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RESEARCH ARTICLE

Obfuscating spatial point tracks with simulated crowding
Simon Scheider a, Jiong Wangb, Maarten Mola, Oliver Schmitzb

and Derek Karssenbergb

aHuman Geography and Spatial Planning, Utrecht University, Utrecht, Netherlands; bPhysical Geography,
Utrecht University, Utrecht, Netherlands

ABSTRACT
Spatial point tracks are of concern for an increasing number of analysts
studying spatial behaviour patterns and environmental effects. Take
an epidemiologist studying the behaviour of cyclists and how their
health is affected by the city’s air quality. The accuracy of such analyses
critically depends on the positional accuracy of the tracked points. This
poses a serious privacy risk. Tracks easily reveal a person’s identity since
the places visited function as fingerprints. Current obfuscation-based
privacy protection methods, however, mostly rely on point quality
reduction, such as spatial cloaking, grid masking or random noise,
and thus render an obfuscated track less useful for exposure assess-
ment. We introduce simulated crowding as a point quality preserving
obfuscation principle that is based on adding fake points. We suggest
two crowding strategies based on extending and masking a track to
defend against inference attacks. We test them across various attack
strategies and compare them to state-of-the-art obfuscation techni-
ques both in terms of information loss and attack resilience. Results
indicate that simulated crowding provides high resilience against
home attacks under constantly low information loss.
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1. Introduction

Spatio-temporal tracking affords measurements of spatial behaviour patterns on an
unprecedented level of detail (Shoval et al. 2014). This has recently spurred a wave of
geographic health and epidemiological studies, targeting the environment’s impact on
the health of individuals or monitoring their health status (Curtis et al. 2011, Chaix et al.
2013). In such studies, there is an increasing need to share tracks on analytic platforms to
enrich them with environmental context information.

This is possible since tracks are sequences of spatial points representing a time series of
snapshots of a moving object (Hu et al. 2013). The locations recorded in such a track,
however, serve as fingerprints (Krumm 2007) which can be used against the interest of the
tracked person. An adversary can exploit tracks for potentially illegal acts, such as helping
burglars to better plan their crimes. Even legal activities can turn out problematic, e.g.
when health insurance companies monitor behaviour and adjust their rates to the
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detriment of the tracked person (Weiser and Scheider 2014). Geoprivacy is, therefore,
a problem of increasing societal relevance (Keßler and McKenzie 2018).

Current obfuscation methods that were designed to anonymize tracks mainly build on
the reduction of point quality, for example, by reducing the precision or accuracy of spatial
points (cf. Section 3 and Krumm (2009)). Yet, it is precisely these details contained in
a track which are required for environmental health analytics. Take for example Figure 1,
which shows an environmental air pollution raster used to assess the exposure of cyclists
to NO2 in Oss, Netherlands (Schmitz et al. 2019). It can be seen that NO2 concentration
peaks locally and changes over small distances along road features, which requires any
reasonable health-related assessment to be of high spatial detail. Practically useful meth-
ods for privacy protection of geo-analytic tracks, therefore, need to retain point quality.

How could a point quality preserving obfuscation technique look like, and how does it
score in comparison to standard methods, both concerning security and usefulness for
analytic purposes?

As an analogy, consider how people can easily hide in a crowd because our eyes have
difficulties distinguishing many details on a small spot (Figure 2). In this way, we can become
anonymous, even though we are not hiding our locational or personal details from an
observer. The effectiveness with which we can hide in a crowd, and thus our anonymity

Figure 1. Air quality in Oss, Netherlands.
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level, directly depends on how easily we can be confused with the rest. We explore crowding
principles that are based on two approaches: 1) Mimicking a person’s look or behaviour to
become indistinguishable from the target person. In Figure 2(a), this is illustrated by a crowd
wearing identical clothes. 2) Masking the look or behaviour of a person. Here, looks or
behaviours can be different, as long as persons in the crowd are equally credible candidates
for an adversary (Figure 2(b)), and thus can be confused with each other.

In this article, we propose simulated crowding as an obfuscation technique which differs
from existing approaches by hiding tracks in extensions which emulate credible behaviour.
In this way, we do not trade point quality for an increased level of protection, but rather
increase the analytic complexity and computational effort required to filter tracks. As we will
illustrate in Section 3, the idea of dummy locations goes back to the early times of research
on location privacy but has so far neither been exploited fully nor tested and compared
systematically. We will demonstrate in this article that simulated crowding is a very resilient
obfuscation strategy capable of retaining the quality of point coordinates yet at the expense
of computation time and the quality of summary statistics over tracks. In the remainder, we
first explain our motivating scenario in greater detail (Section 2), before we introduce
crowding as a particular point quality preserving obfuscation method (Section 3). We
then suggest crowding principles as well as simple algorithmic realizations in Section 4.
We present our evaluation strategies in Section 5 to compare crowding against standard
obfuscation methods on a sample of cycling tracks. Finally, we measure information loss as
well as the risk against attacks (Section 6), before we conclude.

2. Exposure services and tracks: use case and requirements

Traditionally, most geoprivacy studies have been focusing on Location-Based Services (LBS),
where online queries of a user need to be protected every time the client requests informa-
tion from the LBS and therefore shares its location coordinates (Ghinita 2009). For example,
to find nearby restaurants, a smartphone needs to send its current location to a place server.
Since LBS are usually less sensitive to location error, point quality reduction strategies such
as imprecision or inaccuracy can be used to obfuscate a point (see next section).

In offline trajectory sharing, in contrast, entire records of location measurements of a set
of persons are submitted to an analytic service, which often requires high-quality data
(see Figure 3). Consider an epidemiologist who requires personal exposures to NO2 for

(a) (b)

Figure 2. Strategies of hiding in the crowd. In (a), the crowd imitates a person. In (b), the crowd is
diverse but lacking a discriminating feature that would allow us to pick out the right person.
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each person in a cohort,1 and who lacks the required analytic capabilities or the necessary
environmental data sources. The researcher has collected trajectories of the people in the
cohort and wants to make use of an external analytic service which is used by many other
researchers as well. Because of privacy regulations,2 it is not allowed to share these tracks
directly with such a service, since the researcher cannot control the conditions of data
access on the remote server. While a secure trusted linkage service might guarantee
location privacy (Rodgers et al. 2012), it also restricts access to both the data and the
service by first requiring the expensive establishment of a trust relationship between the
service and every user individually. Instead, we consider the possibility of obfuscating the
information provided by many researchers for their own kinds of data. For this purpose,
a researcher locally obfuscates tracks before sending them to the enrichment service
(Figure 3), to minimize the danger of data leakage. We assume he or she only shares
obfuscated spatial point coordinates with the server, to obtain either of two enriched
variants:

(1) Pointwise exposures
(2) Aggregated exposures over a track

During the entire process, the original track stays at the client computer, and only the
obfuscated and enriched points are transferred between client and remote servers.
Besides, the client stores a mapping from the original track into the obfuscated
counterpart for track recovery and further analysis of enriched information (Figure 4).

Obfuscation needs to be fully automatized so that users without a technical back-
ground can make use of it. Since enrichment should be as quick as possible, the amount
of data sent to the server should be minimized. Also, both the risk of privacy attacks and
the error in assessing exposure (information loss) should be minimized. What would be
the most suitable obfuscation strategy for this scenario?

