
EEG-based Identification of Evidence Accumulation
Stages in Decision-Making

Hermine S. Berberyan1 , Leendert van Maanen2,3 ,
Hedderik van Rijn1 , and Jelmer Borst1

Abstract

■ Dating back to the 19th century, the discovery of processing
stages has been of great interest to researchers in cognitive
science. The goal of this paper is to demonstrate the validity
of a recently developed method, hidden semi-Markov model
multivariate pattern analysis (HsMM-MVPA), for discovering
stages directly from EEG data, in contrast to classical reaction-
time-based methods. To test the validity of stages discovered
with the HsMM-MVPA method, we applied it to two relatively
simple tasks where the interpretation of processing stages is
straightforward. In these visual discrimination EEG data exper-
iments, perceptual processing and decision difficulty were
manipulated. The HsMM-MVPA revealed that participants pro-
gressed through five cognitive processing stageswhile performing
these tasks. The brain activation of one of those stages was

dependent on perceptual processing, whereas the brain activa-
tion and the duration of two other stages were dependent on
decision difficulty. In addition, evidence accumulation models
(EAMs) were used to assess to what extent the results of
HsMM-MVPA are comparable to standard reaction-time-based
methods. Consistent with the HsMM-MVPA results, EAMs
showed that nondecision time varied with perceptual difficulty
and drift rate varied with decision difficulty. Moreover, nonde-
cision and decision time of the EAMs correlated highly with the
first two and last three stages of the HsMM-MVPA, respectively,
indicating that the HsMM-MVPA gives a more detailed descrip-
tion of stages discovered with this more classical method. The
results demonstrate that cognitive stages can be robustly inferred
with the HsMM-MVPA. ■

INTRODUCTION

A central tenet of theories in cognitive neuroscience is the
existence of processing stages. After the seminal work of
Donders (1969) and Sternberg (1969), stages are typically
identified based on behavioral responses. Although these
methods are easy to apply and provide insight in the relative
duration of different processing stages, it has proven diffi-
cult to identify the exact duration and temporal onsets of
individual stages (e.g., Henson, 2011; Posner, 2005). Here,
we demonstrate the validity of a recently proposed method,
hidden semi-Markov model multivariate pattern analysis
(HsMM-MVPA), as a method for discovering processing
stages using neural data (EEG/magnetoencephalography
[MEG]).

The HsMM-MVPA method was introduced by Anderson,
Zhang, Borst, and Walsh (2016) to overcome the limitations
of conventionalmethods basedonbehavioral data. Themain
advantage of HsMM-MVPA is that it allows parsing a cognitive
task into processing stages based on the many EEG/MEG
sampleswithin a trial, unlike one reaction time (RT)measure
per trial. For example, when it was applied to EEG data
from the classic Sternberg task, five stages were identified:
(1) preattention, (2) encoding, (3) memory retrieval, (4) de-
cision, and (5) response (Anderson et al., 2016). The HsMM-
MVPA method has been proved to be a versatile method for

detecting processing stages in a range of tasks (Imani,
Harati, Pourreza, & Goudarzi, 2020; Anderson et al., 2018;
Portoles, Borst, & van Vugt, 2018; Zhang, van Vugt, Borst, &
Anderson, 2018; Zhang, Walsh, & Anderson, 2017, 2018;
Walsh, Gunzelmann, & Anderson, 2017; Zhang, Borst, Kass,
&Anderson, 2017; Borst&Anderson, 2015). At the same time,
the interpretation of discovered stages remains a challenge. In
particular, whendealingwithmore complex tasks that involve
a longer sequence of cognitive processes, it becomes diffi-
cult to find support for a specific cognitive interpretation.
The main goal of the current paper is to demonstrate the

validity of the HsMM-MVPA as a method for discovering pro-
cessing stages that can be linked to a specific cognitive inter-
pretation. Because we do not have access to ground truth—
we cannot observe cognitive processes directly—we will use
experimental manipulations to provide a proxy of ground
truth. In this way, robust conclusions on discovered pro-
cesses can be drawn. In addition, the HsMM-MVPA will be
complemented by evidence accumulation models (EAMs)
that represent a traditional, well-established approach to
modeling decision-making (Evans & Wagenmakers,
2020). Analogous to Donders’ and Sternberg’s methods,
EAMs are applied to RTs; however, they provide amore for-
mal account of behavioral data. In doing so, EAMs are able
to separate cognitive processes underlying the RT distribu-
tion, in particular, decision processes from nondecision
processes (e.g., Bode et al., 2018; Jepma, Wagenmakers,
& Nieuwenhuis, 2012).
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With this goal in mind, we designed two EEG experi-
ments in which participants were asked to perform a sim-
ple visual discrimination task. Each experiment consisted
of two conditions where different visual stimuli were used
to manipulate perceptual processing. Between experi-
ments, we maintained the same stimuli and response op-
tions but made the decisionmore difficult. Thus, between
conditions, perceptual stages should be affected, whereas
between experiments, a decision stage(s) is expected to
have a different duration. Before applying the HsMM-
MVPA method, we will confirm the successful operationa-
lization of these assumptions by using EAMs.
To summarize, (1) we conducted two experiments in

which we manipulated perceptual processing and deci-
sion difficulty, (2) we quantified the duration of decision
and nondecision components utilizing EAMs, (3) we
applied the HsMM-MVPA method to discover the under-
lying processing stages, and (4) we correlated the results
of the EAMs with those of HsMM-MVPA models. Overall,
this set of analyses confirmed the effectiveness of
HsMM-MVPA as a versatile method for stage discovery
and resulted in a definition of simple stages that can be
used to interpret more complex tasks. In the remainder
of this introduction, we will describe the main assump-
tions underlying the application of the HsMM-MVPA
method to EEG data and explain the use of EAMs.

HsMM-MVPA

The HsMM-MVPA method decomposes EEG data into
processing stages. The method is based on the assump-
tion that any cognitive event—the start of a processing
stage—is accompanied by a negative or positive peak
across different brain regions. This assumption is shared
between the two main theories explaining the generation

of ERPs: the “classical theory” and the “synchronized oscil-
lations theory.” According to the classical theory, phasic
bursts of activity are generated when cognitive events
occur (Shah et al., 2004; Schroeder et al., 1995). In this
framework, background EEG is regarded as noise. The
synchronized oscillations theory opposes this view and in-
stead proposes that such peaks result from synchronization
in a certain frequency band, or phase resetting, that is trig-
gered by the event (Klimesch, Sauseng, & Hanslmayr,
2007; Makeig et al., 2002). Although these theories suggest
different causes on ERP generation, simulation studies re-
vealed no difference in activity generated by phasic
bursts and phase resetting: Both theories predict signifi-
cant positive or negative deflections at the start of a new
cognitive process (Yeung, Bogacz, Holroyd, & Cohen,
2004). Our current assumption is that these deflections
originate in processing of the BG (e.g., Rektor et al.,
2003, 2004). This is consistent with the idea that the
BG–thalamus circuit implements goal-directed cognitive
processing, where BG events start new cognitive process-
ing stages (e.g., Stocco et al., 2017; Stewart, Bekolay, &
Eliasmith, 2012).

