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1 Introduction and results

RHIC experiments of heavy-ion collisions and related data on the deconfined phase of
QCD, [1–4] have provided a window for string theory techniques to meet the real world.
The context is strong coupling dynamics near and above the deconfining transition in
QCD. String theory via the AdS/CFT correspondence has provided a framework in order
to understand strong coupling dynamics in the deconfined phase including the calculation
of transport coefficients. Recent reviews on the progress in this direction are [5–9].

Observables of particular importance are associated to heavy quarks. Heavy quarks
may be produced in the Quark-Gluon Plasma (QGP) of the RHIC fireball and are then
travelling to the detectors while moving through the dense QGP. They can be tagged
reasonably well and are therefore valuable probes of the dynamics in the plasma and in
particular for the mechanism of energy loss.

A single heavy quark can be modeled in string theory by an open string. Its end-point
is representing the heavy quark while the string is trailing behind as the quark moves. The
large mass limit is important in order to neglect the non-trivial flavor dynamics associated
with light quarks (although with improved techniques the light quarks may also eventually
be addressed reliably in the holographic context). As quarks are associated with strings
ending on flavor branes, a heavy quark ends on a brane that is stretching in the UV part
of the bulk geometry. The motion of such a string, and the associated force acting on the
quark from the thermal medium, have been studied in detail with several complementary
methods, [10–13]. In the simplest setup, the UV endpoint of a fundamental string is forced
to move with constant velocity v along a spacial direction. The equations of motion for
the full string are solved and the radial profile of the trailing string is found as it moves in
a bulk black-hole background representing the deconfined heat bath. The energy absorbed
by the string is calculated and the drag force of the string is obtained. The picture remains
roughly valid, while details change when conformal invariance is broken, [14, 15].

An important improvement in this picture consists of the study of the stochastic na-
ture of this system in analogy with the dynamics of heavy particles in a heat bath giv-
ing rise to Brownian motion. This involves a diffusive process, that was first considered
in a holographic setting in [16], by using the Schwinger-Keldysh formalism adapted to
AdS/CFT in [17].

Subsequently, a study of the (quantum) fluctuations of the trailing string, [18, 19]
provided the information on the momentum broadening of a heavy quark as it moves in the
plasma. The stochastic motion was formulated as a Langevin process, [20, 21] associated
with the correlators of the fluctuations of the string.

Many heavy quarks in experiments are relativistic. Therefore it is necessary to study
the associated relativistic Langevin evolution of the trailing string, a feat accomplished in
the N = 4 case in [22]. The same type of Langevin process was studied in [23] for the case
of an accelerating quark in the vacuum (rather than in a deconfined plasma), by analyzing
the fluctuations of a trailing string in AdS with a non-uniformly moving endpoint.

On the experimental front, there have been several results from the RHIC experi-
ments, [25]–[29]. The experimental signatures are currently summarized by the e± spectra
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that originate in the semileptonic decays of charmed and bottom hadrons. From these spec-
tra a modification factor ReAA and an elliptic flow coefficient ve2 are extracted. They capture
the effects of the medium to the propagation of the heavy quarks. The data exhibit a sub-
stantial elliptic flow, up to ve2 ' 10%, and a high-pT suppression down toReAA ' 0.25. These
values are comparable to light hadrons. Radiative energy loss models based on pQCD, [30]
do not seem to explain well the experimental data, [31]. Elastic scattering energy loss plus
non-perturbative interactions can on the other hand accommodate the data, [31].

In particular the Langevin approach has been applied to the study of the heavy quark
energy loss by several groups, and the related physics is summarized in the review [31].
The Langevin evolution used was relativistic and with symmetric diffusion coefficients. As
there was no microscopic model to provide the proper fluctuation-dissipation relation, the
Einstein equations used vary, and in all examples it was assumed that the equilibrium dis-
tribution is the Jüttner-Boltzmann distribution. Moreover various combinations of friction
forces were used, resonance models, pQCD, N=4 AdS/CFT and combinations. A further
recent analysis was performed in [32] with similar conclusions. The associated relativistic
and isotropic Langevin systems used have been introduced in the mathematical physics
literature rather recently, [33–35] (see [36] for a review).

The purpose of the present paper is to study further the relativistic Langevin evolution
of a heavy quark using holographic techniques in a general context, and going beyond
conformally invariant backgrounds characterized solely by AdS geometries.1 In this work we
will study a large class of non-conformal backgrounds captured by Einstein-dilaton gravity
with a dilaton potential in 5 dimensions. In a series of recent works, such backgrounds
were analyzed both qualitatively and quantitatively and have provided a rich variety of
holographic bulk dynamics. In particular, for a selected class of scalar potentials, they
mimic the behavior of large-N Yang Mills, [38]–[44]. This match can be quantitative, [44],
agreeing very well both at zero and finite temperature with recent high-precision lattice
data, [45]. On the other hand, the analysis we carry out in the present paper is general, as
it applies to any asymptotically AdS background.

We therefore consider a fundamental string whose end-point lies in the UV region of a
bulk black-hole background of a non-conformal holographic model. The string end-point is
forced to move with velocity v. Solving the Nambu-Goto equations of motion, the classical
profile of the trailing string can be found. The string stretches inside the bulk until it
becomes completely horizontal at some value of radial coordinate rs, given by f(rs) = v2

where f(r) is the blackness function of the background. When the quark is moving slowly,
as v → 0, the point rs approaches the bulk black hole horizon.

The induced metric on the string world-sheet has the form of a two-dimensional black-
hole metric with a horizon at r = rs as first observed in [19].2 This black-hole is an

1A particular example in this class was recently considered in [24], which studied the Langevin process

in the non-conformal N = 2∗ background.
2This is a generic effect on strings and D-branes embedded in black-hole/black-brane backgrounds. It

was first observed in [46] where it was used to propose that a different speed of light is relevant for such

branes. It is implicit or explicit in many holographic computations using probe flavor branes, [47, 48] and

strings [19].
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important ingredient of the dynamics of the system. In particular it is crucial in the
calculation of the thermal correlators using the Schwinger-Keldysh formalism, as well as for
the fluctuation-dissipation relation. The world-sheet black hole has an associated Hawking
temperature Ts that depends on several parameters: the background temperature T , the
zero-temperature bulk scale Λ,3 and the quark velocity v. It coincides with the temperature
T of the heat bath only in the non-relativistic limit. In the conformal case, one has
Ts = Ts,conf = T (1− v2)

1
4 ≤ T . The numerical analysis performed in section 6 shows that,

in our non-conformal holographic model Ts ≤ Ts,conf ≤ T . The equality Ts = Ts,conf , in
the first relation is attained, for arbitrary v, in the high T limit, as shown in figure 1 in
section 6 and also in the ultra-relativistic limit, v → 1.

We next consider small fluctuations around the classical string profile. They satisfy
second-order radial equations that are related to the associated thermal correlators by the
holographic prescription. It should be emphasized that such correlators are thermal with
temperature Ts and not the temperature T of the heat bath.4 Moreover, they satisfy
the fluctuation-dissipation relation associated with the emergent temperature Ts. The
fact that the string fluctuations see a modified temperature crucially affects the Einstein
relation between the diffusion constants.

At the quadratic level of fluctuations, a relativistic Langevin diffusion equation is ob-
tained using the AdS/CFT prescription. The diffusion constants and friction coefficients
are calculated analytically in terms of the bulk metric, for general non-conformal back-
grounds. The Einstein relation is now modified, due to the fact that the temperature is
modified. Another important property is that the diffusion constants perpendicular and
longitudinal to the motion (denoted by κ⊥ and κ‖) are different, a fact that was already
observed in the conformal relativistic case, [22]. This is persisting here, and we are able
to show, for general non-conformal backgrounds, that κ‖ ≥ κ⊥, namely the longitudinal
diffusion constant always dominates the transverse one. Furthermore, both the diffusion
constants and the friction term are momentum dependent, as expected. This is in contrast
to the conformal case.

The properties of this relativistic Langevin evolution differ substantially from rotation-
ally invariant equations that have been introduced recently in mathematical physics [32–36].
In particular, here the evolution is not rotationally symmetric, and the Einstein relation
is different, because the fluctuation-dissipation relation is different. This implies that the
equilibrium configuration is not the standard rotationally-invariant Jüttner-Boltzmann dis-
tribution.

The processes we discuss here are connected to a general property of a class of statistical
systems, and provide a concrete and rather general solvable example thereof. Such systems,
when in contact with a heat bath of temperature T , if stirred gently and continuously,
end up in a stationary state that is thermal but with a temperature Ts, different from
that of the heat bath. They satisfy a fluctuation-dissipation relation involving the new

3This appears as an integration constant in the background geometry and corresponds to the dynamically

generated energy scale ΛQCD in the dual field theory.
4More precisely put, the Langevin correlators that are obtained from the string fluctuations by the

holographic prescription obey a modified Einstein relation with temperature Ts rather than T .
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temperature, [49]. This phenomenon has been expected to occur in general, in situations
with slow dynamics. These include in particular glassy systems, as well as systems that
are very gently stirred by external agents and reach stationarity. Here, we have a system
that is stationary but strongly driven by the external source (an electric field on the flavor
brane, that keeps the velocity large and constant as the quark is moving through the
plasma). Typically, Ts ≥ T , [49] but in our case things are different. In the conformal case
Ts = Ts,conf = T (1− v2)

1
4 ≤ T and this seems to persist in several other cases, as already

mentioned before.
The problem we are solving can be also cast in a different light. The following

question has been asked since the beginning of the 20th century: what are the Lorentz-
transformation properties of temperature and the associated stationary distribution? This
question is still considered open, [50] with several conflicting answers. Our setup can be
reconsidered as follows: the heavy quark is a “thermometer” moving inside a heat bath of
temperature T . The way it measures temperature is via the fluctuation-dissipation theorem
as argued in generality in [49]. Therefore the temperature that it measures as it moves in
the thermal medium is Ts, which is velocity-dependent. This velocity dependence is simple
in the conformal case, Ts = T (1−v2)

1
4 but is rather complicated in the non-conformal case

and is therefore system- (and possibly thermometer-) dependent.
The Langevin correlators must be renormalized as they are divergent near the AdS

boundary of the string world-sheet. We show that the only UV divergence is subtracted by a
counterterm that renormalizes the (heavy) quark mass. The associated scheme dependence
affects the real part of the correlators only.

The local Langevin equation arises when looking at the large-time limit of the fluctua-
tions of the heat bath, i.e. at the small frequency modes. On the other hand, the holographic
computation gives access to the full frequency spectrum of the correlation functions driv-
ing the generalized Langevin dynamics. In this work we compute holographically the full
Langevin correlators and the associated spectral densities. In particular, we obtain analytic
expressions (in terms of the bulk metric and dilaton profiles) in the two opposite regimes
of small and large frequencies ω (compared to an appropriate temperature scale).

For small frequencies, an analytic expression for the spectral densities is obtained using
the membrane paradigm [51], which allows to relate these quantities to the near-horizon
values of the background functions. In the large-frequency regime, on the other hand, the
spectral densities are obtained via a modified WKB method, similar to the one followed
in [52] for bulk fluctuations in an AdS-Schwarzschild background. The high-frequency
behavior is different, depending on the mass of the probe quark. For finite mass, and for
large ω, the spectral densities grows linearly with ω, whereas in the limit when the quark
mass becomes infinite this behavior changes to a cubic power-law.

Going beyond the zero-frequency limit is necessary when the diffusion process happens
on time scales comparable to, or smaller than the auto-correlation time of the fluctuation
propagators. More specifically, since these are thermal correlators at the temperature
Ts, the large-time approximation breaks down over time-scales shorter than T−1

s . This
condition puts a temperature-dependent upper bound on the momenta of the heavy quark,
above which the diffusion process cannot be described by a simple local Langevin equation
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with white noise. In this context, it is useful to have approximate expressions for valid
for large frequencies (for examples, those we obtain with the WKB method) to model the
behavior of the system in the regime where the local Langevin approximation breaks down
and the dynamics becomes non-markovian (due to a non-trivial memory kernel)

The results described above apply to any five-dimensional holographic model which
admits asymptotically AdS black-hole solutions. On the other hand, it is interesting to
perform a quantitative comparison between the diffusion constants calculated in concrete
models, and characteristic observables in heavy ion experiments that can simply be con-
nected to Langevin processes. In the context of heavy-ion physics, the transverse diffusion
constant is directly related to the jet-quenching parameter q̂⊥ = 2κ⊥/v. The latter is a
convenient quantity to describe the observed phenomenon of transverse momentum broad-
ening of a heavy quark: this is the process by which the transverse momentum of the
heavy quark probe,5 initially equal to zero, undergoes a stochastic diffusion process such
that after a time t it acquires a dispersion ∆p2

⊥ = q̂⊥vt.
In the final part of this work we perform a quantitative analysis of both the full

Langevin correlators, and of the jet-quenching parameter, in a particular Einstein-dilaton
model, namely Improved Holographic QCD [38, 39], which agree quite well both quali-
tatively and quantitatively with the zero- and finite-temperature Yang-Mills theory. In
particular, we focus on the specific model which was put forward in [44], and displays a
good quantitative match with the spectral and thermodynamic properties of lattice Yang
Mills theory.

The analysis is performed numerically, both with respect to the background metric
and to the solution of the fluctuation equations. By a shooting technique, we determine
the wave-functions describing the world-sheet fluctuations, and obeying the appropriate
retarded boundary conditions. From the wave-functions, the holographic prescription al-
lows to determine the full Langevin retarded correlator, whose imaginary part gives the
associated spectral density.

Using the exact numerical evaluation we are able to test the different analytic results
discussed above. In particular, we test the validity of the WKB result for large frequency,
and in various regimes of quark mass and velocity. Unexpectedly, we find that the an-
alytic WKB formulae not only capture the large frequency regime, but are a very good
approximation to the correlators at almost all frequencies.

The numerical evaluation of the diffusion constants may lead directly to a comparison
of the jet-quenching parameters between the holographic QCD model and data. We find
that q̂⊥ displays a mild momentum dependence for large quark momenta, which however
differs from the one obtained holographically in the conformal case. As the temperature
rises, q̂⊥ increases significantly, approximately as ∼ T 3. Interestingly, it is found that for
temperatures above ∼ 400MeV , the local description of the diffusive process breaks down
for charm quarks with momenta above ∼ 5 − 10GeV . This is because the process occurs
on time scales shorter than 1/Ts. This would imply that in order to describe heavy charm
quark diffusion in the ALICE experiment, one would need the full generalized non-local

5Here, “transverse” refers to the initial quark trajectory, not to the direction of the colliding beams.
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Langevin equation, and the full frequency-dependent correlator, rather than just its low-
frequency limit captured by q̂⊥. This would constitute an interesting testing ground for
holographic models, where the full correlators can be easily computed. We also estimate the
energies at which the energy loss mechanism described here, is not any more the dominant
one and radiation becomes the dominant mechanism. This is estimated by requiring that
rs remains below the would-be position of the flavor brane, [19, 59]. We show that these
limit do not substantially constrain this framework.

A direct quantitative comparison of the results of this paper with data is hampered
by the fact that quark degrees of freedom in the plasma are not included in our analysis.
We are compensating (partly at least) for this using the “energy scheme” for comparison,
however the recent results found in [60] (and reviewed in [61]) suggest that even in that
case we may be underestimating the result.

In summary the AdS/CFT calculation of the Langevin diffusion of heavy quarks has
the following characteristics

• The diffusion coefficients are asymmetric. The longitudinal diffusion coefficients is
always larger than the transverse one. They both become large with increasing γ.

• The Langevin correlators satisfy a thermal fluctuation-dissipation relation with a
temperature Ts that is typically smaller than then heat bath temperature T . In the
conformal case Ts = T√

γ , [22]. The associated Einstein relations are non-standard,
especially the longitudinal one.

• The local (Markovian) Langevin diffusion breaks down at some energy scale. Beyond
this scale, the full force correlators are needed. This breakdown is expected to be
relevant at LHC energies for the charm.

This paper is organized as follows. Section 2 describes in detail the Langevin equa-
tion for a relativistic heavy quark travelling in the quark-gluon plasma. In this section we
also review how to describe the Langevin dynamics in the holographically dual geometry,
in terms of fluctuations of trailing strings. Section 3 presents the necessary background
for the holographic computation. In particular we present the holographic dual geometry
of our non-conformal model, the relevant classical trailing string solution, and the corre-
sponding linear fluctuations. It is in this section that we obtain the fluctuation equations
in general non-conformal black hole space-times, whose solutions enter the construction of
the Langevin propagators.

Sections 4 and 5 contain our main results. In section 4 we discuss the Langevin
correlators and the associated spectral densities, first in full generality, then in the various
limits of low- and high- frequency. In section 5 we specialize to the low-frequency modes,
which compute the long-time behavior of the diffusion and friction coefficients of the local
Langevin equation. We provide exact analytic expressions for these quantities, in terms of
the background metric functions. We also discuss the non-relativistic and ultra-relativistic
limits, and derive the modified Einstein relations. While the previous sections deal with
a completely general holographic dual, in section 6 we provide a numerical study of these
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results in a specific model, namely Improved Holographic QCD that was shown in [44]
to provide a good quantitative description of the static properties of pure Yang-Mills at
zero and finite temperature. In particular, in this section we compute the jet-quenching
parameter arising from this model, and discuss the results in light of RHIC data.

Several technical details are left to the appendices. In appendix A we discuss some
subtleties in the definition of the propagator, related to boundary terms. Appendix B
provides the details of the calculation of the diffusion constants; In appendix C we give a
detailed discussion of the WKB method that we use to obtain the large-frequency limit of
the spectral densities, as it is more involved than the conformal case. In appendix D we
discuss the Langevin correlators in the conformal, N = 4 case.

2 Langevin equation for a relativistic heavy quark

In this section we review how the diffusion of a relativistic heavy quark through the plasma
is described by a generalized Langevin equation. First we give the purely 4D picture.
Then, in subsection 4.2, we review the holographic description of the Langevin process
that appeared in the previous literature, for the case of AdS-Schwarzschild black-holes.
This will be extended to general asymptotically AdS geometries in section 3.

2.1 The Langevin equation in the boundary theory

Consider a quark which, in a first approximation, experiences a uniform motion across
the plasma, with constant velocity v. Due to the interactions with the strongly-coupled
plasma, the actual trajectory of the quark is expected to resemble Brownian motion. To
lowest order, the action for the external quark coupled to the plasma can be assumed,
classically, to be of the form:

S[X(t)] = S0 +
∫
dτXµ(τ)Fµ(τ) (2.1)

where S0 is the free quark action, and F(τ) depends only on the plasma degrees of freedom,
and plays the role of a driving force (the “drag” force).

