
Gen Relativ Gravit (2009) 41:757–784
DOI 10.1007/s10714-008-0751-0

RESEARCH ARTICLE

Supergravity and M-theory

Bernard de Wit · Maaike van Zalk

Received: 5 December 2008 / Accepted: 17 December 2008 / Published online: 10 February 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Supergravity provides the effective field theories for string compactifica-
tions. The deformation of the maximal supergravities by non-abelian gauge interac-
tions is only possible for a restricted class of charges. Generically these ‘gaugings’
involve a hierarchy of p-form fields which belong to specific representations of the
duality group. The group-theoretical structure of this p-form hierarchy exhibits many
interesting features. In the case of maximal supergravity the class of allowed defor-
mations has intriguing connections with M/string theory.
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1 Introduction

Supergravity provides the effective field theories associated with string compactifica-
tions and serves as a framework for studying a large variety of phenomena. Among
those are topics that have their roots in general relativity, such as black holes and
cosmology. Irrespective of the precise context, supergravity itself leads to many sur-
prises, which, in hindsight, often have an explanation in underlying theories, such as
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M-theory (an extension of string theory). Obviously this connection is at least partly
based on the presence of non-trivial symmetries that are shared by these theories.

Here we discuss the deformations of (maximal) supergravities by non-abelian gauge
interactions and exhibit some of their connections to M-theory. As it turns out, these
deformations are quite restricted and can be classified by group-theoretical methods.
They involve a hierarchy of p-form tensor fields, whose representations under the
supergravity duality group have also been obtained from M-theory in various incarna-
tions. The study of general gaugings of maximal supergravities, which was initiated
in [1,2], led to considerable insight in the general question of embedding a non-abe-
lian gauge group into the rigid symmetry group G of a theory that contains abelian
vector fields without corresponding charges, transforming in some representation of
G (usually not in the adjoint representation). The field content of this theory is fixed
up to possible (Hodge) dualities between p-forms and (d − p − 2)-forms, so that it is
advantageous to adopt a framework in which the decomposition of the form fields is
left open until after specifying the gauging.

The relevance of this approach can, for instance, be seen in four space-time dimen-
sions [3], where the Lagrangian can be changed by electric/magnetic duality so that
electric gauge fields are replaced by their magnetic duals. In the usual setting, one has
to adopt an electric/magnetic duality frame where the gauge fields associated with the
desired gauging are all electric. In principle this may not suffice, as the gauge fields
should also decompose under the embedded gauge group into fields transforming in
the adjoint representation of the gauge group, and fields that are invariant under this
group, so as to avoid inconsistencies. In a more covariant framework, on the other
hand, one introduces both electric and magnetic gauge fields from the start, such that
the desired gauge group can be embedded irrespectively of the particular electric/mag-
netic duality frame. Gauge charges can then be switched on in a fully covariant setting.
Among other things this involves introducing 2-form fields transforming in the adjoint
representation of G. The gauge transformations associated with the 2-form gauge fields
ensure that the number of physical degrees of freedom is not changed.

In this covariant approach the gauge group embedding is encoded in the so-called
embedding tensor, which is treated as a spurionic quantity so as to make it ame-
nable to group-theoretical methods. This embedding tensor was first introduced in
the context of gaugings of three-dimensional maximal supergravity [4,5]. While
every choice of embedding tensor defines a particular gauging and thereby a cor-
responding p-form hierarchy, scanning through all possible choices of the embed-
ding tensor subject to certain group-theoretical representation constraints that it must
obey, enables one to characterize the multiplicity of the various p-forms in entire
G-representations—within which every specific gauging selects its proper subset. This
is precisely the meaning of treating the embedding tensor as a spurionic quantity.

In four space-time dimensions no p-form fields are required in the action beyond
p = 2, but the higher-dimensional case naturally incorporates higher-rank form fields
when switching on gauge charges, thus extending naturally to a hierarchy with a non-
trivial entanglement of forms of different ranks. It may seem that one introduces an
infinite number of degrees of freedom in this way, but, as mentioned already above, the
hierarchy contains additional gauge invariances beyond those associated with the vec-
tor fields. This p-form hierarchy is entirely determined by the rigid symmetry group G
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and the embedding tensor that defines the gauge group embedding into G [2,6] and a
priori makes no reference to an action nor to the number d of space-time dimensions.
As a group-theoretical construct, the p-form hierarchy continues indefinitely, but in
practice it can be consistently truncated in agreement with the space-time properties
(notably the absence of forms of a rank p > d).

In the context of a given Lagrangian the details of the p-form hierarchy will change
and the transformation rules are deformed by the presence of various matter fields. As
a result, the closure of the generalized gauge algebra may involve additional symme-
tries. The hierarchy may turn out to be truncated at a relatively early stage, because the
Lagrangian may be such that the gauge transformations that connect to the higher-p
forms have become trivially satisfied. On the other hand, the (d−1)- and d-forms play
a different role, as was suggested in [6], where this was explicitly demonstrated for
three-dimensional maximal supergravity.

In this paper we review a number of elements of the p-form hierarchy and its connec-
tions to M-theory. In Sect. 2 we give a qualitative introduction to the so-called hidden
symmetries that emerge in torus compactifications of higher-dimensional gravity the-
ories, to appreciate some of the duality symmetries that are relevant for the maximal
supergravities. In a separate Sect. 2.2, we demonstrate how the p-form fields appear
upon the introduction of non-abelian gauge interactions. Section 3 first describes
the pattern obtained for the p-form representations for maximal supergravity with
space-time dimensions d = 3, . . . , 7. In a separate Sect. 3.1 we then try to generalize
this pattern and show that it is in fact more generic. In a second Sect. 3.2 we describe
how the representation content of the p-form gauge fields can be connected to results
obtained in M-theory in a completely different context. In Sect. 4 we deal with generic
gauge theories in four space-time dimensions in order to explain a number of features
relevant for the p-form hierarchy in some more detail.

2 Kaluza–Klein theory and gauge deformations

Supergravity is an extension of general relativity that, in addition, is invariant under
local supersymmetry, which transforms fermionic into bosonic fields and vice versa.
Assuming that supergravity is an interacting field theory based on a finite number of
fields, and that it allows a flat Minkowski space-time with maximal supersymmetry as
a solution, it can be realized in at most D = 11 space-time dimensions with the number
of independent supersymmetries restricted to 32. Supergravity in eleven space-time
dimensions [7] involves only three fields, namely a graviton field gµν , a 3-form gauge
field Aµνρ and a gravitino field ψµ. Space-time indices are consistently denoted by
µ, ν, . . . and, in this case, take the values µ, ν, . . . = 0, 1, 2, . . . , 10. In eleven space-
time dimensions spinors carry 32 components, so that ψµ is a 32-component vector
spinor. Maximal supergravity theories in d space-time dimensions can be obtained by
compactifying 11 − d dimensions on a hyper-torus T 11−d . These compactified theo-
ries exhibit a remarkable invariance group of so-called ‘hidden symmetries’. Defor-
mations of the toroidally compactified theories are generally possible by introducing
gauge interactions whose corresponding gauge group is embedded into the hidden
symmetry group. This will be the topic of the second Sect. 2.2. In a few specific
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cases alternative deformations are possible as well. Of course, compactifications on
non-flat manifolds can also be considered, and most of them will involve a breaking
of supersymmetry. Some of these compactifications may arise as the result of a gauge
deformation of a toroidally compactified theory, but this possibility will be ignored
below.

In the first Sect. 2.1 we discuss the emergence of the ‘hidden symmetry’ group,
first in gravity possibly extended with a tensor and a scalar field, and subsequently in
supergravity.

2.1 Hidden symmetries

As an introduction we first discuss toroidal compactifications of general relativity,
or an extension thereof, following the approach of Kaluza and Klein, who originally
started from five space-time dimensions [8,9]. We first discuss the so-called ‘hidden
symmetries’, demonstrating how the corresponding symmetry group takes a more
interesting form upon including additional fields in the higher-dimensional theory.
Subsequently we restrict ourselves to the massless sector and study general deforma-
tions of these theories by introducing additional gauge interactions. Hence, consider
general relativity in D space-time dimensions, with n dimensions compactified on the
torus T n , so that space-time decomposes according to

MD → Md × T n, (2.1)

where d = D − n. The resulting d-dimensional theory then describes massless gravi-
ton states, n abelian gauge fields (called Kaluza–Klein photons) and 1

2 n(n + 1)mass-
less scalar fields, as well as an infinite tower of massive graviton states. Besides the
d-dimensional general coordinate transformations and the abelian gauge transforma-
tions, the theory turns out to be invariant under the group GL(n), which is non-linearly
realized on the massless scalar fields. The latter fields parameterize the GL(n)/SO(n)
maximally symmetric space. The massive fields are all charged and couple to the
n abelian gauge fields with quantized charges. This restricts the GL(n) invariance
to a discrete subgroup GL(n,Z) which leaves the lattice of Kaluza–Klein charges
invariant.

