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Abstract. Bimodal provability logic GLB, introduced by G. Japaridze,
currently plays an important role in the applications of provability logic
to proof-theoretic analysis. Its topological semantics interprets diamond
modalities as derived set operators on a scattered bitopological space. We
study the question of completeness of this logic w.r.t. the most natural
space of this kind, that is, w.r.t. an ordinal o equipped with the interval
topology and with the so-called club topology. We show that, assuming
the axiom of constructibility, GLB is complete for any a > X,,. On the
other hand, from the results of A. Blass it follows that, assuming the
consistency of “there is a Mahlo cardinal,” it is consistent with ZFC that
GLB is incomplete w.r.t. any such space. Thus, the question of complete-
ness of GLB w.r.t. natural ordinal spaces turns out to be independent
of ZFC.

1 Introduction

This paper links together two topics in the study of provability logic both of
which originated in Georgia. The first one is the interpretation of modal & of
the standard provability logic GL in topological terms as the derived set operator
on a scattered topological space. The idea of treating topological derivative as a
modality goes back to McKinsey and Tarski [22], however it was Leo Esakia who
linked scattered spaces with the axioms of the logic of provability (see [15,16]). In
particular, Esakia proved that GL was complete under this interpretation w.r.t.
the class of all scattered spaces. Merab Abashidze [1] and later independently
Andreas Blass [11] established the completeness of GL w.r.t. some natural in-
dividual scattered spaces. Thus, Abashdze and Blass showed the completeness
of GL w.r.t. the standard interval topology on any ordinal o > w®. In addition,
by an interesting combinatorial construction, Blass also showed GL to be com-
plete w.r.t. another natural topology on an ordinal «, the so-called club topology,
provided a > XN,,. However, this latter result could only be proved assuming the
set-theoretic axiom of constructibility (or Jensen’s square principle). In fact, as-
suming the consistency of “there is a Mahlo cardinal,” Blass also showed that
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it is consistent with the axioms of ZFC that GL is incomplete w.r.t. the club
topology on any ordinal. Both the club topology and Blass’s theorem will play
a prominent role in this paper.

The second topic that emerged in Georgia is the extension of the language of
GL by an infinite sequence of new diamond modalities (0), (1), (2), ... cor-
responding to m-consistency predicates in first-order arithmetic. (Under this
interpretation, (0) means the same as the usual <, i.e., consistency over a
given theory.) This leads to a much more expressive polymodal provability logic
GLP, which was first formulated and proved arithmetically complete by Giorgi
Japaridze [19]. His study has later been simplified and extended by Konstantin
Ignatiev [18] and George Boolos [13,12]. More recently, GLP has found in-
teresting applications in proof-theoretic analysis of arithmetic [3,4,2,5] which
stimulated some further interest in the study of modal-logical properties of GLP
[14,9,17,6,7].

Unlike GL, which is complete w.r.t. its Kripke semantics, that is, w.r.t. the
class of finite irreflexive trees, it is well-known that even the bimodal fragment
of GLP, denoted GLB by Boolos, is not complete w.r.t. any class of Kripke
frames. Therefore, the problem of finding a tractable complete semantics for
this logic becomes more urgent. Topological semantics can be considered as a
generalization of Kripke semantics, therefore it is natural to ask if there is a
complete topological semantics for GLP.

Esakia-style topological models for GLP have been introduced in [8] under
the name GLP-spaces. These are polytopological spaces of the form (X; g, 71,...),
where modality (n) is interpreted as a derived set operator d,, on X w.r.t. topol-
ogy Tn. To satisfy all the axioms of GLP we must require, for each n, that

— T, is a scattered topology on X;
— Tn g Tn+1;
— forall A C X, d,,(A) is T,41-open.

GLB-spaces are structures (X;79,71) of the same kind with only the first
two topologies present. The simplest nontrivial example of a GLB-space is an
ordinal space of the form («; 79, 71) where 79 is the interval topology on an ordinal
«, and 71 is the above mentioned club topology. In fact, 7 happens to be the
coarsest topology such that (a;79,71) is a GLB-space, which can be considered
as a definition of 71 (see [8]). Thus, the general notion of GLB-space links the
two prominent ordinal topologies: the interval topology and the club topology.t
We call such spaces natural ordinal GLB-spaces.

