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CHAPTER 1

Introduction

This thesis concerns itself with the interplay between two worlds: the world of
(abstract) computability theoryﬂ on the one hand, and the world of category and
topos theory, on the other. Before we proceed to exhibit the subject matter of
the thesis more precisely in Section[I.2]below, we will first describe the historical
developments that led to this research in Section Next, we demarcate the
contents of the thesis more specifically by discussing the scope of the research,
and some limitations, in Section|1.3] Finally, we provide a brief overview of the
thesis (Section , and set forth some conventions and notation that will be
used throughout the thesis (Section [L5)).

1.1 Historical overview

The subject matter of this thesis finds its origins in Stephen Cole Kleene’s
groundbreaking paper [Kle45] on number realizability, where he proposes an
interpretation of intuitionistic arithmetic. This section aims to explain how
Kleene’s work eventually led to research on computability theory and topos
theory, and their rich interplay. First, in Section [[.I.1] we describe the birth
of realizability in Kleene’s paper [Kle45|, and some developments that led up
to this. Next, Section describes the subsequent research on realizability
up until the late 1970s. Then, in Section topos theory enters the scene

IThis discipline also goes by the name ‘recursion theory’. The latter finds its origin in the
theory of the primitive recursive, and later, the general recursive functions. Since this thesis
is mostly concerned with more abstract notions of computability, the name ‘computability
theory’ seems most appropriate for our purposes. However, we will also use the term ‘recursion
theory’ occasionally.
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with Martin Hyland’s construction of the effective topos, and his collaboration
with Peter Johnstone and Andrew Pitts in developing tripos theory. Finally,
Section [I.1.4] describes some major strands of further research on realizability
toposes that will be relevant for us in Section [1.2)

An overview article of the history of realizability in the twentieth century
is the paper [vO02], which serves as the most important secondary source for
the first three sections below. A more recent overview article on categorical
approaches to computability theory (of which the study of realizability toposes is
only a part) is the paper [HS21]. The book [vO08] is a monograph on categorical
approaches to realizability specifically.

1.1.1 The origins of realizability

Often in mathematics, a worthwile new strand of research is created by com-
bining ideas from fields that are, up to that point, unrelated, or at least whose
relation is not clear. In the case of Kleene’s paper [Kle45|, these fields are:
intuitionistic mathematics, and in particular its metamathematics, on the one
hand, and recursion theory on the other. Intuitionistic mathematics was de-
veloped in the first quarter of the twentieth century by Luitzen Egbertus Jan
Brouwer and is most (in)famous for its rejection of the Law of the Excluded
Middle (LEM). It is important to note, though, that this rejection is merely a
consequence of Brouwer’s philosophy of mathematics, which is grounded in the
a priori intuition of time. In this sense, Brouwer’s philosophy can be said to
be broadly Kantian; unlike Kant, however, Brouwer does not take the intuition
of space to be a priori as wellE| Thus, mathematics is, in the first instance, a
mental activity that proceeds exclusively in time. Indeed, according to Brouwer,
‘the objects of mathematics are mental constructions in the mind of the (ideal)
mathematician’ [Trolll p.157]. One result of this philosophy is that mathemat-
ics is not a formal endeavour. So while Brouwer aims to rebuild mathematics
on an intuitionistic basis, he does not formulate this intuitionistic basis as any
kind of formal system. Instead, this intuitionistic basis consists of basic princi-
ples (some of which not only reject, but blatantly contradict LEM) that mostly
receive a philosophical motivation.

The task of giving a more formal treatment of intuitionistic mathematics was
taken up by others, most prominent among whom is Brouwer’s student Arend
Heyting. This led to the development of formal systems for intuitionistic propo-
sitional and predicate logic, arithmetic and analysis. Attempts were also made
to elucidate the notion of intuitionistic proof, the most well-known among these
being the Brouwer-Heyting-Kolmogorov (‘BHK’) interpretation. For example,
according to the BHK interpretation, to prove a conditional statement of the
form A — B is to give a construction, or a procedure that could in principle be
carried out, transformating any proof of A into a proof of B. However, these
developments left plenty to be desired for the mathematician who wishes to

2More generally, in the twentieth century, Kant’s conception of Euclidean geometry as an
a priori synthetic science grounded in the intuition of space had fallen out of favor. This was
largely due to the discovery of non-Euclidean geometry and its applications in physics.
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reason classically. Indeed, the aforementioned clause of the BHK interpretation
refers to a primitive notion of ‘construction’ or ‘procedure’ that can arguably be
understood only by someone already on board with the intuitionistic project.
Even worse, any attempt to clarify this primitive notion will likely use implica-
tions, which must be understood intuitionistically. This would make the account
circular, from the point of view of the classical mathematician. The formal sys-
tems of intuitionistic mathematics at least allow the classical mathematician to
(formally) prove theorems in intuitionistic mathematics. However, especially
at the level of analysis, it also allows one to prove theorems that are clasically
refutable, the most famous example being the theorem that every function from
the reals to the reals is continuous. This could lead to worries about the con-
sistency of such formal systems; indeed, the classical mathematician will be
hard-pressed to obtain models of formal systems that refute LEM! As we will
see below, realizability provides one way to address this worry.

Another result of Brouwer’s philosophy of mathematics is the insistence on
the fact that mathematical objects can (in principle) be constructed. Indeed,
Brouwer’s intuitionism is a species of constructive mathematicsﬁ The construc-
tive nature of intuitionistic mathematics also shows itself in the BHK interpre-
tation, where proofs of certain statements should be constructions of some kind.
But as we saw above, this is a primitive, informal notion of construction. How-
ever, towards the end of the 1930s, mathematical logic had developed a formal,
mathematical notion of construction, or at least of a computation or algorithm
on the natural numbers. Proposals for such a notion were made by, among oth-
ers, Turing (Turing machines), Church (the lambda calculus) and Kleene himself
(the partial recursive functions). They proved the equivalence of these notions,
thereby obtaining a robust definition of a computable partial function on the
natural numbers. The Church-Turing Thesis states that any partial function on
the natural numbers which is (in principle) intuitively computable, is a partial
recursive function.

Around 1940, the constructive nature of intuitionistic mathematics led Kleene
to conjecture the following (see also [KleT3| p.4]). Suppose a sentence of the
form Vx 3y A(z,y) is provable in a formal system of intuitionistic arithmetic.
Then there must be a computable function f on the natural numbers such that
for each natural number n, the sentence A(n, f(n)) is true. Using the Church-
Turing Thesis, one can require this function f to be recursive, which turns the
conjecture into a mathematical statement (cf. Church’s Rule in Section[1.1.2] be-
low). In order to prove this conjecture, Kleene devised, for each natural number
e and sentence A in the language of arithmetic, a notion ‘e realizes A’. Before we
can give Kleene’s definition, which is by induction on A, we need some notation.
Let (-,-): N> — N be a primitive recursive coding of pairs of natural numbers,
such that the decoding functions, that we will denote by (-)g and (+)1, are also

3The adjectives ‘intuitionistic’ and ‘constructive’ are sometimes used interchangably, but it
seems more appropriate to say Brouwer’s intuitionism is a kind of constructive mathematics. It
is certainly not the only kind, nor, arguably, the first (see also [Troll]). Moreover, nowadays
‘intuitionistic’ can refer more broadly to predicative mathematics (e.g., Martin-Lof’s type
theory), which can be understood both constructively and classically.
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primitive recursive. Moreover, for a natural number e, write . for the partial
recursive function with Godel number e. The definition of number realizability
is then as follows:

e If A is atomic, then e realizes A iff A is true. In particular, no natural
number realizes L.

e e realizes A A B iff eg realizes A and e; realizes B.
e erealizes AV B iff either ey = 0 and e; realizes A, or eg = 1 and e realizes
B.

e realizes A — B iff, for any realizer a of A, we have that . (a) is defined
and a realizer of B.

e realizes Va A(x) iff, for every natural number n, we have that ¢.(n) is
defined and a realizer of A(n).

o ¢ realizes 3z A(x) iff e; realizes A(eg).

The reader will notice that the clause for implication is reminiscent of the
corresponding clause of the BHK interpretation: a realizer of A — B should
code an algorithm that turns realizers of A into realizers of B. In fact, the other
clauses of the realizability are similarly analogous to the corresponding clauses
of the BHK interpretation. It should be mentioned, however, that Kleene’s
definition has the advantage over the BHK interpretation that, unlike the latter,
it is intelligible to the classical mathematician without further ado. Interestingly,
the BHK interpretation was not what inspired Kleene’s definition of number
realizability, as transpires from his remarks in [Kle73].

The relevant system of intuitionistic arithmetic is nowadays known as Hey-
ting Arithmetic, and denoted by HA. In [Kle45], Kleene proved the following
theorem: if a sentence A is provable in Heyting Arithmetic (denoted HA F A),
then A is realized by some natural number. In particular, if HA + Va 3y A(z, y),
then Vo 3y A(x,y) must have a realizer. From this is follows easily that there
exists a recursive function f such that A(n, f(n)) is realizable for every natural
number n. This is not quite Kleene’s conjecture yet, since not every realizable
sentence is actually true (see also below)! But Kleene was able to adjust his re-
alizability definition to obtain the following result: if HA + Vz 3y A(x,y), then
there exists a recursive function f such that HA + A(n, f(n)) for each natural
number n. This does yield Kleene’s conjecture, since every theorem of HA is
true.

Realizability can be used for other purposes besides proving Kleene’s con-
jecture. For example, one may construct a formula A(z) in the language of
arithmetic such that =Vz (A(z) V —A(z)) has a realizer. (Here we use =B as an
abbreviation of B — 1.) From this it follows that HA + —Vz (A(z) V - A(z)) is
consistent, for this particular formula A(z). Therefore, we see that realizability
can establish the consistency of theories that refute classical logic. Moreover,
from Kleene’s adjusted realizability definition mentioned above, one can also
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derive the disjunction and existence properties for HA, which had previously
been established for intuitionistic predicate logic (without axioms). These state,
respectively: if HA F AV B, then HA - A or HA F B; and if HA F 3z A(x),
then for some natural number n, we have HA F A(n). So we see that realiza-
bility can also be used to establish properties of intuitionistic formal systems.

1.1.2 Subsequent developments in realizability

As we saw in the previous section, realizability can be used to prove the consis-
tency of (classically refutable) principles, and to establish properties of formal
intuitionistic systems. In the decades following Kleene’s paper [Kle45], many
variations on realizability were introduced in order to obtain results of a similar
character.

As was already realized by Kleene himself, the definition of ‘e realizes A’ for
any given sentence A can be formalized in Heyting Arithmetic itself; see [Kle45],
or [Nel47] by Kleene’s student David Nelson for a more detailed exposition. In-
deed, the clauses for number realizability above mention a primitive recursive
pairing of the natural numbers, which can be respresented in HA, and recur-
sive function application (in terms of their Gédel numbers). The latter can be
formulated using Kleene’s T-predicate and U-function. The predicate T'(z,y, 2)
expresses ‘z codes a (finished) computation performed by the Turing machine
with Gédel number x when presented with input 3’, and the U-function extracts
the final output result from such a computation z. Both T and U are primitive
recursive, hence can be represented in HA as well. Let us write xyl A A(zy)
as an abbreviation of 3z (T'(z,y, z) A A(U(z))). Now, we may, for each formula
A in the language of arithmetic, define a new formula z r A, where x does not
occur free in A, and where the free variables of z r A are among z and the free
variables of A. The definition is by induction on A and mimics the definition of
number realizability. For example, the clause for universal quantification reads:

zrVyA(y) =Vy(zyl Azy r Ay)).

The main result is then that every theorem of HA is provably realizable in HA.
That is, if HA F A, then HA 3z (x r A). Using a variation of formalized
realizability called g-realizability, one may obtain what is known as Church’s
Rule for HA:

it HA F Vo 3y A(z,y), then HA F 32V (zzl A A(z, 2z)).

This is stronger than Kleene’s conjecture above, since it implies that we may
take f to be provably total in HA. Let us list some further variations on
realizability; we will not spell out any technical details, but only give the main
ideas and/or the main results derived from these notions of realizability.

Modified realizability was introduced by Kreisel in 1959 [Kre59]. In order to
explain its main idea, consider a sentence of the form

Vo 3dyA(z,y) — B, (1.1)
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where for simplicity, we assume that A is atomic. Realizers of Va Iy A(z,y) are
essentially Godel numbers of total recursive functions that assign to each x a
witness y of A(x,y) (and a realizer for A(x,y), but this gives no information if
A is atomic). A realizer e of the formula in must then send such Godel
numbers to realizers of B. Here we ‘forget’ that the input of e is supposed to
code a total recursive function. Modified realizability takes this into account.
Not only must a realizer e of send realizers of V 3y A(z, y) to realizers of B.
Also, if we feed e the Godel number of a total recursive function (which can be
said to be of the ‘appropriate form’ to realize a sentence like V. 3y A(z,y)), then
the result must be defined and, in fact, be of the ‘appropriate form’ to realize
B (which may be a complex sentence). So we see that modified realizability
‘remembers’ more about the structure of the formula to be realized than ordinary
realizability. Modified realizablity can be used to show, among other things, that
Markov’s Principle:

Vo (A(z) V —A(z)) A -3z A(z) — Fz A(x)

is not derivable in HA.

We should mention that the notion of modified realizability explained above
is not Kreisel’s original notion, which he devised for a version of Heyting Arith-
metic with higher types, denoted by HA®. The system HA® has a model
known as the Hereditarily Recursive Operations (HRO), which is definable in
HA. This yields an interpretation of Kreisel’s definition in untyped intuitionis-
tic arithmetic, which is what we have explained here.

Eztensional realizability was first defined in the early 1980s [Pit81]. Consider,
again, the sentence in . If the sentence Va Iy A(x, y) has a realizer, then it
will have many realizers: indeed, any total recursive function has infinitely many
indices. But two realizers of Va 3y A(x,y) could also code different recursive
functions, for A(x,y) may have multiple witnesses y. Such realizers can be said
to differ in an ‘extensional’ way. The idea of extensional realizability is to take
the extensional behavior of the realizers into account. Thus, a realizer of
should send ‘extensionally equivalent’ (i.e., coding the same function) realizers
of VxIy A(z,y) to ‘extensionally equivalent’ realizers of B. It turns out that
there are several non-equivalent ways of doing this. In [vO91], two versions are
discussed. One is based on ‘collapsing” HRO into an extensional type structure,
denoted by HRO®, while the other is based on the type structure of Hereditarily
Effective Operations (HEO). Interestingly, while HROY and HEO are equivalent
as type structures (this was first proved in [Bez85]; see also [LN15| Section 9.2
for a modern treatment), the resulting two notions of extensional realizability
are not equivalent.

Lifschitz realizability was introduced in the late 1970s [Lif79], where Lifschitz
used it to show that the scheme known as Church’s Thesis (CTy):

Ve Iy A(z,y) — 2V (zzl A Az, zz))
does not follow from the related scheme CTy!:

ValyA(z,y) — FzVa (zad A Az, zz))
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Here the quantifier 3! stands for ‘there exists a unique ...’. Note that, while
CTy! roughly states that every definable total function is recursive, CTy states
that every definable total relation contains a recursive function, so the latter
principle asserts some kind of (countable) choice.

As we explained above, Kreisel’s original notion of realizability was designed
for intuitionistic arithmetic in higher types, which lands one in the realm of
intuitionistic analysis. Another notion of realizability designed for analysis is
Kleene’s function realizability. While versions of it occurred earlier in the liter-
ature, the standard reference for function realizability is [KV65]. Here, Kleene
and Vesley introduce a system of intuitionistic analysis which has some highly
non-classical consequences, such as the fact that every real function is contin-
uous. It is shown that every theorem of the system is realizable with respect
to function realizability, which in particular establishes the consistency of the
system. In function realizability, the realizers are not natural numbers, but
functions from the natural numbers to the natural numbers. In addition, in
order for a sentence to count as realizable, it should not merely have a realizer,
but it should have a recursive realizer. This is in fact a very early example of a
general pattern that has become known as relative realizability, more on which
in Section [[.1.4] below.

The notions of realizability discussed above all exploit some notion of compu-
tation on natural numbers, or in the case of function realizability, computation
on functions. One may also consider more ‘abstract’ notions of computability.
One example of such a more abstract notion is the A-calculus. While this can
certainly be used to represent numerical functions, we can also treat it as an
abstract calculus and then consider various of its models. There is in fact an
older such calculus, known as combinatory logic, defined by Moses Schénfinkel
in [Sch24] (see [Sch67] for an English translation) and studied later by Haskell
Curry in [Cur30]. Combinatory logic contains certain special constant symbols,
called combinators, that allow one to perform computations. In fact, every
model of the A-calculus is also a model of combinatory logic. In the 1970s, John
Staples gave an abstract notion of realizability where the realizers are terms
of combinatory logic [Sta73]. A few years later, Solomon Feferman introduced
a partial version of combinatory logic [Fef75], where the ‘partiality’ takes into
account that the application of an algorithm to an input may not terminate.
The models of Feferman’s calculus are known as partial combinatory algebras
(PCAs), or sometimes as ‘models of computation’, or ‘Schonfinkel algebras’
[Joh13]. It is useful to think of the elements of a PCA simultaneously as (codes
of) algorithms and as inputs to such algorithms. We can apply an element of a
PCA (thought of as an algorithm) to another element (thought of as an input),
and this may or may not yield an outcome. As we will see below, these very
general models of computation give rise to the class of realizability toposes. In
fact, function realizability arises from a partial combinatory algebra, which is
now known as Kleene’s second model.

The list of variations on realizability given here is certainly not exhaustive.
For example, Gédel’s Dialectica interpretation [God58] is decidedly realizability-
like. More recently, Krivine has devised a realizability notion for classical set
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theory [Kri09]. A monumental overview of all the realizability notions existing
at the time, and their applications, is [Tro73)].

Besides the development of variations on realizability, some attention was
also directed at studying the properties of realizability itself. One result in this
area is that for any sentence A, we have HA + 3z (z r A) + Jy(y r Jx(z r A4)),
i.e., ‘realizability is idempotent’ [Tro73, Theorem 3.2.16]. Another result is
the aziomatization of realizability. Given the notion of formalized realizability,
a natural question to ask is which sentences are provably realizable in HA.
As we have seen above, this includes at least the theorems of HA. But this
is not all, for there is a scheme, slightly more general than CT(y and known as
Extended Church’s Thesis (ECTg) which is not provable in HA, but is provably
realizable in HA. It turns out that adding ECT( to HA completely axiomatizes
realizability, in the sense that HA + 3z (z r A) if and only if HA + ECTy - A.
Moreover, we have HA + ECTy F A > 3z (z r A), so from the point of view of
HA + ECTg, truth and realizability coincide. These results can be found, e.g.,
in [Tro73, Theorem 3.2.18].

1.1.3 The effective topos and tripos theory

As we have seen in the previous section, realizability and its many variations
can be used to establish various results on intuitionistic formal systems. As
such, up to the late 1970s, realizability was primarily a proof-theoretic tool,
and treatments of realizability were thus of a rather syntactical nature. Around
1980, Hyland, together with Johnstone and Pitts, created a wholly new, more
semantical approach to realizability, by combining realizability with topos the-
ory [Hyl82].

Topos theory originated from Alexander Grothendieck’s pioneering work in
algebraic geometry, which led to the notion of a category of sheaves on a site,
also known as a Grothendieck topos. These toposes are sometimes referred to as
‘generalized spaces’, because they vastly generalize point-set topology. At the
same time, Grothendieck toposes behave very much like the category of sets,
and can thus be regarded as a ‘universe for doing mathematics’. More precisely,
every Grothendieck topos can be regarded a model for higher-order many-sorted
predicate logic. Crucially, the internal logic of a Grothendieck topos need not
be classical, so Grothendieck toposes yields models of constructive mathemat-
ics. Around 1970, William Lawvere and Myles Tierney isolated a number of
elementary properties of Grothendieck toposes that suffice for interpreting con-
structive mathematics, leading to the definition of an elementary topos. Here
‘elementary’ refers to the fact that the definition of an elementary topos, unlike
that of a Grothendieck topos, does not depend on the category of sets. In fact,
a Grothendieck topos can also be defined as an elementary topos that satisfies
some additional properties that depend on set theory, and in particular, on a
notion of ‘smallness’.

The paper [Hyl82] constructs an elementary topos where the internal logic is
governed by recursive function application. For this reason, this topos is known
as the effective topos, and is usually denoted by £ff. This topos has a natural
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numbers object, which means that we can interpret higher-order intuitionistic
arithmetic in Eff. For first-order arithmetic, one gets that the sentences that
are true internally in Eff are precisely those that are realizable in Kleene’s
original sense. In this way, the effective topos can be said to be a ‘topos for
number realizability’. But £ff is much more than that: being a topos, it yields
a model of higher-order arithmetic and analysis. For example, we know that
the axiom scheme CTy is true in Eff, since every instance is realizable. Using
quantification over functions, we can also formulate a version of Church’s Thesis
as a single axiom, which is known as CT:

V130Vl (ex) A ex = f(x)).

Here the superscript indicates the type of a variable, i.e., e and x are meant to
range over the natural numbers, whereas f ranges over functions from the set of
natural numbers to itself. Internally in Eff, CT is true, as is the theorem that
every real function is continuous. Another important example of a classically
false result that holds in Eff was described in [Hyl88] and [HRR90]. Here it is
shown that one may construct an internal category in Eff which is complete (in
a suitable, internal sense), but not a preorder.

Crucially, the effective topos is not a Grothendieck topos, which means
that it yields a genuinely new model of constructive mathematics. However,
the construction of Eff bears some resemblance to the construction of cer-
tain Grothendieck toposes, namely the localic Grothendieck toposes. These are
toposes of sheaves on a complete Heyting algebra H, which may alternatively
be described as the category of H-valued sets [FS79]. The construction can be
decomposed into two steps. First, one constructs a model of many-sorted intu-
itionistic predicate logic without equality, where the sorts are sets. The possible
predicates on a set X come from the set #*, which is also a complete Heyting
algebra when ordered pointwise. The Heyting structure is used to interpret the
connectives, while the completeness of the Heyting algebra is used to interpret
the quantifiers. In the second stage, one ‘adds equality’, which yields the topos
of H-valued sets. The construction of the effective topos proceeds similarly,
but here the possible predicates on X are in P(N)¥. This set is preordered as
follows: ¢ < ¢ iff there is an e € N such that, for all z € X and n € p(z),
we have enl and en € v¥(x). With this preorder, P(N)* becomes a Heyting
prealgebra, but it is not a complete one. However, it is still possible to interpret
the quantifiers, and adding equality in a way analogous to the case of H-valued
sets yields exactly the effective topos.

This led to the following question: ‘is there a common generalisation, with
useful properties, of the constructions of H-valued sets and of the effective
topos?’ |Pit02) p.265]. The answer to this question was given in [HJP80] and
[Pit81], which introduce the notion of a triposﬁ This notion generalizes the
first step in the construction of both H-valued sets and the effective topos, and
for any tripos, one can ‘add equality’, producing a corresponding topos. The

4Officially, this is an acronym for Topos Representing Indexed Partially Ordered Set, but
unofficially, it is a pun on the name of the famous mathematics exam in Cambridge.
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construction of the tripos underlying £ff (which is known as the effective tri-
pos) works equally well when P(N) is replaced by P(A), where A is a partial
combinatory algebra. By the general theory of triposes, each PCA A then gives
rise to a topos, which is called its realizability topos and denoted by RT(A).

Since the discovery of the effective topos and the more general class of reali-
zability toposes, many variations on realizability have found a ‘second home’ in
the world of topos theory as well. As we mentioned above, function realizability
actually arises from a relative PCA, more on which below. We briefly discuss
the other variations on realizability we mentioned.

e The paper [vO97Dh] describes a topos for modified realizability. It turns
out that this topos is a subtopos of Eff(Set™), the realizability topos
constructed over the Sierpinski topos Set™ rather than the topos of sets.
In fact, the picture can be painted in a bit more detail: the effective topos
is an open subtopos of Eff(Set™), and the modified realizability topos is
its closed complement. Alternatively, the modified realizability topos can
also be described as a genuine realizability topos (i.e., of the form RT(A))
for a relative ordered PCA (more on which below); see [Hof06, p.253].

o The thesis [Pit81] also describes a topos for the ‘HEO version’ of exten-
sional realizability. In [vO97a], it is shown that this extensional realiza-
bility topos is a subtopos of a realizability topos for an ordered PCA. On
the other hand, Pitts’ extensional realizability topos cannot itself be of
the form RT(A).

o The thesis [vO91] describes a topos for Lifschitz realizability, and shows
that it is a subtopos of £ff. The Lifschitz realizability topos cannot itself
be of the form RT(A) because the axiom of countable choice, which holds
in every realizability topos, fails in it. Compare this with Lifschitz’ original
application of his realizability notion discussed on page [6]

Even a result such as the idempotence of realizability received a topos theoretic
version in the form of the effective monad [Pit81] chapter 7].

In the next section, we will proceed to discuss further research on realizability
toposes. We should mention, however, that Eff specifically has also been studied
far more extensively than we have discussed here. There is also research on the
topos theory of Eff, e.g., its subtoposes. The paper [Hyl82] already shows
that the lattice of Turing degrees embeds into the lattice of Lawvere-Tierney
topologies on Eff; see also [Pho89]. The topos of sets sits inside Eff as the
subtopos of ——-sheaves, and we saw above that Lifschitz realizability provides
another subtopos of £ff. Yet another one is described in [Pit81], example 5.8],
and studied further in [vO14]. A systematic study of the subtoposes of Eff is
[LvO13], and recently, [Kih21].

1.1.4 Realizability toposes

In this section, we describe several strands of research on realizability toposes
that have emerged since their introduction in the 1980s. These strands are not
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wholly independent of each other, and in fact, all of them will play in a role in
this thesis.

Before we proceed, we record some general facts about RT(A). Unlike
Grothendieck toposes, which have a canonical geometric morphism to the topos
of sets, realizability toposes come with a canonical inclusion of the topos of
sets, denoted I' 4 V: Set — RT(A). In fact, as we already saw in the case
of Eff, this inclusion is the subtopos of ——-sheaves. The inverse image IT" is
the global sections functor, while the direct image V is known as the constant
objects functor. Another interesting full subcategory of RT(A) consists of the
objects that are separated for the ——-topology, or equivalently, the subobjects
of objects in the image of V. This subcategory is known as the category of
assemblies, and denoted by Asm(A). The category of assemblies is somewhat
easier to understand than the realizability topos, and already has quite some
structure. Indeed, it is a quasitopos, but not a topos; as we shall see below, it
fails to be an exact category.

Relative realizability

As we have seen above, a PCA A is an abstract model of computation, where we
may ‘apply’ one element to another. In relative realizability, one additionally
equips the PCA A with a privileged subset A#. The intuition behind this is as
follows: while all the elements of A still represent computations, the elements of
A7 represent computations that can actually be carried out, or implemented.
As we mentioned above, function realizability is an early example of this. While
all functions N — N can act as realizers (these make up the PCA A), a sentence
counts as realizable only if it is realized by a recursive function (these form
the privileged subset A#). The theme of actually computable operations acting
on a wider class of possibly non-computable things is present in other work of
Kleene as well, most notably his work on higher-order computability [Kle59].

Given a relative PCA, which we will denote by (A, A#), one can construct
a corresponding realizability tripos, hence also a realizability topos RT (A, A%).
The paper [ABS02] shows that there is a logical functor RT(A, A#) — RT(A).
Moreover, A# is a PCA in its own right, and there exists a local geometric
morphism RT(A, A#) — RT(A#). In particular, this means that RT(A#) sits
inside RT(A, A#) as a subcategory in two different ways. In [BvO02], this
situation is analyzed further. For example, it is shown that the logical functor
RT(A, A#) — RT(A) is an instance of a general construction on toposes known
as a filter quotient.

As we will see below and further on in the thesis, the theory of relative
realizability toposes RT(A4, A#) can at times be a bit more cumbersome than
the theory of ordinary realizability toposes RT(A). For example, while relative
realizability toposes still carry an inclusion of Set, the inverse image is not in
general the global sections functor anymore. Nevertheless, relative realizability
is a very useful generalization of realizability, and it tends to turn up naturally.
The latter, for example, is advocated by the paper [Hof06], which we will discuss
in more detail on page |14 below. As another example, when we discuss [Stel3]
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in Chapter [ we will see that slicing of realizability toposes forces us to consider
relative notions of realizability.

Applicative morphisms

Thus far, we have discussed PCAs, but not what would constitute a morphism
between PCAs. On the other hand, for the categories Asm(A) and RT(A), we
do have notions of a morphism: functors that preserve certain structure, and in
the case of RT(A), geometric morphisms. Therefore, we can ask the question:
does there exist a notion of morphism between PCAs that corresponds to cer-
tain ‘nice’ functors between the categories of assemblies and/or the realizability
toposes? Such a notion, known as applicative morphisms, was introduced by
John Longley in [Lon94]. Crucially, an applicative morphism between PCAs
A — B is not a ‘structure-preserving map’ or a ‘homomorphism of models
of partial combinatory logic’ in any sense. Instead, an applicative morphism
A — B can be seen as a ‘simulation’ of the model of computation A inside
the model B. This fits the intuition behind PCAs as models of computation
quite well, and there are many interesting examples of applicative morphisms.
In addition, Longley’s notion has strong mathematical credentials: in [Lon94],
it is shown that the following are equivalent (in a more precise sense than we
specify here):

e an applicative morphism A — B;

e a regular functor Asm(A) — Asm(B) that commutes with the I-functors;
e a regular functor Asm(A) — Asm(B) that commutes with the V-functors;
e a regular functor RT(A4) — RT(B) that commutes with the V-functors.

It should be noted that this list must be adjusted if we allow relative PCAs; we
will discuss this in Section below, and in more detail in Chapter

As was shown in [Lon94], PCAs and applicative morphisms form a category
PCA, which is in fact enriched over preorders. In particular, given an adjunction

A 17 B in PCA, we also get an adjunction RT(A) I RT(B), that is, a

geometric morphism RT(B) — RT(A). In this case, the direct image functor
RT(B) — RT(A) is always regular, since it arises from an applicative morphism
B — A. Therefore, we can ask more generally: when is RT(A) — RT(B)
the inverse image of a geometric morphism, i.e., when does it have a right
adjoint that is not necessarily regular? The answer to this question was given in
[HvOO03], where it is shown that RT(A) — RT(B) has a right adjoint if and only
if A — B satisfies a condition called ‘computational density’. This paper also
refines Longley’s study of applicative morphisms by employing the more general
notion of an ordered PCA. While the definition of ordered PCAs occurs already
in [vO97a], the paper [HvO03] is the first to fully develop the theory of ordered
PCAs. Hofstra and Van Oosten define a monad T' on the category of ordered
PCAs, and recover Longley’s category PCA as the full subcategory of KI(T') on
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the ‘ordinary’ PCAs. In other words, an applicative morphism is the same thing
as a morphism of order-PCAs A — T'B, or a T-algebra morphism TA — T'B. In
fact, [FvO14] shows that, for computationally dense A — B, the right adjoint
RT(B) — RT(A) arises from a morphism of OPCAs TB — TA that is not
necessarily a T-algebra morphism. In this way, the more general framework of

ordered PCAs allows us to reconstruct the adjunction RT(A) 1L ~ RT(B) at

the level of PCAs after all, even when the direct image is not regular.

Finally, Johnstone has shown in [Johl13] that for any geometric morphism
RT(B) — RT(A), the inverse image commutes with the V-functors. Since this
inverse image is also regular, Longley’s results imply that it must arise from an
applicative morphism A — B. Putting all these results together, we see that
there is a correspondence between geometric morphisms RT(B) — RT(A) on
the one hand, and computationally dense applicative morphisms A — B on the
other.

The class of realizability toposes

Realizability toposes, like Grothendieck toposes, have been defined by means of
the way they are constructed; the former are constructed on the basis of a PCA,
while the latter are toposes of sheaves on a siteﬂ As we mentioned, we can give
an alternative characterization of Grothendieck toposes as elementary toposes
that satisfy some ‘size conditions’. Now we may ask: can we similarly describe
realizability toposes in terms of their properties, rather than the way they are
constructed?

The first step on the journey towards such a description, is research from
the late 1980s describing realizability toposes as the result of a universal con-
struction. The paper [CC82] describes how to turn a left exact category C into
an exact category in a universal way. The resulting exact category is called
the ex/lex completion of C, and denoted by Cey/iex- The universal property of
the construction can be expressed by saying that it is left adjoint, in a suitable
2-categorical sense, to the inclusion EX < LEX, where EX denotes the category
of exact categories and regular functors, and LEX denotes the category of left
exact catgeories and functors. The original category C sits inside Cey /1ex as a full
subcategory, namely as the full subcategory of the projective objects of Cex /iex-
Moreover, an exact category & is an ex/lex completion if and only if its full
subcategory on the projective objects is closed under finite limits, and every
object of £ is covered by a projective object. In a realizability topos RT(A), the
projective objects form a subclass of the assemblies, known as the partitioned
assemblies. One can show that these are closed under finite limits, and that ev-
ery object of RT(A) can be covered by a partitioned assembly. This implies that
that RT(A) is the ex/lex completion of its full subcategory on the partitioned
assemblies. These results are proved, for the case of £ff, in [RR90].

5There is a conceptual difference between the two cases, however. While non-equivalent
sites may very well give rise to equivalent sheaf toposes, Longley’s results imply that equivalent
realizability toposes must arise from equivalent PCAs. On the other hand, it is not very easy
to recognize when two PCAs are equivalent!
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In fact, there is a bit more to the story. The inclusion EX < LEX can be
factored as EX — REG — LEX, where REG denotes the category of regular
categories and functors. Accordingly, the ex/lex completion can be performed
in two stages, where one first completes a left exact category into a regular
category (known as the reg/lex completion) and then into an exact category
(known as the ex/reg completion). It turns out that the reg/lex completion of
the category of partitioned assemblies is Asm(A), which means that RT(A) can
also be described as Asm(A)qy/reg (see [CES88] and [Car95]). In fact, it can be
shown that every topos arising from a tripos is an ex/reg completion.