The pattern of dimensional compactification changes when the dimension d of the
lower-dimensional space-time becomes equal to three. In three space-time dimen-
sions, gravitons no longer carry local degrees of freedom (only topological ones) and
the degrees of freedom residing in the Kaluza–Klein photons can be carried by scalar
fields (here and henceforth we suppress the massive fields to which these photons cou-
ple, and concentrate on the massless sector). Hence the massless sector of the theory
can be entirely formulated in terms of 1

2 n(n + 3) scalar fields. The symmetry group is
now extended from GL(n) to SL(n +1) (which are of equal rank) and the scalar fields
parameterize the space SL(n + 1)/SO(n + 1), which reflects the extended symmetry.

The emergence of hidden symmetries is a well known phenomenon in dimensional
compactification. The rank of the symmetry group in d dimensions is always increased
by n as compared to the rank of the symmetry group in the original D-dimensional
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theory, where n = D − d denotes the number of toroidally compactified dimensions.
Part of these hidden symmetries can be derived directly from a subset of the gauge
transformations in the higher-dimensional ancestor theory, but others are somewhat
less obvious. In toroidal compactifications it can also be shown that, when the mass-
less scalars parameterize a homogeneous space in higher dimensions, this will also be
the case in lower dimensions.

The presence of tensor gauge fields in the D-dimensional theory introduces further
structure. To demonstrate this, consider, for instance, the Lagrangian of general relativ-
ity coupled to an anti-symmetric 2-form tensor field Bµν in D space-time dimensions,

LD = − 1
2
√

g R − 3
4
√

g
(
∂[µBνρ]

)2
. (2.2)

Its toroidal compactification leads to the symmetry group SO(n, n; Z), which again has
rank n. The lower-dimensional theory describes massless states belonging to the grav-
iton, the antisymmetric tensor, and 2n spin-1 and n2 spin-0 states. The massless scalars
parameterize the space SO(n, n; R)/[SO(n; R)× SO(n; R)]. Furthermore there will
be a tower of massive graviton and antisymmetric tensor states. This generic pattern
will now change in space-time dimensions d ≤ 5. In d = 5 dimensions an antisym-
metric tensor gauge field can be dualized to a vector gauge field, whereas, in d = 4
dimensions, a tensor gauge field can be converted into a scalar field.

To make the theory a bit more interesting, let us also include a scalar field in D
dimensions, which couples such that the theory is invariant under certain scale trans-
formations. This means that the theory in D dimensions has an invariance group of
unit rank. Depending on how precisely this scalar field interacts, the following result
may arise in d dimensions (always assuming n = D − d),

d > 5 : G = R
+ × SO(n, n; Z) (n, n) vectors

d = 5 : G = R
+ × SO(n, n; Z) (n, n)+ 1 vectors

d = 4 : G = SL(2; Z)× SO(n, n; Z) (n, n)+ 1 vectors
d = 3 : G = SO(n + 1, n + 1; Z) no vectors

(2.3)

All these symmetry groups have rank n + 1, in agreement with the general theorem.
The massless scalars always parameterize a homogeneous space, namely SO(n, n; R)/

[SO(n; R)×SO(n; R)], which, for d = 4, is multiplied by a SL(2; R)/SO(2; R) factor.
As is well known, supergravity leads to a large variety of such hidden symmetry

groups, including some of the exceptional groups. This is shown in Table 1, where
we list the symmetry group G and its maximal compact subgroup H for maximal
supergravities in space-time dimensions d = 3, . . . , 7. In supergravity the symme-
try group is usually called the duality group, and in this context we will consistently
use this nomenclature. The massless scalar fields then parameterize the homogeneous
space G/H, and H coincides with the so-called R-symmetry group. The latter is the
subgroup of the automorphism group of the supersymmetry algebra that commutes
with the d-dimensional Lorentz transformations.

What we will be interested in is to study all possible deformations of supergravity
theories that are induced by non-abelian gauge interactions. The corresponding gauge
group must obviously be a subgroup of the duality group. The gauge fields, which so
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Table 1 Decomposition of the embedding tensor � for maximal supergravities in various space-time
dimensions in terms of irreducible G representations

d G H �

7 SL(5) USp(4) 10 × 24 = 10 + 15 + 40 + 175

6 SO(5, 5) USp(4)× USp(4) 16 × 45 = 16 + 144 + 560

5 E6(6) USp(8) 27 × 78 = 27 + 351 + 1728

4 E7(7) SU(8) 56 × 133 = 56 + 912 + 6480

3 E8(8) SO(16) 248 × 248 = 1 + 248 + 3875 + 27000 + 30380

Only the underlined representations are allowed according to the representation constraint. The R-symmetry
group H is the maximal compact subgroup of G

far were abelian and coupled only to the massive modes, will now couple also to the
massless fields. Henceforth the massive modes will be discarded. For lower dimensions
one obviously faces a dilemma, because by dualizing the higher-rank form fields one
increases the degree of symmetry. On the other hand one also decreases the number of
gauge fields in this way, and thus seems to constrain the possible gauge groups. The
most extreme example of this is encountered in three space-time dimensions, where
all the gauge fields can in fact be dualized to scalars, upon which the hidden symmetry
group is extended, but on the other hand, there seem to be no gauge fields left to induce
the gauging.

This last puzzle was resolved in [4,5], for maximal supergravity in three
space-time dimensions. This theory does not contain any vector fields, and has the
symmetry group E8(8)(R).1 Namely one adds a Chern–Simons term for as many
gauge fields as there are rigid (continuous) invariances. For maximal supergravity
in three dimensions this implies that one introduces 248 gauge fields, associated with
the hidden symmetry group E8(8)(R),

LCS ∝ g εµνρ Aµ
M �M N

[
∂ν Aρ

N − 1
3 g fP Q

N Aν
P Aρ

Q
]
, (2.4)

where g is the gauge coupling constant, fP Q
N denotes the structure constants associ-

ated with a subgroup of E8(8)(R), and M, N , . . . = 1, 2, . . . , 248. Furthermore,�M N

is a numerical symmetric tensor named the embedding tensor, which encodes the
embedding of the gauge group in E8(8)(R). The structure constants fM N

P are implic-
itly encoded in the embedding tensor, in a way that we will exhibit below. In the next
subsection we will introduce the embedding tensor in a more general context, where
it is not necessarily a symmetric tensor. As we shall see, this set-up leads naturally to
the introduction of a hierarchy of p-form fields.

1 A similar approach was followed subsequently for non-maximal supergravity in three space-time dimen-
sions [10] (see also [11]).
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2.2 Gauge deformations

We start with a theory with abelian gauge fields AµM , that is invariant under a group
G of rigid transformations. The gauge fields transform in a representation Rv of
that group.2 The generators in this representation are denoted by (tα)M

N , so that
δAµM = −	α(tα)N

M AµN , and the structure constants fαβγ of G are defined accord-
ing to [tα, tβ ] = fαβγ tγ . The next step is to select a subgroup of G that will be ele-
vated to a gauge group with non-trivial gauge charges, whose dimension is obviously
restricted by the number of vector fields. The discussion in this section will remain
rather general and will neither depend on G nor on the space-time dimension. We refer
to [1,4,12–14] where a number of results was described for maximal supergravity in
various dimensions.

The gauge group embedding is defined by specifying its generators X M ,3 which
couple to the gauge fields AµM in the usual fashion, and which can be decomposed
in terms of the independent G-generators tα , i.e.,

X M = �M
α tα, (2.5)

where �M
α is the embedding tensor transforming according to the product of the

representation conjugate to Rv, the representation in which the gauge fields trans-
form, and the adjoint representation of G. This product representation is reducible
and decomposes into a number of irreducible representations. Only a subset of these
representations is allowed. For supergravity the precise constraints on the embedding
tensor follow from supersymmetry, but from all applications worked out so far, we
know that at least part (if not all) of the representation constraints is also required for
purely bosonic reasons, such as gauge invariance of the action and consistency of the
tensor gauge algebra. This constraint on the embedding tensor is known as the repre-
sentation constraint. In Table 1 we have also included the representation constraints
for maximal supergravity with d = 3, . . . , 7. It is important to note that we will always
treat the embedding tensor as a spurionic object, which we allow to transform under
G, so that the Lagrangian and transformation rules remain formally G-invariant. Only
at the end we will freeze the embedding tensor to a constant, so that the G-invariance
will be broken. As was shown in [6,15] this last step can also be described in terms
of a new action in which the freezing of �M

α will be the result of a more dynamical
process. This will be discussed in due course.

