
Vol.:(0123456789)

Public Choice (2021) 188:221–239
https://doi.org/10.1007/s11127-020-00825-2

1 3

Expressive voting, graded interests and participation

Dominik Klein1,2 

Received: 11 November 2019 / Accepted: 23 May 2020 / Published online: 16 June 2020 
© The Author(s) 2020

Abstract
I assume that voters mark ballots exclusively to express their true preferences among par‑
ties, leaving aside any considerations about an election’s possible outcome. The paper then 
analyzes the resulting voting behavior.In particular, it studies how effective different voting 
systems such as plurality rule, approval voting, and range voting are in fostering high turn‑
out rates of such expressive voters.

Keywords Expressive voting · Voting theory · Approval voting · Range voting · Issue 
voting · Spatial voting · Directional voting · Proximity voting

1 Introduction

In reasoning about elections, much analysis builds on a simple question: why do people 
vote the way they do? A major received answer to that question invokes the election’s out‑
come. Briefly put, the instrumental account of voting stipulates that rational voters cast 
their votes in order to render the election’s expected outcome as preferable as possible. 
Such instrumental analysis of voting has been employed successfully to explain a number 
of observed patterns, for instance concerning the expected number of parties in a given 
political system (Duverger 1959). However, the account also has some shortcomings. In 
particular, as Downs (1957) observed, it cannot satisfactorily answer why voters would 
participate in large scale elections at all.1

A second framework fills that lacuna. Often, voting behavior is not guided by the elec‑
tion’s possible outcome. Rather, we may choose a certain option because we judge it ethi‑
cally correct, attractive, fair, in line with our general political convictions, or simply to 
cohere with our values and preferences. In short, in the perspective of expressive voting, 
utility is derived directly from the act of expressing one’s preferences, rather than from any 
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1 The argument, briefly, goes as follows. The chances of making a difference in the outcome of a large 
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considerations about possible outcomes (Brams and Fishburn 1978, 2007; Brennan and 
Lomasky 1993).

In the present paper, we explore some consequences of the expressive take on voting, 
mainly in relation to the phenomenon of abstentions. Within expressive voting, abstentions 
are not explained by the cost of voting. Rather, abstentions occur if an empty ballot is the 
best available expression of a voter’s preferences. We compare three voting systems, plu‑
rality rule, approval voting, and range voting, with respect to their propensity for creating 
high voter turnout.

In what follows, we will build a formal model of expressive voting, within which we 
assume that voters’ preferences range over an agenda of issues. Parties then will be evalu‑
ated by their attitudes towards the different agenda items. A similar, topic‑based perspec‑
tive on voting has been assumed in two recent papers by Aragones et al. (2011) and Dean 
and Parikh (2011). Within our discussion, we make explicit how those frameworks fit 
within the current approach.

The first of them, the paper by Aragones et al. (2011), is related to our theme of voter 
participation. It addresses the propensities for various voting systems to promote high turn‑
outs among expressive voters. We are sympathetic to their general approach and adopt a 
similar underlying framework. However, we raise various criticisms of their conceptualiza‑
tion of approval voting and the resulting comparison of voting systems. Responding to that 
criticism, we offer an alternative conceptualization of approval voting and then use it to 
compare expected voter participation within different voting systems.

The remainder of this paper is structured as follows. In Sect. 2, we introduce our gen‑
eral model of expressive voting over an agenda consisting of various items. In Sect. 3, we 
then present Aragones et al. (2011)’s analysis of approval voting, before raising a criticism 
of that framework in Sect. 4. We then proceed to introduce our own conceptualization of 
voters’ behavior under three voting methods, plurality, approval and range voting (Sect. 5), 
and compare them with respect to expected voter turnouts (Sect. 6). All proofs and calcula‑
tions are provided in the “Appendix”.

2  The model

In this section we present our basic electoral model. The central object of concern is a 
finite agenda of topics or issues for the upcoming election, denoted by A = {1… n} . We 
assume the agenda items to be propositions that the individual parties and candidates can 
either endorse or oppose. Additionaly, we fix a set C of parties or candidates.

Each voter is represented by a vector � ∈ [−1, 1]n , representing her positions on the 
various topics. The intended reading is that vi ∈ [−1, 1] , the i‑th entry of � , is the degree 
to which voter � supports the proposition underlying issue i, where +1 stands for total sup‑
port and −1 for total opposition to the statement in question. Notably, we allow voters to 
have positions anywhere in [−1, 1] in order to allow for uncertainty about the right course 
of action, or to mirror graded degrees of interest in the different topics. The only case we 
exclude are universally disinterested voters. Thus, we assume that � ≠ �.

As with voters, each party is characterized by its positions on the various issues of con‑
cern A = {1,… , n} . Unlike voters, though, we assume parties to have extremal positions 
on each topic. That is, they are represented by vectors in {−1, 1}n . Briefly, that assumption 
has two different justifications. Firstly, parties are identified with the policies they would 
implement if elected. We assumed the individual agenda items to be propositional, thus 
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they only can be implemented or not implemented. Of course, a party could break some of 
its promises and act differently to what they claimed prior to Election Day. Yet, any policy 
choice will either implement some agenda item i or not. Thus, no space for graded judg‑
ments is available, but parties eventually will have to decide for or against implementing 
any particular item on the agenda. Secondly, Aragones et  al. (2011) argue that political 
discourse moves parties to extreme positions. In an attempt to position themselves on the 
political scale and to stand out from their opponents, they ultimately will have to take a 
clear position on each topic.

