Abstract

This paper proposes a new approach to Romance demonstrative-reinforcer constructions. The account is based on a binary valued feature system for deictic person and is embedded in the Distributed Morphology framework. Looking at data from Romance varieties, some (implicit) shortcomings of previous accounts are repaired via a morphological operation: Fission. Specifically, those accounts do not provide formal means to make sense of the deictic compatibility constraint between the demonstrative and its reinforcer, nor do they discuss categorisation issues relative to reinforcers. Via Fission, instead, a featural reason is given to ensure deictic compatibility, and I put forward a new approach to the category of reinforcers, aiming to overcome their problematic categorisation as DP-internal adverbs.

Keywords: demonstrative-reinforcer constructions, deixis, person, features, Distributed Morphology, Fission.
1. Introduction

Romance varieties display demonstrative-reinforcer constructions (henceforth: DRCs; Brugè 1996, 2002; Bernstein 1997, 2001; Roehrs 2010), i.e. combinations of a demonstrative form (either pronominal or adnominal) and a locative element, the reinforcer:¹

(1) (Italian)
 a. *questo qua
 this here
 b. *quel cane là
 that dog there

In Italian, the proximal construction (1a) refers to something that is close to the author (or speaker); the distal one (1b) refers instead to something that is far away from the author. These are the only two possible combination patterns for these forms: *questo là and *quel cane qua are ungrammatical. The restriction on co-occurrence patterns is referred to as deictic compatibility, that is the deictic features encoded on the demonstrative and on the reinforcer have to be compatible.

¹ This paper only considers exophoric demonstratives, as the endophoric use of demonstratives has been shown to be secondary with regard to the exophoric one (Diessel 1999: ch. 5). The extension of the system proposed here to endophoricity seems likely; however, further investigation is needed.
In this paper I address two main questions. The first concerns the derivation of the deictic compatibility restriction on co-occurrence patterns: I propose a post-syntactic approach that derives all and only the attested patterns. A side question is related to the syntactic status of reinforcers, usually regarded as adverbs, in spite of their distributional and combinatorial idiosyncrasies. The analysis I put forward naturally accounts for these facts by considering reinforcers as locative roots (thus, uncategorised elements).

To address these issues, I first describe Romance (mainly Italo-Romance) demonstrative systems and DRCs in featural terms (§2). Then I turn to their analysis in terms of Fission, a morphological operation (§3). In §4, I extend the account and present some additional advantages. Finally, I discuss the status of reinforcers (§5).

2. Data: Romance demonstratives and DRCs

In this section, I introduce the characterisation of Romance demonstrative systems and DRCs. The following description rests on three core assumptions concerning the featural representation of spatial deixis, for which no in-depth discussion is provided for reasons of space (for details, see Terenghi 2019).

Assumption 1. Spatial deixis is a person-oriented phenomenon, rather than a distance-oriented one (for a discussion: Diessel 1999: 39ff.).
Deictic features define the location of entities and areas of the external world in relation to a deictic centre. In Romance languages, the deictic centre is most frequently the author, even though some varieties display forms that are centred on both discourse participants (i.e. the author and the hearer), or on the hearer (or addressee) alone (see Table 1 below). Therefore, demonstrative systems in Romance languages can arguably be defined as person-oriented.2

Assumption 2. As a person-oriented phenomenon, spatial deixis is best accounted for in terms of person features, rather than of locative ones.

Notice that, even in systems that assume locative features for demonstrative forms, those features are ultimately linked to person. Lander & Haegeman (2018: 3), for instance, define ‘Proximal’ as “close to the speaker”, ‘Medial’ as “close to the hearer” and ‘Distal’ as “far from speaker and hearer”. Therefore, in what follows, spatial deixis will be taken to reduce to person features.

Assumption 3. The person features assumed here are two binary features, [±Participant] and [±Author] (see, a.o., Nevins 2007).

2 In some Romance systems, distance oppositions seem to play a role (e.g., Spanish). In such cases, distance can be conceived as a modifier of the basic person-oriented opposition: see Lander & Haegeman (2018: 51ff.) for degrees of distance as adverbial modifications introduced by an additional structural layer.
Further, deictic person features are different from the person features found within the φ-bundle. The former define proximity relations to one or none of the discourse participants, while the latter are involved in agreement relations. Demonstrative forms always display 3rd person syntax, but make contrastive reference to all available deictic persons. To differentiate deictic person features from φ person features, I add a subscript ‘deixis’ label that restrains the deictic person features to the deictic domain.