The embedding tensor must satisfy a second constraint, the so-called closure con-
straint, which is quadratic in �M

α and more generic. This constraint ensures that the
gauge transformations form a group so that the generators (2.5) will close under com-
mutation. Any embedding tensor that satisfies the closure constraint, together with the
representation constraint mentioned earlier, defines a consistent gauging. The closure

2 In even space-time dimensions this assignment may fail and complete G representations may require the
presence of magnetic duals. This was first demonstrated in [3] in four space-time dimensions.
3 The corresponding gauge algebra may have a central extension acting exclusively on the vector fields.
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constraint reads as follows,

QP M
α = �P

β tβM
N�N

α +�P
β fβγ

α�M
γ ≈ 0, (2.6)

and can be interpreted as the condition that the embedding tensor should be invariant
under the embedded gauge group. Hence we can write the closure constraint as,

QM N
α ≡ δM�N

α = �M
β δβ�N

α ≈ 0, (2.7)

where δM and δα denote the effect of an infinitesimal gauge transformation or an
infinitesimal G-transformation, respectively. We indicate that QM N

α is “weakly zero”
(QM N

α ≈ 0) because later on we will introduce a description where the closure
constraint will be imposed by certain field equations. Contracting (2.6) with tα leads
to,

[X M , X N ] ≈ −X M N
P X P . (2.8)

It is noteworthy here that the generator X M N
P and the structure constants of the

gauge group are related, but do not have to be identical. In particular X M N
P is in

general not antisymmetric in [M N ]. The embedding tensor acts as a projector, and
only in the projected subspace the matrix X M N

P is antisymmetric in [M N ] and the
Jacobi identity will be satisfied. Therefore (2.8) implies in particular that X(M N )

P

must vanish when contracted with the embedding tensor. Denoting

Z P
M N ≡ X(M N )

P , (2.9)

this condition reads,

�P
α Z P

M N = Q(M N )
α ≈ 0 . (2.10)

The tensor Z P
M N is constructed by contraction of the embedding tensor with

G-invariant tensors and therefore transforms in the same representation as �M
α —

except when the embedding tensor transforms reducibly so that Z P
M N may actually

depend on a smaller representation. The closure constraint (2.7) ensures that Z P
M N

is gauge invariant. As is to be expected, Z P
M N characterizes the lack of closure of

the generators X M . This can be seen, for instance, by calculating the direct analogue
of the Jacobi identity (in the remainder of this section we assume that the closure
constraint is identically satisfied),

X[N P
R X Q]R

M = 2
3 Z M

R[N X P Q] R . (2.11)

The fact that the right-hand side does not vanish has direct implications for the non-
abelian field strengths: the standard expression

FµνM = ∂µAν
M − ∂ν Aµ

M + g X N P
M A[µN Aν] P , (2.12)
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which appears in the commutator [Dµ, Dν] = −gFµνM X M of covariant derivatives

Dµ ≡ ∂µ − g Aµ
M X M , (2.13)

is not fully covariant. Rather, under standard gauge transformations

δAµ
M = Dµ	

M = ∂µ	
M + g Aµ

N X N P
M	P , (2.14)

the field strength FµνM transforms as

δFµνM = 2 D[µδAν]M − 2g Z M
P Q A[µP δAν]Q

= g	P X N P
M FµνN − 2g Z M

P Q A[µP δAν]Q . (2.15)

This expression is not covariant, not only because of the presence of the second term
on the right-hand side, but also because the lack of antisymmetry of X N P

M prevents
us from obtaining the expected result by inverting the order of indices N P in the first
term on the right-hand side. As a consequence, we cannot use FµνM in the Lagrangian,
because one needs suitable covariant field strengths for the invariant kinetic term of
the gauge fields.

To remedy this lack of covariance, the strategy followed in [1,2] has been to intro-
duce additional (shift) gauge transformations on the vector fields,

δAµ
M = Dµ	

M − g Z M
N P �µ

N P , (2.16)

where the transformations proportional to �µN P enable one to gauge away those
vector fields that are in the sector of the gauge generators X M N

P in which the Jacobi
identity is not satisfied (this sector is perpendicular to the embedding tensor by (2.10)).
Fully covariant field strengths can then be defined upon introducing 2-form tensor
fields BµνN P belonging to the same representation as �µN P ,

Hµν
M = FµνM + g Z M

N P Bµν
N P . (2.17)

These tensors transform covariantly under gauge transformations

δHµν
M = −g	P X P N

MHµν
N , (2.18)

provided we impose the following transformation law for the 2-forms

Z M
N P δBµν

N P = Z M
N P

(
2 D[µ�ν]N P − 2	N Hµν

P + 2 A[µN δAν] P
)
. (2.19)

We note that the constraint (2.10) ensures that

[Dµ, Dν] = − gFµνM X M = − gHµν
M X M , (2.20)

but in the Lagrangian the difference between F M and HM is important.
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Consistency of the gauge algebra thus requires the introduction of 2-form tensor
fields Bµν P N . It is important that their appearance in (2.17) strongly restricts their
possible representation content. Not only must they transform in the symmetric prod-
uct (N P) of the vector field representation as is manifest from their index structure,
but also they appear under contraction with the tensor Z M

N P which in general does
not map onto the full symmetric tensor product in its lower indices, but rather only
on a restricted sub-representation. We will see this explicitly in Sect. 4. It is this
sub-representation of G to which the 2-forms are assigned, and to keep the notation
transparent, we denote the corresponding projector with special brackets ||�N P�||, such
that

Z M
N P Bµν

N P = Z M
N P Bµν

||�N P�|| , etc. . (2.21)

The tensor Z M
N P thus plays the role of an intertwiner between vector fields and

2-forms, which encodes the precise field content of the 2-form tensor fields such that
the consistency of the vector gauge algebra is ensured.

The same pattern continues upon definition of a covariant field strength for the
2-forms and leads to a hierarchy of p-form tensor fields, which is entirely determined
by the choice of the global symmetry group G and its fundamental representation Rv
in which the vector fields transform. In principle this hierarchy continues indefinitely,
but it depends on the actual Lagrangian what its fate will be. Obviously, p can at most
be equal to d. When incorporated into a given Lagrangian the gauge algebra for the
p-forms will be deformed and additional structure will appear. Some of the p-form
gauge fields may carry physical degrees of freedom so they must already be contained
in the ungauged Lagrangian, up to tensor dualities. For instance, in five dimensions, a
vector gauge field and a 2-form gauge field are dual, so that tensor fields are potentially
present in view of the fact that the ungauged Lagrangian contains vector fields (which
are also essential for the gauging). This is a generalization of the phenomenon we
noted before: in three dimensions a scalar and a vector field can be dual. Therefore,
vector fields are in principle available as well, as long as the ungauged Lagrangian
contains scalar fields. The construction based on the Chern–Simons term (c.f. (2.4))
made use of this observation.

Before discussing these topics any further, let us first turn to a discussion of the
hierarchy for the maximal supergravities. In Sect. 4 we will try to further elucidate
the structure of the hierarchy for the case of a generic gauge theory in four space-time
dimensions.

3 The p-form hierarchy for the maximal supergravities

The hierarchy of vector and tensor gauge fields that we discussed in the previous
section can be considered for the maximal gauged supergravities. In that case the
gauge group is embedded in the duality group G, which is known for each space-time
dimension in which the supergravity is defined (see Table 1). Once the group G is
specified, the hierarchy allows a unique determination of the representations of the
higher p-forms. Table 2 illustrates this for the maximal supergravities in d = 3, . . . , 7
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Table 2 Duality representations of the vector and tensor gauge fields for gauged maximal supergravities
in space-time dimensions 3 ≤ d ≤ 7

1 2 3 4 5 6

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s +320

5 E6(6) 27 27 78 351 27+1728

4 E7(7) 56 133 912 133+8645

3 E8(8) 248 1+3875 3875+147250

The first two columns list the space-time dimension and the corresponding duality group

space-time dimensions. We recall that the analysis described in Sect. 2.2 did not
depend on the number of space-time dimensions. For instance, it is possible to derive
the representation assignments for (d+1)-rank tensors, although these do not live in
a d-dimensional space-time (nevertheless, a glimpse of their existence occurs in d
dimensions via the shift transformations of the d-forms in the general gauged theory,
as we shall see in due course). We also observe that the Hodge duality between the
p-form fields that relates the p-forms to the (d − p − 2)-forms is reflected in Table 2,
as the dual form fields appear in conjugate representations of the group G. This duality
depends, of course, sensitively on the space-time dimension, whereas the only input
in the table came from the duality group and the representations of the low-p form
fields.

It is intriguing that the purely group theoretical hierarchy reproduces the cor-
rect assignments consistent with Hodge duality. In particular, the assignment of the
(d − 2)-forms is in line with tensor-scalar duality, as these forms are dual to the
Noether currents associated with the G symmetry. In this sense, the duality group
G implicitly carries information about the space-time dimension. But the hierar-
chy naturally extends beyond the (d −2)-forms and thus to those non-propagating
forms whose field content is not subject to Hodge duality. It is another striking fea-
ture of the hierarchy that the diagonals pertaining to the (d −1)- and d-rank tensor
fields refer to the representations conjugate to those assigned to the embedding tensor
and its quadratic constraint, respectively. This pattern is in fact generic and related
to the special role these forms may play in the Lagrangian [6,15]. We will briefly
discuss this in the next subsection in a general context. In a later Sect. 4 we will
illustrate some of this in the context of a generic gauge theory in four space-time
dimensions.