3. Strategies for anonymizing point tracks using obfuscation

Anonymity is commonly defined as the state of a person ‘not being identifiable within
a set of subjects’ (Pfitzmann and Köhntopp 2001). In the digital world, this effectively
means that information about an identifiable person cannot be matched with the
unique record of this person in a database that contains privacy-sensitive information.
The latter might contain spatial data, e.g. a spatial trajectory which indirectly tells us

Figure 3. Illustrating the need of obfuscating tracks before sending them to an enrichment server.
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about where the person lives, works and what habits the person has. If this record
cannot be associated with the right person, then the tracked person stays ‘anonymous’.
This state of anonymity is usually called location privacy (Krumm 2009, Chow and
Mokbel 2011).3

The anonymity of a given trajectory may be defended in several ways. The simplest one,
stripping away identifiers and replacing names with a pseudonym (called pseudonymity by
Pfitzmann and Köhntopp (2001)), is known to be very ineffective. This is not only because
spatial coordinates alone are easily reverse-geocoded to obtain addresses (Chow and
Mokbel 2011, Zandbergen 2014), but also because human space-time trajectories are
astonishingly unique. As De Montjoye et al. (2013) have shown, only 4 randomly selected
points of a trajectory of a person need to be known by an adversary to be able to uniquely
identify 95% of all persons amongst 1.5 million users. Furthermore, spatial data can be used
to derive all kinds of secondary information that was never intended to be shared (Keßler
and McKenzie 2018), and anonymity can be nowadays breached in combination with an
unforeseeable amount of external data sources that help de-anonymize a trajectory (Weiser
and Scheider 2014). Other measures, such as data encryption, access control and data
retention are often impractical and prevent useful services from which a user might benefit
(Keßler and McKenzie 2018). All this makes geoprivacy a kind of problem that might not be
solvable by technical means alone, requiring also other forms of behavioural and societal
control (Weiser and Scheider 2014, Keßler and McKenzie 2018).

To render trajectory data anonymous, researchers have proposed various techniques
(see Table 1) which are based on reducing its geodata quality in one way or another, and
which are summarized under the term spatial obfuscation (Duckham and Kulik 2005).
These techniques can be ordered along the various dimensions of imperfection within
spatial information (c.f. Duckham and Kulik (2005), Veregin (1999)):

● Imprecision: By reducing the resolution of data items. This refers to the lack of
specificity. An example is generating a 100-meter resolution spatial grid from a 10-
meter resolution grid, or clustering points to a container region.

● Inaccuracy: By reducing the accuracy of data items. Accuracy refers to the lack of
correspondence with some ground truth. This is what we normally call an “error”.

● Vagueness: By reducing the interpretability of a data item. This refers to the uncer-
tainty of whether a given georeference refers to a given coordinate location or not.

Figure 4.Workflow of obfuscation used in remote environmental exposure analysis. Round rectangles
are processes, and dark grey ones are automated.
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For example, when using “near the city centre” or “downtown” instead of a postcode
area to refer to some location (Bennett 2010).

● Incompleteness: By reducing the number of items in a dataset representing
a specified phenomenon. This refers to the uncertainty of what in some domain is
represented in a data set and what is not. For example, when leaving out moments of
a trajectory due to decreasing sampling rates, or when mapping not all houses in
a city (Veregin 1999).

In contrast to existing obfuscation approaches, crowding is a strategy that is closely related to
incompleteness, as it concerns the quality of entire tracks and not individual data points.

3.1. Point quality reduction strategies

Strategies based on reducing the quality of points are among the most frequent ways to
obfuscate a track (Duckham and Kulik 2005, Chow and Mokbel 2011).

Imprecision strategies include aggregation to coarser radio cells (De Montoye et al. 2013)
unique, as well as spatial and temporal cloaking (Gruteser and Grunwald 2003, Gedik and Liu
2004, Xu and Cai 2007). The spatial or temporal ‘cloaks’ can be defined based on intervals, by
removing the precision of coordinates, or by coarser spatial objects, provided that enough
other persons are contained in these regions so that persons are confused with each other
(Chow and Mokbel 2011). However, according to the results in De Montjoye et al. (2013), Zang
and Bolot (2011), such resolution based approaches are not very effective in anonymizing tracks
because they still allow identifying users uniquely. For the identification of homes in health
science, the user study by Curtis et al. (2011) shows that the strategymight be effective, though.
However, lower resolution renders geodata often unusable for analysing spatial patterns, such
as disease risk (Kwan et al. 2004).

Inaccuracy based strategies introduce a limited positional error to each point in a track.
When applied to pure point data, this strategy is often called geographic masking
(Zandbergen 2014), a term introduced by Armstrong et al. (1999). Standard methods
involve affine transformation (Kwan et al. 2004), grid masking (moving a point to a defined
grid) and Voronoi masking (to a Voronoi polygon border), as well as (weighted) random
perturbation (Seidl et al. 2015, Kounadi and Leitner 2016). A recent masking method called
location swapping transforms points to nearby locations with similar geographic charac-
teristics (Zhang et al. 2017). Studies on geographic masking usually investigate how useful
data remains for analysis under limited distortion.

Strategies based on vagueness substitute measurable coordinates with cognitive spa-
tial references (such as ‘near’ or ‘in front’) or places whose extension is vague, such as

Table 1. Overview of track obfuscation strategies based on dimensions of geodata imperfection. The
strategies in bold are more closely studied in this article.

Track obfuscation strategies

Point quality reduction strategies Track quality reduction strategies

Imprecision based Inaccuracy based Vagueness
Incompleteness

based Crowding

Spatial
Cloaking

Temporal
Cloaking

Translation Perturbation Cognitive
referencing

Sampling Splitting Merging Simulation
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‘mall’, ‘school’, ‘home’ (Duckham and Kulik 2006, Krumm 2007). This strategy is easily
understood because it corresponds to the way how people normally communicate about
space, yet difficult to exploit for computation (Scheider et al. 2018).

The big disadvantage of all point-based strategies lies in those analytic tasks that
require precise/accurate references. While random perturbation may hardly affect statis-
tical summary measures, a point which is moved by only 30-meters beyond a street
border will be significantly less exposed to air pollution.

3.2. Track quality reduction strategies

The following strategies do not change the quality of individual point data items but
rather affect the quality of entire datasets.

One simple possibility is to reduce the completeness of data for a trajectory. For
example, Hoh et al. (2006) found that reducing the sample interval of a track from
one minute to four minutes reduced the home identification rate from 85% to 40%.
Similarly, a track can be simply cut in half and may, therefore, hide the home location.

Another option is to add data instances beyond the points of a given trajectory, which
we suppose to call crowding. The principle idea of using a crowd for anonymization was
first developed in Web communication with servers (Reiter and Rubin 1999), where
a group of users of a server hide behind a crowd protocol which prevents the server
from storing their identity. However, the idea is also reflected in some recent geodata
anonymization methods.

For example, Kido et al. (2005), Kido (2006) included false position data of moving
dummy objects in LBS requests, so that the LBS cannot distinguish between true points
and the points sent by the user. Similarly, Nussbaum et al. (2017) recently proposed i,
j-anonymity, which assures that through generating fake points, under a realistic move-
ment constraint, every point is sure to be a successor of at least i other points and
a predecessor of at least j other points. In this way, many different realistic tracks are
synthesized, among which the user trajectory can effectively hide.