To identify the onset of cognitive processes, the HsMM-
MVPA searches for such negative or positive deflections
across the scalp and in time. These so-called “bumps”mark
the transition from one processing stage to another. It is
assumed that bumps are separated by “flats” that have a
variable duration; together with the bumps, they comprise
stages in a cognitive task. To identify the optimal number
of bumps to account for EEG data, separate HsMM-MVPA
models are fitted that assume different numbers of bumps.
By comparing the goodness of fit of these models, the op-
timal number is derived, providing the temporal locations
and scalp topologies of the bumps as well as the distribu-
tions of durations of the flats (see Methods for details).

Figure 1. An illustration of the HsMM-MVPA method applied to EEG data from three trials. The resulting model contains five bumps and six stages.
Red dashed arrows indicate the location of the Bump 2 on each trial, whereas blue dashed arrows indicate variability in the duration of Stage 4, which
represents the process terminated with Bump 4.
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Figure 1 illustrates how the EEG signal from three dif-
ferent trials is modeled with the HsMM-MVPA. The algo-
rithm searches for bumps that represent the onset of a
cognitive stage and flats that separate these bumps. In
these flats, the EEG signal is described by sinusoidal
noise around 0. This assumption is theoretical and is
used to highlight that the bumps that signify cognitive
events are added to ongoing EEG oscillations. In the orig-
inal paper by Anderson et al. (2016), it was shown that,
even if this assumption does not hold, HsMM-MVPA can
robustly discover bumps that signify stages. The goal is to
identify the topology and temporal location of each
bump on each trial. As there is variability in the duration
of cognitive processes and the associated EEG signal on
each trial, the algorithm allows for bumps to occur at dif-
ferent time points in each trial (i.e., a perceptual stage
will have a different duration on each trial, jittering the
onset of the subsequent bump). To account for this,
we analyze data at the single-trial level, while taking into
account all trials of all participants simultaneously.
Because the method assumes that the cognitive processes
are the same on each trial, the topologies of the bumps
are kept constant across trials (depicted by the red arrows
in Figure 1). However, as the length of each process can
vary per trial, the durations of the flats are variable for all
participants and trials, described by gamma distributions
(depicted by the blue arrows). The HsMM-MVPA model
illustrated in Figure 1 contains five bumps, each marking
the onset of a cognitive stage. As the first stage starts with
the stimulus presentation, this model represents six
stages in total; the end of the last stage is defined by
the participant’s response.

Modeling Decision Tasks with EAMs

To decompose RTs into underlying cognitive compo-
nents, EAMs such as the diffusion decision model (DDM;
Ratcliff, 1978) are often used. The DDM is designed for
modeling data from two-choice experiments and is well es-
tablished in cognitive science (Ratcliff & McKoon, 2008).
The core idea of this method is that participants gather

evidence for certain decisions over time before they exe-
cute a response. Because this evidence accumulation pro-
cess is noisy, RTs across trials vary, and participants
sometimes make mistakes. This model has been success-
fully applied to a wide variety of tasks (e.g., Milosavljevic,
Malmaud, Huth, Koch, & Rangel, 2010; Gomez, Ratcliff, &
Perea, 2007; Smith & Ratcliff, 2004).
Because the current tasks required only very simple de-

cisions, participants’ responses were mostly correct. The
low error rates preclude the use of DDM for this data set,
and for this reason, we opted for an EAM that assumes only
a single bound (the shifted Wald model; Anders, Alario, &
van Maanen, 2016; Matzke & Wagenmakers, 2009;
Heathcote, 2004). The assumption of a single response
boundary allows modeling a decision process that is most
likely terminated by the correct response option. In
Figure 2, an example of a shifted Wald model is shown.
The red line represents the process of evidence accumu-
lation with an average drift rate v. This accumulation pro-
cess continues until a threshold B is reached, and the
response is executed. The decision time, therefore, de-
pends on both the drift rate v and the threshold value B.
Nondecision time (t0) accounts for non-decision processes
such as encoding, pre-attention and motor preparation.
Together with decision time, non-decision time comprises
observed RTs.
The parameters of a Waldmodel can be interpreted con-

cerning their relation to cognitive processing. The drift rate
value has been attributed to decision difficulty, with lower
values corresponding to harder decisions (Mulder, van
Maanen, & Forstmann, 2014; Basten, Biele, Heekeren, &
Fiebach, 2010). The threshold value is typically associated
with response caution (e.g., van Maanen et al., 2019;
Boehm, van Maanen, Forstmann, & van Rijn, 2014;
Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis,
2010). Finally, the value of the non-decision component
has been linked to enhanced attention because of stimulus
anticipation (Jepma et al., 2012) and “stimulus quality”
(Bode et al., 2018).
We will now describe two EEG experiments across

which we varied perceptual processing and decision

Figure 2. A visual representation of a shifted Wald model. The figure illustrates example data of a participant who accumulates evidence in a trial. This
noisy accumulation process is represented with the red line with a mean drift rate v and is terminated with a decision boundary, or threshold, B. The
time that is not related to the decision process such as perceptual processing and motor preparation is represented as t0, namely, nondecision time.
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difficulty. Both experiments consisted of two conditions
where different types of stimuli were used to manipulate
perceptual processing. Between experiments, we used
the same stimuli but adapted the task to vary decision
difficulty. To exclude effects of task interference between
Experiment 1 and Experiment 2 (given that we used dif-
ferent response rules with identical stimuli), two separate
experiments were conducted. Overall, assuming that
HsMM-MVPA is a versatile method for discovering cogni-
tive stages in a task, we hypothesized that (1) the topo-
logical distributions of HsMM-MVPA-identified perceptual
stage(s) will differ by stimulus type, (2) the duration of
HsMM-MVPA decision stage(s) and the topology will be
different when we manipulate task difficulty, and (3) these
differences should be consistent with nondecision time
and drift rate values in corresponding Wald models.

METHODS

Participants

In Experiment 1, 30 participants performed a simple visual
discrimination task. Data of five participants were excluded
(three because of the problems in EEG recording, one for
excessive noise in the EEG, and one for not following task
instructions), resulting in a final set of 25 participants (13
women; mean age = 24.72 years, SD = 4.49, range =
18–33 years).
In Experiment 2, 30 participants performed a more diffi-

cult visual discrimination task. Data of five participants were
excluded from the analysis (three because of a program-
ming error, one for major eye movement contamination
that could not be captured with independent component
analysis, and one for EEG malfunction), resulting in a final
set of 25 participants (16 women; mean age = 23.92 years,
SD = 4.8, range = 18–36 years).

Participants in both experiments were students of the
University of Groningen or the Hanze University of
Applied Sciences in Groningen, The Netherlands. All partic-
ipants were right-handed, had normal or corrected-to-
normal vision, and had no history of cognitive impairment
and normal color vision as assessed by the EnChromaColor
Blindness Test (EnChroma, Inc.1). Before the experiments,
participants gave written informed consent to the experi-
mental procedures, as approved by the research ethics re-
view committee of the Faculty of Arts at University of
Groningen (reference number: 62838174 for Experiment 1,
64834780 for Experiment 2), in accordance with the
Declaration of Helsinki. Participants receivedmonetary com-
pensation of 8 euros.