We recall that the embedding tensor is regarded as a so-called spurionic quantity,
which transforms under the action of G, although at the end it will be fixed to a
constant value. For a specific value of the embedding tensor one is describing a given
gauge deformation. Sweeping out the full space of allowed embedding tensors yields a
�-independent (and G-covariant) result for the representation of p-forms, as is shown
in the table. This approach shows how the required consistency under generic gauge
deformations imposes strong restrictions on the field content of the theory. In the
ungauged theory there is a priori no direct evidence for these restrictions, but in certain
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cases there are alternative arguments, based, for instance, on supersymmetry or on
underlying higher-rank Kac-Moody symmetries, which may motivate the representa-
tion content of the p-forms. Some of this will be discussed in Sect. 3.2.

3.1 More about the hierarchy

Now that we have seen some global features of the p-form algebra, let us briefly discuss
some more generic aspects. As it turns out the p-forms transform in a
sub-representation of the rigid symmetry group G of the theory that is contained in the
p-fold tensor product R⊗p

v , where Rv denotes the representation of G in which the
vector fields transform. In many cases of interest this is the fundamental representation.
We denote these fields by

[1]
A M ,

[2]
B ||�M N�||,

[3]
C ||�M||�N P�||�||,

[4]
C ||�M||�N ||�P Q�||�||�||,

[5]
C ||�M||�N ||�P||�Q R�||··�||, etc., (3.1)

where we have suppressed space-time indices, and the special brackets ||� · · · �|| are intro-
duced to denote the relevant sub-representations of R⊗p

v , just as was done for p = 2
in (2.21).

Assuming that the theory contains p-form fields and that one must also allow for
the presence of the dual p-forms, the question arises what the significance is of the
d- and (d−1)-forms that appear in Table 2, as those are not dual to any other forms. In
order to explore this further, let us consider the high-p sector of the hierarchy, starting
with the (d − 3)- and the (d − 2)-forms, transforming in the representations that are
conjugate to those assigned to the 1- and the 2-forms [15]. In view of the fact that
the theory is invariant under the group G prior to switching on the gauge couplings,
there exists a set of conserved 1-forms given by the Noether currents, transforming in
the adjoint representation, which are dual to the (d−2)-forms. Hence we expect these
forms to belong to the adjoint representation. Furthermore we expect (d −3)-forms
that are dual to the vector fields, to transform in the G-representation Rv∗, which is
conjugate to the vector field representation Rv. When considering these high-rank
p-forms it is convenient to switch to a notation adapted to this particular field content
and to identify the (d−3)- and (d−2)-forms as,

[d−3]
C M1||�M2||�···Md−3�||··�|| ∼ [d−3]

C M , (3.2)
[d−2]
C M1||�M2||�···Md−2�||··�|| ∼ [d−2]

C α .

We may then explicitly study the end of the p-form hierarchy by imposing the general
structure in a schematic form,

δ
[d−3]
C M = (d − 3)D

[d−4]
 M + · · · − g YM

α
[d−3]
 α ,

δ
[d−2]
C α = (d − 2)D

[d−3]
 α + · · · − g Yα,M

β
[d−2]
 M

β ,
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δ
[d−1]
C M

α = (d − 1)D
[d−2]
 M

α + · · · − g Y M
α,P Q

β
[d−1]
 P Q

β ,

δ
[d]
C M N

α = d D
[d−1]
 M N

α + · · · − g Y M N
α,P Q R

β
[d]
 P Q R

β ,

δ
[d+1]
C P Q R

α = (d + 1)D
[d]
 P Q R

α + · · · , (3.3)

where we have indicated the most characteristic terms in the p-form transformations.
We included the transformations associated to the (d +1)-form. Although this form
does not exist in d dimensions, its associated gauge transformations still play a role
as they act on the d-form gauge fields, as is exhibited above.

The above schematic result (3.3), as well as the rest of the hierarchy, contains sev-
eral new intertwining tensors Y that connect the representations associated with two
successive form fields. Formally they may be considered as a map

Y [p] : R⊗(p+1)
v −→ R⊗p

v , (3.4)

which has a non-trivial kernel whose complement defines the representation content
of the (p + 1)-forms that is required for consistency of the deformed p-form gauge
algebra. The lowest-rank intertwining tensors are given by

Y [0] : Rv −→ Radj, Y [1] : R⊗2
v −→ Rv , (3.5)

corresponding to p = 0, 1, with (Y [0])αM = �M
α and (Y [1])M

P Q = Z M
P Q . For

higher p, the intertwining tensors can be defined recursively, as was demonstrated in
[6]. All intertwining tensors are proportional to the embedding tensor and they must
be mutually orthogonal,

Y [p] · Y [p+1] ≈ 0 . (3.6)

This is a generalization of (2.10). More explicitly, the orthogonality relations read,

Y K2||�K3||�···K p�||··�||
M1||�M2||�···Mp�||··�|| Y M1||�M2||�···Mp�||··�||

N0||�N1||�···Np�||··�|| ≈ 0 , (3.7)

where ‘weakly zero’ indicates that the expression vanishes as a consequence of the
quadratic constraint (2.6) on the embedding tensor.

It can be shown that the intertwining tensors appearing in (3.3) take the form, [15],

YM
α = �M

α ,

Yα,M
β = δα�M

β ,

Y M
α,P Q

β = − ∂QP Q
β

∂ �M
α
,

Y M N
α,P Q R

β = −δM
P Y N

α,Q R
β − X P Q

M δN
R δ

β
α

−X P R
N δM

Q δ
β
α + X Pα

β δN
R δ

M
Q . (3.8)
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It is straightforward to verify that these intertwining tensors satisfy the mutual orthog-
onality property (3.7), and one easily derives,

YM
α Yα,N

β ≈ 0 ,

Yα,N
β Y N

β,P Q
γ ≈ 0 ,

Y M
α,K L

β Y K L
β,P Q R

γ ≈ 0 . (3.9)

There is an additional identity which holds identically, without making reference to
the constraint (2.7),

Y M N
α,P Q R

β QM N
α = 0 . (3.10)

The relevance of this result will be discussed below.
From (3.8) we can now directly read off the representation content of the (d−1)-

and the d-forms that follows from the hierarchy: the form of Yα,Mβ and Y M
α,P Q

β

shows that these forms transform in the representations dual to the embedding tensor
�M

β and the quadratic constraint QP Q
β , respectively. As such, they can naturally

be coupled, acting as Lagrange multipliers enforcing the property that the embedding
tensor is space-time independent and gauge invariant [6]. This idea has been worked
out explicitly in the context of maximal supergravity in three space-time dimensions,
and subsequently it has been argued that this situation can also be realized in a more
general context [15]. Hence we view the embedding tensor as a space-time dependent
scalar field, transforming in the G-representation that is allowed by the representa-
tion constraint. To the original Lagrangian L0 which may depend on p-forms with
p ≤ d − 2, we then add the following terms,

L = L0 + LC, (3.11)

with

LC ∝ εµ1···µd
{

d g Cµ2···µd
M
α Dµ1�M

α + g2 Cµ1···µd
M N

α QM N
α
}
. (3.12)

Note that the identity (3.10) ensures that this Lagrangian is invariant under the shift
transformation of the d-rank tensor field. Variation of this Lagrangian with respect to
�M

α(x) leads to the following expression,

δLC ∝ −g εµ1···µd δ�M
α

×
[
d Dµ1Cµ2···µd

M
α + g Y M

α,P Q
β Cµ1···µd

P Q
β + d g Aµ1 Yα,N

β Cµ2···µd
N
β

]
.

(3.13)

This result can be written as follows,

δLC ∝ −g εµ1···µd
[
Hµ1···µd

M
α + d A[µ1

M Hµ2···µd ] α + · · ·
]
δ�M

α, (3.14)
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by including unspecified terms involving form fields of rank p ≤ d − 2. These terms
are expected to arise from the �-variation of the Lagrangian L0, but they cannot be
evaluated in full generality as this depends on the details of the latter Lagrangian. We
return to this issue in the next section where we study the situation in four space-time
dimensions.

3.2 M-theory

It is an obvious question whether the systematic features shown in Table 2 have a
natural explanation in terms of M-theory. Supergravity may already contain some of
the fields that carry charges that are required for some of these gaugings. Indeed, we
already noted in Sect. 2.1 that the towers of massive Kaluza–Klein states carry charges
that couple to the Kaluza–Klein gauge fields emerging from the higher-dimensional
metric. This is of direct relevance to the so-called Scherk-Schwarz reductions [16].
However, these Kaluza–Klein states cannot generally be assigned to representations
of the duality group and therefore there must be extra degrees of freedom whose origin
cannot be understood within the context of a dimensional compactification of super-
gravity.4 This phenomenon was discussed some time ago, for instance, in [17,18].

General gaugings of maximal supergravity constructed in recent years obviously
extend beyond gaugings whose charges can be fully understood from supergravity
degrees of freedom in higher dimensions. The duality covariant embedding tensor
encodes all the possible charges which must somehow have their origin in M-theory.
Indeed there are indications that this is the case. In this way the gauging acts as a probe
of M-theory degrees of freedom.