Crowding based anonymization strategies, however, have not been a subject of
research as such. The few mentioned studies above have neither investigated the effec-
tiveness of this strategy against various kinds of attacks, nor its effect on the usefulness of
data for spatial analysis. While the strategy leaves the quality of individual points intact, it
considerably changes the distribution of points. We regard crowding, therefore, as
complementary to the commonly used point quality reduction strategies, with clear
advantages for track based exposure measurements.

3.3. Privacy metrics, attack strategies and prior knowledge of adversaries

To assess the amount of privacy that an obfuscation technique can achieve, it becomes
necessary to consider attack strategies and the prior knowledge which can be employed
by an adversary for hacking an obfuscated track.

Various researchers have proposed privacy metrics which could be used to give
minimum privacy guarantees for an obfuscation method, based on making assumptions
about an adversary’s prior knowledge. This includes k-anonymity (Sweeney 2002), which
aims at assuring that a person can be confused with at least k others, as well as l-diversity
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(Machanavajjhala et al. 2008), which achieves k-anonymity based on spatial imprecision.
These latter methods have been rightly criticised because they only incompletely model
an adversary’s prior information (Shokri et al. 2011), and instead rely on the assumption
that the database of persons under comparison is somehow known. Shokri’s privacy
measure instead models an adversary’s prior knowledge in terms of the probabilistic
behaviour of an obfuscation algorithm, as well as a mobility profile of known users. The
obfuscation behaviour is considered a function from tracks into a probability distribution
over possible obfuscation results in terms of points or regions. An attack is an estimated
inversion of this function, and the amount of privacy is measured as the distance of
a corresponding reconstruction to the actual track. Similarly, Andrés et al. (2012) intro-
duced geo-indistinguishability, which requires from a corresponding obfuscation function
(assumed to be known by the adversary), that it produces, when applied to two points,
probability distributions which differ only up to a positive factor of the spatial distance
between these points.

While we believe that a corresponding privacy measure for crowding would be bene-
ficial to provide minimum privacy guarantees and optimality results, it remains unclear how
existing approaches could be employed for our purpose. The main problem is that the
mentioned authors focus on obfuscation probability functions which map tracked loca-
tions to other locations or regions. Thus, in essence, they assume point quality reduction
strategies, such as spatial cloaking, masking or perturbation. Yet, simulated crowding as
supposed below is a track quality reduction strategy based on behavioural similarity, and,
therefore, rather maps tracks to entire tracks without resorting to a probabilistic map of
particular locations. It seems open how a distance metric (and more generally, differential
privacy) could be employed for measuring privacy under these conditions.

In this article, we took a pragmatic approach and instead incorporated prior knowledge
of an adversary into simulated crowding by taking into account behavioural credibility
constraints. As simulated behaviour becomes indistinguishable from the observed beha-
viour, prior knowledge about plausible behaviour (concerning movement and environ-
mental context) becomes useless as an attack strategy. We evaluated our simulation
based on testing concrete attack strategies on track data, by comparing the error of
reconstructing crowded tracks with the reconstruction error under inaccuracy based point
quality reduction strategies.

4. Simulated crowding

In this section, we explain basic principles of our approach and introduce simple algo-
rithms which implement them.4 Note that the discussed principles would allow also for
more complex and maybe more effective implementations, which is considered future
work.

4.1. Rasterization

We start with a point quality reduction strategy. It consists in reducing the precision, and
with it also the concentration of track points at places by rounding coordinates and
snapping them to a regular grid. Although this imprecision strategy is not strictly required
for simulated crowding and to some extent contradicts its philosophy, we will see that it
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makes the realization of crowding much simpler as it can be computed on discrete space.
Furthermore, it helps to counter attack-strategies that are based on exploiting point
clusters, i.e. high concentrations of points that may indicate places of interest, such as
home.5

Algorithm 1: Rasterization algorithm

1 Rasterize (t = track, m = roundingincrement)
Result: Maptrackpointstopointsinaregulargridwithafixedcellsize

2 rastertrack = [];
3 lookup = [];
4 for v in t do

/* For every point v in t, round X and Y coordinates */
5 o.X =Round (v.X/m)*m;
6 o.Y =Round (v.Y/m)*m;

/* List of rounded coordinates 1-to-1 with track */
7 lookup.append(o);

/*Hashtable with rounded coordinates as keys */
8 rastertrack[o]=None;
9 end
10 return lookup,rastertrack

To this end, we select a resolution level (a grid cell size) based on a rounding increment m, and
subsequently map all points of the track to their nearest grid point, reducing the precision of
coordinates accordingly (compare Algorithm 1). Since this mapping is not injective, close
points will be mapped to identical grid points, and point clusters with high concentrations of
points at distances below the cell size will be resolved. The choice of this rounding
parameter m depends on other parameters of the entire method and will be explained
later (see Section 4.4).

To be able to reverse this mapping later after environmental enrichments were done,
and thus to recover the location of original points, we use rounded space/time references
as keys for retrieval and store them in a list (lookup). This list is 1-to-1 and stored together
with the original track. To write back enrichment results, the lookup list can be traversed
and its gridded elements can be later used to retrieve enrichment results from a hash
table with rounded coordinates as keys, which represents the rasterized track (rastertrack).

4.2. Track extension strategy

One strategy of crowding is based onmimicking the behaviour of the tracked object, e.g. by
extending tracks. In this approach, privacy attacks are misled to fake locations where
simulated behaviour is displayed, but no actual behaviour ever occurred in reality. For this
purpose, we need a way to capture tracked behaviour and to simulate points accordingly.

4.2.1. Movement and location behaviour
We suggest to measure tracked behaviour with respect to two dimensions. The first is the
behaviour of movement. Incoherent movement behaviour can be used to attack an
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obfuscated track by distinguishing different patterns of movement within a track. We,
therefore, suggest to capture movement behaviour with a probability distribution over
(discrete) relative vectors V = [v1,. . . vn] which map the possible space of movement steps.
Each relative vector vi stands for a possible kind of movement as observed in the track,
measured from a given point to its successor6:

getVðtrackÞ ¼ fv for vi; viþ1 in track if viþ1 � vi ¼¼ vg
Each v is further associated with the probability that this kind of movement actually occurs in
the track, based on the frequency distribution of relative vectors of direct successors across
the track:

PtrackðvÞ ¼ k fvi for vi; viþ1 in track if viþ1 � vi ¼¼ vg k
k track k �1

The denominator denotes the number of successor points in the track, and the numerator
counts the number of successor points that correspond to a given type of movement v. The
probability that a movement from any point v1 to another point v2 corresponds to the
movement behaviour observed in a track is then Ptrackðv2 � v1Þ. An example for
a probability over discrete vector space is given in Figure 5, where the track tends to move
towards the North East/South West axis.