Therefore, the deictic features involved in the definition of demonstrative and locative forms are: [±Author_{deixis}], for a referent close to (+) or far from (–) the author; [±Participant_{deixis}], for a referent close to (+) or far from (–) (one of) the discourse participants (i.e. author and/or hearer).

Table 1 introduces the demonstrative systems attested across the Romance domain. Although they are not discussed here, locative adverbs are comparable, except that there does not seem to be a unary system in this case. Examples come from Ledgeway & Smith 2016 (pp. 890, 879, 886, 885, respectively), where more details on locative adverbs can be found as well.

<table>
<thead>
<tr>
<th>System</th>
<th>Example (Language)</th>
<th>Deictic person features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unary</td>
<td>ce (French)</td>
<td>Underspecified</td>
</tr>
<tr>
<td></td>
<td>DEM</td>
<td></td>
</tr>
<tr>
<td>Binary A [±Author]</td>
<td>questo / quello (Italian)</td>
<td>questo: [±Author_{deixis}]
quello: [–Author_{deixis}]</td>
</tr>
<tr>
<td></td>
<td>DEM.PROX / DEM.DIST</td>
<td></td>
</tr>
<tr>
<td>Binary B [±Participant]</td>
<td>chista / chilla (Neapolitan)</td>
<td>chista: [±Participant_{deixis}]
chilla: [–Participant_{deixis}]</td>
</tr>
<tr>
<td></td>
<td>DEM.PROX/MED / DEM.DIST</td>
<td></td>
</tr>
<tr>
<td>Ternary [±Participant,</td>
<td>quiste / quisse / guille (Abruzzese)</td>
<td>quiste: [±Part_{deixis}, +Auth_{deixis}]
quisse: [±Part_{deixis}, +Auth_{deixis}]
guille: [±Part_{deixis}, –Auth_{deixis}]</td>
</tr>
</tbody>
</table>

3 While I use conventional Leipzig glossing rules, these systems are person-oriented: therefore, ‘proximal’ encodes reference to the author, ‘medial’ to the hearer and ‘distal’ to neither of them.
In unary systems, the single demonstrative form is underspecified for deictic features. Binary systems are optimally defined by just one feature: in some systems, as in Italian, it is \([\pm\text{Author}_{\text{deixis}}]\), as no reference to the hearer can be encoded. In other systems, as in Neapolitan, the relevant feature is \([\pm\text{Participant}_{\text{deixis}}]\): Ledgeway & Smith (2016: 882ff.) refer to the \([+\text{Participant}_{\text{deixis}}]\) form as “inclusive first person term”. Finally, ternary systems can only be generated by the combination of both binary features.

In DRCs, person-oriented demonstratives combine with person-oriented reinforcers (deictic compatibility being a necessary condition for such a combination, as discussed in §1). In Table 2 below, an overview of the possible interactions between the deictic features implied in DRCs is presented (examples from Ledgeway & Smith 2016: 885, 881, 885, 887, respectively).\(^4\)

<table>
<thead>
<tr>
<th>Type</th>
<th>Example (Language)</th>
<th>Deictic person features</th>
</tr>
</thead>
<tbody>
<tr>
<td>No co-occurring features</td>
<td>((\ddot{e}s(\ddot{e}); sì / (\ddot{e}s(\ddot{e}); lì / (\ddot{e}s(\ddot{e}); là (Ligurian-Piedmontese))
DEM REPL.FPROX / DEM REPL.MED / DEM REPL.DIST
DEM: underspecified
REINF: ([\pm\text{Participant}{\text{deixis}}, \pm\text{Author}{\text{deixis}}])</td>
<td></td>
</tr>
<tr>
<td>Coinciding features</td>
<td>(\text{sto qua} / \text{queo là} (Venetan))
DEM,PROX REPL.FPROX / DEM,PROX
REINF.DIST
DEM: [+Author_{deixis}] ↔
REINF: [+Author_{deixis}]
DEM: [–Author_{deixis}] ↔
REINF: [–Author_{deixis}]</td>
<td></td>
</tr>
</tbody>
</table>