It is somewhat surprising that the exact completion, which is only meant
to yield exact categories, delivers so much more in this case, namely toposes.
The conditions under which this happens have been studied by Matias Menni
in [Men00].

Another important step towards characterizing realizability toposes is taken
in Hofstra’s paper [Hof06]. This paper introduces the notion of a Basic Com-
binatorial Object (BCO), which is a poset ¥ together with a privileged set of
partial functions from X to itself that count as ‘realizable’ or ‘computable’. Ev-
ery relative ordered PCA gives rise to a BCO, where the poset is A and the set
of partial functions consists of those that are represented by an element of A#.
Every BCO gives rise to an indexed preorder, where the predicates on a set X
are functions on X whose values are downwards closed subsets of ¥. The main
result of [Hof06] is that this indexed preorder is a tripos if and only if the BCO
arises from a relative ordered PCA. Thus, relative ordered PCAs are isolated as
a natural class of objects that give rise to triposes, and from there, to toposes.

Recently, Jonas Frey, drawing on the research on exact completions, and
Hofstra’s work on BCOs described above, was able to give a characterization of
realizability toposes purely in terms of their properties. The characterization
and its proof can be found in [FreI9]; a much more extensive survey, which also
treats relative and typed PCAs, is [Freld].

The results above all concern realizability toposes constructed over the base
category of sets, and to a certain extent, they depend on specific properties of
this base category; most notably the Axiom of Choice (AC). We can wonder
what happens if we extend our possible bases to a wider class of categories,
which possibly do not satisfy AC or even LEM. In fact, we have already seen
several examples of realizability toposes constructed over other bases. The pa-
pers [vO97b] and [BvO02] construct realizability toposes over the Sierpiriski
topos Set™, and Pitts’ effective monad involves constructing the effective topos
over arbitrary base toposes with a natural numbers object. A very general
project of considering non-standard bases is undertaken by Wouter Stekelen-
burg in [Stel3], which considers PCAs internal to a Heyting category, and their
corresponding categories of assemblies, which are called ‘realizability catego-
ries’. In a spirit similar to Frey’s results, Stekelenburg also arrives at a kind of
characterization of these realizability categories [Stel3 Theorem 2.2.17], even
though this characterization still mentions the presence of the underlying PCA
in the realizability category itself.
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Oracle and higher-order computation

In the first instance, recursion theory concerns computations on the natural
numbers and the resulting partial recursive functions. From there, one can
also consider notions of computation involving non-computable functions. An
early example of such a notion is computation with a Turing machine equipped
with an oracle for a not necessarily computable function or set. Later, Kleene
([KIeh9]; see also [KMT7]) developed the rich theory of higher-order recursion
theory, where computations not only take numbers as inputs, but also func-
tions. We can wonder whether this theme of ‘computability with functions’ can
be studied using the abstract approach to computability theory provided by the
theory of PCAs. An example of this is given by the PCA underlying function
realizability, whose elements are indeed functions rather than numbers. A re-
lated PCA, whose elements are partial functions on the natural numbers, was
defined in [vO99]. A comprehensive survey of higher-order computability theory
using abstract computability models, also in the typed setting, is [LNT5].

We can also approach the matter slightly differently and, given an arbitrary
PCA A, try to construct new PCAs expressing computability notions involving
functions on A. A first construction of this kind is [vO06], which, given a PCA
A and a (partial) function o: A — A, defines a new PCA Aa] expressing ‘A-
computability with an oracle for o’. Applying this construction to the PCA of
natural numbers and recursive function application yields something equivalent
to the original notion of computation with an oracle. There is an applicative
morphism A — Ala], which is the ‘universal solution’ to making o computable.
This applicative morphism is computationally dense, so it yields a geometric
morphism RT(A[a]) — RT(A). In fact, as in the case of £ff, this is a geometric
inclusion. The construction of A[a] was generalized to functionals of second
order in [EvO16]; applications of the construction A[a] to certain specific PCAs
can be found in [vOV1g]. Other constructions in this theme can be found
in [vO11], which generalizes Kleene’s second model and the PCA of partial
functions from [vO99] to arbitrary PCAs.

1.2 Main results

In the previous section, we have discussed the development of an intimate con-
nection between abstract computability theory and category theory, via Kleene’s
notion of realizability. More precisely, we have abstract models of comptability,
called partial combinatory algebras, and for each PCA A, we can construct a
category of assemblies Asm(A) and a realizability topos RT(A). Given this con-
nection, we can ask how the world of PCAs on the one hand, and the world of
categories and toposes on the other, interact with one another. The following,
still very broadly formulated, question constitutes the main research question
of this thesis.
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Question 1.2.1. (i) Consider a construction on categories and/or toposes,
e.g., taking the product of two categories. Are categories of assemblies
and/or realizability toposes closed under this construction? If not, then
what kind of category/topos do these constructions yield? If so, can we
describe the construction ‘downstairs’, that is, at the level of PCAs?

Similarly, how do certain functors between categories of assemblies and/or
realizability toposes correspond to morphisms between their ‘underlying’

PCAs?

(ii) Conversely, given a construction on PCAs, how does this construction
manifest itself in the corresponding categories of assemblies and/or reali-
zability toposes? Can we describe this in familiar categorical terms?

In order to make this more concrete, let us give a few examples of research
from the literature that can be motivated using Question [I[.2.3] An example for
Question m(l) is Longley’s notion of an applicative morphism between PCAs.
One can certainly provide a compelling motivation for this notion purely in terms
of PCAs. Nevertheless, the strongest evidence that applicative morphisms are
the ‘correct’ morphisms between PCAs is the fact that they correspond exactly
to ‘nice’ functors between categories of assemblies and realizability toposes.
Thus, the notion of an applicative morphism receives at least part of its motiva-
tion through the world of category theory. Another example is the notion of a
computationally dense applicative morphism, which was introduced to charac-
terize the geometric morphisms between realizability toposes. It should be noted
that applicative morphisms and computational density turned out to have per-
fectly nice properties ‘in isolation’, that is, without reference to their categorical
motivation. In Chapter [2 below, we will develop a rather rich theory of applica-
tive morphisms and of computaional density before introducing Asm and RT in
Chapter An example for Question (ii) is the construction of the ‘ora-
cle PCA’ A[a] we encountered at the end of Section As we mentioned,
the corresponding realizability topos RT(A[«a]) is a subtopos of RT(A). Thus,
Ala] corresponds to a certain Lawvere-Tierney topology on RT(A) - a familiar
concept in topos theory.

Before we proceed to describe the main results of the thesis, we need to
explain in a bit more detail how we will organize the world of partial combinatory
algebras. In fact, we will introduce three distinct categories of PCAs, which all
agree on their objects, but differ in their morphisms. In all three categories, the
objects will be relative ordered PCAs.

Convention 1.2.2. From now on, when we say ‘partial combinatory algebra’
or ‘PCA’; we will always mean a relative ordered PCA. Accordingly, we denote
the realizability topos over a (by default, relative) PCA A simply by RT(A)
rather than RT(A, A%), and similarly for the category of assemblies. If we want
to make it plain that A is not relative (that is, A#* = A), we say that A is
absolute. Similarly, if we want to discuss the case where A is not ordered (that
is, carries the discrete order), then we say that A is discrete.
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First, we introduce the category OPCA, which first occurs in [HvOO03] and
whose arrows are called morphisms of PCAs. Next, we introduce a category
OPCAr whose arrows are Longley’s applicative morphisms. By restricting
OPCA7 to the absolute discrete PCAs, one obtains Longley’s original cate-
gory PCA. Moreover, we introduce another category OPCAp, whose arrows
are partial applicative morphisms. The notion of a partial applicative mor-
phism is specific to relative PCAs. Recall from Section [I.1.4] that an applicative
morphism A — B can be viewed as a ‘simulation’ of A inside B. A partial
applicative morphism A — B is also a simulation of A inside B, except that
elements outside A# may be omitted from the simulation.

Thus, we introduce three different notions of an arrow between PCAs, and we
introduce them in ascending order of generality. That is, if A and B are PCAs,
then there are inclusions OPCA(A, B) — OPCAr(A, B) — OPCAp(A, B), and
this yields faithful functors OPCA — OPCAr — OPCAp. Using the notion of
a partial applicative morphism, we will be able to generalize Longley’s results
discussed in Section to the relative setting. The following are equivalent:

e a partial applicative morphism A — B;

e a regular functor Asm(A) — Asm(B) that commutes with the V-functors;

e a regular functor RT(A) — RT(B) that commutes with the V-functors.
In comparison with the list on page we have replaced ‘applicative morphism’
by ‘partial applicative morphism’, and the second item has disappeared. In fact,
the following are also equivalent:

e an applicative morphism A — B;

e a regular functor Asm(A) — Asm(B) that commutes with the I-functors.
Thus, in the relative case the picture is a bit more refined than in the case of

absolute PCAs.
Now we will list the main results of the thesis, with references to their precise

formulations in the main text. We have classified the results of the thesis in three
categories:

A. Positive and limitative results on (co)products (Sections [2.4] and [4.2)).

B. Products and slices of realizability toposes (Sections and [4.4]).

C. Higher-type functionals (Chapter [5)).

The results in categories A and B answer questions in the spirit of Ques-
tion [[.2.1fi), while the results in category C concern Question ii).
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A. Positive and limitative results on (co)products

A very elementary construction on categories is taking the product of two cate-
gories. If the categories are toposes, then this yields a coproduct in the category
of toposes and geometric morphisms. Thus, we can ask: are realizability toposes
closed under such coproducts? It turns out that this is not necessarily the cor-
rect question to ask. As we mentioned in Section [I.1.4] every realizability topos
carries a canonical inclusion of the topos Set of sets. Thus, a topos of the form
RT(A) x RT(B) has a canonical inclusion of Set?, rather than Set. Therefore,
it seems more appropriate to take the coproduct over Set, that is, to take a
pushout of the span RT(A) <= Set — RT(B). For this kind of pushout, we will
prove both a negative and a positive result. In order to obtain these results, we
also need to consider products and coproducts ‘downstairs’, that is, in the var-
ious categories of PCAs. The following summarizes our results on (co)products
of PCAs and pushouts of realizability toposes.

Theorem A.
(i) The category OPCA has finite biproducts and small products.

(i1) The category OPCAr has finite coproducts and a terminal object. On the
other hand, two PCAs never have a product in OPCAr, unless one of the
PCAs is equivalent to the terminal object.

(ii) The pushout, over Set, of two realizability toposes RT(A) and RT(B) is
never a realizability topos, unless one of RT(A) and RT(B) is equivalent
to Set.

(iv) Dense subtoposes of realizability toposes are closed under pushout over Set.

For the precise formulations of these results, we refer to: (i) Proposition[2.4.6
é (iv)

Corollary [2.4.10} (ii) Corollary [2.4.17] Theorem [2.4.21} (iii) Theorem [4.2.4
Theorem [4.2.5

B. Products and slices of realizability toposes

We can also approach the matter of taking products of realizability toposes
differently, and ask whether RT(A) x RT(B) really is a realizability topos, but
constructed over the ‘base topos’ Set” rather than Set. In this way, we can
address the construction of products of realizability toposes directly, by allowing
the ‘base’ to vary.

Another important construction in topos theory is that of taking slices of
toposes. Thus, we can ask: are slice toposes of realizability toposes again rea-
lizability toposes? It turns out that, here as well, we need to allow the base to
vary: if I € RT(A), then RT(A)/I carries a canonical inclusion of Set/T'I, rather
than Set. We will address both products and slices of realizability toposes by
considering a notion of PCA internal to a general base category.
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The main ideas of this general notion of PCA are taken from [Stel3]. Given
a regularﬂ category C, an internal PCA (or IPCA) over C is a pair (4, ¢). Here
A is an object of C with certain properties, and ¢, which is called an external
filter on A, is a set of ‘realizing objects’. For more precise definitions, we refer to
Section As explained in [Stel3], there is a notion of applicative morphism
between IPCAs over a given base C, which yields a category IPCA¢. Moreover,
we introduce a notion of ‘base change’ between different bases, thereby obtaining
a larger category IPCA of IPCAs over (arbitrary) regular base categories.

If (A, ¢) is an IPCA, then we can construct a category Asm(A, ¢) of assem-
blies. In [Stel3, Corollary 2.2.18], it is shown that such categories are closed
under slicing. We will prove a number of additional results concerning cate-
gories of the form Asm(A,¢); see (i) and (iii) below. Moreover, if the base
category of an IPCA (A, ¢) is a topos, then we may also construct a realiza-
bility topos RT(A, ¢). The following summarizes our results on products and
slices of categories of assemblies and realizability toposes over IPCAs.

Theorem B.

(i) Categories of assemblies over IPCAs are closed under small products.
Moreover, the underlying IPCA of [, Asm(A;, ¢;) is the product, in IPCA,
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(it) Realizability toposes over IPCAs are closed under small products (as ca-
tegories).

(ii) If I € Asm(A, @), then the underlying IPCA of Asm(A, ¢)/I can be con-
structed explicitly using base change and taking a finite extension of the
external filter.

(iv) Realizability toposes over IPCAs are closed under slicing over assemblies.

For the precise formulations of these results, we refer to: (i) Proposition
Theorem [£.4.3} (ii) Corollary [£.4.33} (iii) Theorem [£.4.9} (iv) Corollary [£.4.37

C. Higher-type functionals

At the beginning of this section, we mentioned the construction of the ‘oracle
PCA’ Ala] for a partial function o on a PCA A. In [EvO16], this construction
is generalized to type-2 functionals, which take functions on A as inputs. In this
thesis, we will prove several results concerning type-3 functionals, i.e., (partial)
functions that take type-2 functionals as inputs. The main strategy for obtain-
ing such results is to view a type-3 functional on A as a type-2 functional on
a related PCA BA, whose elements are partial functions on A. This PCA BA
was first introduced in [vO11], as an absolute discrete PCA. For our purposes,
we need to view BA as a relative ordered PCA. Moreover, we need to genera-
lize the constructions from [vO06] and [FvO16] to relative ordered PCAs. The

61t should be noted that [Stel3] only allows Heyting categories as base categories, so our
setup is more general.
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following summarizes our results on the computability of higher-type function-
als. The first three items generalize existing constructions from the literature
to the relative ordered setting. The final two items are new results on type-3
functionals.

Theorem C.
Let A be a (by default, relative and ordered) PCA.

(i) (Cf. [uO11, Section 5]) There is a PCA BA whose elements are par-
tial functions on A, such that there exists a local geometric morphism
RT(BA) - RT(A).

(i) (Cf. [vO06, Theorem 2.2]) For each o € BA, there is a PCA Ala] which
is the ‘universal solution’ to making o computable.

(iii) (Cf. |[FvO16, Theorem 3.1]) If the PCA A satisfies a condition called
chain-completeness (Deﬁm’tion and F is a type-2 functional on A,
then there is a PCA A[F] which is the ‘universal solution’ to making F
computable.

(iv) If A is chain-complete and ® is a type-3 functional on A, then there is a
PCA A[®], which is a ‘laz universal solution’ to making ® computable.

(v) Suppose that A is discrete and that @ is a type-3 functional on A. Then
there exists an « € BA with the following property: the set of partial
functions on A that are forced to be computable if ® is computable, can
be described as the set of partial functions on A that are computable using
an oracle for a.

For the precise formulations of these results, we refer to: (i) Proposition[5.2.7

Proposition|5.2.13; (ii) Theorem (iii) Theorem|5.3.13f (iv) Theorem |5.4.2
(v) Corollary

1.3 Scope and limitations

As announced in Convention [I.2:2] PCAs will always be relative and ordered,
unless stated otherwise. There are several reasons for this choice, which we
explain here.

First of all, the notion of a relative ordered PCA seems to be exceedingly
natural - more natural, in fact, than the notion of an absolute discrete PCA. We
already mentioned one piece of evidence for this view: the paper [Hof06] isolates
relative ordered PCAs as a natural class of objects that give rise to triposes in
a canonical way. Another manifestation of the ‘naturality’ of ordered PCAs is
the fact that the categories OPCA7 and OPCAp may be obtained as the Kleisli
categories for monads 7" and D on the category OPCA. These monads can only
be defined on the category of ordered PCAs, because TA and DA are not dis-
crete PCAs. The definitions of OPCAr and OPCAp as such Kleisli categories
has many conceptual advantages. For example, many results about (partial)
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applicative morphisms, that is, about the categories OPCAr and OPCAp, are
inherited more or less directly from OPCA; see Section [2.3.2| below. This allows
a very elegant treatment of the theory of (partial) applicative morphisms, since
the category OPCA is easier to work with. Moreover, while (partial) applicative
morphisms only allow us to characterize reqular functors between categories of
assemblies (see Corollaurybelow)7 the monads 7" and D can be used to, ad-
ditionally, characterize left exact functors between categories of assemblies (see
Theorem below). This is useful for characterizing geometric morphisms
between categories of assemblies, since the direct image of such a geometric
morphism, while left exact, is not necessarily regular. Finally, let us direct
some attention specifically to the monad D. As we explained in Section[I.2] the
notion of a partial applicative morphism is only useful in the setting of relative
PCAs. Since partial applicative morphisms are arrows of OPCAp = KI(D), this
means that the monad D should also be specific to the relative setting. Indeed,
if we view DA as an absolute PCA, then, since DA has a least element, it would
always be equivalent to the terminal PCA, making the monad D trivial. On the
other hand, in the relative setting, the monad D is quite useful. If A is a PCA,
then its realizability tripos is canonically represented by DA. By making DA
into a PCA, we can obtain a correspondence between tripos maps and arrows
of OPCA; see Proposition below.

Second, the machinery of relative ordered PCAs is necessary to obtain sev-
eral of the main results of the thesis, even if one is only interested in these results
for absolute discrete PCAs. Consider, for example, Theorem [A} items (iii) and
(iv) also hold for discrete PCAs. (For item (iii), this follows immediately, and
for item (iv), this follows easily by inspecting the proof of Theorem M) Nev-
ertheless, the proofs of (iii) and (iv) use Theorem [Ai) and (i), which mention
OPCA, and thus depend on the notion of an ordered PCA. So, even if one is only
interested in discrete PCAs, one needs the theory of ordered PCAs to obtain
Theorem [A[(iii) and (iv). For the other main results of the thesis, similar re-
marks apply. For IPCAs (A, ¢), there is also a notion of ‘absolute’ IPCA: (A4, ¢)
is absolute iff the external filter ¢ is as large as possible (see Definition .
While categories of assemblies over IPCAs are closed under slicing, this is not
true for categories of assemblies over absolute IPCAs. Thus, even if one is ini-
tially only interested in absolute PCAs, the construction of slicing forces one
to consider relative PCAs as well. Finally, the results in Theorem [C] depend
crucially on the fact that we view BA as a relative ordered PCA, even when
A is absolute and discrete. Even the proof of item (v), which only holds for
discrete PCAs, uses the theory of relative ordered PCAs in an indispensable
way.

Third and last, it seems useful to have a treatment of PCAs and their corre-
sponding realizability toposes in this general setting of relative ordered PCAs,
since such a treatment does not seem to be available in the literature. The
monograph [vO0§| also treats the theory of PCAs and realizability toposes very
extensively, but primarily for absolute discrete PCAs. The paper [FvO14] proves
a number of new results on functors between realizability toposes over ordered
PCAs, but it does not treat relative PCAs. As we have seen above, incorporat-
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ing relative PCAs requires some adjustments to Longley’s results. This thesis
is the first source to explain the full picture of Longley’s results in the setting
of relative PCAs.

There is another possible generalization of PCAs that we do not discuss
here at all, namely that of a typed PCA. The idea behind typed PCAs is as
follows. As we have seen, the elements of a PCA act simultaneously as (codes
of) algorithms and as inputs to such algorithms. In a typed PCA A, we specify
a set T of types, equipped with a binary operation —, and for each o € T, a
set A(c). The elements of A(c — 7) then represent algorithms taking inputs
from A(o) and yielding outputs in A(7). More explicitly, for each pair of types
o,7 € T, we have a partial application map A(c — 7) x A(c) = A(7). Every
untyped PCA can also be viewed as a typed PCA, by taking T to be a singleton.

There are two reasons for not considering typed PCAs in this thesis. First,
as we will see in Section [2.1.4] below, an untyped PCA is automatically equipped
with a lot of ‘computational’ structure: pairing, definition by cases, recursion,
fixpoints, etc. For typed PCAs, this structure is no longer automatic, but has to
be imposed as an additional requirement. Second, for typed PCAs, the notion
of a realizability topos is no longer available. One can define a category of
assemblies Asm(A) for a typed PCA A, but Asm(A)cx/reg is not necessarily a
topos. In fact, [LS02, Theorem 4.2] shows that Asm(A)cx/reg is a topos if and
only if A is ‘essentially untyped’, meaning that A is equivalent to an untyped
PCA.

On the other hand, typed PCAs seem to be the natural home of higher-order
computation, which is why the authors of [LN15] choose typed PCAs as their
primary abstract model of computation. As we shall see in Chapter [p| below,
studying higher-type functionals in the untyped setting presents serious obsta-
cles. One may view Chapter [p|as an investigation into how far one can go with
higher-order computation in the untyped setting.

Regarding Question i) above, we are mainly interested in slices and
coproducts (over Set or outright) of realizability toposes. There are certainly
other constructions that can be studied here; we offer one suggestion below.
We should also mention that, while there seems to be a rich theory of subto-
poses of realizability toposes, and in particular of the effective topos ([LvO13],
[Kih21]), subtoposes of realizability toposes play only a minor role in this thesis.

Finally, let us offer two suggestions for further research. First of all, it
is known that geometric morphisms between realizability toposes are always
localic. This is shown, for absolute discrete PCAs, in [Joh13l Lemma 2.4], but
the proof carries over to the relative ordered case. In particular, a geometric
morphism f: RT(A) — RT(B) is always bounded, which means that pullbacks
along f, in the category of toposes and geometric morphisms, always exist.
The literature does not contain many results on such pullbacks. Second, while
Chapter [f offers several new results on computing with type-3 functionals, the
case of functionals of type 4 and higher remains entirely mysterious.
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1.4 Overview of the thesis

Here we offer a brief, linear overview of the contents of the thesis.

In Chapter[2] we treat the theory of PCAs and the various kinds of morphism
between them. First, in Section 2.1} we define PCAs, describe some elementary
constructions that can be performed in any PCA, and give a few examples. In
Section we introduce the category OPCA, consider some special properties
that arrows of OPCA can have, and give some examples of arrows of OPCA. In
Section 2:3] we introduce the Kleisli categories OPCA7 and OPCAp, yielding
the notion of a (partial) applicative morphism. Again, we discuss some special
properties and examples of (partial) applicative morphisms. Moreover, we dis-
cuss the existence of right adjoints in the three categories of PCAs. Finally, in
Section we establish Theorem [A]i) and (ii).

In Chapter [3] we treat the categories associated to a PCA A: the category
of assemblies Asm(A) and the realizability topos RT(A). We define these in Sec-
tion 3.1} and discuss some important properties in Section [3:2] In Section [3:3]
we generalize the results from [Lon94] and [FvO14] to the relative setting, char-
acterizing various kinds of functors between categories of assemblies and realiza-
bility toposes. Finally, in Section we discuss geometric morphisms between
categories of assemblies and realizability toposes.

In Chapter [4] we discuss categorical constructions on categories of the form
Asm(A) or RT(A). Section [4.1| describes various difficulties that arise when one
wishes to take products or slices of realizability toposes. In Section [4.2] we
establish Theorem [Afiii) and (iv). The framework of IPCAs is introduced in
Section and subsequently, in Section [£.4] we establish the statements in
Theorem [Bl

Chapter [5| concerns computation with oracles and higher-type functionals,
and contains all statements from Theorem [C] First, in Section 5.1} we generalize
the construction of the ‘oracle PCA’ from [vO06] to the relative ordered setting.
Section [5.2] introduces BA as a relative ordered PCA, and establishes some of
its important properties. In Section we introduce chain-completeness and
we treat type-2 functionals. Finally, Section contains our results on type-3
functionals.

1.5 Conventions and notation

In this final section of the introduction, we set forth some conventions and no-
tation that will be used throughout the thesis.

Possibly undefined expressions. Since partial combinatory algebras carry a
partial application map, we will frequently have to deal with expressions that
are possibly undefined. We adopt the convention that such an expression can
only be defined if all its subexpressions are defined as well. This will be espe-
cially relevant in Construction [2.1.28 If e is a possibly undefined expression,
then we write e | to indicate that e is in fact defined. Moreover, if e and €’
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are two possibly undefined expressions, then we write e ~ ¢’ for the following
statement: e/ iff ¢’ |, and in the case that e and €’ are both defined, they denote
the same value. This relation is known as Kleene equality between possibly
undefined expressions. On the other hand, we reserve e = ¢’ for the stronger
statement that e and e’ are defined, and equal to each other. Thus, one might
say that we use the equality sign as an ‘existence-entailing relation’.

Arrows. By default, we use the usual arrow sign — to denote functions be-
tween sets, and arrows in categories. There will be a few expections to this rule.
If we want to emphasize that a function is partial, then we will use the harpoon
sign —. Since we will discuss three categories whose objects are PCAs, it will
be advantageous to distinguish the three kinds of morphism between PCAs no-
tationally. If A and B are PCAs, then the usual arrow sign A — B will signify
a morphism in OPCA. On the other hand, an applicative morphism from A
to B will be denoted by A — B. We choose the lollipop arrow here because
an applicative morphism can be viewed as a multi-valued function. A partial
applicative morphism from A to B will be denoted by A —- B. Finally, we
may use the hooked arrow symbol — if we want to emphasize that an arrow is,
depending on the situation, injective, mono, or an inclusion. Similarly, we use
the two-headed arrow symbol — to indicate that an arrow is surjective, epi, or
a quotient.

Special categories. Above, we have already mentioned left exact, regular, and
exact categories. For the sake of definiteness, let us explicitly define these terms.
A left exact category is a finitely complete category, that is, a category with
all finite limits. A left exact functor is a functor that preserves all finite limits.
A regular category is a left exact category that has pullback-stable regular epi-
mono factorizations, and a regular functor is a left exact functor that preserves
regular epimorphisms. By an exact category, we mean a category which is exact
in the sense of Barr. An exact category can be defined as a regular category in
which every internal equivalence relation is a kernel pair.

A cartesian closed category is a category with finite products and exponen-
tials. A locally cartesian closed category is a category with a terminal object,
such that all its slice categories are cartesian closed. Note that a locally carte-
sian closed category is, in particular, cartesian closed; there are versions of the
definition for which this is not true.

Finally, by a topos we will always mean an elementary topos, that is, a left
exact, cartesian closed category which has a subobject classifier.

2-categorical terminology. We will have to deal with various 2-dimensional
categories, that is, categories that have 2-cells in addition to having objects
and arrows. Since the terminology regarding 2-dimensional categories is not
consistent throughout the literature, we treat our use of the terminology here.
First of all, by a 2-category, we mean a 2-dimensional category which is also
an ordinary (1-)category. That is, the unit and associativity laws for 1-cells
(i.e., arrows) should hold on the nose. Modulo size constraints, a 2-category is
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a Cat-enriched category, where Cat denotes the category of small categories and
functors. A preorder-enriched category is a category enriched over the category
of preorders. Alternatively, it is a (locally small) 2-category such that there
exists at most one 2-cell between any given pair of 1-cells. A bicategory is a 2-
dimensional category in which the axioms for a 1-category need only hold up to
invertible 2-cells. Of course, these 2-cells need to be coherent in the appropriate
sense, but we do not spell this out. Usually, we need not worry about this,
because our homcategories are preorders. We use the term ‘preorder-enriched
bicategory’, which strictly speaking does not make sense, to emphasize that we
have a bicategory whose homcategories are preorders.

If we say that F' is a pseudofunctor between 2-dimensional categories, then
we mean that F' must preserve identity 1-cells and composition of 1-cells up to
invertible 2-cells. If these invertible 2-cells are identities, that is, F' preserves
identity 1-cells and composition of 1-cells on the nose, then we say that F'is a 2-
functor. Note that it is possible to have a 2-functor between proper bicategories;
we will meet examples in Chapters[3land 4 below. If we drop ‘invertible’ from the
definition of a pseudofunctor, then we obtain the notion of a lax or oplax functor,
depending on the direction in which the 2-cells go. For natural transformations,
we adopt similar definitions. Thus, a 2-natural transformation is natural on
the nose, a pseudonatural transformation is natural up to invertible 2-cells,
and a(n op)lax natural transformation merely has 2-cells filling the naturality
squares. A pseudomonad will be a triple (T, 7, i), where T is a pseudofunctor,
and n and p are pseudonatural transformations satisfying the monad laws up
to invertible modification. By an algebra for a pseudomonad, we really mean a
pseudoalgebra, i.e., the algebra laws need only hold up to invertible 2-cells.

Similarly, by a pseudolimit, we mean to employ a ‘fully weak’ notion of
limit. That is, cones only need to commute up to invertible 2-cells, and the
universal property of a pseudolimit is expressed by an equivalence of categories.
For example, a pseudoproduct of X and Y in a 2-dimensional category C is a
span X <% X x Y =% Y such that for each object Z,

(mpo—,m10—)

C(Z,X xY) C(Z,X)xC(Z,Y)
is an equivalence of categories. In the case of pseudoproduct, we need of course
not worry about whether cones commute on the nose or not. But note that for,
e.g., pseudopullbacks, we need to specifiy three projection arrows, rather than
the usual two. In contrast, for 2-limits, cones must commute on the nose, and
the universal property must be expressed by an isomorphism of categories. For
colimits, we adopt similar conventions. Moreover, we say that a pseudoinitial
object 0 is strict if every arrow X — 0 is an equivalence; the notion of a strict
pseudoterminal object is defined dually.

Finally, we say that an arrow f: X — Y is a pseudomono if for each object
Z, the map fo—:C(Z,X) — C(Z,Y) is an equivalence of categories. If it is
always an isomorphism, then we may say that f is a 2-mono. For epis, we adopt
the dual convention.
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The Axiom of Choice. In Chapters and [B] the category Set of sets will
serve as our ‘base category’. We will assume freely that the Axiom of Choice
holds in Set, but we will indicate the occasions where we actually use it.

Smallness. In general, we will not worry too much about size issues. At
several occasions, however, it is better, for the sake of sanity, to make some
smallness assumptions. When discussing the internal logic of a category C, we
will implicitly assume that C is well-powered. Since, in such a situation, C will
have finite products, this also implies that C is locally small. As a result, in the
internal language of C, there will be only a set of relation symbols of a given
type, and only a set of arrow symbols of any given type. Similarly, when dis-
cussing triposes over a base category C, we implicitly assume that C is locally
small.

Typographical conventions. On page [211] the reader will find a comprehen-
sive index of all notation used in the thesis. Here, we give some general maxims
that we followed in choosing notation.

e Elements of a PCA A are typically denoted by a,b,c, or a,a’,a”. If we
are dealing with elements from A# specifically, we use r,s. For variables,
we use T, Y, 2.

e The combinators associated to each PCA are denoted in lower case sans
serif math font: k,s, i, etc. In Chapter [4] the ‘combinators’ will be certain
objects, rather than elements. Here we will use upper case: K, S, |, etc.

e A general category will be denoted in calligraphic math font, e.g., ‘let C be
a regular category’. In contrast, specific categories, or a specific class of
categories, are denoted in sans serif font, e.g., Set, Asm(A), RT(A), LEX,
REG, EX. The only exception to this rule is the effective topos, which is
traditionally denoted in calligraphic font by £ff. Functors are denoted by
upper case Roman letters F, G, and natural transformations are denoted
by lower case Greek letters u, v.

e Given a PCA A, ‘higher-order’ objects on A will be denoted by lower case
Greek letters a, 8,7. By such higher-order objects, we mean: subsets of
A, (partial) functions on A, or higher-type functionals on A. If we have
a function whose inputs are such higher-order objects, then we may use
upper case Roman letters F),G. If we want to go one level higher, we use
upper case Greek letters @, U.

e Arrows between PCAs (of any of the three kinds) and arrows of Asm(A)
are usually denoted by lower case Roman letters f, g, h, but we will also
sometimes use lower case Greek letters.

e Formulas in a formal language are denoted by lower case Greek letters
@, 9, X



CHAPTER 2

Partial Combinatory Algebras

In the first three sections of this chapter, we treat the theory of PCAs (Sec-
tion [2.1)) and various categories having PCAs as objects (Section and Sec-
tion These sections contain no essentially new material, except for two
new notions needed to deal with relative PCAs.

1. We introduce the notion of a partial applicative morphism, which first
occurs in [Zoe21b]. A traditional applicative morphism f from A to B as-
signs to each a € A a nonempty downset f(a) of B. For partial applicative
morphisms, f(a) is allowed to be empty, but only for a € A that lie outside
A#. We should mention that the notion of a partial applicative morphism
is implicit in [Stel3] (e.g., Definition 2.3.20 and Definition 2.4.22).

2. The paper [HvOO03| introduces a notion of computationally dense applica-
tive morphism. This notion can be used to characterize left adjoints in
the category of PCAs and applicative morphisms. In our case, we have
another category of PCAs, where the morphisms are partial applicative
morphisms, and accordingly, we will need two notions to characterize left
adjoints in these categories. We relativize the notion of computational
density from [HvOO03], which yields a characterization of left adjoints in
the category of partial applicative morphisms. In addition, we introduce
the stronger notion of density, which characterizes left adjoints in the ca-
tegory of applicative morphisms. The relevant results are Theorem

and Corollary below.

Finally, Section [2.4] discusses products and coproducts in the various categories
of PCAs; this material is from [Zoe21a].