For notational convenience, we will use the letter � in different forms to denote parties 
or candidates, whereas � and all of its variants denotes voters. Bold letters always refer to 
vectors, while their entries are denoted by italics, for example � = ⟨v1 … vn⟩.

Finally, we define the three voting systems we study: plurality rule, approval voting and 
range voting. In line with the underlying intuitions of expressive voting, our main empha‑
sis lies on the possible ballots a voter can choose amongst, rather than the outcome of an 
election.

Under plurality rule, each voter can vote for a single candidate � ∈ C . The candidate 
with the most votes then wins the election. The set of possible ballots hence are 

Under approval voting, each voter selects any subset of candidates of which they 
approve. Again, the candidate receiving the most approval wins the election. Thus, the 
set of ballots are 

Range voting, finally, refers to a family of related procedures, sometimes also going 
by the name of score voting or majority judgment (Fishkin 1997; Balinski and Laraki 
2010). In range voting, a fixed set of grades g1,… , gk ∈ ℝ is provided that the voters 
use to assess candidates.2 Depending on the exact formulation, the candidate with the 
highest average or median grade then wins the election. The set of admissible ballots 
thus is 

Clearly, the set of ballots available in approval voting is a superset of that available under 
plurality rule. Hence, within expressive voting, abstentions under approval voting should 
be less frequent that under plurality rule.

To determine voting behavior, we need to specify how an expressive voter � chooses 
among her available ballots. That is, we need to explicate the utility � gains from the differ‑
ent ballots, which depends on her own standpoint as well as the various parties’ positions. 
However, we will not provide any specific utility‑function u ∶ F∗

→ ℝ for ∗∈ {M,A,R} 
here. Rather, we state a condition that every reasonable payoff function should satisfy 
and that is sufficient to determine the voter’s choice. We present the condition used by 
Aragones et al. (2011), before introducing our own framework.

FM ∶= {{�} ∣ � ∈ C} ∪ {�}.

FA ∶= {J ∣ J ⊆ C}.

FR ∶= {f ∣ f ∶ C → {g1,… , gk}}.

2 Unlike ranked voting methods such as Borda Count, no structural requirements limit how often each vote 
can be assigned.
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3  Voting decisions in Aragones et al.

Aragones et  al. (2011) offer an analysis of the first two voting rules introduced above, 
plurality rule and approval voting. The core principle within their approach is that 
a voter will prefer a party that is closer to her own position to a party that is further 
away. To make this precise, we measure distances in [−1, 1]n in the Euclidean distance: 
dist(x, y) =

√∑
(xi − yi)

2 . Aragones, Gilboa and Weiss then define the following choice 
rules:

Rule (Aragones et al.-plurality) Under plurality rule, voter � votes for the candidate 
that is closest to her and abstains if the empty ballot � is closer than any of the candidates. 
In other words, � chooses the ballot �m ∈ FM that is closest to her own standpoint in the 
Euclidean distance. Formally speaking,

For approval voting, the above rule must be extended to the set of approval ballots. To that 
end, Aragones et al. represent every approval set �J with its arithmetic mean3 1

�J�
∑

j∈J �
j , 

leading to the following decision rule:
Rule (Aragones et  al.-approval) Under approval voting, voter � chooses the ballot 

�a ∈ FA that is closest to her own standpoint in the Euclidean distance. Formally, 

Building on that framework, Aragones et al. show two results, both related to the question 
of when voters participate in an election. Note that within approval voting, a voter abstains 
only if the corresponding position vector � is closer to her than any other possible ballot. 
That is, abstentions are not caused by an external cost, as in Downs’ analysis, but by the 
fact that the voter fails to find any alternative that is more appealing. The central results of 
Aragones et al. compare the two voting systems with respect to their potential for generat‑
ing a high level of electoral involvement, measured by the number of abstentions. The first 
result studies a best‑case scenario, while the second analyzes a case wherein parties’ posi‑
tions are absolutely uncorrelated. Both results confine themselves to situations when voters 
are fully opinionated, i.e., � ∈ {−1, 1}n.

Theorem 1 (Theorem 1 of Aragones et al. 2011) 

 (i) Under approval voting, four strategically positioned parties are sufficient to ensure 
that no fully opinionated voter abstains

 (ii) Under plurality vote, the number of parties necessary to ensure that no fully opinion-
ated voter abstains is exponential in the number n of agenda items.

Theorem 2 (Theorem 2 of Aragones et al. 2011)
Assume that the agenda consists of n topics and we place n parties randomly on that 

agenda (i.e., for every party we have a fair lottery over the 2n possible positions). As 

�m = argmin�∈FM dist(�, �).

�a = argmin�J∈FA dist

(
�,

1

|J|
∑
�∈J

�

)
.

3 To facilitate our presentation, we set 1

���
∑

j∈� p
j ∶= � . Thus, the empty approval set is represented by the 

zero‑vector.
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n → ∞ , the probability that a fully opinionated voter abstains in such a setting goes to 1 
under plurality rule and to 0 under approval voting.

Hence, approval voting is judged categorically better than plurality voting in prevent‑
ing voter abstentions. Later, we analyze the same cases within our framework, arriving 
at partially conflicting findings.

4  A shortcoming of Aragones et al.’s take on approval voting

While we are sympathetic to Aragones et al.’s general approach and their treatment of 
plurality rule, we identify a conceptual shortcoming within their treatment of approval 
voting. That shortcoming is then taken to motivate our alternative account, which is pre‑
sented in the following section.