Independent evidence that this relation with M-theory degrees of freedom is real-
ized, is provided by the work of [19] (see also, [17] and references quoted therein)
where matrix theory [20,21] is considered in a toroidal compactification. This work is
based on the correspondence between N = 4 super-Yang-Mills theory in n+1 dimen-
sions (n ≤ 9), on a (rectangular) spatial torus T̃ n with radii s1, . . . , sn , and M-theory
in the infinite-momentum frame on the dual torus T n with radii R1, R2, . . . , Rn , where
si = l3

p/R11 Ri . Here lp denotes the Planck length in eleven dimensions and R11 is the
length of the compactified eleventh dimension. The latter dimension, together with
the time dimension and the spatial dimensions that do not belong to T n constitute the
d-dimensional space-time that is relevant in the comparison. Just as before d = 11−n.

The conjecture is that M-theory should be invariant under both the permutations
of the radii Ri and under T-duality of type-IIA string theory. The relevant T-duality
transformations follow from making two consecutive T-dualities on two different cir-
cles. When combined with the permutation symmetry, T-duality can be represented
by (i �= j �= k �= i)

Ri → l3
p

R j Rk
, R j → l3

p

Rk Ri
, Rk → l3

p

Ri R j
, l3

p → l6
p

Ri R j Rk
. (3.15)

4 In view of the fact that the Kaluza–Klein states are 1/2-BPS, also these extra degrees of freedom must
correspond to 1/2-BPS states.
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The above transformations generate a discrete group which coincides with the Weyl
group of En ; on the Yang-Mills side, the elementary Weyl reflections correspond to per-
mutations of the compactified coordinates (generating the Weyl group of SL(n)) and
to Montonen-Olive duality geff → 1/geff (corresponding to reflections with respect
to the exceptional node of the En Dynkin diagram). This Weyl group, which leaves
the rectangular shape of the compactification torus invariant, can be realized as a dis-
crete subgroup of the compact subgroup of En(n), and consequently as a subgroup
of the conjectured non-perturbative duality group En(n)(Z) [22]. Representations of
this symmetry can now be generated by mapping out the Weyl orbits starting from
certain states. For instance, one may start with Kaluza–Klein states on T n , whose
masses are proportional to M ∼ 1/Ri . The action of the Weyl group then generates
new states, such as the ones that can be identified with two-branes wrapped around
the torus, whose masses are of order M ∼ R j Rk/ l3

p , and so on. To be specific, let us
consider the situation for n = 4 and d = 7 and start from the four Kaluza–Klein states
with masses M ∼ 1/Ri , where i = 1, 2, 3, 4. Upon the action of (3.15), we find six
two-brane states wrapped on T 4. Repeated application of (3.15) does not give rise to
new states, so that we find precisely ten particle states (i.e., massive charged particle
states from the seven-dimensional perspective):

10 particle states

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4 KK states on T 4 : M ∼ 1

Ri

6 two-brane states wrapped on T 4 : M ∼ R j Rk

l3
p

(3.16)

Here j �= k. The pointlike charges associated with these states can couple to ten gauge
fields, and this is precisely the number of 1-forms in Table 2 for d = 7.

Likewise we can consider 2-brane states wrapped on T 4 ×R
11, where R

11 denotes
the eleventh dimension, which has been compactified to size R11. There are four
such states with masses M ∼ R11 Ri/ l3

p . Application of (3.15) now leads to only

one additional state, corresponding to a five-brane wrapped on T 4 × R
11. Hence

we find five stringlike states, from the perspective of the seven-dimensional space-
time,

5 string states

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4 two-brane states wrapped on T 4 × R
11 : M ∼ R11 Ri

l3
p

1 five-brane state wrapped on T 4 × R
11 : M ∼ R11 R1 R2 R3 R4

l6
p

(3.17)

Altogether we thus have a multiplet consisting of five different string states, which can
couple to five different 2-form fields. This is precisely the number of 2-forms listed
in Table 2 for d = 7.

Similar arguments apply to the other states, except that when the representation
has weights of different lengths, one needs several different Weyl orbits to recover all

123



Supergravity and M-theory 773

states in the representation. For instance, there are only 2160 states for E8(8), which
must be supplemented by eight-brane states to obtain the full 3875 representation of
E8(8). In this way one obtains complete multiplets of the duality group (taking into
account that some states belonging to the representation will vanish under the Weyl
group and will therefore remain inaccessible by this construction).

The representations in the table were also found in [23], where a ‘mysterious duality’
was exhibited between toroidal compactifications of M-theory and del Pezzo surfaces.
Here the M-theory dualities are related to global diffeomorphisms that preserve the
canonical class of the del Pezzo surface. Again the representations thus found are in
good agreement with the representations in Table 2.

For n = 9, the multiplets given in [19] have infinitely many components. Indeed,
there are hints that the above considerations concerning new M-theoretic degrees of
freedom can be extended to infinite-dimensional duality groups. Already some time
ago [24] it was shown from an analysis of the indefinite Kac–Moody algebra E11
that the decomposition of its so-called L1 representation at low levels under its finite-
dimensional subalgebra SL(3)× E8 yields the same 3875 representation that appears
for the two-forms shown in Table 2. This analysis has meanwhile been extended [25–
28] to other space-time dimensions and higher-rank forms, and again there is a clear
overlap with the representations in Table 2. Nevertheless it remains far from clear
what all these (infinitely many) new degrees of freedom would correspond to, and
how they would be concretely realized. Concerning the physical interpretation of the
new states, a first step was taken in [29], where an infinite multiplet of BPS states
is generated from the M2 brane and M5 brane solutions of D = 11 supergravity by
the iterated action of certain A(1)1 subgroups of the E9 Weyl group. For more recent
work, see [30]. In the context of gauged supergravities, the significance of these states
may become clearer with the exploration of maximal gauged supergravities in two
space-time dimensions [31], where the embedding tensor transforms in the so-called
basic representation of E9 (which is infinite dimensional).

4 The p-form hierarchy in four space-time dimensions

In this section we present the p-form hierarchy for a generic d = 4 dimensional
gauge theory, following earlier work in [3,32–34]. Although matters will become
more complicated towards the end, we hope that this illustrates a number of charac-
teristic features. First of all, we will see that the p-form fields belong to restricted
representations, as was noted previously. Then we will exhibit the fact that the gauge
transformations of the hierarchy are deformed when considered in the context of a
specific Lagrangian, rather than as an abstract algebra. And finally, we will be more
explicit (although we will refrain from giving all the details) about the introduction of
the 3- and 4-form fields. For simplicity we suppress the gravitational interactions and
consider a Lagrangian depending on n abelian gauge fields Aµ	 (so that	 = 1, . . . , n,
where n has no relation to the torus dimension, as in the previous sections). We start
without charged fields so that the gauge fields Aµ	 appear exclusively through the
field strengths, Fµν	 = 2 ∂[µAν]	.
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The field equations for these fields and the Bianchi identities for the field strengths
comprise 2n equations,

∂[µFνρ]	 = 0 = ∂[µGνρ]	, (4.1)

where

Gµν 	 = εµνρσ
∂L

∂Fρσ	
, (4.2)

where we use a metric with signature (−,+,+,+) and ε0123 = 1 denotes the four-
dimensional Levi-Civita symbol in four Minkowskian dimensions.

It is convenient to combine the tensors Fµν	 and Gµν	 into a 2n-dimensional
vector,

Gµν
M =

(
Fµν	

Gµν	

)

, (4.3)

so that (4.1) reads ∂[µGνρ]M = 0. Obviously, these 2n equations are invariant under
real 2n-dimensional rotations of the tensors Gµν

M ,

(
F	

G	

)

−→
(

F̃	

G̃	

)

=
(

U	
� Z	�

W	� V	�

)(
F�

G�

)

. (4.4)

The first half of the rotated tensors can be adopted as new field strengths defined
in terms of new gauge fields, and constraints on the remaining tensors can then be
interpreted as field equations belonging to some new Lagrangian L̃ expressed in terms
of the new field strengths F̃µν	, with G̃µν = εµνρσ ∂L̃/∂ F̃ρσ	. In order that such a
Lagrangian exists, the real matrix in (4.4) must belong to the group Sp(2n; R). This
group consists of real matrices that leave the skew-symmetric tensor �M N invariant,

� =
(

0 1
−1 0

)
. (4.5)

The conjugate matrix�M N is defined by�M N�N P = −δM
P .5 The Sp(2n; R) trans-

formations are known as electric/magnetic dualities, which also act on electric and
magnetic charges (for a review of electric/magnetic duality, see [35]). The Lagrangian
depends on the electric/magnetic duality frame and is therefore not unique. Different
Lagrangians related by electric/magnetic duality lead to equivalent field equations
and Bianchi identities, and thus belong to the same equivalence class. Since the rela-
tionship (4.4) between the old and the new field strengths is not a local one, the new