\(^4\) A system split between the ‘no co-occurring features’ and the ‘coinciding features’ patterns is also attested, but it will be left aside here. See Terenghi (2019) for a more comprehensive description of Romance DRCs.
<table>
<thead>
<tr>
<th>Partially overlapping features A</th>
<th>Partially overlapping features B</th>
</tr>
</thead>
<tbody>
<tr>
<td>c wysti / cu lì / cul là (Piedmontese)</td>
<td>chistu ccà / chistu ddhocu / chillu ddhà (Messinese)</td>
</tr>
<tr>
<td>DEM. PROX / REINF. PROX / DEM. DIST</td>
<td>DEM. PROX/MED / REINF. PROX / DEM. PROX/MED / REINF. MED / DEM. DIST</td>
</tr>
<tr>
<td>REINF. MED / DEM. DIST / REINF. DIST</td>
<td>REINF. DIST</td>
</tr>
<tr>
<td>DEM: [±Author(deixis)]</td>
<td>DEM: [±Participant(deixis)]</td>
</tr>
<tr>
<td>REINF: [±Participant(deixis)]</td>
<td>[±Author(deixis)]</td>
</tr>
<tr>
<td>±Author(deixis)</td>
<td>±Participant(deixis), ±Author(deixis)</td>
</tr>
</tbody>
</table>

In the ‘no co-occurring features’ pattern, there is no interplay between deictic features, as they are contrastively expressed on the reinforcer alone. In the ‘coinciding features’ pattern, the deictic features expressed by the demonstrative and the reinforcer are identical, and no other combination of the two forms (and hence feature sets) is possible. Finally, the forms in the two ‘partially overlapping features’ patterns display only partially overlapping deictic features sets, rather than fully identical ones. Such systems are found in varieties that have a binary demonstrative system and a ternary reinforcer system. In those varieties, the two systems are combined to single out the hearer-related domain (features: [+Participant(deixis), – Author(deixis)]) in marked contexts.

In Piedmontese varieties, the demonstrative binary system is defined by [±Author(deixis): *c wysti* [+Author(deixis)] and *cul* [–Author(deixis)] (‘this’ and ‘that’). The reinforcer system instead is ternary, so both features are involved in the featural definition of its forms: *si* [+Participant(deixis), +Author(deixis)], *lì* [+Participant(deixis), –Author(deixis)] and *là* [–Participant(deixis), –Author(deixis)] (‘here

5 The reverse case is not attested, as far as I know.
6 Ledgeway & Smith (2016: 887) and references therein.

near me’, ‘there near you’, ‘there far away from both’). Therefore, these three constructions all combine featurally different elements. Notice that the deictic feature encoded on the demonstrative form is a subset of the deictic features encoded by the reinforcer. This explains, in featural terms, why the medial reinforcer li can only be combined with the distal demonstrative, cul, and never with the proximal one, cust. This system is restricted to the north-western Italian area.

Messinese works along the same lines, but its binary demonstrative system is based on the [+Participant
 deixis] feature: chistu [+Participant
 deixis] and chillu [–Participant
 deixis] (‘this’ and ‘that’). The ternary reinforcer system is defined as follows: ccà [+Participant
 deixis, +Author
 deixis], ddhocu [+Participant
 deixis, –Author
 deixis] and ddhà [–Participant
 deixis, –Author
 deixis]. The deictic feature of demonstrative forms is a subset of the deictic features expressed by reinforcers, which again explains why the medial reinforcer, ddhocu, combines with the proximal demonstrative, chistu, and not with the distal one, chillu. This type is documented for Neapolitan (Ledgeway & Smith 2016: 887) and Brazilian Portuguese (Ledgeway & Smith 2016: 888) as well.

The data overview provided in this section shows that, on a purely descriptive level, the deictic compatibility constraint holding for all attested patterns of DRCs is defined by the feature(s) implied in the characterisation of each item (see Table 2). The question then is how to derive these combinations making sure that no other co-occurrence pattern emerges?
3. Fission

One way forward is to suppose that an Agree relation holds between the two forms. However, this approach implies some featural problems (e.g., stipulation of unvalued features, non-matching feature sets in the ‘partially overlapping features’ pattern; for a complete overview, see Terenghi 2019). Another option would be to assume that hypothetical non-matching features within DRCs get blocked at the interface with semantics because of compositionality issues, within a filtration-based approach to syntax. However, this solution would not be able to naturally account for the seeming dependency of reinforcers on demonstratives: in fact, only demonstratives can occur alone in unmarked contexts, even though their deictic features are just a subset of the reinforcers’ ones.