By its underlying assumptions, expressive voting is blind to any possible outcome of 
an election, as voters obtain their utility straight from the act of submitting their ballots. 
However, we maintain that some mild consistency requirement between expressed con‑
sent and electoral outcomes is in order. We take the following to be an uncontroversial 
desideratum.

Unanimity desideratum In elections wherein all voters share exactly the same prefer‑
ences, and thus submit the same ballots, any single voter should approve of the resulting 
outcome.

As we will show, Aragones et al.’s approach can violate the desideratum maximally, at 
least if the election is assumed to have a single winner. In short, we will show that a voter 
may end up approving exactly of those parties she prefers least. Accordingly, if everybody 
voted the same way, the winner would be a party the voter maximally dislikes, thus violat‑
ing the unanimity desideratum.

Example 1 (below) constructs a situation wherein that conclusion is true. The gist of 
the example is that a moderate voter � ’s position may happen to be exactly the average of 
two extremist parties—even though every moderate party is closer to her than each of the 
extremists; see Fig. 1 for an illustration. Under the above semantics of approval voting, � ’s 
approval set would consist of precisely the two extremist parties. Now if every voter had 
the same preference as � , all votes would go to the two extremist parties and, thus, assum‑
ing a single winner election, one of the two would be voted into office, clearly producing 
the outcome � dislikes most.

Since we represent parties by their fully opinionated positions on a vector of topics, 
rather than by degrees of extremism, we cannot straightforwardly translate Fig.  1 into a 
formal counterexample. The following example, though, shares the relevant characteristics 
with our informal story.

vp1
p2

p3 p4

p8

p5

p6

p7

Fig. 1  Voter � ’s position is (exactly) the arithmetic mean of the two most extreme parties
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Example 1 Assume that the agenda consists of nine issues t1 … t9 . The first four items con‑
cern the economy, taxes, environmental issues, and the social system, four issues about 
which � has some mild opinions. She assigns positions 1

3
,−

1

3
,
1

3
,−

1

3
 , respectively, to t1 … t4 . 

The other five topics concern difficult decisions in foreign policy on which � finds it hard 
to choose sides, so she assigns them weights of zero. The two extremist parties are �+ , 
assigning 1 to every topic, and �− , assigning −1 to every topic. Every other party �i assigns 
weights 1,−1, 1,−1 , respectively, to the first four topics and 1 to all remaining items. Then 
the setup is as claimed above, i.e., all moderate parties �i are closer to � than both �+ and 
�− , but {�+, �−} is the approval set chosen by � . We detail the relevant calculations in the 
“Appendix”.

5  Our model

In this section, we offer an alternative framework for approval voting that squares naturally 
with Aragones et al.’s decision rule for plurality voting, while also satisfying the unanimity 
desideratum identified in the previous section.

Crucially, plurality and approval voting invoke different choice strategies. The former 
requires the voter to optimize, that is, identify the best among the parties and either vote 
for that party or else abstain. The latter, in contrast, is built around the notion of satisficing. 
The central task a voter faces under approval voting is to identify some threshold quality 
requirement to impose on candidates. She will then approve of every party that meets or 
exceeds her threshold. In this section, we identify two different ways in which voters could 
formulate their threshold requirements, one in terms of expected utility, the other as geo‑
metrical proximity, and show that both lead to the same choices. We also show that a simi‑
lar formalism applies to range voting.

To introduce the framework, recall that a voter’s position on some topic i is given by a 
number vi ∈ [−1, 1] , where −1 stands for maximal opposition and 1 for consent with maxi‑
mal possible weight. We can decompose that attitude into:

where sign(vi)4 indicates whether � is inclined in favor of or against ti , while the absolute 
value |vi| measures the degree of commitment5 � attaches to topic i. We assume commit‑
ment |vi| to be related to the payoff � can obtain on the agenda item. More specifically, we 
assume that, by voting for some party � , a voter � gets a payoff |vi| on item i if � and � agree 
on whether or not i is a good thing to do, i.e., about the sign of i. Otherwise, � receives a 
payoff of −|vi| . Since we have assumed that pi ∈ {−1;1} , that payoff can be expressed as

Thus, the total payoff u(�,�) a voter � receives by voting for party � , i.e., the sum of his or 
her individual payoffs is:

vi = sign(vi) ⋅ |vi|

vi ⋅ pi.

4 sign(x) is 1 if x ≥ 0 and −1 else.
5 Here, commitment may again reflect the importance � attaches to that topic as well as her uncertainty 
about the right course of action.
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Thus, exploiting again that p ∈ {−1;1} , the maximal payoff a voter can get is:

In order to state our decision rule for approval voting, we also need the voter’s approval 
threshold, stating how much deviation from her optimal position she is prepared to accept. 
The threshold is given by an approval coefficient k ∈ [−1, 1] , where a smaller coefficient 
stands for greater tolerance. As such, we can formulate our decision rule for approval vot‑
ing .

Rule (approval voting) Let � be a voter with approval coefficient k ∈ [−1, 1] . Then � 
approves of all parties � that satisfy � ⋅ � =

∑
pivi ≥ k ⋅

∑�vi� , or, equivalently:

Note the subtle dependency on the approval coefficient k. For the extreme value of k = 1 , 
the voter will approve only of an optimal party coinciding with her on the inclination 
of every topic. If no such party exists, the voter will submit an empty approval set, i.e., 
abstain. Conversely, a voter with an approval coefficient of −1 will approve indiscrimi‑
nately of every party, no matter what that party claims, wants, or does. Finally, a middle 
value of k = 0 corresponds to a fairly tolerant voter, approving of every party that agrees 
with her more often than it disagrees. For most of the following applications we will thus 
assume that k ≥ 0.