27
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2.1 Definition of partial combinatory algebras

Let us recall that by a ‘partial combinatory algebra’, we always mean a relative
ordered PCA. This means that a PCA will be a set A equipped with three pieces
of structure: a partial binary operation, a partial order, and a privileged subset
A# (which will be called a filter). The intuition behind these is as follows.

e The elements of A simultaneously play the role of (codes or Gédel numbers
of) computations, and of inputs that may be fed to these computations.
For a,b € A, we think of the image of the pair (a,b) under the partial
binary operation as the result, if any, when the computation a is applied
to the input b.

e For a,a’ € A, we think of @’ < a as saying that o’ is a refinement or
specialization of a, or that a’ gives more information than a.

e As we mentioned in the introduction, the elements in A% can be thought
of as the computations that can actually be implemented, or carried out.
Alternatively, one may think of the elements of A% as computable data,
and of the elements outside A# as non-computable data. In the ordered
context, however, it is more appropriate to say that the elements of A%
may be refined to a computable element. Accordingly, the set A% will be
upwards closed with respect to the partial order.

Of course, this structure will have to satisfy certain axioms that capture the
intuition that the elements of A represent computations. Below, we will define
PCAs in detail, establish some basic properties, and finally, give a few examples.

2.1.1 Partial applicative posets

In this section, we introduce the notion of a partial applicative poset. While this
notion does not really occur in the literature, we believe it is useful to introduce
because it is the minimal structure needed to define filters, which will play a
central role in the theory developed below.

Definition 2.1.1. A partial applicative poset (abbreviated PAP) is a triple
A= (A, <) where (A, <) is a poset and - is a partial binary map A X A — A,
called the application map, such that:

(A) the application map has downwards closed domain and preserves the order,
that is, if a’ < a, b’ <b and a-b is defined, then a’ -V is defined as well,
and a’ - b <a-b.

We say that A is total if the application map is a total function, and discrete
if the order < is the discrete order.

Axiom (A) fits the intuition that o’ < a expresses that o/ contains more
information than a: if ¢’ and b’ contain more information than a and b, and
a- b is already defined, then a’ - b’ should also be defined and contain at least as
much information.
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Convention 2.1.2. When working with PAPs, we adopt the following two
conventions.

(i) When this creates no confusion, we omit the dot for application, writing
ab instead of a - b.

(ii) The application map will not, in general, be associative. Therefore, we
adopt the convention that application associates to the left, writing abc
as an abbreviation for (ab)c. Thus, one can read abc as: first apply a to
b, then apply the result to c.

In the introduction, we already introduced Kleene equality for dealing with
possibly undefined expressions. In combination with order on A, the following
notation will be exceedingly useful.

Notation 2.1.3. Let A be a PAP, and let e and ¢ be possibly undefined
expressions that, if defined, assume values in A. We write ¢/ < e for the following
statement: if e, then e’ | and e’ < e. We call this relation Kleene inequality.

As for equality, we reserve the statement ¢’ < e for the case where €’ and e
are actually defined, and satisfy ¢’ < e. Note that the Kleene equality e ~ ¢’
is equivalent to: ¢ < ¢’ and ¢ < e. Using Kleene inequality, we can define a
partial order on the set of n-ary partial functions on A, as follows.

Definition 2.1.4. Let A be a PAP and let o, 3: A™ — A be partial functions.
We write a < B if, for all @ € A™, we have a(d) < B(@).

It is not hard to check that this indeed defines a partial order on the set
of partial functions A" — A. The case n = 1 will be especially interesting:
in Chapter [5] we will see that, if A is a PCA, then a certain subset of partial
functions A — A can be made into a PCA as well. The order on this PCA will
be the order defined above.

Remark 2.1.5. We should warn the reader that various sources treating only
discrete PCAs adopt the ‘opposite’ of Notation writing e < e’ where we
write ¢/ < e. The reason for this is that, in the discrete case, the order in
Definition matches the reverse subfunction relation, i.e., a < 8 iff 5 is a
subfunction of a. By reversing Notation the order on partial functions
A — A matches the subfunction relation. In the ordered setting, however,
Notation [2.1.3] is really the right one to adopt. Indeed, in the case where all
expressions are defined, we would like ¢/ < e to imply ¢’ < e, and not e < ¢/,
which would be highly confusing!

In Section below, we will see many examples of PCAs, so in particular,
of PAPs. Here we treat two more elementary examples.

Example 2.1.6. If (A, <) is a poset with finite meets, then it can be made into
a total PAP by setting ab = a A b.
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Example 2.1.7. Let A be a PAP. We write T'A for the set of nonempty, down-
wards closed subsets of A, i.e., the set of all nonempty o C A satisfying: if
a’ <aand a € a, then a’ € a as well. We define an application map on T'A as
follows: if a, 8 € T' A, then we say that o if and only if ab/] for all a € o and
b € . In this case, af is defined as |{ab | a € a,b € B}, i.e., the downwards
closure of {ab | a € a,b € 8}. This makes (T'4,-, C) into a PAP, which we will
simply denote by T'A. As we shall see later, T" yields a monad structure on one
of our categories of PCAs, called the nonempty downset monad.

Similarly, we have the poset DA consisting of all downsets of A, including
(), again ordered by inclusion. We can define an application on DA similar to
the one defined on T A, yielding a PAP DA = (DA, -, Q).

2.1.2 Filters and partial applicative structures

In this section, we define partial applicative structures, which will be PAPs
equipped with a privileged subset A% . This subset should satisfy two conditions,
that we encapsulate in the definition of a filter.

Definition 2.1.8. Let A be a PAP. A filter on A is a subset F C A which is:

(i) closed under defined application, that is, if a,b € F and abl, then ab € F
as well;

(i1) upwards closed, that is, if a <b and a € F, then b € F as well.

Example 2.1.9. If (A, <) is a poset with finite meets, then a nonempty filter
on (A, A, <) is a filter on (4, <) in the usual sense.

Example 2.1.10. (i) If Ais a PAP, and F is a filter on A, then F' can also
be made into a PAP, by restricting both the application map and the order
to F. This new PAP will be denoted by (F,-, <), or simply by F.

(ii) If A is a PAP, F is a filter on A, and G is a filter on the PAP F, then G
is also a filter on A.

Example 2.1.11. Let A be a PAP.
(i) The set T'A is a filter on the PAP DA.
(ii) Let F be a filter on A. Then the set
{aeTA|lanNFeTA}={acTA|IBcTFBCa)}=1TF)CTA

is a filter on T'A. By (i) and Example [2.1.10(ii), this set will also be a
filter on DA, and in DA this filter can also be described as the upset of
TF. Observe that the filter T A of DA can be retrieved as a special case
of this, by taking F' = A.

Since a filter is defined as a set with certain closure properties, we can
consider the notion of a generated filter, which will play an important role in
this thesis.
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Definition 2.1.12. Let A be a PAP and let A be a subset of A. We define (Ao)
as the smallest filter on A extending Ay, and we call this the filter generated
by Ao.

In the case of filters on posets with finite meets, one can always generate a
filter by first taking all possible finite meets, and then closing upwards. In the
current case, a similar description of generated filters is available. Before we
can formulate it, we need the notion of a term, which will also be central to the
treatment of PCAs in the next section.

Definition 2.1.13. Let A be a PAP. The set of terms over A is defined recur-
sively as follows:

(i) We assume given a countably infinite set of distinct variables, and these
are all terms.

(ii) For every a € A, we assume that we have a constant symbol for a, and
this is a term. The constant symbol for a is simply denoted by a.

(iii) If to and t1 are terms, then so is (to - t1).
We say that a term is pure if it contains no constant symbols.

When dealing with terms, we will omit the dot and brackets as much as
possible, subject to the same conventions as in Convention [2.1.2} If t = ¢(Z) is a
term whose variables are among the sequence Z, then we can assign an obvious,
possibly undefined, interpretation ¢(@) € A to an input sequence @ € A. In this
way, every term t(&) yields a partial function \@.t(@): A™ — A, where n is the
length of the sequence Z.

We have the following alternative descriptions of generated filters; the proof
is easy and omitted.

Lemma 2.1.14. Let A be a PAP and Ay C A. Then
(Ag) = Mt(@) | t(Z) a pure term,d € Ay and t(a@)|}.

A partial applicative structure is just a partial applicative poset equipped
with a filter.

Definition 2.1.15. A partial applicative structure (abbreviated PAS) is a
quadruple A = (A, A% ., <), where (A, -, <) is a PAP, that is to say:

(A) the application map has downwards closed domain and preserves the order;
and A% is a filter on (A,-, <), that is to say:

(B) A% is closed under defined application;

(C) A# is upwards closed.

The PAS A is called absolute if A% = A.
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We will say that a PAS is total iff its underlying PAP is, and similarly for
discreteness. However, for filters on a PAS, we use the following definition.

Definition 2.1.16. Let A be a PAS. A filter on A will be a filter F on the
PAP (A, -, <) satisfying A* C F.

In other words, a filter on a PAS A is a filter on the underlying PAP that
extends A%,

Example 2.1.17. Let A be a PAS and let F be a filter on A. Then (F, A%, . <)
is also a PAS. When no confusion can arise, we will denote this PAS sim-
ply by F. In particular, we have the absolute PAS A% = (A% A% . <).
Of course, (A, F,-, <) is also a PAS. In particular, we have the absolute PAS
Aabs = (A, A7 K S)

Example 2.1.18. If A is a PAP, then the PAP T'A (Example [2.1.7) can be
made into a PAS by setting

(TA)* = 1(TA*) = {a € TA|an A¥ € TA}.

Similarly, DA can be made into a PAS by (DA)# = (T A)#.

2.1.3 PCAs and combinatory completeness

The partial applicative structures introduced in the previous section are rather
‘algebraic’ and do not yet capture the intended intuition of PCAs as models of
computation. In order to capture this intuition, we impose some further axioms
on partial applicative structures.

Definition 2.1.19. A partial combinatory algebra (abbreviated PCA) is a
PAS A = (A, A% . <), that is to say:

(A) the application map has downwards closed domain and preserves the order;
(B) A* is closed under defined application;
(C) A# is upwards closed;
for which there exist k,s € A# such that:
(D) kab < a;
(E) sabl;
(F') sabc < ac(be),
for all a,b,c € A.

Of course, we will say that a PCA is total iff it is a total PAS, and similarly
for discreteness and absoluteness. A filter on a PCA will simply be a filter on
the PAS.
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Remark 2.1.20. (i) Let us warn the reader that k and s are not taken to be
part of the structure of the PCA A; they are merely required to exist.

(ii) In axiom (F), we require that sabc is defined if ac(bc) is defined, but
not conversely. Some sources (e.g., [vO08]) give a definition of discrete
PCAs that require sabc to be defined ezactly when ac(be) is defined; we
may call such a discrete PCA ‘strict’. In [FvOT6], it is shown that there
is no essential difference between these two definitions of discrete PCAs
(Theorem 5.1). For ordered PCAs, the version of axiom (F) given here is
standard.

In Section below, we will give many interesting examples of PCAs. For
now, let us note a few elementary examples.

Example 2.1.21. Any PAS (A4, A% A, <), where (A, <) is a poset with finite
meets, is automatically a PCA, provided A# # (). Indeed, any element of A%
can serve as both k and s.

Example 2.1.22. If A is a PCA, then so are TA and DA (Example[2.1.18)). In
both cases, [{k} and |{s} satisfy (D)—(F), as we leave for the reader to check.

Example 2.1.23. If A is a PCA and F is a filter on A, then (A, F,-, <) and
F = (F,A#,., <) are also PCAs, as can be seen by taking the same k and s. In
particular, Aaps and A# are PCAs.

The elements k and s represent certain basic computations in A, and are usu-
ally called combinators, as they correspond to certain constants from Schonfin-
kel’s combinatory logic [Sch24]. The letter k stands for Konstanzfunktion: ka
can be seen as (a code for) the constant function with value a. The combinator
s corresponds to Schonfinkel’s Verschmelzungsfunktion. We can think of it as
follows: if a,b € A depend on a further parameter ¢, then sab is (a code for) an
algorithm that, on input ¢, returns (at least as much information as) ac applied
to be, if defined.

The most important consequence of the existence of the combinators k and
s is that every partial function obtained by repeatedly applying the application
map is present as a computation in A itself. In order to make this statement
precise, we use the terms introduced in the previous section. As we mentioned,
every term defines a partial function A™ — A. The key fact about PCAs is that
such partial functions are ‘computable’ using an element from A itself.

Proposition 2.1.24 (Combinatory completeness). Let A be a PCA. There
exists a map that assigns to each nonempty sequence X,y of distinct variables
and term t = t(Z,y), an element \*Z,y.t € A, satisfying:

(i) (N*Z,y.t)dl (where @ has the same length as Z);
(i) (N*Z,y.t)ab < t(d,b);

(iii) if all the constants occurring in t are from A%, then \*T,y.t € A% as well.
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Proof. Define the element i € A# as skk. We will give a slightly more general
construction than required for the proposition. For a variable u and a term s,
we define a new term A*u.s with the following properties:

e the free variables of \*u.s are those of s minus u;

o if ¥ contains the free variables of A*u.s, then the substitution instance
(A*u.s)[b/7] is defined for all b € A;

e moreover, if a € A, then (\*u.s)[b/7] - a < s[b/T, a/ul;

e if all the constants occurring in s are from A%, then the same holds for
Afu.s.

We define this new term recursively:
e If s is a constant or a variable distinct from u, then A\*u.s is ks.
e If s is the variable u, then A\*u.s is i.
o If 5 is sps1, then A u.s is s(A*u.sg) (A u.s1).

We leave the verification of the stated properties to the reader.
Now, if ¥ = zg,...,x,_1, then we define \*Z, y.t as the interpretation of the
closed term:

XNzo.(- - N xpo1.(Nyt)) -+ +).
The verification of the properties (i), (ii) and (iii) is also left to the reader. O

Remark 2.1.25. (i) Note the k and s can be seen as special cases of combi-
natory completeness, for the terms ¢(x,y) = z and t(z,y, 2) = zz(yz).

(ii) Note that the order of the variables matters here, i.e., X*xy.t(z,y) will not
be the same as A*yz.t(z,y).

(iii) The notation A* is, of course, reminiscent of the A-calculus. However, we
should note that the A*-operator does not obey the usual rules of the A-
calculus, in particular not -conversion. For examples, we refer to [vOO08|
p.4-5].

2.1.4 Some basic constructions in PCAs

Combinatory completeness allows us to perform constructions from classical
recursion theory inside an arbitrary PCA. Many such constructions correspond
to constants of combinatory logic, and are therefore also called combinators.
In this section, we introduce a number of such combinators that will be useful
throughout the thesis.

Construction 2.1.26 (Identity). We have already seen the identity combinator
i = skk € A%, which satisfies ia < a. If we write k = ki € A%, then we have
kab < b, so k is the ‘dual’ of k.



2.1. Definition of partial combinatory algebras 35

Construction 2.1.27 (Pairing). Let p = A zyz.zay, po = M*z.zk and p; =
M z.zk. These combinators satisfy po(pab) < a and p;(pab) < b. In particular,
pab is always defined, and we think of this element as (coding) the pair (a,b).
Accordingly, p is called the pairing combinator, and pg and p; are known as the
unpairing combinators.

Construction 2.1.28 (Booleans). There exist C, T, L € A% such that CTab <
a and CLab < b; the elements T and L are called booleans. Indeed, we may
simply take C =i, T =k and L = k.

We must beware that, if we have terms to(Z), ¢1(Z) and t2(Z), then the term
t := Ctot1to does not behave as one would expect at first glance. In particular,
if to(d) < T and t1(a@), then it does not follow that ¢(a) is defined. Indeed, it
may happen that t2(@) fails to be defined and, since t2 is a subterm of ¢, this
prevents t(@) from being defined. We clearly do not want this, since we are not
interested in the value (if any) of to(@) when ¢(d) < T. Therefore, we introduce
a strong case distinction (see also [LNI5L Proposition 3.3.7]). If to(Z), t1(Z) and
to(Z) are terms, then we define a new term t'(Z) as:

Cto(A*y.tl)()\*y.tg)i.

where y is not among the #. One can easily check that this term has the
following property: if to(@) < T, then t'(&@) = t1(@), whereas if to(d) < L, then
t'(d) < t2(@). We will denote the term ¢’ above by: if ¢g then t; else t3. Observe
that, if all parameters from ¢y, t; and ¢, are in A%, then the same holds for
if g then t1 else 5.

Note that (strong) case distinction is really only useful when t(a@) cannot
simultaneously lie below both T and 1. We introduce a special name for PCAs
in which this can happen.

Definition 2.1.29. A PCA A is called semitrivial if the booleans T and L
have a common lower bound.

Note that, in a semitrivial PCA, any two elements have a common lower
bound. Indeed, if u is a common lower bound of T and L, and a,b € A, then
Cuab is a common lower bound of a and b. In semitrivial PCAs, (strong) case
distinction does not work well because we cannot really distinguish true and
false. Therefore, certain constructions involving case distinctions will only work
for PCAs that are not semitrivial. Examples of semitrivial PCAs are the PCAs

from Example [2.1.21} and every PCA of the form DA (Example [2.1.22]).

Construction 2.1.30 (Fixpoints). Let u = A zy.y(zay) and y = uu, both
of which are in A#. Then one easily verifies that ya < a(ya), so we can say
that ya, if defined, represents a fixpoint of the computation represented by a.
The caveat ‘if defined’ is important here, however: if ya if not defined, then
ya < a(ya) is trivially true, since both sides are undefined. As a result, the
fixpoint combinator y is really only useful in total PCAs. In not necessarily total
PCAs, one usually needs to use a guardedﬂ fixpoint combinator, which is defined

I This terminology is taken from [LNTH, Section 3.3.5].
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as follows. Let v = M\ xyz.y(rry)z and z = vv, both of which are in A% again.
Then we have that za is always defined, and zab < a(za)b. So even though we
do not necessarily have za < a(za) here, we do have Ax.zax < Az.a(za)z in the
sense of Definition 2.1.41 We can use the combinator z to create self-referential
definitions in a PCA. Explicitly, if ¢(z,y) is a term, then setting a := \*xy.t
yields an element T := za with the property that T < aTb =< t(T,b) for all
b € A. Moreover, if all the parameters from ¢ are in A%, then T € A# as well.
Obviously, this construction can be generalized to more variables in the place
of b, either by adjusting the definition of z or by using the pairing combinators.

Construction 2.1.31 (Numerals). As in the A-calculus, we can represent the
natural numbers in any PCA A. More precisely, for each natural number n we
define a numeral @ € A# by 0 =i and n + 1 = pL7n. The elements zero = py,
suc = \*z.pLx and pred = \*x.pozi(p1z) from A% satisfy:

zero-0< T, zero-n+1<1, suc-m<n-+1,
pred-0<0 and pred-n+1<mn.

Moreover, using the guarded fixpoint operator, we may construct a recursor
rec € A% such that

recab0 < a and recab-n + 1 =< bn(recabn),

for all n € N and a,b € A. Using these combinators and the guarded fixpoint
combinator from the previous construction, one sees that every partial recursive
function can be represented in A. More precisely, this means that for every
partial recursive function f: N*¥ — N, there exists an element r € A% such that
iy Mg = f(ny,...,ng), forall ng, ... ,ng € N.

Let us note that, if A is not semitrivial, then no two numerals (for distinct
natural numbers) have a common lower bound. Indeed, suppose that m and
7 have a common lower bound u € A, where m < n. By applying pred to u
exactly m times, we find a lower bound u’ of 0 and » — m. But then zero - u’ is
a lower bound of T and L, so A is semitrivial.

In particular, any PCA which is not semitrivial must be infinite.

Construction 2.1.32 (Sequences). Since we have a ‘pairing’ function given by
p € A# we can also code longer tuples in A. More precisely, we can define, for
each n > 0, a total function j": A™ — A by:

e j°0 =1

o a0, an) = pag - " (ars -, an).
Using these functions and the numerals constructed above, we can devise a
coding of finite sequences in A. If ag, ..., a,_1 is a sequence, then we define its
code by:

[ag, ... an_1] :=p-j"(ag,...,an-1).
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Observe that [ag,...,a,_1] is built using the a;, combinators from A# and
application. In particular, if all the a; are from A#, then so is the code
[ag,...,an—1]. Using the combinators defined thus far, one can mimick the

standard recursion-theoretic arguments to show that all elementary operations
on sequences are computable in terms of their codes. For example, there exist
lh, read, concat € A# such that:

o lh-[ag,...,an_1] <7
e read - [ag,...,an_1] 1 < a;ifi <mn;
e concat- [ag,...,an-1][bo, ..., bm—1] <lao,...san-1,b0,- ., bm-1]

More combinators acting on sequences will be introduced as we have need for
them.

In particular, a finite number of elements of A can be stored as a sin-
gle element, namely, as a (code of a) sequence. This has the following con-
sequence. Suppose that ag,...,a,—1 € A. Then the least filter on A that
contains ay, - .., a,_1 is equal to (A¥ U {ag,...,a,_1}), which is the same as
(A* U{[ag,--.,an_1]}). We give a special name to this situation.

Definition 2.1.33. A filter I on a PCA A is said to be finitely generated if
it is of the form (A% U{a}) for a certain a € A. Moreover, if a € A, then we

write Ala] = (A, (A* U {a}),-, <) (which is a PCA, by Example .

We can think of Afa] as the result of forcing the element a to be computable.
Note that, in order for Definition [2.1.33] as stated here to be sensible, we really
need that A is a PCA. Indeed, without the combinators, we have no way of
storing a finite set of elements of A as a single element of A.

Remark 2.1.34. Of course, the combinators constructed above are far from
unique. On the other hand, all of them may be constructed using only the
elements k and s. When working with a PCA, we will assume that we have made
an explicit choice for k and s, and as a result, a choice for all the combinators
mentioned above.

2.1.5 Examples of PCAs

Thus far, we have not provided many interesting examples of PCAs, and in the
examples that we gave, it is not clear that any kind of computation is going on.
In this section, we give some more exciting examples of PCAs. We will not, for
each of these examples, rigorously prove that the structure in question is indeed
a PCA, but rather provide some intuition or refer to other sources.

Example 2.1.35 (Kleene’s first model). The archetypical example of a PCA is
the absolute discrete PCA given by N with partial recursive function application.
That is, we set mn ~ ¢,,(n), where @, is the partial recursive function with
Godel number m. Combinatory completeness is an immediate consequence of
the Smn-theorem. This PCA is called Kleene’s first model, and is denoted by
K.
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Example 2.1.36 (Oracles). A variation on Kleene’s first model is given by
oracle computation. Let f: N — N be a (not necessarily recursive) partial
function, and let go{ﬂ be some coding of the partial functions that are recursive

relative to an oracle for f. Then mn ~ o/ (n) also defines a (absolute discrete)
PCA structure on N, that we denote by k7.

This construction has been generalized to arbitrary absolute discrete PCAs
in [vO06]. We will discuss this construction in detail in Section below.

Example 2.1.37 (Kleene’s second model). As we mentioned in the introduc-
tion, there is a PCA underlying function realizability, which is now known as
Kleene’s second model. Its domain is NY, the set of all functions N — N. Before
we can define the application map, we need to introduce some notation. Fix
a recursive coding of finite sequences (ag,...,a,—1) = [ag,...,an—1] € N. For
a € NN and n € N, we write a|, = [a(0),...,a(n — 1)]. Moreover, we write
[n] * a for the function o defined by o/(0) =n and /(i + 1) = «(i).

Each function o € NN determines a partial function Fy,: NY¥ — N as follows.
We set F,,(8) = m if and only if there exists an n € N such that:

e for all i < n, we have a(f];) = 0;

o alfln) =m+1.

We can think of this definition as the following process. The function « interro-
gates the function £, successively demanding more values until it comes up with
an output. More precisely, at each stage, « either asks for an additional value
of B by returning 0, or presents the final output m by returning m + 1. Note
that F, is in general a partial function because it may happen that a(S3],) =0
for all n. In this case, a keeps demanding values of 8, never coming up with a
final output.

The application map of Kleene’s second model is now defined as follows.
For a, 8 € NV we say that a8 | iff F,([n] * 8) | for all n € N, and in this
case, af3 is defined by aB(n) = F,([n] * 8). So in the computation of «S(n),
the interrogator « is first presented with the input n, and can then proceed to
inspect as many values of 3 as necessary. This definition of application yields a
absolute discrete PCA, which is called Kleene’s second model and denoted by
KCo. For a proof of combinatory completeness, we refer to [vO08, Section 1.4.3]E|

With this definition of application, computability of total functions coin-
cides with continuity. More precisely, a function (NM)” — NN is of the form
(B1s..-Bn) — afy -+ By for some a € NV if and only if this function is contin-
uous with respect to the Baire space topology on NV,

Function realizability does not arise precisely from this version of Kleene’s
second model, but from a relative version, where Kj = K¢ consists of the total
recursive functions. By Example K% is also an absolute PCA in its own
right.

2[vO08] uses the ‘strict’ definition of PCAs mentioned in Remark ii). For this
definition, the proof of combinatory completeness given in [vOO0§| is not entirely correct, as

is acknowledged and repaired in [vO11]. For our definition of PCAs, however, the proof in
[vO08] works fine.
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Example 2.1.38 (Van Oosten model). The Van Oosten mode]ﬂ B, first intro-
duced in [v099], is like Kleene’s second model, except that its domain consists of
all partial functions N — N. For a € BB, we will define a function F,: B — Nin a
similar spirit as in the previous example. There is a complication, however, due
to the fact that functions are partial. Suppose the interrogator « is interested
in the value (if any) of $(42). Then it cannot simply successively ask initial
values of 8 until it hits (42), since 8(i) could be undefined for some i < 42,
sending the interrogation astray. So in addition to declaring that it wants to
see another value of 8, the interrogator must also specify which value it wants
to see. This leads to the following definition of F,,. We say that F,(5) = m iff

there exists a finite sequence ug, ..., u,_1 of natural numbers such that:
o for all ¢ < n, there is a k; such that a([ug,...,u;—1]) = 2k; + 1 and
Bki) = ui;
o affug,...,up—1]) = 2m.
Clearly, the sequence wuy,...,u,—1 is unique if it exists, which means that

F,(B) = m for at most one m, i.e., F, is indeed a partial function. As in
the previous example, F,, () can fail to be defined of o keeps demanding values
from B forever. In the current case, there is also the additional possibility that
« tries to interrogate [ on a value k; outside the domain of 3, which also causes
F,(B) to be undefined.

The application map is defined by: af(n) ~ F,([n] * 8), where [n] x 8 is
defined analogously to the previous example. Note that in this case, we do not
have to require that F,([n] * 3) is always defined, because a3 is allowed to be
a partial function. As a result, this makes B into a total PCA. The proof of
combinatory completeness of B, and the generalization to other PCAs, will be
treated in Section [£.2.1] below.

Like K5, the Van Oosten model has a relative version, where B# = BP*
consists of all partial recursive functions. Again, BP" is a PCA in its own right.
The Van Oosten model can be regarded as an ordered PCA by setting a <
iff v is a superfunction of 3, cf. Remark If we also want to regard this
ordered version as a relative PCA, then we need to set B# = 1 BP*, the set of
all subfunctions of partial recursive functions.

Example 2.1.39 (Scott’s graph model). Scott’s graph model, introduced in
[ScoT5], is another example of a total PCA. Its domain is Pw, the set of sets of
natural numbers. Let us fix a recursive bijective pairing function (-,-): Nx N —
N, and write e(_) for the bijection N — Pg,(N) given by e, = p iff n = Ziep 20,
Now we set

AB ={m|3n(e, C B and (n,m) € A)}.

As for Ko, there is a connection with continuity here. The set Pw can be
equipped with the Scott topology, whose basic opens are those sets of the form

3Even though this model was introduced in 1999, it only received this name in [LNT5]
Section 3.2.4].
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Up={A € Pw | p C A} for finite sets p. A function (Pw)™ — Pw is of the
form (By,...,B,) — AB;y---B, for some A € Pw iff it is continuous w.r.t.
this topology. Since the application map (A, B) — AB is itself continuous, this
immediately implies that Pw is combinatorially complete, so it is indeed a total
PCA.

Scott’s graph model also has a relative version, where (Pw)* = (Pw)
consists of all recursively enumerable sets of natural numbers.

2.2 Morphisms of PCAs

Thus far, we have only discussed PCAs as isolated objects. In this section,
we discuss morphisms between PCAs. These are not yet Longley’s applicative
morphisms mentioned in the Introduction; we will treat those in Section |2.3
First, we introduce morphisms and show that they form a category enriched
over preorders. Then, we consider some special properties that morphisms may
enjoy, and give a number of examples of morphisms.

2.2.1 The category of PCAs

A morphism of PCAs A — B will be a function between the underlying sets, but
not one that ‘preserves the structure’. Instead, we require that the structure is
preserved ‘up to a realizer’. For example, we do not require f(aa’) to be literally
(Kleene) equal to f(a) - f(a’). Instead, we ask for an algorithm from B# that
‘simulates’ the application from A inside B, and similarly for the order. Let us
make this precise in the following definition.

Definition 2.2.1. Let A and B be PCAs. A morphism of PCAs A — B is
a function f: A — B satisfying:

(i) f restricts to a function A% — B¥ i.e., f(a) € B¥ for all a € A%;
(ii) there exists an element t € B¥ such thatt - f(a) - f(a') < f(aa’);
(iii) there exists a uw € B¥ such that u- f(a’) < f(a) whenever o’ < a.

We say that the morphism f is realized by t,u € B¥. We may also say that f
preserves application up to t, and preserves the order up to u.

The set of functions A — B, and in particular, the set of morphisms of
PCAs, carries a preorder. In the same spirit as in Definition [2:2.1] we do not
define this order as the pointwise order, but rather as the pointwise order ‘up
to a realizer’.

Definition 2.2.2. If A and B are PCAs and f, f': A — B are functions, then
we say that f < f' iff there exists an s € B¥ such that s - f(a) < f'(a). Such
an element s is said to realize the inequality f < f'. Moreover, we say that f
and f' are isomorphic, written f ~ f’, if both inequalities f < f' and ' < f
hold.
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Proposition 2.2.3. Partial combinatory algebras, morphisms of PCAs, and in-
equalities between morphisms of PCAs form a preorder-enriched category, which
we denote by OPCA.

Proof. If A is a PCA, then id 4 preserves both application and the order ‘on the
nose’. In particular, id4 preserves both application and the order up to i € A#.

Suppose we have morphisms of PCAs A i> B % C. Let t,u € B¥ realize f
and let ¢, u/ € C*# realize g. Then gf preserves application up to

t" = Nayad (t'(t - g(t) - x)y) € CF.
Indeed, for a,a’ € A, we have:

" g(f(a)) - g(f(a")) 2/ (' (" g(t) - 9(f(a))) - g(f(a")))
: )

as desired. Moreover, gf preserves the order up to A*z.u/'(t' - g(u) - z), as a
similar computation shows. This proves that OPCA is a category.

If f: A — B is a morphism of PCAs, then i € B¥ realizes f < f. Now
suppose that we have morphisms of PCAs f, f/,f": A — B, and elements
s,s' € B¥ realizing f < f' and f' < f”. Then \x.s'(sx) realizes f < f, so
we can conclude that < is a preorder on each homset. It remains to show that
composition preserves inequality.

f
Suppose we have morphisms of PCAs A = B % C and an s € B# realizing
f/
f < f'. Ift,u € C¥ realize g, then gf < gf’ is realized by \z.u(t - g(s) - x).
g
Finally, suppose we have morphisms of PCAs A ENNS = C. Then any

g
realizer of g < ¢’ also realizes gf < ¢'f. O

Remark 2.2.4. The first letter in OPCA stands for ‘ordered’. The reason we
don’t simply use PCA here (after all, PCAs are ordered by default) is that in
the literature, PCA invariably stands for the category of discrete PCAs and
applicative morphisms, as introduced by Longley in [Lon94].

When working with generated filters, the following lemma will be useful.
Essentially, it says that we only need to check requirement (i) of Definition m
on a generating set of A%,

Lemma 2.2.5. Let A and B be PCAs and suppose that A% = (Ag) for some
Ag C A. Let f: A— B be a function satisfying (i) and (i) of Deﬁm’tz’onm
and also:

(i)’ if a € Ay, then f(a) € B*.
Then f is a morphism of PCAs A — B.
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Proof. Let t,u € B¥ satisfy requirements (ii) and (iii), and consider f~!(B#) =
{a € A| f(a) € B#}. We claim that f~1(B#) is a filter on the PAP A. First, if
a,a’ € f~1(B#) are such that aa’ ], then we have t- f(a)- f(a') < f(aa’). Since
t, f(a), f(a') € B#, this implies that f(aa’) € B#, as desired. The argument

that f~1(B#) is upwards closed is similar, using u € B¥.
Requirement (i)’ says that Ag C f~1(B¥). Since f~1(B#) is a filter, this
implies A# = (Ag) C f~1(B#), which is requirement (i) from Definition
O

2.2.2 Properties of morphisms of PCAs

In this section, we introduce some special properties that a morphism of PCAs
may have.

Definition 2.2.6. Let f: A — B be a morphism of PCAs.

(i) We say that f is decidable if there exists a d € B* (a decider) such
thatd- f(T)< T andd- f(L) < L.

(ii) We say that f is computationally dense (c.d. for short) if there exists
an n € B satisfying:

Vs € B*3r € A% (n- f(r) < s). (cd)

i) We say that f is dense if f is c.d. and there exists an n € B¥ satisfying:
g

Vse Bare A(n- f(r) <s). (d)

Note that, if f is dense, the ns satisfying @ and @ are not required to
be the same element; but see also Lemma [2.2.9] below. Clearly, if A and B
are both absolute PCAs, then computational density and density coincide, and
in this case, it also coincides with the original notion from [HvO03|]. However,
the definition we have given here is, even in the absolute case, not quite the
definition from [HvOO03], but rather a simplification due to Johnstone [Joh13].
We will formulate the original definition from [HvOO03] (or rather, two versions
of it) and prove its equivalence to Definition [2.2.6(ii) and (iii) in Lemma
below.