Task Design

In both experiments, participants were presented with
geometric shapes or with character strings. Their task
was to discriminate between different stimuli by using
one of the two randomly assigned response keys (“M”
or “N”). On the basis of stimulus type, the conditions
are labeled “Shapes” or “Characters.” As we varied the de-
cision difficulty between the two experiments, we will re-
fer to Experiment 1 as “Easy” and Experiment 2 as
“Difficult.” We will, therefore, refer to the Shapes condi-
tion of Experiment 1 as the “Easy Shapes” condition and
the Characters condition of Experiment 1 as the “Easy
Characters” condition. In line with that, the two condi-
tions of Experiment 2 will be further referred to as
“Difficult Shapes” and “Difficult Characters.”

The Easy Shapes condition was presented in two blocks.
Four shapes (circle, triangle, square, and rhombus) of four
colors (red = #ff0000, green = #55aa00, yellow = #ffff00,
blue = #0000ff ) were used as stimuli. Red–green and

Figure 3. Response mapping in all conditions. In Easy Shapes, participants were asked to discriminate between two shapes of different colors (the
color should be ignored) or based on two different colors of the shape (then the shape should be ignored). In Easy Characters, participants were
asked to discriminate between two characters—a letter or a number. In Difficult conditions, the same stimuli were used while the decision difficulty
was manipulated.
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blue–yellow colors were chosen in line with the opponent
process theory where they are considered the highest
contrasting pairs (Goldstein, Humphreys, Shiffrar, &
Yost, 2008; Hurvich & Jameson, 1957). In Block 1, two
shapes of two colors were randomly selected from the
set, and participants were instructed to respond based
on the shape of the stimulus and to ignore the color. In
Block 2, the other two shapes and colors were used, and
the task was to respond based on the color of the stimulus
and ignore the shape. We will collapse over those two
blocks in our analyses (the results of these blocks were also
analyzed separately; however, no differences were found).

The Easy Characters condition was presented in one
block. In this condition, participants were instructed to
respond whether the characters were letters or numbers.
The stimuli consisted of four random uppercase letters of
the Latin alphabet (e.g., BDRN or AENJ) or four random
digits from 0 to 9 (e.g., 3476 or 8168).

The Difficult Shapes condition was presented in two
blocks. In this condition, participants were presented with
the same stimuli as in the Easy Shapes condition; however,
the task was more difficult: They were instructed to re-
spond by considering both shape and color of the objects.
For example, if in Block 1, the stimuli were red or green
triangles or circles, the participant was instructed to press
“M” when a red circle or a green triangle was presented
and “N” for the other two stimuli (Figure 3). Thus, both
features—shape and color—had to be taken into account.
For Block 2, the task was the same—only different shapes
and colors were used.

The Difficult Characters condition was presented in one
block. In this condition, participants were presented with
the same stimuli as in the Easy Characters condition and
were instructed to discriminate between consonants, vowels,
odd numbers, and even numbers. An example of this con-
dition is illustrated in Figure 3 where the participant was
instructed to press “M” for even numbers and consonants
and “N” for odd numbers and vowels.

To summarize, we designed Shapes and Characters con-
ditions wherewe used stimulus type tomanipulate percep-
tual processing and Easy and Difficult conditions where we
manipulated decision difficulty.

Procedure

Participants were seated in front of a 21.5-in. screen with a
resolutionof 1366×768 pixels. Experiment 1, referred to as
Easy conditions, contained 480 trials: three blocks consist-
ing of 20 practice trials and 140 main trials. Experiment 2,
referred to as Difficult conditions, contained 456 trials:
three blocks consisting of 12 practice trials and 140 main
trials. The presentation of the blocks was counterbalanced
across participants.

Each block started with instructions, directly followed by
practice trials. After the experimenter ensured the task was
sufficiently understood, the experimental trials commenced.
Each trial started with a fixation dot, presented for a

duration sampled from a uniform distribution (from 1500
to 2250msec), followed by the presentation of the stimulus
that remained on the screen until one of the two response
keys (“N” or “M”) was pressed or the response deadline was
reached. In the Easy conditions, the deadline was set to
3000 msec, and in the Difficult conditions, it was increased
to 5000 msec to reflect the increased difficulty of the task.
Feedbackwas provided for 500msec (“correct,” “incorrect,”
or “late”). Between blocks, participants were given the op-
tion to take a short break. Each block took around 10 min.
In total, data acquisition for both Easy and Difficult condi-
tions lasted 1 hr, including EEG setup and instructions.

Behavioral Analysis

For the behavioral analysis, we removed practice trials and
incorrect trials. For each of the four conditions (Easy Shapes,
Easy Characters, Difficult Shapes, and Difficult Characters)
and each participant, we then excluded trials that deviated
more than 2 SDs from the mean RTs of the participant and
the condition (this preprocessing pipeline was used for all
consecutive analyses, and the qualitative results are identical
when the “outliers” are kept in the data; we used this rather
strict outlier regimen to stay in line with previous HsMM-
MVPAs).
To statistically evaluate RTs and accuracy, linear mixed-

effects models (LME models) were constructed (Bates &
DebRoy, 2004). The evaluation of models was done with
a forward stepwise fitting routine: We started with simple
models where only one predictor was included (stimulus
type or decision difficulty), and then the models with both
predictors were evaluated. Finally, the estimation termi-
nated with the full model that included the interaction be-
tween stimulus type and decision difficulty. The lmerTest R
package was used to obtain p values for fixed effects based
on Satterthwaite’s method (Kuznetsova, Brockhoff, &
Christensen, 2018). Not only fixed effects but also random
effects can potentially lead to statistical errors. To prevent
the latter, the forward fitting procedure was separately ap-
plied to random effects. Thus, we determined the maxi-
mum random effects structure allowed by the data (Bates,
Kliegl, Vasishth, & Baayen, 2015; Barr, Levy, Scheepers, &
Tily, 2013).

Evidence Accumulation Modeling

Only the RTs for correct responses were modeled because
the error rates for all conditions and all participants were, on
average, lower than 5%. In addition, trials that were marked
as outliers were not modeled, consistent with all other anal-
yses in the current paper (see Behavioral Analysis section).
The model parameters were estimated using differential
evolution Markov chain Monte Carlo algorithm (Sherri,
Boulkaibet, Marwala, & Friswell, 2019; Turner, Sederberg,
Brown, & Steyvers, 2013) as implemented in the Dynamic
Models of Choice software (Heathcote et al., 2019). A prior
probability distribution for each of the parameters was
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specified as a truncated normal distribution. The conver-
gence of samples was assessed with Gelman and Rubin’s
potential scale reduction factor (Gelman & Rubin, 1992).
To reduce the autocorrelation between different Markov
chain Monte Carlo samples, thinning was applied.
We hypothesized that different conditions might lead to

differences in the parameters of EAMs. To test this assump-
tion, we estimated all possible models where the parame-
ters drift rate (v), threshold (B), and nondecision time
(t0) differed by stimulus type, separately for the Easy and
Difficult conditions. The estimation started with the sim-
plest model, the intercept-only model, and terminated with
the most complex model, where all parameters were as-
sumed to differ per condition. All the constructed models
contained v, B, and t0 parameters. However, in the simpler
models where parameters were constrained across condi-
tions, we only estimated a single v, B, and t0 parameter.
In more complex models, we let one or more of those pa-
rameters vary by condition.
Furthermore, for each model, the Watanabe–Akaike

information criterion (WAIC) was computed (Vehtari,
Gelman, & Gabry, 2017), and WAIC values were derived
for each participant. We then calculated WAIC weights anal-
ogous to Akaike information criterion weights’ computation
procedure (Wagenmakers & Farrell, 2004) to allow for a
more straightforward interpretation of WAIC differences
in the estimated models. To account for individual variabil-
ity in the fittedmodels, we appliedmodel averaging (Miletić
& vanMaanen, 2019; Hoeting, Madigan, Raftery, & Volinsky,
1999). For each participant, the estimated values from the
models were weighted by the correspondingWAICweights.
Then, the average over all participants was calculated per
parameter (v, t0, B). For the models where parameters (v,
t0, B) did not differ per condition, the values for the differ-
ent conditions were derived from the shared value of this
parameter.