5 Here we employ an Sp(2n,R) covariant notation for the 2n-dimensional symplectic indices M, N , . . .,
such that Z M = (Z	, Z	). Likewise we use vectors with lower indices according to YM = (Y	, Y	),
transforming according to the conjugate representation so that Z M YM is invariant under Sp(2n; R).
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Lagrangian can in general not be obtained by straightforward substitution. Instead one
may derive,

L̃(F̃)+ 1
8ε
µνρσ F̃µν

	 G̃ρσ	 = L(F)+ 1
8ε
µνρσ Fµν

	 Gρσ	, (4.6)

up to terms independent of Fµν	. Clearly the Lagrangian does not transform as a
function, since

L̃(F̃) �= L(F), (4.7)

but the combination,

L(F)+ 1
8ε
µνρσ Fµν

	 Gρσ	, (4.8)

does, in view of (4.6).6

When L remains unchanged under the duality transformation, i.e. when

L̃(F̃) = L(F̃), (4.9)

then the theory is invariant under the corresponding transformations. It is usually dif-
ficult to verify this equation explicitly. Instead one may verify that the substitution
Fµν	 → F̃µν	 into the derivatives ∂L(F)/∂Fµν	 correctly induces the symplectic
transformations of the field strengths Gµν	. In this case, the linear combination (4.8),
which can also be written as L(F)− 1

2 Fµν	 ∂L(F)/∂Fµν	, must be an invariant func-
tion under Fµν	 → F̃µν	. Note that in the literature the word duality is used both for
equivalence and for invariance transformations. But the duality group G introduced
before, includes only those Sp(2n; R) transformations that satisfy (4.9).

For clarity we first consider a sub-class of the duality transformations consisting of
those transformations (4.4) for which Z = 0. These are the transformations that act
locally on the various fields, as can be seen from the fact that F̃	µν = U	

� Fµν� .
Because the transformation must belong to Sp(2n; R), it follows U V T = 1 and
that U TW is a symmetric matrix. Using (4.6) and (4.9), one easily derives that the
Lagrangian changes by a total derivative,

L(U	
� F�) = L(F	)− 1

8ε
µνρσ (U TW )	� Fµν

	Fρσ
� . (4.10)

So far we have only indicated the dependence on the field strengths Fµν	, but other
fields may be present as well and will transform locally among themselves. Their
transformations have to be included in (4.9).

We now consider the introduction of a non-abelian gauge group that will act
non-trivially on the vector fields and must therefore involve a subgroup of the duality
group. Because the duality group acts both on electric and on magnetic charges, in

6 When the field equations of the vector fields are imposed, the Lagrangian does in fact transform as a
function under electric/magnetic duality.
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view of the fact that it mixes field strengths with dual field strengths as shown by
(4.4), we must eventually introduce magnetic gauge fields Aµ	 as well, following the
procedure explained in [3]. The 2n gauge fields AµM will then comprise both type
of fields, AµM = (Aµ	, Aµ	). The role played by the magnetic gauge fields will be
clarified later. For the moment one may associate Aµ	 with the dual field strengths
Gµν 	, by writing Gµν 	 ≡ 2 ∂[µAν]	.

The gauge group generators (as far as their embedding in the duality group is con-
cerned) are then defined as follows. The generators of the subgroup that is gauged, are
2n-by-2n matrices X M , where we are assuming the presence of both electric and mag-
netic gauge fields, so that the generators decompose according to X M = (X	, X	).
Obviously X	N

P and X	N
P can be decomposed into the generators of the duality

group and are thus consistent with the infinitesimal form of the transformations (4.4).
Denoting the gauge group parameters by	M (x) = (		(x),		(x)), 2n-dimensional
Sp(2n; R) vectors Y M and Z M transform according to

δY M = −g	N X N P
M Y P , δZ M = g	N X N M

P Z P , (4.11)

where g denotes a universal gauge coupling constant. Covariant derivatives thus take
the form,

DµY M = ∂µY M + g Aµ
N X N P

M Y P

= ∂µY M + g Aµ
	 X	P

M Y P + g Aµ	 X	P
M Y P , (4.12)

and similarly for DµZ M . The gauge fields then transform according to

δAµ
M = Dµ	

M = ∂µ	
M + g X P Q

M Aµ
P 	Q . (4.13)

After replacing ordinary by covariant derivatives and field strengths, the Lagrangian
is in general not invariant. To see this, let us consider gauge transformations belong-
ing to the subgroup considered earlier, for which the field transformations take a local
form. Hence we set X	N

P = 0 so that the magnetic gauge fields will not enter and
X	�� = 0. In this case we can make use of the result (4.10). As before the Lagrangian
is not invariant and it changes with the covariantized form of the variation (4.10),

L → L + 1
8 ε

µνρσ 		 X	�� Fµν�Fρσ �, (4.14)

where the tensors Fµν	 denote the non-abelian field strengths,

Fµν	 = ∂µAν
	 − ∂ν Aµ

	 + g X��
	 A[µ� Aν]� . (4.15)

Consequently, the variation of the Lagrangian is no longer a total derivative when the
gauge parameters are space-time dependent functions. To obtain a variation that is
equal to a total derivative, one must include a new term in the Lagrangian [36],

L = 1
3 g εµνρσ X	�� Aµ

	Aν
�

(
∂ρ Aσ

� + 3
8 g X��

� Aρ
�Aσ

�
)
. (4.16)
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In the case of more general gauge group embeddings, this term is not sufficient and
extra terms will have to be introduced as soon as also the magnetic gauge fields are
present.

We now consider more general gauge groups without restricting ourselves to elec-
tric charges. Therefore we must include both electric gauge fields Aµ	 and magnetic
gauge fields Aµ	. Only a subset of these fields is usually involved in the gauging,
but the additional magnetic gauge fields could conceivably lead to new propagating
degrees of freedom. We will see in due course how this is avoided. The charges X M N

P

correspond to a more general subgroup of the duality group. Hence they must take
values in the Lie algebra associated with Sp(2n,R), which implies,

X M[N
Q �P]Q = 0 . (4.17)

Furthermore we impose the representation constraint that was discussed earlier. In this
case the constraint implies that we suppress a representation of the rigid symmetry
group in X M N

P [3],

X(M N
Q �P)Q = 0 ⇒

⎧
⎪⎪⎨

⎪⎪⎩

X (	��) = 0,
2X (�	)� = X�	�,
X(	��) = 0,
X(�	)� = X�	� .

(4.18)

Observe that the generators X	�� are not necessarily antisymmetric in	 and�; their
antisymmetric part appears in the field strengths (4.15). The symmetric part defines
the tensor Z P

M N according to (2.9). In the case at hand we derive, using (4.18),

Z P
M N = 1

2�
P R�R

α tαM
Q �N Q, (4.19)

which shows that the symmetric index pair (M N ) of Z P
M N is restricted to the adjoint

representation of the rigid symmetry group G. Henceforth we use the notation,

X(M N )
P = Z P

M N = Z P,α dαM N , (4.20)

where

dα M N ≡ (tα)M
P �N P ,

Z M,α ≡ 1
2�

M N�N
α ⇒

{
Z	α = 1

2�
	α,

Z	α = − 1
2�	

α .
(4.21)

Note, however, that when the symmetry group G is not simple, then the indicesα, β, . . .
above will be restricted to the invariant subgroup that acts on the vector fields. The ten-
sor Z M,α takes only non-zero values for those indices α. Hence the 2-forms transform
in a restricted sub-representation (namely the adjoint representation) of the symmetric
tensor product, as we stressed earlier.
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Let us now consider the closure constraint (2.7), which gave rise to the orthogonal-
ity relation between the embedding tensor and the tensor Z . In the case at hand this
implies,

Z M α �M
β dαP Q = 1

2�
M N �M

β�N
α dαP Q = Q(P Q)

β ≈ 0 . (4.22)

In case the gauge group is embedded into a simple group then �M N �M
α�N

β =
2�	[α�	β] ≈ 0. When the group G is not simple, then the indices α, β, . . . refer
only to the invariant subgroup that acts on the vector fields. This shows that the
charges induced by the gauging must be mutually local, meaning that there exists an
electric/magnetic duality transformation such that all the non-trivial gauge charges
become electric. In the remainder of the text we will assume that we are dealing with a
simple symmetry group G, both for convenience and because this reflects the situation
encountered in the maximal supergravity theories.