The following definition formulates an extremely strict map from A to B,
where all the structure should be preserved and reflected ‘on the nose’. As we
mentioned, this is not the ‘correct’ notion of a morphism between PCAs, but
we will need the definition for technical purposes.

Definition 2.2.7. A function f: A — B is called an elementary inclusion
if it satisfies the following three conditions:

(i) B¥ =1(f(A%));
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(ii) f(aa) = f(a) - f(a');
(iii) a < o' iff f(a) < f(a).

Moreover, we say an elementary inclusion f is essentially surjective if B =

T(f(A4))-

Clearly, an elementary inclusion of PCAs will automatically be a morphism
of PCAs. Moreover, it will always be a pseudomono in OPCA, as we leave to
the reader to verify.

The following lemmata establish some useful properties of the notions from
Definition and Definition

Lemma 2.2.8. Let f: A — B be a morphism of PCAs.
(i) If [ is dense, then f is c.d.

(i) If f is c.d., then f is decidable.

(ii) If f is an elementary inclusion, then f is c.d.

(i) If f is an essentially surjective elementary inclusion, then f is dense.

Proof. (i) holds by definition.

(ii). Suppose that f is c.d. Let t,u € B¥ realize f, and suppose that
n € B# satisfies . Then we may find ro,71 € A% such that n- f(rg) < T
and n - f(r;) < L. Now consider the element r = \*z.Caror; € A%, so that
rT <rgand rL <r;. Finally, set d = A*z.n(u(t- f(r) - x)). Then we have:

d- f(T) 2 n(ut- f(r)- f(T)) 2nlu-frT)) 2n- flro) <T,

and similarly, d - f(L) < L, so d is a decider for f.

(iif). If f is an elementary inclusion, then by requirement (i) from Defini-
tion i € B¥ satisfies for f.

(iv) follows similarly. O

Lemma 2.2.9. If f: A — B is dense, then there exists an n € B¥ satisfying

both and @

Proof. Let t,u € B realize f, and let d € B# be a decider for f, which exists
by Lemma Let ng,n1 € B¥ satisfy and @ respectively, and define
n € B as:

N aif d(u(t- f(po) - x)) then no(u(t- f(p1) - )) else ny(u(t- f(p1) - x)).

We claim that n satisfies both (cd)) and @ Indeed, let s € B#, and take an
r € A% such that ng - f(r) < s. If we define 7’ = pTr € A%, then we see that

d(u(t- f(po) - f(r'))) X d(u- f(por')) 2d- f(T) < T,
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SO

n- f0') Zno(ult- f(pr) - F(7))) 2 no(u- f(prr')) X mo - f(r) < s,

so n satisfies . Similarly, if s € B, then take r € A such that ny - f(r) <s
and define " = pLr. A similar calculation shows that n - f(r') < s, so n also
satisfies @ O

Lemma 2.2.10. Let AL B % C be morphisms of PCAs.
(i) If f and g are both decidable / c.d. / dense, then so is gf.
(i) If gf is decidable / c.d. / dense, then so is g.

(#ii) If g is an elementary inclusion and gf is decidable / c.d., then f is also
decidable / c.d. If, moreover, g is essentially surjective and gf is dense,
then f is also dense.

Proof. Let t,u € C# realize g.

(i). If d € B¥ and d’ € C# are deciders for f resp. g, then a decider for gf
is given by A*z.d'(u(t - g(d) - x)) € C#. The proofs for (computational) density
are analogous.

(ii). Suppose d € C# is a decider for gf, and set r = \*2.C-z- f(T)- f(L) €
B#. Then M\x.d(u(t - g(r) - z)) is a decider for g. Moreover, if gf is c.d., then
any n € C7 satisfying for gf also satisfies for g; similarly for the case
of density.

(iii). If gf is decidable, then using a decider for gf, we may construct a
c € C* such that ¢- g(f(T)) < g(T) and c- g(f(L)) < g(L). We may find a
d € B# such that g(d) < c. Now we have:

g(d- f(T)) ~g(d)-g(f(T)) Zc-g(f(T)) <g(T),

sod- f(T) < T. Similarly, we find d- f(L) < L, so d is a decider for f. The
other statements follows similarly. O

Lemma 2.2.11. (i) All notions from Definition[2.2.6 are downwards closed,
that 1s, if we have morphisms of PCAs f, f': A — B such that f' < f and
f is decidable / c.d. / dense, then f' is also decidable / c.d. / dense.

f
(i) Let A = B be morphisms of PCAs. If fg < idp, then f is dense. In

g
particular, left adjoints are dense.

Proof. (i) Let s € B¥ be a realizer of f/ < f. If d € B¥ is a decider for f,
then A*z.d(sz) is a decider for f’. The proofs for (computational) density are
analogous.

(ii) Clearly, idp is dense, so by (i), fg is also dense. The statement now

follows from Lemma [2.2.10((ii). O
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The following lemma offers alternative characterizations of (computational)
density, which are equivalent to the original definiton from [HvO03] in the abso-
lute case. Note that for these definitions, it would be a lot harder to establish the
properties of (computational) density established in the lemmata above! The
reason for formulating this lemma, is that we will need the alternative charac-
terization of (computational) density in the proof of Theorem below.

Lemma 2.2.12 (Hofstra, Van Oosten, Johnstone). Let f: A — B be a mor-
phism of PCAs.

(i) f is computatonally dense if and only if there exists an m € B¥ satisfying:

Vs € B¥3r € A#*Yac A (m- f(ra) < s- f(a)). (cdm)

(i) If f is c.d., then f is dense if and only if there exists an m € B¥ satisfying:
Vse€ Bare AVa € A (m- f(ra) <s- f(a)). (dm)

In fact, any element satisfying (cdm)) also satisfies (cd), and any element sat-
isfying (dml) also satisfies (d). Moreover, if f is dense, then there exists an

m € B¥ satisfying both (cdml) and (dml).
Proof. Let t,u € B¥ realize f.
(i) First, suppose that f is c.d. and that n € B satisfies . Consider:

m = Nz.n(u(t- f(po)-z))(u(t- f(p1)-z)) € B¥. (2.1)

Let s € B¥, and find a 79 € A% such that n - f(ry) < s. Finally, set r = prg €
A% . Then for all a € A, we have pg(ra) < ro and p;(ra) < a, which yields:

m - f(ra) = n(u(t- f(po) - f(ra)))(u(t- f(p1) - f(ra)))
= n(u- f(po(ra)))(u- f(pi(ra)))
=n- f(ro)- f(a)
s f(a)a
as desired.

Conversely, suppose that m € B# satisfies (cdml), and consider s € B¥.
Then we also have ks € B¥, so we may find an ry € A% such that m - f(rpa) <
ks - f(a) for all @ € A. Finally, set r = rok € A¥. Then we have m - f(r) ~
m - f(rok) < ks - f(k) < s, as desired.

(ii) follows by exactly the same constructions. Moreover, if f is dense, then
by Lemma there is an n € B# satifying both (cd) and @ The element

m € B¥ defined in (2.1)) will satisfy both (cdml) and (dm]). O

2.2.3 Examples of morphisms of PCAs

Example 2.2.13. If f: A — B is a morphism of PCAs, then restricting f to
A7 yields a morphism of PCAs f#: A# — B#. Moreover, f can also be seen
as a morphism of PCASs fips: Aabs — Babs-
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Example 2.2.14. Let A be a PCA and F be a filter on A. As we have seen,
F = (F,A%,.,<) is a PCA in its own right. The inclusion F < A is an
elementary inclusion, so in particular, it is a c.d. morphism of PCAs. Such
a morphism will be called an inclusion of a filter. Note that the inclusion
TA — DA is an example of an inclusion of a filter.

Example 2.2.15. Again, let A be a PCA and F be a filter on A. Then
(A, F,-,<) is also a PCA, and the identity on A is a morphism of PCAs A —
(A, F,-,<).

In particular, if F' is finitely generated by a € A, we have a morphism
ta: A — Ala], where Ala] is as in Definition [2.1.33] We show that this morphism
is dense. Clearly, it suffices to show that ¢, is c.d. Let n = \zv.za € A[a]#. If
s € Ala]”, then by Lemma there exists a pure term ¢(Z,y) such that
t(b,a) < s for certain b € A#. Now consider the element r = \*y.t(b,y) € A#.
Then we have nr < ra < t(l;7 a) < s, so n satisfies for ¢4, as desired.

We will revisit this example in the next section, after introducing applicative
morphisms; this will provide another way of showing that ¢, is dense.

Example 2.2.16. A trivial example of a morphism of PCAs is the morphism
f+ A — B given by f(a) = k. This is the largest morphism of PCAs A — B.
Indeed, if f': A — B, then kk realizes f’ < f.

Example 2.2.17. Let f: A — B be a morphism of PCAs. Then we can define
a morphism T'f: TA — TB by Tf(a) = L(f(e)) = I{f(a) | a € a}. Let us
check that this is indeed a morphism. First of all, if a € (T'A)#, then there
exists some a € a N B¥, and we have f(a) € Tf(a) N B¥, so Tf(a) € (TB)*.
Moreover, T'f preserves the order on the nose, and if f preserves application up
tot € A%, then Tf preserves application up to [{t} € (TA)*.

We can say even more, namely that 7" is a pseudofunctor. Indeed, suppose

we have morphisms of PCAs A 4, B % C. Then we have

T(gf)(e) = Hg(f(a)) [ a € a},
Tg(Tf(a)) = Hg®) [b el fla)}=1{g(b) |3acald< f(a)}

These are not in general equal, but we do have T(gf)(a) C Tg(T f(«)), which
yields T(gf) < TgoTf. Conversely, if g preserves the order up to u € C#, then
Hu} € (TC)# realizes TgoTf < T(gf). Moreover, we easily see that T'(id4) is
the identity on T'A. Finally, if f, f’: A — B and s € B¥ realizes f < f’, then
1{s} € (TB)# realizes Tf < Tf".

In a completely similar fashion, we see that D can be made into a pseudo-
functor OPCA — OPCA. The inclusions TA < DA then constitute a natural
transformation T' = D.

The following two examples define pseudomonad structures on 7" and D,
which we will study more closely in Section below.

Example 2.2.18. For each PCA A, there is a morphism of PCAs §4: A — T A
which sends a € A to the principal downset [{a}. It is easy to check that ¢ is
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in fact an elementary inclusion which is essentially surjective; in particular, d 4
is dense. Moreover, § constitutes a pseudonatural transformation idopca = T
Indeed, if f: A — B, then

0p(f(a)) = Hf(a)} and Tf(a(a)) ={f(a)|d < a}.

Again, these are not in general equal, but we do have dg(f(a)) C Tf(da(a)),
which yields dp o f < T'foda. In the other direction, if f preserves the order
up to u € B#, then |{u} € (T'B)#* realizes Tf ods < dpo f.

Similarly, we have §’y: A — DA given by a — |{a}, which forms a natural
transformation §': idopca = D. In this case, ¢’y is an elementary inclusion, so
it is c.d., but it is not dense!

Example 2.2.19. For each PCA A, there is a morphism of PCAs | J,: TTA —
T A sending A € TT A to|JA. Since J(I{a}) = a, e, |J, 0074 =idra, we see
that (J, is dense. Moreover, | J constitutes a natural transformation 77 = T}
in this case, one easily checks that naturality holds on the nose.

Similarly, we have a dense morphism of PCAs U;‘: DDA — DA given by
union, yielding a natural transformation U’: DD = D.

Finally, let us give some examples of morphisms of PCAs involving the PCAs

from Section 2.1.5

Example 2.2.20. Let A be a PCA. Then we have a morphism of PCAs 3 — A
which sends n € N to its Curry numeral 7@ € A#. In order to see that this is
indeed a morphism, note that (m,n) — mn is a partial recursive function of
two variables. Now the final remark of Construction 2.1.31] tells us that there
exists an r € A% such that r - - 7 < Tm, so application is preserved up to .

If f: N — N is a partial function, then n — 7 is a morphism of PCAs
K — Aiff there exists an s € A# such that s-7 < f(n). We will prove this, in
greater generality, in Section [5.1.2

Example 2.2.21. Consider the relative versions of Kleene’s second model Ky =
(Ko, K¢, -,=) and Scott’s graph model Pw = (Pw, (Pw)", ,=). There is a
morphism of PCAs f: Ko — Pw which sends a@ € Ky to its graph f(a) =
{{n,a(n)) | n € N}. Let us see that this is indeed a morphism. First of all, if
a is a recursive function, then its graph is a decidable set, so it is certainly r.e.
It remains to prove that f preserves the application up to some realizer. Note
that, if af(n) = m, then this depends on only finitely many values of o and 5.
Moreover, the relation R(a,b,n,m) expressing ‘e, and e, code graphs of finite
functions p and ¢, and whenever p C « and ¢ C 3, we have af8(n) = m’ is r.e.
Now let A be the r.e. set consisting of all (a, (b, (n, m))) such that R(a,b,n,m).
Then it is easily checked that A- f(«) - f(8) = f(aB) when af], as desired.

We have a similar example involving the (relative, but discrete) Van Oosten
model B = (B, BP', -, =). Again, we define an applicative morphism f: B — Pw
which sends a function « € B to its graph f(«) = {{n,a(n)) | n € doma}. If ais
partial recursive, then its graph is recursively enumerable, and the construction
of a realizer proceeds similarly as above.
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2.3 Applicative morphisms

In this section, we define Longley’s notion of an applicative morphism between
PCAs. We follow the treatment from [HvOO03|, which shows that T is a monad
on OPCA and recovers the notion of an applicative morphism as a morphism
in the Kleisli category of T'. Moreover, we introduce a related notion of partial
applicative morphism, which arises similarly from D. After introducing (par-
tial) applicative morphisms, we will extend the notions from Definition to
(partial) applicative morphisms and investigate when (partial) applicative mor-
phisms have a right adjoint. Finally, we will give a few examples of (partial)
applicative morphisms.

2.3.1 Two more categories of PCAs

As we have seen in the previous section, T and D are pseudofunctors on OPCA.
The natural transformations d,|J resp. ¢, ) we introduced for these functors
yield two pseudomonad structures.

Proposition 2.3.1. The triples (T,6,|J) and (D,&',|J') are pseudomonads on
OPCA. Moreover, both pseudomonads are KZ, meaning that Té 4| 4 6T resp.
Dy 4 4d'D.

Proof. The proof is exactly the same as for the (nonempty) downset monad on
the category of posets. O

It is well-known that for KZ-pseudomonads, algebra structures on A are
left adjoint to the unit, and are thus unique. For a characterization of the T-
algebras, we refer to [HvOO03| Section 4]. For each PCA A, we have the free
T-algebra (T'A,|J,). If z: TB — B is another T-algebra, then any morphism
of PCAs f: A — B lifts to an essentially unique morphism of T-algebras:

A
a X
TA ----- > B

Explicitly, we have f ~ xoTf. Since T is a KZ-pseudomonad, we can say a
bit more: f is the least morphism of PCAs TA — B that makes the diagram
above commute. Indeed, suppose that g: TA — B is any morphism of PCAs

such that go d4 ~ f. Then we have

frezoTfr~zoTgoTés<zoTgodra~z0dgogr~g, (2.2)
where we used that a KZ-pseudomonad satisfies T9 < éT. For the monad D,
similar remarks apply.

Definition 2.3.2. (i) The preorder-enriched bicategory OPCAr is defined as
the Kleisli category of the pseudomonad (T,0,| ). An arrow of this cate-
gory is called an applicative morphism. We write f: A — B to indicate
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that f is an applicative morphism from A to B; this means that f is a
morphism of PCAs A — TB.

(i) The preorder-enriched bicategory OPCAp is defined as the Kleisli category
of the pseudomonad (D,&',\)). An arrow of this category is called a
partial applicative morphism. We write f: A —o B to indicate that
f is a aprtial applicative morphism from A to B; this means that [ is a
morphism of PCAs A — DB.

Restricting the category OPCA7r to the absolute discrete PCAs yields Long-
ley’s category PCA introduced in [Lon94]. The category OPCAp will mainly
serve an auxilliary purpose in this thesis, especially when studying adjunctions
between applicative morphisms. In Section [2.3.3] below, we will see that certain
applicative morphisms have a right adjoint in OPCAp, but not in OPCA7.

In OPCA7, the identity map on A is given by d4: A — A, ie., a — {{a}. If

A —fo B C, then gf: A — C is equal to the composition
AL X% e Y e

meaning that (gf)(a) = Upey) 9(b). As we have seen above, if f: A — B,
then there is an essentially unique pseudofactorization

A
oa & (2.3)
TA --——-- > TB

where f is an algebra morphism between the free algebras T'A and T'B. Expli-
citly, we can describe f as |JoT'f, meaning that f(a) = | f(a) = Usca fla).
The fact that f is an algebra morphism means that f is, up to realizer, union
preserving. Since every element of T'A is a union of principal downsets, it stands
to reason that f is essentially determined by its action on the image of d4. It
is well-known that the assignment f +— f is a pseudofunctor which yields an
equivalence between OPCAT and the category of free T-algebras. For OPCAp,
similar remarks apply. In particular, partial applicative morphisms f: A <o B
correspond to D-algebra morphisms f : DA — DB.

The definition of (partial) applicative morphisms as in Deﬁnition above
can be a bit cumbersome, so it is useful to break this definition down a bit. First
of all, let us note that every applicative morphism A — B, i.e., morphism of
PCAs A — T'B, can also be seen as a partial appplicative morphism A +o B,
namely as A — TB — DB. Since TB — DB is a pseudomono, it is easy to
see that this presents OPCA7 as a preorder-enriched sub-bicategory of OPCAp.
In particular, what we will say below on the definition of partial applicative
morphisms will also hold for applicative morphisms.

If f: A < B is a partial applicative morphism, then f must preserve appli-
cation up to some 7 € (DB)#. If t € 7N B, then we see that f also preserves
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application up to [{t} € (DB)#. In order to work with these kind of realizers
efficiently, we introduce the following notation.

Notation 2.3.3. Let A be a PAP. If a € A and o € DA, then we write
a-a:~{a} -a~]{ad |d € a}.

Note that the second Kleene equality here is a consequence of axiom (A) of

Definition B.1.11

In particular, if a, 8 € DA, then a -« C § amounts to showing that aa’ € 8
for all @’ € a. Now we can reformulate the definition of a partial applicative
morphism as follows. A function f: A — DB is a partial applicative morphism
if it satisfies the following conditions.

(i) If a € A#, then f(a) N B¥ is nonempty.

(ii) There exists a ¢t € B¥ such that t - f(a) - f(a’) < f(aa’). By abuse of
terminology, we say that f preserves application up to t¢.

(iii) There exists a u € B# such that u - f(a’) C f(a) whenever @’ < a. Again,
we say that f preserves the order up to u.

We will also say that t,u € B¥ realize f. The intuition behind these clauses is
now as follows. We think of a partial applictive morphism as a simulation of A
inside B, and we think of the statement b € f(a) as ‘b represents the element
@’. Thus each element has a (down)set of representatives in B. Contrary to
the case of morphisms of PCAs, this set can contain more than one element, or
in the case of partial applicative morphisms, none at all. The clauses (i)-(iii)

above then state:
(i) Every element of A% is represented by at least one element of B¥.

(ii) There is an algorithm ¢ € B# that simulates the application on A. That
is, if b, b’ represent a,a’ and aa’ is defined, then tbb’ is also defined and a
representative of aa’.

(ii) There is an algorithm u € B# that simulates the order on A. That is, if
b’ represents a’ and a’ < a, then ub’ is defined and a representative of a.

Moreover, we have f < f’ if and only if there is an s € B¥ such that s - f(a) C
f(a); and we say that s realizes f < f’. Intuitively, s turns representatives of
a w.r.t. f into representatives of a w.r.t. f’.

Remark 2.3.4. It is worth reflecting on the fact that we defined OPCA7 and
OPCAp as preorder-enriched bicategories. This is due to the fact that T and
D are only pseudomonads. But in fact, OPCAr and OPCAp are both ‘almost’
preorder-enriched categories. The only axiom for 1-categories that does not
hold on the nose in either OPCAp or OPCAp is foid & f. In fact, if f is a
(partial) applicative morphism, then foid = f holds on the nose iff f preserves
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the order on the nose, that is, a’ < a implies f(a’) C f(a). As we shall see
below in Lemma [2.3.5] it is no real restriction to consider only such f.

It is also worth noting that, if for f: A —o B we define f: TA — TB as
JoTf, then the assignment f — f becomes 2-functorial, rather than pseudo-
functorial.

The following was shown in [HvO03, Lemma 3.3].

Lemma 2.3.5. Suppose that f: A <o B is a partial applicative morphism.
Then there exists an f': A o B such that f ~ f' and f' preserves the order
on the nose.

id f
Proof. Define f' as the composition A A B, or more explicitly, f'(a) =
Uar<q f(@"). Then of course, we have f’ ~ f, and from the explicit description
of the morphism f’ it is also clear that f’ preserves the order on the nose. [

Thus, one could restrict OPCAr and OPCAp to the order-preserving (par-
tial) applicative morphisms to obtain actual preorder-enriched categories; but
we will not take this approach here.

The name ‘partial applicative morphism’ deserves some explanation. For
this, we need the following definition.

Definition 2.3.6. Let f: A «—o B be a partial applicative morphism. Then the
domain of f is defined as:

domf:={a€ Al fla) eTB}={a€ A| f(a) # 0}.

We say that f is total if dom f = A, equivalently, if f: A — DB factors through
TB < DB.

Note that the inclusion OPCAr — OPCAp identifies applicative morphisms
with the total partial applicative morphisms.

Lemma 2.3.7. If f: A <o B is a partial applicative morphism, then dom f is
a filter on A.

Proof. Note that dom f = f~1(TA), and TA is a filter on DA, so we can use
the same argument as in the proof of Lemma [2.2.5 O

In particular, dom f = (dom f, A%, . <) is itself a PCA. Now we can view
fldom ¢: dom f — T'B as an applicative morphism dom f — B, and it is easily

verified that

domf fldom £ TRB

I l

A—1 . pB

is a pseudopullback in OPCA. Conversely, if F' is a filter on A and f: F —o
B is an applicative morphism, then we can (uniquely) extend f to a partial
applicative morphism f¥: A <o B such that dom f* = F. In this way, we can
view partial applicative morphisms as partial maps from A to T'B, where the
admissible domains are inclusions of a filter.
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2.3.2 Properties of (partial) applicative morphisms

In this section, we extend the notions from Definition to (partial) applica-
tive morphisms.

Definition 2.3.8. (i) An applicative morphism f: A — B is called deci-
dable / c.d. / dense iff f: A — TB is decidable / c.d. / dense as a
morphism of PCAs.

(i) A partial applicative morphism f: A «—o B is called decidable / c.d. iff
f: A — DB is decidable / c.d. as a morphism of PCAs.

Since OPCA — OPCAp, we should check the following.

Lemma 2.3.9. If f: A — B, then f is decidable / c.d. iff f: A ~o B is
decidable / c.d. as a total partial applicative morphism.

Proof. Given Lemma [2.2.8(iii) and Lemma [2.2.10(i) and (iii), this follows im-

mediately from the diagram
A—L,1B
DB
and the fact that T'B < DB is an elementary inclusion. O

Remark 2.3.10. We have refrained from defining a notion of density for partial
applicative morphisms, for the following reason. If we say that A <o B is dense
iff A — DB is dense as a morphism of PCAs, then the analogue of Lemma[2.3.9]
for density would fail, which would be highly confusing. In fact, this notion
of density for partial applicative morphism is not very intersting at all. If a
morphism f: A — DB is c.d., then it is dense iff §) is in the range of f, which
is to say that f: A «—- B is not total.

As we did for Definition 2:3:2] we can break down the notions from Defini-

tion in terms of realizers from B# rather than (DB)#. If f: A o B is an
applicative morphism, then:

e f is decidable iff there is a d € B¥ (also called a decider for f) such that
d-f(T) S {Trandd- f(1) S H{L};

o fis c.d. iff there exists an n € B# such that

Vs € B*3r € A% (n- f(r) C {s}); (ed)

e if f is total, then f is dense iff it is c.d. and there exists an n € B# such
that

Vse Bare A(n- f(r) Cl{s}). (d)
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Note that Lemma i) and (ii) and Lemma|2.2.11{(i) carry over automatically
to OPCA7, and to OPCAp insofar as they do not involve density. Moreover,
Lemma tells us that for a dense f: A — B, we may select an n € B#

satisfying both (cd’l) and . Using Lemma|2.2.12] we can deduce that f: A <o
B is c.d. iff there exists an m € B# such that

Vs € B*3r € A*Va € A(m - f(ra) < s- f(a)). (cdm’)
If f is total, then f is dense iff f is c.d. and there exists an m € B# such that
Vs € Bar e AVa € A(m - f(ra) 2 s- f(a)), (dm’)

and we may find an m € B# satisfying both and . Moreover, any
m € B# satisfying resp. @ also satisfies resp. .

For a result like Lemma [2.2.10] we need to be a bit more careful, since we
have to deal with composition. We will need the following result.

Lemma 2.3.11. (i) If f: A — B is an applicative morphism, then f is de-
cidable / c.d. / dense iff f: TA — TB is decidable / c.d. / dense.

(i) If f: A+~ B is a partial applicative morphism, then f is decidable / c.d.
iff f: DA — DB is decidable / c.d.

Proof. (i) follows immediately from diagram (2.3) on page along with the
fact that 4 is dense. The proof of (ii) is similar. O

Now Lemma[2.2.10[and Lemma [2.2.11{(ii) also carry over to OPCA7p, and to

OPCAp insofar as they do not involve density. For example, if A —fo B%C
are applicative morphisms such that gf is dense, then gf ~ go f is dense, so g
is dense, so g is dense. In particular, left adjoints in OPCAr are dense. On the
other hand, left adjoints in OPCAp can only be guaranteed to be computation-
ally dense.

We know from the theory of monads that (f: A — B) — (0pf: A — B)
is a functor OPCA — OPCAr. Since dp is always a pseudomono, this presents
OPCA as a preorder-enriched subcategory of OPCAp. We give a special name
to the morphisms in the image of this inclusion.

Definition 2.3.12. An applicative morphism f: A — B is called projective
iff it is in the essential image of OPCA — OPCAr, i.e., there is a morphism
of PCAs fo: A — B such that f ~ épfo. FEquivalently, f is projective iff

f: TA — TB lies in the essential image of T.

In fact, for f: A — B to be projective, it suffices that there be a function
fo: A — B such that f ~ §pfy; this function will then automatically be a
morphism of PCAs. Similarly to Lemma [2.3.9] we should prove the following
result.

Lemma 2.3.13. A morphism of PCAs fo: A — B is decidable / c.d. / dense
iff 6pfo: A — B is decidable / c.d. / dense.

Proof. This follows immediately from the fact that d is an essentially surjective
elementary inclusion. O
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2.3.3 Right adjoints of (partial) applicative morphisms

Computational density was introduced in [HvOO03| in order to study right ad-
joints of functors between categories of assemblies (see Section below). In
this section, we study the existence of right adjoints within the categories
OPCA7r and OPCAp. First of all, let us note that any partial applicative mor-
phism which has a right adjoint in OPCAp must actually be total. Indeed,
suppose we have f: A ~o B and g: B o A with f 4 ¢g. Then in particular, we
have id4 < gf, which yields:

A =dom(idy) C dom(gf) C dom f,

so f is total. Therefore, we really are interested when an applicative morphism
f: A — B has a right adjoint in either OPCA or OPCAp. The following the-
orem answers this question. For the absolute case, this was shown in [FvO14]
Corollary 1.15]. However, [FvOT4] arrives at this result through studying func-
tors between categories of assemblies, whereas we will prove it directly.

Theorem 2.3.14. Let f: A — B be an applicative morphism. Then the fol-
lowing are equivalent:

(i) f has a right adjoint in OPCAp.

(ii) f is projective and c.d.
Moreover, the following are also equivalent:
(iii) f has a right adjoint in OPCAr.

(iv) f is projective and dense.

Proof. First, suppose that f has a right adjoint g: B <o A. We have already
observed that this implies that f is c.d. For projectivity, suppose that r € A%
realizes idy < gf and s € B# realizes fg < idg. Then for all a € A, we
have that ra| and ra € gf(a) = Ubef(a) g(b). By the Axiom of Choice, there
exists a function fo: A — B such that fy(a) € f(a) and ra € g(fo(a)) for all
a € A. We claim that f ~ dp o fy. First of all, we have that [{fo(a)} C f(a),
so the identity combinator realizes dp o fy < f. The converse inequality is
realized by s’ := M x.s(tr'z) € B¥, where 7/ is an element from f(r) N B# and
f preserves application up to ¢t € B¥. Indeed, if b € f(a), then tr'b € f(ra) C
Uareg(rocay f(@') = fg(fo(a)). So we see that s'b < s(tr'b), which is defined
and an element of idg(fo(a)) = }{fo(a)}, as desired.

Conversely, suppose that f ~ dg o fy, where fo: A — B is a c.d. morphism
of PCAs. Pick an m € B# satisfying for fo. Let t,u € B# realize fo.
We define g: B <o A by:

9() = Ha € A|m- fola) <b}. (2.4)

First of all, let us prove that g is a partial applicative morphism. Clearly, g
preserves the order on the nose. We know from Lemma [2:2.12] that m also
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satisfies (cd)) for fy, so if b € B#, then g(b) contains an element from A%#. Now
define
s = XNaz.m(u(t- folpo) - z))(m(u(t- fo(p1) - z))) € B*.

Take r € A% such that m - fo(ra) < s- fo(a) for all @ € A, and define t' =
Nazy.r(pry) € A#. We claim that g preserves application up to ¢’. Suppose
that a € g(b) and a’ € g(b'). Then t'aa’ < r(paa’), and:

m - fo(r(paa’)) < s - fo(paa’)
= m(u(t - fo(po) - fo(paa’)))(m(u(t - fo(p1) - fo(paa'))))
= m(u- fo(po(paa’)))(m(u- fo(pi(paa’))))
< m- fo(a)(m- fo(a))
< bb'.

In particular, if b’ |, then taa’ € g(b'), as desired.
It remains to show that g is right adjoint to f. Note that the composition

I
A —o B 2y A is isomorphic to A ﬁﬁ B % DB, and that the composition
f
BaoABis isomorphic to B % DA 218 DB. This means we should show
the inequalities in OPCA as in the diagram:

A—r B

< g
8’y - < 8’

DATDB

By , there exists an r € A% such that m - fo(ra) < i- fo(a) < fo(a) for all
a € A. This means that ral and ra € g(fo(a)), so r realizes d4 < gfo.

For the other inequality, consider s = M x.m(uz) € B¥. Let b € B, and
suppose that we have a ' € Dfy(g(b)). Then there exists an o’ € g(b) such
that o' < fo(a’). And o’ € g(b) means that there exists an a > a’ such that
m - fo(a) < b. This yields:

st <m(ub) 2 m(u- fo(a')) = m- fola) < b,

so sb’ is defined and an element of d5(b), i.e., s realizes Dfyog < dp.

For the equivalence of (iii) and (iv), if f has a right adjoint in OPCAr, then
f must be dense, and by (i)=-(ii) above, f is projective.

Conversely, if f is dense, then we may select an m € B# satisfying both
and . Then we see that the right adjoint g defined in is actually
total, since m satisfies @, as desired. O

As an immediate corollary, we see that the notion of equivalence of PCAs is
the same in all three categories OPCA, OPCA; and OPCAp. Indeed, suppose
that f: A ~o B and g: B +o A constitute an equivalence in OPCAp. Then
the remark preceding Theorem [2:3.17] tells us that f and g are total, so the
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equivalence already exists in OPCAr. Moreover, Theorem tells us that f
and g are projective, so the equivalence already exists in OPCA.

As another corollary of this theorem, we can obtain characterizations of
(computationally) dense (partial) applicative morphisms. In the absolute case,
this was shown in [F'vO14] Corollary 2.3].

Corollary 2.3.15. Let f: A ~—o B be a partial applicative morphism. Then the
following are equivalent:

(i) [ is c.d.;
(ii) there exists a partial applicative morphism h: B o A such that fh < idp;
(iii) f: DA — DB has a right adjoint in OPCA.
If [ is total, then the following are also equivalent:
() f is dense;
(v) there exists an applicative morphism h: B — A such that fh <idp;
(vi) f: TA— TB has a right adjoint in OPCA.

Proof. (1)=(iii). We apply Theorem [2.3.14|to the projective and c.d. applicative
morphism dpp o f: A — DB to obtain a right adjoint g: DB <o A in OPCAp.
That is, g: DB — DA is a morphism of PCAs such that:

A—71 DB

< g9
s 2 |obs

DA —5— DDB

Now we see that fg ~ UoDfog < Uodpp ~ idpp. Moreover, we have
&y < gf ~ gfd’y. From this, we’d like to conclude that idpa < gf, but we

should be careful, since gf: DA — DA is not necessarily a D-algebra morphism.
By applying 1D (or rather, its version for D) for gf instead of g, we find:

—

idDAﬁ(fsz;ngéqugfv

as desired. .

(iii)=-(ii). If f has a right adjoint g: DB — DA, then define h: B «o A

h f

as godp. The composition B +o A <o B is isomorphic to the composition
B pAd DB. In OPCA, we have fh = fgdp < 65, which means that
fh <idp in OPCAp.

(il)=(i) is immediate.