EEG Recording and Preprocessing

The EEG was recorded from 32 positions using active Ag–
AgCl electrodes (BioSemi ActiveTwo system) digitized
with a sampling rate of 512Hz. The electrodes were placed
using the International 10–20 system layout including two
“ground” channels—Common Mode Sense and Driven
Right Leg. Two horizontal and two vertical electrodes were
used to measure eye movements and blinks. Data were
post hoc referenced to the average of the mastoids.
Scalp impedance for each electrode was kept under 20
kΩ for all except four participants, for whom it was kept
under 30 kΩ.
For EEG preprocessing and analysis, the open-source

toolbox EEGLAB (Delorme&Makeig, 2004) was used along
with custom-made scripts in MATLAB (The MathWorks,
Inc.). EEG data were passed through a high-pass filter of
1 Hz and a low-pass filter of 40 Hz. Next, data were down-
sampled to 256 Hz. Manual artifact rejection was performed
on continuous data by visual inspection of the data and

rejection of data portions containing noise. On average,
3.7% of the data were removed because of artifacts. For
six participants, one or two noisy channels were removed.
Furthermore, data were decomposed with independent
component analysis to remove eye blinks and muscle arti-
facts (using EEGLAB’s runica function, which is based on a
logistic infomax algorithm; Bell & Sejnowski, 1995).
Typically, one or two components were identified to ac-
count for eye artifacts or muscle movements and were sub-
sequently subtracted from the data. The channels that were
removed were topographically reconstructed using spheri-
cal spline interpolation.

Preprocessing for HsMM-MVPA

For HsMM-MVPA, additional preprocessing procedures
were applied. First, the data was downsampled to 100 Hz
for computational trackability. Next, the data were epoched
on a trial-by-trial basis relative to the onset of the presenta-
tion of the stimuli and consecutive response. That is, the
analysis is performed on all data points of all trials between
stimulus and response. The trials that were marked as out-
liers in the behavioral analysis were excluded. Next, a base-
line from 400 msec preceding the stimulus appearance was
computed and subtracted. Only complete trials were sub-
jected to the analysis (incomplete trials appeared because
of artifact rejection). A covariance matrix was computed for
each trial and participant separately by multiplying normal-
ized data by its transpose (Portoles et al., 2018; Cohen,
2014). Next, the mean covariance for all trials for all partic-
ipantswas computed and subsequently used as input for prin-
cipal component analysis (as implemented in MATLAB’s
pcacov function). The first 10 principal components
accounting for 94.8% of the variance were retained. Finally,
the data were normalized by calculating z scores.

HsMM-MVPA

The HsMM-MVPA was applied to discover cognitive stages.
A hidden Markov model is a type of stochastic model that
connects a sequence of hidden states to a sequence of cor-
responding observations. Whereas the hidden Markov
model assumes that one observation corresponds to one
state, in the hidden semi-Markov model, several observa-
tions can be produced during a state and each of these
states, therefore, has a variable duration (Yu, 2010). In
the current application of HsMM-MVPA, principal compo-
nents extracted from the EEG signal act as observations,
and the analysis aims to find cognitive stages that are hid-
den. To identify the onsets of these stages, we search for
bumps—positive or negative deflections with a duration of
50 msec. This duration was chosen as it produces robust
results even if the actual bumps are slightly shorter or lon-
ger (Anderson et al., 2016). The process that is indicated by
a bump continues within a flat; the mean amplitude of the
signal during the “flat” is equal to zero. Together with
bumps, flats comprise cognitive stages. The duration of
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these flats was modeled with a gamma distribution with a
shape parameter of 2. The placement ofn bumps results in
n + 1 flats because of the first stage starting with a flat.

For Easy and Difficult conditions, different HsMM-MVPA
models will be constructed. The model estimation starts
with a single-bump model and increases to the number
of bumps nmax, which is the maximum number of bumps
(each taking 50 msec) that fit in the shortest observed RT.
During the estimation of an HsMM-MVPA model, two pa-
rameters of the hidden states are obtained: (1) the ampli-
tudes of the bumps thatmark the onsets of cognitive stages
and (2) the scale parameter of a gamma distribution that
describes the stage durations (the shape parameter is fixed
at 2). These parameters are estimated by taking into ac-
count the data from all trials and all participants simulta-
neously. This is performed in a way that maximizes the
match between the EEG data and the model with a stan-
dard expectation–maximization (EM) algorithm.

The fitting process starts with defining initial ampli-
tudes for the bumps and gamma distributions for stage
durations. As the convergence of the EM algorithm is sen-
sitive to the choice of a starting point (Wu, 1983) and might
end up in a local maximum, one option is to use different
random values for bump amplitudes and compare their
outputs (e.g., Portoles et al., 2018). Here, we take another
approach based on the work by Zhang, Walsh, et al. (2018).
We firstly fitted separate HsMM-MVPA models for each con-
dition with themaximum number of bumps possible (nmax)
and obtained the bump amplitudes and gamma distribu-
tions. Next, these parameters were used for models with
fewer bumps (nmax − 1) where we iteratively left out each
of the bumps of nmax. Then, all different nmax − 1 models
were compared, and the model with the best fit was se-
lected. This process was repeated until a model with only
a single bump (n1) was fitted. The idea was to find all
potential bump topologies while avoiding local maxima.
The amplitudes of the bumps obtained in this way have
been further used as inputs for subsequent HsMM-MVPA
models.

The log-likelihood of HsMM-MVPA models tends to in-
crease when more bumps are fitted, as there are more

parameters to fit the data. To avoid overfitting, we ap-
plied a leave-one-out cross-validation procedure. We esti-
mated the HsMM-MVPA model on all participants but one
and then tested the fit of this model on the left-out par-
ticipant, effectively separating training and testing of the
models. This was repeated for all participants. Finally, we
tested for how many participants the log-likelihoods of
the models with n + 1 bumps increased compared to
an n-bump model using a sign test. In this way, we eval-
uated whether a model with one additional bump out-
performed the previous model for a sufficiently large
number of participants and thus whether the additional
complexity of the model was warranted. The main rea-
soning behind this was to derive the model that general-
ized across participants (Anderson & Fincham, 2014). As
a result, the optimal number of bumps in each condition
was obtained.
For more details, a mathematical description, and code

of the HsMM-MVPA, we refer to Anderson et al. (2016).