In [8], it was shown that GLB is complete w.r.t. the class of all GLB-
spaces, thus, a bimodal analogue of Esakia theorem was established. However,

! Blass treated the club topology in terms of its (punctured) neighborhood filters
— the so-called club filters. His interest in this semantics was motivated by the
importance of the concept of club filter in set theory. In contrast, in our situation
the club topology is more or less forced on us by the general concept of GLB-space,
that is, by the axioms of GLB. The fact that we come in this way to an important
set-theoretic notion additionally speaks for the naturality of the concept of GLB-
space.



two further questions were left open. Firstly, the question whether this result
can be extended to the full language of GLP. Secondly, the question whether
GLB is complete w.r.t. any natural (ordinal) GLB-space, that is, if an analog of
Abashidze—Blass theorem holds for GLB. (A similar but more difficult question
also makes sense for the full GLP.)

In this paper we answer the second question for the case of GLB in essen-
tially the same sense as Blass. Namely, under the assumption of the axiom of
constructibility, we show that GLB is complete w.r.t. any natural ordinal GLB-
space of the form (a; 7,7 ) where o > N,. This result can be considered as an
extension of both topological completeness theorems of Abashidze and Blass. In
fact, the proof of our theorem relies on Blass’s construction in an essential way.

The question of general topological completeness of GLP has recently been
affirmatively answered jointly by David Gabelaia and the author of this paper.
This result is based on some additional techniques and will be published sepa-
rately.

2 Preliminaries and statement of main result

2.1 Axioms of GLB

We consider the language of propositional logic enriched by two modalities [0]
and [1]. Dual modalities are denoted (0) and (1) and treated as abbreviations for
—[0]— and —[1]- respectively. The system GLB is given by the following axiom
schemata and inference rules:

Axioms:
(i) Boolean tautologies;

i) [n](¢ — ) — ([n]e — [n]¢) (for n =0,1);
(iii) [n]([n]e — @) = [n]p (for n = 0,1);

v) (0)p — [1]{0)e.

¢ — 1 = F 1 (modus ponens);
F [n]p, for n = 0,1 (necessitation).

y T

2.2 Topological semantics

Let (X;60,601) be a bitopological space. For n = 0,1 let d,,(A) denote the set
of limit points of A C X wur.t. 6, that is, z € d,(A) iff A intersects any
neighborhood U of z at a point y # . Thus, dy and d; denote the derived set
operators associated with the topologies 6y and 6;.

When X is fixed and A € X we write —A for X — A. We also denote
dn(A) = —d,(—A). The operator d,, will interpret [n], whereas d,, will interpret

A wvaluation on X is a map v : Form — P(X) of propositional formulas to
subsets of X such that



= v(p A1) =v(p) No(), v(-p) = —v(p), ete;
= v((n)p) = dn(v(¥)), v([n]) = dn(v()), for n =0, 1.
A formula ¢ is valid in X if v(¢) = X, for any valuation v on X. This fact will
be denoted (X;0,01) E . The logic of (X;60p,01) is the set of all formulas valid
in X:
L(X;60,01) = {p: (X;60,01) F ¢}

2.3 Ordinal GLB-spaces

We consider bitopological spaces of the form (k;79,71), where k is an ordinal,
To is the interval topology on k, and 7 is the club topology. As usual, with the
topologies 17y and 71 we associate derived set operators dy and d;.

Recall that 7o is generated by {0} and intervals of the form (a, 8], for all
a < B < k. Notice that do(A) is often denoted A’. We have: @ € do(A) iff (e is
a limit ordinal and A N « is unbounded in «). Topology 7y is scattered, that is,
every non-empty subspace A C k has an isolated point; as such a point one can
take the minimum of A.

By definition, the club topology 11 on k is generated by 79 and all sets of the
form dy(A), where A C k. Since 79 C 71 we observe that 71 is also scattered.

A subset C' C « is called a club in «, if C is 1g-closed in the relative topology
of a and unbounded in «. Notice that if a € dp(A) then do(A) N« is a club in a.
If o is a limit ordinal of uncountable cofinality cf(«), the intersection of finitely
many clubs in « is again a club. It is easy to infer from this property that the
limit points of 71 (that is, points of the set di(x)) are exactly the ordinals of
uncountable cofinality below k.