To obtain an equation for the quark trajectory one needs to trace over the plasma
degrees of freedom. If the interaction energies are small compared with the quark kinetic
energy (therefore for a very heavy quark, and/or for ultra-relativistic propagation speeds),
tracing over the microscopic degrees of freedom of the plasma can be performed in the semi-
classical approximation, and the quark motion can be described by a classical generalized
Langevin equation for the position Xi(t), of the form:

δS0

δXi(t)
=
∫ +∞

−∞
dτ θ(τ)Cij(τ)Xj(t− τ) + ξi(t), i = 1, 2, 3 (2.2)

Here, Cij(t) is a memory kernel, θ(τ) is the Heaviside function and ξ(t) is a Gaussian
random variable with time-correlation:

〈ξi(t)ξj(t′)〉 = Aij(t− t′) (2.3)
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The functions Aij(t) and Cij(t) are determined by the symmetrized and anti-
symmetrized real-time correlation functions of the forces F(t) over the statistical ensemble:

Cij(t) = Gijasym(t) ≡ −i〈
[
F i(t),F j(0)

]
〉, Aij(t) = Gijsym(t) ≡ − i

2
〈
{
F i(t),F j(0)

}
〉. (2.4)

The results (2.2) and (2.4) are very general, and do not require any particular as-
sumption about the statistical ensemble that describes the medium (in particular, they do
not require thermal equilibrium). One way to arrive at equation (2.2) is using the double
time formalism and the Feynman-Vernon influence functional [54]. A clear and detailed
presentation can be found in [55], chapter 18.

The retarded and advanced Green’s function are defined by:

GijR(t) = θ(t)Cij(t), GijA(t) = −θ(−t)Cij(t), (2.5)

which lead to the relation
Cij(t) = GijR(t)−GijA(t) (2.6)

Notice that the kernel entering the first term on the right in equation (2.2) is the retarded
Green’s function, GijR(t) = θ(t)Cij(t).

It is customary to introduce a spectral density ρij(ω) as the Fourier transform of the
anti-symmetrized (retarded) correlator,

Cij(t) = −i
∫ +∞

−∞
dω ρij(ω)e−iωt, GijR(ω) =

∫ +∞

−∞
dω′

ρij(ω′)
ω − ω′ + iε

. (2.7)

From equation (2.6) and the reality condition GA(t) = GR(−t), or in Fourier space,
GA(ω) = G∗R(ω), we can relate the spectral density to the imaginary part of the retarded
correlator:

ρij(ω) = − 1
π

ImGijR(ω) (2.8)

Local limit. Suppose the time-correlation functions vanish for sufficiently large sepa-
ration, i.e. for times much larger than a certain correlation time τc. Then, in the limit
t � τc, equation (2.2) becomes a conventional local Langevin equation, with local fric-
tion and white noise stochastic term. Indeed, in this regime the noise correlator can be
approximated by

Aij(t− t′) ≈ κijδ(t− t′), t− t′ � τc. (2.9)

This equation defines the Langevin diffusion constants κij . Similarly, for the friction term,
we define the function γij(t) by the relation:

Cij(t) =
d

dt
γij(t) (2.10)

so that the friction term can be approximated, for large times, as:∫ ∞
0

dτCij(τ)Xj(t− τ) ≈
(∫ ∞

0
dτ γij(τ)

)
Ẋj(t), t� τc. (2.11)
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In this regime, equation (2.2) becomes the local Langevin equation with white noise,

δS0

δXi(t)
+ ηijẊj(t) = ξi(t), 〈ξi(t)ξj(t′)〉 = κijδ(t− t′), (2.12)

with the self-diffusion and friction coefficients given by:

κij = lim
ω→0

Gijsym(ω); ηij ≡
∫ ∞

0
dτ γij(τ) = − lim

ω→0

ImGijR(ω)
ω

. (2.13)

In the case of a system at equilibrium with a canonical ensemble at temperature T ,
one has the following relation between the Green’s functions:

Gsym(ω) = − coth
ω

2T
ImGR(ω), (2.14)

which using equation (2.13) leads to the Einstein relation κij = 2Tηij . For such a thermal
ensemble, the real-time correlators decay exponentially with a scale set by the inverse
temperature, therefore the typical correlation time is τc ∼ 1/T .

Determining and studying the Langevin correlators (2.4) , and the diffusion con-
stants (2.12) will be the main purpose of the rest of this paper.

Next, we write down explicitly the classical part, δS0/δX(t) of the Langevin equation,
in order to arrive at an equation describing momentum diffusion. We start with the kinetic
action for a free relativistic quark,

S0[Xµ(τ)] = −Mq

∫
dτ

√
dXµ

dτ

dXµ

dτ
(2.15)

We choose the gauge τ = X0, and obtain

δS0/δX
i(τ) = dpi/dt , with , pi ≡MqẊi(1− ẊiẊ

i)−1/2. (2.16)

Equation (2.12) becomes the Langevin equation for momentum diffusion:

dpi

dt
= −ηijD(~p 2)pj + ξi(t), (2.17)

where:

ηijD(~p 2) =
ηij

γ(~p 2)Mq
, γ(~p 2) ≡

√
1 + ~p 2/M2

q . (2.18)

Linearized Langevin equations. For a generic quark trajectory, the Langevin equa-
tion (2.17) is non-linear, due to the p-dependence implicit in ηijD. To put it in a form which
allows for the holographic treatment in terms of the trailing string fluctuations, it is con-
venient to derive from equation (2.17) a linearized Langevin equation for the fluctuations
in the position around a trajectory with uniform velocity, ~X(t) = ~vt + δ ~X. To this end,
we separate the longitudinal and transverse components of the velocity fluctuations:

~̇X(t) =
(
v + δẊ‖(t)

) ~v
v

+ δ ~̇X⊥. (2.19)
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The corresponding linearized expression of the momentum reads:

~p = Mq

~̇X√
1− ~̇X · ~̇X

'Mq

(
γ + γ3vδẊ‖

)(
~v + δ ~̇X

)
= ~p0 + δ~p, (2.20)

where we introduced the zeroth-order Lorentz factor γ ≡ (1 − v2)−1/2. The zeroth-order
term is ~p0 = γMq~v, and the longitudinal and transverse momentum fluctuations are given
by:

δp‖ = γMq(1 + v2γ2)δẊ‖ = γ3MqδẊ
‖, δp⊥i = γMqδẊ

⊥. (2.21)

It is convenient to separate the longitudinal and transverse components of the propagators,
since as it will become clear in the next section, the off-diagonal components vanish:

Gij(t) = G‖(t)
vivj

v2
+G⊥(t)

(
δij − vivj

v2

)
(2.22)

and the corresponding decompositions for ηij and κij from (2.13).
Inserting these expressions in equation (2.17), we find to zeroth order:

dp0

dt
= −η‖Dp0, p0 ≡ γMv (2.23)

and to first order in δ ~X the relativistic Langevin equations for position fluctuations:

γ3MqδẌ
‖ = −η‖(v)δẊ‖ + ξ‖, 〈ξ‖(t)ξ‖(t′)〉 = κ‖δ(t− t′), (2.24)

γMqδẌ
⊥ = −η⊥(v)δẊ⊥ + ξ⊥, 〈ξ⊥(t)ξ⊥(t′)〉 = κ⊥δ(t− t′) (2.25)

where the friction coefficients η‖,⊥ are related to the coefficients ηijD by

η⊥ = γMqη
⊥
D, η‖ = γ3Mq

(
η
‖
D + p

∂η
‖
D

∂p

∣∣∣
p=γMqv

)
. (2.26)

As we shall see in the following sections, the holographic prescription will directly
compute the friction coefficients ηij and the diffusion coefficients κij appearing in equa-
tions (2.24)–(2.25).

Short-time solution: momentum broadening. For times shorter than the relaxation
time τD 1/ηD we can treat the quark as travelling at a constant velocity v ( which is a
good approximation in the case of a very heavy quark). In this regime,6 one can write
an approximate solution for equation (2.17), which describes a Brownian-like diffusion for
momentum fluctuations.

We start once again with equation (2.17), and linearize it (this time staying in momen-
tum space) around a uniform trajectory ~p ' p0~v/v+δ~p. In the longitudinal and transverse
directions we find the two equations:

dδp⊥

dt
= −η⊥D,0δp⊥ + ξ⊥,

dδp‖

dt
= −η‖D,0p0 +

[
η
‖
D + p

(
∂η
‖
D

∂p

)]
p0

δp‖ + ξ‖ (2.27)

6As we are relying on the local form of the Langevin process, equation (2.17), we must still require time

separations much larger than the auto-correlation time τc. More explicitly, we consider time scales t such

that τc � t� τD. Therefore, consistency demands that τD � τc.
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where ηijD,0 ≡ ηijD(p0). The solution to these equations is straightforward: assuming initial
conditions δ~p(t = 0) = 0, it reads (notice that p⊥ = δp⊥):

p⊥(t) =
∫ t

0
dt′ eη

⊥
D,0(t′−t)ξ⊥(t′), (2.28)

p‖(t) = p0e
−η‖D,0t +

∫ t

0
dt′ eη̃

‖
D,0(t′−t)ξ‖(t′), η̃

‖
D,0 ≡

[
η
‖
D + p

(
∂η
‖
D

∂p

)]
p0

. (2.29)

From these solutions, we can compute the noise-average of the transverse and longitu-
dinal momentum fluctuations

〈(p⊥)2〉 =
∫ t

0
dt′
∫ t

0
dt′′ eη

⊥
D,0(t′+t′′−2t)〈ξ⊥(t′)ξ⊥(t′′)〉 (2.30)

〈(p‖ − p0)2〉 = p2
0

(
1− e−η

‖
D,0t

)2

+
∫ t

0
dt′
∫ t

0
dt′′ eη̃

‖(t′+t′′−2t)〈ξ‖(t′)ξ‖(t′′)〉. (2.31)

Using the fact that 〈ξ(t′)ξ(t′′)〉 = κδ(t′− t′′), and expanding to linear order in tηD � 1, we
arrive at the final result:

〈(p⊥)2〉 = 2κ⊥t, 〈(∆p‖)2〉 = κ‖t. (2.32)

The first equation describes transverse momentum broadening, and it is typically
parametrized in terms of the jet-quenching parameter q̂⊥,

q̂⊥ =
〈(p⊥)2〉
vt

= 2
κ⊥

v
(2.33)

The following sections, namely 4, 5, and 6 will be devoted to the calculation, in a 5D
holographic setup, of the Langevin correlators (2.4) and of the diffusion constants κ‖ and
κ⊥ appearing in equation (2.17).

2.2 The Langevin equation in the gravity dual picture

As we have reviewed in the previous subsection, the memory kernel and the noise time-
correlation function that govern the generalized Langevin equation (2.2) for an external
quark, are given by appropriate real-time correlation functions of the force operator F(t)
over the ensemble that describes the medium.

These correlation functions are precisely the kinds of objects one can compute in
the gravity dual picture: one needs to identify the appropriate bulk field that couples to
the boundary operator F , then solve the bulk equations for this field with appropriate
boundary conditions.

As first discussed in [10–13], and as we will review in detail in section 3, a probe
heavy quark propagating through the plasma is described, in the gravity dual picture, by
a probe string with an endpoint attached to a flavor brane, and extending into the bulk.
The string endpoint moves along the quark trajectory and the rest of the string trails its
endpoint extending in the holographic directions. The string world-sheet is described by
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the embedding coordinates XA(σ, τ) which, in the static gauge τ = t, σ = r, reduce to the
spacial components ~X(r, t), where r is the non-compact holographic direction.

Using the trailing string picture for the heavy quark, the identification of the appro-
priate bulk field is straightforward: from equation (2.1) it is clear that the external source
for the boundary field Fi(t) is nothing but the quark position Xi(t), i.e. the boundary
value for the string embedding Xi(t, r). More precisely, for a heavy quark that follows an
approximately uniform trajectory Xi(t) = vit + δXi(t) the boundary coupling is of the
form

Scoupling =
∫
dtδXi(t)Fi(t), δXi(t) = δX(rb, t) (2.34)

where δX(rb, t) is the boundary value of the fluctuation in the trailing string around the
classical profile. Therefore, the correlation functions (2.4) of the force operators can be
extracted, in the Gaussian approximation, by solving for the bulk linear fluctuations around
the trailing string and using the appropriate holographic prescription.

This calculation was first performed in [16, 18], for the AdS case. In this case, the
world-sheet fluctuations propagate on a space-time with a metric of the form (3.30), with

b(r) = `/r, f(r) = 1− (πTr)4, (2.35)

where T is the black-hole temperature. For a quark velocity v, the induced metric has a
horizon at 0 < rs < rh, with associated temperature Ts = T/

√
γ. The retarded correlator

for the longitudinal and transverse components of ~F was determined using the prescription
of [57]:

γ−2G
‖
R,AdS = G⊥R,AdS = −Ψ∗Grr∂rΨ

∣∣
Boundary

. (2.36)

where Ψ(r, ω) is a solution to the fluctuation equation with unit normalization at the
boundary and infalling boundary conditions at the horizon, Grr = (2π`2s)

−1Hrr, with Hrr

given by equation (3.35) specialized to the AdS-Schwarzschild case.
In order to compute both terms entering the Langevin equation, one needs also the

symmetrized correlator, which gives the noise time-correlation function. In general, the
relation between the retarded and symmetrized correlator depends on the statistical en-
semble one is dealing with. For a black hole (as in the case of the induced world-sheet
metric), the features of the ensemble can be obtained by connecting the mode solutions
along a Keldysh contour between the two boundaries of the maximally extended Kruskal
diagram. This corresponds to obtaining a statistical ensemble by tracing over the degrees
of freedom of one of the causally disconnected regions. In the context of AdS/CFT this
idea was put forward in [17], which also provides a justification of the prescription (2.36)
for the retarded propagator.

We will not go into the details of this procedure, which can be found in [18, 19]. The
crucial point is that the stationary statistical ensemble one obtains is a thermal ensemble
at the temperature Ts = T/

√
γ. Therefore, one can compute Gsym from the imaginary

part of GR, as in equation (2.14), with the substitution T → T/
√
γ.

Notice that the retarded Green’s functions compute, through equations (2.13),
the coefficients appearing in the Langevin equations for the fluctuations δXi, equa-

– 13 –



J
H
E
P
1
2
(
2
0
1
0
)
0
8
8

tion (2.24)–(2.25). In particular, to extract the coefficient η‖D one must divide G‖(ω)
by an extra factor γ2 with respect to the corresponding result for η⊥D.

Computing the zero-frequency limit of the retarded correlators, the resulting Langevin
diffusion coefficients are found to be [18, 19]:

γ−2κ‖ = κ⊥ = π
`2

`2s

√
γ T 3, (2.37)

and the friction coefficients reproduce the classical drag force calculation [13],

η
‖
D = η⊥D =

π

2
`2

`2s

T 2

M
. (2.38)

The diffusion and friction coefficients indeed satisfy an Einstein relation appropriate for
the temperature Ts:

κ⊥/η⊥ = κ‖/η‖ = 2MTs, (2.39)

where η⊥ and η‖ are related to ηD by equation (2.26). Notice that, in the conformal case,
ηD is momentum-independent.

The approach taken in [18] derives the Langevin propagators by using the standard
holographic prescription for real-time correlators. An alternative procedure, giving the
same result, was adopted in [20, 21] for the non-relativistic case, and later in [22] for the
general relativistic case. These authors performed a direct derivation of the Langevin equa-
tion: starting from the trailing string fluctuations in the bulk, and integrating them out,
they showed explicitly that one arrives at equations like (2.24)–(2.25) for the boundary
fluctuations, with coefficients given by the formulae previously found in [16, 18]. Further-
more, they showed that the same result can be obtained by integrating out only a strip
between the world-sheet horizon rs and the stretched horizon rs + ε: this gives a picture of
the stochastic behavior of the string fluctuations as originating from the world-sheet hori-
zon. In this work we will not follow explicitly this road, but rather rely on the holographic
computation of the Langevin correlators. Nevertheless, by using the general formalism
developed [51] we will compute directly the transport coefficients.

3 5D non-conformal backgrounds for Langevin holography

In this section, we present the background material for the holographic computation of
the Langevin correlators that we carry out in the section 4. As a bulk geometry we
take a general, five-dimensional, asymptotically AdS black-hole, dual to a non-conformal
deconfined plasma. These geometries arise generically as solutions in appropriate Einstein-
dilaton theories in five-dimensions [41, 42].

A heavy external quark moving through the plasma at temperature T can be described
by a string whose endpoint at the boundary follows the quark’s trajectory [10]–[37]. The
string extends into the bulk, whose geometry is the dual black hole background with appro-
priate temperature T . Once the motion of the endpoint at the boundary is specified, one can
find the trailing string solution through the geodesic equation: the momentum flow along
the string is dual to the drag force experienced by the quark moving through the plasma.
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The fluctuations of the string world-sheet around the geodesic solution are holo-
graphically dual to the stochastic forces felt by the quark due to its interaction with the
medium. Their effect to leading (Gaussian) order is that of stochastic noise acting on
the quark, resulting in a Langevin-type diffusion with its associated transport coefficients
(diffusion constants).

3.1 5D Einstein-Dilaton black holes

We shall consider the dynamics of a probe string in a general 5D black hole geometry, with
a string frame metric:

ds2 = b2(r)
[
dr2

f(r)
− f(r)dt2 + dxidxi

]
. (3.1)

We assume there is an asymptotically AdS region r → 0 where

log b(r) ∼ − log
r

`
+ subleading, f(r) ∼ 1 +O(r4), r → 0, (3.2)

and a horizon at r = rh where f(rh) = 0, and f ′(rh) and b(rh) remain finite. The black
hole temperature is given by:

4πT = −f ′(rh). (3.3)

We make no particular assumptions on the subleading terms in equation (3.2). In case
these subleading terms actually vanish as r → 0, then the metric is AdS in the usual sense.

The black holes of the type (3.1) arise, in particular, as solutions of a large class of
5-dimensional Einstein-dilaton models, described by the Einstein-frame metric gEµν and a
scalar field λ with the action:

S = −M3
pN

2
c

∫ √
−gE

[
RE − 4

3
(∇λ)2

λ2
+ V (λ)

]
. (3.4)

In the holographic interpretation of these models, the scalar λ is dual to the running
coupling λt of the four-dimensional gauge theory. This is the class of models we will have
in mind, although the results of this work apply to any 5D theory that admits solutions
such as (3.1).