RESULTS

Behavioral Results

Average error rates and RTs along with within-participant
standard errors (Morey, 2008) were computed for each
condition and are shown in Figure 4. The proportion of er-
rors in all conditions was found to be low (not exceeding
5%). To quantify the differences in behavioral perfor-
mance for both stimulus type and decision difficulty, we
constructed LMEs. Using a stepwise fitting procedure, we
ended upwith the same fixed and randomeffects structure
for RT and accuracy ( p< .001 for RT and p< .05 for accu-
racy): stimulus type, decision difficulty, and their interac-
tion as fixed effects; participant as a random intercept; and
stimulus type and trial as random slopes.
First, RTs were plotted against a theoretical normal distri-

bution, and as they were found to be right-skewed, a loga-
rithmic transformation was applied. Next, an LME model
with log (RT) as a dependent variable was fitted. For the
Easy conditions, stimulus type reached significance,

Figure 4. Mean RTs and error rates with within-participant standard errors for each condition.
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indicating that participants were faster when discriminating
between Easy Shapes than Easy Characters. For Difficult
Conditions, Figure 4 suggests the inverse effect of stimulus
type, but it did not reach significance. For both Shapes and
Characters, decision difficulty had a significant effect on
RTs; namely, RTs increased when the same stimuli were
presented but the decision was more difficult (for statistics,
see Table 1). In addition, for all conditions, the interaction
between stimulus type and decision difficulty was
significant.
For accuracy as a dependent variable, a binomial LME

model was fitted. For the Shapes condition, decision

difficulty had a significant effect but did not reach signif-
icance for the Characters condition. In addition, for
Difficult conditions, stimulus type had a significant effect
on accuracy. For all conditions, the interaction between
stimulus type and decision difficulty was significant.

To summarize, decision difficulty had the largest effect:
It led to significantly longer RTs for both stimulus types.
In addition, participants answered slower to Characters
than to Shapes, but only when the decision was easy.

Evidence Accumulation Results

To identify how these differences in RTs were caused by
decision and nondecision components, we fitted shifted
Wald models to RTs. Various models—starting from the
intercept-only model to the most complex model where
drift rate (v), nondecision time (t0), and threshold (B)
could differ—were compared with regard to WAIC
weights. These weights represent the probability that a
particular model is the “true” model (i.e., the model that
generated the data) under the assumption that the “true”
model is in the set of compared models (Wagenmakers
& Farrell, 2004). The quantified WAIC weights showed
that there was no clear winning model across partici-
pants. Consequently, model averaging was applied (see
Evidence Accumulation Modeling section). The resulting
weighted values are shown in Figure 5.

To test whether these values differed per stimulus type
and decision difficulty, separate LME models were con-
structed with parameter (v, t0, B) as the dependent var-
iable and participant as a random effect. The model
estimation was performed following a forward stepwise
fitting routine: It started with the simple models (stimu-
lus type or decision difficulty as the only predictor) and
terminated with the full models (main effects of Stimulus

Table 1. The Results of LME Models for log (RT) and Accuracy as Dependent Variables

Response Variable

Log (RT) Accuracy

Estimate t Value p Value Estimate z Value p Value

Reference: Easy Shapes

Intercept 6.25 168.73 <.001 4.78 22.28 <.001

Stimulus type 0.14 3.88 <.001 −0.27 −1 .31

Decision difficulty 0.47 8.99 <.001 −1.27 −4.63 <.001

Stimulus Type × Decision Difficulty −0.18 −3.51 <.001 0.82 2.47 <.05

Reference: Difficult Characters

Intercept 6.68 143.34 <.001 4.06 15.2 <.001

Stimulus type 0.04 1.08 .28 −0.55 −2.35 <.05

Decision difficulty −0.28 −4.29 <.001 0.44 1.19 .23

Figure 5. The average weighted values (weighted by the
corresponding WAIC weights) are presented for each condition and for
each of the Wald model parameters: drift rate, nondecision time, and
threshold.
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type and Decision difficulty as well as their interaction as
predictors). To compare these models, we computed
Bayes factors (BFs) with the BayesFactor package
(Morey et al., 2015). BF represents relative evidence in
favor of null and alternative hypotheses provided by
the data (Kass & Raftery, 1995). In terms of model com-
parison, reported BFs indicate whether the data favor a
model with an effect over a model with no effect, the
intercept-only model.

For the drift rate, the BFs provided strong evidence for
themodelwith decision difficulty (see Table 2 for statistics).

This model outperformed all other models: versus model
with stimulus type, BF = 65762.5 (±0.03%); versus
“main-effects model” of stimulus type and decision diffi-
culty, BF = 4.23 (±0.9%); and versus “full model” with
main effects of stimulus type and decision difficulty and
their interaction, BF = 3.59 (±1.11%). For the threshold
parameter, BFs provided evidence against models with
stimulus type and decision difficulty. For the nondecision
time, BFs provided strong evidence for the model with
stimulus type. This model outperformed all the other
models except for the “main-effects model”: versus model

Table 2. BFs for the Estimated Wald Parameters (Drift Rate, Threshold, and Nondecision Time)

Predictors

Response Variable

Drift Rate (v) Threshold (B) Nondecision Time (t0)

Stimulus type 0.23 ± 0.03% 0.21 ± 0.03% 3791.48 ± 0%a

Decision difficulty 15227.53 ± 0%a 0.23 ± 0.03% 0.63 ± 0%

Main-effects model (stimulus type + decision difficulty) 3595.3 ± 0.9% 0.05 ± 1.86% 3259.01 ± 9.4%

“Full model” (Stimulus Type × Decision Difficulty) 4245.34 ± 1.11% 0.01 ± 8.82% 1004.02 ± 4.16%

Reported BFs indicate relative fit by comparing these models to an intercept-only model.

a Indicate the models with the highest BFs.

Table 3. The Results of Model Comparison for the Estimated HsMM-MVPA Models

General Model Bump 1 Bump 2 Bump 3 Bump 4 Bump 2 + Stage 3 Sum of Separate Models

Easy Shapes and Easy Characters

General model 0 8 5 6 4 2 2

Bump 1 17 0 8 9 6 4 3

Bump 2 20 17 0 13 14 7 7

Bump 3 19 16 12 0 11 7 5

Bump 4 21 19 11 14 0 8 5

Bump 2 + Stage 3a 23 21 18 18 17 0 8

Sum of separate models 23 22 18 20 20 17 0

General Model Bump 1 Bump 2 Bump 3 Bump 4 Stage 4 Sum of Separate Models

Difficult Shapes and Difficult Characters

General modela 0 13 9 10 13 12 13

Bump 1 12 0 10 14 13 12 15

Bump 2 16 15 0 14 17 16 15

Bump 3 15 11 11 0 16 15 16

Bump 4 12 12 8 9 0 6 11

Stage 4 13 13 9 10 19 0 14

Sum of separate models 12 10 10 9 14 11 0

The reported values express the number of participants for whom the model improved (row compared to column). The numbers in bold indicate a
significantly better model prediction (as determined by a sign test, p < .05).

a The best models for Easy and Difficult conditions.