Next, we examine two alternative intuitions relating to how a voter could choose parties 
of which to approve. As it turns out, both of the alternatives are equivalent to our choice 
rule. We take that equivalence as an argument for the naturalness of our definition.

The first alternative choice rule is given in terms of percental agreement. An agent 
chooses a percental threshold t ∈ [0, 100] and approves of every party that agrees with her 
on at least t percent of the topics. Since the voter has different degrees of commitment 
to the various agenda items, the percental agreement needs to be weighted by the agent’s 
commitments |vi| . Thus, the corresponding rule is:

Rule (approval voting: 1st alternative) Let � be a voter with percental threshold 
t ∈ [0, 100] . Then, � approves of all parties � that satisfy

That decision rule is equivalent to our original rule, as expressed by the following lemma.

Lemma 1 A voter � approves of some party � with approval coefficient k ∈ [−1, 1] if and 
only if she approves of � in the alternative definition with percental threshold t = 100 ⋅

1+k

2
.

The second alternative rule is of a geometric nature. Recall that we represent voters and 
parties by their positions on the agenda items, that is, as a vector in ℝn . So why not define 
the voter’s approval decision by geometric proximity? Arguably, an adequate measure of 
proximity is the angle between two position vectors, showing how far the two diverge in 

u(�,�) = � ⋅ � =
∑

vipi.

|�| ∶= ∑
i

|vi|.

(1)
� ⋅ �

|�| ≥ k.

1∑�vi�
�

{i∶pivi>0}

�vi� ≥ t

100
.
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their political opinions.6 The maximal angle of 180◦ between a voter � and some party � 
implies that pi ⋅ vi ≤ 0 for every i, that is, � and � disagree about every single topic. Con‑
versely, a relatively small angle between a party and a voter corresponds to a high degree 
of agreement between the voter’s inclination and the party’s position; see Fig. 2. Again, we 
need to fix a threshold angle � for formulating the corresponding decision rule. For some 
given threshold angle � , let C(�, �) be the cone of all vectors � in ℝn⧵{0} such that the 
angle between � and � is at most �.

Rule (approval voting: 2nd alternative) Let � be a voter with threshold angle 
� ∈ [0, 180] . Then � approves of all parties � that satisfy:

Again, the alternative is related closely to the original decision rule. This time, though, 
the exact relationship between the approval coefficient k and threshold angle � depends 
upon the exact position of voter � . The correspondence is:

Lemma 2 Let � be a voter with approval coefficient k. Then some angle � depending upon 
n, k and � exists such that � approves of some party � exactly if � ∈ C(�, �) . Furthermore, 
the angle � satisfies arccos(k) ≤ � ≤ arccos(

k√
n
).

Thus, for any possible voter � , the three different possible interpretations of approval 
thresholds are equivalent to one another. Before proceeding to some general results, we 
will return quickly to the unanimity desideratum that was at the heart of our argument 
against Aragones et al.’s (2011) approach. Briefly, the desideratum demanded that, assum‑
ing a single‑winner election, if all voters submitted the same ballot, each should approve 
of the electoral result. That is indeed the case. The approval set of an agent contains only 
those parties of which the voter approves individually. If every voter happened to submit 
the same approval set as � , the winner would be some member of that approval set and, 
thus, a party of which � approves.

� ∈ C(�, �).

Fig. 2  The approval cone of 
voter � (shaded)

v

α

α

6 To elaborate a bit further on why we take the angle between two vectors and not, for instance, their 
length, recall that a change in the length of some vector � , that is, replacing � by �� for some 𝜆 > 0 , simply 
denotes a change in political commitment while leaving the general position intact. Conversely, a non‑zero 
angle between two voters � ad �′ implies that the two disagree about the relative importance attributed to 
the various topics or even about the right course of action about some agenda item i.
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Finally, we show that our interpretation of approval voting extends readily to range vot‑
ing. To do so, we fix a set of grades, g1,… , gk , with g1 being the worst grade and gk the 
best. Also, fix a set of grade requirements −1 = t1 ≤ … ≤ tk ∈ [−1, 1] , which generalize 
on our approval coefficients:

Rule (range voting) Let � be a voter and let her grade requirements be 
−1 = t1 ≤ … ≤ tk ∈ [−1, 1] . Then the grade some candidate � receives is given by:

Note that approval voting is a special case of range voting with only two possible grades, 
approval and disapproval. Thus, the set of candidates some voter approves of under 
approval voting is exactly the set that she grades with approval, the higher of the two pos‑
sible grades. The following straightforward lemma shows that the analogy is compatible 
with our formal decision rules for range voting and approval voting:

Lemma 3 Assume that two grades, g1 and g2 , are possible and let � be a voter with grade 
requirements −1 = t1 < t2 . Then � evaluates a candidate � with the maximum grade g2 if 
and only if she approves of � with approval coefficient k = t2.

Finally, note that the two alternative interpretations of approval voting above, percental 
agreement and geometrical proximity, can be extended to range voting by using analoga 
of Lemmas 1 and 2, respectively. In the first case, percental approval, that interpretation 
moves us even closer to grading as known from school contexts. For each grade, a certain 
percentage of agreement between a voter and a party is necessary. In other words, to reach 
a given grade, the party needs to score a certain number of points on the political agree‑
ment scale of that voter.