For an appropriate choice of the potential V (λ), the models with action (3.4) provide a
good holographic dual to large-Nc 4-dimensional pure Yang-Mills theory, at zero and finite
temperature [38]–[44]. The potential should have a regular expansion as λ→ 0, with

V (λ) ∼ 12
`2

(1 + v0λ+ . . .) . (3.5)

Furthermore, linear confinement in the IR requires that, at large λ, V (λ) grows at least as
fast as λ4/3. With these requirements,

1. The solutions in the Einstein frame are an asymptotically AdS metric, with AdS
length `, and a non-trivial profile λ(r);

2. There is a first order Hawking-page phase transition with a non-zero critical temper-
ature Tc.
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For a short review of the main features of these models, the reader is referred to [9].
We will be interested in the fluctuations of a probe string in the 5D black hole geometry

for T > Tc (corresponding to the deconfined phase). The black hole solutions in the string
frame have the form (3.1), with string frame metric gµν = λ4/3gEµν . In the UV region r = 0,
we therefore have:

b(r) ∼ `

r
λ2/3(r), f(r) ∼ 1− C

`3
r4, λ(r) ∼ − 9

8v0 log r
. (3.6)

where the constant C depends on the thermodynamic quantities that characterize the black
hole, and it can be expressed in terms of the temperature T and entropy density s, [42]:

C
`3

=
45π2

N2
c

s T (3.7)

The expressions (3.6) are corrected by terms of O(λ), which are negligible near
the boundary.

3.2 Classical trailing string and the drag force

Before going into the details of the world-sheet fluctuations, we review the calculation of
the unperturbed trailing solution, that was discussed in [10, 13] for pure AdS black holes,
and generalized in [15] for black holes in 5D Einstein-Dilaton theories. In this subsection
we review the setup and the results of [15].

We consider an (external) heavy quark moving through an infinite volume of gluon
plasma with a fixed velocity v at a finite temperature T . In the dual picture, this is
described by a classical “trailing” string with an endpoint on the UV boundary moving at
constant velocity v.

The world-sheet of the string is described by the Nambu-Goto action,7

SNG = − 1
2π`2s

∫
d2σ
√
−det gαβ , gαβ = gµν∂αX

µ∂βX
ν ,

{
µ, ν = 0 . . . 5
α, β = 0, 1

(3.8)

where gµν are the components of the bulk metric in the string frame,8

ds2 = b2(r)
[
dr2

f(r)
− f(r)dt2 + dxidxi

]
, i = 1, 2, 3. (3.9)

The ansatz for the classical trailing string is [13],

X1 = vt+ ξ(z), X2 = X3 = 0 , (3.10)

7Throughout the paper, we will denote 5D coordinates by µ, ν . . ., world-sheet coordinates by α, β . . .,

and boundary spatial coordinates by i, j . . .. Indices i, j . . . in the boundary theory are raised and lowered

with metric δij , so we will make no distinctions between upper and lower indices as far as boundary tensors

are concerned.
8Unless otherwise stated, b(r) will always denote the scale factor in the string frame. This is a slight

change of notation with respect to our previous papers [38, 39, 41, 42, 44], where the same quantity was

denoted bs(r), but it is justified since most expressions in this work are simpler in the string frame.
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and along with the gauge choice
ξ0 = t, ξ1 = r (3.11)

leads to the induced metric:

gαβ = b2(r)

(
v2 − f(r) vξ′(r)
vξ′(r) f(r)−1 + ξ

′2

)
, (3.12)

and the corresponding action:

S = − 1
2π`2s

∫
dtdr b2(r)

√
1− v2

f(r)
+ f(r)ξ′2(r) . (3.13)

Since S does not depend on ξ but only its derivative, the conjugate momentum πξ is
conserved,

πξ = − 1
2π`2s

b2(r)f(r)ξ′(r)√
1− v2

f(r) + f(r)ξ′2(r)
= −

b2(rs)
√
f(rs)

2π`2s
(3.14)

where the final expression is obtained by evaluating it at the point r = rs, defined by

f(rs) = v2. (3.15)

For an infinitely massive quark, the string endpoint is the boundary, r = 0. For a
quark of finite mass MQ, the endpoint should be located at a position rQ in the interior,
as discussed in detail in [15]. This puts an upper bound on the quark velocity v, since the
trailing string picture fails when rs < rQ. At this point, the flavor brane dynamics should
become important.

The Drag Force The drag force on the quark can be determined by calculating the
momentum that is lost by flowing from the string to the horizon, which results in:

Fdrag = πξ = −v b
2(rs)

2π`2s
, (3.16)

where we have replaced f(rs) by v2 in the last equality.
One defines the momentum friction coefficient ηD as the characteristic attenuation

constant for the momentum of a quark of mass Mq:

Fdrag =
dp

dt
≡ −ηDp, , p = Mqvγ (3.17)

where γ = (1−v2)−1/2 is the relativistic contraction factor. With this definition we obtain:

ηD =
1

γMq

b2(rs)
2π`2s

. (3.18)

In the conformal case, ηD is independent of p,

ηconf
D =

π
√
λ T 2

2Mq
, (3.19)

where λ = (`/`s)4 is the fixed ’t Hooft coupling of N = 4 sYM. This is not anymore so in
the general case, where ηD is momentum dependent.
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The world-sheet black hole. The coordinate value r = rs is a horizon for the induced
world-sheet metric. In order to ascertain this, we can invert equation (3.14) to obtain ξ′(r)
in the form:

ξ′(r) =
C

f(r)

√
f(r)− v2

b4(r)f(r)− C2
, C ≡ v b2(rs). (3.20)

We may now change coordinates to diagonalize the induced metric, by means of the
reparametrization:

t = τ + ζ(r), ζ ′ =
vξ′

f − v2
=

Cv

f(r)
√

(f(r)− v2)(b4f − C2)
. (3.21)

In these coordinates the induced metric is

ds2 = b2
[
−(f(r)− v2)dτ2 +

b4

(b4f − C2)
dr2
]
. (3.22)

The coefficient of dτ2 vanishes at rs, so this point corresponds to a world-sheet black-hole
horizon. Since f(r) runs between 0 and 1 as 0 < r < rh, by definition (3.15) the world-sheet
horizon is always outside the bulk black hole horizon, and it coincides with it only in the
limit v → 0. In the opposite limit, v → 1, rs asymptotes to the boundary r = 0.

The Hawking temperature associated to the black hole metric (3.22) is found as usual,
by expanding around r = rs and demanding regularity of the Euclidean geometry. The
resulting temperature is:

Ts ≡
1

4π

√
f(rs)f ′(rs)

[
4b′(rs)
b(rs)

+
f ′(rs)
f(rs)

]
. (3.23)

In the conformal limit, where the dilaton is constant and the background solution
reduces to AdS-Schwarzschild, the world-sheet temperature and horizon position are simply
given by:

T conf
s =

T
√
γ
, rconf

s =
1

π
√
γ T

. (3.24)

More generally, in the ultra-relativistic limit v ' 1, one can express rs in terms of
thermodynamic quantities. In this limit rs approaches the boundary r = 0, and in this re-
gion the geometry approaches that of AdS-Schwarzschild, equations (3.6), (3.7). Therefore,
from the definition (3.15) we obtain:

rs '
1
√
γ

(
4N2

c

45π2sT

) 1
4

, v → 1 (3.25)

3.3 Fluctuations of the trailing string

We now proceed to study the quadratic fluctuations around the classical trailing string
solution reviewed in the previous section. This analysis was performed in the AdS black
hole background in [18]. Here, we extend it to the general 5D background (3.1).
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We continue to work in the static gauge ξ0 = t, ξ1 = r, but we will allow for a more
general ansatz for the embedding coordinates:

X1 = vt+ ξ(r) + δX‖(r, t) , X2 = δX2(r, t) , X3 = δX3(r, t). (3.26)

We will treat the quantities δXi as perturbations around the background solution (3.10).
The Nambu-Goto action (3.8) is now given by:

SNG = − 1
2π`2s

∫
dtdr

√
ĝ2
rt − ĝttĝrr (3.27)

where

ĝtt = b2(−f + ẊiẊi) , ĝrr = b2
(

1
f

+Xi′Xi′
)

, ĝrt = b2 Xi′Ẋi (3.28)

where a dot and a prime represent derivatives w.r.t. t and r respectively.
Expanding the Nambu-Goto action in δXi around the classical solution (3.20) we

obtain, to quadratic order:

S2 = − 1
2π`2s

∫
dtdr Gαβ

[
1
2
∂αδX

‖∂βδX
‖ +

Z2

2

3∑
i=2

∂αδX
i∂βδX

i

]
, (3.29)

where

Gαβ =
b2

Z3

(
−Z2f+v2

f2 vξ′

vξ′ f − v2

)
, (3.30)

and we have defined:

Z ≡ b2
√

f − v2

b4f − C2
. (3.31)

Note that det(Gαβ) = −b4/Z4 and that in the N = 4 case Z =
√

1− v2 is a constant.
In terms of the induced world-sheet metric (3.12), we obtain

Gαβ = Z−1b4gαβ,
√
−det g = b2Z . (3.32)

We may therefore rewrite the action as

S2 = − 1
2π`2s

∫
dtdr

b2

2

√
−det g gαβ

[
1
Z2
∂αδX

‖∂βδX
‖ +

3∑
i=2

∂αδX
i∂βδX

i

]
(3.33)

To simplify the action, we change coordinates to diagonalize the induced metric, as in the
previous subsection. By a reparametrization of the world-sheet time coordinate as in (3.21),
the new induced metric is (3.22), and the action read:

S2 = − 1
2π`2s

∫
dτdr

1
2
Hαβ

[
1
Z2
∂αδX

‖∂βδX
‖ +

3∑
i=2

∂αδX
i∂βδX

i

]
(3.34)

with

Hαβ =

(
− b4√

(f−v2)(b4f−C2)
0

0
√

(f − v2)(b4f − C2)

)
, (3.35)
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Equations (3.29) and (3.34) show that the longitudinal fluctuations (i.e. those parallel to
the direction of the unperturbed trailing string motion), namely δX‖, and the transverse
fluctuation δX2 and δX3, have different kinetic terms, as the effective two-dimensional
metrics they are sensitive to differ by a factor Z2. From now on, we will denote the
longitudinal fluctuations as δX‖ and the transverse fluctuations as δX⊥.

From equation (3.22) one can immediately derive the field equations satisfied by the
fluctuations:

∂α Z
−2Hαβ∂βδX

‖ = 0 , ∂αH
αβ∂βδX

⊥ = 0. (3.36)

For a harmonic ansatz of the form δXi(r, τ) = eiωτδXi(r, ω), equations (3.36) become:

∂r

[√
(f − v2)(b4f − C2) ∂r

(
δX⊥

)]
+

ω2b4√
(f − v2)(b4f − C2)

δX⊥ = 0 (3.37)

∂r

[
1
Z2

√
(f − v2)(b4f − C2) ∂r

(
δX‖

)]
+

ω2b4

Z2
√

(f − v2)(b4f − C2)
δX‖ = 0 (3.38)

In the next sections we will compute the Langevin correlation functions from these fluctu-
ation equations and extract the diffusion constants and the spectral densities from them.

We note however that the diffusion constants can also be read-off directly from the
quadratic action (3.34) by using the method of the membrane paradigm as explained in
section 4.2.

4 Holographic computation of Langevin correlators

4.1 The Green’s functions

From the discussion in the previous section, it emerges that in a 4D theory with a 5D
gravity dual we can compute the Langevin correlators holographically, from the classical
solutions for the fluctuations of the trailing string. As we have observed in section 3,
these fluctuations behave as free fields propagating on a 2D black-hole background, whose
metric is essentially the induced metric on the bulk trailing string, equation (3.22). The
asymptotic form and the causal structure of this black hole are exactly the same as the
one for the trailing string embedded in an AdS black hole. As a consequence, the results
of [18, 19, 22] discussed in the previous sections immediately generalize to the more general
metric (3.1): following the Keldysh contour in the extended Kruskal diagram of the black
hole, one finds a thermal spectrum of transverse and longitudinal fluctuations with effective
temperature Ts, given in equation (3.23).

In this ensemble, the symmetrized and retarded Green’s functions obey the re-
lation (2.14), with T = Ts. Therefore, one can obtain both the memory kernel and
the noise correlator entering equations (2.2)–(2.3) from the knowledge of the retarded
Green’s function.

From the structure of the action for the fluctuations, equation (3.33), one can observe
that there are essentially two types of retarded correlators, G‖R(ω) and G⊥R(ω), for the
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longitudinal and transverse fluctuations. We introduce a notation similar to [18] and define

Gαβ⊥ ≡
1

2π`2s
Hαβ, Gαβ‖ ≡

1
2π`2s

Hαβ

Z2
, (4.1)

where Hαβ is defined in equation (3.35).
The holographic prescription for the retarded correlator, computed with the diagonal

induced metric (3.22) is given by:

GR(ω) = − [Ψ∗R(r, ω)Grr∂rΨR(r, ω)]boundary . (4.2)

Here ΨR(r, ω) denotes collectively the fluctuations δX‖, δX⊥, solutions of equa-
tions (3.37)–(3.38) with the appropriate boundary conditions, i.e. unit normalization at
the boundary, and infalling conditions at the world-sheet horizon (as we discuss more
extensively below) and the factor Grr is the appropriate one from equation (4.1).

The expression in equation (4.2) must be evaluated at the boundary of the trailing
string world-sheet. In the case of an infinitely massive quark, the string is attached at the
AdS boundary at r = 0 (when needed, in order to keep quantities finite, we introduce a
cut-off boundary at r = ε). In case we want to keep the quark mass finite, the trailing
string is attached to a point rQ, which is determined by demanding that the free energy of
a static string in the T = 0 background gives the mass of the quark:

Mq =
1

2π`2s

∫ r∗

rQ

b(r)2dr (4.3)

(here r∗ is the point at which b(r) reaches its minimum, see the discussion in [15]).
Next, we discuss in greater detail the boundary conditions for the ΨR’s. The solu-

tions to the fluctuation equations (3.37)–(3.38) share the same asymptotics both for the
transverse and longitudinal components (since Z(r) asymptotes to a constant both at the
horizon and at the boundary, where the equations have singular points). At the world-sheet
horizon r → rs equations (3.37)–(3.38) both take the form

∂2
rΨ +

1
|r − rs|

∂rΨ +
(

ω

4πTs|r − rs|

)2

δΨ = 0 , (4.4)

so that the solutions near the horizon behave as

Ψ(r, ω) ∼ (rs − r)±
iω

4πTs + · · · (4.5)

The + sign in the exponent corresponds to a wave which is outgoing with respect to the
world-sheet horizon, while the − sign characterizes an in-falling wave.

Near the boundary r → 0 both transverse and longitudinal fluctuations have to solve
the following equation:

∂2
rΨ(r, ω)−

(
2
r
− 4

3
λ′

λ

)
∂rΨ(r, ω) + γ2ω2Ψ(r, ω) = 0 , (4.6)
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As long as rλ′/λ � 1,9 the two independent solutions are a normalizable mode and a
non-normalizable mode,

Ψ ∼ Cs + Cvr
3λ−4/3. (4.7)

According to the standard prescription [57], the appropriate boundary conditions for
the wave functions ΨR in the expression (4.2) for the retarded correlator are the in-falling
behavior at the world-sheet horizon with the condition ΨR(r) = 1 at the boundary:

ΨR(rb, ω) = 1 rb =

{
0 Mq →∞
rQ Mq finite

(4.8)

ΨR(r, ω) ' Ψh (rs − r)−
iω

4πTs r ∼ rs. (4.9)

where Ψh is a constant.
Given the wave-function, obeying the near-boundary and near-horizon asymptotics

specified by equations (4.8)–(4.9), we can extract the propagator from equation. (4.2).
Below, we separately discuss the features of the real and imaginary parts of the retarded
Green’s functions, and the associated spectral densities.

Real part of the retarded correlators. The real part of the correlator (4.2) suffers
from ambiguities related to the possibility of adding boundary counterterms to the ac-
tion (3.8). This was discussed e.g. in [58] in the context of the calculation of 4-dimensional
transport coefficients.

The ambiguities in the propagator are, as usual, associated to UV-divergences in the
on-shell action, that arise when we try to evaluate it in the full AdS space-time. To obtain
a finite result, we must consider the action on a regularized space-time, with boundary at
r = ε rather than r = 0. Then, once the divergences in the limit ε→ 0 are identified, one
can add counterterms to subtract them and obtain a finite limit as ε→ 0.

The essence of holographic renormalization is that these counterterms are local, co-
variant boundary terms. As we show in appendix A, we only need a single boundary coun-
terterm to regularize the action, and this is given by the boundary-covariant point-particle
action:

Scount = ∆M(ε)
∫
dt

√
ẊµẊµ (4.10)

The same UV divergences appear in the real part of the propagator, if we try to
compute it naively from equation (4.2). In fact, the expression (4.2) is nothing but the
unrenormalized on-shell action, as can be easily observed by integrating equation (3.34)
by parts and using the field equations (3.36). Therefore, as a consequence of the analysis
of the on-shell action carried out in appendix A the divergent parts of the transverse and
longitudinal Green’s functions are:(

Re G⊥R
)(div)

=
λ4/3(ε)
ε

`2

2π`2s
γ ω2,

(
Re G‖R

)(div)
=
λ4/3(ε)
ε

`2

2π`2s
γ3 ω2. (4.11)

9The condition rλ′/λ � 1 is realized in particular in the case of logarithmic running: in that case, for

small r, rλ′/λ ∼ λ � 1. In the case where λ is dual to a relevant operator it is also valid a fortiori since

rλ′/λ ∼ ∆̃r, with ∆̃ = min(∆, 4−∆).
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This result can also be explicitly derived from the explicit form of the wave-functions,
close to the boundary. As we will show in subsection 4.4, (see appendix C for a more
detailed derivation) the solution of eq. (4.6) is,

ΨUV(r) = [cos(γωr) + (γωr) sin(γωr)] + Cvλ
−4/3(r) [(γωr) cos(γωr)− sin(γωr)] (4.12)

This solution generalizes eq. (4.7) for any finite ω, and it is valid in the near-boundary
region, i.e. for γωr � 1, and λ(r)� 1. The value of the coefficient Cs of the leading term
is fixed to ensure unit normalization at r = ε (we are keeping in mind that we will take the
ε→ 0 limit at the end).