To compare thebehaviour of a simulated trackwith anoriginal one, and to assure aminimal
behaviour congruence, we also measure the similarity of tracks concerning movement beha-
viour. One way of doing this would be to compute the cosine similarity over the set of
movement probabilities of relative vectors occurring in both tracks. Yet, this simplisticmeasure
does not account for the sample size of tracks. More precisely, it does not account for the fact
that small sample tracks statistically show a much more diverse behaviour pattern than large
sample tracks, and thus deserve a more tolerant similarity judgment. We chose therefore to
estimate similarity by a two-sample (Pearson’s Chi-squared) χ2 significance test,whereH0 is the

Figure 5. Distribution of movement behaviour in 2-dimensional vector space involving x and y direction
components.
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hypothesis that both tracks have a similar distribution over relative vectors V (where V is the
union of relative vectors occurring in both tracks), and two tracks are considered sufficiently
similar as long as thep-value of the test statistic is above a given significance threshold (such as
> 0.05). This test statistic depends on a track’s size, and pχ2 returns its probability according to

the χ2 distribution:

simmove
χ2 ðtrackA; trackBÞ ¼ 1� pχ2 k trackA k

XkVk
vi

ðPtrackAðviÞ � PtrackBðviÞÞ2
PtrackBðviÞ

 !

The second behaviour dimension is with respect to the location of track points, referring to
the types of spatial infrastructure that support movement. For example, when moving with
a car, a track is bound to stickwith a road, as opposed to the casewhen a track rathermeasures
a pedestrian, who might not care at all about the surface quality. One might attack an
obfuscated track therefore based on incoherent infrastructure categories, excluding points
that indicate e.g. a movement with car speed across a lawn. We measure infrastructure with
land use classes, using a high resolution landuse polygonfile, buffering the track to account for
location errors (using a 50 meter buffer radius), and then spatially intersecting the buffer with
land use polygons. The percentage of the area for each land use class within this buffer then
gives us a probability for encountering a given land use class within the range of the track.
Suppose the function luse retrieves the land use class for a given location. Then Plusetrack is the
probability for encountering class i within the track:

PlusetrackðiÞ ¼
P

areaðpÞ for p in intersðbufferðtrackÞ; land useÞ if luseðpÞ ¼¼ i
areaðbufferðtrackÞÞ

To compare simulated tracks with original ones, we measure location similarity of two
tracks using a χ2 distribution to account for sample size:

simluse
χ2 ðtrackA; trackBÞ ¼ 1� pχ2 k trackA k

XkVk
vi

ðPlusetrackA
ðluseðviÞÞ � PlusetrackB

ðluseðviÞÞÞ2
PlusetrackB

ðluseðviÞÞ

 !

To measure probability over both dimensions for ordering fake point candidates, we treat
both kinds of probabilities as if they were independent, combining them by their
product PlusetrackðluseðvÞÞ � PtrackðvÞ.

4.2.2. Random simulation
The second problem concerns the realistic simulation of a track. We suggest a heuristic
search strategy for extending tracks based on 3 iterative steps. For each track:

(1) Select a point of the track and find a set of (rasterized) point candidates in
a predefined spatial neighbourhood of this point, defined by the observed move-
ment behaviour.

(2) Add a candidate fake point to the track based on its movement and location
probability with respect to the original tracked behaviour, as defined above.

(3) Check whether original track and fake track are sufficiently similar with respect to
the proposed probabilistic measures. If not, remove point and go to 2, otherwise go
to 1 and start from the newly added point.

1408 S. SCHEIDER ET AL.



We applied the proposed simulation strategy iteratively until a randomly chosen number of
fake points was generated (see Algorithm 2, lines 2–5). The random number lies within 0 and
a maximum size given as extension parameter e. For instance, with e = 0.8, we generate 80% of
the number of track points (rdm(½0 : 0:8� k track k�)). Regarding step 1 above, we use
a neighbourhood defined by the discrete vector space on movement behaviour defined in
the last section (getV). So, possible candidates are points that are reachable under the behaviour
observed in the original track (Algorithm 2, line 3). The selection of candidates (step 2 above)
(Algorithm 2 line 10) is done with a frequency based on the combined location andmovement
probability of the fake point candidates with respect to the track (Algorithm 2 lines 6–8). In that
way, we prefer points showing a behaviour as in the original track. Since this does not
guarantee a minimum level of similarity, in the third step, we compare the extended track
with its non-extended (initial) version (Algorithm 2, line 12). If the algorithm does not find
a sufficiently similar candidate, thismeans that an error is thrown and the search strategy needs
to be changed, e.g. by changing the neighbourhood or the significance level.

Algorithm 2: Mimicking algorithm

1 Mimic(t = track, p = significance, e = extension)
Result: Randomly extend track based on movement/location similarity

2 v0 = getEnd(track);
3 V = getV(track);
4 faketrack = track;
5 for i in [0:rdm(½0 : e� k track k�)] do
6 for v in V do

7 P(v0 þ v) = Ptrackðv0 þ vÞ � Pluse
trackðluseðv0 þ vÞÞ

/*construct probability over candidates */
8 end
9 for v in V do
10 candidate = randomchoice(P);
11 test = faketrack.append(candidate)
12 if candidate‚ faketrack and simmove

χ2 ðtest; trackÞ> ð1� pÞ and
simluse

χ2 ðtest; trackÞ> ð1� pÞ then
13 faketrack = test;
14 v0 = candidate;
15 error = False;
16 break ;
17 else
18 error = True
19 end
20 end
21 if error then
22 return ERROR: No sufficiently similar candidate found!
23 end
24 end
25 return faketrack
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4.3. Track masking strategy

Another crowding strategy is called masking. Here, we also simulate fake points, yet not in
a way that resembles the original track, and thus adds more variety to the observable
spatial patterns. The generated points can fundamentally change the geometric ‘face’ and
spatial pattern of the point cloud. As long as they are as credible as the original track
points, an adversary has no way of deciding which are the correct ones. A strategy for
successful masking, therefore, needs to account for 1) generating a variety of behaviour in
a crowd, and for 2) assuring credibility, so that fake points cannot be discovered as such
based on implausible behaviour.

The basic idea of generating variety is the use of templates. A template is a spatial (or,
more generally, spatio-temporal) configuration of point vectors which can be added to
a single point, such that new points are generated in a neighbourhood defined by the
template. A template thus corresponds to a reference frame, in which one of the vectors
plays the role of the origin, and all other vectors are expressed relative to this origin. The
direction of the main axis corresponds to the main axis (Y) in the spatial reference system
used for the track. Since we have chosen to rasterize the track, our masking strategy is
built on this raster. The units on our axes, therefore, correspond to the rounding incre-
ment of our chosen rasterization.7

While the form of the template may be arbitrary, candidate forms can be found among
common lattice neighbourhoods, such as a von Neumann neighbourhood or a Moore
neighbourhood, see Figure 6.

Suppose a von Neumann neighbourhood template with radius r is given in terms of
a list of 2-dim vectors in discrete cell space Z (corresponding to rounding increment m),
where the origin v0 ¼ ð0; 0Þ lies in the middle (black cells in Figure 6):

TemplatevNr ¼ fðx; yÞ 2 Z
2jx þ y � rg

Then the size of this template (number of points minus the origin) depends on the
radius, and is given by8:

sizevNðrÞ ¼ rðr þ 1Þ
2

� 4

However, using such a template in its raw form is not a good masking strategy. The
reason is that whenever one uses a fixed template for masking, the rigid spatial config-
uration of points is repeated across the track and becomes recognizable. Therefore, it
becomes possible to guess the template’s origin. For example, suppose we mask a track

Figure 6. Lattice neighbourhoods.
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(Figure 7) with a von Neumann neighbourhhood of radius 2, then the result might look as
in Figure 8.