Let us continue to derive the p-form hierarchy for this specific example. First of all,
one replaces the electric field strengths Fµν	 = 2∂[µAν]	 in the original ungauged
Lagrangian by the electric components of the modified field strengths (2.17), which
in the case at hand are written as,

Hµν
M = FµνM + gZ M,αBµν α . (4.23)

Here we used the definition

Bµνα = dαM N Bµν
M N . (4.24)

Furthermore one replaces the ordinary derivatives (on the matter fields) by covariant
ones, as specified in (4.12). Finally one adds a universal set of terms to the Lagrangian,
which generalize (4.16). The Lagrangian thus takes the following form [3],

Ltotal = L0 + Ltop, (4.25)

where L0 is the original (ungauged) Lagrangian with the field strengths Fµν	 replaced
by covariant field strengths Hµν

	, and the space-time derivatives ∂µ by covariant
derivatives Dµ. The term Ltop is the generalization of (4.16), and reads,

Ltop = 1
8 gεµνρσ�	αBµνα

(
2∂ρ Aσ	 + gX M N	Aρ

M Aσ
N − 1

4 g�	
βBρσβ

)

+ 1
3 gεµνρσ X M N	Aµ

M Aν
N

(
∂ρ Aσ

	 + 1
4 gX P Q

	Aρ
P Aσ

Q
)

+ 1
6 gεµνρσ X M N

	Aµ
M Aν

N
(
∂ρ Aσ	 + 1

4 gX P Q	Aρ
P Aσ

Q
)
. (4.26)

The combined Lagrangian (4.25) is gauge invariant provided the embedding tensor
�M

α is constant and satisfies the closure constraint (2.7). The gauge transformations
for the 1- and 2-form gauge fields have already been defined earlier in the context of an
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abstract p-form hierarchy, but as invariance of the Lagrangian they acquire a different
form [3,34],

δAµ
M = Dµ	

M − g Z M,α �µα,

δBµνα = 2 D[µ�ν]α + 2 dαM N A[µMδAν]N − 2 dαM N GµνM	N

− g Yα,M
βµν

M
β , (4.27)

where

Gµν 	 = εµνρσ
∂L0

∂Hρσ
	
, (4.28)

is the covariant version of (4.2) and �µα = dαM N �µ
M N . The covariant derivative

of the transformation parameter �µα equals Dµ�ν α = ∂µ�ν α − g AµM X Mα
β �ν β

with X Mα
β = −�M

γ fγαβ the gauge group generator in the adjoint representation of
G. Observe that we have also included a 3-form gauge transformations with parameter
µν

M
β in (4.27). As long as the closure constraint is satisfied, this transformation is

irrelevant, since the 2-form field appears in the Lagrangian multiplied with Z M,α ,
which vanishes upon contraction with Yα,Mβ by virtue of the closure constraint (c.f.
(3.9)). This is the reason why the p-form hierarchy is truncated at p = 2.

For what follows, it is convenient to present alternative expressions for the inter-
twining tensors [6,15],

Yα,M
β = tαM

N �N
β − X M

β
α ,

Y M
α,P Q

β = − δP
M Yα,Q

β − (X P )Q
β,M

α ,

Y M N
α,P Q R

β = − δP
M Y N

α,Q R
β − (X P )Q R

β,M N
α, (4.29)

where the last terms (X M ) denote the generators in the representation conjugate to
the representations associated with the p = 2, 3, 4 form fields. The above expressions
are useful when performing explicit calculations. Note that all intertwining tensors
are linear in the embedding tensor as well as in the generators (tα)M

N or in the struc-
ture constants fαβγ . As was emphasized previously these tensors do not cover all the
(irreducible) representations that are allowed by their index structure. For instance, the
fact that the representation constraint (4.18) remains zero under the action of the rigid
symmetry group, i.e. δα(X(M N

Q �P)Q) = 0, implies that the following contraction
must vanish, Yα,(Mβ dβN P) = 0. Therefore the corresponding representations of the
3-form field proportional to δM

(N dαP Q) times a symmetric three-rank tensor will
decouple from the hierarchy [2,6].

It is possible to go beyond the p = 2 truncation and introduce a 3- and a 4-form
field by making use of the observations at the end of Sect. 3.1. Hence we introduce a
3-form field CµνρM

α and a 4-form field Dµνρσ M N
α . At the same time we relax the

constraints on the embedding tensor, which we allow to be a space-time dependent field
that transforms in the representation allowed by the representation constraint (4.18),
but which will not be subject to the closure constraint (2.7). The 3- and 4-form fields
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then play the role of Lagrange multipliers that impose the constancy of the embedding
tensor and the closure constraint. Now the Lagrangian takes the form

Ltotal = L0 + Ltop + LC, (4.30)

where the first two terms are as before and the third term coincides with (3.12) applied
to this particular case,

LC = − 1
48ε

µνρσ
{

4g Cνρσ
M
α Dµ�M

α + g2 Dµνρσ
M N

α QM N
α
}
. (4.31)

Since the first two terms in (4.30) are only gauge invariant for a constant embedding
tensor satisfying the closure constraint, there will be new variations proportional to
Dµ�M

α or QM N
α , which must be absorbed by the variations of (4.31). This require-

ment fixes the gauge transformation laws of the 3- and 4-form gauge fields. Note that
the sub-representation in the 3-form field proportional to δM

(N dαP Q) decouples from
the Lagrangian, in view of the identity Dµ�(MαdαN P) = 0. This is in accord with
our discussion below (4.29).

The calculation of these variations is tedious but straightforward. A brief perusal
of the variations shows that in the variation of L0, these terms originate from new
variations of the covariant field strengths and the covariant derivatives. To see this we
first note that the formal closure of the gauge algebra is affected,

[X M , X N ] = −X M N
P X P + QM N

αtα . (4.32)

Furthermore the Ricci identity (2.20) is modified,

[Dµ, Dν] = −gFµνM X M +
[
2g A[µM Dν]�M

α − g2 A[µM Aν]N QM N
α
]

tα

= −gHµν
M X M

+
[
2g A[µM Dν]�M

α − g2(A[µM Aν]N − Bµν
M N )QM N

α
]

tα.

(4.33)

The transformation of the field strengths Hµν
M will therefore become more compli-

cated. Using (4.27) one finds the following result,

δHµν
M = −g	N X N P

MGµν P − g	N X P N
M (G − H)µν P +�Hµν

M , (4.34)

where�Hµν
M contains the new variations proportional to Dµ�M

α or QM N
α . These

take the form,

�Hµν
M = −2g A[µN Dν]�N

α tαP
M	P + g�[µαDν]�N

α �M N

+ g2 A[µN Aν] P	Q
(
QN P

αtαQ
M + QQN

αtαP
M

)

− 1
2 g2	PQN P

α�M N Bµνα − 1
2 g2µν

N
α�

M PQP N
α . (4.35)
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All these extra terms arise from the fact that the closure constraint no longer holds,
and that the embedding tensor and related quantities are not constant and not gauge
invariant anymore.

A similar result exists for the variation of a covariant derivative on a field trans-
forming according to some representation of the gauge group,

δ(Dµ) = g	M X M Dµ+�(Dµ), (4.36)

where the second term is again proportional to Dµ�M
α or QM N

α . This term takes
the form,

�(Dµ) =
(

g	M Dµ�M
α − g2	M Aµ

N QM N
α + g2�µ

M N Q(M N )
α
)

tα.

(4.37)

The effect of the new variations of the field strengths and covariant derivatives thus
lead to a new variation of the Lagrangian L0,

�L0 = −1

4
εµνρσGρσ	 �Hµν

	 + δL0

δ(Dµ)
�Dµ . (4.38)

What remains is to also evaluate the extra variations of the Lagrangian Ltop defined
in (4.26), which are also proportional to Dµ�M

α or QM N
α . All these variations must

then cancel against the variations of (4.31), provided one assigns the following gauge
transformations to the 3- and 4-form gauge fields (for conciseness, we suppress the
contributions coming from the second term in (4.38)),

δCµνρ
M
α = 3 D[µνρ]M

α − 3 A[µMδBνρ]α + 3 G[µνM�ρ]α

+ 2 dαP Q A[µM Aν
PδAρ]Q − g Y M

α,P Q
β ϒµνρ

P Q
β ,

δDµνρσ
M N

α = 4 D[µϒνρσ ]M N
α+	MHµνρσ

N
α+3(B[µν(M N )−2A[µM Aν

N )δBρσ ]α

+ 6 G[µνMρσ ]N
α + 2 dαP Q A[µM Aν

N Aρ
PδAσ ]Q

+ 4δA[µM Cνρσ ]N
α − g Y M N

α,P Q R
β �µνρσ

P Q R
β. (4.39)

Here, the transformations parameterized by the functionsϒµνρM N
α and�µνρσ M N P

α

are associated with the tensor gauge transformations of the 4- and 5-form fields. Of
course, 5-form fields do not exist in a four-dimensional space-time, but this transfor-
mation still has some effect as it acts by a shift transformation on the 4-form field.
The invariance of the Lagrangian under this transformation is ensured by the iden-
tity (3.10). Furthermore, Hµνρσ

M
α is the covariant field strength associated with the

3-form field,
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Hµνρσ
M
α

= 4 D[µCνρσ ]M
α+12 dαP Q A[µM Aν

P
(

Gρσ ]Q − 2

3
∂ρ Aσ ]Q − 1

2
gX RS

Q Aρ
R Aσ ]S

)

− 3 B[µνα
(

2(G − H)ρσ ]M + gZ M,βBρσ ]β
)

+ 4 gYα,P
β A[µM Cνρσ ] P

β

+ g Y M
α,P Q

β Dµνρσ
P Q

β. (4.40)

In defining this field strength we made use of our earlier observation that certain
sub-representations of the 3-form field decouple from the theory.