Similarly, we can characterize 71 in terms of neighborhoods: A is a 7y-
neighborhood of « iff & € A and either cf(a) < w or A contains a club in
«a. As a consequence, we obtain the following characterization of derivative dy:
a € di(A) iff (cf(o) > w and A N « intersects every club C in «). A subset
A C «a is called stationary in o if A intersects every club in a. Thus, o € d;(A)
iff (cf(a) > w and A N« is stationary in «). In set theory, one usually calls dy
Mahlo operation (see [20]).

Let DY = k and D" denote {a < k : cf(a) > R, } for n > 0. The following
simple lemma is well-known and will be useful below.

Lemma 1. For any n, D? = d}(k).
Proof. By induction, it is sufficient to show that
d,(Dy) = D

Suppose A € D™ and C is a club in \. Let a be the X,,-th element of C.
Since X, is regular, cf(a) > N,,, hence o € D?. Therefore, di(D?) D D+,

Conversely, consider an ordinal A ¢ D"+ If c¢f(\) < w, clearly A is not a
limit point of D?. Otherwise, cf(A) < N,,41, hence there is a club C' in A whose
order type ot(C) satisfies X; < ot(C) < W,,. Note that do(C) N A is a club in A
and every a € do(C) N A satisfies cf (o) < ot(C), hence cf(a) < N,,. Therefore,
D7 Ndy(C) is empty and A is not a limit point of DJ}. O



2.4 Main theorem

We are interested in characterizing the logic L(k; 79, 71) for natural ordinal GLB-
spaces (k;7p,71). Since 7g is scattered, 79 C 71 and every set of the form dy(A)
is 7-open, it is easy to see that (k;7p,71) is a GLB-space, in particular, all
theorems of GLB are valid in (k; 79, 71).

We show that under some standard set-theoretic assumptions, for ordinals
k > N, the space (k; 79, 71) is, in fact, complete for GLB. Since the completeness
of GLB implies the completeness of GL w.r.t. the club topology on &, it follows
from the results of Blass [11] that some set-theoretic assumptions beyond ZFC
are necessary for the completeness proof.

For any infinite cardinal x, Jensen’s Principle O, is the assertion that there
exists a sequence of sets C,, for limit ordinals a < k¥, with the following
properties:

(i) Cy is a club in «;
(i) If cf(a) < & then |Cy| < K;
(ili) If B € do(Cy) then Cz = BN C,.

It is a well-known result of Jensen that the axiom of constructibility V = L
implies Oy, for all k. (For k = Yy the assertion O, trivializes and is provable in
ZFC. See Jech [20] for the details on any specific set-theoretic notions and facts
mentioned in this paper.)

Under the assumption of Oy, , for every n < w, we prove the following com-
pleteness theorem.

Theorem 1 (Oy , for n < w). For any k > X, L(k;79,71) = GLB.

n?

A proof of this theorem will be obtained by combining several ingredients. We
will use a reduction of GLB to a subsystem J isolated in [6], which is complete
w.r.t. a nice class of finite Kripke frames called treelike J-frames. Then we will
state a general Embedding lemma which allows to ‘embed’ such treelike J-frames
into ordinal spaces. Thus, given a formula ¢ such that GLB ¥ ¢ we will be able
to produce a valuation on ([1,X,]; 709, 71) falsifying ¢. Finally, all such valuations
will be merged into a single one on the space (R,; 79, 71).

In Section 4 we state the Embedding lemma and infer from it Theorem 1.
A proof of the Embedding lemma is postponed until Section 5. In Section 3
we formulate a lemma summarizing the key properties of Blass’s construction
necessary for the statement and the proof of the Embedding lemma.

3 Blass’s construction

The proof of Theorem 1 will heavily rely on the previous results of Andreas
Blass. The following lemma can be extracted from his paper [11].

Lemma 2 (Oy,, for n < w). For any finite tree (T, <) of height n there is a
map S associating with every x € T a nonempty subset S, C [1,N,] with the
following properties:



(i) {Sz :x € T} is a partition of [1,R,];
(ii) S, ={XN,}, if r € T is the root of T';
(i) If ¢ < y then Sy C di(Sy); in other words, if x < y and X\ € S, then
cf(A) > w and Sy N A is stationary in A;
(iv) S, C d~1(Uy>z Sy); in other words, if A € Sy and cf(A) > w, then U, , Sy
contains a club in \.