‘Partially overlapping features’ systems (as Piedmontese and Messinese discussed in the previous section) strongly suggest a different approach: DRCs can be accounted for by resorting to Fission, a morphological operation. The rationale behind the Fission account proposed here is that such co-occurrence patterns can be accounted for by introducing the demonstrative and the reinforcer post-syntactically (in a Distributed Morphology (DM) framework), as concurrent expressions of the same features set. This grants the deictic features a unitary interpretation at the C-I interface, while still making it possible for the actual lexical items to be partly differently specified.
In DM, each Vocabulary item is conceived as a pair of a phonological representation and of a set of morpho-syntactic features. After narrow syntax, Vocabulary Insertion (VI) takes place: for each terminal node, one Vocabulary item is inserted. Insertion depends on the result of the competition between Vocabulary items: the most specified one (the one that matches the largest number of features in the terminal node) is inserted and spells out (or discharges) the features of the terminal node. In case the available Vocabulary items cannot discharge all its features, VI ends with underspecification. Fission takes place at this point: the features of the terminal node left underspecified by VI can still be exponed, but they will be fissioned, or split off, into a second feature bundle which will be discharged by a different Vocabulary item. In this way, one single position of exponence in the syntax is split into many in the Morphology. See Noyer (1992) and Halle (1997) for details.

In order to see how a Fission-based account can derive the ‘partially overlapping features’ pattern, it is first necessary to introduce the relevant syntactic structure (2): following standard literature, demonstratives are taken to be phrasal elements (DemP) in the specifier position of a FP. Their featural content (ϕ-features and deictic features) is encoded as abstract features under
the DemP terminal node and is handed over to the Morphology, where VI takes place.\footnote{It can be argued that a definiteness feature linked to the D-level is also involved. However, as it is irrelevant for the analysis, I leave it aside in the following discussion.} \footnote{The syntactic features associated with demonstratives are not relevant for this account. For the sake of consistency, only Vocabulary items displaying the same \(\varphi \) features are discussed: third person singular masculine (in a tentative featural notation: \([−\text{Participant}_\text{formal}, −\text{Author}_\text{formal}, +\text{sg}, +\text{masc}]\). I provisionally use the ‘formal’ subscript as the counterpart to the ‘deixis’ one introduced in §2. ‘Formal’ makes reference to the person features involved in agreement.}

In what follows, I discuss how the derivation works for Messinese (the derivation for Piedmontese follows the same lines, the only difference being the featural composition of the single Vocabulary items: see §2). The terminal nodes corresponding to the three available DRCs (chistu ccà, chistu ddhòcu, chillu ddhà) are respectively the following ones:

\[(3) \quad \begin{align*}
&\text{a. } \left[\varphi, +\text{Author}_{\text{deixis}}, +\text{Participant}_{\text{deixis}} \right]
\end{align*}\]
b. \([\varnothing, -\text{Author}_{\text{deixis}}, +\text{Participant}_{\text{deixis}}]\)

c. \([\varnothing, -\text{Author}_{\text{deixis}}, -\text{Participant}_{\text{deixis}}]\)

The list of Vocabulary items for Messinese, based on the discussion in §2, is provided below:

(4) a. \(\text{chistu} \leftrightarrow [\varnothing, +\text{Participant}_{\text{deixis}}]\)

b. \(\text{chillu} \leftrightarrow [\varnothing, -\text{Participant}_{\text{deixis}}]\)

c. \(\text{ccā} \leftrightarrow [+\text{Author}_{\text{deixis}}, +\text{Participant}_{\text{deixis}}]\)

d. \(\text{ddhōcu} \leftrightarrow [-\text{Author}_{\text{deixis}}, +\text{Participant}_{\text{deixis}}]\)

e. \(\text{ddhā} \leftrightarrow [-\text{Author}_{\text{deixis}}, -\text{Participant}_{\text{deixis}}]\)