Due to the repeating form and fixed centre of origin of the template, one simply needs
to compute the centre of gravity for each recognizable neighbourhood to reconstruct the
original track.

To defend against such attacks, we suggest to randomly variate the template’s origin.
In this way, it becomes difficult to estimate the template origin just based on the form of
the point crowd (Figure 9). The centre of mass e.g. yields a largely distorted version of the
track (its error depending on the radius of the neighbourhood), and thus would any
strategy based on the form of the template. Randomly transforming a template concern-
ing its origin is defined in terms of vector subtraction from its origin, where rdm is
a random function that selects an element of a template with a linearly increasing
probability from its geometric centre:

rdmshiftðtemplateÞ ¼ fðvi � v0Þ for vi 2 template if v0 ¼ rdmðtemplateÞg

The new template now has its origin at v0 ¼ ð0; 0Þ which is likely not in the geometric
centre (Figure 9). Additionally, we could transform the template by rotating and by scaling

Figure 8. Masking the track with a von Neumann neighbourhood template of radius 2. The centre of
mass attack (line) easily yields the original track.

Figure 9.Masking by randomly transforming the origin of the template. The centre of mass now yields
a largely wrong track (dotted line).

Figure 7. A rasterized sample track.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 1411



it with a factor, however, this was not done in this article. Applying this template to a given
track coordinate point vgeo ¼ ðx; yÞ in a georeference system needs to take into account
the rounding increment m used in rasterization (to scale the template to the cell size),
which can be done by the vector sum:

applyðvgeo; template;mÞ ¼ fðvgeo þm � viÞ for vi 2 templateg
If we do this for each point in a track (see Algorithm 3 lines 5 and 6), then the maximum
number of possible alternative tracks (assuming no overlaps) amounts to kn, where n is
the number of track points and k is the number of points of the template.

Algorithm 3: Masking algorithm

1 Masking (t = track, m = increment, r = radius)
Result: Masking track pointswitha neighbourhood ofcrediblepoints

2 out = [];
3 Pred = [];

4 templatevN
r = ½v0; v1; :::�;

5 for v in t do

6 temp = apply(v, rdmshift(templatevN
r ), m)

/* Randomly shift template */
7 candidates = [v’ for v’ in temp if v’ ‚ Pred]

/* Select fake point candidates */
8 mask=candidates.append(v)
9 out.extend(mask)
10 Pred = mask
11 end
12 return out

Neighbourhoods, however, can easily overlap (see Figure 9). Whenever this is the case, they
must share points, and thus the number of points that can exclusively be confused with
a single track point becomes less than k. For this reason, we only consider template points as
fake candidates which are not yet in the predecessor mask (Pred) (Algorithm 3 line 7).

More sophisticated approaches to ensure credibility of point masks could be based on
corresponding movement or location constraints. If two points in successive crowding
neighbourhoods are located beyond a threshold reasonable for realistic movement, i.e. if
one is not ‘reachable’ from the other, then they can be easily excluded as endpoints of an
edge in the track. Solutions to this problem called (i,j)privacywere proposed by Nussbaum
et al. (2017) and can easily be added to our crowding approach, but were not considered
in this article.

4.4. Putting the pieces together

The different algorithms proposed above need to be integrated into a single crowding
solution. Since their parameters depend on each other, we need to find a robust way of
integrating them.
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For example, rasterization including the rounding incrementm as well as the template
radius r and the number k of template points should be chosen with respect to a credible
distance (d) between track points, otherwise the rasterized points, as well as the masks,
will become too coarse for representing the track or too detailed to be effective in hiding
it. This credible distance should, therefore, be based on the distances between points of
the track. We propose to automatically determine the parameters d, m, and r based on
k and the maximum distance measured between successor points in a track, as outlined in
the appendix. The only remaining input parameter is k, plus the significance level p and
the extension parameter e needed for mimicking.

Finally, the order of method applications is important. Track extension changes the
available points for masking, and masking would fundamentally change the spatial
patterns available to mimick a track. We therefore suggest to apply track extension before
masking. Consequently, we first rasterize a track, then extend the track, and finally apply
the masking strategy (see Algorithm 4).

Algorithm 4: Simulated crowding algorithm

1 Crowding (t = track, k = template size, p = significance, e = extension)
Result: Simulated crowding of a track

2 d = paramd(t);
3 m = paramm(d,k);
4 r =paramr (k);
5 rastert = Rasterize(t,m) ;
6 extendedt = Mimic (rastert, p, e) ;
7 maskedt = Masking (extendedt, m, r) ;
8 return maskedt

5. Evaluation methods

In this section, we introduce the methods to evaluate simulated crowding. We suggest
that a robust privacy evaluation needs to take into account at least two aspects.9

One is related to the idea that every obfuscation method negatively affects the quality
of the data (cf. Section 3), and therefore also lowers its usefulness for a certain analytic
purpose. For this reason, obfuscation always includes a certain loss of information. We
measure this loss by comparing the effect of different obfuscation methods (including
crowding) on track analysis results. Furthermore, to assess the increased effort of analys-
ing tracks due to obfuscation, we also compared the computing time needed to enrich
a given track with this kind of analysis.

The second aspect is related to the effectiveness of obfuscation concerning the resi-
lience against attacks. For this purpose, we will compare obfuscation methods based on
how effectively a given attack strategy can reconstruct the original track. We also assessed
how k-anonymity is influenced by obfuscation within the test set of tracks.

We start by discussing our benchmark for testing and then introduce the measures we
took to address the two quality aspects.
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5.1. Comparing crowding against other obfuscation strategies

To benchmark crowding, we compared it against two simple point quality reduction
strategies that belong to the standard repertoire for obfuscation of health data (Seidl et al.
2015) (see Section 3). One is Random Perturbation, where points in a track are redistrib-
uted according to some probability distribution over space. We randomly sampled new
points from a two-dimensional Gaussian Density Kernel estimated over the 6 nearest
neighbours for every point in the track. The second standard method we used is Voronoi
Masking. For this purpose, we computed the Voronoi polygons for a track and then
projected each point onto the nearest Voronoi line (Seidl et al. 2015).

Benchmarking was done by computing, for each obfuscation method, the information
loss of an obfuscated track, as well as the effectiveness of attacks compared to the original
track, and averaging these out over all tracks.

5.2. Measuring information loss

Computational privacy studies usually assess the quality of their methods using theore-
tical or empirical anonymity measures (cf. Chow and Mokbel (2011)). However, informa-
tion loss or usefulness of an obfuscated track is commonly not considered. Usefulness
depends on the purpose of tracking analysis, which is application dependent and thus
cannot be answered in general. However, purpose is central to applied information
science, and therefore often appears in corresponding studies about practical accuracy
decreasing methods (cf. Section 3). Geographic masking, e.g. is evaluated based on how
strongly standard spatial data analysis is affected by added noise (Zandbergen 2014, Seidl
et al. 2018).

For our purpose, we measured information loss in terms of the error in air pollution
exposure. We averaged NO2 concentration values in a buffer around the track line using
zonal aggregation. For each obfuscated track, we then computed the percentage error in
average concentration with respect to the original track.