Evaluating the real part of (4.2) at r = ε with the wave-function given by (4.12), we
find the following divergent term for the transverse and longitudinal components:

Re G⊥R ' γ−2Re G‖R '
λ4/3(ε)
ε

γω2

[
1 +

1
2
ε2γ2ω2 +O(ε4)

]
`2

2π`2s
, ε→ 0 (4.13)

The divergence is purely in the ω2 term, and the coefficient agrees with the result we found
from the on-shell action (4.11). Notice that the second term in equation (4.12), proportional
to Cv, starts at O(ε3ω3), so it does not contribute to the divergent part of the propagator.

To eliminate the divergence, and obtain a finite result, we must add the contribution
from the boundary counterterm. However, different results can arise due to different choices
for the finite contributions included in the counterterm, i.e. different subtraction schemes.
As discussed in appendix A, in our case this ambiguity reduces to a term of the form
δGR(ω) = δmω2, which can be reabsorbed in the renormalization of the quark mass. We
are going to use a minimal scheme, and fix the coefficient of the counterterm action (4.10)
to be:

∆M(ε) = −λ
4/3(ε)
ε

`2

2π`2s
. (4.14)

This choice exactly subtracts the divergences (4.11) (see appendix A), and moreover re-
moves all (finite or infinite) O(ω2) terms in the large-ω behavior of the propagator.

Once we subtract the divergence in the minimal scheme, and we take the limit
ε → 0, the right hand side of equation (4.13) vanishes. This means that, in this scheme,
Re GR(ω) → 0 as ω → ∞. Moreover, as the only ambiguity in Re GR is proportional to
ω2 (see appendix A), we conclude that in any other scheme the real part of the Langevin
Green’s function grows as ω2 for large ω.

As a final remark, the previous discussion only applies if we consider the quark mass to
be infinite. In the case of a finite mass, the trailing string is attached at a radial point rQ >
0, the cut-off is physical, and the result is not divergent. However, one should still specify
the finite boundary term included in the action in order to arrive at an unambiguous result.

Imaginary part, and the symmetric correlators. Unlike the real part, the imaginary
part of the retarded correlator does not suffer from ambiguities. One of the reasons is that
it is proportional to a conserved quantity, which can be shown to be finite at the horizon.
In fact, we can write Im GR in the form:

Im GR(ω) = − 1
2i
GrrΨ∗R

←→
∂r ΨR ≡ −Jr . (4.15)
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Here Jr is a conserved current— this follows directly from the equations for the fluctuations,
equations (3.36) — hence the imaginary part of the retarded correlator can be analytically
evaluated at any r, not necessarily at the boundary. It is convenient to evaluate it at the
horizon. From the definitions (4.1) and (3.35), we find that, in the near-horizon limit:

Grr⊥ ' Z2(rs)Grr‖ ' (4πTs)b(rs)2(rs − r), r → rs. (4.16)

Inserting this expression in equation (4.15), and using the expression (4.9) for Ψ(r), we
find:

Im G⊥R(ω) = −b
2(rs)
2π`2s

|Ψ⊥h (ω)|2 ω, Im G
‖
R(ω) = − b2(rs)

2π`2sZ2(rs)
|Ψ‖h(ω)|2 ω, (4.17)

where Ψh is the coefficient of the in-falling wave-function, see equation (4.9).
From the imaginary part of GR(ω) we can immediately extract the symmetrized cor-

relator Gsym(ω), i.e. the generalized Langevin noise time-correlation function: as discussed
at the beginning of this section, due to the thermal nature of the world-sheet fluctuations,
Gsym(ω) is related to Im GR(ω) by the following equation, which generalizes the analogous
equations in [18, 19, 22]:

Gsym(ω) = − coth
(
ω

2Ts

)
Im GR(ω) . (4.18)

The spectral densities. The spectral densities associated with the Langevin dynamics
are defined by

ρa(ω) = − 1
π

Im GaR(ω), (4.19)

ρasym(ω) = − 1
π
Gasym(ω) = − coth

(
ω

2Ts

)
ρa(ω), (4.20)

where a =⊥, ‖ , and we have used equation (4.18) in the second line. The imaginary
part of GR is given by the flux for the perpendicular and the parallel components by the
formula (4.15). We will give an analytical estimation of the large-frequency behavior of
the spectral densities in subsection 4.4, using a WKB method; in section 6 we will use
numerical methods to obtain the full functional dependence of ρ(ω) in a concrete model.

4.2 The membrane paradigm

Here we introduce an alternative method to calculate both the diffusion constants and the
spectral densities that goes under the name of the membrane paradigm [51]. We apply
this method to obtain the spectral densities in the next section and to obtain the diffusion
constants, in section 5.3.

In [51], it was established that the transport coefficients associated with generic mass-
less fluctuations can be read off directly from their effective coupling in the action, evaluated
at the horizon. For an arbitrary massless fluctuation φ with an action

S2 = −1
2

∫
ddxdr

√
−det g Q(r) gαβ∂αφ∂βφ, (4.21)
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the transport coefficient associated with the retarded Green’s function is given by,

χR = − lim
kµ→0

Im GR(ω,~k)
ω

= lim
kµ→0

Q(rs)

√
−det g
grrgtt

∣∣∣∣
rs

(4.22)

where Q is the effective coupling of the fluctuation defined in (4.21). We refer the reader
to [51] for a derivation of this formula, noting that here we apply the same idea to the
world-sheet black-hole rather than the bulk black-hole as in [51].

In our case, comparison of (4.21) with (3.33) yields,

Q‖ =
1
π`2s

b2

Z2
, Q⊥ =

1
π`2s

b2. (4.23)

Once we know these effective couplings, we can immediately write down the diffusion
constants. Therefore, the method provides a very efficient and fast way of computing the
latter. This is done in section 5.3.

4.2.1 A differential equation for spectral densities

Although the method of the membrane paradigm is most effective in the low frequency limit,
where one can read off transport coefficients directly from the Q’s, it is still a convenient
method for arbitrary ω where one has to use the flow equations [51]. We define the canonical
momentum associated with φ in (4.21) with respect to foliations in r, as

Π(r, ω,~k) = Q(r)
√
−det ggrr∂rφ(r, ω,~k), (4.24)

where we performed the Fourier transform on the 4D space-time. We also define the “r-
dependent” response function

χ̄ = i
Π(x, ω,~k)

ωφ(r, ω,~k)
. (4.25)

Using the general AdS/CFT relation for the retarded Green function,

GR(ω,~k) = lim
r→0

Π(x, ω,~k)

φ(r, ω,~k)
, (4.26)

we find that,

ρ(ω,~k) = − 1
π

Im GR(ω,~k) =
ω

π
lim
r→0

Reχ̄. (4.27)

From the equations of motion, one derives a first-order equation for χ̄, [51]:10

∂rχ̄ = iω

√
grr
gtt

(
1

Q(r)
χ̄2 −Q(r)

)
. (4.28)

Here, the effective coupling Q is given by (4.23) and,√
grr
gtt

=
Z(r)

f(r)− v2
. (4.29)

10In the rest of this section, we set ~k = 0.
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For regularity at r = rs one should require that χ̄ → Q(rs) as r → rs. One solves (4.28)
with this boundary condition at the horizon, and determines χ̄ on the boundary r = rb.
The spectral density associated with the symmetric Green’s function is given by,

ρsym(ω) =
ω

π
coth

(
ω

2Ts

)
Reχ̄(rb, ω). (4.30)

As we show in section 4.4, ρsym is divergent as ω → ∞. This is similar to the familiar
short-distance divergences of correlators of quantum field theory.

4.3 Universal results for the spectral densities

The membrane paradigm allows us to obtain interesting relations concerning the spectral
densities in certain limits. We first note that, by employing the equation of motion for φ
that follows from (4.21) and (4.28) one can show that |φ|2Re χ̄ is independent of r:

|φ(r)|2Re χ̄(r) = N(ω). (4.31)

Through equation (4.27), this is of course equivalent to the fact that the imaginary part of
the Green function is proportional to the conserved flux, hence it is constant.

We may evaluate (4.31) in the two limits r = rb and r = rs. We first evaluate it at the
horizon: the in-falling condition is,

φ(r, ω)→ Ch(rs, ω)(1− r/rs)−
iω

4πTs , r → rs. (4.32)

Therefore, |φ(rs)|2 = |Ch|2. On the other hand, by the boundary condition of (4.28),
χ̄(rs) = Q(rs). Therefore we obtain, N(ω) = Ch(ω, rs)Q(rs).

Secondly, we evaluate (4.31) at the boundary rb using (4.27) and we obtain N(ω) =
πρ(ω)/ω. Hence we have,

ρ(ω) =
ω

π
Q(rs)|Ch|2(rs, ω). (4.33)

Now, we consider the special limit rs → rb while keeping ω finite, or more precisely we
consider ωrs � 1. If we think of ω as being fixed, this limit can be attained in two ways:

• either by sending T → ∞, so that the black hole horizon, and consequently the
world-sheet horizon, are pushed to the AdS boundary;

• or by keeping T finite, and sending v → 1. In this case the black hole temperature is
fixed, but the string is ultra-relativistic.

Therefore, the regime ωrs � 1 corresponds to a UV limit for the background quantities T
and v.

On the other hand, for a given fixed ω, as rs approaches the boundary Ch(ω) becomes
independent of ω and approaches unity. This is because of the unit normalization of φ at
the boundary, φ(rb) = 1. Therefore, (4.33) simplifies and one obtains,

ρ(ω) ' ω

π
Q(rs), ωrs � 1 (4.34)
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We can make this expression more explicit by taking the near-boundary approximate ex-
pressions, valid for rs ∼ 0, in (4.23): we approximate the metric functions as in equa-
tion (3.6), and consequently, from equation (3.31), Z(rs) ' γ−1. These approximations
are valid up to terms of O(λ), which signal the departure from conformality of the UV
geometry. Using these approximations we find:

Q⊥(rs) ' γ−2Q‖(rs) '
`2

`2s

λ
4
3 (rs)
πr2s

[
1 +O(λ(rs))

]
. (4.35)

Finally, rs can also be expressed purely in terms of the boundary quantities in the
same limit, using the near-boundary approximation (3.25).

The conclusion of the previous discussion is that, in the high energy limit one obtains
universal expressions for the spectral densities, where they become linear in frequency.

This universal behavior is to be expected based on the consideration that, for fixed ω,
both limits v → 1 and T →∞ correspond to the limit rs → 0. In this regime the equation
governing the string fluctuation become essentially the equation one finds in pure AdS,
close to the boundary. This case is discussed explicitly in appendix D, from which one
concludes (see equation (D.1)) that the wave-functions depend on ω and Ts only through
the combination ω/Ts ∝ ωrs. Thus, for fixed ω and small rs, i.e. for ωrs � 1, the spectral
density is approximated by the linear term in the expansion in ωrs.

4.4 The WKB approximation at large frequency

The WKB approximation can be used to obtain the high-frequency behavior of the
Langevin spectral densities. Here we summarize the method and present the results. The
detailed derivation is given in appendix C.

By a rescaling of the wave-function, the fluctuation equations (3.37)–(3.38) can be put
in a Schrödinger-like form, and the large ω solution can be obtained by an adaptation of
the WKB method. This method has been applied to the case of shear perturbations in
AdS-Schwarzschild black-hole in [52].

The fluctuation equations (3.37)–(3.38) can be put in the Schrödinger form

− ψ′′ + Vs(r)ψ = 0, Vs(r) = −ω
2b4

R2
+

1
2
(

logR
)′′ + 1

4
(

logR
)′2
. (4.36)

defining the wave function ψ = R
1
2 Ψ and R =

√
(f − v2)(b4f − C2), where

Ψ =

{
δX⊥

δX‖
, R =

{
R

R/Z2 . (4.37)

For large frequency (compared to r−1
s ), we can approximate the potential over essen-

tially the entire range of r by the expression:

Vs(r) ' −
ω2b4

R2
, ωrs � 1, rtp � r < rs, (4.38)

where rtp denotes the classical turning point, V (rtp) = 0. The range of r for which equa-
tion (4.38) is valid is the classically allowed region. For large ωrs, the turning point is
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approximately rtp '
√

2/(γω)� rs. Therefore, the classically allowed region covers almost
all the range 0 < r < rs, but for a small region close to the boundary (that includes the
turning point) where the approximation (4.38) breaks down. Finally, and most impor-
tantly, for ωrs � 1 there is always an overlap region in which the boundary asymptotics
of the Schrödinger equation and equation (4.38) are both valid , since rtp � rs. This will
allow the matching of the WKB solution and the boundary solution.

In order to obtain a large-ω analytic approximation for ρ(ω), it is necessary to specify
whether we consider the quark mass as infinite, or we are working with a finite but large
mass Mq.

Infinitely massive quarks. In this case the endpoint of the string is attached to the AdS
boundary r = 0, and this is where we should set the normalization of the wave-functions.

The WKB computation proceeds along the steps detailed in appendix C. The WKB
solution is matched with the horizon and boundary asymptotics, for the wave function,
determining the coefficients Ψh appearing in equation (4.17)

Ψh(ω) = ω
i`γλ

2/3
tp

b(rs)

{
1, ⊥
γZ(rs), ‖

. (4.39)

Inserting these expressions in equation (4.17) and using the definition (4.19), we de-
termine ρ(ω), in the limit ω � 1/rs:

ρ⊥(ω) ' γ−2ρ‖(ω) ' ω3

2π2

`2

`2s
γ2 λ

4
3
tp(ω) (4.40)

Here λtp = λ(rtp) where rtp '
√

2/(ωγ) is the classical turning point, as discussed in
appendix C. For very large ω, the dilaton profile is can be approximated as in equation (3.6),

λtp ' b−1
0 log−1

[
ωγ√
2Λ

]
. (4.41)

Finite mass quarks. The computation for the finite mass quarks follows the same steps
as for the infinitely massive case, except that the boundary normalization of the wave
function Ψ(r) = 1 has to be imposed at the cutoff r = rQ (determined by equation (4.3)),
rather than at the proper boundary r = 0. As MQ becomes large (with respect to the UV
scale Λ), rQ ∼ 1/MQ.

The presence of a finite cutoff at rQ implies some subtleties in the matching of the
WKB solution with the boundary solution, as explained in appendix C.

To give an explicit result, we must distinguish two regimes which, for fixed ω/Mq,
correspond to small and large velocities.

• Small velocities. If rQ � 1/γω the finite mass spectral densities at large frequencies
behave like the infinite mass ones, except for (γωrQ)2 corrections. More explicitly,
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we obtain

ρ⊥(ω) ' γ−2ρ‖(ω)

' ω3

π2

`2

`2s
γ2 λ

4
3
tp(ω)

[
1 + (γωrQ)2 +


`2λ 4

3
tp

γr3Q

∫ rQ dr′

R(r′)

2

− 1


· (sin(γωrQ)− γωrQ cos(γωrQ))2

]−1

. (4.42)

These expressions are valid in the regime where ωrs � 1, but at the same time
γωrQ < 1, i.e. for small velocities, given a fixed (large) quark mass and a given
frequency. On the other hand, for fixed frequency and velocity but for Mq → ∞,
rQ → 0, the r.h.s. asymptotes to unity, and we recover the infinite quark mass
expressions (4.40).

• Large velocities. Analogously, in the limit where rQ � rtp '
√

2/γω, the spectral
functions read

ρ⊥(ω) ' γ−2ρ‖ '
ω3

π2`2s
γ3r2QRQ

[
1 + (γωrQ)2

]−1

. (4.43)

Hence, the difference with respect to the infinite mass result in this case is that λ4/3
tp —

which is ω-dependent —is replaced by λ4/3
Q —which, instead, is ω-independent.

We note that the large ω behavior for finite mass, both in the large and in the small
cutoff regimes, changes with respect to the infinite mass case and becomes linear rather
than cubic, due to the extra (γωrQ)2 term in equations (4.42)–(4.43). This extra term
comes from the fact that the solution has a subleading linear dependence on r, which
is negligible in the infinite mass case, but enters the expression of the spectral function,
ρ ∼ Ψ∗Ψ′, in the finite mass case, giving it a quadratic dependence on rQ.

5 Langevin diffusion constants

The correlators and spectral densities discussed in the previous section are the building
blocks of the generalized Langevin equation, (2.2). Now, we will focus on the long-time
limit, discussed in section 2, in which equation (2.2) reduces to the local form (2.12),
in which only the ω-independent friction and diffusion coefficients, η and κ, appear.
They are given in equation (2.13) in terms of the zero-frequency limit of the Langevin
Green’s functions.

Therefore, in this section we consider the zero-frequency limit of the Green’s func-
tions constructed in section 4. This will allow us to give the analytic results for the
diffusion constants, both from the direct evaluation of the correlators, and using the
membrane paradigm.
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5.1 Diffusion constants via the retarded correlator

The diffusion constant is defined in terms of the symmetric correlator Gsym (see equa-
tion (2.13):

κ = lim
ω→0

Gsym = −2Ts lim
ω→0

ImGR(ω)
ω

, (5.1)

where in the second equality we have used the ω → 0 limit of equation (4.18).
The small frequency limit of the symmetric correlator can be evaluated analytically

since we can determine the boundary-to-bulk wave function in this limit and discard higher
orders in the evaluation of (5.1). More precisely, we write the small frequency limit of the
horizon asymptotics of the ΨR’s. Given the in-falling boundary condition (4.9) we obtain

ΨR(r, ω) = Ψh(rs − r)−
iω

4πTs ' Ψh

[
1− iω

4πTs
log |r − rs|+ . . .

]
(5.2)

This solution can be connected to the boundary asymptotics by the exact solution of
the fluctuation equations (3.37)–(3.38) at ω = 0 which reads ΨR(r, 0) ≡ 1 once we impose
the appropriate boundary condition ΨR(rb) = 1 (see appendix B for details). On the other
hand, equation (5.2) reduces to ΨR = Ψh in the strict ω = 0 limit. Therefore, the near-
horizon solution at small frequencies is entirely determined by equation (5.2) and the match
to the boundary solution which yields Ψh = 1 (both for transverse and longitudinal modes).

Furthermore, expanding for ω � 1, we may also show (see appendix B) that the
solution for all values of r and small frequencies is given by

ΨR = (rs − r)−
iω

4πTs [1 +O (ω)] . (5.3)

Now we may substitute the solution (5.3) in the expression for κ, using (5.1) and
evaluating the current at the horizon.

Infinitely Massive Quarks. For infinite mass quarks, the boundary is located at r = 0
and the appropriate boundary-to-bulk wave function ΨR is given by equation (5.3) at
small frequencies.