As VI begins, the form in (4a-e) that is maximally compatible with the features in the terminal nodes in (3a-c) is inserted: that is, either (4a) or (4b), according to the value of the [Participant] feature in the actual terminal node (\text{chistu} for (3a-b) and \text{chillu} for (3c)). The demonstrative forms, in fact, discharge all \(\varnothing\) features (cf. fn. 8) and part of the deictic features at once, therefore winning the competition against the reinforcers in (4c-e). However, part of the deictic value of the terminal node is left unexpressed: nothing matches the \([\pm\text{Author}]\) feature. In unmarked contexts, VI ends at this point. In marked contexts, instead, the leftover deictic feature is expressed by second exponence, that is by Fission: the reinforcers provide the missing \([\pm\text{Author}]\) values, discharging the terminal node completely.
This derivation suggests that the distinctive features of the binary demonstrative system, i.e. [+Participant] in Messinese, are secondary in reinforcers and primary in demonstratives. Secondary features are “properties which must be previously discharged in order for a given rule to apply” (Noyer 1992: 69). This means that the insertion of reinforcers is conditioned by the featural composition of demonstrative forms, preventing a reinforcer that is specified for a different [Participant] value than that of the demonstrative to be inserted. The features of reinforcers in (4c-e) are accordingly revised, marking secondary features through parentheses:

\[
(4) \quad c'. \quad ccà \leftrightarrow [+\text{Author}_{\text{deixis}}, (+\text{Participant}_{\text{deixis}})] \\
d'. \quad ddhocu \leftrightarrow [−\text{Author}_{\text{deixis}}, (+\text{Participant}_{\text{deixis}})] \\
e'. \quad ddhà \leftrightarrow [−\text{Author}_{\text{deixis}}, (−\text{Participant}_{\text{deixis}})]
\]

Therefore, for the terminal nodes given in (3a-c), we get:

\[
(5) \quad a. \quad [φ, +\text{Author}_{\text{deixis}}, +\text{Participant}_{\text{deixis}}] \leftrightarrow \\
\quad [/ˈkɪstu/: φ, +\text{Participant}_{\text{deixis}}] + [/ˈkka/: +\text{Author}_{\text{deixis}}, (+\text{Participant}_{\text{deixis}})] \\
b. \quad [φ, −\text{Author}_{\text{deixis}}, +\text{Participant}_{\text{deixis}}] \leftrightarrow \\
\quad [/ˈkɪstu/: φ, +\text{Participant}_{\text{deixis}}] + [/ˈɖɖɒku/: −\text{Author}_{\text{deixis}}, (+\text{Participant}_{\text{deixis}})] \\
c. \quad [φ, −\text{Author}_{\text{deixis}}, −\text{Participant}_{\text{deixis}}] \leftrightarrow \\
\quad [/ˈkɪllu/: φ, −\text{Participant}_{\text{deixis}}] + [/ˈɖɖə/: −\text{Author}_{\text{deixis}}, (−\text{Participant}_{\text{deixis}})]
\]

* Incidentally, this (along with simple competition) guarantees that demonstratives are inserted as first choice and can stand alone, in case of underspecification, without resorting to any stipulated dependency.
After \(\varphi \) features and the [Participant] feature have been spelled out by the demonstratives (\textit{chistu} or \textit{chillu}), the conditions imposed by secondary features straightforwardly account for the insertion of \textit{ddhà} in (5c) and leave \textit{ccà} and \textit{ddhocu} to compete for insertion in (3a) and (3b). Because of their opposed value for [Author], the insertion of \textit{ccà} in (5a) and of \textit{ddhocu} in (5b) is univocal. Any other conceivable combination of demonstratives and reinforcers is naturally ruled out.

In this section I have shown that agreement problems and dependency stipulations are avoided if DRCs are derived post-syntactically, that is by splitting a single syntactic node (with its own interpretation at the interface with semantics) into two positions of exponence in the Morphology. The demonstrative and the reinforcer are ultimately two complementary exponents for the two scattered feature bundles of DemP, which accounts for deictic compatibility and for co-occurrence restrictions.

4. Beyond deictic Fission: [Focus]

The discussion in §3 was based on one co-occurrence pattern only: in this section, I extend the account to the other co-occurrence patterns introduced in Table 2.
In case of a ‘no co-occurring features’ pattern, Fission applies straightforwardly: the reinforcer discharges the entire deictic value of the terminal node, while the demonstrative discharges its φ component.