5.3. Effectiveness of privacy attacks

Many studies are centreed around the effectiveness of anonymization. Most often, this is
assessed by proving that a method assures a minimal abstract anonymity level (see e.g.
Nussbaum et al. (2017), Zang and Bolot (2011), Sweeney (2002)). However, as we argued in
Section 3, we cannot control the external information environment of an adversary, and
therefore such theoretic measures do not tell us much about the true risk. We therefore
measured effectiveness empirically, by testing resilience against various kinds of attacks,
as was done in Krumm (2007), Curry (1999), Fechner and Kray (2012), Raubal (2011).

In principle, obfuscated tracks can be attacked in several ways. One possibility is to
exploit realistic movement constraints to detect erroneous points that would require
unrealistic movements (Nussbaum et al. 2017). Another one is based on exploiting the
geometry of a track, to distinguish realistic points based on the form of the point cloud. For
example, a simple attack strategy exploits the point density to detect home (Krumm 2007).
Finally, it is also possible to detect erroneous points based on assessing the spatial context
of a point, using e.g. land use patterns or other geographic data. In this article, we used
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attacks based on the latter two approaches, because we consider our design less vulner-
able to movement constraint attacks, as it takes movement patterns into account. Our
implementation of both attack strategies first involved spatial smoothing of a track using
a moving average window of size 3. Thereafter we proceeded as follows.

5.3.1. Effectiveness of reconstructing homes
First, we implemented two simple attack strategies for reconstructing stopping places
and homes from (obfuscated) tracks. Being able to detect homes is among the most
vulnerable information contained in a track because it allows opponents to link the track
with an address to identify the person. Note that other stop locations might be equally
dangerous, as they reveal a person’s habits. To reconstruct home, we computed the
residential land use density within a 30-meter buffer around each point in a track, as
well as the point density. We then selected the point where the product of both was the
highest. To measure the effectiveness of these attack strategies, we computed the
Euclidean distances between home estimated as above and true home.

5.3.2. Effectiveness of reconstructing tracks
Second, we implemented two different attack strategies to assess the effectiveness of
reconstructing entire tracks. One is simply based on smoothing the obfuscated track and
measuring the similarity to the original track based on (50 meter-) buffering tracks and
computing the areal overlap in terms of the Jaccard index (which is the ratio of the
intersection and the union of both buffered tracks). The other is based on estimating
the main directions of a track and the spread along the elongated track using the
Standard Deviational Ellipse (SDE). SDE determines the 2-dim spatial angle of the major
axis (θ) of the shape of a point cloud, as well as the standard deviations along the major (x)
and the minor axis (y) of the ellipse.

To measure the effectiveness of these attack strategies, we directly used the Jaccard
index for the first strategy and computed the differences of the SDE parameters (θ; x; y)
between each obfuscated and the original track for the second one.

5.4. Test set up

The evaluation was computed on a sample of tracks drawn randomly from a large set of
bicycle tracks obtained from a panel of 581 smartphone users, gathered in a large bicycle
stimulation program throughout the year 2014 (‘B-riders’10) in Noord Brabant, a southern
province of the Netherlands (de Kruijf 2014). The dataset was enriched with information
about individual trips and journeys, together with a classification model of types of stop
places (home, work, leisure) based on the method in Feng and Timmermans (2017). We
focused on trip sections in January, July and December 2014 that lead from or to home
locations so that we can examine obfuscation techniques for both track pattern and home
location protections. From each record of a person, 4 tracks containing home locations
were drawn randomly, resulting in 1745 tracks. We discarded those incompletely
recorded (some track sections only contain home locations), which are too short for
analysis. During crowding, each of the tracks is extended with a parameter of 0.5 (see
Algorithm 2), resulting in obfuscated tracks having 1.5 times the length of the original
tracks.
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The NO2 concentrations used for the exposure assessment were obtained from data-
sets developed by Schmitz et al. (2019). The raster datasets provide annual average air
pollution concentration maps for the year 2009 on a 5� 5 m grid. The concentrations for
nitrogen (di)oxides were calculated using the land-use regression models developed in
the European Study of Cohorts for Air Pollution Effects (ESCAPE) project.

The level of exposure along a track was estimated by considering the average pollution
concentration within a buffer zone around the track line. Since the exposure level at each
GPS track point only depends on the variation of the geographic distribution of pollu-
tants, the size of the buffer zone can be determined based on the variation of pollutants
like NO2 around each track point. According to the map of NO2 concentration, this
variation stays rather uniform within a 30-meters distance. Also, this distance roughly
corresponds to the GPS measurement error, which is why we decided for a buffer zone
of 30 m.

The algorithms are implemented through Python 3.5 along with ‘geopandas’, ‘shapely’
and ‘fiona’ as major packages. The experiment is conducted on a 64-bit Operating System
with Intel Core i7-6700 CPU 3.40 GHz and a RAM of 28G.

6. Results

In this section, we discuss the evaluation results, including the assessment of information
loss and the effectiveness of different kinds of attacks. We start with descriptive statistics
about the tracks used in this study.

The distribution of track length shows two peaks, one for very short tracks, and another
one for tracks with around 100 points (Figure 10(a)). A large proportion of tracks is thus
larger than 100 points, lasting for several minutes. Also, the track complexity is consider-
able, meaning that the track line is often convoluted instead of being straight, with a large
portion of tracks showing a fractal dimension greater than 1 (Figure 10(b)).

In Table 2, we can see how this distribution is influenced by obfuscation. While the line
length for random perturbation and Voronoi masking stays equivalent, the tracks become
less convoluted and complex. Simulated crowding, however, considerably increases the
length of tracks as well as their complexity.

Regarding computational effort, Table 2 shows that simulated crowding correspond-
ingly requires most computing time on average, however only slightly more than Voronoi

Figure 10. Statistics of original track sample. Distribution of lengths (number of points) and track
complexity (fractal dimension).
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masking. Random perturbation is cheapest in time. However, all obfuscation methods
stay within a few centiseconds for either moving an existing or adding a new track point.
This means that, for example, masking a track of 100 track points while extending it by
50% of its length would take 15 seconds. Thus for an experiment with a track dataset
around 2000 tracks (1754 in this study), obfuscation will take slightly more than 8 hours on
a HP EliteDesk 800 G3 TWR PC with a RAM of 28, and Intel Core i7-6700 CPU, 3.40 GHz.

As can be seen in Figure 11, the original track shown in (a) is extended by simulated
crowding (c), such that it roughly follows the road network and ends up in a different
residential area. The template masking (d) additionally hides the track within von
Neumann neighbours. Gaussian perturbation and Voronoi masking, on the other hand,
both conserve the general layout of the track.

Table 2. Average line length and fractal dimension of tracks under different forms of obfuscation.
Average line length Average fractal dimension Avg time sec. per point

Original 92.06 1.26
Simulated Crowding 138.06 1.44 0.1082
Gaussian RP 90.02 1.18 0.0725
Voronoi Masking 89.61 1.14 0.0990

Figure 11. Overview of obfuscation results based on an example. Original track against (a) Land use
and land cover, and (b) NO2 concentration. (c) Crowded (extended) track. (d) Crowded (masked) track.
Same track with (e) Gaussian perturbation, and (f) Voronoi masking applied.
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6.1. Effectiveness of attacks

Table 3 shows results of attacking different kinds of obfuscation with a given attack
strategy, averaged over all tracks. This is measured in terms of average spatial distance
(of reconstructed from original home, in m), Jaccard similarity (of buffered obfuscated
tracks and buffered originals), as well as percentage error in SDE parameters (of obfus-
cated vs. original), measured in terms of direction angle θ, and in standard deviations
along the major (x) and minor axis (y).