To compute the diffusion constants (5.1), we evaluate Jr, defined in equation (4.15),
at the radius value r = rs− ε and then let ε→ 0 (since Jr is conserved it can be evaluated
at any radius and not necessarily at the boundary, where subleading O(ω) terms in (5.3)
would contribute). This allows to neglect the sub-leading terms in the solution (5.3). For
the longitudinal component we also need the near-horizon limit of Z(r), which can be easily
obtained from equation (3.31):

Z2 → 1
16π2

f ′(rs)2

T 2
s

, r → rs. (5.4)

Using the explicit expressions (4.17) in equation (5.1), with Ψh = 1, we obtain to the
following results:

κ⊥ =
1
π`2s

b2(rs)Ts (5.5)

κ‖ =
16π
`2s

b2(rs)
f ′2(rs)

T 3
s . (5.6)
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We note that κ⊥ and κ‖ are simply related by Z2κ‖ = κ⊥, as it can be read off
from equation (5.1), using equation (4.15) and (4.1) and the fact that the small frequency
behavior of the wave function is the same for both transverse and longitudinal directions.

In the conformal limit b(r) = `/r, f(r) = 1− (πTr)4 and Ts = T/
√
γ, rs = 1/(πT

√
γ),

we recover the results of [18, 19] for the holographic N = 4 SYM:

κ⊥N=4 = π
√
λN=4γ

1/2T 3 (5.7)

κ‖N=4 = π
√
λN=4γ

5/2T 3 . (5.8)

where (`/`s)4 = λN=4 is identified with the N = 4 ’t Hooft coupling, in the AdS5

background.

Finite Mass Quarks. For massive quarks, the appropriate boundary condition should
be ΨR(rQ) = 1, where rQ is the UV cutoff determined by the value of the quark mass Mq,
using equation (4.3). In this case, equation (5.3) gets modified and reads

ΨR =
(
rs − r
rs − rQ

)− iω
4πTs

[1 +O (ω)] . (5.9)

Nevertheless, as in the conformal case [22], the results for κ⊥ and κ‖ remain unchanged,
since they are independent of rQ. Indeed rQ enters in the wave function, as equation (5.9)
shows, and cancels out in the ω → 0 limit as we take the product Ψ∗RΨR in (4.15).

5.2 The jet-quenching parameter

As discussed in section 2, the jet-quenching parameters can be defined in terms of the
diffusion constants as:

q̂⊥ = 2
κ⊥

v
, q̂‖ =

κ‖

v
. (5.10)

The first parameter defines the transverse momentum broadening of heavy quark probes.
There is also a different definition of the jet-quenching parameter, which is related to

the perturbative relation between this quantity and an appropriate limit of a Wilson loop
joining two light-like lines in Yang-Mills theory (see e.g. [53]). This was the basis of a
different holographic calculation of q̂, that was carried out in [11, 12] in the conformal case,
and in [15] for the general backgrounds (3.1), which gives:

q̂WL =
√

2
π`2s

(∫ rs

0

dr

b2
√
f(1− f)

)−1

, (5.11)

where the subscript WL is introduced to distinguish this definition of the jet-quenching pa-
rameter from the original definition (5.10). As in the conformal case, this result differs from
the result obtained via the Langevin equation. The reasons for this were analyzed in [59].
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5.3 The diffusion constants via the membrane paradigm

The method of the membrane paradigm that we introduced in section 4.2 allows us to
read off the diffusion constants directly from the action (3.33) with no need to derive and
solve for the fluctuation equations as in the previous section. The diffusion constants are
defined in terms of the symmetric Green’s functions by (5.1). Employing the relation (2.14)
between the retarded and the symmetric Green’s functions and the basic formula of the
membrane paradigm, equation (4.22), we arrive at,

κa = 2TsχaR = TsQ
a(rs), (5.12)

where a = {⊥, ‖}. In the second equation above we used the fact that the metric depen-
dence in (4.22) drops out in 2d.

From the expressions (4.23), and using the near-horizon limit of the function Z

from (5.4), we find, unsurprisingly, the same result as equation (5.5), (5.6).
We note that these results establish one of the very few examples of trivial flow as

defined in [51], in the sense that the effective couplings Q, determined on the horizon
membrane, stay unchanged through the flow from the horizon to the boundary. Therefore
the dual field theory quantities i.e. the diffusion constants, which should be evaluated on
the boundary, can also be computed directly on the horizon due to trivial flow. The other
basic example of trivial flow is the shear viscosity η/s. The reason for trivial flow is that
there is no mass term in the fluctuation equations (3.36), because the geometry is flat on
the domain-wall directions. For the same reason one expects trivial flow for any transport
coefficient that stem from string fluctuations on a generic domain wall background, as long
as the fluctuations do not involve the radial direction.

5.4 A universal inequality: κ‖ ≥ κ⊥

From the expressions (5.5), (5.6), one derives the ratio,

κ‖

κ⊥
=
(

4πTs
f ′(rs)

)2

= 1 + 4v2 b′(rs)
f ′(rs)b(rs)

, (5.13)

where in the last equation, we used the definition of the world-sheet temperature
Ts in (3.23).

We note that the second term on the r.h.s. of (5.13) is always positive definite in the
deconfined phase T > Tc. This can be seen as follows: First of all, f ′(r)b(r) is a negative
definite quantity at any r. This follows from the general relation, see e.g. [42].

f ′(r) = − sT

M3
pN

2
c

bE(r)−3, (5.14)

where s is the entropy density and bE is the Einstein frame scale factor. The left hand side
is manifestly negative definite.

Secondly, the quantity b′(rs) is also negative-definite in the deconfined phase. This
follows from the fact that, in the type of geometries that confines color, the string frame
scale factor b(r) at zero temperature always possesses a minimum at some point r = r∗.
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Hence b′(r) < 0 for r < r∗ and b′(r) > 0 for r > r∗. Moreover, we can argue that, for
T > Tc, the location of the bulk horizon rh should be closer to the boundary than r∗, i.e.
rh < r∗, otherwise the Wilson loop would have linear behavior, as a result of saturation of
the corresponding string at r∗. Since, the world-sheet horizon is always smaller than the
bulk-horizon, it follows that, in the de-confined phase:

rs < rh < r∗, for T > Tc. (5.15)

Therefore b′(rs) should be negative-definite, and the entire second term on the r.h.s.
of (5.13) should be positive-definite. Therefore, we arrive at the universal result that

κ‖ ≥ κ⊥ for T > Tc (5.16)

Equality is attained for v → 0. We check by a numerical computation in section 6 that
this inequality is obeyed in the particular background used in that section.

5.5 A generalized Einstein relation

We may derive a generalized Einstein relation by relating the diffusion constant (5.5), (5.6)
with the friction coefficient ηD in (2.17).

On the one hand, we have found holographically the relation between the diffusion
coefficients κij and the friction coefficients ηij for the Langevin equations in position
space (2.24)–(2.25). From equation (4.18) and the definitions (2.13) we arrive at:

κij = 2Tsηij (5.17)

On the other hand, we can relate ηij to the momentum diffusion coefficients ηijD, by equa-
tions (2.26). Therefore we find:

κ⊥ = 2TsγMqη
⊥
D, (5.18)

κ‖ = 2Tsγ3Mq

(
η
‖
D + p

∂η
‖
D

∂p

∣∣∣
p=γMqv

)
. (5.19)

These relations lead to an important consistency condition: notice that, by equation (2.23),
the coefficient η‖D must coincide with the zeroth order drag coefficient (3.18), calculated
via the classical trailing string solution,

η
‖
D = ηD =

1
γMq

b(rs)2

2π`2s
, (5.20)

Therefore, consistency requires that, inserting the expression (5.20) for η
‖
D in equa-

tion (5.19), the resulting expression for κ‖ agree with equation (5.6). This is indeed the
case: using the explicit expression (5.20), and the definition f(rs) = v2, we find:(

ηD + p
∂ηD
∂p

∣∣∣
p=γMqv

)
=

1
γ2Mq

b(rs)2

2π`2s

(
1 + 4v2 b′(rs)

b(rs)f ′(rs)

)
(5.21)
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Inserting this expression in the right hand side of equation (5.19), and using the iden-
tity (5.13), the resulting expression exactly agrees with κ‖ obtained from the Langevin
correlator, (5.6).

Finally, from equation (5.18) and the explicit expression (5.5), we find that η⊥D also
equals the drag force coefficient (5.20). This implies that, at the end of the day, the friction
term in the momentum diffusion equation is isotropic,

ηijD =
1

γMq

b2(rs)
2π`2s

δij ≡ 1
τ
δij . (5.22)

The last equality defines the momentum diffusion time τ = 1/ηD.
We arrive at the generalized Einstein relation:

τκ⊥ = 2MqγTs. (5.23)

where Mq is the quark mass and Ts is the emergent “world-sheet temperature”. (5.23) can
be viewed as a generalization of the usual non-relativistic Einstein relation which has the
form:

τκ = 2MqT. (5.24)

The modified Einstein relations (5.18) and (5.19) had already been found in [24] in the
particular case of the holographic dual of the N = 2∗ theory, and the results of that
analysis fit consistently in the general framework we are considering here.

We note that in the conformal limit, the world-sheet temperature is related to the bulk
temperature as

Ts =
T
√
γ
, conformal, (5.25)

and (5.23) becomes,

τκ⊥ = 2MqT
√
γ. (5.26)

This is quite different from (5.24) and reduces to it only in the non-relativistic limit γ → 1.
The generalized relation in (5.23) is defined in terms of a set of physical boundary

quantities, and the geometric quantity Ts. In a sense, Ts is the temperature that is read
by the quark as it moves through the medium. Ts provides the answer to the following
interesting question: what is the temperature read by a thermometer moving with speed
v inside a strongly coupled QGP of temperature T .

Note that in the conformal case the answer is universal, and transforms simply with
boosts. In the non-conformal case, associated with the Einstein-dilaton system the answer
is dynamics dependent.

5.6 Special limits of the diffusion constants

In this section we study the diffusion constants (5.5) and (5.6) in the extreme relativistic and
non-relativistic limits and express these quantities in terms of thermodynamic functions.
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5.6.1 Non-relativistic limit

As f(rs) = v2, in the non-relativistic limit v → 0, the world-sheet horizon approaches the
bulk horizon: rs → rh. Using the near-horizon expressions for the metric functions, one
also finds from (3.23) that Ts → T in this limit. Finally, we use the expression that relates
the entropy density with the scale factor at the horizon, [42],

s =
b3E(rh)
4G5

= 4πM3
pN

2
c b

3
E(rh), (5.27)

to obtain

κ⊥ →
2
π

(
45π
4

) 2
3 `2

`2s

(
s

N2
c

) 2
3

λ
4
3
hT, v → 0, (5.28)

where λh is the horizon value of λ. On the other hand, the N = 4 result becomes κ⊥N=4 →
π
√
λN=4T

3. Hence the ratio becomes,

κ⊥
κ⊥N=4

→ 2
π2

(
45π
4

) 2
3 `2

`2s

1√
λN=4

(
s

N2
c T

3

) 2
3

λ
4
3
h , v → 0. (5.29)

A similar analysis for the parallel component yields,

κ‖ →
2
π

(
45π
4

) 2
3 `2

`2s

(
s

N2
c

) 2
3

Tλ
4
3
h , v → 0. (5.30)

We note that this is exactly the same as (5.28). This is what one expects from the physical
perspective. In the non-relativistic limit, the main source of momentum broadening is due
to thermal fluctuations in the plasma, that itself is isotropic. Similarly the ratio of QCD
and N = 4 results also become the same as in (5.29).

5.6.2 Ultra-relativistic limit

We consider the opposite limit v → 1. Here the expression f(rs) = v2 tells us that rs → 0
hence the world-sheet horizon approaches the boundary. Using the near-boundary expres-
sion for f(r) in equation (3.6), and the near-horizon expressions for the metric functions,
we find that,

4πTs → rs(4C/`3)1/2
(
1 +O(log−1(rs))

)
. (5.31)

where the constant C is given in equation (3.7). Upon substitution in (5.5), we finally
obtain,

κ⊥ →
(45π2)

3
4

√
2π2

`2

`2s

(sT/N2
c )

3
4

(1− v2)
1
4

(
−b0

4
log(1− v2)

)− 4
3

, v → 1. (5.32)

We observe that the result diverges in the extreme relativistic limit v = 1. However, one
obtains a finite expression by considering the ratio with the N = 4 result:

κ⊥
κ⊥N=4

→ (45π2)
3
4

√
2π3

`2

`2s

(
s

N2
c T

3

) 3
4

(
− b0

4 log(1− v2)
)− 4

3

√
λN=4

, v → 1. (5.33)
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Similarly, for the parallel component one finds,

κ‖ →
(45π2)

3
4

√
2π2

`2

`2s

(sT/N2
c )

3
4

(1− v2)
5
4

(
−b0

4
log(1− v2)

)− 4
3

, v → 1. (5.34)

Again this is divergent as v → 1, but the ratio with N=4 result again remains finite in this
limit:

κ‖

κ‖N=4
→ (45π2)

3
4

√
2π3

`2

`2s

(
s

N2
c T

3

) 3
4

(
− b0

4 log(1− v2)
)− 4

3

√
λN=4

, v → 1. (5.35)

We observe that the parallel and perpendicular components of the diffusion constants
asymptote essentially to the conformal result both in the v → 0 and in the v → 1 limits.
modulo logs in the second case and the appropriate adjustment of relevant parameters like
temperature, entropy etc.

We should warn the reader that, as v → 1, we expect the break down of the treatment
based on the local Langevin equation: in fact, for very large v the world-sheet temperature
drops to zero, and the auto-correlation time of the Langevin Green’s functions, τc ∼ T−1

s ,
diverges. On the other hand, the relaxation time τD = ηD−1 stays approximately
constant. Therefore, eventually the relation τD � τc, necessary for the local treatment,
will break down at large enough v. In the next subsection we give a detailed discussion of
this validity condition.

Another important caveat, when considering the extreme relativistic limit of our re-
sults, lies in the fact that they are sensitive to the UV region of the geometry, and as
discussed at length in previous work (see e.g. [43]), the details of the gravity theory we are
using are not fully reliable in this limit.

5.7 Time scales and validity of the local approximation

The results of this section so far were obtained based on two separate approximations
concerning the time scales involved. On the one hand, we assume we are in a short-
time approximation, compared to the typical relaxation time. This means that, the quark
velocity v can be assumed to be constant only within time scales that are much shorter than
the relaxation time τD = 1/ηD. On the other hand, the analysis based on the local Langevin
equation relies on a long-time approximation, this time compared to the typical time scales
entering the Langevin correlators, and determined by the inverse temperature that the
quark “feels” as it travels through the plasma. According to our previous discussions this
is given by τc = 1/Ts where Ts is the world-sheet temperature (3.23). Therefore our analysis
in terms of diffusion constants will be valid only for time scales t such that τc � t � τD.
Existence of time intervals satisfying this condition requires that:

1
ηD
� 1

Ts
. (5.36)
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Since both ηD and Ts depend non-trivially on the quark momentum, this condition trans-
lates in an upper bound on the quark momentum (or velocity), above which the local
treatment breaks down.11

The relaxation time 1/ηD is given by (3.18). We can write equation (5.36) more
explicitly as

Mqγ �
`2

2π`2s

b2(rs)
Ts

(5.37)

We can read this condition as a lower bound on the quark mass. It is most restrictive
in the UV (large v), where it reads,

Mq �
√
γ

(
`

`s

)2 λ(rs)
4
3

2

(
C
`3

) 1
4

, (5.38)

where C is defined in (3.7) and in the UV region λ(rs) is approximately given by,

λ(rs) ≡ λs ≈ −
1

b0 log
[
Λ`3/(C√γ)

] . (5.39)

We observe that λ(rs) vanishes in the extreme relativistic limit because of the dependence
on γ.12 However, this logarithmic dependence is milder when compared to the explicit
dependence on γ in (5.38).

Alternatively, equation (5.36) can be read as a condition on the quark velocity, or
momentum. For fixed quark mass, and for v → 1, rs approaches the AdS boundary, and
the right hand side of equation (5.37) scales approximately as γ3/2. Explicitly we find

√
γ � 2Mq

(
`s
`

)2

λ
− 4

3
s

(
C
`3

)− 1
4

. (5.40)

Consequently the condition (5.36) puts an upper bound to the quark velocity.
To obtain an estimate of the upper bound on momentum, in the right hand side of

equation (5.37) we can approximate the scale factor as b(r) ' λ2/3(r)(`/r)2, and replace
the quantities rs and Ts by by the corresponding conformal expressions, equations (3.24).
We arrive at the bound (for an ultra-relativistic quark):

p� 1
4

(
`s
`

)4 M3
q

T 2
λ−8/3
s . (5.41)

For v close to unity, the dependence on v in λ(rs) is very mild and the right hand side can
be considered as a constant, depending only by the quark mass, temperature and value of
the (holographic) coupling. We will give a numerical estimate of these quantities in the
next section, in Improved Holographic QCD.

11Note that this condition is different than the condition given in [16] for the classical non-relativistic

Langevin dynamics that is 1/η � 1/T . As the thermal behavior of the Green’s functions are set by Ts
rather than T , it should be this effective temperature that enters in the validity condition (5.36).

12In fact, the numerical studies in the next section shows that the other factor in the log dominates over

the γ dependence and λ can be treated as a constant except in the extreme relativistic limit v = 1.
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6 Improved Holographic QCD and comparison with data

In the previous sections we obtained general results for the correlators of world-sheet fluc-
tuations, and for the Langevin diffusion constants, valid in any 5D Einstein-Dilaton theory
admitting asymptotically AdS black hole solutions. Here, we will study in detail these
results in Improved Holographic QCD, with the potential proposed in [44], whose thermo-
dynamic properties are in good agreement with lattice YM thermodynamics [45] as well as
the T = 0 spectra of glueballs obtained on the lattice.

We take the potential to be, as in [15, 44]:

V (λ) =
12
`2

{
1 + V0λ+ V1λ

4/3
[
log
(

1 + V2λ
4/3 + V3λ

2
)]1/2}

. (6.1)

The coefficients Vi entering the potential, are fixed as follows (for a detailed discussion
see [15, 44]):

V0 =
8
9
β0, V1 = 14, V2 = β4

0

(
23 + 36β1/β

2
0

81V1

)2

, V3 = 170. (6.2)

where β0 and β1 are the first two pure Yang-Mills the beta-function coefficients,

β0 =
22

3(4π)2
, β1 =

51
121

β2
0 . (6.3)

The coefficients V0 and V2 are fixed to match the perturbative YM β-function, whereas V1

and V3 are fixed phenomenologically by comparing the equation of state of the model with
that of YM on the lattice.