518 Journal of Cognitive Neuroscience Volume 33, Number 3



with decision difficulty, BF = 6056.83 (±0%); versus
“main-effects model,” BF = 1.16 (±9.4%); and versus “full
model,” BF= 3.78 (±4.16%). Although bothmodels—the
model with stimulus type and the “main-effects model”—
describe the data well, we were inclined to proceed with
themodel with stimulus type as it has the highest BF value
compared to the intercept-only model and is the more
parsimonious model.
To summarize, shifted Wald models were fitted to the

RT data from all conditions. Consistent with our hypoth-
esis, we found evidence that decision difficulty affected
the drift rate of the decision-making process and that
stimulus type affected the nondecision time.

HsMM-MVPA Results

To gain more insight into the processing stages that com-
prise decision and nondecision processes, the HsMM-
MVPA was applied to all conditions separately to find
the optimal number of stages. For all conditions, a model
with four bumps and five stages accounted best for the
data. Next, to test whether the discovered cognitive stages
differed per stimulus type, for Easy and Difficult condi-
tions, a range of HsMM-MVPA models were constructed
in which bumps and stage durations were shared in differ-
ent ways. Themodel estimation was performed with a for-
ward stepwise fitting routine and included a general
model where we hypothesized that scalp topologies and
stage durations for both conditions are the same, models
where we varied each consecutive bump between condi-
tions, and, finally, completely separate models for the two
conditions. Themodel fits were compared for each partic-
ipant, and a model was preferred when the fit improved
for a significant number of participants compared to a
simpler model. Table 3 lists the results.

For the Easy conditions, the model where Bump 2 varied
per stimulus typehad thehighest average log-likelihoodover
participants, except for the completely separate models. As
a cognitive stage in an HsMM-MVPA model is represented
in both bump topology and stage duration, the duration
of the consecutive stage (Stage 3) was also varied. The
resulting model in which we varied both Bump 2 and the
duration of Stage 3 significantly outperformed all other
combinedmodels and was not outperformed by any other
model. Although this was also the case for completely
separate models for each condition, these models require
more parameters. We therefore decided to proceed with
the more parsimonious model, in which only Bump 2 and
Stage 3 were different per stimulus type.

Figure 6. The topographical representations and temporal locations of the resulting HsMM-MVPA stages plotted per condition. Our cognitive
interpretation of these stages is described in the Functional Interpretation of HsMM-MVPA Stages section.

Figure 7. The average stage durations with standard errors per
condition from the HsMM-MVPA models.
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For the Difficult conditions, we also estimated models
where each bump was allowed to be different between
conditions. However, none of thesemodels outperformed
the general model (Table 3). Because we observed a differ-
ence in duration of Stage 4 for the different stimulus types
in the initial models, we complemented the analysis with a
model where Stage 4 was varied. However, this model also
did not outperform the general model.

The topographical representations and stage onsets of
the final models are presented in Figure 6, and the average
duration of these stages and the standard errors are pre-
sented in Figure 7. As Figure 6 suggests, even the topologies
resulting from different analyses were highly correlated,

suggesting robustness of the method (Bump 1: Easy–
Difficult = 0.84; Bump 2: Easy Characters–Easy Shapes =
0.81, Easy Characters–Difficult Shapes/Characters = 0.96,
Easy Shapes–Difficult Shapes/Characters = 0.76; Bump 3:
Easy–Difficult = 0.97; Bump 4: Easy–Difficult = 0.76).
Finally, to investigate the effect of Decision difficulty,

the discovered HsMM-MVPA stages were compared
between Easy and Difficult conditions. The durations of
the resulting stages were visually inspected (Figure 7),
and the stages that seemed to be different for decision
difficulty—Stage 4 and Stage 5—were subjected to statis-
tical analysis. Thus, an LME model with stage durations as
a dependent variable, decision difficulty as a predictor,

Table 4. The Slope Values for the Regression Models with Wald Durations Predicted by HsMM-MVPA Stages

Wald Decision Time as a Response Variable Wald Nondecision Time as a Response Variable

Predictors Slope Value Predictors Slope Value

Stage 3 + Stage 4 + Stage 5 0.983a Stage1 + Stage 2 1.032a

Stage 3 + Stage 4 1.114 Stage 2 + Stage 3 0.796

Stage 2 + Stage 3 + Stage 4 + Stage 5 0.845 Stage 1 + Stage 2 + Stage 5 0.688

Stage 1 + Stage 2 + Stage 3 + Stage 4 0.837 Stage 3 1.315

Stage 4 + Stage 5 1.25 Stage 1 + Stage 2 + Stage 3 0.588

Stage 4 1.384 Stage 4 0.383

Stage 1 + Stage 2 + Stage 3 1.58 Stage 4 + Stage 5 0.374

Stage 2 + Stage 3 2.114 Stage 3 + Stage 4 0.34

Stage 1 + Stage 2 2.843 Stage 3 + Stage 4 + Stage 5 0.313

Stage 3 3.422 Stage 2 + Stage 3 + Stage 4 + Stage 5 0.274

Stage 5 4.247 Stage 1 + Stage 2 + Stage 3 + Stage 4 0.268

Stage 2 5.3 Stage 5 1.743

Stage 1 6.115 Stage 1 2.2

These values are ordered by their absolute difference from a slope of 1 (starting from the model with the slope closest to 1).

a The values significantly not different from 1 ( p > .05).

Figure 8. Comparison of the durations from HsMM-MVPA and Wald modeling. The points in the figure indicate the values for each participant and
condition and are supplemented by a diagonal line.
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and participant as a random intercept was fitted. To assess
the relative fit of these models, BFs were computed
(BayesFactor package; Morey, 2008). BFs provided strong
evidence for the effect of decision difficulty for Stage 4
(1.9 × 1016 ± 0%) and for Stage 5 (3.5 × 1019 ± 0%).
Not only the duration of Stage 4 and Stage 5 but also
the topology of the Bump 4 located between these stages
varies per decision difficulty (Figure 6). This bump is char-
acterized by higher amplitude for Easy conditions with
the most prominent central positivity.
To summarize, for all conditions, an HsMM-MVPA

model with five stages accounted best for the data. For
the Easy conditions, the HsMM-MVPA demonstrated that
Bump 2 and the duration of Stage 3 varied by stimulus
type, whereas the other stages were shared. For the
Difficult conditions, no stages were found to vary by stim-
ulus type. When comparing Easy and Difficult conditions,
the duration of Stage 4 and Stage 5 and the topology of
Bump 4 located between them were found to vary by de-
cision difficulty.