The issue is instead more complex in case the involved deictic features coincide, as in (6):

(6) (Italian)

\[\text{questo qua} / \text{quello là} \]

this here that there

In (6), the demonstrative and the reinforcer both encode the same deictic feature: (respectively) either $[+\text{Author}_\text{deixis}]$ or $[-\text{Author}_\text{deixis}]$. However, on logical grounds, it cannot be maintained that the terminal node includes in its feature set the very same feature twice. This makes it impossible to introduce a second exponent, i.e. the reinforcer, as the demonstrative form would discharge the entire featural value of the node itself. Therefore, DRCs would need two different explanations, namely: Fission (‘no co-occurring features’ and ‘partially overlapping features’) and some sort of doubling mechanism (‘coinciding features’).

However, as shown by Terenghi & Casalicchio (2019) for Italo-Romance varieties, locative elements started to combine with demonstrative forms in
focal contexts.10 This fact suggests that a [Focus] feature is also involved in the terminal node that is ultimately realised as a DRC: under this hypothesis, the relevant morpho-syntactic features set is [φ, person\textsubscript{deixis}, Focus].11 Such a claim is supported by independent evidence provided by Bernstein’s (2001) analysis of DP-final elements in Romance languages as focussed elements.

Given the new featural composition of the terminal node, Fission can apply: demonstratives discharge [φ] features and (part of the) deictic features, while reinforcers discharge [Focus]. The choice of reinforcers, once again, is conditioned by the featural composition of demonstratives through secondary features. VI for \textit{questo qua} is provided in (7):

\begin{equation}
(7) \quad [φ, +\text{Author}\textsubscript{deixis}, \text{Focus}] \leftrightarrow [ˈkwɛsto/: φ, +\text{Author}\textsubscript{deixis}] + [ˈkwaw/: \text{Focus}, (+\text{Author}\textsubscript{deixis})]
\end{equation}

The addition of a [Focus] feature, beside accounting in a satisfactory way for both the marked interpretation associated to DRCs and for their attested featural patterns, has the further advantage of explaining in a principled way

10 Cf. §2 and Ledgeway & Smith (2016: 887) and references for the marked value of DRCs with ‘partially overlapping features’.

11 A reviewer asks whether [Focus] is necessary here, or whether the focus reading is prompted by non-syntactic means (specifically, the correlation between extra form and extra meaning). Considering DRCs on a par with the other focussed constructions discussed in Bernstein (2001), it seems worthy to assume [Focus]. Evidence comes from, e.g., Italian possessives, which can be pronominal (Art+Poss+N) or postnominal (Art+N+Poss); only the latter construction gets the focus interpretation, which is however not paralleled by extra lexical items. Hence, I retain [Focus] here, but leave further thinking about the formal and diachronic sides of the issue to future work.
otherwise problematic linearisation issues. Specifically, Romance DRCs display a discontinuous pattern when used in adnominal functions:

(8)

a. *questo (bel) maglione qui (Italian)
 this (nice) sweater here
 “This (nice) sweater here.”

b. *questo (bel) qui (bel) maglione

In such cases, the reinforcer cannot possibly be adjacent to the demonstrative, but has to be at the end of the phrase. If we take the reinforcer to be the second exponent of the same terminal node as the one of the demonstrative, it is not clear why the two forms are (and must be) separated. However, given that reinforcers are [Focus]-carrying elements, it can be argued that they move to a phrase-peripheral position to satisfy prosodic well-formedness conditions (see Zubizarreta 1998 for prosodically-driven movement deriving Romance VOS orders). Specifically, as stress is assigned to the rightmost constituent in Italian (Cinque 1993), focussed reinforcers prosodically (i.e. after the Morphology) move to the rightmost edge of the phrase to repair the conflict between the Focus Prominence Rule and the Nuclear Stress Rule.

5. The category of reinforcers
Besides accounting for all and only the attested DRCs co-occurrence patterns, the derivation I propose has some welcome consequences for the reinforcers’ categorisation, too. Romance reinforcers are identical to locative adverbs (with some exceptions, most notably: French *-ci*, opposed to the proximal adverb *ici* ‘here’). Economy considerations suggest that they be regarded as one and the same form, rather than as two homophonous lexical entries. However, it can be argued that reinforcers are not locative adverbs, on both theoretical and empirical considerations.