The second alternative account, geometric proximity, translates grade requirements 
into geometrical objects. Instead of a single approval cone, each set of grade requirements 
−1 = t1 ≤ … ≤ tk translates into a sequence of ever narrower cones around the voter �:

Here, the cones’ indices stand for different grades, that is, C(�, �i) depicts the area a party 
needs to fall into so as to receive at least grade gi . The actual grade gi some party receives 
thus is determined by the index of the narrowest cone within which it is contained.

To end this section, we relate the various takes on approval voting to a more general 
debate on issue‑based voting, the distinction between distance and proximity voting (Rabi‑
nowitz and Macdonald 1989; Lewis and King 1999). In a nutshell, proximity voting 
assesses parties by their exact positions in [−1, 1]n , while in directional voting it is only the 
direction of the party’s vector � , i.e., �

|�| , that matters. Correspondingly, proximity voting 
assumes that a voter will support the party that is closest to her in Euclidean distance, 
while in directional voting judgments are made by comparing the voter’s and parties’ 
directions.

At first sight, the current framework sides with the directional approach, while Aragones 
et  al. (2011) is situated in the proximity camp. As will turn out, though, behavioral dif‑
ferences between both frameworks are rather small. Since parties are assumed to be fully 
opinionated on all topics, distance and directional voting yield the same recommendations 
under plurality rule, save for abstentions, cf. Lemma 4 below. Accordingly, differences in 

grade(�,�) ∶= max

{
gi
||||
� ⋅ �

|�| ≥ ti

}

C(�, 𝛼1) ⊇ … ⊇ C(�, 𝛼k).
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behavior occur mainly within approval voting. However, the chief source of divergence 
there is not the difference between direction and proximity, but the fact that voters in our 
framework decide whether or not to approve of each party individually, rather than evaluat‑
ing approval sets by fictive coalitions of their members, as Aragones et al. do.

6  Results

In this section, we will explore plurality rule, approval voting and range voting with respect 
to their propensity for fostering large electoral turnouts. We begin our discussion by clar‑
ifying the relationship between approval and plurality voting. Recall that the admissible 
ballots for plurality voting are a subset of those available in approval voting. More spe‑
cifically, every approval ballot that supports at most one candidate also is a legal ballot 
under plurality rule. Hence, a natural question to ask is whether or not both systems are 
compatible, i.e., whether or not an agent who decides to approve of at most one candidate 
in approval voting would submit the same ballot under plurality voting. Within Aragones 
et al.’s framework, that result is seen immediately to be true, as their rules for approval and 
plurality voting employ the same distance‑based approach. The following lemma shows the 
result also to hold for the present interpretation of approval voting, save for the possibility 
of abstentions:

Lemma 4 Let � be a voter. Assume that under approval voting � approves of the set {�̃} , 
while under plurality vote she votes for �′ . Then �� = �̃.

We now return to the initial topic of determining when people vote. More precisely, 
within approval voting, electoral participation boils down to the question of when some 
voter can find a ballot that she prefers over abstaining. Our results will fall into two groups, 
roughly corresponding to Theorems 1 and 2 of Aragones et al.. The first class of results 
asks about the minimal number of parties needed to avoid abstentions, assuming that those 
parties are positioned optimally. For plurality voting, the question has been answered by 
Theorem  1 of Aragones et  al. (2011), cited above. The number of parties necessary to 
ensure that no voter abstains under plurality rule is exponential in the number n of agenda 
items.

In the case of approval voting, the answer to the same question will depend on the picki‑
ness of voters. Naturally, the stricter voters are, that is, the higher their approval coefficient, 
the more candidates are needed in order to ensure that every voter finds a suitable candi‑
date of which to approve:

Theorem 3 

 (i) If k ≤ 0 , two parties are enough to ensure that every voter approves of at least one 
of them.

 (ii) If k > 0 , the number of parties needed to ensure that no (possible) voter abstains 
grows exponentially in the number of agenda items.

 (iii) Assume that the agenda contains at least three items. If voters are infinitesimally 
more demanding than k = 0 , approving only of those parties that, given the voters’ 
weights, share strictly more than half of their position, i.e., �⋅�|�| > 0 , then exactly n + 1 
parties are needed to ensure that every voter approves of at least one party.
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Next, we consider the opposite extreme at which parties are not placed strategically in 
relation to the positions of others, but each party is positioned randomly. No matter how 
many candidates are available, we cannot guarantee that every voter will find some can‑
didate that is more attractive than abstaining. However, we can provide probabilistic esti‑
mates of how likely it is for a random voter to be attracted by at least one of the candidates. 
As the number of topics on the agenda grows, it becomes more and more probable that 
some group of people will be dissatisfied with all of the existing candidates and, hence, 
decide to form their own party. We thus will assume that an election with n different top‑
ics on the agenda attracts n such randomly distributed parties.7 Under those conditions, 
let P(n) denote the probability that some voter does not abstain in an election based on an 
n‑topic agenda. Again, the case of plurality voting has been analyzed by Aragones et al. 
(2011) in Theorem 2, cited above: Under plurality voting, we have limn→∞ P(n) = 0.