The equivalence of (iv)-(vi) follows similarly. O
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For future reference, it will be useful to have an explicit description of the
right adjoint of f: DA — DB. If f: A «o B is c.d. and m € B# satisfies
, then |{m} € (DB)¥ satifies for f: DA — DB, so by on
page the right adjoint g: DB — DA can be described as

g8)=4{a€ A|m- f(a) C B} for g€ DB. (2.5)

If we assume, as we may by Lemma that f preserves the order on the
nose, then the downset sign in (2.5) can be removed. For the right adjoint of

f: TA — TB, we can use the same formula for an m € B# satisfying both
and ().

When discussing functors between categories of assemblies in the next chap-
ter, the following lemma, wich analyzes the situation in Corollary [2.3.15] further,
will be needed.

Lemma 2.3.16. Let f: A o B be a c.d. partial applicative morphism, and let
g: DB — DA be the right adjoint of f. If we consider g as a partial applicative
morphism DB «o A, then:

(i) f is total iff domg C T'B;
(is) if [ is total, then f is dense iff domg = TB.

Proof. We use the explicit description of g as in .

(i) Suppose that f is total and 8 € domg, i.e., g(8) # 0. If a € g(3), then
by the totality of f, there exists a b’ € f(a), and we see that mb’ € m- f(a) C S,
so f € TB. Conversely, if f is not total, then there exists an a € A such that
f(a) = 0. Then we also have a € g(@), so ) € domg, but § ¢ T'B.

(ii) Suppose that f is total and dense. Then by (i), we have domg C TB.
For the converse inclusion, we note that we can take m € B to satisfy both
and (dm7), and then immediately implies that g(8) # 0 if 8 # 0,
that is, TB C dom g.

Conversely, if dom g = T'B, then by , we see that m satisfies , SO
f is dense. O

2.3.4 Examples of (partial) applicative morphisms

In this section, we give examples of (partial) applicative morphisms that are not
projective, and therefore do not arise from a morphism of PCAs. In fact, all of
the examples below are right adjoints of a projective applicative morphism that
we have already encountered!

Example 2.3.17. Let A be a PCA and let F' be a filter on A. Then the inclusion
F — A can be viewed as a projective c.d. applicative morphism F — A, so it
should have a right adjoint in OPCAp. This right adjoint is simply given by
A +- F sending a € A to {{a} N F. Note that the composition ' — A <o F' is
the identity applicative morphism on F'; in particular, A « F'is c.d. as well.
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If f: A o B is a partial applicative morphism and F' is a filter on B, then
the domain of the composition A «o B +- F'is equal to

{a€ A f(a)NF # 0}.
In particular, this is always a filter on A.
In the special case where F' = B#, we will use the following notation.

Definition 2.3.18. Let f: A —o B be a partial applicative morphism. We
define
dom® f = {a € A| f(a) N B¥ # 0}.

By Example dom™ f is always a filter on A.

Example 2.3.19. Consider the situation from Example where F was
a filter on A, and we defined the right adjoint f: A <o F of FF — A by:
dom f = F and f(a) = J{a} N F. This partial applicative morphism is itself
c.d., since i € A witnesses . This means that f: DA — DF, which sends
a € DA to anN F, should have a right adjoint as well, and we can use (2.5)) to
define it explicitly.

One should be a bit careful, though. It is tempting to think that i € A#
also witnesses , since f(ra) ~ r- f(a) for all r € A# and a € A. The
latter is not true, however, since it could happen that ra € F, while a € F.
Instead, a suitable witness for is given by \*w.pox(pir) € A¥, as can
be read off from the proof of Lemma [2.2.12] This means that the right adjoint
g: DF — DA can be defined as:

g(a) ={a € Alif a € F, then ppa(p1a) € a} for o € DF.

If F # A, then f is not total, and, in accordance with Lemma i), we see
that g(0) = A\F # 0.

In the case F = A#, then the ¢ we defined here is isomorphic to the tripos
transformation V introduced in [ABS02] Section 3] (see also Proposition
below). Our definition (which we read off from the proof of Corollary
seems to be a bit simpler than the definition in [ABS02].

Example 2.3.20. Let A be a PCA, a € A, and consider the dense morphism of
PCAs 14: A — Ala]. Viewing this as a projective dense applicative morphism
tg: A —o Ala], we know it must have a right adjoint g: Afa] — A in OPCA7.
Explicitly, we can define g by:

gb)={ce A|ca<b} forbe A

Let us verify that this is indeed an applicative morphism. First of all, kb € g(b)
for all b € B, so g(b) # 0. Note that g preserves application up to s € A%, and
that it preserves the order on the nose. By Lemma [2.2.5] in order to conclude
that g is an applicative morphism, it suffices to show that A# U{a} is contained
in dom™g. Forr € A# we have kr € g(r)NA#. Moreover, we have i € g(a)NA#,
which completes the proof that g is an applicative morphism.



2.83. Applicative morphisms 59

Now it is easily checked that k € A% C Ala]# realizes both id4 < gi, and
ida[q) < tag, and moreover, \*z.za € Ala]” realizes 1,9 < id Alq)- This proves
that ¢, 1 ¢g. Note that this provides an alternative way of proving that ¢, is
dense.

Example 2.3.21. Consider the relative version ICo = (Kg, K5°¢, -, =) of Kleene’s

second model. There is a partial applicative morphism g: Ko <o K; defined by
g(a) = {e € N| p. = a}. Working this out involves showing that g preserves
application up to a realizer. This means we should, given indices e,e’ € N
of total recursive functions o, a’ € NN such that aa’ |, find an index of aa’
recursively in e and ¢’. This is an easy exercise in recursion theory, and we omit
it.

Recall from Example that there always exists a morphism K; — A
sending n to its numeral in A. In the case where A = Ky, this morphism is
isomorphic to the function f: K7 — Ky that sends n to the constant function
with value n, which we denote by n. Viewing f as a projective applicative
morphism K; —o Ko, we have f - g, and in particular, f is c.d. First of all, note
that g f(n) is the set of indices of the constant function 7. Using this description,
it is clear that ¢gf ~ idx,. For the other inequality, find a total recursive funtion
p such that: if u is a coded sequence of natural numbers of length n, then:

e p(u) =0if n < 2, or the computation of ¢, (up) has not halted after at
most n steps;

o p(u) = @y, (up) + 1 if the computation of ¢, (ug) has halted after at most
n steps.

Then, if e is a recursive index of the function a € NV, we easily see that p-é = «,
which means that p € K5° realizes fg < id,.

For B = (B, BP",-,=), we similarly have g: B <o K, which is defined by
g(a) = {e € N | ¢ = a}. This partial applicative morphism is also right
adjoint to the projective applicative morphism f: Ky — B given by sending
n to n. In fact, here is is a bit easier to construct a realizer of fg < idg.
Indeed, we can simply take a partial recursive function p satisfying p(Ju]) = 1
and p([u,v]) = 2 - @, (u).

This example even works for the ordered version B = (B, BP, -, D) of the Van
Oosten model, but we should adjust the definition of g(«) to {e € N| ¢, 2 a}.
We will generalize this example to arbitrary PCAs in Chapter

Example 2.3.22. Consider Kleene’s second model Ky = (Ko, K5, -, =) and
Scott’s graph model Pw = (Pw, (Pw)*®,+,=). There is an applicative morphism
g: Pw — Ky defined by: g(A) ={a € Ko | A={n|n+1€Ima}}. Informally,
g(A) consists of all the functions whose positive outcomes ‘enumerate’ A. If A is
r.e., then we may clearly find a total recursive function that does this. So in order
to show that g is an applicative morphism, we should show that application is
preserved up to a realizer. We describe such a realizer informally. Suppose that
we are given o, f such that A= {n |n+1€Ima}and B={n|n+1¢cImp}.
The task is to construct a function whose positive values enumerate AB. On
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input (z,y), request the first  values of @ and the first y values of 8. Then we
check whether a(x — 1) is of the form (n,m) + 1. If not, output 0. If so, check
whether e,, C {k | k+1 € {5(0),...,8(y —1)}}. If not, output 0, but if so,
output m + 1.

Recall from Example [2.2.21] that we have a morphism of PCAs f: Ky — Pw
sending a function a € Ks to its graph. Considering f as a projective applicative
morphism, we have f - g. Given a € Ko, the set gf(a) consists of all functions
whose positive values enumerate the graph of a. We have idx, < gf, since, given
« and input n, we can request the first n+1 values of @ and output (n, a(n))+1.
Conversely, given a function § such that {n | n + 1 € Im 8} is the graph of «,
we can retrieve «. Indeed, on input n, keep requesting values of § until you
hit a value of the form (n,m) + 1, and then output m. So we have gf ~ idg,.
For the other inequality, let B be the (recursive) set {(ef(zy)},¥ — 1) | y > 0}.
Then we easily see that B- f(«a) = A for any « € g(A), meaning that B realizes
fg < id’Pw'

For the Van Oosten model (B, BP', -, =), we similarly have g: Pw — B which
is right adjoint to f: B — Pw from Example Since the functions in B
are partial, we can simply put g(4) = {a € B | A = Ima}. We leave the
verification of this example to the reader. It is worth noting that in this case,
we do not have gf < idg.

2.4 Products and coproducts

In this section, we investigate the existence of pseudoproducts and pseudoco-
products in the two categories of PCAs of primary interest, namely OPCA and
OPCA7. We will show that OPCA has small 2-products and finite pseudobipro-
ducts. The category OPCAr, on the other hand, has finite pseudocoproducts,
but no nontrivial pseudoproducts.

2.4.1 Products and coproducts in OPCA

We start with generalizing a result by J. Longley [Lon94, Proposition 2.1.7] to
the ordered setting.

Proposition 2.4.1. The category OPCA has a pseudozero object.

Proof. The required pseudozero object is the absolute discrete PCA 1 = {x},
where x*x = x. For every PCA A, there is only one function !: A — 1, and this
is clearly a morphism of PCAs, so 1 is in fact a 2-terminal object. Conversely,
every element r € A% yields a morphism of PCAs j: 1 — A with j(x) = r.
Clearly, these are all isomorphic, so 1 is also a pseudoinitial object. O

The existence of a pseudozero object means that we also have zero mor-
phisms.

Definition 2.4.2. A morphism of PCAs A — B is called a zero morphism
if it factors, up to isomorphism, through 1.
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The following lemma provides two alternative characterizations of zero mor-
phisms, which shows that the morphisms from Example are exactly the
zero morphisms. We leave the proof to the reader.

Lemma 2.4.3. For a morphism of PCAs f: A — B, the following are equiva-
lent:

(¢) f is a zero morphism;
(i) there exists an v € B such that r < f(a) for all a € A;
(#ii) f is a top element of OPCA(A, B).

It follows from (iii) that OPCA is even enriched over preorders with a top
element. Before we continue, we characterize the PCA 1 up to equivalence in a
number of ways.

Lemma 2.4.4. Let A be a PCA. The following are equivalent:
(i) A is equivalent to 1;

(it) A is absolute and has a least element;

(4ii) ida is a zero morphism;

(iv) j: 1 — A is dense.

Definition 2.4.5. A PCA A is trivial if it satisfies the equivalent conditions
of Lemma|2.4.4

If Ais a PCA, then !oj is isomorphic to the identity id;. On the other hand,
jol is, by definition, a zero morphism, so we also have id4 < jo!. This means
that ! .

In [HvOO03| Remark (2) on p.450], it is observed that OPCA has binary
products. This construction generalizes to products of arbitrary (small) size,
given choice on the index set.

Proposition 2.4.6. The category OPCA has small pseudoproducts.

Proof. Suppose we have an I-indexed family of PCAs (A;);c;. We make the
product A = [],c; A; into a PAS by defining all the structure coordinatewise.
That is, if a = (a;)ier and b = (b;);er are elements of A, then we set:

e a<biff q <b; forall i € I;

e abl iff a;b;| for all ¢ € I, and in this case, ab = (a;b;)ier;

e ac A* iff a; € A¥ foralli € I, that is, ([[,c; A)" = [Lic, A7
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Axioms (A)-(C) clearly hold for A, since they hold coordinatewise. For all i € I,
we may (using AC) pick suitable combinators k; and s; for A;. Then it is not
hard to check that k = (k;);er and s = (s;);es are suitable combinators for A,
so A is a PCA.

It is easy to show that the projections m;: A — A; are morphisms of PCAs,
and to verify that this makes A even into the 2-product of the A;. We leave this
to the reader. O

If f;: B — A; are morphisms of PCAs, then we denote their amalgamation
by (fi)icr. The projections 7; are clearly dense, so if an amalgamation (f;);cr
is dense, then so are all the f;, and similarly for decidability and computational
density. The following proposition is a partial converse to this.

Proposition 2.4.7. Let (A;)icr be an indezed family of PCAs. Suppose that
we have a morphism of PCAs f;: B — A; for each i € I, and denote their
amalgamation B — [],c; A: by f.

(i) If all the f; are decidable, then so is f.
(1) If I is finite and oll the f; are c.d. / dense, then f is also c.d. / dense.

Proof. (i) Using a decider for f;, we can construct an element d; € AZ‘ié such
that d; - f;(T) <m;(T) and d; - f;(L) < m;(L). Now we easily see that (d;);cs is
a decider for f.

(ii) It suffices to treat the nullary and the binary case. The nullary case
states that I: B — 1 is always dense, which follows from the adjunction ! .

For the binary case, suppose we have c.d. morphisms fo: B — Ay and
fi: B = Aj. Let t;,u; € A? realize f;, and let n; € Af& satisfy for f;.
We define n; = X x.n;(u;(t; - fi(ps) - x)) € A;. We claim that n = (n(,n}) €
(Ag x Ap)¥ satisfies for f: B — Ag x A;.

In order to prove this, let s = (sp,51) € (Ag x A" = A# X Afé. Then
we know that there exist 7; € B¥ such that n; - fi(r;) < s;. Now define
r = prory € B¥. Then

i - fi(r) 2n(u(ti- fi(pa) - fi(r)) 2 ni(ui - fi(pir)) = ni - f(ri) < si,
so n - f(r) <s, as desired. The proof for density is analogous. O

Example 2.4.8. Let A be a PCA that is not semitrivial, and let I be a set
such that 21/l > |A#|. Then a morphism f: A — Al is never c.d., where A’
denotes the I-fold product of A. Indeed, suppose for the sake of contradiction
that f is c.d., witnessed by n € (A%)!. Then every element of (A#)! is bounded
from below by an element of X = {n- f(r) | r € A# n- f(r)]}. This set X has
cardinality at most |A#|. However, the subset

{a e (A" |VieI(a; €{T,1})}

of (A#)!, which has cardinality 21| > |A#| > | X|, has the property that every
two distinct elements do not have a common lower bound in AZ: contradiction.
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In particular, the diagonal §: A — A’ is not c.d., hence also not dense, which
means that Proposition [2.4.7((ii) does not hold for infinite I, for either density
or computational density.

Just as the 2-terminal object 1 is also pseudoinitial, finite 2-products in
OPCA also serve as pseudocoproducts.

Theorem 2.4.9. The category OPCA has finite pseudocoproducts.
Proof. Tt suffices to treat the binary case. Let Ay and A; be PCAs. Then there
is a morphism of PCAs kg: Ag — Ag x A; given by ko(a) = (a,i). Similarly,
we have k1: Ay — A X Ay given by k1(a) = (i,a). We claim that this is a
pseudocoproduct diagram. This means that we should show that the map

(— o Kg,— © /ﬁl)Z OPCA(AO X Al, B) — OPCA(AQ, B) X OPCA(Al7 B)

is an equivalence of preorders, for each PCA B. If suffices to prove that this
map is essentially surjective and full; it is automatically faithful.

For essential surjectivity, suppose we have morphisms of PCAs fy: A9 — B
and f1: A; — B. Let t;,u; € B¥ realize f;. We define f = [fo, f1]: Aox A1 — B
by f(ag,a1) = p-folag)- fi(a1). Then f preserves application up to the following
element of B#:

A zy.p(to(poz)(Poy)) (t1(P12)(P1Y)).
The calculation is straightfowrward, and we omit it. Similarly, one can show
that f preserves the order up to the element \*z.p(uo(poz))(ui(p1z)) of B¥.
Finally, we clearly have f(ag,a1) € B¥ if (ap,a1) € (Ag x A1)#, so f is a
morphism of PCAs. We have f(kg(a)) = pai, so po € B¥ realizes fro < fo and
Nz.pxi € B¥ realizes fy < fro. Similarly, one shows that fr; ~ fi.

For fullness, suppose we have morphisms g,g’: A9 X A7 — B such that
gko < ¢'ko and gk, < ¢'k1. Let s; € B¥ realize gr; < ¢'ks, let t,u € B¥ realize
g, and let t',u’ € B¥ realize ¢'. We claim that g < ¢’ is realized by s € B#
defined as:

Nl (¢ g (k. K) - (so u(t - g(i, ki) - 2)))) (o1 (ult - g(Ki 1) - 2))):

Let (ag,a1) € Ag X A1. Then we have:
so(u(t - g(i,ki) - g(ao, a1))) = so(u - g(iao, kiaz))
j S0 - g(a07 I)
~ 5o - g(ko(ag))
< ¢'(ko(ao))
/(G/Oa |)7
and similarly, s1(u(t - g(ki,i) - g(ao,a1))) < ¢'(i,a1). This yields:
"(t'(t" - g'(k, k) - ¢ (a0, 1)) - ¢'(i,a1))
"(t'- ¢ (kao, ki) - ¢'(i,a1))
=<' - g'(kaoi, kiay)
S g/(a/Oaal)a

g
g

s-g(ag,a1) S u
<u
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as desired. |

Corollary 2.4.10. The category OPCA has finite pseudobiproducts

Proof. The only thing left to check is that Ay —= Ag x A; —% Ao is isomorphic
to ida,, and that Ag 20 Ag x Ay =% Ay is a zero morphism. Both are
immediate. O

Note that Lemma [2.2.10(ii) immediately yields the following.

Corollary 2.4.11. If fy: Ag — B and f1: A1 — B are morphisms of PCAs
and fo is decidable / c.d. / dense, then [fo, f1]: Ao X A1 — B is also decidable
/ c.d. / dense.

In analogy with ordinary coproducts, we say that finite pseudocoproducts
are disjoint if, for every pseudocoproduct diagram Ay — Ag U A < A, the
coprojections are pseudomonos, and

0—>A1

[

AO E— AO (] A1
is a pseudopullback, where 0 denotes the pseudoinitial object.
Proposition 2.4.12. The finite pseudocoproducts in OPCA are disjoint.

Proof. Since m;k; ~id 4,, it is immediate that the x; are pseudomonos. In order
to establish the required pseudopullback, we need to show the following: if we
have morphisms fy: B — Ag and f;: B — A; such that kgfy >~ k1f1, then fy
and f; are both zero morphisms. Let s = (sg, s1) € A# ><A71‘3é realize ko fo < K1 f1.
Then for all b € B, we have (so- fo(b), s1i) =~ s-ko(fo(b)) < x1(f1(b)) = (i, f1(b)).
In particular, we have s1i < f,(b) for all b € B, so since s;i € B#, we get
that f; is a zero morphism. The proof that fy is a zero morphism proceeds
analogously. O

The ‘dual’ result to Proposition 2:4.12] also holds; this will be useful in
Section 2.4.2]

Proposition 2.4.13. If Ay and Ay are PCAs, then m;: Ag X A1 — A; is a
pseudoepi and

A0XA1*>A1

-

Ag — 1

is a pseudopushout diagram.
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Proof. Since m;k; >~ id4,, we know that 7; is indeed pseudoepi.

For the pseudopushout, we need to show the following: if fo: A9 — B and
fi: A1 — B are morphisms such that fymg ~ fi71, then fy and gy are both zero
morphisms. If s € B# realizes fomg < fim1, then we have s - fo(ao) < fi(ay)
for all ap € Ap and a1 € A;. In particular, we have s - fo(i) < fi(a1) for all
a1 € Aq, so fy is a zero morphism. The proof that fy is a zero morphism again
proceeds analogously. O

We close this section by investigating coproducts in a category related to
OPCA.

Definition 2.4.14. The preorder-enriched category OPCA,g; is defined as fol-
lows.

o [ts objects are PCAs.

e An arrow f: A — B is a pair of morphisms f*: B — A and f,: A — B
with f* - f..

o If f,g: A — B, then we say that f < g if f* < g*; equivalently, if g« < f.

Proposition 2.4.15. The category OPCA.qj has finite pseudocoproducts. More-
over, the pseudoinitial object is strict, and pseudocoproducts are disjoint.

Proof. We have already seen that there are essentially unique morphisms!: A —
1 and j: 1 — A satisfying ! |, yielding the (essentially) unique arrow 1 — A in
OPCA,4j. Moreover, if we have an arrow A — 1 in OPCA,q;, then also j !, so
I'and j form an equivalence between A and 1, meaning that 1 is indeed strict.

Now consider two PCAs A and B. We have the product and coproduct
diagrams:

A+ AxB-"25 B A4 AxB <2 B

We have already remarked that maka =~ id4. Moreover, it is easily computed
that idaxp < kama, which means that m4 4 k4 is an arrow A — A x B
of OPCA,qj. Similarly, we have the arrow 7p 4 kp: B — A x B. In order
to show that this yields a pseudocoproduct diagram in OPCA,4j, we need to
show the following: if f: A — C and g: B — C are arrows of OPCA,qj, then
h* = (f*, g*) is left adjoint to h. = [f«, g«]. First of all, we may easily compute
that h.(h*(c)) = p- f«(f*(c)) - g«(g*(c)). So, if r, s € C# realize idc < f.f* and
idc < g.g* respectively, then \*z.p(rz)(sx) € C# realizes idc < h.h*. The
other inequality can be obtained completely from universal properties. We have
(recall that m4kp is a zero morphism):

TAh hakia = [5fe <ida = 7maka and 7wah*hekp = [Fg. < TaKB,

so from the universal property of the coproduct A x B, it follows that mah*h, <
m4. Similarly, we obtain mgh*h, < 7p, and the universal property of the
product A x B yields h*h, <idaxp, as desired.
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For disjointness, we first note that m4 - k4 is a pseudomono because Tak 4 ~
id4. Now suppose we have arrows f: C — A and g: C' — B of OPCA,4; such
that kaf. ~ kpgs. Then we know from Proposition 2:4.12] that f,. and g,
are both zero morphisms. From idc > f*f., it follows that id¢ is also a zero
morphism, i.e., C'is trivial. Now it is immediate that 1 is the pseudopullback
of A= A x B+ B in OPCA,g;. O

For a PCA A, the codiagonal £: Ax A — A can be defined as (a, a’) = pad’.
Proposition tells us in particular that ¢ is right adjoint to the diagonal
0: A — A x A. Together with the fact that !: A — 1 has a right adjoint
i, we deduce that every PCA is a cartesian object in the preorder-enriched
category OPCA (compare with the internal finite meets of BCOs in [Hof06,
p-246]). Moreover, if f, g: A — B are morphisms of PCAs, then the composition

AN pep 2, p

is readily seen to be the meet of f and g in OPCA(A, B). From this, it is easy
to deduce that OPCA is even enriched over preorders with finite meets.

Remark 2.4.16. We have seen that OPCA is enriched over preorders, preorders
with a top element, and preorders with finite meets. For pseudo(co)limits in
OPCA, it does not matter which of these enrichments we consider. The reason
for this is that all these enrichments equip the homsets with the same structure
(namely, a preorder), and differ only in which properties they ascribe to this
structure.

2.4.2 Products and coproducts in OPCA,

In this section, we investigate to what extent the results from Section [2:4.T] carry
over to the category OPCAr. For pseudocoproducts, this is quite easy.

Corollary 2.4.17. The pseudofunctor OPCA — OPCAr preserves finite pseu-
docoproducts. In particular, OPCAT has all finite pseudocoproducts.

Proof. For every PCA A, we have OPCAp(1,A) ~ OPCA(1,TA), which we
know to be equivalent to the one-element preorder. Similarly, if Ay, A; and B
are PCAs, then

OPCAT(AO X A17 B) >~ OPCA(AQ X Al,TB)
~ OPCA(Ay, TB) x OPCA(A,,TB)
~ OPCAr(Ag, B) x OPCA7 (A1, B),

finishing the proof. O

Explicitly, if fo: Ag —o B and fi: A1 — B are applicative morphisms, then
the mediating arrow [fy, f1]: Ao X A1 — B is given by:

[fo, fil(ao,a1) = p - fo(ao) - fi(a1) = L{pbob1 | bo € fo(ap) and by € fi(a1)}.
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By Lemma [2.2.10(ii) (or rather, its counterpart for OPCAr), we immediately
have the following corollary.

Corollary 2.4.18. If fo: Ag — B and f1: A1 — B are applicative morphisms
and fo is decidable / c.d. / dense, then [fo, f1]: Ao X A1 — B is also decidable
/ c.d. / dense.

Since T1 ~ 1, we have that 1 is not only pseudoinitial in OPCAr, but also
2-terminal. Therefore, we also define zero morphisms in OPCAr, by saying
that f: A — B is a zero morphism iff it factors (in OPCAr) through 1. This
is in fact equivalent to f: A — T B being a zero morphism in OPCA, which
is equivalent to B# N MNaca f(a) # 0. The proof of the following proposition
is now completely analogous to the proof Proposition and is therefore
omitted.

Proposition 2.4.19. Pseudocoproducts in OPCAT are disjoint.

If we want to show that Ay x A; is also the pseudoproduct of Ag and Ay
in OPCA7, then we should show that T'(4g x A1) ~ T' Ay x TA;. However, it
turns out that this is not true in general, and that OPCA7 does not have finite
pseudoproducts. On the other hand, Ay x A; is still a product of Ay and Ay in
OPCAr in a weak sense. Explicitly, if fo: B — Ap and f1: B —o Ay, then there
exists a largest mediating arrow f: B — Ay x A;. Using the theory developed in
Section[2.4.1] we can tie things together quite nicely in the following proposition.

Proposition 2.4.20. If fo: B — Ay and f1: B — A; are applicative mor-
phisms, then there exists a largest mediating applicative morphism f: B —o
AQ X Al.'

fo if f1
AO <TA0XA1 ?}Al

Moreover, if g,g': B — Ay X A1 are such that m;g < m;g" fori=20,1, and ¢’ is
projective, then g < g'.

Proof. First of all, let us reformulate the proposition in terms of the category
OPCA:

(i) Given fo: B — TAp and f1: B — TA;, there should exist a largest
f: B—=T(Ap x A7) such that Tm; o f ~ f; for i =0, 1.

(ii) Moreover, if we have g,¢': A — T(Ag X A1) such that Tm; 09 < Tmo0g
for i = 0,1, and ¢’ factors though d4,x4,, then g < ¢’

Because T is a pseudofunctor, we have arrows
Tro 4 Tko: TAO — T(AO X Al) and Tm 4Tk TA1 — T(A() X Al)

of OPCA,g4;. By Proposition there exists an essentially unique mediating
arrow
h* - h*i TAO X TA1 — T(AO X Al),
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where:

h, = [T:‘io,T:‘il]Z TA() X TA1 — T(AO X Al),
h* = <T7T07T7T1>I T(AO X Al) — TAO X TAl (26)

The direct image part h, is more conveniently described by h.(cg, a1) = apxay.
One easily computes that h*h, is in fact isomorphic to idra,x74,. (This also
follows from the fact that T'm; o T'k; o~ idra,, whereas T'm; o T'k; is a zero
morphism for ¢ # j.)

In order to establish (i) above, we define f as the composition:

B M) TAO X TAl L} T(AO X Al)

Indeed, we have h* f = h*h, o (fo, f1) = {fo, f1), and if f': B — T(Ag x A;) is
any arrow such that h* f" ~ (fo, f1), then f' < h,h*f" ~ h, o (fo, f1) = f.

For (ii), we suppose that h*g < h*¢’, and that ¢’ ~ da,x4, © g{ for some
go: B = Ag x Ay. It is easily verified that d4,x4, =~ h«o (04, X 04,), 50 ¢
factors through h*, which implies that h.h*g’ ~ ¢’. Now we obtain g < h,h*g <
hih*g' ~ ¢, as desired. O

Now let us turn to the existence of genuine pseudoproducts in OPCAr. Ob-
viously, if Ag (resp. Aj) is trivial, then the pseudoproduct of Ay and A; exists
in OPCAr, and it is equivalent to A; (resp. Ap). Using the morphism h* above,
we can show that this is the only situation in which Ay and A; have a product
in OPCAT

Theorem 2.4.21. If Ay and Ay are PCAs that have a pseudoproduct in OPCAr,
then at least one of Ay and Ay is trivial.

Proof. The proof is divided into two parts.

1. First, we show that, if Ay and A; have a pseudoproduct in OPCA7, then
h*: T(Ag X A1) = TAp X TA; as defined in (2.6) has a left adjoint.

2. Second, we show that h* cannot have a left adjoint if Ay and A; are both
nontrivial.

For the first part, denote the product projections TAy x TA; — TA; by p;;
then h* is the essentially unique morphism of PCAs such that

T(A() X Al) TAO X TAl

-
TA;

commutes up to isomorphism, for i = 0, 1.
Suppose that C' is a pseudoproduct of Ay and A; in OPCAr, with projec-
tions o;: C — A;. Then, by Proposition [2.4:20] o¢ and o7 induce a maximal
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mediating applicative morphism f: C — Ag x A;. On the other hand, 7y and
71, seen as projective applicative morphisms, induce an essentially unique me-
diating applicative morphism g: Ag x A; —o C by the universal property of the
pseudoproduct C. So for i = 0,1 we get a diagram in OPCA7:

f
A() X A1 5 C
\ / (2.7)
A;

where the triangles commute up to isomorphism. Since C' is a pseudoproduct,
we have gf ~ idc. Moreover, we have m;fg ~ 0,9 ~ m ~ m; oida,xa, for
1= 0,1, and since id4,x 4, is certainly projective, this yields fg <ida,x4,, by
Proposition [2.4.20] We can conclude that f - g.
For every PCA B, we have natural equivalences
OPCA(B,TC) ~ OPCAr(B,C)
~ OPCAT<B,A0) X OPCAT(B,Al)
~ OPCA(B,TAy) x OPCAr(B,TA,),

so T Ay JLL Vo RN TA; is a product diagram in OPCA. This means there
exists an equivalence v: TC — T Ay X T'Ay such that the diagram

TAO X TA

\/

commutes up to isomorphism for i = 0, 1. Taking the image of the diagram ({2.7))
under the equivalence between OPCAr and free T-algebras, we get the diagram

(A()XA <;TC*>TAOXTA1

in OPCA for i = 0,1, where all triangles commute up to isomorpism. In partic-
ular, p;tg ~ 6;g ~ Tm;, so g must be isomorphic to h*. Since f - g, we also
have f 4 g, hence also fi=! - 1§ ~ h*, which concludes the proof of the first
part.

For the second part, suppose that Ay and A; are both nontrivial, and that

h* has a left adjoint hy: TAg X TA; — T(Ag x Ay). Consider the set
X = {Oé < T(AO X Al) | h*(Oé) = (A07A1)}-

We claim that (Agx A1)# N[ X is empty. Let (ag,a;) € (Agx A))# = Ao# X Afk
be arbitrary, and consider the downset

Ot:{(bo,bl) GAO XA1 ‘aofbo or aj ﬁbl}
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of Ay x A;. Since ag € AB# and Ag is nontrivial, we see that ag cannot be the
least element of Ay, so there exists a by € Ap such that ag £ by. This implies
that {bo} X A1 C «, so « is nonempty and satisfies T'm1 () = A;y. Similarly, we
show that T'mo(a) = Ag, so @ € X. On the other hand, we clearly do not have
(ag,a1) € a, so (ag,a1) € () X. Since this holds for all (ag,a1) € (Ag x Ap)7,
we can conclude that (Ag x A;)* NN X = 0.

Now let s € (Ag x Ay)# realize hih* < idp(a,xa,). Since (Ag, A1) is clearly
in (TAg x TA;)#, we must have h(Ag, A1) € (T(Ap x A1))#. Now, if a € X,
then

s+ h(Ap, A1) = s - h(h* (@) C a.

The set X is clearly nonempty, so in particular, s- hi(Ag, A1) is defined and an
element of (T'(Ag x A;))*. Moreover, the above shows that s-hi(A4g, A1) C N X,
so X € (T(Ap x Ay))* as well. However, we also have (4g x A1)* NN X =0,
which is a contradiction. This finishes the proof of the second part. O

We close this section by investigating, in analogy with OPCA,q;, the category
OPCAT7 4q;-

Definition 2.4.22. The preorder-enriched category OPCA7 .45 is defined as
follows.

o [ts objects are PCAs.

e An arrow f: A — B is a pair of applicative morphisms f*: B — A and
fe: A — B with f* 4 f..

e If f,g: A — B, then we say that f < g if f* < g*; equivalently, if g. < f.

From Theorem [2.3.14] we know that OPCAr .4; is actually equivalent to
OPCAZL ., where OPCAgense denotes the wide subcategory of OPCA on the
dense morphisms, and (-)°P indicates a reversal of the 1-cells. The following

result is now immediate.

Corollary 2.4.23. The category OPCAr oq; has finite pseudocoproducts. More-
over, the pseudoinitial object is strict, and pseudocoproducts are disjoint.

Proof. Tt suffices to prove the dual statements in OPCAgepse- By Proposi-
tion OPCAgense has finite pseudoproducts. Moreover, by Lemma [2.4.4
the terminal object is strict in OPCAgense- The final statement follows from

Proposition 2.4.13] O



CHAPTER 3

Assemblies and the Realizability Topos

In this chapter, we discuss the categories that may be constructed using partial
combinatory algebras. As mentioned in the Introduction, each PCA A gives
rise to a realizability topos RT(A) and a subcategory Asm(A) of RT(A) known
as the category of assemblies. We introduce these in Section and establish
some of their properties in Section [3:2} In Section [3:3] we discuss results from
[Lon94], [HvO03] and [FvO14] characterizing left exact and regular functors
between categories of assemblies and realizability toposes. Finally, Section [3.4
treats geometric morphisms between realizability toposes.
This chapter contains two new improvements over the existing literature.