We can see that attacking the home location is much more difficult in the case of
simulated crowding than in the case of the other obfuscation techniques. While the latter
allow attacks with estimations of the home that are on average less than 200 meters from
the true home location, simulated crowding pushes such estimations away from the true
home by more than 1.5 kilometres on average. This is because our crowding method not
only removes point clusters which may indicate home but also simulates fake movements
far away from the original track in correspondence with residential land use patterns. The
vulnerability of a track concerning these two home characteristics, therefore, seems to be
effectively diminished by our method. Using the distance tolerance between true home
and estimated home for each track, we assessed a corresponding anonymity level, count-
ing how many other track homes in our databases would fall within this tolerance. The
large reconstruction error due to crowding ensures higher k-anonymity than can be
produced by either random perturbation or masking. For instance, an average home
location reconstruction error of over 1.5 kilometres would yield an average k of around 10.
Since on average there are no more than 5 neighbouring track points at the end of all the
tracks within 200 meters, the Gaussian random perturbation or Voronoi masking would
only ensure a k of around 5.

Similarly, Jaccard similarity of simulated crowding is lower than for all other methods
and considerably lower than Voronoi Masking. Simulated crowding also increases the
percentage errors in SDE parameters in comparison to the other methods by 2 to 5
times.

In Figure 12, we show the joint distribution of effectiveness of track reconstruction
(Jaccard index) versus home attack error. It can be seen that a track obfuscated with
simulated crowding is not only most difficult to reconstruct, but at the same time provides
the largest error in attacking homes.

These results together indicate that it is going to be significantly more difficult to attack
a track that was obfuscated with simulated crowding, as compared to the other two
methods, at least when considering attack strategies based on land use patterns, point
density and track geometry.

Table 3. Effectiveness of different privacy attacks (columns) on different obfuscation methods (rows)
in terms of similarity and anonymity.

Benchmarks Home error avg in m Jaccard similarity SDE θ diff SDE x diff SDE y diff

Simulated Distance 1519.89 57.18% 93.14% 244.66% 317.51%
Crowding k-Anonymity 10
Gaussian Distance 175.42 60.62% 51.72% 50.73% 89.40%
RP k-Anonymity 5
Voronoi Distance 169.08 72.17% 32.80% 63.08% 80.32%
Masking k-Anonymity 5
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6.2. Information loss

Information loss was measured in terms of a mean percentage error (MPE) of the average,
minimum and maximum NO2 concentration near an obfuscated track as a proxy of
estimating the pollution exposure of the tracks. The error was measured with respect to
the original track. The mean absolute percentage error (MAPE) (using absolute differ-
ences) is given in brackets, see Table 4. For all obfuscation techniques, exposure tends to
be underestimated, as shown by negative differences. This is because that track points are
moved away from the road networks, where the pollution concentration is high. As can be
seen in Table 4, the errors produced by the crowded track (obfuscated benchmark) are
slightly higher than for the perturbed or Voronoi variants, yet within comparable ranges.
Voronoi masking produces the smallest error, also in absolute terms, because Voronoi
boundaries between track points stay close to these points. However, since the points of
the original track within a crowded track can be reconstructed (compare Section 4.1),
crowding offers the possibility of reducing the information loss by obfuscation to almost
zero ( � 2% in absolute terms). The remaining error, in this case, is only due to the
rasterization within simulated crowding. In the following comparisons, we consider the
worst case, assuming that such a reconstruction of track point values is not possible
because a user requests a statistics over the entire track from the service (see Section 2).

Figure 13 visualizes the joint effects of obfuscation effectiveness and information loss
over all tracks. Jaccard similarity is considered as a proxy of obfuscation effectiveness, where
low similarity indicates low attack accuracy and thus high obfuscation effectiveness. Among

Figure 12. Effectiveness of attacks in terms of reconstruction accuracy (Jaccard index) against home
reconstruction, compared for (a) crowded tracks, (b) Gaussian perturbed tracks, and (c) Voronoi
masked tracks.

Table 4. Information loss of different obfuscation methods (rows) in terms of error of NO2 concentra-
tion exposure. The error was calculated compared to the original track, as a percentage of exposure
difference, summarized over all tracks. We computed the mean and the absolute error (the latter in
brackets). Exposure was calculated as local NO2 concentration.

Benchmarks
Mean (absolute) percentage
error (M(A)PE) of track avg

M(A)PE of track
min M(A)PE of track max

Simulated obfuscated −5.12% (8.57%) −3.43% (5.73%) −1.66% (3.97%)
Crowding reconstructed −0.46% (2.06%) −0.44% (1.49%) −0.73% (1.52%)
Gaussian RP obfuscated −5.21% (5.33%) −1.68% (2.24%) −1.09% (2.22%)
Voronoi Masking obfuscated −3.18% (3.37%) −1.96% (2.44%) 1.43% (3.47%)
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all obfuscation techniques, we can see that attack accuracy and MPE are negatively
correlated. This means that increasing the effectiveness of obfuscation in terms of decreas-
ing Jaccard similarity produces growing information loss in estimating pollution exposure,
and vice versa. Crowding produces the steepest negative correlation (Figure 13(a)), implying
that preserving information sacrifices the least amount of obfuscation effectiveness. In
contrast, Gaussian perturbation (b) largely compromises obfuscation effectiveness to pre-
serve the same amount of information. Voronoi masking (c) may preserve the highest
amount of information among all the obfuscation techniques, yet is also subject to the
highest risk of attack.

To further investigate these joined effects, we varied the parameters of each obfusca-
tion strategy to see how a method can be moved along both quality dimensions. For this
purpose, we ran all techniques 5 times over all tracks with increasing obfuscation intensity
(and thus decreasing Jaccard similarity): For crowding, the key parameter of track length
extension was increased from 0.5 to 3 times of the original length, while the Gaussian
perturbation parameter of Gaussian neighbourhood size was increased from 6 to 30-
meters with equal intervals. This moves the methods along the x-axis towards decreasing
Jaccard similarity. As there are no parameters for the Voronoi masking, the technique was
applied identically each time. Figure 14 shows the average quality values on each
dimension for each of the 5 runs for these three techniques.

We can see that Voronoi masking shows no preeminent behaviour, other than being
very good in preserving information and very bad in defending against attacks. For
Gaussian perturbation, information loss seems to increase linearly when obfuscation is
intensified. Simulated crowding, in contrast, exhibits stable information loss when
increasing the intensity of obfuscation, meaning that information loss, in this case, is
least sensitive to increasing effectiveness of privacy protection compared to other tech-
niques. This stability is achieved through mimicking the original track pattern in terms of
land use and spatial directions. In this way, the crowded track maintains the pollution
exposure pattern along roads. The standard deviation of information loss is shown as
error bars, where crowding again displays a stable information loss pattern against
obfuscation intensity. Gaussian perturbation suffers from growing information loss varia-
tions with more intense obfuscation.