Regarding approval voting, the chance of some randomly chosen party appealing to 
some generic voter � will depend on � ’s approval coefficient k. Naturally, a voter with a 
high threshold k is more likely to abstain in such a situation than somebody with lower 
standards of approval. Thus, we extend our definition of P(n) above to P(n, k), denoting the 
probability that a random voter with approval coefficient k does not abstain in an n‑topic 
situation. We obtain

Theorem  4 For k ≤ 0 , we have limn→∞ P(n, k) = 1 . If k ∈ (0;1] ; however, the converse 
holds: limn→∞ P(n, k) = 0.

Thus, if voters are modestly demanding, that is, k > 0 , approval voting is not categori‑
cally better than plurality rule. That conclusion stands in stark contrast to Aragones et al. 
(2011)’s original results, wherein the former is judged categorically better; cf. their Theo‑
rem 2 cited above. For our result, though, a word of caution is warranted. The skeptical 
result that a sufficiently demanding voter will almost certainly abstain if the agenda is large 
enough, that is, limn→∞ P(n, k) = 0 , is a worst case result only, depending on the voter’s 
exact interest. Naturally, a universally interested voter, having opinions on most of the 
agenda items, is harder to satisfy accidentally than somebody who is interested only in a 
small section of the agenda. In the most extreme case, a voter is focused primarily on a sin‑
gle topic, that is, � ≈ ±ei . Such a voter will almost certainly find some party she approves 
of, regardless of her approval coefficient k, i.e., limn→∞ P(n, k) = 1 for all k ∈ [−1;1).

Finally, we return to our last voting mechanism, range voting, In that protocol, voters are 
asked to grade all parties within a given grading scale. Thus, nothing such as abstaining or 
submitting an empty ballot arises and, hence, we need to reformulate our original question. 
So let us assume that a voter is motivated to engage in range voting only if she finds some 
relevant differences between candidates that she could express. That is, we ask for the con‑
ditions under which our voter finds two parties to which she assigns different grades. As in 
the case of approval voting, that possibility will depend on her exact grade requirements. 
For the case of strategically positioned parties, we obtain:

Theorem 5 Assume that every voter has some i with ti = 0 and that at least three items 
are on the agenda. Then, n + 1 parties are enough to ensure that every (possible) voter 
finds two parties she grades differently. Conversely, if no index i with ti = 0 exists, the 

7 That is, we draw each party’s position from a uniform distribution over the 2n possible positions.
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number of parties needed to ensure that every possible voter finds two parties she wishes to 
grade differently grows exponentially in n.

Next, we consider again the case of randomly distributed parties. We will rely on the 
same setting as for approval voting. That is, we consider the case of n randomly distrib‑
uted parties in an election ranging over an agenda with n topics. As above, our results will 
depend on the exact grade requirements adopted by the voter. For any set � = (t1,… , tk) 
of grade requirements, let P(n, �) denote the probability that, given n randomly distributed 
parties on an n‑topic agenda, a voter with grade requirements � will find two parties that 
she wishes to grade differently:

Theorem 6 If ti = 0 for some i, then limn→∞ P(n, �) = 1 . If, however, no such i exists, then 
limn→∞ P(n, �) = 0.

In other words, the probability that � finds two random parties she wishes to grade dif‑
ferently depends crucially on whether or not she gives different grades to those parties 
coinciding with her opinion on at least half of the topics and those that do not. Notably, the 
same word of caution as for approval voting applies here. Theorem 6 studies a worst case 
scenario that applies mainly to broadly interested voters. A less universal voter, primarily 
interested in one or two agenda items will, again, satisfy limn→∞ P(n, �) = 1 almost irre‑
spective of which grade requirements she uses.

7  Discussion and outlook

The theory of expressive voting is a potent counterpart to the instrumental analysis of vot‑
ing behavior, not least because expressive accounts offer a solution to some paradoxes of 
the instrumental account, such as the question of why people vote in the first place. Of 
course, neither alternative alone can provide a satisfactory account for much of the voting 
behavior we observe. Both theories are highly idealized, studying the behavior of ideal 
types of voters. They do, though, have some descriptive backing. Brennan and Lomasky 
(1993, pp. 40–46) show that actual voting behavior is best explained by a superposition‑
ing of instrumental and expressive considerations, wherein the weights given to the two 
accounts depend on various factors, such as, for instance, the stakes involved or how close 
the election is expected to be.

Crucially, the two accounts may yield divergent advice about whom to vote for, but also 
about whether or not to participate in the election at all. Given that voters will rely on to 
both types of considerations, expressive and instrumental, a suitable approach for analyz‑
ing voting situations is to start by studying them from both standpoints in order to compare 
and combine these findings later.

In line with such reasoning, our paper has presented a formal account of expressive vot‑
ing based on the underlying political agenda of an election. In doing so, it focussed on 
the propensity of voting systems to create large voter turnouts. In particular, we employed 
an expressive account of voting to compare three different voting systems, plurality rule, 
approval voting and range voting. We find significant differences between those voting 
systems regarding their ability to create high voter turnouts. Of course, the perspective 
offered here is idealized. Within realistic voting scenarios, correlations between individual 
voter positions as well as between various agenda items will be found. Here, the current 
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framework may form a starting point for empirical approaches addressing the numbers and 
positions of parties within a political system and how they relate to the distributions of 
voter preferences.