Rather than being literally stated in Blass’s paper, this lemma is obtained
by some adaptation of the construction in his proof. Before discussing the rela-
tionship in more detail a few general remarks are in order.

Firstly, we notice that the conditions of this lemma are quite similar to those
of the Solovay construction in provability logic. Therefore, in a similar manner,
it is easy to infer from it the completeness of GL w.r.t. the topological space
(N, 71). This is one of the two main results of Blass’s paper; the inference of
completeness from an analogue of this lemma is essentially the content of his
Theorem 3.

Secondly, with the map S : © —— S, we can associate a surjective function
f :[1,8,] — T mapping every point of S, to . Let (T, <) be equipped with
the Alexandroff topology whose open sets are exactly the upwards closed ones
w.r.t. the ordering <. Conditions (iii) and (iv) are then equivalent to f being
continuous, open and pointwise discrete (the latter means that f~1{a} is dis-
crete, for each a € T'). Such functions f have been introduced in [10] under the
name d-maps. They play for our kind of topological semantics a role similar to
the one of p-morphism for Kripke frames. Thus, Lemma 2 can be restated as
follows.

Corollary 1 (Oy,, for n < w). For every finite tree (T, <) of depth n there is
a surjective d-map f: [1,N,] = T.

If f: X —Y is admap and v is a valuation on Y, we can associate with it
a valuation v’ on X by defining, for each variable p,

v'(p):={x e X: f(z) evip}

Then it is easy to see that v/(¢) = f~(v(p)), for each formula ¢. Hence, the
logic of X is contained in the logic of Y. This is another way of looking at the
inference of the completeness of GL from Lemma 2.2

Thus, for the applications of Lemma 2 only Conditions (i), (iii) and (iv)
are substantial. Condition (ii) plays a purely technical role in Blass’s paper —
to make the inductive construction of the d-map work. In fact, from the next
lemma we can conclude that Condition (ii) actually follows from the other three
conditions.

Let dp(x) denote the depth of a node € T w.r.t. the ordering <. The height
of T is the depth of its root.

2 We can also look at the same situation algebraically. A surjective d-map f: X — Y
induces a dual map f* : P(Y) — P(X) defined by f*(A) := f~'(A), which happens
to be a homomorphic embedding of the modal algebra (P(Y),dy) into (P(X),dx).
In particular, this justifies the name ‘Embedding lemma’ for the results of this kind.



Lemma 3. Let f : [1,X,] — (T, <) be a su ectwe d-map. Then, for any a €
[1,R,] and k <n, cf(a) = wy zﬁdp(f(a )=

Proof. Let d denote the derivative operation w.r.t. the Alexandroff topology of
the tree (T, <). Thus,

dA)={zeT:3yc Az =<y}
We obviously have, by the definition of depth:
dp(z) > n <= zed"(T).

Since f is a surjective d-map, it satisfies f~1(dA) = d;(f~1(A)), for each A C T.
Hence, f~1(d*T) = d¥[1,R,,]. In turn, from Lemma 1 for o € [1,R,,], we conclude
that a € d¥[1,R,,] iff cf(a) > N, whence the claim. O

Corollary 2. Condition (i) follows from (i), (iit) and (iv).
Proof. The root is the only point of T' of maximal depth. ad

Recall that the ordinal function f(a) = wa is monotone and continuous
w.r.t. 9. It enumerates 0 and all limit ordinals in the increasing order, so it
maps X = [1,8,] onto Y = [1,R,] N Lim. We consider ¥ C X equipped with
the topologies inherited from X. The following lemma is straightforward.

Lemma 4. f: X — Y is a homeomorphism w.r.t. both 79 and Ty.

Proof. f is obviously bijective and continuous w.r.t. 7. Since f is monotone,
fla, 8] = (f(a), f(B)]NY. Hence, f(«, ] is open in Y. Therefore, f is open and
hence a homeomorphism w.r.t. 7.