At this point we have established the invariance of the Lagrangian (4.30). Rather
than giving further calculational details which will be published elsewhere, we close
with a number of comments. First of all, we have already observed that the p-form
transformations obtained from the invariance of a certain Lagrangian, differ from the
transformations that are obtained along the lines presented in Sect. 2.2. Nevertheless
there exists a relation between these two sets of transformation rules. Namely they
tend to be identical up to (Hodge) duality relations between p-forms, some of which
are satisfied as a result of the field equations. However, as we know from [6], this
relationship is only partially realized and there exist some unexpected invariances in
Lagrangians such as (4.30) that are necessary for obtaining a consistent interpretation.
This can be seen, in principle, by evaluating the commutator algebra based on the
theory above, which will close up to these additional transformations.

Another intriguing feature of our result, which was noticed also in [6], is that for
Lagrangians quadratic in derivatives, one can, in principle, integrate out the embed-
ding tensor field�M

α . Although the resulting Lagrangian tends to be complicated and
non-polynomial, it should encode all possible gaugings of this type. Whether or not
this intriguing observation has any practical importance remains to be seen. We hope
to return to these and related questions in the future.

Acknowledgments We are grateful to Hermann Nicolai and H. Samtleben for discussions. The work of
M.v.Z. is part of the research program of the ‘Stichting voor Fundamenteel Onderzoek der Materie (FOM)’,
which is financially supported by the ‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)’.
This work is also supported by NWO grant 047017015.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Note added in proof We include two recent papers on the p-form hierarchy in four space-time dimen-
sions. The first one relates a modification of the representation constraint (4.18) to anomaly cancellation
[37]. The second one considers the extension of the hierarchy with 3- and 4-form fields, and is directly
related to the material presented in Section 4 [38].

References

1. de Wit, B., Samtleben, H., Trigiante, M.: The maximal D = 5 supergravities, Nucl. Phys. B716, 215
(2005). hep-th/0412173

2. de Wit, B., Samtleben, H.: Gauged maximal supergravities and hierarchies of nonabelian vector-tensor
systems. Fortsch. Phys. 53, 442 (2005). hep-th/0501243

123



Supergravity and M-theory 783

3. de Wit, B., Samtleben, H., Trigiante, M.: Magnetic charges in local field theory. JHEP 09, 016 (2005).
hep-th/0507289

4. Nicolai, H., Samtleben, H.: Maximal gauged supergravity in three dimensions. Phys. Rev. Lett. 86,
1686 (2001). hep-th/0010076

5. Nicolai, H., Samtleben, H.: Compact and noncompact gauged maximal supergravities in three-dimen-
sions. JHEP 0104, 022 (2001). hep-th/0103032

6. de Wit, B., Nicolai, H., Samtleben, H.: Gauged supergravities, tensor hierarchies, and M-theory. JHEP
02, 044 (2008). arXiv 0801.1294 [hep-th]

7. Cremmer, E., Julia, B., Scherk, J.: Supergravity theory in 11 dimensions. Phys. Lett. 76, 409 (1978)
8. Kaluza, Th.: Zum Unitätsproblem in der Physik. Sitzungsber.Preuss. Akad. Wiss. Berlin 1921, 966
9. Klein, O.: Quantentheorie und fünfdimensionale relativitätstheorie. Z. F. Physik 37, 895 (1926)

10. de Wit, B., Herger, I., Samtleben, H.: Gauged locally supersymmetric D = 3 nonlinear sigma models.
Nucl. Phys. B671, 175 (2003). hep-th/0307006

11. de Wit, B., Nicolai, H., Samtleben, H.: Gauged supergravities in three dimensions: a panoramic over-
view. In: Proceedings of 27th Johns Hopkins Workshop on Current Problems in Particle Theory:
Symmetries and Mysteries of M-Theory, Goteborg, Sweden, 24–26 Aug(2003). hep-th/0403014

12. Samtleben, H., Weidner, M.: The maximal D = 7 supergravities. Nucl. Phys. B725, 383 (2005).
hep-th/0506237

13. de Wit, B., Samtleben, H., Trigiante, M.: The maximal D = 4 supergravities. JHEP, 06, 049 (2007).
arXiv:0705.2101 [hep-th]

14. Bergshoeff, E., Samtleben, H., Sezgin, E.: The gaugings of maximal D=6 supergravity. JHEP 03, 068
(2008). arXiv:0712.4277 [hep-th]

15. de Wit, B., Samtleben, H.: The end of the p-form hierarchy. JHEP 08, 015 (2008). arXiv 0805.4767
[hep-th]

16. Scherk, J., Schwarz, J.H.: How to get masses from extra dimensions. Nucl. Phys. B 153, 61–88 (1979)
17. Obers, N.A., Pioline, B.: U-duality and M-theory. Phys. Rept. 318, 113–225 (1999). hep-th/9809039
18. de Wit, B., Nicolai, H.: Hidden symmetries, central charges and all that. Class. Quant. Grav. 18,

3095–3112 (2001). hep-th/0011239
19. Elitzur, S., Giveon, A., Kutasov, D., Rabinovici, E.: Algebraic aspects of matrix theory on T d . Nucl.

Phys. B509, 122–144 (1998). hep-th/9707217
20. de Wit, B., Hoppe, J., Nicolai, H.: On the quantum mechanics of supermembranes. Nucl. Phys.

B 305, 545 (1988)
21. Banks, T., Fischler, W., Shenker, S.H., Susskind, L.: M-Theory as a matrix model: a conjecture. Phys.

Rev. D55, 5112 (1997). hep-th/9610043
22. Hull, C., Townsend, P.K.: Unity of superstring dualities. Nucl. Phys. B438, 109 (1995). hep-th/9410167
23. Iqbal, A., Neitzke, A., Vafa, C.: A mysterious duality. Adv. Theor. Math. Phys. 5, 769–808 (2002).

hep-th/0111068
24. West, P.C.: E(11) origin of brane charges and U-duality multiplets. JHEP 08, 052 (2004).

hep-th/0406150
25. Riccioni, F., West, P.: The E(11) origin of all maximal supergravities. JHEP 07, 063 (2007).

arXiv:0705.0752 [hep-th]
26. Bergshoeff, E.A., De Baetselier, I., Nutma, T.A.: E(11) and the embedding tensor. JHEP 09, 047 (2007).

arXiv:0705.1304 [hep-th]
27. Riccioni, F., West, P.: E(11)-extended spacetime and gauged supergravities. JHEP 0802, 039 (2008).

arXiv:0712.1795 [hep-th]
28. Bergshoeff, E.A., Hohm, O., Nutma, T.A.: A note on E11 and three-dimensional gauged supergravity.

JHEP 0805, 081 (2008). arXiv:0803.2989 [hep-th]
29. Englert, F., Houart, L., Kleinschmidt, A., Nicolai, H., Nassiba, T.: An E9 multiplet of BPS states. JHEP

05, 065 (2007). hep-th/0703285
30. Bergshoeff, E.A., Hohm, O., Kleinschmidt, A., Nicolai, H., Nutma, T.A., Palmkvist, J.: E10 and gauged

maximal supergravity. arXiv:0810.5767 [hep-th]
31. Samtleben, H., Weidner, M.: Gauging hidden symmetries in two dimensions. JHEP 08, 076 (2007).

arXiv:0705.2606 [hep-th]
32. Schön, J., Weidner, M.: Gauged N = 4 supergravities. JHEP 05, 034 (2006). hep-th/0602024
33. Derendinger, J.P., Petropoulos, P.M., Prezas, N.: Axionic symmetry gaugings in N = 4 supergravities

and their higher-dimensional origin. Nucl. Phys. B785, 115 (2007). arXiv:0705.0008 [hep-th]
34. de Vroome, M., de Wit, B.: Lagrangians with electric and magnetic charges in N = 2 supersymmetric

gauge theories. JHEP 08, 064 (2007). arXiv:0707.2717 [hep-th]

123



784 B. de Wit, M. van Zalk

35. de Wit, B.: Electric-magnetic duality in supergravity. Nucl. Phys. Proc. Suppl. 101, 154 (2001). hep-
th/0103086

36. de Wit, B., Lauwers, P.G., Van Proeyen, A.: Lagrangians of N = 2 supergravity-matter systems. Nucl.
Phys. B 255, 569 (1985)

37. De Rydt, J., Schmidt, T.T., Trigiante, M., Van Proeyen, A., Zagermann, M.: Electric/magnetic duality
for chiral gauge theories with anomaly cancellation. JHEP 12, 105 (2008). arXiv:0808.2130[hep-th]

38. Bergshoeff, E.A., Hartong, J., Hohm, O., Huebscher, M., Ortin, T.: Gauge theories, duality relations
and the tensor hierarchy, arXiv:0901.2054[hep-th]

123


	Supergravity and M-theory
	Abstract
	1 Introduction
	2 Kaluza--Klein theory and gauge deformations
	2.1 Hidden symmetries
	2.2 Gauge deformations

	3 The p-form hierarchy for the maximal supergravities
	3.1 More about the hierarchy
	3.2 M-theory

	4 The p-form hierarchy in four space-time dimensions
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