The positioning of parties may, though, also be approached on analytic grounds. Paral‑
leling seminal results in instrumental voting, one may analyze the emergence of new par‑
ties, the positioning of existing parties or the complexities of political campaigning from 
an expressive viewpoint. The first results in that direction suggest that strategic campaign‑
ing can be a very complex endeavor. Successful campaigning may, for instance, require 
detailed information about the voters’ attitudes to uncertainty (Dean and Parikh 2011) and 
the relative importance they attribute to various items on the policy agenda, but also about 
competitors’ campaigning behavior (Klein and Pacuit 2017; Klein 2015).
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Appendix: Proofs

We start by showing that Example 1 satisfies all of the properties claimed. In particular, we 
have to show that (i) dist (�, �) < dist (�, �±) and (ii) that {�+, �−} is the coalition approved 
by �.

For (i), observe that

Thus, �± are furthest away from � ’s preferences.
For (ii), observe that

To see that {�+, �−} is the closest coalition, we first show that any coalition C containing 
three or more members has a distance of at least 

√
5

3
 from � . For any such coalition, the last 

five entries of C are all at least 1
3
 (with the minimum reached if C consists of exactly three 

dist (�, �) =

√
4 ⋅

(
2

3

)2

+ 5 =

√
16

9
+ 5 and

dist (�, �∗) =

√
2 ⋅

(
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3

)1

+ 2 ⋅

(
4

3

)2

+ 5 =

√
40

9
+ 5 for ∗∈ {+,−}

dist

(
1

2
(�+ + �−), v

)
=

√
4 ⋅

(
1

3

)2

=
2

3
.
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entries, one of them being �− ). Thus, dist (C, �) ≥
√
5

3
 . A similar argument shows that 

dist (C�, �) ≥
√
5 holds for C� = {�+, �} . For the coalition C�� = {�i, �j} , we have that 

dist (C��, �) = dist (�i, �) =

√
16

9
+ 5 . Finally, for the coalition ����{�−, �} we have

finishing the proof.

Proof of Lemma 2 For x, y ∈ ℝ
n , the angle � between x and y is described by the following 

well‑known equation

where ���2 =
�∑

x2
i
 denotes the Euclidean length. Moreover, the rule for approval voting 

(Equation 1) can be transformed into

where the last equivalence exploits that ���2 =
√∑

i 1 =
√
n . By Eq. (2), this is equivalent 

to � ∈ C(�, �) for

The last claim follows from the inequality �x�2 ≤ �x� ≤ √
n�x�2 for all x ∈ ℝ

n.

Proof of Lemma 4 Recall that under approval voting, � approves of � iff �⋅�|�| ≥ k , where k is 
� ’s approval coefficient. Since �′ is the only party � approves of, we get

On the other hand, the fact that �̃ is the winner under plurality vote is expressed by the 
equation

Thus, we have to show the following condition to hold for every party �∗

Recall that pi ∈ {−1;1} for each topic i ∈ A . Fix a voter � . For any party � , let U� ⊆ {1… n} 
be defined by:

dist (C���, �) =

�
2 ⋅

�
1

3

�2

+ 2 ⋅

�
2

3

�2

=

√
10

3

(2)
x ⋅ y

|x|2|y|2 = cos �

� ⋅ �

��� ≥ k ⇔
� ⋅ �

���2
√
n
≥

k√
n

���
���2 ⇔

� ⋅ �

���2���n ≥
k√
n

���
���2 ,

� = arccos(
k√
n

���
���2 ).

∑
vip

�
i∑�vi�
= max

p∈C

∑
vipi∑�vi�

.

dist (�̃, �) = min
�∈C

dist (�, �).

dist (�∗, �) = min
�∈C

dist (�, �) ⇔

∑
vip

∗
i∑�vi�
= max

p∈C

∑
vipi∑�vi�

.

i ∈ U� ⇔ vi ⋅ pi < 0.
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Thus U� is the set of indices where the signs of � and � disagree. Now we have

Only the last term depends on � . Thus for any �,�� ∈ C:

On the other hand we have:

where, again, the first term is independent of � . Thus also

Before we can prove Theorems 3 and 4 we need the following lemma:

Lemma 5 Let m ∈ ℕ⧵{0} . Then we have for any natural number n

Proof We make a case distinction between n even and odd. We show the formula for n 
even. For n odd, the proof is similar. First we show that for any natural number i ∈ [0,

n

m
] 

we have that

To this end observe that

dist (�,�) =

√∑
i
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∑
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Now, since k+i
l−i

≥
k

l
 for any k, l, i > 0 , every quotient in the last formula is at least as large as 

the right‑most quotient 
n

2
+⌈ n

m
⌉+i

n

2
−i

 . Moreover, this quotient satisfies

as m, n, i ≥ 0 . As the product 
n
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⌉ and (4) holds. In the following, let � ∶=
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.

Repeatedly applying (4) gives us for all natural numbers j with 0 ≤ j < ⌈ n

m
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Using that 
(
n
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)
= 0 whenever k > n , this implies

Resubstituting � = (1 +
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m
)−⌈

n

m
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∑n

j=0

�
n

j

�
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Proof of Theorem 3 For (i) observe that candidates �1 ∶= (1, 1,… 1) and �2 ∶= −�1 have 
the property that for any voter � at least one of the two statements �1 ⋅ � ≥ 0 and �2 ⋅ � ≥ 0 
holds. Thus each voter approves of at least one of these two parties.