Since f is a homeomorphism and an order isomorphism, C' is a club in « if
and only if f(C) is a club in f(a), for any C C X. We show that f is continuous
and open w.r.t. 71.

Suppose U is open in Y and f(a) € U. We show that there is a neighborhood
V of « such that f(V) C U. We consider two cases. If cf(f(a)) = w, then
cf(a) = w, hence {a} is open and f{a} CU.

If cf(f(a)) > w, then U = Uy N'Y where Uy contains a club C in f(«).
Obviously, C’' = do(C) C C'is a club in f(«) contained in Y. Then f~1(C’) is a
club in a, hence V = {a} U f~1(C") is a neighborhood of a in X and f(V) C U.

Suppose now U is a neighborhood of @ € X. If cf(a)) = w, « is isolated in X
and f(«) is isolated in Y, as required. If c¢f(a) > w we find a club C C U in a.
Then f(C) is a club in f(«), hence f(U) contains a neighborhood of f(a) (both
in X and in Y). O

Remark 1. In view of the previous lemma, Lemma 2 is equivalent to the one
where Condition (i) is replaced by the requirement that {S, : © € T'} be a par-
tition of the set [1,X,] NLim. In fact, Blass’s original construction is formulated
in this way. In our proof we will need both versions of Lemma 2.



Remark 2. Another formal difference between Lemma 2 and [11] is that, rather
than constructing a d-map from [1, X, ] N Lim to an arbitrary finite tree of depth
n, Blass uses some explicit universal tree K, of depth n and constructs a d-
map from [1,R,,] N Lim to K. Universality here simply means that there is a
surjective d-map from K, to any finite tree T of depth n. Trees K, are infinitely
branching and somewhat cumbersome to handle, and from the point of view of
the proof of Theorem 1 nothing is gained by working with K,, so we prefer to
deal with the somewhat weaker statement of Lemma 2.

Remark 3. Since the spaces [1, ] and [0, k] are obviously isomorphic for infinite
ordinals x, the reader may wonder why we prefer to begin with 1 in the statement
of Lemma 2. The answer is that this innocent choice greatly simplifies some
formulas in the proof of the Embedding lemma.

4 Embedding lemma for J-frames

4.1 J-frames

Similarly to [8], our proof of topological completeness will make use of a subsys-
tem of GLB introduced in [6] and denoted J. This logic is defined by weakening
axiom (iv) of GLB to the following axioms (vi) and (vii), both of which are
theorems of GLB:

(vi) [0l — [1][0]e;
(vii) [0]e — [0][1]e.

J is the logic of a simple class of frames, which is established by standard methods
[6, Theorem 1].

Lemma 5. J is sound and complete with respect to the class of (finite) frames
(W5 R1, Rs) such that, for all x,y,z € W,

1. Ry and Ry are transitive and dually well-founded binary relations;
2. If xRyy, then zRyz iff yRoz;
8. xRoy and yR1z imply tRyz.

If we let R; denote the reflexive, symmetric, transitive closure of Ry, then
we call each R; equivalence class a 1-sheet. By 2., all points in a 1-sheet are Ry
incomparable. But Ry defines a natural ordering on the set of 1-sheets: if a and
0 are 1-sheets, then aRy (3, iff 3z € «, Jy € B, vRyy. By standard techniques, one
can improve on Lemma 5 to show that J is complete for such frames, in which
each 1-sheet is a tree under Ry, and if aRf then xRyy for all z € «, y € B (see
[6, Theorem 2 and Corollary 3.3]). Thus, models of J can be seen as Ry-orders
(and even tree-like orders), in which the nodes are 1-sheets that are themselves
R;-trees. We call such frames tree-like J-frames. The Rp-height of such a frame
is the maximum height of its 1-sheets.



As shown in [6], GLB is reducible to J in the following sense. Let

M(p) == \(0)g: — [1ei),

i<s
where [0]¢;, @ < s, are all subformulas of ¢ of the form [0]¢. Also, let
M*(¢) = M(p) A[0]M (o) A [1]M ().

We have: GLB F ¢ iff J+ M™(p) — . In fact, below we only use the obvious
part of this reduction, the implication from right to left.