The coefficient ` is the scale of the asymptotic AdS5 space-time at r = 0 and it sets the
energy scale in the field theory. All observables defined holographically using the metric
in the Einstein frame are measured in units of `. For a given class of black hole solutions
with fixed UV asymptotics, the value of ` can be set by matching the mass of the lowest
glueball excitation [44].

It may seem that there is an extra scale associated to these models, with respect
to 4D Yang-Mills, where there is a single scale, i.e. the quantity ΛQCD setting the scale
of conformal symmetry breaking in the UV. In our model, the analog of the QCD scale
emerges as an integration constant that labels different solutions (distinguished by different
UV boundary conditions) of the same theory, with ` fixed. Explicitly, it controls the
UV asymptotics of the field λ(r), given in equation (3.6), as λ(r) = −(b0 log rΛ)−1 +
O(log−2 rΛ). Therefore, it may appear we have two independent scales, ` and Λ. However,
as shown in [39], physical observables depend on Λ only via an overall scaling. Therefore,
we can choose an arbitrary value for the dimensionless parameter `Λ, and subsequently fix
the value of ` to match some reference energy scale, as explained in the previous paragraph.

The quantities that are computed by probe strings depend on another scale, indepen-
dent of `, namely the fundamental string scale `s. In string-derived models, the ratio `/`s
is known. In phenomenological models on the other hand it must be adjusted to fit obser-
vation. For example, the ratio `/`s can be fixed by comparing the confining string tension
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Figure 1. (a) The ratio of the world-sheet temperature to the bulk black hole temperature, as
a function of velocity, for different values of the bulk temperature. The dashed line indicates the
AdS-Schwarzschild curve, Ts = T/

√
γ. (b) The function γZ(rs) as a function of velocity (with Z

defined as in equation (3.31) and γ ≡ 1/
√

1− v2), computed numerically varying the velocity, at
different temperatures. The dashed line represents the conformal limit, in which γZ = 1 exactly.

of the holographic model (controlled by the Nambu-Goto action (3.8) , hence by `s) to the
lattice value σc = (440MeV )2. One finds:

`2

2π`2s
= 6.5. (6.4)

This fixes the ubiquitous overall coefficient entering in the diffusion constants, in equa-
tions (5.5)–(5.6).

With the potential given by (6.1), we numerically solve Einstein’s equation for the
metric and dilaton functions b(r), f(r), λ(r), to obtain black hole solutions of different
temperatures T , but obeying fixed UV boundary conditions (for a detailed discussion of
the solution procedure, see appendix A of [44]). Once the solutions are given, for each
temperature we determine the position of the world-sheet horizon rs as a function of velocity
v, by numerically solving the equation f(rs) = v2.

From the metric coefficients evaluated at rs we can obtain the world-sheet temperature
Ts, through equation (3.23). The ratio Ts/T is plotted as a function of v, and for various
bulk temperatures, in figure 1 (a). We observe that Ts < T for all velocities, and
as the bulk temperature increases this ratio approaches the AdS-Schwarzschild curve
(Ts/T )AdS = (1− v2)1/2.

Another interesting quantity that provides an indication of how much the backgrounds
deviate from the conformal case, is the function Z(r), defined in equation (3.31). For AdS-
Schwarzschild, this function is exactly constant, Z(r) = 1/γ. In figure 1 (b) we portray the
behavior of γZ(rs) as a function of velocity, for different bulk temperatures. We observe
that as v → 0, 1 this quantity asymptotes to unity, as can also be seen analytically from
equation (3.31) by taking the limits rs → 0, rs → rh. Again, as the bulk temperature
increases, we move closer to the AdS-Schwarzschild behavior, represented by the dashed
line in the graph.
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At this point, we note that figure 1 also provides a confirmation of the universal
inequality derived in section 5.4. The function Z(r) of equation (3.31) at the world-sheet
horizon is given by Z(rs) = f ′(rs)/4πTs. Then, from equation (5.13) we see that κ‖/κ⊥ =
Z(rs)−2. On the other hand, the numerical computation shown in figure 1 implies that,

Z(rs) <
1
γ
⇒ Z(rs)−2 > γ2 > 1.

Therefore the numerics confirm that the inequality κ‖/κ⊥ > 1 is satisfied.
Knowing the numerical black-hole solutions and the values of rs, we can immedi-

ately compute the diffusion constants, (5.5)–(5.6). The results are discussed in subsec-
tions 6.2, 6.3. On the other hand, in order to compute the full Langevin correlators, we
additionally need to solve the world-sheet fluctuation equations. This is analyzed in the
next subsection.

6.1 Correlators and spectral functions

The retarded correlator of the trailing string fluctuations is given by equation (4.2) as a
function of the frequency ω, where the wave-functions Ψ⊥,‖R (r, ω) are the eigenmodes of the
world-sheet fluctuations. From the full retarded propagator, one can further obtain the
symmetric one through equation (4.18), and the spectral density through equation (4.19).

To compute the Green’s function (4.2) numerically, one must solve the linear fluctua-
tion equations (3.37)–(3.38), with infalling conditions (5.2) at the world-sheet horizon rs,
and unit normalization at the UV boundary.

The numerical computation makes use of the shooting technique from the world-sheet
horizon (specifying the in-falling initial conditions for the wave function and its derivative).
Once the full solution is obtained, we normalize it dividing by the value of the solution at
the boundary, in order for the wave function to obey the required boundary conditions.
The results of the numerical analysis are shown in figures 2 through 4, and we will discuss
them below in more detail.

As discussed in section 4, the real part of the correlator is UV-divergent and therefore
it is very sensitive to the cut-off used in the numerical integration. Even if one subtracts
the divergent term ∼ γω2/ε, one should be very careful to extract the limit ε→ 0 from the
numerics, and eliminate all terms which grow as higher powers of ω, but whose coefficient
would vanish at ε = 0. For example, after subtracting the divergence, the numerical
calculation will be dominated by the subleading term in eq. (4.13), which at finite ε grows
as ω4, but which is absent when the cut-off is removed.

The imaginary part of the propagator on the other hand does not present these
problems, and can be obtained in a clean way from the numerical computation. Since
the imaginary part of the retarded correlator is related in a simple way to the symmetric
correlator through equation (4.18), we chose to only show plots of the latter, which are
discussed below.

In figure 2 and figure 3 the symmetric correlator corresponding to a quark with infi-
nite mass is shown, and it is compared to the WKB result in (4.40), for the transverse and

– 40 –



J
H
E
P
1
2
(
2
0
1
0
)
0
8
8

v=0.1

v=0.9

v=0.99

5 10 15 20 25 30
Ω rs

0.1

10

1000

105

Gsym
¦B

GeV2

fm
F

T � 1. Tc

v=0.1

v=0.9

v=0.99

5 10 15 20 25 30
Ω rs

0.001

0.1

10

1000

Gsym
¦

-GWKB
¦BGeV2

fm
F

T � 1. Tc

v=0.1

v=0.9

v=0.99

5 10 15 20 25 30
Ω rs

1

100

104

106

Gsym
¦BGeV2

fm
F

T � 2. Tc

v=0.1

v=0.9

v=0.99

5 10 15 20 25 30
Ω rs

0.01

1

100

104

Gsym
¦

-GWKB
¦BGeV2

fm
F

T � 2. Tc

v=0.1

v=0.9

v=0.99

5 10 15 20 25 30
Ω rs

10

1000

105

107

Gsym
¦BGeV2

fm
F

T � 3. Tc

v!0.1

v!0.9

v!0.99

5 10 15 20 25 30
Ω rs

0.1

10

1000

105

Gsym!#GWKB!!GeV2
fm
"

T ! 3. Tc

(a) (b)

Figure 2. (a) The symmetric correlator of the ⊥modes by the numerical evaluation (solid line) and
by the large-frequency WKB computation of section 4.4 (dashed line), both in the Mq →∞ limit.
(b) Difference of the numerical and WKB results. We show in each plot the curves corresponding
to the velocities v = 0.1, 0.9, 0.99 and different plots for the temperatures T = Tc, 2Tc, 3Tc.

longitudinal modes. From these plots we observe that the WKB result is a very good ap-
proximation to the spectral densities even at low frequency, which is a priori unexpected.
In particular, from comparison with the WKB result, we learn that the symmetric cor-
relators scale with a cubic power-law at large frequency. The difference w.r.t. the WKB
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Figure 3. (a) The numerical result for the symmetric correlator of the ‖ modes (solid line)
together with the large frequency result from the WKB computation of section 4.4 (dashed line),
for Mq =∞. (b) Difference between the exact and WKB results. As for the ⊥ modes, we show in
each plot, T = Tc, 2Tc, 3Tc, the curves corresponding to the velocities v = 0.1, 0.9, 0.99.

result is small compared to the value of the correlator (the apparent discontinuity in some
of the curves is an artifact due to the logarithmic scale— it is a small bump if plotted on
a linear scale).

Figure 4 shows the result for the finite mass correlators and their comparison to the
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Figure 4. The retarded correlator ((a) real and (b) imaginary part) for finite but large quark
mass, calculated numerically. (c) The symmetric correlator for finite quark mass, from numerical
evaluation (solid lines) and WKB result of section 4.4 (dashed lines). (d) The difference between
the numerical and WKB result. In each plot we represent the curves corresponding to the velocities
v = 0.1, 0.9, 0.99. We have taken T = 3Tc and MQ = MCharm.

WKB approximation for large frequencies, using the results of section 4.4. The correlators
indeed display the linear behavior for large ω that was derived analytically in section 4.4.

The numeric computation in this case is performed by normalizing the wave function
at the cutoff rQ. The value of rQ is determined by the quark mass (using equation (4.3)),
rather than being given by the regulated boundary ε. For the charm and bottom quarks,
we take Mcharm = 1.5 GeV and Mbottom = 4.5 GeV.13

The correlators are also evaluated at rQ, following the formula (4.2). We use the results
obtained in [15] for the cutoff, yielding rQ ' 1.4 for the bottom quark and rQ ' 7.5 for the

13These values are subject to renormalization in the plasma due to interactions with the media. Therefore,

they become temperature dependent. However, as we show in [15], this temperature dependence is very

mild in our holographic model, within the relevant temperature range.
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Figure 5. The ratio of the diffusion coefficients κ⊥ and κ‖ to the corresponding value in the
holographic conformal N = 4 theory (with λN=4 = 5.5) are plotted as a function of the velocity v
(in logarithmic horizontal scale) from equations (5.5)–(5.6). The results are evaluated at different
temperatures T = Tc, 1.5Tc, 3Tc in the deconfined phase of the non-conformal model.

charm quark. We chose to show in figure 4, as an example, the results for the transverse
mode of a charm quark at T = 3Tc, for different velocities.

6.2 The jet-quenching parameters

The diffusion constants κ⊥ and κ‖ are computed directly, as a function of temperature
and velocity, by evaluating equations (5.5)–(5.6) at the world-sheet horizon rs specified by
equation (3.15).

To give an idea of the effect of the running of the scalar field, and of the breaking
of conformal invariance in our model, in figure 5 we show the ratios of κ⊥ and κ‖ to the
corresponding quantities obtained in the AdS black hole background, equations (5.7)–(5.8)
representing strongly coupled N=4 SYM. The ratios κ/κconf are shown as a function of
velocity, at different temperatures. The conformal results are obtained by fixing `s by
its AdS/CFT relation to the fixed coupling of N = 4 SYM, (`/`s)4 = λ. We take as
λ = 5.5 as in [8].

From figure 5.1 we observe that, apart from an overall normalization, the non-
conformality in this particular model significantly affects the diffusion constants only for
temperatures close to Tc, and for velocities that are not too large. Indeed, if we choose
λ ∼ 0.5 instead of λ = 5.5 in the conformal case (just to make the overall magnitudes
similar in the comparison), then our result agrees with the conformal result within the
10% level, in the range v & 0.6 and for T & 1.5Tc.

In the rest of this section we will focus on the jet-quenching parameters q̂, which are
related to the diffusion constants by

q̂⊥ = 2
κ⊥

v
, q̂‖ =

κ‖

v
. (6.5)

The Langevin dynamics defines the two independent parameters, q̂⊥ and q̂‖. The first
controls the transverse momentum broadening of a heavy quark probe moving through
the plasma, and it is the one usually quoted in relation to experimental results. In this
subsection we present the result for the dimensionless quantities q̂/T 3

c , since they do not
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Figure 6. The jet-quenching parameters q̂⊥ and q̂‖ obtained from the diffusion constants (5.5)–
(5.6), normalized to the critical temperature Tc, are plotted as a function of the velocity v (in a
logarithmic horizontal scale). The results are evaluated at different temperatures.

depend on how we fix the overall energy scale in the holographic QCD model. We will
translate the result to physical units in the next subsection.

In figure 6 we plot the two jet-quenching parameters (in units of the critical temper-
ature Tc) as a function of the velocity, for different values of the temperature T . The
behavior for small v is dominated by the 1/v factor in the definitions (6.5).

We note that the difference between the longitudinal and transverse modes is due to
the function Z defined in equation (3.31), which reduces to f ′(rs)/4πTs when evaluated
at the world-sheet horizon. More precisely, the relation between the diffusion constants is
κ⊥ = κ‖Z

2(rs). In sections 5.6.1 and 5.6.2 we showed that γZ(rs)→ 1, both when v → 0
and v → 1. This is also apparent in the numerical result shown in figure 1 (b).

It is instructive to translate the quark velocity v on the horizontal axis of figure 6
into momentum, p = Mqvγ, where Mq is the quark mass. Taking Mcharm = 1.5GeV ,
Mbottom = 4.5GeV , the resulting plots are shown in figure 7.14 From these plots, we
observe that q̂⊥ is almost constant over a wide momentum range, for a relativistic heavy
quark. This is not so for q̂‖, the difference being due to the extra factor of Z2(rs) ∼ γ−2

in the latter.
From figure 7 we observe that, for a fixed momentum, q̂ increases with temperature,

as can also be inferred from the analytic expressions (5.5)–(5.6). This behavior is shown
more clearly in figure 8, that displays q̂ as a function of temperature (in units of the critical
temperature Tc) for different quark momenta. This is the q̂⊥ ∝ T 3 behavior predicted by
both the relativistic approximation (5.32) and the non-relativistic one (5.28), once we use
the fact that s ∝ T 3 approximately.

It is important to keep in mind that, for a finite quark mass, the trailing string de-
scription breaks down when the world-sheet horizon coordinate rh becomes smaller than
rQ, the point where the trailing string is attached (this is infinite for an infinite quark
mass). This translates into an upper bound on the velocity, or momentum, beyond which
the setup breaks down, and the string dynamics on the flavor branes becomes important.
To estimate this bound, we can use the AdS5 relations for the quark mass and world-sheet

14As shown in [15], thermal corrections to its mass are negligible in our set-up.
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Figure 7. The quantities q̂⊥/T 3
c and q̂‖/T

3
c plotted as a function of the quark momentum p. The

plots for the charm and the bottom quark differ by a scaling of the horizontal direction.

horizon: for a heavy quark rQ is approximately rQ ' (`2/2π`2s)λ
4/3(rQ)M−1

Q , and for large

momentum p, rs ' γ−1/4(p)(πT )−1, with gamma(p) =
√

1 + p2/M2
q . This results in the

approximate bound:

p < MQ

(
MQ

πT

)2(2π`2s
`2

)2

λ−8/3(rQ) (6.6)

Notice that the bound is stronger for higher temperatures and lower quark masses.
We estimated numerically the bound on p in the model we are using. The results are

displayed in figure 9. From this figure we see that the the bound is easily satisfied for both
the Charm and Bottom quarks in the RHIC and LHC regimes, if we use Tc ∼ 200MeV

Finally, we need to check what is the allowed range of p such that the local approxi-
mation to the Langevin equation is reliable, as discussed in section 5.7. For this to be the
case, we need the quantity Ts/ηD to be large. For an ultra-relativistic quark, this condition
translates to equation (6.6). In our numerical solution we obtain λs ∼ 3× 10−2. Therefore
we expect that, for moderate temperatures the bound is pretty mild.15 Taking the above

15There is a certain degree of arbitrariness in the choice of normalization of λ. However, changing the

normalization of λ would result in a value of `/`s different from the one we are using here, equation (6.4).

The important thing is that, ones we insist in fixing the confining string scale at a certain physical value, the

quantity `/`s scales as λ−2/3 under an overall scaling of λ [44]. Therefore the bound (6.6) is independent

on the overall normalization of λ(r).
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quark momenta.
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Figure 9. This figure displays the upper bound on momentum pmax (in logarithmic scale) beyond
which the trailing string picture ceases to be valid, as a function of the quark mass, and for different
temperatures.

result as a reference value for λs, and `s/` ' 0.15 from equation (6.4), we can rewrite the
bound (6.6) more explicitly as follows:

p� 1.5Mq

(
Mq

T

)2

(6.7)
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Figure 10. The quantity Ts/ηD is plotted against quark momentum, for different bulk tempera-
tures. Figures (a) and (b) refer to the charm and bottom quark, respectively. For each temperature,
the validity of the local Langevin equation constrains p to the left of the corresponding vertical line,
which marks the transition of Ts/ηD across unity.

For example, for the charm quark (Mq ' 1.5GeV ), and close to the critical temperature
Tc, this translates into p� 2GeV (1.5 GeV/Tc)2.

However, the situation changes dramatically as temperature increases: from eq. (6.7)
we observe that the upper limit at temperature T decreases as (Tc/T )2. A graphical
representation of the validity condition is shown in figure 10, computed numerically from
equation (5.41) for both the charm and bottom quarks. The p-region in which the diffusion
process can be approximated by a local Langevin equation, with constant friction and
diffusion coefficients, lies in the left side of the vertical lines (each corresponding to a
different temperature). From these plots we observe that the bound is satisfied for momenta
up to ∼ 70GeV (charm) and more than 200GeV (bottom) at T = Tc, but for larger
temperatures the bounds are much stronger. For example the bounds at T = 3Tc are
pcharm < 10 GeV and pbottom < 100 GeV .

What these values of T correspond to in terms of actual physical temperature of the
QGP, is a subtle question, as we will discuss more in detail in the next subsection. However
an order of magnitude estimate can be obtained by setting Tc ≈ 180GeV in these plots.
This means that, for RHIC temperatures and momenta, the local approximation remains
valid. On the other hand, if the holographic setup is to be applied to ALICE results, it is
likely that one should use the full non-local form of the generalized Langevin equation, and
the simple parametrization of transverse momentum broadening in terms of q̂ breaks down.