(ii) Assume k > 0 and let � ∶= {−1;1}n be the set of voters who have extreme positions 
on every single topic. We will show that the number of parties needed to ensure that all 
members of �  vote is exponential in n. Fix some natural number m such that 1

m
≤ k . Since 

the number of parties some voter � approves of is decreasing in k it suffices to show the 
theorem with k = 1

m
 . Observe that for any party � and any voter � ∈ �  holds:
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each party � can be be approved by at most 
∑n

k=⌈n( 1
2
+

1

2m
)⌉

�
n

k

�
 many members of �  . Since 

|� | = 2n this implies that the number of parties needed to make sure that no member of �  
abstains is at least

By Lemma 5 this quotient is at least (1 + 1

m
)⌈

n

m
⌉ − 1 and thus also at least (1 + 1

m
)

n

m − 1 . In 
particular it is at least exponential in n. Since 2n parties are enough to ensure that every‑
body votes, the number of parties needed cannot be worse than exponential.

The proof of iii) consists of two parts. First, we show that at least n + 1 parties are 
needed in order to ensure that every voter finds a party she approves of. Assume to the con‑
trary that �1 … �n are enough to attract every possible voter. Recall that, by the voting rule 
used for iii), a voter � approves of a party � iff � ⋅ � > 0 . For i < n define Xi to be the n − 1 
dimensional hypersurface defined by

Thus X ∶= X1 ∩… ∩ Xn−1 is a vector space of dimension at least 1 and thus 
Y = X ∩ {� ∈ [−1, 1]n|� ⋅ �n ≤ 0} ≠ {�} . Pick some non‑zero � ∈ Y  . Then � ⋅ �� = 0 for 
i < n and � ⋅ �n ≤ 0 , thus the voter � would abstain in an election with candidates �1 … �n , 
contradicting our assumption.

Next, we show that n + 1 parties are sufficient to attract all voters if there are at least 
n ≥ 3 topics. To this end, let � be the vector (1,… , 1) and for i ≤ n let �i be the vector with 
1 at the i‑th position and −1 on all others. Moreover, let P be the set {�, �1,… , �n} . We will 
show that every voter � approves of at least one party in P. We do so by case distinction. 
The first case is that � ⋅ �i > 0 for some i. In this case, �⋅�i|�| > 0 and � approves of party �i . 
The second case is that � ⋅ �i ≤ 0 for all i ≤ n . First, note that �1,… , �n form a basis of ℝn . 
Thus, � ⋅ �i = 0 for all i would imply that � = � . Since we have excluded voters from 
assuming position � , we can infer that there is some j with � ⋅ �j < 0 . Now, note that 
� = −

1

n−2

∑
i≤n �i . We hence get

Since � ⋅ �i ≤ 0 for all i and � ⋅ �j < 0 , we obtain that − 1

n−2

∑
i≤n � ⋅ �i > 0 . Hence �⋅�|�| > 0 , 

showing that � approves of party � .   ◻

Proof of Theorem 4 Fix a voter � . Observe that for k = 0 and any party � at least one of the 
following two holds: �⋅�|�| ≤ 0 or �⋅�|�| ≥ 0 . Let P = {−1;1}n be the set of all possible parties. 
Since for any � ∈ P also −� ∈ P and �⋅�|�| ≥ 0 iff �⋅−�|�| ≤ 0 , we get that

Since picking a random party is the same as randomly drawing a party from P , the chance 
that a random party � satisfies � ⋅ � ≥ 0 is, thus, at least one half. Thus the chance that 
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� approves of none of n random parties is at most 1
2

n
 , thus P(n, n, 0) → 1 . As approval is 

monotonous in k, this implies P(n, k) → 1 for any k ≤ 0.
Since P(n, k) is monotonous in k, and for every k > 0 there is some m ∈ ℕ with 1

m
≤ k , it 

suffices to show that P(n, n, 1

m
) → 0 for any natural number m. Let � = (1, 1,…) be a voter 

who fully approves of all topics and let m ∈ ℕ . Observe that for any party � holds:

Thus for the uniform distribution ℙ over P we have

As above Lemma 5 yields that

Thus P(n, n, 1

m
) ≤ 1 −

�
1 −

1

(1+
1

m
)
⌈ n
m
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−1

�n

.

Note that for n large enough,

It is a general fact that (1 − xn)n → 1 for any x ∈ (0, 1) . As both the left‑ and rightmost 
member of the above inequality are of this form, we obtain P(n, n, 1

m
) → 0 as claimed.

Proof of Theorem 5 Fix a voter � and let i such that ti = 0 . The third part of Theorem 3 
applied to voter −� shows that n + 1 parties are enough to guarantee that some party gets 
graded at most gi−1 . Equally, the same theorem applied to � herself shows that the same 
n + 1 parties also guarantee that some candidate gets grade gi or higher. Finally assume 
that there is no i with ti = 0 and let j be maximal such that tj−1 < 0 . Then the second part of 
Theorem 3 applied to � and −� shows that exponentially many parties are needed in order 
to ensure that some party gets a grade unequal to gj−1.

Proof of Theorem 6 First assume that there is some i with ti = 0 . Then, by Theorem 4, the 
probability that at least one out of n random parties gets grade at least gi goes to 1. Apply‑
ing Theorem 4 to −� we see that also the probability that a party gets grade at most gi−1 
goes to 1. In particular, the probability for two parties receiving different grade assign‑
ments goes to 1, thus proving the first part. For the second part assume that there is no such 
i. Let i0 be such that ti < 0 for all i ≤ i0 and ti > 0 for all i > i0 . Then applying Theorem 4 
with k = ti0+1 (if defined) yields that the probability that some party gets grade larger than 
gi0 goes towards 0. Applying 4 to −� yields that the probability for parties getting a grade 
below gi0 also goes to zero. Hence the probability of all parties getting the same grade gi0 
goes towards 1.
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