4.2 Embedding lemma
For a binary relation R on X let R(x) denote the set {y € X : xRy}.

Lemma 6 (Embedding). Let W = (W; Ry, R1) be a finite tree-like J-frame
with the root r and Rq-height n. There is an ordinal Kk < N,,41 and a map S
associating with every x € W a nonempty subset S, C [1, k] with the following
properties:

1. {Sy : ®x € T} is a partition of [1,k); Sy = {k};

2. IfxRyy then Sy C di(Sy); in other words, if tR1y and A € Sy then cf(\) > w
and Sy N A is stationary in A;

3. If xRoy then Sy C do(Sy); in other words, if tRoy and A € Sy then A € Lim
and Sy N A is unbounded in A;

4. Sz © di(Uyer, (@) Sy): in other words, if A € Sy and cf(A) > w, then
Uyer, () Sy contains a club in A;

5. Sz Cdy (Uyeﬁ{)(a:) Sy); in other words, if A € S, and A € Lim, then Uyeﬁo(x) Sy

contains an end-segment of \, where EB(:L‘) := Ro(z)URy(x1) and x1 denotes
the root of the 1-sheet of x.

This lemma gives us a surjective function f : [1, k] — W defined by f~1(x) =
Sz. Such a function is a d-map w.r.t. 71, open w.r.t. 79, but is not, in general,
To-continuous. Nonetheless, these conditions turn out to be sufficient for the
completeness proof. We shall call such functions weak d-maps. A proof of this
lemma will be given in Section 5.

Now we are ready to infer Theorem 1 from the Embedding lemma.

Proof. Suppose GLB ¥ ¢. Then, obviously, J ¥ M™(p) — ¢. Let W be a finite
tree-like J-model with the root r such that W E M*(p) and W ¥ ¢. Let S be
a map given by Lemma 6. Define a valuation v on [1, k] by v(p) := U, Sz, for
each propositional variable p.

Lemma 7. For all subformulas 0 of ¢ we have:

v(0) = S

o



Proof. Induction on the build-up of 6. If 6 is a variable, we refer to the definition
of v. The cases § = ¥ A Y9 and § = —) follow from the induction hypothesis
and the fact that S, partition [1, k].

Let 6 = [1]¢. f W,z E 0 then Vy € Ry(x) W,y F 1. Hence, by the induction
hypothesis, Vy € Ri(z) S, C v(¢), that is, U Sy € v(¥). By Lemma 6,
Part 4,

YyER1 ()

Sz C Jl(UyeRl(;c) Sy) € di(v(v)).

This shows |,y Sz C v(0).
If W,z ¥ 0 then Jy € Ri(x) W,y ¥ 1, and by the induction hypothesis
Jy € Ri(x) Sy € —v(¢). By Lemma 6, Part 2,

Sz C di(Sy) € di(=v(¥)) = —v(0).

This holds for all  such that W,z ¥ 6, hence v(0) C |,y Sz-

Let 6 = [0]p. If W,z ¥ 0 then Jy € Ro(x) W,y ¥ 1, and by the induction
hypothesis 3y € Ry(x) Sy, € —v(¢). By Lemma 6, Part 3,

Sz € do(Sy) € do(—v(¥)) = —v(0).

This holds for all z such that W,z ¥ 6, hence v(6) C J, 1y Sa-

If W,z E 0 then Vy € Ro(z) W,y E ¥. Moreover, since W is a J-frame,
we also have W,z F [0]t (this is because Ro(x) = Ro(z1) in a J-frame). Since
W E M (p) we have, in particular, W, 21 E [0]¢) — [1]¢) and hence W, x; E [1]¢.
Therefore, Vy € Ry(xz1) W,y F 1. So, we have Yy € j%vo(x) W,y E ¢ and by the

induction hypothesis Uyeﬁo(z) Sy € v(v). By Lemma 6, Part 5,

S C dNO(UyEﬁO(I) Sy) € d~0(”(¢)> =v(0).
This holds for all  such that W,z F 6, hence J ., S. € v(0). O

Since W ¥ ¢, from the above lemma we conclude that S, ¢ v(p), hence
v(p) # [1,k]. This shows that GLB is the intersection of logics of all GLB-
spaces ([1, k], 70,71), for £ < R,,. To infer from this the stronger claim of the
theorem, we need two additional general lemmas.