Identifying Evidence Accumulation Stages with
HsMM-MVPA

We hypothesized that the stages discovered with the
HsMM-MVPA method should be consistent with the re-
sults of the EAMs. To this end, we compared the duration
of processing stages of the HsMM-MVPA models with the
results of the Wald models. We assume that the HsMM-
MVPA method decomposes the Wald decision time
(based on drift rate and threshold parameters) and non-
decision time into a more detailed sequence of process-
ing stages. This suggests that a particular sum of stage
durations in the HsMM-MVPA model should correspond
to either the Wald decision or nondecision durations. If
this assumption holds, a regression model fitted to the
corresponding durations in HsMM-MVPA and Wald
should have a slope not different from 1.
To test this assumption, we first computed the dura-

tion of the decision process in Wald model by dividing
the threshold value (B) by drift rate (v). The nondecision
time is simply given by the nondecision parameter t0.
Next, linear regression models with an intercept of 0
were fitted to the durations. In these models, Wald deci-
sion or nondecision time acted as the dependent vari-
able, whereas various HsMM-MVPA stages and their
combinations were used as predictors. If the slope value
for these models is not different from 1, it can be inferred
that the methods produce the same values.
For the Wald decision time, various regression models

were constructed with a single HsMM-MVPA stage or a
sum of consecutive stages as predictors (for an overview
of the values from all estimated models, see Table 4). To
test which of these stages represent the Wald decision
time, the resulting models were compared to a restricted
model where the slope value is 1. Next, the F statistic and
corresponding p values were computed for these

models. The model with the combined duration of the
HsMM-MVPA Stages 3, 4, and 5 was the only model with
a slope that was not different from 1 ( p > .05). Figure 8A
illustrates the clear relationship between the duration of
these stages and the duration of Wald decision time.

The Wald nondecision time should logically be repre-
sented in the remaining two HsMM-MVPA stages: Stage 1
and 2. To test this assumption, various regression models
were fitted for Wald nondecision time (Table 4). In line
with our hypothesis, the regression model with the com-
bined duration of HsMM-MVPA Stages 1 and 2 was the
only model with a slope not different from 1 ( p > .05).
The Wald nondecision time along with cumulative first two
stages from HsMM-MVPA are represented in Figure 8B. It
should be noted that, although the two methods produce
similar findings for the duration of nondecision time, in the
Wald models, these processes have a larger variation be-
tween participants.

To summarize, there is a clear correspondence be-
tween the decision times from the two methods, where
the decision time of the EAMs corresponded to the last
three stages of the HsMM-MVPA. Furthermore, the non-
decision time for the EAMs corresponded to the first two
stages.

Functional Interpretation of HsMM-MVPA Stages

In all four conditions, we found evidence for the exis-
tence of five cognitive stages. The next step is to inter-
pret those stages in terms of the underlying “cognitive
processes.” The EAMs suggest that Stages 1–2 are percep-
tual, whereas Stages 3–5 concern decision-making. Here,
we will review the literature to obtain independent evi-
dence for such a functional interpretation of the discov-
ered stages.

The first bump of all conditions has an average onset of
around 100 msec and is characterized by central–parietal
negativity (Figure 6). These findings resemble a standard
ERP N1 component that has been largely associated with
attention (Luck, 2005; Luck, Woodman, & Vogel, 2000).
Stage 1 is, therefore, most likely a “preattention” stage.
Although Bump 2 was found to be different between
Easy Shapes and Easy Characters, on close inspection, it
appears that this bump has very similar topological distri-
butions in all conditions, with different amplitudes. With
its average onset of around 200 msec and prominent
frontal positivity (most salient for the Difficult condi-
tions), the bump resembles a P2 component. Since its
discovery, this component has been largely associated
with attention (e.g., Miltner, Johnson, Braun, & Larbig,
1989; Rugg, Milner, Lines, & Phalp, 1987) and more re-
cently with initial word processing (Lee, Liu, & Tsai,
2012; Mangels, Picton, & Craik, 2001). This provides evi-
dence for the interpretation of Stage 2 as the stimulus
processing stage. Taken together, this fits the interpreta-
tion of these stages as nondecision stages of the EAMs.
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In its frontocentral negativity and average onset, Bump
3 is similar to the FN400 component that has been widely
accepted to refer to familiarity-driven recognition (Paller,
Voss, & Boehm, 2007; Curran, 2000; Rugg et al., 1998). In
an alternative approach, this frontal negativity effect
was linked to a decisional account (Hayama, Johnson,
& Rugg, 2008; Dobbins & Han, 2006). The frontal nega-
tivity and average onset of Stage 3 are compatible with
both interpretations. Thus, if we accept the familiarity in-
terpretation of the frontal negative component, we
would assume that, during this stage, the participants
were recognizing the patterns in the stimuli (e.g., shape
or color). If we accept the decisional interpretation, we
would assume that this activity arises from a number of
internal decisions participants had to make. The current
findings cannot arbitrate between these different interpre-
tations; however, given the current task, we tentatively
propose the interpretation of this stage as familiarity
stage.

In both the Shapes and Characters conditions, the last
two stages (Stage 4 and Stage 5) were found to vary in
their duration by decision difficulty. The largest differ-
ence was represented in Stage 4—being significantly lon-
ger when the decision was more difficult. In addition,
Bump 4 that terminated this stage had a different topol-
ogy with a more positive-going waveform across the scalp
when the decision was easier. We, therefore, interpret
Stage 4 as the core decision-making stage in which the
details of the stimulus are recognized and mapped onto
a response. The last stage then represents response exe-
cution. The differences in the duration of this stage were
also statistically significant, albeit in the opposite direc-
tion: being significantly shorter when the decision was
more difficult. As response mapping for Easy and
Difficult conditions was identical, we assume that partic-
ipants started preparing the response execution while
making decision in Difficult conditions (Stage 4), leading
to a shorter response execution stage. Taken together,
this fits the interpretation of the last three stages (Stages
3, 4, and 5) as decision stages of the Wald model, where
we should note that decision-making includes motor
execution.

Although our functional interpretation of the underly-
ing cognitive processes was based on the ERP literature,
there is a striking similarity between the discovered
stages and stages reported in previous HsMM-MVPA pa-
pers, providing a form of cross-validation. For example,
the first two stages were similar to the first two stages
in Anderson et al. (2016) and Zhang, Walsh, et al.
(2017, 2018). In these studies, the cognitive tasks re-
quired more complex decision-making, suggesting that
these two initial stages represent relatively low-level stim-
ulus processing, in agreement with the current interpre-
tation as nondecision stages. In addition, in Zhang, Borst,
et al. (2017), the interpretation of the stages was consis-
tent with a computational cognitive model developed in
the ACT-R cognitive architecture (Anderson, 2007).

Similar to perceptual stages, the decision stages (Stages
3–5) were comparable in brain topologies and temporal
onsets to results of earlier HsMM-MVPA studies. For ex-
ample, Stage 3 in our study—interpreted as a familiarity
stage—resembles the familiarity stage discovered in an
associative recognition task (Borst & Anderson, 2015).
The last two stages labeled “decision” and “response”
are similar to the corresponding stages from Anderson
et al. (2016). Altogether, this suggests robustness of the
findings and cognitive stage interpretation in the current
study.