6.3 Comparison with heavy-ion collision observables

Fit of RHIC data for nuclear modification factors with hydrodynamic simulations prefer a
strong jet-quenching parameter for light quarks about q̂⊥ = 5 -15 GeV 2/fm (for a review
of recent results and a more references, see e.g. [53]).

In order to compare our results to QGP observables we need to evaluate the results of
the previous section at typical temperature for QGP TQGP ≈ 250MeV .
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Figure 11. Relation between the temperature in the direct and energy schemes.

However, as discussed in detail in [15] it is not easy to make a direct comparison,
because our calculations are made with a pure glue background (neglecting therefore the
quark contributions). It was argued recently that quarks contribute importantly in energy
loss, beyond their enhancement of the number of degrees of freedom. this was shown to
be the case in the thermal D3 −D7 system [60], and the same feature was already noted
in [62] in a non-critical model and a in a model based on wrapped D5 branes.

To proceed further we will translate the physical QGP temperature to our T . To
do this requires picking up a comparison scheme. In a direct scheme one simply takes
T = TQGP.

On the other hand, one can argue that the relation between the QGP temperature
and that of the holographic model should be such that the energy densities are the same.
Energy density scales as the number of degrees of freedom, and the holographic setup we
study is supposed to describe pure Yang Mills theory, rather than QCD with three light
flavors. Therefore, matching energy densities leads to a holographic temperature T higher
than the QGP temperature, due to the different number of degrees of freedom in the two
theories. This reasoning leads to the identification of an alternative scheme, referred to
as the energy scheme,16 where the effective temperature T is related to the real QGP
temperature TQGP by the implicit relation [15]:

εhol(Tenergy) ' 11.2T 4
QGP (6.8)

where εhol(T ) is the energy density of the holographic model.
Computing the εhol(T ) numerically one obtains the approximate linear relation (as

shown in figure 11 ) between the direct scheme and energy scheme temperatures:

Tenergy

MeV
= 23.7 + 1.2

Tdir

MeV
(6.9)

16One can also define an entropy scheme, where one matches entropy density rather than energy density.

We checked that the numerical results obtained in the energy and the entropy schemes are essentially very

close to each other.
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Figure 13. The jet-quenching parameter q̂⊥ in the direct (dashed lines) and alternative (solid
lines) schemes, as a function of momentum, for different physical values of temperature.

The same TQGP corresponds to a higher temperature of the holographic model in the
energy scheme, than in the direct scheme. Therefore, using the energy scheme to match the
QGP temperature results in higher values for q̂, than those obtained in the direct scheme.
This behavior is apparent in figure 12.

We are now ready to translate in physical temperatures the results for q̂⊥ presented in
the previous subsection. This is done in figures 13 and 14, which are analogous to figures 7
and 8, except that the temperature and q̂⊥ are displayed in physical units. In order to
express q̂ and T in GeV 2/fm and MeV , respectively, we have to introduce physical energy
units. The overall energy scale was fixed, as briefly explained at the beginning of section 6
(and in more detail in [44]), by matching one dimensionfull quantity to its physical value.
As in [44], for this purpose we used the lattice value of the lowest glueball mass.

Figure 13 shows q̂⊥ in both schemes, as a function of the probe quark momentum, for
charm and bottom quarks and for various temperatures in the range relevant for RHIC
and for the ALICE experiment at LHC. We observe that, although the values in the energy
scheme are higher, at the temperatures relevant for RHIC (T ≈ 250MeV ), q̂⊥ varies in
the 1 − 5GeV 2/fm range except at low momenta where it is substantially higher. A full
Langevin fit is necessary in order to ascertain if these numbers fit the data.
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Figure 14. The jet-quenching parameter q̂⊥ in the direct (dashed lines) and energy (solid lines)
schemes, as a function of temperature, for probe charm and bottom quarks with pT ≈ 10GeV . The
bottom plots on show the same functions on a narrower temperature range than the top plots.

For the highest temperature shown in figure 13, T ∼ 800MeV (which is not in the
range of RHIC, but may be within the reach of ALICE), the predicted value in the energy
scheme reaches q̂ ' 25GeV 2/fm.

We notice from figure 13 that up to very large momenta q̂⊥ is effectively independent
of p. Therefore one can safely neglect the non-linearity in the Langevin equation for large
ranges of p. This also allows to pick a reference momentum (say, p ≈ 10GeV ) and study
more closely the behavior of q̂⊥ as a function of temperature. This is done in figure 14,
which is analogous to figure 8 but with physical units for the temperature.

In figures 13 and 14 one must keep in mind that the parametrization of transverse mo-
mentum broadening by q̂⊥ fails for momenta that are out of the range validity of the long
time approximation to the diffusion process. These bounds are given at the end of the previ-
ous section as a function of T/Tc. In the direct scheme, a plasma temperature of 250MeV

corresponds to T ' Tc in the holographic model,17 but in the energy scheme the same
plasma temperature corresponds to T ' 325MeV = 1.3Tc according to the relation (6.8).
Similarly, the temperature TQGP = 800MeV corresponds to T ' 980MeV ' 4Tc in the
energy scheme. Therefore, comparing with figure 10, we deduce that at least for the charm
quark, we cannot really trust the analysis in terms of q̂⊥ for the highest temperature dis-
played in figures 13–14, unless we look at momenta smaller than 4GeV . On the other hand,
the results shown for the bottom quark are consistent with the long-time approximation.

17We remind the reader that the critical temperature of the IHQCD model we are using is roughly

Tc = 247 MeV [44].
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Finally, we should remind the reader that our results in the UV are not totally trustable
due to the fact that the background used may not describe properly the details of QCD.
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A Boundary terms and scheme dependence in the propagator

The form of the retarded propagator we have obtained in section 4, equation (4.2), depends
on the form of the action we took as a starting point, namely equation (3.8). As the
correlators have UV divergences there is potential scheme dependence in their calculation
that we now address. The associated counterterms do not modify the wave equations (3.36),
but they change the value of the on-shell action and therefore the correlator.

Since the boundary terms that we add to the action must be real, the scheme depen-
dence can only manifest itself in the definition of ReGR(ω). Therefore, it does not affect
the physical quantities described in sections 4 and 5, such as the diffusion constants and
spectral densities. In the case at hand, as we show below, the only scheme dependence in
ReGR(ω) amounts to a renormalization in the (heavy) quark mass.

In what follows we study the divergence structure of the action (3.8), expanded to
quadratic order in the fluctuations defined in equation (3.26), around the classical trailing
string solution. To regulate the action, we cut-off the r-integration at r = ε > 0, and we
study the divergences in the ε→ 0 limit.

Starting from equation (3.27) and (3.28), we obtain to quadratic order in the fluctua-
tions,

SNG = S0 + S1 + S2 + · · · . (A.1)

Below, we write explicitly and discuss each term separately.

• Zeroth order.
The zeroth order term reads simply:

S0 = − 1
2π`2s

∫
dt

∫ rs

ε
drb2(r)Z(r) (A.2)

For small r, the integrand is approximately equal to (`/r)2 λ4/3(r)γ−1. Therefore the
integral is dominated by the region around r ' ε, and it is given approximately by:

S
(div)
0 =

λ4/3(ε)
ε

`2

2πγ`2s

∫
dt, (A.3)

giving a 1/ε divergence.
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• First order.
The first order term in the fluctuations is a boundary term of the form:

S1 = C

∫
dt δX‖(ε, t), C ≡ −v b

2(rs)
2π`2s

. (A.4)

Since on-shell δX‖(r = 0, t) is finite, this term is not divergent.

• Second order.
At quadratic order the action is given by equation (3.34),

S2 = − 1
2π`2s

∫
dτdr

1
2
Hαβ

[
1
Z2
∂αδX

‖∂βδX
‖ +

3∑
i=2

∂αδX
i∂βδX

i

]
(A.5)

with

Hαβ =

(
− b4√

(f−v2)(b4f−C2)
0

0
√

(f − v2)(b4f − C2)

)
, (A.6)

It is convenient to write the fluctuation in Fourier space. The solution of the field
equations, equations (3.36) reads, close to the boundary:

δXa(r, ω) ' Cas (ω) + Cav (ω)r3/λ4/3(r), a =⊥, ‖ (A.7)

Inserting the above expression into the action, and using the asymptotic expressions,

Htt ' −γb2, Hrr ' b2/γ, Z2 ' 1/γ2, (A.8)

we observe that the only divergent term as ε→ 0 originates from the terms involving
two time derivatives of δX:

S
(div)
2 =

λ4/3(ε)
ε

`2

γ

1
2

∫
dω ω2

(
γ2|C⊥s (ω)|2 + γ4|C‖s (ω)|2

)
=
λ4/3(ε)
ε

`2

γ

1
2

∫
dt γ2

(
δẊ⊥

)2
+ γ4

(
δẊ‖

)2
(A.9)

We can reabsorb both divergences, (A.3) and (A.9), with a single covariant boundary
counterterm,

Scount = ∆M(ε)
∫
dt

√
ẊµẊµ, (A.10)

which corresponds to a renormalization of the quark mass. Indeed, expanding equa-
tion (A.10) to second order in ~X = ~vt+ δ ~X, we find:

Scount '
∆M(ε)
γ

{∫
dt +

1
2

∫
dt

[
γ2
(
δẊ⊥

)2
+ γ4

(
δẊ‖

)2
]}

(A.11)

Comparing with equations (A.3) and (A.9) it is clear that the following choice of the leading
divergence of ∆M cancels both the leading and second order divergences:

∆M (div)(ε) = −λ
4/3(ε)
ε

`2

2π`2s
. (A.12)
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From the discussion above, we conclude that the only boundary term that can lead to
a scheme dependence of ReGR(ω) can come from the finite part of the counterterm (A.10),
with a finite coefficient δm completely specified by fixing the renormalized quark mass.

An independent way to see the same effect, is as follows. According to the first line
in equation (A.9), a finite counterterm of the form (A.10) with coefficient δm would shift
ReGR(ω) by a term proportional to ω2:

∆Re G⊥(ω) =
`2

2π`2s
δmγ ω2, ∆Re G‖(ω) =

`2

2π`2s
δmγ3 ω2 (A.13)

In the Langevin equation, this amounts simply to a finite shift in the quark mass: the
generalized Langevin equations (2.2) read, in Fourier space,

ω2 γMq δX
⊥(ω) +G⊥R(ω)X⊥(ω) + ξ⊥(ω) = 0, (A.14)

ω2 γ3Mq δX
‖(ω) +G

‖
R(ω)X‖(ω) + ξ‖(ω) = 0. (A.15)

after expanding to first order in fluctuations.
The conclusion is that the shifts (A.13) are equivalent to a finite renormalization of

the quark mass, Mq →Mq + `2/(2π`2s)δm. Therefore, once the renormalized quark mass is
fixed e.g. at zero-temperature by fixing the counterterm, there are no further ambiguities
in the two-point function.

B Analytic calculation of the diffusion constants

Here, we provide a derivation of equations (5.5) and (5.6). These equations follow from
the flux (4.15) which can be evaluated at any point, in particular at the horizon. Let us
define,

ω̃ =
ω

4πTs
, (B.1)

for notational convenience.
Near the horizon, the solution of the fluctuation equations (3.37) and (3.38) are of the

form:
δX⊥ = C⊥(rs − r)−iω̃, δX‖ = C‖(rs − r)−iω̃. (B.2)

In (4.15) we also need the near-horizon expression for the r-r component of the world-sheet
metric Hrr equation (3.35). Using the definitions C = vb(rs) and f(rs) = v2 (3.20) and
the definition of Ts in (3.23), we find:

Hrr → 4πTsb2(rs) (r − rs). (B.3)

Substituting (B.2) and (B.3) in (4.15) yields the flux near the horizon (and everywhere):

ImGR =

{
|C⊥|2 b2(rs)ω,
|C‖|2

b2(rs)
Z2(rs)

ω,
(B.4)

From (3.31) we also find,

Z(r)→ f ′(rs)
4πTs

, r → rs (B.5)
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Therefore the calculation is reduced to finding the coefficients C⊥ and C‖. This can be done
by matching the near-horizon solution (B.2) for small ω to the exact analytic solution of
the fluctuation equations again for small ω. We give details for δX⊥, the other component
is entirely analogous. For small ω (B.2) expands as,

δX⊥ ≈ C⊥ − iω̃C⊥ log(rs − r). (B.6)

In the strict ω = 0 limit this gives

δX⊥ = C⊥, ω = 0. (B.7)

On the other hand, (3.37) can be solved exactly in the strict ω = 0 limit:

δX⊥ = C1 + C2

∫ r

0

dt√
(f − v2)(b4f − C2)

. (B.8)

Requiring unit norm on the boundary fixes C1 = 1. The second term diverges at the
horizon, therefore in the strict ω = 0 limit, one should have C2 = 0. Therefore one has,

δX⊥ = 1, (B.9)

in the strict ω = 0 limit. Since the solution (B.9) is valid everywhere, including the horizon,
one can match it with (B.7) and obtain

C⊥ = 1. (B.10)

More generally, the solution at all r can be written as

δX⊥=C⊥(ω) (rs−r)−iω̃
[
1+D1⊥(ω)(rs−r) +D2⊥(ω)(rs−r)2 +O

(
(rs−r)3

)]
. (B.11)

Expanding C⊥ and D⊥ around ω = 0 (the regular expansion is guaranteed by the regularity
of the ω = 0 solution), we get

δX⊥ = C⊥(0) (rs − r)−iω̃
[
1 +

(
D1⊥(0)(rs − r) +O

(
(rs − r)2

))
+

(
C ′⊥(0)/C⊥(0) +D′1⊥(0)(rs − r) +O

(
(rs − r)2

))
ω +O

(
ω2
) ]

. (B.12)

Now, equation (B.9) implies that D1⊥(0) = 0 — and so on for all the Di⊥(0) — and
C⊥ ≡ C⊥(0) = 1. Hence the solution for all values of the radial coordinate is (5.3):

δX⊥ = (rs − r)−iω̃
[
1 + C̃1⊥(r)ω +O(ω2)

]
, (B.13)

with C̃1⊥(r) ' C ′⊥(0)/C⊥(0) +D′1⊥(0)(rs − r), close to the horizon.
In passing, we note that slightly away from the ω = 0 limit one can allow for the

second term in (B.8), and expanding the integrand near the horizon, one obtains,

δX⊥ = C1 +
C2

b2(rs)4πTs
log(rs − r). (B.14)
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Matching this with (B.6) one can also determine C2 in the small ω limit: C2 = −iωb2(rs).
This information is not required to calculate the diffusion coefficients.

Use of (B.10) in (B.4) and eventually in (5.1) yields the desired result (5.5) (after
including the string tension in front of the world-sheet action). The discussion for the
parallel component is similar. Solving the fluctuation equation (3.38) for ω = 0 and by
matching (B.2) one finds C‖ = 1 and using this and (B.5) in (B.4) yields (5.6).

C Details of the WKB approximation

We follow the steps outlined in section 4.4. It is convenient to define the dimensionless
variables x ≡ r/rs ∈ (0, 1) and ωs ≡ ωrs. The analog Schrödinger equation is

− ψ′′ + Vs(x)ψ = 0, Vs(x) = −ω
2
sb

4

R2
+

1
2
(

logR
)′′ + 1

4
(

logR
)′2
. (C.1)

where

R =

{
R

R/Z2 , Z =

{
1
Z

⊥
‖

(C.2)

and the functions R(x) and Z(x) are:

R =
√

(f − v2)(b4f − C2), Z = b2
√

(f − v2)/(b4f − C2) (C.3)

We divide the range 0 < x < 1 in three regions, in each of which we use different approxi-
mations to solve the Schrödinger equation. The following discussion holds for both ⊥ and
‖ fluctuations, so we will not make any distinction from now on.

1. Near Boundary: x� 1
In this region we have the following asymptotics:

R(x) ∼ b2(x)/γ, Z ∼ 1/γ, x� 1, (C.4)

and the Schrödinger potential is approximately

Vs ' −γ2ω2
s +

(
log b

)′′ + (log b)′2 , x→ 0. (C.5)

In the near-boundary region the Einstein frame scale factor becomes that of AdS
space-time, and we have:

b(x) ' `

rs

λ2/3(x)
x

(C.6)

One important property of this region, is that the quantity rλ′/λ is small. The reason
is that the field equation for λ(r) is [38, 39]:

λ′(r) ∼ bE(r)
`

λ2 ∼ λ2

r
⇒ r

λ′

λ
∼ λ� 1 (C.7)

where bE(r) ∼ `/r is the Einstein frame scale factor close to the boundary.

As a consequence, all terms proportional to rλ′/λ , or corresponding higher
derivative terms in λ, can be treated, to a first approximation, as subleading in an
expansion in λ.
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2. Near Horizon: x ' 1
In this region we have:

R(x) ' (4πTsrs) b2(rs) (1− x), Z ' f ′(rs)
4πTs

(C.8)

leading to:

Vs(x) ' −
(
ω̃2 +

1
4

)
1

(1− x)2
, x→ 1 (C.9)

where ω̃ ≡ ω/4πTs.

3. WKB Region: xtp � x < 1
This is the classically allowed region, where Vs(x) < 0. For large ωs, the first
term in equation (C.1) dominates, except close to the turning point xtp, where the
contributions of the other terms get large,

Vs ' −
ω2
sb

4

R
, xtp � x < 1 (C.10)

Since, for any large but finite ωs, Vs(x = 0) = +∞, the turning point for large ωs is
close to the boundary and it is found by solving the equation Vs(x) = 0 in this limit,
i.e. using V in the form (C.5). Keeping in mind that derivatives of λ(x) close to the
boundary produce corrections of O(λ)� 1, we find the turning point for large ωS :

xtp =
√

2
ωsγ

(1 +O(λ)) , ωs � 1. (C.11)

The crucial fact is that, for large ωs, xtp � 1, and regions 1 and 3 overlap. On the
other hand, regions 2 and 3 overlap close to x ∼ 1. Therefore, the solution in the WKB
region can be used to connect the near-boundary and near-horizon asymptotics.

To find the wave-function in the large ωs regime, we follow the steps outlined in
section 4.4.