Let (X;)icsr be a family of GLB-spaces. The disjoint union | |,.; X; of this
family is defined in a natural way: 7,-open sets A C | |,.; X; are those for which
AN X; is T,-open, for each i € I. The following lemma is obvious.

Lemma 8. Suppose f; : X; — W; is a family of weak d-maps. Let f : | |;c; Xi —
Llicr Wi be such that f | X; = fi, for each i € I. Then f is a weak d-map.

Lemma 9. Let (ka)a<x be a family of non-zero ordinals and let k =, ) Ka-
Let 19 and 7 be the interval and the club topology on k, respectively. Then
GLB-space ([1,k), 10, 71) is isomorphic to | |, ([1, ka], 70, 71).



Proof. This is a consequence of two facts: 1) An interval («, a+ ] is isomorphic
to [1, 8] both w.r.t. the order and the club topology; 2) The intervals [1, ko] and
(Ko, Kat1], for all @ < A, are clopen w.r.t. both 79 and 71, and they partition
1, ). O

Consider now some enumeration of all finite tree-like J-models (W; )i« Let
fi + [1,ki] — W; be some surjective weak d-maps given by the Embedding
Lemma. Applying the previous two lemmas, we obtain a surjective weak d-map
[ [L,k) = ey, Wi, where s := >, k. Hence, every formula falsified on
some W; is falsifiable on [1, k). Since x; < N, for each i, we have k < X,,. From
Lemma 3 and the fact that the sequence W; contains J-frames of arbitrary
finite R;-depth one can infer that k > R, hence k = X,,. It follows that GLB
is complete for X, and therefore for any x > N,,. a

Thus, we have demonstrated that Theorem 1 follows from Lemma 6. This
proof actually delivers slightly more than is stated in Theorem 1.

Recall that the free GLB-algebra on a set of generators V' can be defined
as the Lindenbaum algebra of GLB in the vocabulary V', that is, the modal
boolean algebra of all formulas in the language of GLB (in variables V') modulo
provable equivalence in GLB (see [8]). We have the following result, which is
already of some interest when V' is countable or even finite.

Theorem 2 (Oy, , for n < w). Suppose |V| < N,. Then the free GLB-algebra
on generators V is embeddable into the algebra of the GLB-space (k;79,71), for
any k> N,,.

Proof. We only sketch an easy proof. Let A = max(Xg, |V|). Enumerate all finite
J-models in the vocabulary V of R;-height n in a sequence of type A and denote
their disjoint union W,,. As above, construct a surjective weak d-map

fn: []-aﬁn} — Wh,

where k,, < R,,11-A (ordinal multiplication). Then, using Lemma 9, join all these
maps f, for all n < w into a surjective weak d-map f : [1,R,) — W, where W is
the union of all finite J-models in the vocabulary V. To define the embedding of
algebras, map any formula ¢ to the set {a € [1,R,) : W, f(«) F ¢}. The analog
of Lemma 7 shows that this is, indeed, an embedding. a

Notice that this theorem is an analog of the so-called uniform Solovay theo-
rem in provability logic (see [2]). The rest of the paper is devoted to the proof
of Lemma 6.

5 Proof of Embedding Lemma
We argue by induction on the Ryp-height of W.

Basis. If Rg-height of W is 0 then WV consists of a single 1-sheet ordered by R
with a root 7. By Lemma 2 there is a x and a surjective d-map ([1, k], 71) — W.



For the associated map S conditions 1, 2, 4 hold by definition of d-map. Condition
3 holds trivially (its premise is always false). Condition 5 holds, because S, = {x}

and hence
U Sy = U Sy = (1, k),

yERo () yER1(r)

which contains an end-segment of x and of any limit A < k.

INDUCTION STEP. Since W is tree-like, it consists of the root 1-sheet W,
(with its Rj-root rg) and of the immediate subframes Wy, ..., W,. By the
induction hypothesis we have embeddings S? of W; to [1,k;], fori = 1,...,n. By
Lemma 2 we also obtain a d-map fo : ([1, ko] "Lim, 71) — W, and the associated
embedding S°. We set:

K:= (k14 + En) - Ko
Define a partition {S, : z € W} as follows:

Spi={(k1+ -+ ry)-a:aecS}, ifxecW; (1)
Spi={(ki+ - +kp)-atr+-tr+P:a<krBeESTY (2
ifxeW;y1 and 0 < i < n.