1. As in the previous chapter, we treat everything in the relative setting.
As we will see below, this requires some adjustments compared to the
absolute setting, especially in Section [3.3] and Section [3.4]

2. In Section[3.4.3] we describe when a geometric morphism induced by a c.d.
applicative morphism is a geometric surjection. As far as we are aware,
such a characterization has not occurred in the literature before.

3.1 Categories associated to PCAs

In this section, we introduce, for each PCA A, its category of assemblies, its
realizability tripos and its realizability topos. Especially for the latter two, a
much more detailed account can be found in, e.g., [vO0§]. Here, we only discuss
as much material as is needed for the rest of the thesis.

71
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3.1.1 The category of assemblies

Intuitively, an assembly over a PCA A can be viewed as a datatype that has been
implemented in A. More precisely, an assembly X will consist of a set | X| and a
function Ex that assigns to each x € | X| a nonempty downset Ex (z) € TA. We
think of the elements of Ex (z) as those elements that ‘represent’ the element x
inside A. This intuition should be familiar from the previous chapter. Indeed,
an applicative morphism A —o B is, among other things, an assembly over B
with underlying set A. We will exploit this fact, in the slightly more general
setting of partial applicative morphisms, in the proof of Theorem below.

A morphism of assemblies X — Y will be a function | X| — |Y| between the
underlying sets, for which there exists an algorithm that transforms representers
of  into representers of f(x). Let us make this precise in the following definition.

Definition 3.1.1. Let A be a PCA.

(i) An assembly over A is a pair X = (|X|, Ex), where |X| is a set and
Ex: |X|— TA is a function.

(ii)) A morphism of assemblies f: X — Y is function f:|X| — |Y| for
which there exists a t € A%, called a tracker of f, such that t - Ex(x) C
Ey(f(x)) for all x € | X]|.

Recall from Notation that t - Ex(x) C Ey(f(z)) means: for all a €
Ex(x), we have that ta is defined and an element of Ey (f(z)). As we mentioned
in the Introduction, assemblies and morphisms between them form a category,
which is a quasitopos Asm(A). In the following proposition, we prove part of
this statement, namely Asm(A) is a regular category. The proof serves mainly
to record the construction of finite limits and regular epimorphisms in Asm(A),
as this will be important in Section [3:3] below.

Proposition 3.1.2. Assemblies over A and morphisms between them form a
reqular category that we denote by Asm(A). Moreover, there is an adjunction

r

Set é Asm(A)

where I' and ¥V are both reqular, and T'V = idget.

Proof. If X is an assembly, then i € A# tracks the identity on | X| as a morphism

X — X. Moreover, if X 1y % 7 are tracked by t,s € A% respectively, then
the composite function ¢gf: |X| — |Z| is tracked as a morphism X — Z by
N z.s(tz) € A#. This shows that Asm(A) is a category, and that there is a
forgetful functor I': Asm(A) — Set with I'X = | X|.

For a set Y, we define the assembly VY = (Y,y — A). If X is an assembly,
then every function |X| — Y is automatically a morphism of assemblies X —
VY, so we have

Set(T'X,Y) = Asm(A)(X,VY).
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This makes it clear that V can be extended to a right adjoint of ', by letting
V f = f for functions f. Moreover, we have 'V = idse; by definition.

Now let us turn to finite limits in Asm(A). First of all, it is clear from the
above that V1 is a terminal object of Asm(A). If X and Y are assemblies, then
their product is given by:

(X xY|=|X[x[Y] and  Exxy(z,y) =p-Ex(z)- Ey(y)-

If f,g: A — Y are parallel morphisms of assemblies, then their equailizer is
given by m: U — X, where m: |U| < |X]| is the equalizer of f,g: | X| — |Y|in
Set and Ey is the restriction of Ex to |U|, that is, Fy(u) = Ex(m(u)). From
this description of finite limits, it is clear that I' is left exact.

For regularity, we first note that Asm(A) has all coequalizers. Indeed, if
f,9: X — Y are parallel morphisms of assemblies, then their coequalizer is
given by e: Y — @, where e: |Y| — |Q] is the coequalizer of f,g: |X| — |Y]
in Set, and Eg(q) = Ue(y):q Ey (y). From this construction of coequalizers, it
is easy to see that in general, a morphism of assemblies f: X — Y is a regular
epi iff there exists an r € A# such that for r - Ey(y) C U (a)=y Ex(x) for
all y € |Y]. Note that the latter automatically implies that f: |X| — |Y]| is
surjective. Using this description of regular epis, it is easy to see that regular
epis are stable under pullback, so Asm(A) is regular.

Finally, Vf is clearly a regular epi whenever f is a surjective function. Since
V, being a right adjoint, preserves finite limits, we see that V is regular. More-
over, we have already remarked that I' is left exact and since IT" is also a left
adjoint, it follows that I' is regular as well. O

In particular, Proposition tells us that V is fully faithful. Moreover, it
is clear that I' is faithful, so I" reflects monos and epis. Since I" preserves finite
limits and colimits, we know that I" also preserves monos and epi. This means
that f: X — Y is mono resp. epi iff f: |X| — |Y| is injective resp. surjective.
Another consequence of I' being faithful is that the unit of I' 4 V is mono at
each coordinate. In fact, if X is an assembly, then the unit X — VI'X is the
identity on |X|, which is certainly injective.

In the sequel, we will need the following two notions.

Definition 3.1.3. Let A be a PCA.

(i) An assembly X is called a constant object if X is isomorphic to an object
in the image of V. Accordingly, we call V the constant object functor.

(ii)) A morphism of assemblies f: X — Y is called prone if the naturality
square

is a pullback diagram.
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Note that, if X is a constant object, then X must be isomorphic to VI'X.
From this, it follows that X is constant iff the unit X — VI'X is an isomor-
phism. In particular, X is constant iff the unique morphism X — 1 is prone.
We will revisit this connection between constant objects and proneness when
discussing slicing in Section 4.4.2} The following lemma gives a more direct
description of the notions from Definition the proof is left to the reader.

Lemma 3.1.4. Let A be a PCA.
(i) An assembly X is constant iff (), x Ex(z) € (TA)*.

(ii) A morphism of assemblies f: X — Y is prone iff there ewists a t' € A%
such that t' - Ey (f(x)) C Ex(z) for all x € | X|. Such a t’ will be called a
reverse tracker of f.

Using (ii), it is easy to see that the regular monos in Asm(A) are precisely
the prone monos.
Finally, the following lemma records a fact noted in Section [[.1.4]

Lemma 3.1.5. Let A be a PCA. Then I': Asm(A) — Set is isomorphic to the
global sections functor iff A is an absolute PCA.

Proof. Suppose that A is absolute. If X is an assembly, then every z € |X|
determines a global section 1 — X, which is tracked by ka, where a is any
element of Ex (x). This shows that I is isomorphic to the global sections functor.

Conversely, suppose that A is not absolute, and take a € A\A#. Then the
assembly 1, defined by |1,] = {*} and E, (x) = J{a} has no global sections. [

Example 3.1.6. Let us give a few important examples of assemblies.

(i) We have the object of nonempty downsets T4 € Asm(A), defined by |T4| =
TA and Er,(a) = a. Note that the global sections of TA correspond to
the elements of (T'A)%.

(ii) We have the object of realizers Ry € Asm(A), defined by |R4| = A and
Eg,(a) =04(a) = }{a}. Note that R4 is a regular subobject of T4, and
that the global sections of R4 correspond to the elements of A%,

(iii) We have the assembly N € Asm(A) defined by |[N| = N and En(n) =
{m}, which is a regular subobject of R4. Using the recursor from Con-
struction [2.1.31] one easily shows that IV is a natural numbers object in
Asm(A).

3.1.2 The realizability tripos

In the previous section, we have introduced the category of assemblies Asm(A).
For introducing the realizability topos RT(A), there are two equivalent routes
we may take. As we explained in the introduction, the realizability topos was
first defined using the notion of a tripos, but it may alternatively be described
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as the ex/reg completion of Asm(A). As the two definitions each have their own
merits, we will treat both of them. In this section, we explain the necessary
background on tripos theory. Far more extensive accounts may be found in the
original sources [HJP80] and [Pit81], or in the more recent exposition [vO08,
Chapter 2].

Before we can define the notion of a tripos, we need some auxilliary concepts.
By a Heyting prealgebra, we mean a preorder which, viewed as category, is
finitely complete and cocomplete, and cartesian closed. Equivalently, a Heyting
prealgebra is a preorder whose poset reflection is a Heyting algebra. Accordingly,
we will employ the usual logical symbols to denote finite limits (T, A), finite co-
limits (L, V) and exponentials (—). We write HeytPre for the preorder-enriched
category of Heyting prealgebras and order-preserving functions that preserve all
the Heyting structure, up to isomorphism. On the other hand, we write PreOrd
for the preorder-enriched category of preorders and order-preserving maps.

Definition 3.1.7. Let C be a cartesian closed category. A tripos over C is a
pseudofunctor P: C°P — HeytPre such that:

(i) For each morphism f: X — Y in C, there exist 37,V;: PX — PY in
PreOrd such that 3y 4 Pf 4 V¢, and the Beck-Chevalley Condition
(BCC) holds: whenever

w215z

pl lg
x 1,y

is a pullback diagram in C, we have that Pgo3y and 3,0Pp are isomorphic.

(i) There is a generic predicate, that is, an object ¥ of C and an element
o € PX, such that, for all objects X of C and ¢ € PX, there exists an
arrow [¢]: X — X such that P[¢](c) and ¢ are isomorphic.

Intuitively, we view PX as the Heyting prealgebra of predicates on X. We
write the order as x, and we read ¢ Fx 9 as ‘the predicate ¢ entails the pre-
dicate v’. Moreover, we write isomorphism in PX as —Fx, so the isomorphism
in (ii) above can be written as P[¢](c) dFx ¢.

For f: X — Y, we view Pf: PY — PX as pulling back along f, or from a
logical point of view, as substituting f(x) for y. Accordingly, we will usually
write Pf as f* when P is understood or can be determined from the context.
The BCC can now be written as g* o 4y 4~ 3, o p*, understanding that the
isomorphism should hold pointwise in PZ. Note also that the ‘genericity’ of o
can now be interpreted as the fact that every predicate is a pullback of o.

Let us make a few additional remarks on Definition 3.1.7

Remark 3.1.8. (i) The fact that P is a pseudofunctor means that it only
needs to preserve identity and composition ‘up to isomorphism’. That is,
we require (idyx)* -+ idpx and (gf)* 4+ f* o g*.
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(ii) The analogue of BCC for V also holds, as can be seen by taking the right
adjoint of BCC for 3.

(iii) While f* is required to preserve all the Heyting structure, its adjoints
d; and V; are not. As is well-known, the fact that f* preserves — is
equivalent to the Frobenius condition:

([ AG) A A Tpo,
for f: X - Y, ¢ € PX and ¢ € PY.

(iv) The definition of a tripos also works when C is merely left exact (as opposed
to cartesian closed), but one needs to replace (ii) by a ‘parametrized’
version. This is comparable to the definition of a natural numbers object
in a category that has finite limits, but is not cartesian closed. Since we
will only work with triposes over toposes, we do not need to state the more
general definition here.

Let us give a few examples of triposes; of course, the second example will be
of the most importance to us.

Example 3.1.9. Let H be a complete Heyting (pre)algebra. The tripos of H-
valued predicates Py over Set is defined as follows. For a set X, we let Py X be
HX with the pointwise order, which is a Heyting (pre)algebra. If f: X — Y is
a function, then f* is simply composition with f. Moreover, the completeness
of H allows us to define the adjoints of f*. If ¢ € HX, then

@) =\ o) and Vi@)y) = N ¢

f(z)=y f(z)=y
Finally, the generic predicate is idy € H®.

Example 3.1.10. Let A be a PCA. The realizability tripos P4 over Set is
defined as follows. For a set X, we let P4 X be (DA)X, but not with a pointwise
ordering. Instead, if ¢,1 € (DA)X, then we say that ¢ Fx 1 if there exists an
r € A% such that 7 - ¢(x) C 9(z) for all z € X. In other words, r transforms
elements of ¢(z) into elements of ¥ (x), uniformly in . The Heyting structure
on P4 X can be defined as follows. The top and bottom elements of P4 X are
given by T(z) = A and L(z) = 0. If ¢,¢ € (DA)X, then we set

(o AY)(2) =p-d(z) Y(z),
(¢ V) (z) = (pk- () U (pk - ¥ (),
(0= ¥Y)(x) ={acAla-o(x) S P(x)}.
Again, if f: X — Y is a function, then f* is composition with f. Since the

Heyting operations are computed pointwise, it is clear that f* preserves the Hey-
ting structure. Even though P4 X is a Heyting prealgebra, it is not necessarily
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complete, but we can still define adjoints of f* as follows:

YO = | o),

f(x)=y
Vi(9)(y) ={a € A|Vbe AVz € ' (y) (ab) A ab € ¢(x))}.

We leave the proof of the adjunctions 3y < f* 4 V; and of the BCC to the
reader. Finally, the generic predicate is idpa € (DA)PA.

Remark 3.1.11. In the first instance, the reader might expect the definition of
Vf.abov.e to read: Vy(z) = Df(f”):y gb(w) Howevlen this only yields the required
adjunction f* 4V, when f is a surjective function.

Example 3.1.12. Every (locally small) elementary topos £ gives rise to the
subobject tripos Subg over £. To an object X of &£, it assigns the subobject
lattice Subg(X) of X, which is always a Heyting algebra. If f: X — Y is an
arrow of £, then f*: Subg(Y) — Subg(X) is defined as pullback along f. It
is well-known that f* commutes with all the Heyting structure and has both
adjoints, satisfying BCC. Finally, the generic predicate is the subobject classifier
of £.

Every tripos gives an interpretation of typed higher-order intuitionistic logic
without equality. In order to make this more explicit, we introduce the notion
of a sequent.

Definition 3.1.13. Let L be a language for a typed logic (e.g., typed regular
logic or typed predicate logic).

(i) A context is a sequence of distinct typed variables.

(ii) If T is a context, then a formula ¢ of L is said to be in context T' if all its
free variables occur in T'.

(ii) A sequent is an expression of the form ¢ Fr 1, where I' is a context and
@ and ¥ are L-formulae in context T'.

Let P be a tripos over a cartesian closed category C, and let £ be the language
for typed higher-order intuitionistic logic without equality, where:

e the types are the objects of C;

e function symbols of type X, ..., X,,—1 — Y are arrows Xox---x X,,_1 —
Y of C.

e relation symbols of type Xo, ..., X,,—1 are elements of P(Xgx -+ X X, _1).

Ifl =29 : Xo,...,xp_1 : Xn_1 is a context, then we can assign, to each L-
formula in context T', an interpretation ] € P(Xy x -+ x X,,_1). We will not
give a precise definition of this interpretation as, especially for the first-order
fragment, it is standard (see, e.g., [Pit81] or [vO08]). Broadly speaking:
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e The Heyting structure on the PX and the pullback functors allow us to
interpret the propositional connectives.

e The adjoints 3y and YV allow us to interpret the quantifiers.

e The generic predicate and the cartesian closed structure of C allow us to
interpret higher-order logic. In particular, ¥ plays the role of the type of
propositions.

Definition 3.1.14. A sequent ¢ Fr ¢, where ' = zg : Xo, ..., Tp_1 : Xpn_1,
is valid in P if [o] Fxox..xx,_, [¥]- We write P: ¢ Fr ¢, or ¢ Er ¢ if P is
understood.

n—1

Of course, this interpretation is sound with respect to a proof system for typed
higher-order intuitionistic logic without equality, formulated in terms of se-
quents. That is, if the sequent s is derivable from a set of sequents S, and
all members of S are valid in P, then s will be valid in P as well.

Naturally, there is also a notion of morphism between triposes.

Definition 3.1.15. Let P and Q be triposes over C. A transformation of
triposes f: P — Q is an arrow P = Q in the functor category [C°P,PreOrd].
We say that [ is left exact if fx preserves finite meets for every object X of
C. Finally, if f,f': P — Q, then we say that f < f' iff fx Fx f% for every
object X of C.

It is easy to check that this makes the triposes over C into a preorder-enriched
category, that we denote by Trip(C). A transformation f: P — Q specifies, for
each object X of C, an order-preserving function fx: PX — QX such that for
every arrow g: X — Y, we have fx o g* 4F ¢* o fy. It is easy to see that [ is
completely determined, up to isomorphism, by fs (o).

Before we introduce realizability toposes, let us note the following connection
between the realizability tripos P4 and the category of assemblies A. Since
monos in Asm(A) are injective functions, a subobject of an assembly X is given
by a subset |Y| C |X| and a function Ey: |Y| — TA. We may extend Ey to
a function Ey: |X| — DA, by setting Ey (z) = () for « outside |Y|. Thus, we
obtain a predicate Ey € P4|X|, and the fact that the inclusion |Y| C |X]| is a
morphism of assemblies Y < X means precisely that Ey Fix) Ex. Now it is not
hard to see that the poset of subobjects Sub(X) is equivalent to [{Ex } C P4|X].
Moreover, if f: X’ — X is a morphism of assemblies, then the pullback function
f*: Sub(X) — Sub(X’) coincides, modulo this equivalence, with the restriction
of f*: P4|X| = Pa|X'| to [{Ex}.

This yields an alternative description of the realizability tripos P 4. Indeed,
P4 is equivalent (in Trip(Set)) to Subasm(a)(V(—)), where Subasma)(VX) is
the subobject poset of VX, and Subagm(4)(V f) is pullback along V f.

3.1.3 The realizability topos

The construction of the realizability topos is an instance of a more general
construction, which assigns, to each tripos, a corresponding topos.
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Definition 3.1.16 (Tripos-to-topos). Let P be a tripos over C. The category
C[P] is defined as follows.

(i) An object of C[P] is a pair X = (|X|, ~x), where |X| is an object of C and
~x€ P(X]| x |X]) is:
— symmetric: © ~x ¢’ Fy o' ~x x;
— transitive: x ~x &' Nx' ~x & By g gn x ~x 2

(i) If X andY are objects of C[P], then a functional relation from X toY
is an F € P(|X| x |Y|) that is:

strict: F(x,y) Foy o ~x TANY ~y Y5

relational: F(x,y) Nx ~x &' Ny ~y § Foo gy F(2',y);
— single-valued: F(x,y) AN F(x,y)Ey~y y';
— total: x ~x x B, JyF(z,y).

Moreover, we say that two functional relations are isomorphic if they are
isomorphic in P(|X]| x |Y]).

(i1i) An arrow X — Y of C[P] is an equivalence class of functional relations
from X toY. If X — Y is the equivalence class of the functional relation
F, then we also say that F' represents the arrow X — Y.

An object X of C[P] can be viewed as an object | X | equipped with an equality
predicate ~x. Accordingly, we write x ~x 2’ rather than ~x (z,2'), and we
think of this statement as expressing that z is identical to x’. Note that we do
not require that F, © ~x x, so ~x is really a partial equivalence relation. We
think of the statement z ~x x (‘z is identical to itself’) as expressing that x
ezists.

Similarly, if F' represents the arrow f: X — Y, then we view F(z,y) as the
statement that f sends x to y. The first two requirements make sure that F'
is well-behaved w.r.t. equality: F'(x,y) should only hold for 2 and y that exist,
and F should respect equality. The other two requirements state that F' behaves
like a function: if f sends x to both y and 3’, then y and vy’ should be identical.
Moreover, if x exists, then f(z) must exist as well.

In order to see that C[P] is indeed a category, we note that ~x represents
the identity on X, and if X — Y — Z are represented by F' € P(|X| x |Y]) and
G € P(|Y] x |Z|), then their composition X — Z is represented by:

H = [3y(F(z,y) NGy, 2))] € P(IX] x [Z]).

The sequents expressing that H is a functional relation are derivable from the
sequents expressing that F' and G are functional relations. So by soundness,
we know that H thus defined is actually a functional relation from X to Z.
Similarly, the sequents expressing that ~x is a functional relation from X to
itself are derivable from the symmetry and transitivy of ~x. The axioms for a
category can also easily be deduced by reasoning internally in P. In fact, C[P]
is always a topos. We will not prove this here, but refer to [Pit81] or [vOO0S].
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Proposition 3.1.17 (Pitts). If P is a tripos over C, then C[P] is an elementary
topos.

Example 3.1.18. If # is a complete Heyting algebra, then Set[Py] is called
the topos of H-valued sets, and it is equivalent to the topos of sheaves over H.

Example 3.1.19. If £ is a topos, then £[Subg] is equivalent to £ itself.

Definition 3.1.20. For a PCA A, we call Set[P 4] the realizability topos of
A, and we denote it by RT(A). Traditionally, RT(KC1) is called the effective
topos, and denoted by Eff.

Thus, an object X of RT(A) is a pair (] X|, ~x), where | X| is a set and ~x
is a function | X| x |X| — DA. We think of the elements of z ~x 2’ as evidence
for the fact that = and z’ are equal, or as realizers of the statement that z and
2’ are equal. In the case where x = z’, we think of the elements of x ~x =z
as realizers of the existence of x, or simply: realizers of x. There should be an
algorithm realizing the symmetry of ~y, meaning that there is an s € A% such
that s - (x ~x 2') C (¢/ ~x z) for all z,2’ € |X|. Similarly for transitivity,
there should be a t € A# such that t- (z ~x 2') - (' ~x 2") C (z ~x 2") for
all z,2',2"” € |X|. The requirements for functional relations can similarly be
described in terms of elements of A#. The advantage of the tripos perspective
is that, in order to see that RT(A) is indeed a category (and subsequently, a
topos), we do not have to perform all kinds of explicit constructions inside A.
Instead, we can simply refer to the internal logic of the realizability tripos P 4.

Definition 3.1.21. Let P be a tripos over C. The constant object functor
Vp: C — C[P] is defined as follows. If X € C, then VpX is (X,35T), where
0: X — X x X is the diagonal. Moreover, if f: X —Y is an arrow of C, then
Ve f is represented by Jiax,p) T -

The constant object functor is always left exact (see [Pit81l Proposition 3.4]
or [vOO08| Proposition 2.4.1]). Let us describe the constant object functor in the
examples above.

Example 3.1.22. If H is a complete Heyting algebra, then the corresponding
constant object functor Set — Set[Py] is the inverse image of the (unique)
geometric morphism Set[Py] — Set.

Example 3.1.23. If A is a PCA, then we will denote Vp, by V4, or simply
V if the PCA A is clear from the context. We use V here to avoid confusion
with the constant object functor V: Set — Asm(A) we defined in the previous
section.

If X is a set, then VX = (X, ~), where

, A ifx=1a;
(x~a')= .
0 ifx+#a.

Moreover, if f: X — Y, then @f is represented by F € P(X x Y)A7 where
F(z,y) = Aif f(z) =y, and F(x,y) = 0 otherwise. We will revisit V in the
next section, where we will also explain its relation to V: Set — Asm(A).
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Example 3.1.24. If £ is a topos, then the constant object functor for Subg is
one half of the equivalence £ ~ E[Subg].

Remark 3.1.25. Even though we certainly need the tripos structure to obtain
Proposition we have defined C[P] and Vp using only finite limits in
C and formulas of regular logic. Thus, these definitions make sense for any
pseudofunctor P: C°? — PreOrd. where C is left exact and P soundly interprets
regular logic.

Consider a left exact transformation f: P — Q of triposes over C (or indeed,
pseudofunctors C°? — PreOrd interpreting regular logic). Suppose that f com-
mutes with existential quatification, that is, fy ody, 4= 350 fx for g: X = Y.
Then f preserves the interpretation of regular logic, so we may call such an f
regular. Now we can define a functor f: C[P] — C[Q] by f(X) = (|X|, f(~x)),
and by sending an arrow represented by the functional relation F' to the arrow
represented by f(F). Since f preserves regular logic, f is a well-defined regular
functor that satisfies fVp = Vq.

3.2 Properties of the realizability topos

In this section, we record some general properties shared by all realizability
toposes. Since all of these are well-known, we will be rather brief on proofs.
This section is certainly not exhaustive, in the sense that there are many more
properties of assemblies and realizability toposes that are not discussed here.

3.2.1 Asm(A) as a subcategory of RT(A)

First of all, we will explain how the category of assemblies Asm(A) can be seen
as a subcategory of the realizability topos RT(A).

Proposition 3.2.1. There is a fully faithful functor i: Asm(A) — RT(A).

Proof. For an assembly X, define i(X) as the object (|X|, ~), where

(a ~ o)

Ex(z) ifxz=2a;

0 if x #£a.
Moreover, if f: X — Y is a morphism of assemblies, then we let i(f) be rep-
resented by F, where F(x,y) = Ex(x) if f(z) =y, and F(z,y) = () otherwise.
It is easy to check that F' is functional relation if and only if f has a tracker,
and that the functor ¢ thus defined is faithful. For fullness, if f: i(X) — i(Y) is
represented by F, then we can define f': | X| — |Y| by f/(z) = y iff F(z,y) # 0,
and one easily checks that i(f") = f. O

By a slight abuse of terminology, we will say that an object of RT(A) is an
assembly if it is isomorphic to an object in the image of i: Asm(A) — RT(A).

Note that the composition Set Y Asm(A) 4 RT(A) coincides with the constant



82 Chapter 3. Assemblies and the Realizability Topos

object functor V from Example Thus, no real confusion can arise by
calling both these functors the constant object functor. Note also that Vv, being
the composition of two fully faithful functors, is fully faithful.

There is another description of the assemblies in RT(A), but before we can
give it, we need to have a closer look at subobjects in RT(A), or more generally,
in a topos of the form C[P]. In the previous section, we saw that functional
relations, besides behaving like a function, should also be well-behaved w.r.t.
identity. We generalize this to arbitrary predicates on an object of C[P].

Definition 3.2.2. Let P be a tripos over C and let X be an object of C[P]. If
¢ € P|X|, then we say that ¢ is a:

(i) strict predicate on X if p(x) Fp x ~x ;
(i1) relational predicate on X if p(z) Nz ~x &' Ey o @(2);

Lemma 3.2.3. Let P be a tripos over C and let X be an object of C[P]. Then
Subep (X) is equivalent to the preorder of strict and relational predicates ¢ €
P|X]| on X.

Sketch of proof. If ¢ € P|X]| is strict and relational for X, then we have the
object (|X|,~%) of C[P], where ~% is [& ~x ' A ¢(z)]. Moreover, ~% also
represents a monomorphism (| X|, ~%) <> X. If ¢, ¢ € P|X| are strict and rela-
tional for X, then it is easily verified that (] X/, N?{) < (X, Nif() as subobjects
of X iff we have ¢ x| ¢. Finally, if Y < X is a mono represented by F', then
¢ == [y F(y,z)] € P|X] is strict and relational for X, and Y and (X,~%) are
isomorphic subobjects of X. O

We warn the reader, though, that the Heyting structure on Sub(X) does
not coincide with the Heyting structure on P|X|. For example, if ¢, ¢ are
strict and relational for X, then (|X|,~%) — (| X|,~%) in Sub(X) is not given
by ¢ — ¥ € P|X|. Indeed, while ¢ — ¢ is relational, it is not necessarily
strict. Instead, (|X|, N?() = (X, Nﬁ) corresponds to the strict and relational
predicate [(¢(z) — ¥(z)) Az ~x z] € P|X|.

If X is a set, then every predicate ¢ € P4 X is strict and relational for
VX, so Sub(@X) is equivalent to P, X. If ¢ € P, X, then the subobject
of VX corresponding to ¢ is isomorphic to the assembly Y, which is given
by [Y] = {z € X | ¢(z) # 0} and Ey(y) = ¢(y). Conversely, if ¥ is an
assembly, then Y is isomorphic to the subobject of @|Y| given by the predicate
Ey € P4|Y|. Thus, we see that the assemblies in RT(A) are precisely the
subobjects of the objects in the image of V: Set — RT(A), i.e., the subobjects
of the constant objects. In particular, since V: Set — RT(A) is left exact, it
follows that the assemblies are closed under finite limits in RT(A). Moreover,
it follows that the assemblies are closed under subobjects in RT(A). Together,
these two facts imply that the regular structure of Asm(A) coincides with the
regular structure it inherits from RT(A), i.e., the inclusion i: Asm(A4) — RT(A)
is regular. In particular, V: Set — RT(A), being the composition of two regular
functors, is regular.
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As we mentioned in Section RT(A) can be described as a universal
construction in two ways. We will now discuss the first of these, which also
yields an alternative way of constructing the realizability topos.

Proposition 3.2.4. Let R be a reqular category. There exists a fully faithful
regular functori: R — Rex/reg With Rex/reg an ezact category, called the ex/reg
completion of R, such that for each exact category £, composition with i yields
an equivalence of categories:

REG(Rex/rega 5) = REG(Ra S)

Sketch of proof. Consider the subobject functor Subg: R°? — PreOrd. This
is certainly not in general a tripos, but it does soundly interpret regular logic,
since R is a regular category. As per Remark [3.1.25] we can define Vgypy : R —
R[Subg] as we did for triposes. This is the ex/reg completion of R. O

Remark 3.2.5. In the particular case of Subg, every object of R[Subg] is
isomorphic to an object X where ~x is a genuine equivalence relation, i.e.,
Fz x ~x x. This leads to the description of Rey/reg One more commonly finds
in the literature:

e objects are pairs (X, R), where X is an object of R and R — X x X is
an (internal) equivalence relation on X;

e arrows (X, R) — (Y, 5) are subobjects F' — X x Y that are relational,
single-valued and total relative to R and S (note that strictness is empty
in this case).

Proposition 3.2.6. If A is a PCA, then i: Asm(A) — RT(A) is the ex/reg
completion of Asm(A).

Sketch of proof. We will describe how to extend a regular functor F': Asm(A) —
£, with £ exact, to a regular functor RT(A) — £. For the time being, sup-
pose that £ is only regular. First of all, note that we have a regular functor
FV: Set — £. Second, if X is a set, then we get a function

Fx: PaX = Subpgm(a)(VX) —= Subg (FVX).

The fx do not form a regular transformation P 4 = Subg, since we are working
over different bases. On the other hand, the fx do form a regular transformation
P4 = Subg ‘over F'V’, meaning that fx og* 4 (F'Vg)* o fy for every function
g: X — Y. This still allows us to define the regular functor f: RT(A) =
Set[P 4] — &£[Subg], and it makes the following diagram commute:

Asm(A) —F— &

o Jv

RT(A) —— &[Sube]
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If we assume that & is exact, then £ is equivalent to its own ex/reg completion,
which means that V above is an equivalence. This yields the desired extention
of F. O

Remark 3.2.7. Proposition above can be formulated more generally for
triposes. If P is a tripos, then by Lemma 3} P is equivalent to Subep)(Vp(—)).
Now let us define Asm(P) as the full subcategory of C[P] on the obJects that
embed into a constant object. Then by the same arguments as given for the case
of the realizability tripos, we can show that Asm(P) inherits the structure of a
regular category from C[P], and that Asm(P) < C[P] is its ex/reg completion.

In the proof of Proposition we defined a functor on a topos of the form
C[P] in terms of a transformation on the underlying tripos P. These ideas are
already present in [Pit81]. On the other hand, Proposition was not stated
until [CFS8Y| (for the case of Eff).

3.2.2 Set as the subtopos of ——-sheaves

Since T': Asm — Set is regular and Set is exact, Proposition [3.2.6] allows us to
extend I' to a regular functor I': RT(A) — Set, i.e., we have I'i & I". Explicitly,
if X is an object of C[P], then I'X is the quotient of |X| under the partial
equivalence relation R defined by R(z,z’) iff (x ~x x') # 0. That is, if we write
[#]~ for the set of all 2’ € |X| such that (x ~x z’) # 0, then

X = {[a]oy s @ € |X] and [e]~, # 0},

It is easily checked that, in analogy with Lemma I is the global sections
functor iff A is an absolute PCA. Now consider the pair of functors:

Set £ RT(A).
\%

We have I'V = %V 2 I'V = idset. Moreover, by Proposition the unit
n: idasm(a)y = VI can be extended to a natural transformatlon n: 1dRT( A)

VI'. Again using Proposition u we can verify that the isomorphism I‘V =
idser and 7: idry(4) = vl satisfy the triangle identities, so we have I 4 V.

Since the counit of this adjunction is an isomorphism and r preserves finite
limits, this presents Set as a subtopos of RT(A). If fact, this is always the
inclusion of ~—-sheaves, as was observed already in [Hyl82] Proposition 4.4] for
the case of the effective topos. In order to give the proof, we first need the
notion of a dense subtopos (which is unrelated to the notion of density from the
previous chapter).

Definition 3.2.8. A geometric inclusion i: € — F between toposes is called
dense if 0 € F is a sheaf for this inclusion. We also say that £ is a dense
subtopos of F.
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~

In other words, ¢ is dense iff 0 is isomorphic to its sheafification 4, (¢*(0)) =
1x(0), that is, iff i, preserves the initial object. This, in turn, is equivalent to
saying that i* reflects the initial object. Indeed, suppose that i,(0) = 0 and
i*(X) = 0 for a certain X € F. Then it follows that X — 7. (i*(X)) = i.(0) = 0,
and the initial object is strict in a topos, so X 22 0. Conversely, if i* reflects the
initial object, then i*(i,(0)) = 0 implies that . (0) = 0.

The following is proposition is treated in [Joh77, Proposition 5.18].

Proposition 3.2.9. If £ is a topos, then —— is the largest dense topology on
E. Accordingly, the ~—-sheaves of £ form the smallest dense subtopos of £. In
particular, if £ is boolean, then € has no proper dense subtoposes.

Using this proposition, we can prove:

Proposition 3.2.10. The geometric inclusion I 4V:Set — RT(A) is equiva-
lent to the inclusion of ~—-sheaves of RT(A). In particular, an object of RT(A)
is a ——-sheaf iff it is a constant object, and ——-separated iff it is an assembly.

