly lower IgE-binding capacity, at least in some patients, compared to the apo-allergen (Figure 2C middle), and it induced significantly less mediator release from primary human mast cells pre-sensitized with serum IgE of BP-allergic donors (Figure 2C right; Figures S2 and S3). Based on our in silico structural analyses, the IgE-specific effects may be due to epitope masking by the VD3 ligand of two previously described IgE-binding B-cell epitope regions in the molecular surface of Bet v 1 (Figure 1C).

Thus, our data for the first time revealed VD3 as a novel ligand in the pocket of the major birch pollen allergen Bet v 1, and that VD3 is able to down-regulate the allergic immune response to Bet v 1. We evidence that holo-Bet v 1 shuttles VD3 into immune cells, prevents Th2 responses to Bet v 1 in vitro by reducing CRTh2+ Th2- and CD19+ B cells, inhibits antigen presentation and reduces production of inflammatory cytokines. The present data are in line with our findings that loading of Bet v 1 allergen with vitamin A metabolite induces immune tolerance.

The principle of vitamin spiking of allergens could be of use to improve immunotherapeutic approaches in future, and at much lower doses than recently suggested.

KEYWORDS
Bet v 1, birch pollen allergy, immunomodulation, lipocalin-like, vitamin D

FUNDING INFORMATION
This work was supported by the Danube Allergy Research Cluster (DARC) #8, and in part by SFB F4606-B28 grant of the Austrian Science Fund FWF.

ACKNOWLEDGEMENTS
We thank Bart R. Blokhuis for excellent technical assistance.

CONFICT OF INTEREST
EJJ, LFP and FRW are inventors of EP2894478, owned by Biomedical International R+D GmbH, Vienna, Austria, of which EJJ is shareholder. SMA was supported by a grant of Biomedical Int. R+D GmbH and by Bencard Allergy GmbH. The other authors declare they have no conflict of interest.

Karin Hufnagl
Livia Kromp
Rodolfo Bianchini
Sheriene Moussa Afify
Markus Wiederstein
Frank A. Redegeld
Iveta Zvavalova
Zdenek Dvorak
Gerlinde Hofstetter
Franziska Roth-Walter
Luís F. Pacios
Erika Jensen-Jarolim

1Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
2Laboratory Medicine and Immunology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
3Department of Biosciences, Center of Applied Molecular Engineering, University of Salzburg, Salzburg, Austria
4Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
5Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
6Center for Plant Biotechnology and Genomics and Department of Biotechnology- Vegetal Biology, ETSIAAB, Technical University of Madrid, Madrid, Spain
7Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
8Biomedical Int. R+D GmbH, Vienna, Austria

Correspondence
Karin Hufnagl, Comparative Medicine, the Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria.

Email: karin.hufnagl@vetmeduni.ac.at

Erika Jensen-Jarolim, Comparative Medicine, c/o Institute of Pathophysiology and Allergy Research, Medical University Vienna, Waehringer G. 18-20, 1090 Vienna, Austria.

Email: erika.jensen-jarolim@meduniwien.ac.at

ORCID
Karin Hufnagl https://orcid.org/0000-0002-2288-2468
Rodolfo Bianchini https://orcid.org/0000-0003-0351-6937
Sheriene Moussa Afify https://orcid.org/0000-0003-2082-9038
Markus Wiederstein https://orcid.org/0000-0002-4750-4746
To the Editor,
Wheat-dependent exercise-induced anaphylaxis (WDEIA) is a rare IgE-mediated systemic hypersensitivity reaction caused by the combination of wheat product ingestion and cofactors, such as physical exercise, acetylsalicylic acid and alcohol.1–3 For diagnosis, an appropriate patient’s history has to be associated with a sensitization to wheat flour and gluten proteins as detected by skin prick test (SPT), specific IgE and/or basophil activation test (BAT). Confirmation of the diagnosis by oral challenge test (OCT) with gluten and cofactors allows to determine the patient’s individual threshold.4 It has been shown that using high amounts of pure gluten for a challenge, a reaction can even be elicited even without cofactors.5 Dietary recommendations range from total avoidance of gluten to temporal separation of wheat ingestion from cofactors. Gluten avoidance has been associated with lower reaction thresholds.6 Currently, no curative treatment such as immunotherapy (IT) has been developed. We describe three patients with WDEIA, who have been treated with a sublingual gluten IT (SLIT) over a course of 3 years. The clinical study was approved by local ethics committee.

For this exploratory study, three female patients with a history of several reactions only to a combination of wheat products plus cofactors and positive challenge with pure gluten were diagnosed with WDEIA and gave their informed consent for SLIT. Titrated SPT with pure wheat gluten and wheat protein hydrolysates (Solpro

Dietary Interventions

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

FIGURE 1

Timetable of the study

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2021 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.