Figure 13. Obfuscation effectiveness in terms of reconstruction accuracy (Jaccard similarity, x axis)
against information loss (MPE, y axis) for (a) crowding, (b) Gaussian perturbation and (c) Voronoi
masking.
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We finally visualized attack accuracy and information loss together with track length to
examine whether obfuscation is sensitive to track characteristics. As shown in Figure 15,
all obfuscation techniques perform better on short tracks than longer ones. As the tracks
become longer, reconstruction becomes less difficult leading to higher attack accuracy.
The attack accuracy exceeds 0.8 once the track length is roughly over 100 track points for
Gaussian perturbation and 0.9 for Voronoi masking. Even though Voronoi masking can cut
down attack accuracy to a value below 0.4 for some tracks longer than 200 track points,
the loss of information is large (large blue circles in Figure 15(c)). A comparably large
percentage of crowded tracks reach an attack accuracy below 0.2 even though being
longer than 200 points (see lower circles in Figure 15(a)). At the same time, the informa-
tion loss of such tracks is within the range or smaller than Voronoi masking, though larger
than Gaussian perturbation.

Figure 14. The change of information loss (y axis) against obfuscation effectiveness (decreasing
Jaccard similarity) when increasing obfuscation intensity for each technique. This moves results
along the x axis towards the origin.

Figure 15. Sensitivity of obfuscation with respect to track length. We compare attack accuracy and
information loss between (a) Crowding, (b) Gaussian perturbation and (c) Voronoi masking.
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6.3. Discussion and future work

Our results illustrate that simulated crowding provides a valid alternative to state-of-the-art
point quality reduction techniques. On the one hand, it is a method that significantly lowers
privacy risk in terms of home attacks using point density and residential land use as well as the
risk of geometric track reconstruction (using e.g. point cloud-basedmethods such as SDE). For
all of these attack strategies, we could show that simulated crowding performs at least as
good as or better than randomperturbation and Voronoimasking, and is often a better choice
due to the largely increased resilience against home attacks. On the other hand, ourmethod is
also capable ofminimizing information loss or keeping it constant with increasing obfuscation
intensity. This is an important result for analytic purposes requiring the preservation of point
quality, such as exposure measurements. When computing analytics over the raw result of
simulated crowding, increasing obfuscation intensity exhibits a stable error concerning
exposure assessment. Also, since original track points within a crowded and enriched track
can be effectively reconstructed on the client-side, we can further reduce this analytic error to
the error that is introduced by gridmasking.11 In contrast to other obfuscation techniques, we
thus could show that simulated crowding preserves a fixed amount of information while
allowing us to largely increase the privacy level. Furthermore, though it takes somewhatmore
time to analyse than other strategies due to the increased amount of points, the time
difference lies within a few centiseconds per track on average.

However, there are also drawbacks of our proposed method. First, for computationally
expensive analytic tasks, crowding multiplies the analytic burden, as it multiplies the
number of points to be analyzed. On average, simulated crowding by mimesis increases
the size of a track by � 50%. This means that the runtime of analytic methods of
quadratic complexity is more than doubled ( � 220%). This is further worsened by
template masking. And second, privacy metrics for crowding, which would be needed
for minimum privacy guarantees and optimality results, are yet unknown, since current
approaches are focused on point quality reduction.

For these reasons, future research should focus on designing appropriate privacy
measures which would allow determining optimal crowding strategies under certain
assumptions. Crowding efficiency, that is, identifying the least amount of fake points
that can be used for crowding a track with a given analytic goal under a given privacy
level should be investigated. Furthermore, different crowding strategies (with and with-
out rasterization, with a more diverse set of mimesis and masking algorithms) should be
compared against each other. Finally, the usefulness of crowding regarding analytic
techniques should be assessed in future studies. It is clear that crowding as a track quality
reduction strategy negatively affects those analyses that assess the entirety of a track. The
implementation of a plug-in tool for common GIS is planned, which would make our
method easy to use. We believe that simulated crowding should not be regarded as
a substitute for other obfuscation techniques but rather occupies a particular niche within
the set of geoprivacy preserving methods.

7. Conclusion

In this article, we proposed a novel obfuscation technique for spatial point tracks.
Simulated crowding is capable of preserving point quality and corresponding analytic
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accuracy to a large extent. At the same time, it is an effective measure against privacy
attacks on home locations and against track reconstruction techniques that exploit
point density, track geometry or spatial context such as land use patterns. This makes
it a valid alternative for defending geoprivacy, in addition to point quality reduction
strategies which dominate the current state-of-the-art. In this article, we could demon-
strate that simulated crowding has a higher resilience against home attacks and a stable
information loss, and thus is most effective in preserving information when increasing
obfuscation intensity compared to state-of-the-art obfuscation techniques. In future
work, simulated crowding should be tested under different analytic goals, such as
different forms of exposure, focusing on its inherent limits regarding analyses of entire
tracks.

Notes

1. A group of people who share a defining characteristic and is studied for a period of time.
2. https://en.wikipedia.org/wiki/General_Data_Protection_Regulation.
3. The notion of location privacy is sometimes also used to refer to the privacy of locations

visited by non-anonymous users of social networks (Vicente et al. 2011). Note that we do not
focus on this second meaning.

4. Code is available online https://github.com/simonscheider/CrowdingObfuscation.
5. The high concentration of points around stops makes it possible to detect start or goal

locations, at which the speed is bound to decrease.
6. Here we use a notation for set and list comprehension similar to Python syntax: fx for x in S if

Cond(x)g denotes the set of elements of S satisfying the condition Cond. For vectors, we use
ordinary vector algebra notation.

7. Masking would work also for continuously distributed points according to the same princi-
ples outlined below, but using a different kind of template. For example, a template in which
points are distributed according to some stochastic process in coordinate space, such as
a bivariate normal distribution.

8. In this formula, the first factor is Gauss’ sum formula for the sum of numbers 1 to r, and
the second factor is a constant for van Neumann neighbourhoods.

9. In our study of literature, we noticed that obfuscation studies often left out either one or even
both of these aspects.

10. http://www.b-riders.nl/.
11. In case a different crowding strategy is used, which substitutes discrete rasterization with

continuous space, this error can even be reduced to zero.
12. To solve this equation, we use the well known zero of a quadratic function.
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Appendix

(1) A credible d (credible maximum movement distance between points) should depend on the
maximum distance measured between points in the track. Here we used a tolerance of 1.3 times
this maximum:

paramdðtrackÞ ¼ 1:3 �maxð½k ðvi � viþ1Þ k for vi in track if i< k track k�Þ

(2) m � d, more precisely π d
m

� �2� k (at least k points with increment m must fit in a buffer of
radius d). If we assume that a single movement should be able to reach at least k points, then
the rounding increment m must be:

π
d
m

� �� �2
¼ 2k

d
m

� �2

� 2k
π
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d
m

�
ffiffiffiffiffi
2k
π

r

m � dffiffiffiffi
2k
π

q

parammðd; kÞ ¼ dffiffiffiffi
2k
π

q
66664

77775
(3) the template radius rmust provide a search space big enough to find k candidates in the template,

i.e. assuming a von Neumann template, sizevNðrÞ > k. For example, if the neighbourhood radius r for
generating a template should contain double as many points as required by k12:

rðr þ 1Þ
2

4 � 2k

rðr þ 1Þ � k

r2 þ r � k

r2 þ r þ ð�kÞ � 0

paramrðkÞ ¼ �1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k

p

2

	 


So, e.g. when k is 2, r must be 1 (von Neumann neighbourhood template containing 4 points), and
if k is 3, r must be 2 (template containing 12 points).
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