Proof. Let RT(A)-— < RT(A) denote the subtopos of =—-sheaves. It is easy to
check that V() is the initial object of RT(A), which means that I' 4 V: Set —
RT(A) is dense. In particular, RT(A)-- must be a dense subtopos of Set. But
Set is boolean, so we can conclude that RT(A)-- and Set coincide. O

3.2.3 Projective objects

In this section, we discuss the other way in which RT(A) can be seen as a
universal construction. First, we need to introduce the notion of a projective
object.

Definition 3.2.11. Let C be a regular category.

(i) An object P of C is called projective if every regular epi with codomain
P splits.

(ii) We say that C has enough projectives if every object is covered by a
projective object, that is, for every object X there exists a reqular epi
P — X with P projective.

One of the main goals of this section is to show that the projective objects
in RT(A) are the objects introduced in the following definition.

Definition 3.2.12. An assembly X is called partitioned if Ex(x): | X| — TA
factors through 04, i.e., Ex(x) is a principal downset of A, for all x € | X|. We
write PAsm(A) for the full subcategory of Asm(A) on the partitioned assemblies.

Example 3.2.13. The object of realizers R4 and the natural numbers object N
from Example are both partitioned. In fact, an assembly X is isomorphic
to a partitioned assembly if and only if it allows a prone morphism of assemblies
X — RA.
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We can give the following equivalent description of PAsm(A): its objects are
pairs X = (|X|,ex) where ex: |X| — A, and arrows f: X — Y are functions
|X| — |Y| for which there exists a tracker t € A% such that t-ex(z) < ey (f(z))
for all x € | X]|.

Example 3.2.14. As the description of PAsm above makes clear, we have
Asm(A) = PAsm(T A).

Lemma 3.2.15. Let A be a PCA.

(i) Every constant object is isomorphic to a partitioned assembly.

(i) The partitioned assemblies are closed under finite limits in RT(A).
(iii) Every object of RT(A) is covered by a partitioned assembly.

It should be noted that the property of being partitioned is not stable un-
der isomorphism, so PAsm(A) is not a replete subcategory of either Asm(A)
or RT(A). Thus, by statement (ii), we really mean: given a finite diagram in
PAsm(A), its limit, as computed in RT(A), is isomorphic to a partitioned assem-
bly. We can also formulate this as: the fully faithful functor PAsm(A4) — RT(A)
preserves finite limits.

Proof of Lemma[3.2.15. (i) If X is a set, then VX is isomorphic to the parti-
tioned assembly (X, E), where E(x) = J{i}.

(ii) Since i: Asm(A) — RT(A) preserves finite limits, it suffices to prove that
partitioned assemblies are closed under finite limits in Asm(A). This follows
easily by inspecting the construction of finite limits in Asm(A) in the proof of
Proposition [3.1.2

(iii) Let Y be an object of RT(A). Then Y is covered by the partitioned
assembly X given by | X| = {(y,a) |y € |Y]| and a € (y ~y y)}, and Ex(y,a) =
4{a}. The cover X — Y is represented by ((y,a),y’) — pa- (y ~v ¢/'). O

Now we are ready to prove that the projective objects of RT(A) are, up to
isomorphism, exactly the partitioned assemblies. This result requires, and is in
fact equivalent to, the Axiom of Choice.

Proposition 3.2.16. An object of RT(A) is projective if and only if it is iso-
morphic to a partitioned assembly.

Proof. The challenging part, which is also the part that needs AC, is showing
that every partitioned assembly is projective. Let X be a partitioned assembly,
and let Y — X be a regular epi represented by F € P(|Y] x |X|). The fact
that F' represents a regular epi means that Fx (z) E,; Jy F(y,z) holds, so there
exists an 7 € A% such that - Ex(z) C Uy F(y,2) for all z € |X]. Now
write Ex(x) = [{ex(x)}, where ex: |X| — A. Then in particular, we have
r-ex(z) € Uyepy| F(y,2), so by AC, there is a function g: | X| — [Y] such that
r-ex(x) € F(g(x),z) for all x € |X|. This implies that r - Ex(z) C F(g(x),x)
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for all z € |X|. Now [Ex (z) Ag(z) ~y y] € P(|X|x [Y]) is a functional relation
from X to Y, and it represents a section of Y — X.

The converse is a folklore argument that uses only elementary category the-
ory (see, e.g., [CV98, Proposition 3]). Suppose that P is a projective object
of RT(A). In view of Lemma [3.2.15[iii), there exists a regular epi e: X — P,
where X is a partitioned assembly. Since P is projective, e splits by means of
an m: P — X. Now

P%X;:degx

is an equalizer diagram, and since partitioned assemblies are closed under finite
limits (Lemma [3.2.15(ii)), P must be isomorphic to a partitioned assembly. [

Clearly, Lemma [3.2.15| and Proposition [3.2.16] also hold when RT(A) is re-
placed by Asm(A).

Remark 3.2.17. In order to see that Proposition [3.2.16| is equivalent to AC,
we note that, in the adjunction I' 4 V, the right adjoint V is regular. It is
a well-known result in category theory that this implies that the left adjoint
I preserves projectives. If X is a set, then VX , being a constant object, is
projective. It follows that X =2 I'VX is also projective, for every set X; and
this is the Axiom of Choice.

Now we can present the other way in which RT(A) is a free construction.
The following results can all be found in [Car95].

Proposition 3.2.18 (Carboni, Celia Magno, Rosolini). Let C be a left exact
category.

(i) There exists a fully faithful left evact functor i: C — Creg/iex With Creg/lex
a reqular category, called the reg/lex completion of C, such that for each
reqular category R, composition with i yields an equivalence of categories:

REG(Creg/lexs R) =~ LEX(C, R).

(ii) A fully faithful left exact functor j: C — R, with R regular, is equivalent
to the reg/lex completion of C if and only if: the projective objects of R
are precisely those isomorphic to an object in the image of j, every object
of R can be embedded into a projective, and R has enough projectives.

(iii) There exists a fully faithful left evact functor i: C — Coxjrex With Cex/lex
an exact category, called the ex/lex completion of C, such that for each
exact category £, composition with i yields an equivalence of categories:

REG(Cox /1ex £) =~ LEX(C, ).

(iv) A fully faithful left exact functor j: C — &, with £ exact, is equivalent
to the ex/lex completion of C if and only if: the projective objects of €
are precisely those isomorphic to an object in the image of j, and € has
enough projectives.
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Note that (iii) follows by combining (i) with the construction in Proposi-
tion[3.:2.4] Using the results obtained in this section, we immediately obtain the
following. The second part of the corollary was first observed in [RR90].

Corollary 3.2.19. Let A be a PCA. Then:
(i) the inclusion PAsm(A) — Asm(A) is the reg/lex completion of PAsm(A);

(i) the fully faithful functor PAsm(A) — RT(A) is the ex/lex completion of
PAsm(A).

Proof. By Lemma [3.2.15(ii), PAsm(A) — Asm(A) and PAsm(A) — RT(A) are
both left exact. In both Asm(A) and RT(A), there are enough projectives, and
the projectives are, up to isomorphism, precisely the partitioned assemblies.
Moreover, every assembly X embeds into the projective assembly V|X| via the
unit of ' 4 V. O

Example 3.2.20. By Example Asm(T A) is the reg/lex completion of
Asm(A). This is an example of the phenomenon that, when C is already regular,
Creg/lex need not be equivalent to C itself. This is due to the fact that the
inclusion REG — LEX is not full.

Remark 3.2.21. As we have stated it here, Corollary [3.2.19|requires the Axiom
of Choice, because it requires Proposition [3.2.16] There are results very similar
to Corollary [3.2.19 however, that do not require AC; see [Hof04] and [Freld].

3.3 Functors between realizablity toposes

In this section, we study functors between categories of assemblies and realiza-
bility toposes. On the one hand, every partial applicative morphism A <o B
yields functors Asm(A) — Asm(B) and RT(A) — RT(B). On the other hand,
as Longley first showed in the absolute case, we can characterize exactly which
functors arise in this way.

In this section and the next, we will be working with multiple PCAs si-
multaneously. To avoid confusion, we will provide the functors introduced in
Section [3.1] with subscripts as in this diagram:

Asm(A) —————— RT(4)
3.3.1 Functors arising from morphisms of PCAs

In [EvOI14] Theorem 2.2], it is shown that morphisms of PCAs TA — TB
correspond to certain left exact functors Asm(A4) — Asm(B). In the relative
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context, we will be a bit more liberal and allow the morphism of PCAs to assume
values in DB, rather than T'B. First, we will assign, to each morphism of PCAs
TA — DB, aleft exact functor Asm(A) — Asm(DB). Note that, if f: TA — DB
is a morphism of PCAs, then f can be extended to a morphism DA — DB
by simply setting f(0) = . Thus, we see that OPCA(T A, DB) is isomorphic
to the preorder of f € OPCA(DA, DB) such that f(@) = 0. If we regard f
as a partial applicative morphism DA <o B, then this is equivalent to saying
that dom f C T'A. We will say that such an f is bottom-preserving, and we
denote the preorder consisting of all bottom-preserving f by OPCA(DA, DB)yp,
so that OPCA(T'A, DB) = OPCA(DA, DB)yp.

Construction 3.3.1. For a morphism f € OPCA(DA, DB)yp, we define the
functor Asmg(f): Asm(A) — Asm(DB) as follows:

o If X is an assembly over A, then Asmg(f)(X) is the assembly over B
defined by:

[Asmo(f)(X)| = {x € [X] : f(Ex () # 0} = { € |X| : Ex(x) € dom f},
and Bpgn (1) () = f(Ex (x)) for x € [Asmo(f)(X)].

e If g: X — Y is a morphism of assemblies over A, then Asmg(f)(g) is the
restriction of g: | X| — |Y| to |[Asmo(f)(X)| C | X].

Proposition 3.3.2. If f € OPCA(DA, DB)yyp, then Asmo(f) is a well-defined
left exact functor that satisfies Asmo(f) o Va = V. This is part of a functor

Asmg: OPCA(DA, DB)y, — LEX(Asm(A), Asm(B)).

Moreover, the assignment Asmg is functorial, that is, we have Asmo(idpa) =
idasm(a) and Asmo(gf) = Asmq(g) o Asmo(f).

Proof. Let t,u € B realize f as a partial applicative morphism DA <o B. For
the sake of readability, we will write F' instead of Asmq(f).

First of all, we need to see that that F' is well-defined. If g: X — Y is a
morphism of assemblies over A, then the restriction of ¢ to |FX| should land in
|F'Y|, and this should yield a morphism of assemblies X — FY over B. Let
r € A¥ track g. If z € | X|, then we have

u(t- f(H{r}) - f(Ex(2)) 2u- f(r- Ex(z)) C f(Ey(9(x)).

Now, if ' € f({{r})NB¥ and s = \*z.u(trxr) € B¥, then we get s- f(Ex(x)) C
f(Ey(g(z))). In particular, if Ex(z) € dom f, then Ey(g(x)) € dom f as
well, so g indeed restricts to a map |FX| — |FY|, and s tracks this map as a
morphism of assemblies FX — FY. It is immediate that F' preserves identities
and composition, so F is indeed a functor.

If X is a set, then F(VaX) = (X,z — f(A)), and since f(A4) € (DB)¥#,
we see that F(V4X) is isomorphic to the constant object VX, so we indeed
have F'V4 = Vp. In particular, F' preserves the terminal object. For binary
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products, let X and Y be assemblies over A. By the universal property of the
product, we have that |F(X x Y)| C |[FX x FY/|, and that this inclusion is
a morphism of assemblies F(X x Y) — FX x FY. Conversely, suppose that
(z,y) € |[FX x FY| = |[FX| x |FY|. Then Epxxry(z,y) = p- f(Ex(z)) -
f(Ey(y)), so

t(t- f(HPH) - (Po - Erxxry(2,9))) - (P1 - Erxxry (2,Y))
< tt- f(H{p}) - f(Ex(x))) - f(Ey(y))
=t - f(p- Ex(z)) f(Ey(y))
C f(p- Ex(2)- Ey(y))
= f(Exxy(z,y)).

If p € f({{p}) N B¥, then the element s = \*z.t(tp(pox))(p1x) of B¥ satisfies
s - Epxxry(z,y) € f(Exxy(z,y)). In particular, we see that Exxy(x,y) €
dom f for all (x,y) € |FX x FY|, so we get |[FX| x |[FY| = |F(X xY)|, and
s € B¥ tracks the identity as a morphism FX x FY — F(X x Y). This shows
that F' preserves binary products. The proof that F' preserves equalizers is easy,
and we omit it.

Now let us first describe the action of Asmg on inequalities between mor-
phisms. Suppose we have another f’ € OPCA(DA, DB)yp such that f < f/
is realized by s € B¥; we will write F’ for Asmg(f’). If X is an assembly
over A, then we have s - f(Ex(x)) C f/(Ex(z)) for all € |X|. This shows
that |FX| C |F'X| and that s € B# tracks the inclusion |[FX| C |F'X]| as
a morphism of assemblies FX < F'X. These constitute the required natural
transformation Asmg(f < f'): F = F’, and it is obvious that this makes Asmg
into a functor OPCA(DA, DB)y,, — LEX(Asm(A), Asm(B)).

Finally, the functoriality of Asmg is easy (but see also Remark below)
and left to the reader. O

Remark 3.3.3. Even though the definition of Asmq(f) works just as well if
we do not require that f preserves (), we need this requirement to ensure the
functoriality of Asmg. Indeed, suppose we have f: DA — DB that sends some
a€TAtol, and a g: DB — DC such that g(0) # (. Let 1, € Asm(A) be the
assembly such that |1,| = {*} and E;_(x) = a. Then |Asmo(g9f)(1a)| = {*},
but.|Asmo(g)(Asmo(f)(1))] = !

Even though Asmg(f) commutes with the constant objects functors, it does
not necessarily commute with the forgetful functors I'. On the other hand,
the inclusions |[Asmo(f)(X)| C |X| constitute a natural transformation I'p o
Asmg(f) = T'4. The following result is now immediate.

Proposition 3.3.4. Let f € OPCA(DA, DB)y,. Then I'p o Asmg(f) = T4 is
an isomorphism if and only if dom f = TA.

Proof. If dom f = TA and X € Asm(A), then Ex(x) € TA = dom f for all
x € |X]|, so |Asmg(f)(X)| = |X]|. For the converse, recall the assembly T4 from
Example [3.1.6i). The fact that [Asmo(f)(Ta)| = |Ta] = TA means precisely
that dom f = T'A. O
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Proposition 3.3.5. Let f € OPCA(DA,DB). Then f is a morphism of D-
algebras if and only if: f(0) =0 and Asmq(f) is a regular functor.

Proof. We assume (per Lemma that f preserves the order on the nose,
and we write F' for Asmg(f). Recall from the proof of Proposition that a
morphism e: X — Y of Asm(A) is a regular epimorphism if and only if there
exists an r € A% that r - By (y) C Ue(z)=y Ex (2) for all y € [Y[. We also note
that f is a D-algebra morphism iff the diagram

DDA 21 pDB

Al |Us

DA —L . DB

commutes up to isomorphism. But since D is a KZ-monad, we always have
UpoDf < folU)y, so f is a D-algebra morphism iff f o), < Uy oDf. The
latter means that there exists a v € B# such that v- f ((JA) C U, f(a) for
all A e DDA.

First, suppose that such a v € B# exists. Applying this for A = () yields
v-f(0) =v-f(UO) CUOD =0, which can only be true if f(0) = §. Now suppose
that e: X — Y is a regular epi, and that » € A¥ is such that r - Ey(y) C
Useix| Ex(z) for all y € [Y]. Now let y € |V and take A € DDA equal to
H{Ex(x) | e(x) = y}. Since we assumed that f preserves the order on the nose,
we have:

ot S F(By @) =0 f0- By () 2 v f ((U(Ex (@) | e(x) = })
~v-f(JA) c U r@= U FEx@)

acA e(z)=y

Thus, if 7/ € f({{r}) N B¥, then s = \*z.v(tr'z) satisfies s - f(Ey(y)) C
Ue(z)—y f(Ex(2)), for all y € [Y[. Applying this for the y € [FY|, we see that
Fe: FX — FY is also a regular epi.

Conversely, suppose that f(f)) = (0 and that F is regular. Consider the
assemblies X and Y over A given by:

x| ={AeDpA||JA#0} and Ex(4) =4,
Y] ={(wA) eTAXx|X|:aa€ A} and FEy(a, A)=a.

There is an obvious projection 7: |[Y| — |X|, and for all A € |X|, we have:

U BEv@A)= |J a=JA=ExA),

(o, A) €Y ac ANTA

which means that 7: Y — X is a regular epimorphism of assemblies. Since we
assumed that dom f C T'A, we have that (F'r)~}(A) = {(o, A) | « € ANdom f}
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for A € |FX|. The fact that Frr should be a regular epi thus means that there
should be a v € B# such that:

vf(UA) e U s@=U r,

acANndom f acA

for all A € |FX|. If A € DDA is outside |FX]|, then we either have A €
|X|, which implies that f (|J.A) = 0, or we have |JA = 0, in which case also
f(UA) = f(0) = 0. So we can conclude that v - f ({JA) C Uyeq f() for all
A€ DDA, as desired. O

As we know, D-algebra morphisms correspond to partial applictive mor-
phisms. This gives the following construction.

Construction 3.3.6. For a partial applicative morphism f: A <o B with
corresponding f: DA — DB, we define the functor Asm(f): Asm(A) — Asm(B)
as Asmg(f).

Corollary 3.3.7. For every partial applicative morphism f: A «—o B, the func-
tor Asm(f) is reqular and satisfies Asm(f) oV 4 =2 V. This makes Asm into a
2-functor:

Asm: OPCAp — REG,

Moreover, there is a canonical natural transformation T'goAsm(f) = I'a, which
is an isomorphism if and only if f is total.

Note that, even though OPCAp is merely a bicategory (Remark 7 we
can still say that Asm is a 2-functor because both () and Asmg preserve identities
and composition on the nose. This has the following consequence: if f: A «—o B
is a partial applicative morphism, then: Asm(f oids) = Asm(f) o Asm(ids) =
Asm(f)oidasm(a) = Asm(f). In other words, in the definition of Asm(f), it does
not matter whether we use f itself or its ‘order-preserving version’ as defined in
the proof of Lemma [2.3.5

By using Proposition we can extend this construction to realizability
toposes ‘for free’.

Construction 3.3.8. For a partial applicative morphism f: A <o B, we define
RT(f): RT(A) — RT(B) as the essentially unique regular functor making the
diagram

Asm(A) ), Asm(B)
in lin
RT(4) —Y) s RT(B)
commute up to natural isomorphism.

By Proposition and Corollary this makes RT into a pseudofunctor
OPCAp — REG (but see also Remark|3.3.10|below). If f: A +o B, then writing
F =Asm(f) and F = RT(f), we see that

FO@A:FOZ‘AOVA%iBOFOVAgiBOVB:@B,
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so F also commutes with the constant ob ject functors. Moreover, we have
IpoFoiy~lpoipoF ¥TgoF =T~ 40i4,

so by Proposition u we get a lift I'poF = I'4. It is not true that this
natural tranbformatlon is mono at each component. On the other hand, Propo-
sition 6| does tell us that FB o F = FA is an isomorphism iff o FF = T'4
is an 1somorphlsrn, ie., iff f is total.

Example 3.3.9. Recall from Proposition that 1 denotes the zero object
of OPCA. Tts realizability tripos P; is simply Subset, which means that RT (1) ~
Set, and also Asm(1) ~ Set. This leads to the following degenerate examples of
Construction[3:3.6]and Construction[3.3.8] If A is a PCA, then we have !: A — 1
and j: 1 — A. Modulo the equivalances RT(1) ~ Asm(1) ~ Set, we have
Asm(!) = T4 and RT(!) 2 T'4, and similarly, Asm(j) = V4 and RT(j) = V4.

Remark 3.3.10. We can give a slightly more explicit description of F' using
triposes. There is a regular transformation of triposes P4 — Pp, which, for a
set X, is given by:

P4X ~ Sub(VA4X) -5 Sub(F(V4X)) ~ Sub(V5X) ~ PpX.

It is easy to give an explicit description of this transformation: it sends ¢ €
PsX to qu € PpX. Now by Remark we get a corresponding functor
RT(A) — RT(B). This functor agrees with F' on the assemblies, and must
therefore be isomorphic to F. If we take this to be the definition of RT(f), then
we see that RT(f) actually becomes 2-functiorial.

More generally, if g: DA — DB is any morphism of PCAs (but not neces-
sarily a D-algebra morphism), then g o (=) is a left exact (but not necessarily
regular) transformation P4 — Pg. We leave the proof of this to the reader; it
is similar to the proof Proposition [3.3.2]

3.3.2 Left exact I'- and V-functors

In the previous section, we defined, for morphisms between PCAs, correspond-
ing functors between the categories of assemblies and the realizability toposes.
These functors always commute with the constant object functors, and, in some
circumstances, also with the I'’s or Is. Longley has shown [Lon94] Section 2.3]
that, for absolute discrete PCAs, a regular functor Asm(A) — Asm(B) com-
mutes with the V’s iff it commutes with the I'’s. This cannot be true in our
setting, for if f: A +o B is a partial applicative morphism which is not total,
then Asm(f): Asm(A) — Asm(B) will commute with the V’s, but not with the
I’s. This is largely due to the fact that, for relative PCAs, the functor T" is
not the global sections functor (Lemma ([3.1.5). The goal of this (rather techni-
cal) section is to explain to what extent Longley s results carry over to relative
PCAs. We will show that, for any left exact functor F': Asm(A) — Asm(DB),
we have 'V 4 = Vp iff there exists a natural transformation I'gF' = I'4 that
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is injective at each component. Moreover, if F, F’: Asm(A) — Asm(B) are two
such functors, then there exists at most one natural transformation F' = F’, cf.
[Lon94l Proposition 2.2.19].

Thus far, we have been saying that a functor ‘commutes with the constant
object functors’. We can be a bit more precise about this: let us denote by
Set/LEX the pseudocoslice of LEX under Set, viewed as a 2-category. That is:

e objects are left exact functors F': Set — Cp, with Cp left exact;

e arrows from f: F — F’ are left exact functors G: Cp — Cps, with a
specified natural isomorphism GF = F’;

e if G,G': F — F’, then a 2-cell G — G’ is a natural transformation u: G =
G’ such that pF is the natural isomorphism GF = F' = G'F.

Similarly, we have the pseudoslice LEX/Set over Set, and we have the pseudo-
coslice Set/REG and the pseudoslice REG/Set. With this notation, Asmg can be
seen as a functor

OPCA(DA, DB)yp — (Set/LEX)(V 4, V).
Moreover, Proposition tells us that Asmg restricts to a functor
OPCA(T A, TB) — (LEX/Set)(T'4,T'p).

Finally, it is easily checked that Asm and RT become pseudofunctors OPCAp —
Set/REG, and both restrict to pseudofunctors OPCAr — REG/Set.

For our analysis of Longley’s results in the relative setting, we need the
following folklore lemma.

Lemma 3.3.11. If F': Set — Set is a functor such that F1 = 1, then there is
at most one natural transformation idsey = F'.

Proof. Since idser = Hom(1, —), this follows from Yoneda’s Lemma. O

Lemma 3.3.12. Let A and B be PCAs and let F': Asm(A) — Asm(B) be left
exact.

(i) There is a bijection
Nat(FV4,Vp) =2 Nat(T'gF,T4),
natural in F.

(it) For k: FV 4 = Vp with corresponding k': U'gF = T 4, the following are
equivalent:
(a) K is an isomorphism;
(b) &' is pointwise injective;

(¢) Tk is an isomorphism, and F preserves prone morphisms.
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(#3) There is at most one isomorphism FV 4 = Vp.

Now let F': Asm(A) — Asm(B) be another left exact functor, and assume that
FV A2V F'Vy.

(iv) If u: F = F', then the following triangles commute:

FV, —"A L v, TpF — 2" S DpF

NS NS

(v) There exists at most one natural transformation F' = F'.
Proof. (i). Given k: FV 4 = Vp, we define £': TgF = T'4 as the transpose of
Fn kI A
F— FVAFA S VBFA

across the adjunction I'g 4 Vp. Conversely, given A\: T'gF = T4, define
N: FV 4 = Vp as the transpose of

FBFVA % FAVA _ idSet

across the adjunction I'g 4 V. A tedious but straightforward diagram chase
shows that these two operations are inverse, and the naturality of these bijec-
tions is obvious.

(ii). First, we prove that (a) implies (b) and (c). Suppose that x: FV4 =
V. The associated k' is equal to the composition

TpF =220 PPy, 2558 Ppv Dy —— Iy (3.1)

Since 7 is pointwise mono and I'gF is left exact, the first of these is pointwise
injective. The other natural transformation is by assumption an isomorphism,
so k' is indeed pointwise injective. As for (c), it is immediate that I'gx is iso
if k is. Now suppose that f: X — Y in Asm(A) is prone. Then the naturality
square

I'gFX & FaX
FBFfJ/ erf (3.2)
I'gFY CL Ay
is a pullback diagram. Indeed, allows us to write this as the composition

of two pullback squares. Moreover, the outer square in:

FX X 0 py DX —24% Vel X

lFf J/FVAFAf lVBFAf

FY ———— FVA 'Y ——— VgAY
Fny KT AY
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is a pullback, since both inner squares are. By the definition of x’, this outer
square can also be decomposed as:

FX X ol FX 25 WAl uX

lFf J/VBFBFJC lVBFAf

BRy

which must therefore also be a pullback square. By , the right-hand square
is a pullback as well, so it follows that the left-hand square is also a pullback,
i.e., F'f is prone, as desired.

Now we show that (c) implies (a). If I'gx is iso, then & itself is iso iff FV 4 X
is a constant object, for every set X. In other words, F' should preserve constant
objects. But this is immediate, since an assembly Y is constant iff the unique
arrow Y — 1 is prone.

Finally, we show that (b) implies (a). The proof is a generalization of the
proof of [Lon94, Proposition 2.3.3], and in particular, it is nonconstructive.
Suppose that we have k’: T'gF = I'4 consisting of injections. It is easy to show
that, by replacing F' by an isomorphic functor, we may assume w.l.o.g. that
IF'pFX CT4X for every X € Asm(A), i.e., that k' consists of subset inclusions.

First, we show that x’ is the identity on constant objects. Let X be a
set. For all z € X, we have a global section : 1 = V4X in Asm(A). Since
I'pF and T'y4 are both left exact, we know that ) is the unique isomorphism
I'pF12=12=T41. The naturality square

I'pFzx

I'pF1l ———— I'pFV X

’ ’
""71\[ \[KVAX

I's1 % T'aVaX

now tells us that x € TgF VX CT'yV4X = X. But this holds for all x € X,
so 'pEFV s =T34V = idse, and &'V 4 is the identity natural transformation
on idset. We have I'gk = K’V 4, so in order to show that & is iso, it remains to
prove that F'V 4 X is a constant object, for every set X.

If X is empty, then this is clear, so suppose that X is not empty. Let Y be
a set such that cardY > card X x card B¥. For all 4y € Y, consider the global
section ¢y: 1 — Y in Set. Since I'gF'V 4 is the identity on Set, we know that the
underlying function of F'Vy: FV41 — FV4Y is again y: 1 — Y. Moreover,
FV 4l is a terminal object of Asm(B), so F'V 4y is a global section of FV Y,
which means that Epv,y(y) N B* is nonempty. For s € B#, let us write
Y={yeY |se Epv,y(y)}. By what we have just shown, Y = {J,cg» Ys,
so by our choice of Y, there must be an sy € B# such that card Ys, > card X.
Now we pick a surjection e: Y — X such that e(Y;,) = X. Then the underlying
function of F'V e: FV Y — FV X ise. If t tracks F'V ge, then by our choice
of e, we have tsg € (,cx Erv,x(x). Since tsg € B#, this shows that FV X
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is indeed constant, as desired.

(iii). If k: FV4 = Vp is iso, then T'pk~!: idsee = gV = [pFV, is
uniquely determined in virtue of Lemma[3.3.11] Since I'p is faithful, this deter-
mines !, which determines .

(iv). The naturality of the bijection in (i) means precisely that the two
triangles are equivalent, so it suffices to prove that the left-hand triangle com-
mutes. First of all, we observe that this triangle consists of isomorphisms. Since
I'pVp = idse, Lemma tells us that the image of the triangle under I'g
must commute. Since I'g is faithful, the result follows.

(v). Consider the right-hand triangle in (iv). Since I'gF’ = T'4 is pointwise
injective, this triangle determines I'pu. Since I'p is faithful, this determines
. O

The most important consequences of this lemma may be summarized as
follows. First of all, an arrow V4 — Vp of Set/LEX, or 'y — I'p of LEX/Set,
is determined by its functor part, since the accompanying natural isomorphism
is unique anyway. Moreover, there are full inclusions

(LEX/Set)(T'4,T5) — (Set/LEX)(V 4, Vi) — LEX(Asm(A), Asm(B)),

and the first two categories are actually preorders.

3.3.3 Longley’s correspondence theorem generalized

In this section, we generalize Longley’s result [Lon94, Theorem 2.3.4] charac-
terizing regular functors Asm(A4) — Asm(B) that commute with the V’s, or
equivalently for absolute PCAs, with the I'’s. We also generalize the result by
Faber and Van Oosten [FvO14] Theorem 2.2] that characterizes left exact such
functors.

Theorem 3.3.13. Let A and B be PCAs. Then
Asmg: (DA, DB)pp — (Set/LEX)(V 4, VB)
is an equivalence of categories.

Proof. First, we show that Asmg is essentially surjective. Let F': Asm(A) —

Asm(B) be a left exact functor such that FV4 = Vp. We know that there is

a pointwise injective natural transformation x’: I'gF = I'4. By replacing F'

by an isomorphic functor, we can assume that s’ consists of subset inclusions,

ie, |[FX]| C|X]| for all X € Asm(A). By Lemma [3.3.12(ii), F' preserves prone
3312(1) (

morphisms. Moreover, in the proof of Lemma diagram (3.2))), we saw
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that, if g: X — Y is prone, the naturality square

[FX[] < |X]
Fgl lg
FY| C Y]

is a pullback diagram.

Consider the assembly T4 as in Example Then FTy4 is an assembly
over B with |[FT4| C |Ta| =TAand Epy, : |FTa| — TB. We can extend Epr,
to a function f: DA — DB such that dom f := {a € DA | f(«a) # 0} = |TFa|.
We claim that f is a morphism of PCAs DA — DB.

First of all, if « € (DA)#, then 1 % T4 is a morphism of assemblies. Since
F1 21, we also get a global section 1 & F'1 — FT4 whose underlying function
is 1 % TA. This implies that f(a) N B¥ = Epr,(a) N B# is nonempty, so
f(a) € (DB)#. In order to show that f preserves application up to a realizer,
consider the prone subobject P < T4 x T given by |P| = {(a, ') | aa’ |} C
TAxTA and Ep(a,a’) = paa’. Then

|FP| - |P|

[ [

|ETA| X |FTa| C |Tal % |Ta|
is a pullback, which means that
|FP|=|P|N(|FTa| x |FT4|) = {(o,a’) € dom f x dom f | e’ |}
Moreover, since F'P — FT4 x FT, is prone, we can also assume that

Epp(o, ) = Epryxrr, (o, d) =p- f(a) - f()

for (a,a’) € |FP|. Now we observe that app: P — T4 defined by app(a,a’) =
aca’ is a morphism of assemblies, tracked by A*z.pgz(p1z). Now Fapp: FP —
FT4, which is the restriction of app to |F P|, must be a morphism of assemblies
as well. Let t € B be a tracker of Fapp, and define ¢’ = \*zy.t(pzy) € B¥.
Then for all (a, o) € |FP|, we have

t' - fla)- fla)2t-(p- fla)- f(a)~t - Epp(a,d) C Epr, (ad’) = f(ad),

so f preserves the application up to ¢'. Similarly, we can define an assembly
O by O] = {(a,&/) | a C o'} CTAXxTA and Ep(a,a’) = a. Then the first
projection mg: |O] — T A is clearly a prone morphism of assemblies O — T'4.
This implies that |[FO| = {(o,&/) € |O] : @ € dom f}, and the fact that
Frmy is prone means that we can assume that Fro(a,a’) = Er,(a) = f(a)
for (a,’) € |FO|. The second projection 71: |O] — TA is a morphism of
assemblies, for it is tracked by i. Now F'my, which is the restriction of m; to
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|FO|, is a morphism of assemblies FO — FT4. If u € B¥ tracks Frmy, then f
preserves the order up to u. This completes the proof that f is a morphism of
PCAs.

We have f()) = 0 by definition, so it remains to show that Asmg(f) = F.
If X is an assembly, then Ex: |X| — TA is a prone morphism of assemblies
X — Ty4. First of all, this implies that |FX| = {z € |X|: Ex(x) € |FT4|} =
{z € |X|: Ex(z) € dom f}. Moreover, the fact that FEx: FX — FTy is also
prone means precisely that the identity on |FX| is an isomorphism of assemblies
FX = Asmg(f)(X). This completes the proof of essential surjectivity.

It remains to show that Asmg is fully faithful. Since (Set/LEX)(V4,Vp) is
a preorder, it suffices to prove the following: if f, /' € OPCA(DA, DB)yp and
there exists a natural transformation p: Asmg(f) = Asmqg(f’), then f < f’. By

Lemma [3.3.12(iv), pux must be the inclusion |Asmo(f)(X)| € |Asmo(f)(X)].
Now any tracker of ur, is easily seen to be a realizer of f < f’. This completes

the proof. O

Combining this theorem with the results from Section yields the fol-
lowing corollaries.