Denote:

0: =K1+ -+ En,
0; ;= K1+ + K.

Obviously, sets of the form (1) partition the set {da : @ € Lim N [1, ko)},
moreover Sy, = {x}. Sets of the form (2) partition

{(504 +0+0:a< 1‘{0,5 S [].,Iiﬁ,ﬂ}.
For different ¢ these sets do not intersect and their union is
{da+d:a<ko}={0a:aeSucnll,kol}.

This yields Condition 1.

Condition 2. Suppose A € S;, vRyy. If x € W,y then A = da + §; + N,
where X' € Sit!. Since St is stationary in X' the set {da+8; + 8 : 5 € Sit'}
is stationary in A. Then S, is also stationary in A. For the same reason cf(\) =
cf (V) > w.

If z € Wy then A = 6\ with X € S9. We claim that {do : & € S)} is
stationary in A.

Consider any club C in A. Since D := {da:a < M} isaclubin A, CUD is
also a club. Hence, C := {a : o € C} is a club in \'. Therefore, Cy N S) # &,
so there is an o € SY) such that da € C.



Condition 3. Suppose A € S;, xRoy. If z € W;11 then A = da+0; + X', where
N e Sittand y € Wiyi. Then, clearly {da+d;+3: 8 € S;T'} is unbounded in
A

If v € Wy and y € Wi 1, then A = §)\ with X' € S, and therefore \' € Lim.
Select a 3y € S;“. The set {0+ 0; + Bo : @ < X'} is unbounded in A\ and is
contained in S,.

Condition 4. Suppose A € S, cf(\) > w. If € W,;41 then A =da+6; + N,

where X' € St The set e p, () Sy"' contains a club in . Then

{oat+ds+8:8€ |J St
YER1 ()
contains a club in A. This set equals
U (da+6+08:peSit),
yER:(x)

which is contained in U, ¢, (2 Sy-
If x € Wy then A = 5\ with X' € S2. The set Uyer, ) Sy contains a club in
N. Then {68 : B € Uyep, @) Sy} contains a club in A. But this set equals

U {s:8esit= J S,

yGRl(m) yERl(:c)

Condition 5. Suppose A € S, A € Lim. If z € W, then A\ = §\ with )’ € SU.
Since Ro(z) =W — {ro} we have

U sy =1[1n).
yERo(x)

Since A < k the set |J, =, , S, contains an end-segment of A.
yeRo(z) O ,
If 2 € Wiy1 then A\ = da + §; + N, where N € Sl We have that
Uyeiy () Sy contains an end-segment of \" and Ro(2) € Wit1. Then

{dat+di+p:pe U S;H}
yERo ()

contains an end-segment of A. But this set is contained in Uy € Bo(2) Sy.

6 Concluding remarks

We have shown that the completeness of GLB is consistent with the axioms
of ZFC (provided ZFC itself is consistent). The fact that the incompleteness of



GLB is consistent with ZFC directly follows from the results of Blass (which, in
turn, rely on some deep results of Harrington and Shelah concerning stationary
reflection). We do not have to go deeply into set theory here, as it is well-known
that GLB is conservative over the axioms of GL for the language restricted
to any individual modality. Hence, the completeness of GLB implies the com-
pleteness of GL under the interpretation w.r.t. the club topology. Assuming
that there are models of ZFC with Mahlo cardinals, Blass has shown that there
is a model of ZFC in which GL is incomplete w.r.t. the club topology. Hence,
the same model demonstrates the incompleteness of GLB w.r.t. the considered
interpretation.

In the other direction, following [11, Theorem 6], we remark that by a result
of Jensen [21] the negation of O, implies that £+ is Mahlo in L. Hence, by
Theorem 1, if GLB is incomplete there are Mahlo cardinals in L. Thus, we
obtain the second part of the following corollary.

Corollary 3. (i) The statement that GLB is complete w.r.t. the class of spaces
of the form (k;70,71) is equiconsistent with ZFC;

(ii) The statement that GLB is incomplete w.r.t. the class of spaces of the form
(Kk;T0,71) 18 equiconsistent with the existence of Mahlo cardinals.
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