DISCUSSION

The goal of the current paper was to establish evidence
for HsMM-MVPA (Anderson et al., 2016) as a method ca-
pable of parsing a cognitive task into meaningful stages.
This question was addressed by designing four condi-
tions that varied in perceptual processing and decision
difficulty and complementing the HsMM-MVPA with
EAMs. EAMs provide insights into cognitive processing
by decomposing RTs into decision and nondecision pro-
cesses. In turn, the HsMM-MVPA method allows us to
zoom into these processes by finding a range of underly-
ing processing stages. The simplicity of the designed
tasks, the experimental manipulations, and the informa-
tion obtained employing EAMs allowed us to test whether
the detection of the stages and their cognitive interpreta-
tion are valid.
First, we demonstrated that the manipulations in stim-

ulus type and decision difficulty led to significant differ-
ences in behavior, with the largest differences in RTs
when a decision was more difficult. In addition, in the
Easy conditions, participants were slower to respond to
Characters than to Shapes. Second, to quantify the dura-
tion of decision and nondecision components, RTs were
decomposed with EAMs. We found two main effects:
Nondecision time was longer for Characters than for
Shapes, and drift rate was higher for Easy decisions than
for Difficult decisions. This matches previous studies that
demonstrated that lower drift rate values express difficulty
in the decision (e.g., Turner, van Maanen, & Forstmann,
2015; Donkin & van Maanen, 2014; Basten et al., 2010).
Specifically, some studies that manipulate decision diffi-
culty by increasing the set of response alternatives found
that this led to lower drift rates (Anders, Riès, van Maanen,
& Alario, 2015; van Maanen et al., 2012). This manipulation
seems comparable to our experimental design, where the
number of stimulus–response mappings varied between
easy and difficult choices.
To discover the processing stages underlying these com-

ponents, theHsMM-MVPAwas applied. For all conditions, a
model with five stages accounted best for the data. We
found two main effects: In Easy conditions, the topology
of Bump 2 and the duration of the consecutive stage varied
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by stimulus type, and the topology and duration of the last
two stages varied by decision difficulty. The largest differ-
ence in decision difficulty was represented in Stage 4,
which was significantly longer when decisions were more
difficult.
The experimental manipulations in stimulus type and

decision difficulty were reflected in both HsMM-MVPA
and EAMs. Whereas EAMs allowed us to quantitatively as-
sess the effects of these manipulations by decomposing
RTs, HsMM-MVPA uncovered the cognitive stages that
cause these differences. To explore the relationship be-
tween the results of the HsMM-MVPA method and the
EAMs in more detail, we compared their respective deci-
sion and nondecision durations. There was a clear consis-
tency between the methods: We found an almost perfect
correspondence between the duration of Stages 3–5 of
the HsMM-MVPA method and the decision time of the
EAMs. Not only was this effect present on the means, but
bothmethods captured the variability in decision durations
for each condition and participant in a similar manner. On
the basis of the literature, these HsMM-MVPA stages were
interpreted as familiarity, decision, and response. Note that
thismeans thatmotor execution is part of the decision pro-
cess estimated by the EAMs. Althoughmotor processes are
typically thought to be part of the nondecision time, there
is increasing evidence that motor (preparation) is part of
the decision process itself (e.g., Spieser, Servant,
Hasbroucq, & Burle, 2017; Thura & Cisek, 2014, 2016).
Consequently, the nondecision component in EAMs

was represented in the first two HsMM-MVPA stages.
However, here the connection was less strong: The
EAMs reported a much higher variance of these stages
than the HsMM-MVPA method, and although the EAMs
showed a difference in nondecision time between stimu-
lus types, this difference was not present in the HsMM-
MVPA stages. If one assumes that the conclusions of the
HsMM-MVPA approach are correct, one would conclude
that EAMs overestimate the variability in nondecision time.
One may suspect that this is the case because the RTs that
are being modeled not only reflect underlying cognitive
processes but also are influenced by alternative processes
such as motor planning (Walsh et al., 2017; Haith,
Pakpoor, & Krakauer, 2016). In addition, recent studies
demonstrated that RTmeasures are biased and context de-
pendent (Wong, Goldsmith, Forrence, Haith, & Krakauer,
2017; Wong, Goldsmith, & Krakauer, 2016). Because the
EAMs that we used here are fully dependent on the RT
measures, this variation is spread to all stages. However,
the HsMM-MVPA method uses the ongoing EEG and can
attribute this variation to the actual stages that are influ-
enced. In terms of cognitive interpretation, this might
mean that the early nondecision processes such as atten-
tion and stimulus encoding are biologically defined mech-
anisms that are very stable across different tasks and
participants—early ERP components are also very stable
typically—whereas the decision stages are more context
dependent.

Alternatively, it might also be that the HsMM-MVPA un-
derestimates the variation in nondecision time duration
and attributes all variability to the stages that are linked
strongest to overall RT (cf. Walsh et al., 2017). However,
given the very small standard errors on the duration of
the early perceptual stages, we think this explanation is
less likely. Another possible explanation could be that
HsMM-MVPA does not capture low-level visual processing
because of limitations in its spatial resolution and the fact
that EEG only measures the top levels of the cortex.
However, we believe this to be unlikely for two reasons:
First, a similar analysis on MEG data—which provides a
higher spatial resolution—resulted in equally stable per-
ceptual stages with low variability (Anderson et al., 2018).
Second, recent studies reported a high correlation be-
tween EEG and functional magnetic resonance imaging
activations in primary visual cortex (V1) concluding that
EEG can detect changes in V1 (Im, Gururajan, Zhang,
Chen, & He, 2007; Di Russo, Martínez, Sereno, Pitzalis,
& Hillyard, 2002).

Thus far, we have presented functional interpretation
of the HsMM-MVPA stages based on the existing ERP lit-
erature. Although there is a striking similarity in the dis-
covered stages across different HsMM-MVPA studies, it is
a continuing challenge to establish a robust way for inter-
preting these findings. One of the suggested solutions is
to develop a process model that can guide the functional
interpretation of the stages (Anderson et al., 2016).
Moreover, in the past, intracranial EEG and MEG were
used to obtain better spatial resolution (Anderson
et al., 2018; Zhang, van Vugt, et al., 2018). This allowed
for observing distinct brain regions that were activated
during a particular cognitive stage and, consequently, a
more precise interpretation. Another approach was to as-
sociate the discovered processing stages with connectiv-
ity networks (Portoles et al., 2018), providing additional
information on the processes in the stage.

Conclusion

With this study, we have demonstrated the value of the
HsMM-MVPA as a method to detect detailed cognitive
stages in a task. On a more general level, the combination
of the HsMM-MVPA models and EAMs allowed us to ro-
bustly answer the question “What are the stages people
go through when they perform simple discrimination
tasks?” The EAMs helped us to quantify the decision
and nondecision components underlying the task perfor-
mance, whereas the HsMM-MVPA method provided us
with a detaileddivisionof these components intoprocessing
stages. Numerous theories have modeled the performance
on different tasks starting from perceptual processing to re-
sponse executionwith a top–down strategy.We suggest that
HsMM-MVPA can inform the development of such process
models as it derives the stages directly from EEG data in the
opposite, bottom–up manner.
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Furthermore, we would like to suggest that the analysis
of simple tasks can be potentially used to interpret more
complex tasks that require the involvement of higher cog-
nitive processes. At present, a range of complex tasks was
analyzed with the HsMM-MVPA method applied to EEG.
These tasks included oddball paradigm tasks (Walsh et al.,
2017), associative recognition (Anderson et al., 2016), visual
working memory task (Zhang, van Vugt, et al., 2018), and
others. Although in each of these tasks certain cognitive
stages were detected, it remains difficult to integrate these
findings and to create basic profiles of cognitive stages.
Although the stages we discovered might be specific to our
tasks, given how similar these stage definitions are to previ-
ously published stages (e.g., Anderson et al., 2016), it seems
likely that they can be used as the starting point for creating a
library of neural signatures associated with certain cognitive
processes.
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