On theoretical grounds, there should be no such thing as DP-internal adverbs, as adverbs are commonly taken to modify either the verbal or the clausal domain, but never the nominal one. The only apparent exception consists of some specific sets of adverbs that modify process nominals:

(9) *i katastrofi tis polis olosheros*

the destruction the city-GEN completely

“The destruction of the city completely.”

(Greek, Alexiadou 2001: 47)

Alexiadou (2001: 47ff.) accounts for this use by making reference to the functional structure of process nominals, that includes a domain with verbal properties: those adverbs are linked to the Aspectual/Voice Phrase inside the nominalised verb, rather than to the nominal itself. If reinforcers were to be considered adverbs, then, they would be an unprincipled exception to this generalisation.
Empirical considerations further argue against a unitary account for locative adverbs and reinforcers. In fact, it can be observed that reinforcers display some idiosyncrasies that distinguish them from locative adverbs.

First, consider adverbial modification:

(10) (Italian)
 a. laggiù / solo qui
 there-down only here
 b. #quel cane laggiù
 that dog there-down
 c. *questo cane solo qui
 this dog only here

While locative adverbs can be modified (10a), this is not the case for reinforcers, for which modification by other locative forms yields semantically deviant phrases (10b), whereas modification by focalising adverbs results in ungrammaticality (10c).\(^\text{12}\)

Secondly, coordination tells apart reinforcers and locative adverbs. For deictic compatibility reasons, disjunctive coordination of \(lì\) and \(là\) (respectively: specific and generic “there”) is taken into consideration here:

(11) (Italian)
 a. ti siedi lì o là?

\(^{12}\) Notice that, although French \(là-bas\) ‘there’ [lit. ‘there-down’] is an apparent exception, -ci ‘here’ and -là ‘there’ still cannot be modified by focalising adverbs (e.g., seulement ‘only’): *ce chien seulement-ci ‘this dog only-here’.
Contrary to locative adverbs (11a), reinforcers cannot be coordinated by disjunctive o ‘or’: (11b) cannot possibly make reference to two different boys located in different places (as it would be the case for quel ragazzo li o quel ragazzo là? ‘that boy there or that boy (over) there?’), nor of course can it refer to one and the same boy.13

Under the Fission account proposed here, reinforcers are additional exponents of DemP, inserted post-syntactically and conditioned by the deictic feature(s) encoded by the demonstrative. Instead, no reference is made to their syntactic environment. This suggests that reinforcers be treated as locative roots that cannot possibly be in any suitable c-commanding configuration so as to assume a category, and that they cannot project. Uncategorised locative roots eventually become locative adverbs when merged in the suitable environment. This way, differences in behaviour between reinforcers and locative adverbs are derived, without overloading the Lexicon.

13 As a reviewer points out, the contrast in (11) could rather be related to the syntactic difference between verbs and nouns. Namely, the verb may have ATB moved out of the coordinated constituent (11a), while such a movement is not available for nouns (11b). More investigation is needed, but for now it can be highlighted that the expression qua e là ‘here and there’ is idiomatic, e.g., in andare qua e là ‘to wander’ (and crucially not, literally, ‘to go here and (to go) there’).
6. Concluding remarks

The core idea of this paper is that Fission can derive the attested combinations of demonstratives and reinforcers in Romance languages, while also ruling out the non-attested patterns. This proposal has two important advantages: first, it naturally accounts for deictic compatibility in a formal way, i.e. considering the featural composition of the combined elements. This makes sense of patterns of co-occurrence of apparently incompatible features, too. Second, it introduces a new analysis for reinforcers: no longer DP-internal adverbs, but simple non-projecting exponents of a fissioned feature bundle.

In addition to the core analysis, I highlighted some open issues, such as these: the possible role that the [Focus] feature plays within Romance demonstrative systems (is just deictic Fission possible, without [Focus] being involved? can [Focus] be the trigger for Fission?) and linearisation issues (does Fission have an intrinsic directionality?). They are left here as open questions, but hopefully they will help to further understand the nature and interaction of deictic features as encoded by demonstrative forms.

Acknowledgements
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement: CoG 681959_MicroContact). I would like to thank my supervisors Roberta D’Alessandro and Jan Casalicchio, the audience of Going Romance 2018, and two anonymous reviewers for their extremely insightful and inspiring comments. All errors are of course my own.

References