1. Consider first the WKB region. The two independent solutions to −ψ̈ + V ψ = 0 in
the region V � 0 are written, in the WKB approximation:

ψ1 ∼
1
√
p

cos
∫ x

p, ψ2 ∼
1
√
p

sin
∫ x

p, p(x) ≡
√
−Vs(x) =

ωsb
2

R
. (C.12)

Explicitly, the general solution has the form:

ψwkb = C1

√
R

b
cos
[∫ x

0

ωsb
2

R

]
+ C2

√
R

b
sin
[∫ x

0

ωsb
2

R

]
xtp � x ≤ 1 (C.13)

In the equation above, we made the arbitrary choice x = 0 for the lower integration
limit, in order to avoid ambiguities in the definitions of the integration constants.
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2. Consider now the near-horizon region. There, we can solve Schrödinger’s equation
with the potential (C.9). The solution with in-falling boundary condition at the
horizon is

ψh ' Ch(1− x)−iω̃+ 1
2 , ω̃ ≡ ω

4πTs
x ' 1, (C.14)

Since both forms (C.13) and (C.14) are valid in the near-horizon region and for large
ω, we can relate the coefficients by evaluating (C.13) near the horizon. In order to
use the near-horizon expansion of the equation (C.8) in the integrands appearing
in equation (C.13), we change the extremum x0 to another point x1 belonging to
the horizon region. This introduces a common phase shift, θ =

∫ x1

0 ωsb
2/R, in the

sine and cosine functions. Taking this into account, the near-horizon expansion of
equation (C.13) reads:

ψwkb ' (4πTsrs)
1/2 (1− x)1/2

{
C1 cos[θ − ω̃ log(1− x)] +

+C2 sin[θ − ω̃ log(1− x)]
}
, x→ 1. (C.15)

Comparing equations (C.15) and (C.14) gives the relations:

− iC2 = C1 =
Ch

(4πTsrs)1/2
e−iθ. (C.16)

3. Next, we consider the boundary region, x� 1. Here the potential has the form (C.5).
Since the potential diverges as 1/x2, a WKB treatment is impossible all the way to
x = 0, so we must resort to another method. The strategy we follow is that of an
expansion in the derivatives of λ(x), more precisely in the small quantity rλ′/λ ∼
O(λ) � 1. This will allow us to write an approximate expression for the solution,
valid for any ωs.

Using the approximation for the metric in (C.5), the second entering the near-
boundary potential can be written as:

(log b)′′ ' 1
x2

(
1 +

2
3
x2λ

′′

λ
− 2

3

(
xλ′

λ

)2
)
, (log b)′ ' −1

x

(
1− 2

3
xλ′

λ

)
. (C.17)

The λ-dependent terms in the parentheses are O(λ) or O(λ2).

One may naively think that it suffices to solve Schrödinger’s equation keeping only
the leading terms in (C.17), and neglecting the O(λ) corrections. However, as we
show below, these subleading terms affect the leading term in the solution.

Let us ignore for the moment the terms containing derivatives of λ in equation (C.17).
them, the near-boundary Schrödinger equation with the potential (C.5) reads:

− ψ′′ + 2
x2
ψ = γ2ω2

sψ (C.18)

whose general solution is:

ψ0
UV(x) = A1

[
sin(γωsx) +

cos(γωsx)
γωsx

]
+A2

[
cos(γωsx)− sin(γωsx)

γωx

]
(C.19)
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However, this cannot be the full story, for the following reason. For both small x and
small γωsx, we can expand this solution as:

ψ0
UV(x) '

(
A1

γωs

)
1
x
−
(
γ2ω2

sA2

3

)
x2, γωsx� 1 (C.20)

On the other hand, in the same regime γωsx → 0, we can ignore the constant term
(γωs)2 in the potential, and Scrhödinger equation becomes:

ψ′′ =
b′′

b
ψ (C.21)

which has the exact solution:

ψ1
UV(x) = Cs b(x) + Cv b(x)

∫ x

0

dx′

b2(x′)
(C.22)

where Cs and Cv are integration constants corresponding to normalizable and non-
normalizable solutions. Using the near-boundary form of the metric (C.6) this ex-
pression becomes:

ψ1
UV(x) ' Cs

x
λ2/3(x) + Cv x

2λ−2/3(x), γωsx� 1 (C.23)

and it does not agree with the small γωsx expansion (C.20) due to the extra factors
of λ±2/3. From this discussion, we conclude that to find the correct behavior of the
solution near the boundary, one cannot completely ignore the terms containing λ′ and
λ′′ in equation (C.17). Therefore, the true solution in the boundary region, rather
than (C.19), will read instead:

ψUV = A1ψsource +A2ψvev

= A1

[
sin(γωsx) +

cos(γωsx)
γωsx

]
F1(x, γωs) (C.24)

+A2

[
cos(γωsx)− sin(γωsx)

γωsx

]
F2(x, γωs), x� 1

where F1 and F2 are some unknown functions, with asymptotics:

F1(xγωs) ∼ λ2/3(x), F2(xγωs) ∼ λ−2/3(x), γωsx� 1. (C.25)

On the other hand, we know that the functions F1 and F2 must be replaced by
constants in the limit when λ(x) is not changing at all. This suggests that we can
parametrize the functions F1 and F2 as:

Fi(x, γωs) = λ±2/3(x) [1 + ϕi(x, γωs)] (C.26)

where the functions ϕ1,2(x, γωs) are small compared to unity for small xλ′/λ and the
+ sign in the exponent of λ corresponds to i = 1, and the − sign to i = 2.

One could in principle derive differential equations for ϕ1,2, and solve them pertur-
batively. This is equivalent solving the fluctuation equation h′′ + (logR)′h′ + αh = 0
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with some book-keeping parameter α and where the prime denotes derivative w.r.t.
the variable xγωs. The solution can be found perturbatively in a series expansion
both in α and x, such that λ(x) can be regarded as a small expansion parameter. A
simple limit of this solution is to keep only the leading term in the latter expansion
and sum up the perturbative series in α fully and then set α = 1 to recover the
original fluctuation equation. This can be achieved in an iterative manner and the
answer is indeed given by (C.24) and (C.25). This method justifies the appearance
of the extra factors F1 and F2 in (C.24).

However, proceeding with this method and combining it with the WKB approxima-
tion in order to achieve the full WKB solution requires going beyond the leading term
in the perturbative series in the expansion in λ(x), which is very cumbersome. There-
fore, in the following we will follow a different strategy, which will give us a simpler
(albeit more crude) way to estimate the coefficients of the WKB wave functions.

4. In the limit γωs � 1, the UV region x� 1 overlaps with the WKB region x > xtp ,
because xtp � 1. Therefore, the UV solution (C.24) must match, for large γωs, the
small-x limit of the WKB solution (C.13), which using the UV expansion of R(x),
equation (C.4), reads:

ψwkb '
C1√
γ

cos(γωsx) +
C2√
γ

sin(γωsx), x� 1. (C.27)

In order for (C.24) to agree with this expression, it is necessary that the functions
F1(x) and F2(x) become approximately constant for x � xtp, where (C.27) can be
trusted. Since xtp ∼ 1/ωsγ, we conclude that:

Fi(x)→ Fi = const γωsx� 1. (C.28)

i = 1, 2. In order to complete the matching we must estimate these constants F1 and
F2. One way to argue is as follows: to satisfy equation (C.28), we need the functions
ϕ1 and ϕ2 defined in (C.26) to have the following property:

ϕi(x)→ −1 +
Fi

λ±2/3(x)
, x > xtp (C.29)

again, where the + is for i = 1, while the − for i = 2. But as we argued that the
functions ϕ1 and ϕ2 must stay small for slowly varying λ, setting ϕi ≈ 0 gives us an
estimate:

F1 ' λ2/3(x0) , F2 ' λ−2/3(x0) , x� xtp (C.30)

where x0 is a point in the vicinity of the turning point xtp. Since λ is slowly varying,
we can take x0 = xtp , and the error we make will be of the order xtpλ′/l ∼ O(λ)� 1.

Therefore, we match (C.27) with the large ωs limit of (C.24), in which the functions
F1 and F2 are replaced by the constants λ±2/3(xtp):

ψUV → A1λ
2/3
tp sin(γωsx) +A2λ

−2/3
tp cos(γωsx) (C.31)
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where we have defined λtp = λ(xtp). For large ω the turning point is given by:

xtp '
√

2
ωsγ

, rtp '
√

2
ωγ

. (C.32)

Matching (C.31) and (C.27) we obtain:

C1 = λ
− 2

3
tp A2

√
γ, C2 = λ

2
3
tpA1

√
γ, (C.33)

which through equation (C.16) relates Ch to A1.

5. Finally, we determine A1, and consequently all other coefficients, by imposing unit
normalization of the function Ψ(x) = R−1/2ψ(x) at x = rb/rs, i.e. the point where
the string is attached. For a quark with infinite mass, rb = 0; for finite mass rb = rQ
defined in equation (4.3). Therefore, we must distinguish the following two situations:

I Infinite Quark Mass. Taking into account the definition (C.2) and the asymp-
totics (C.4) and (C.6), we impose:

1 = Ψ(0, ω) =
√
γrs

`
lim
x→0

λ−2/3A1ψsource =
A1√
γ`ω

, (C.34)

where in the last line we used the definition ωs = ωrs.

Using the chain of equations (C.34), (C.33) and (C.16) we can finally fix, in the
large ω regime, the coefficient Ch as:

|Ch| = `γ(4πTsrs)1/2λ
2/3
tp ω. (C.35)

From this one obtains the coefficient Ψh defined in (4.9) using the relation
Ψ(x) = R−1/2ψ(x) and (C.8). This finally yields (4.39).

I Finite Quark Mass. In an analogous way as for an infinitely massive quark, we
use the form of the solution C.24 to write the normalization condition at the
cutoff rQ. However, the background scale factor b(x) cannot be approximated
by the expression in (C.6) at a generic cutoff rQ, but we rather need to keep and
evaluate the full R−1/2(x) ∼ b(x)/

√
γ entering the expression for Ψ(x), without

approximating it to Ψ(x) ∼ √γxλ(x)−2/3. In fact, the necessary condition
allowing to make use of this approximation is that λ(x)� 1. The normalization
condition then reads:

1 = Ψ(rQ, ω) = R−1/2(xQ) [A1ψsource(xQ) +A2ψvev(xQ)] . (C.36)

We now have to use the general form of the functions F1 and F2, and keep both
the source and vev solutions, since at rQ the solution ψvev in not negligible.
Hence, using the relations (C.16) and (C.33) yielding

A2 = iλ
4/3
tp A1,
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the normalization condition determines A1 as

A1 = γωsxQR1/2(xQ)
[
F1(xQ) (cos(γωsx) + γωsx sin(γωsx))

+iλ4/3
tp F2(xQ) (sin(γωsx)− γωsx cos(γωsx))

]−1
. (C.37)

Moreover the asymptotics of F1 and F2 must be generalized w.r.t. (C.25), since
we need to evaluate them at xQ, which is not necessarily close enough to the
boundary to allow us to use (C.25)— namely if λ(xQ) is not very small. In fact,
one should keep the exact form of the solution at zero frequency (C.23), which
reads

ψ1
UV(x) ' Cs

√
γR1/2(x) +

Cv√
γ
R1/2(x)

∫ x dx′

R(x′)
. (C.38)

Comparing it to (C.24) one obtains the following behavior of function F1 and
F2:

F1(x) ∼ rs
`

√
γxR1/2(x), F2(x) ∼ `

rs

R1/2(x)
√
γx2

∫ x dx′

R(x′)
, γωsx� 1. (C.39)

Consequently, one gets the value of the modulus square of the coefficient Ch:

|Ch|2 = 4πγ2Tsr
3
sλ

4/3
tp

x2
QR(xQ)
F1(rQ)2

[
1 + (γωsxQ)2 (C.40)

+
(
λ

8/3
tp

F2(rQ)2

F1(rQ)2
− 1
)

(sin(γωsxQ)− γωsxQ cos(γωsxQ))2
]−1

.

As we explained previously in this appendix, F1 and F2 are approximated
by (C.39) and (C.30), respectively for γωsx� 1 and x� xtp '

√
2/γω. There-

fore, substituting this asymptotics in |Ch|2 and using equation (4.17), we arrive
at the results of section 4.4.

Throughout the calculation we assumed that one can neglect the O(λ) terms compared
to terms of order O(1). This criterion is indeed satisfied in the numerical examples we study
in this paper. In the cases where this is not satisfied, or one needs better accuracy in the
WKB approximation, than one should work out the sub-leading corrections.

D Correlators in N = 4

In this appendix we would like to collect and derive some results on the imaginary part
of the retarded correlator for the N = 4 theory. Some features of this quantity were
discussed in [18] (see also [22]). More specifically, in [18] the symmetric correlator for
N = 4 — related to Im GR by equation (4.18) — is numerically computed and an analytic
approximation is proposed. Here we show the numeric result for Im GR and compare it to
a linear plus cubic function. The advantage of considering Im GR with respect to Gsym is
the possibility of distinguishing the corrections to the large and small frequency behavior
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associated to the coth factor in (4.18) from the wave function corrections, appearing in the
coefficient Ψh in (4.17). In Gsym both kinds of corrections arise, while in Im GR only the
wave function contributes.

Unlike the non conformal case, the N = 4 correlators for the longitudinal and trans-
verse modes only differ by a factor γ2, due to the fact that the wave functions satisfy the
same equation for both kinds of modes. The extra γ2 comes from the Z−2 factor in equa-
tion (4.1) for the longitudinal modes, that is constant in the conformal limit: Z → 1/γ.
Moreover, the fluctuation equation for both transverse and longitudinal modes only de-
pends on the dimensionless variables x ≡ r/rs and ω̃ ≡ ω

4πTs
= ω

√
γ

4πT :

∂x

[
1− x4

x2
∂xΨ(x, ω̃)

]
+

(4ω̃)2

x2(1− x4)
Ψ(x, ω̃) = 0. (D.1)

Following the same steps as in section 4, we obtain:

ΨR(ξ, ω̃) = C(ω̃)(1− x)−iω̃ + · · · (D.2)

Im G⊥R =
2
π

√
λN=4

√
γ(πT )3 ω̃|C(ω̃)|2 (D.3)

The WKB approximation implies that the imaginary part of the retarded correlator
grows as ω3 for large frequencies, in the infinite mass case. More precisely, taking the
conformal limit, b(r)→ `/r and `/`s → λ

1/4
N=4, we obtain

C(ω̃) = 4ω̃ +O(1) (D.4)

and

Im G⊥R = γ−2Im G
‖
R '

γ2

2π

√
λN=4 ω

3, for ω � 1
rs
. (D.5)

This result18 can be obtained by applying the WKB method of the previous subsection the
the wave functions obeying equation (D.1).

On the other hand, the result for small frequencies is well known [16, 18, 22] since it
provides the diffusion constants.19 It is derived by analyzing the wave function solution
to (D.1), in the regime where ωrs = 4ω̃ is small. The expressions for small frequencies read

C(ω̃) = 1 +O(ω̃) (D.6)

and

Im G⊥R = γ−2Im G
‖
R '

πγ

2

√
λN=4 T

2ω, for ω � 1
rs
. (D.7)

This result can also follow from taking the conformal limit of the diffusion constants derived
in the next section. In fact, equations (5.7)–(5.8) are related to (D.7) by the formula (5.1).

18The fact that the large-ω limit is a cubic power-law can be expected from the corresponding zero-

temperature result, in which one can analytically compute this quantity, and from the consideration that

the large-frequency limit should be conformal.
19In reference [22] it is claimed that the imaginary part of the correlator is exactly linear in ω, for all

frequencies. This is not so, as explicitly shown here.
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Figure 15. The picture on the left shows three curves (for λN=4 = 5.5 and T = 250MeV ): i) the
numeric result for Im GR (red), ii) the linear plus cubic function c1ω + c3ω

3 where we use (D.9)
for c1 and c3 (black dashed), iii) the difference of the linear plus cubic function with respect to
the numeric result for Im GR, multiplied by a factor of 20 (blue dotted). The right plot shows the
relative difference between the linear plus cubic function and the numeric result for the correlator.

In figure 15 we show the numeric result for the N = 4 correlator for the transverse
modes compared to a linear plus cubic polynomial approximation,

Im G⊥R ≈ c1ω + c3ω
3 (D.8)

with c1 and c3 given by the small and large frequency asymptotics of the correlator, as in
equations (D.7) and (D.5), respectively:

c1 =
πγ

2

√
λN=4 T

2 and c3 =
γ2

2π

√
λN=4. (D.9)

The relative difference between the polynomial (D.8) and the numeric result for the
imaginary part of the retarded correlator vanishes, as expected, both for small and for
large frequencies. Nevertheless, the plots of figure 15 show that for 1 . ωrs . 4 there is a
sensible difference, of the order of 10-30%, between the two results.20

In the non-conformal cases the ω →∞ limit of the correlator is again controlled by the
UV. Conformal invariance again implies an O(ω3) behavior although it may be corrected
by logarithms.

It is also interesting to study the sub-leading corrections to ImGR in the freqency.
We first consider small ω. The leading term is determined by the Kubo’s formula to be
linear. On the other hand in any P-invariant quantum field theory the imaginary part
of a retarded correlator is guaranteed to be odd in ω, see for example [63] for a recent
discussion. Therefore we learn that the sub-leading correction at small frequencies is cubic.

At high frequencies, the question is answered by extending the WKB analysis of ap-
pendix C to sub-leading frequencies. First of all we note that the form of the Schrodinger

20In figure 15 we had to fix a value for T and λN=4 in order to plot Im GR, but it is important to stress that

the dependence on these quantities is simply given by the overall prefactor appearing in equation (D.3): the

non-trivial part of the correlator depends on T only through the combination ω̃ = ω/Ts, and is independent

of λN=4.
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potential near horizon as written in (C.9). Now, the WKB wave-functions are obtained
from this by making use of (C.12) and (C.13). The piece that is relevant for the current
discussion is the 1/

√
p part that in front of the cosine and the sine terms that clearly yields

a O(ω−2 correction to the wave-functions in the large ω limit. Matching the WKB solution
to the near-horizon solution as in appendix C, yields C2 = iC1 and one clearly obtains,

Ch ∝ C1(1 +O(ω−2)). (D.10)

as a correction to equation (C.16).
On the other hand, the Schrodinger equation near the boundary, in the N = 4 theory,

can be written as a function of xωs. Therefore the wave-function near the boundary is a
function of xωs. This means that, upon demanding unit normalization of the source term
— the coefficient A1 in appendix C— one always has A1 × 1/ω ∼ 1 with no correction
perturbative in 1/ω. Therefore matching the wave-functions near the boundary and the
WKB region yields C1 ∝ A1 ∝ ω. Substituting in (D.10) we learn that Ch ∼ ω +O(ω−1).
Finally, using (4.17) that determines the frequency dependence as ImGR ∝ ω|Ch|2, we find
that the subleading correction is linear in ω, in the high ω limit.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.
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