Corollary 3.3.14. Let A and B be PCAs. Then the following are equivalences
of categories:

(i) Asmg: OPCA(T'A,TB) — (LEX/Set)(T'a,T') (cf. [FvO14, Theorem 2.2]);
(11) Asm: OPCAp (A, B) — (Set/REG)(V 4, VE);
(#ii) Asm: OPCAr(A, B) — (REG/Set)(T'a,T'p) (c¢f. [Lond4, Theorem 2.3.4]).
In particular, Asm: OPCAp — Set/REG and Asm: OPCAp — REG/Set are local

equivalences.

Proof. For (i): by Proposition the equivalence from Theorem [3.3.13| re-
stricts to an equivalence between the full preorder of OPCA(DA, DB)y,, consist-

ing of the morphisms f such that dom f = T'A, and (LEX/Set)(T'4,I'p). But
the former is simply OPCA(T A, TB), as desired. The equivalence in (ii) is a
composition of equivalences:

OPCAp(A,B) L7215 D_Alg(DA, DB) —2™ . (Set/REG)(V 4, V5),

Here the second map is an equivalence by Theorem and Corollary [3.3.7]
Finally, Corollary also tells us that the equivalence in (ii) restricts to the
equivalence in (iii). O

Finally, the result in (ii) above can be extended to realizability toposes.

Corollary 3.3.15. The 2-functor RT: OPCAp — Set/REG is a local equiva-
lence, that is, for PCAs A and B, we have an equivalence:

RT: OPCAp — (Set/REG)(V4,Vp).
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Proof. By Corollary ii) and Proposition it suffices to show that
every regular functor F': RT(A) — RT(B) with F'V 4 & V g restricts to a functor
Asm(A) — Asm(B). But this is clear, since the assemblies are the subobjects
of the constant objects, F' commutes with the constant object functors, and F'
preserves monos. O

Note that we cannot get an extention of Corollary [3.3.14[(iii) in the same
way. Even though, by Proposition every functor in (REG/Set)(T'4,T'5)
lifts to a functor in (REG/Set)(I'4,T5), we cannot conversely guarantee that
every functor in (REG/Set)(I"4,T'p) restricts to a functor on the assemblies.

As a consequence of Corollary we see that every regular transforma-
tion between realizability triposes is actually of the form f o (—) for a partial
applicative morphism f. In fact, we have the following result.

Proposition 3.3.16. Denote by Trip,.,(Set) the preorder-enriched subcategory
of Trip(Set) containing only the left exact transformations of triposes. Then
f = fo(=) is an equivalence of categories

OPCA(DA, DB) — Trip;y(Set)(Pa,Pp).

Proof. Since idp4 is a generic predicate for P4, any transformation P4 — Pp
is given, up to isomorphism, by f o (=) for some function f: DA — DB. So
what we need to show is that f is a morphism of PCAs iff fo(—) is a left exact
transformation, and that f < f' iff fo (=) < f' o (—). The proof of this is
similar to the proof of Theorem [3.3.13] and we omit it. O

3.4 Geometric morphisms

In the previous section, we studied functors between categories of assemblies
and realizability toposes. Between toposes, one usually considers not just func-
tors, but geometric morphisms. In this section, we study geometric morphisms
between realizability toposes, and in particular, we determine for which partial
applicative morphism f, the functor RT(f) is the inverse image of geometric
morphism. This continues research from [HvOO03], [Johl3] and [FvO14], but
as we shall see, not all the results from these papers generalize to the case of
relative PCAs.

3.4.1 Geometric morphisms between categories of assem-
blies

Before we turn our attention to realizability toposes, we first study geometric
morphisms between categories of assemblies. Since categories of assemblies are
not in general toposes, let us, for the sake of completeness, define what we mean
by this.
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Definition 3.4.1. Let C and D be left exact categories. A geometric mor-
phism f: C — D is an adjunction:

where f* preserves finite limits. The functors f. and f* are called the direct
image and inverse image of f, respectively. We say that f is a geometric
inclusion if the counit of f* - fi is an isomorphism; equivalently, if f. is fully
faithful. Morover, if f,g: C — D are geometric morphisms, then a geometric
transformation f = g is a natural transformation f* = g*; equivalently, a
natural transformation g, = f«. We write GEOM for the 2-category of left exact
categories, geometric morphisms and geometric transformations.

Theorem 3.4.2. Let f: A —o B be an applicative morphism. Then Asm(f) has
a right adjoint if and only if f is computationally dense. Moreover, if Asm(f)
has a right adjoint G, then I'A4G = T'g if and only if f is dense.

Proof. Write f: DA — DB for the D-algebra morphism corresponding to f,
and write F = Asm(f) = Asmg(f). First, suppose that f is c.d. Then by
Theorem f has a right adjoint g: DB — DA, and by Lemma i)7
g(0) = @. Thus, we can define G = Asmg(g), and the adjunction f - g yields an
adjunction F 4 G.

Conversely, suppose that F' has a right adjoint G. The isomorphism I'g F' &
I'4 yields an isomorphism GVp = V4 by taking right adjoints. Moreover, G,
being a right adjoint, is left exact. Thus, by Theorem we must have
G = Asmg(g) for some g € OPCA(DA, DB)y,p,. Moreover, by Lemma [3.3.12iv),
the unit and counit of F' 4 G must be arrows of (Set/LEX)(Va4,Vg), so by
Theorem [3.3.13] again, the adjunction F' 4 G must arise from an adjunction
f - g. By Theorem this implies that f is c.d.

Finally, we know from Proposition that T'yG = T'p iff dom(g) = TB.
By Lemma [2.3.16{(ii), this is true iff f is dense. O

Using the category GEOM, we get the following corollary of Theorem [3.4.2

Corollary 3.4.3. Let OPCAr q denote the category of PCAs and c.d. applica-
tive morphisms. There is a local equivalence OPCA%p 4 — Set/GEOM that sends
a PCA A to the geometric inclusion I'y 4V 4: Set < Asm(A).

Proof. For a c.d. applicative morphism f: A — B, we get a geometric morphism
Asm(B) — Asm(A) whose inverse image is Asm(f), and every inequality f < f
yields a geometric transformation Asm(f) = Asm(f’). In order to see that this
defines a local equivalence, it suffices to show that, for any commutative triangle

/\

Asm(B) —2—— Asm(A)
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in GEOM, we have g* 2 Asm(f) for some f: A — B. But ¢* is regular, and the
triangle tells us that T'4g = I'p, so this follows from Corollary [3.3.14Y(iii). O

3.4.2 Geometric morphisms between realizability toposes

In this section, we study geometric morphisms between realizability toposes.
This topic is most naturally approached using tripos theory. Let us first define
the notion of a geometric morphism of triposes.

Definition 3.4.4. IfP and Q are triposes over C, then a geometric morphism
f: P — Q is an adjunction
f*
%
P ;_ Q

where f* is left exact. The transformations f. and f* are called the direct
image and inverse image of f, respectively. We say that f is a geometric
inclusion if f*f, = idp.

If f: P — Q is a geometric morphism, then the fact that f. is a right adjoint
implies that f, is also left exact. Moreover, the fact that f* is a left adjoint
implies that it commutes with 3, and thus that f* is a regular transformation. In
particular, we get a regular functor f*: C[Q] — C[P]. Since f, is not necessarily
regular, we cannot lift it to a functor between toposes as in Remark In
spite of this, Pitts was able to obtain the following result.

Proposition 3.4.5 (Pitts). If f: Q — P is a regular transformation of triposes
over C, then f has a right adjoint g iff f: C[Q] — C[P] has a right adjointg. In
this case, f 47G: C[P] = C[Q] is an inclusion iff f 1 g: P — Q is an inclusion.

Proof. See [Pit81], Theorem 4.8 and Remark 5.2(iii)]. O

In view of Proposition [3.3.16] geometric morphisms Pg — P 4 correspond to
arrows DB — DA of OPCA,qj. The following result is now immediate.

Theorem 3.4.6. Let f: A «o B be a partial applicative morphism. Then
RT(f) has a right adjoint iff f is c.d. If RT(f) has a right adjoint G, then f is

total iff the triangle
Set

RT(B) — e RT(4)

commutes.

Proof. By Proposition RT(f) has a right adjoint iff fo (=): Pa — Pp
has a right adjoint. This is true iff f: DA — DB has a right adjoint, and
by Corollary this is true iff f is c.d. Finally, the triangle says that
I oRT(f) 2 T4, and we know that this holds iff f is total, by the observation

preceding Example [3:3.9] O
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Let us consider the case where f: A — B is a c.d. applicative morphism,
and write F = Asm(f) and F' = RT(f). Then by the theorem above, we
have a geometric morphism F - G: RT(B) — RT(A) that commutes with the
inclusions of ——-sheaves, and thus, we have FBF = I‘A and GVB = VA In
particular, G restricts to a functor G': Asm(B) — Asm(A). Since the inclusion
of assemblies into the realizability topos is fully faithful, the adjunction FAG
restricts to an adjunction F' 4 G, so G is the right adjoint of F' as provided by
Theorem

Since F is defined as RT(f), we have FV, = Vg. Now we expect the
‘remaining’ isomorphism I'4G = T'g to hold iff T4G = 'y holds ie., iff fis
dense. However, we do not directly get this from Proposition since [ 4G
could fail to be regular. In the case of absolute PCAs, we automatlcally have
IAG2Tp. Indeed, in this case, [ is the global sections functor, so

I'4GX = Hom(1,GX) = Hom(F'1, X) = Hom(1, X) = 'pX.
We can adjust this argument to obtain the following result.

Proposition 3.4.7. Let f: A — B be a c.d. applicative morphism, and let
G: RT(B) — RT(A) be the right adjoint of RT(f). Then T 4G = T'p if and only
if [ is dense.

Proof. In view of Theorem [3.4.2)and the remarks above, it suffices to show that,
if we have a natural isomorphism IAGX = T'pX for assemblies X, then we get
an isomorphism I'4G 2 I'p on the whole of RT(B).

In order to show this, let us give the following alternative description of I.
Let X be an object of the realizability topos, and suppose that U — X is a
subobject of X, with U subterminal but nonempty, i.e., U 2 0. Applying r
yields 1 =2 U < I'X, that is, an element of I'’X. Moreover, two nonempty
subterminal subobjects U and V' of X yield the same element of X iff TU N
IN% # () (as subobjects of f‘X) Since I is left exact, and preserves and reflects
the initial object, this is true iff UNV 2 0. Moreover, if [x]., # 0 is an element
of I'x, then the predicate ¢ defined by

P(2') = {95/ ~x o' if o € [m]ay;

0 otherwise,

is strict and relational for X, and it defines a nonempty subterminal subobject of
X whose image under I' corresponds to [z]. . Thus, we see that I'X is naturally
isomorphic to the set of nonempty subterminal subobjects of X, modulo the
equivalence relation U NV 22 0.

If 1 4GX = T'gX for assemblies X, then in particular, we have GU 22 0 iff
U 22 0 for subterminals U in RT(B). This means that composition with G sends
nonempty subterminal subobjects of X to nonempty subterminal subobjects of
GX , and that this operation preserves and reflects the equivalence relation
UNV 2 0. Thus we get a natural transformation fB =T A@ consisting of
injections. In order to show that I'pX — TAGX is also surjective, suppose we
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have U < GX with U subterminal and nonempty. Then by transposing across
the adjunction F' := RT(f) 4 G, we get FU — X, and FU is also nonempty
and subterminal. Moreover, we have a commutative diagram

U \
GFU —— GX
so G(FU < X) and U — GX represent the same element of I'yGX, which
completes the proof. O

Finally, let us note the following corollary to Theorem [3.4.6} this generalizes
[Joh13l Corollary 3.3] to relative ordered PCAs.

Corollary 3.4.8. Suppose that f: A — B and g: B o A form a corefilection in
OPCAp, i.e., fg <idp and gf ~ida. Then RT(f) 4 RT(g) is a local geometric
morphism RT(B) — RT(A).

Note that we write f: A — B since the adjunction f 4 ¢ in OPCAp implies
that f is projective anyway.

Proof of Corollary[3.7.8, We have RT(g) o RT(f) = RT(gf) = RT(id4)
idrT(4), S0 it remains to show that RT(g) has a right adjoint. But gf ~ ida

implies that g is c.d., so this follows from Theorem [3.4.6] O

3.4.3 Inclusions and surjections

Consider a c.d. partial applicative morphism f: A <o B, so that RT(f) is the
inverse image part of a geometric morphism RT(B) — RT(A). In this section,
we investigate when this geometric morphism is an inclusion resp. a surjection.

Let us start with studying inclusions. The following proposition is a ge-
neralization of [vO08| Proposition 2.6.2] and [FvO14, Corollary 2.5]. We note
that our equation below is called (in) in [vOO08]. The advantage of our
formulation of is that it does not mention the witness m of from
Section [2.3.2] which can, in general, be somewhat complicated.

Proposition 3.4.9. Let f: A —o B be a c.d. partial applicative morphism.
Then the following are equivalent:

(i) RT(f) is the inverse image of a geometric inclusion RT(B) — RT(A);
(ii) the right adjoint g of f: DA — DB satisfies fg ~idpg;
(#ii) there exists a partial applicative morphism h: B «—o A such that fh ~ idp;
(iv) there exist s,e € B satisfying:

Vbe B3a € Aeb € f(a) ANs- f(a) C L{b}); (in)
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(v) whenever m € B¥ satisfies , there exists an e € B satisfying:

Vbe Ba € A(eb € f(a) Am- f(a) C J{b}). (im)

Moreover, if f is total, then (i)-(v) are also equivalent to:

(vi) Asm(f) is the inverse image of a geometric inclusion Asm(B) — Asm(A);
(vii) there exists an applicative morphism h: B —o A such that fh ~idpg;
Finally, if f is total and (i)-(vii) hold, then f is dense.

Proof. (i)<(ii). We know from Propos1t10n“that holds iff the geometric
morphism of triposes f o (=) 4go(—): P = P4 is an inclusion. In view of
Proposition this is true iff the counit of f - g is an isomorphism, i.e., (ii)
holds.

(ii)=>(iii). As in the proof of Corollary [2.3.15 this follows by defining h =
goz: B — DA.

(iii)=(iv). Let s,e € B¥ realize fh < idg and idg < fh respectively. If
b € B, then eb is defined and an element of fh(b) = U,ep ) f(a), which means
there must be an a € h(b) such that eb € f(a). Moreover, since f(a) C fh(b),
we have s- f(a) <'s- fh(b) Cidp(b) = ¢{b}.

(iv)=(v). Let m E B# satisfy (c and take s,e € B* such that
holds. According to (| , we may find an r € A% such that

VYa € A(m- f(ra) < s- f(a)).

Let f preserve application up to t € B¥, pick an element r' € f(r) N B¥ and
define ¢/ = N*z.tr'z.

Now let b € B, and find an a € A such that eb is defined and in f(a), and
s- f(a) C {b}. Tt follows that m- f(ra) < s- f(a) C {{a}, so m- f(ra) is defined
and a subset of [{b}. Moreover, we have ¢’b < ¢r'b, which is defined and an
element of f(ra). This means that e’b is also defined and an element of f(ra).
which establishes .

(v)=(ii). Recall from that g: DB — DA can be defined by

9(B) =Haec Alm-f(a) C B},

where m satisfies (cdm)). If e € B# satisfies , then it is immediate that e
realizes idpp < fg.
For the remainder of the proof, suppose that f is total. Then the right

adjoint of Asm(f) = Asmg(f) is Asmg(g), and by Theorem [3.3.13] (ii) and (vi)

are equivalent. Moreover, we clearly have that (vii) 1mphes (iii). Convelrsely7
suppose that (i)-(v) hold, and pick m € B¥ satisfying (cdm’). By (iml), m also

satisfies (dm’), so f is dense. By Lemma|[2.3.16{(ii), we have domg = TB Thus,
the h: B <o A defined by ¢¢’; is in fact total, so (vii) follows. O
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Remark 3.4.10. Note that, if f is not total, then RT(f) does not commute
with the I-functors, which means that the right adjoint G of RT(f) does not
commute with the constant object functors. Thus, we do not know whether
G restricts to a functor Asm(B) — Asm(A), and therefore, we do not get that
Asm(f) has a right adjoint as asserted in (vi) above.

Now let us turn to surjections. We have not defined geometric surjections
yet, because the equivalent definitions for geometric morphisms between toposes
are not equivalent for categories that are merely left exact. We summarize the
situation in the following lemma, which is of course well-known, but included
for the sake of completeness.

Lemma 3.4.11. Let F': C — D be a left exact functor between left exact cate-
gories. Then the following are equivalent:

(i) F is conservative;

(i) F reflects the order on all subobject posets;
and if C is balanced, then these are also equivalent to:
(iii) F is faithful.

Proof. (i)=-(ii). Let U and V be two subobjects of X such that FU < FV as
subobjects of F.X. Consider the two pullback squares

unv — V FUNFV —— FV
[ | | |
U— X FU — FX

Since F' preserves pullbacks, the right-hand square is the image of the left-hand
square under F'. By our assumption, the inclusion FU N FV < FU is an
isomorphism, which means that U NV < U is iso as well, i.e., U < V.

(ii)=(i). Consider an arrow f: X — Y such that F'f isiso. Let K — X x X
be the kernel pair of f and let A < X x X be the diagonal on X. Since F
preserves finite limits, we know that FK is the kernel pair of F'f and that FA
is the diagonal on F'X. Since F'f is mono, we have FK = FA as subobjects of
FX x FX, which implies that K = A as subobjects of X x X, i.e., f is mono.
This means we can regard f as (representing) a subobject of Y. But we also
know that F'f is the maximal subobject of F'Y, which means that f is already
the maximal subobject of Y, i.e., f is iso.

(i)=(iii) in fact holds without the assumption that C is balanced. Indeed, let
f,9: X = Y be arrows such that F'f = Fg. If m: U — X is the equalizer of f
and g, then F'm: FU — F X is the equalizer of F'f and F'g. By our assumption,
F'm is an isomorphism, implying that m is also iso, so f = g.

Finally, assume that C is balaned.

(iii)=-(i). Let f be an arrow in C such that F'f is iso. Then in particular,
Ff is both mono and epi. Since F' is faithful, this implies that f is mono and
epi as well; and since C is balanced, this means that f is iso. O
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Toposes are balanced, and we say that a geometric morphism f between
toposes is a surjection iff f* satisfies the equivalent conditions of Lemma [3.4.11]
By (iii), these are also equivalent to requiring the unit of f* 4 f, to be pointwise
mono.

For realizability toposes, we are thus interested in the following question: if
f+ A~ B is a partial applicative morphism, when is RT(f): RT(A) — RT(B)
conservative? First, let us note that, if RT(f) is conservative, then f must
be total. Indeed, suppose that we have an a € A such that f(a) = 0, and
consider the assembly 1, given by |1,| = {*} and F;_ (%) = }{a}. Then we have
RT(f)(1,) = 0= RT(f)(0), but 1, 2 0, so RT(f) is not conservative. Therefore,
we can restrict our attention to applicative morphisms f: A — B.

Proposition 3.4.12. Let f: A — B be an applicative morphism. Then the
following are equivalent:

(i) RT(f) is conservative;

(i) Asm(f) is conservative;

(iii) for every set X, the map fo (—): PaX — PpX reflects the order;

(i) f satisfies:

Vs € B*3r € A¥Va € AVa € DA(s- f(a) C f(a) = ra € o). (sur)

If (i)-(iv) hold, then f is a pseudomono in OPCA, and f is a pseudomono in
OPCAp. Moreover, if f is c.d., then (i)-(iv) are also equivalent to:

(v) the right adjoint g: DB — DA of f satisfies gf ~idpa.

Moreover, if [ is projective, say f ~ dpfo for some fo: A — B, then (i)-(iv)
are also equivalent to:

(vi) fo satisfies:

Vs € B*3r € A*Va,d' € A(s- fo(a) < fo(d') — ra < d). (surp)

Finally, if f is projective and c.d., then (i)-(vi) are also equivalent to:
(vii) the right adjoint h: B <o A of f in OPCAp satisfies hf ~idy.

Proof. First, let us show that (i), (ii) and (iii) are equivalent. Since Asm(f) is
the restriction of RT(f) to Asm(A), and Asm(A) is closed under subobjects, it
is immediate (given Lemma [3.4.11)) that (i) implies (ii). Moreover, if (ii) holds,
then in particular, Asm(f): Subasm(a)(VaX) — Subasmp)(VpX) reflects the
order, which yields (iii). Finally, if (iii) holds, then (i) follows from Lemma
and Lemma B4T1] }

Before we continue, let us show that (iii) implies that f is a pseudomono in
OPCA. Let k,¢: C — DA be morphisms of PCAs such that fk < f¢. Viewing
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k and ¢ as elements of P4C' yields fk = f£, so by (iii), k I £, which means that
k < £ in OPCA. The argument that f is a pseudomono in OPCAp, given that
(iii) holds, is exactly the same.

(iii)=(iv). Suppose for simplicity that f preserves the order on the nose.
Let s € B¥ and consider the set

X ={(a,a) e AX DA |s- f(a) C f(a)}.

Define ¢,1: X — DA by ¢(a,a) = [{a} and ¥(a,a) = a. Then s realizes
f o+ fz/J This implies that ¢ b 1 as well, and if » € A% realizes this inequality,
then is clearly satisfied.

(1v) (111) Let X be a set, and suppose we have ¢,¢: X — DA such that
fo+ fo. Let s € B¥ realize thls inequality, and find r € A% as in . We
claim that r realizes ¢ - 1. Indeed, let z € X, let a € ¢(x) and deﬁne a= 1/)(,@)
Then f(a) € Uy eg fla') = f(8(2)), which means that s - f(a) defined and

s- f(a) C f(¥(z)) = f(a) We conclude that ra is defined and an element of
a = y(x), as desired.

Now suppose that f is c.d., and let g: DB — DA be the right adjoint of
f.If (i)-(iv) hold, then f is a pseudomono Since f 4 g, we have fgf ~ f, so
it follows that gf ~ idpa, which is (v). Conversely, it is immediate that (v)
implies (iii).

Now suppose that f ~ dgfy is projective; for simplicity, we assume that
f = 0pfo on the nose.

(iv)=>(vi). Let s € B¥ and take r € A% as in . Suppose that we have
a,a’ € A with s- fo(a) < fo(a'). Then it follows that:

s+ fla)~s-Hfola)} = Hs- fola)} € Hfola)} = f(d') € F(Ha'}).

So by , with a = [{a’}, we have ra € [{d'}, i.e., ra < d/, as desired.
(vi)=(iv). Let s € B¥ and take r € A# as in . Suppose that we have
a € Aand a € DA with s- f(a) C f(«). Then in particular, we have:

s+ fola) € s- L fola)} = s+ f(a) C (),

which means that there is an o/ € « such that s- fo(a) € f(a') = I{fo(a")}.
This means that s - fo(a) < fo(a'), so by (surp), we have ra < a’ € a, hence
ra € a as well, as desired.

Finally, suppose that f is projective and c.d. If h: B <o A is the right
adjoint of f, then we must also have f - h, and it immediately follows that (v)
and (vii) are equivalent. O

Remark 3.4.13. Part of Proposition holds more generally in the context
of triposes. More precisely, if f: P — Q is a geometric morphism of triposes over
C, then the following (corresponding to (i), (iii) and (v) above) are equivalent:

e f*:C[Q] — C[P] is conservative, i.e., the corresponding C[P] — C[Q] is a
surjection;
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o f%: QX — PX reflects the order, for every object X of C;

o f.f* ~idq.

This is related to the discussion of connected geometric morphisms between
triposes and their corresponding toposes in [Bie08, Chapter 1]; in particular,
Proposition 1.16 of that chapter is a special case of the equivalence we have
stated here.

Let us note the following remarkable corollary to Proposition

Corollary 3.4.14. Let f: A — B be a projective and c.d. applicative morphism.
If the corresponding geometric morphism RT(B) — RT(A) is surjective, then it
is local.

Proof. By (vii) of Proposition|3.4.12 f and its right adjoint A form a coreflection
in OPCAp, so this follows from Corollary O

To close this chapter, let us revisit the examples from Section All of
these involved adjunctions in OPCA arising from c.d. partial applicative mor-
phisms, and thus should give rise to geometric morphisms between the realiza-
bility toposes.

Example 3.4.15. In Example[2.3.17 and Example we considered a PCA
A and a filter F, and we saw that the inclusion F' — A has a right adjoint,
yielding a coreflection in OPCAp. In particular, we have a local geometric
morphism RT(A) — RT(F). This was first observed, for the case F = A%, in
[ABS02.

Since RT(A) — RT(F) is local, we also have a geometric inclusion RT(F') —
RT(A), whose inverse image is RT(f), with f: A <o F the right adjoint of
F— A If F# A, then f is not total, which means that the diagram

/\

RT(F) —— RT(A)

does not commute.
[Joh13l Lemma 2.1] states that, for absolute discrete PCAs A and B and
any geometric morphism f: RT(B) — RT(A), the square

Set — 4 Set

ﬁ{ jﬁﬁ

RT(B) —— RT(4)

is a pullback in the category of toposes and geometric morphisms. The current
example shows that this result does not extend to relative PCAs.
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Example 3.4.16. In Example [2.3.20] we saw that :: A — Afa] has a right
adjoint, yielding a reflection in OPCA7. In particular, we have a geometric
inclusion RT(A[a]) < RT(A). In the next chapter, we will see that this inclusion
is open.

Example 3.4.17. By Example [2.3.21] there are local geometric morphisms
RT(K2) — &ff and RT(B) — &ff. Moreover, Example [2.3.22| provides a local

geometric morphism RT(Pw) — RT(K2), and a geometric morphism RT(Pw) —
RT(B).



CHAPTER 4

Products and Slicing

As we have seen in the previous chapter, each PCA A gives rise to a category
of assemblies Asm(A) and a realizability topos RT(A). In this chapter, we will
consider products and slices of these categories. We know that toposes are closed
under both products and slices, the latter being known as the ‘fundamental
theorem of topos theory’. Thus, it makes sense to ask the following questions:

Question 4.0.1. Are realizability toposes closed under (finite) products and/or
slicing? That is, is A and B are PCAs, is RT(A) x RT(B) again of the form
RT(C) for some PCA C? And if I € RT(A), is RT(A)/I again of the form
RT(C) for some PCA C?

In Section [} we present a number of reasons why the answers to these
questions should be no. Therefore, most of our attention will be directed at the
following question.

Question 4.0.2. Can we isolate a natural class of ‘realizability-like’ toposes
that includes all realizability toposes and is closed under (finite) products and/or
slicing?

Of course, we may ask similar questions for categories of assemblies instead of
realizability toposes. In Section [4.1] below, we shall see that the most prominent
obstacle for taking products of realizability toposes is that it involves a ‘base
change’. Before turning to Question [4.0.2| above, we will first, in Section [4.2
consider a construction that avoids base change, namely the construction of
pushouts of realizability toposes over Set. For these pushouts, we will pose and
answer the analoga of Question [£.0.1] and Question [£.0.2] above. This material
is adapted from [Zoe21al Section 6].

111
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Next, in Section we introduce a general framework for dealing with pro-
ducts and slicing, which is adapted from W. Stekelenburg’s PhD thesis [Stel3].
It has the following two characteristics. First, we construct PCAs over more
general ‘base categories’ than the category of sets. Second, we allow a very
liberal notion of ‘relative PCA’, given by the notion of an external filter. Let us
note a new differences between [Stel3] and our setup in Section below:

e Whereas the ‘base categories’ in [Stel3|] are Heyting categories, our ap-
proach will be more general and allow regular categories as base categories.

e At the same time, our approach is slightly less general than [Stel3], be-
cause we will require that the external filters only contain inhabited ob-
jects. The reason for doing so is that it allows a much simpler description
of categories of assemblies, and working with this restriction is sufficient
for our purposes. In fact, [Stel3] shows that our constraint does not really
impose a restriction of the categories of assemblies we consider.

e Moreover, whereas [Stel3] introduces a notion of applicative morphism
(and even of partial applicative morphism) over a fixed base, we will define
a notion of applicative morphism that allows a change of base. We will
see that this has applications in the constructions of products and slices.

Finally, in Section [4.4] we apply the framework from Section to the prob-
lem of products and slices. We will direct most of our attention to categories
of assemblies, but obtain some partial results for realizability toposes as well.

Finally, we discuss the relation between products and slices, and computational
density. The material from Section [4.3]and Section [4.4]is adapted from [Zoe20).

4.1 Products and slicing: obstacles

In Section [3:2]above, we established various properties shared by all realizability
toposes. Thus, if realizability toposes are to be closed under products and/or
slicing, then taking products and/or slicing should preserve these properties. In
this section, we present one property that is not perserved by either products
or slicing, and another one which is not preserved by slicing. These can be seen
as ‘obstacles’ to taking products and slices of realizability toposes, and these
obstacles must be overcome if we are to answer Question [£.0.2] on the previous

page.

Base change

Consider two PCAs A and B. Then the two geometric inclusions ——: Set —
RT(A) and ——: Set — RT(B) combine into a geometric inclusion:

2 f‘AXf‘B
Set® =——— RT(A) x RT(B) (4.1)
@AX@B
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which is again the inclusion of ——-sheaves. Thus, we see that RT(A) x RT(B)
lives ‘over Set®’ rather than Set. Similarly, if I is an object of RT(A), then we
get a canonical geometric inclusion:

Set/T' sl <:> RT(A)/I (4.2)
nIOVA

where the direct image part consists of applying V 4, followed by pulling back
along 7i;: I — VT 4I. This suggests that RT(A)/I lives over Set/I'A; rather
than Set. (Moreover, in the case of slicing, we cannot guarantee that is
the inclusion of ——-sheaves if I is not an assembly.) This suggests that, in order
to obtain closure under products and slices, we need to work over more general
‘bases’ than Set. In other words, we should consider PCAs that are constructed
internally in base categories other than Set.

Let us examine the morphism a bit more closely. The product, as
categories, of two toposes is their pseudocoproduct in the 2-category of toposes,
geometric morphisms and geometric transformations. The inclusion in (4.1)) is
simply the geometric inclusion Set + Set — RT(A) + RT(B) induced by the
two inclusions Set < RT(A) and Set — RT(B). Viewed like this, it is not at
all surprising that taking the pseudocoproduct of realizability toposes involves
taking the pseudocoproduct of the ‘base categories’ as well. If we want to keep
working over Set, then it would make more sense to consider the pseudopushout
of the span:

RT(A) «—— Set —— RT(B)

which exists by [Joh77, Proposition 4.26]. We will cover this construction in
Section {.2] below.

Global sections

Next, we discuss the behavior of the global sections functors in relation to the
morphisms in and . This is not really an ‘obstacle’ in the sense speci-
fied at the beginning of this section, but for the case of slicing, it is nevertheless
telling. We will see that, even if one is only interested in absolute PCAs, slicing
will likely force one to consider relative PCAs as well.
In Section [3.2.2] B:2.2] we saw that a PCA A is absolute iff the inverse image
part I'4 of Set < RT(A) is the global sections functor. Of course, if our base
category is not Set, then this criterion is not available. On the other hand, if A
and B are absolute PCAs, then the inverse image part of still commutes
with the global sections functors:

RT(A) x RT(B) — faxle | go2

Homx Am(l,f)
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Thus, it seems reasonable to expect the following: if A and B are absolute
PCAs, then RT(A) x RT(B) should be a realizability topos over an absolute
PCA internal to Set?. For slicing, we do not have the analogous result. That
is, if A is an absolute PCA, and I is an object of RT(A), then it does not follow
that the diagram

RT(A)/] —— 4 Set/T'ul

Hom(lfx A’ﬂ(l’*)

commutes.

Example 4.1.1. For an explicit counterexample, let A be an absolute PCA
which is not semitrivial, and take I = V2. In RT(A), the coproduct 1 + 1
is the assembly X with |X| = 2, Ex(0) = J{T} and Ex(1) = {{Ll}. Now
consider the object f141: 1+ 1 — Va2 of RT(A)/@AZ Then f‘AﬁHl is an
isomorphism, so it is the terminal object of Set/2, which means that it has
exactly one global section. On the other hand, 7;41 does not have any global
sections in RT(A)/V42. Indeed, such a global section is a section of 741,
meaning that 7j;+; must be split epi. But 7141 is also mono (since 1+ 1 is an
assembly), so this implies that 7;11 is iso, i.e., that 1 4 1 is a constant object.
If A is not semitrivial, then this is clearly not the case.

Thus, even if we start with an absolute PCA A, then we should still expect
RT(A)/I to arise from a relative PCA internal to Set/T'41.

Projectives

In Section we saw that the projective objects in RT(A) are precisely the
partitioned assemblies. In particular, the terminal object of RT(A) is always
projective. For slices of RT(A), this is not the case. Indeed, if I is an object of
RT(A), then the forgetful functor RT(A)/I — RT(A) has a right adjoint (=) x I,
which is a regular functor. As we mentioned in Remark [3.2.17] this implies that
RT(A)/I — RT(A) preserves projectives. In particular, if the terminal object
of RT(A)/I is projective, then I must be projective as well. Contrapositively, if
I is not projective, then the terminal object of RT(A)/I will not be projective
either.

Thus, we must allow ‘realizability-like’ toposes in which the terminal object
is not necessarily projective. In order to see how this can be done, consider
the PCA TA introduced in Chapter [2} it is equipped with the filter (TA)# =
NTA#) = {a € TA| an A* # (}. As a result, realizers from o € (T A)# are
really realizers from A# in disguise, a fact we have exploited frequently above. It
also plays a crucial role in the proof that every partitioned assembly is projective;
in order to split a regular epi g: Y — X with X a partitioned assembly, we use
that there exists a single r € A¥ such that r - Ex(z) C Uyejy) Gy, x) (where
G represents g).
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We can also consider PCAs of the form B = (T'A, ¢, -, C), where ¢ is a filter
which is not necessarily of the form 1(TF) = {a € TA | a N F # (}} for some
filter F on the PAS (4, -, <). Now we can define a ‘realizability-like’ tripos P4 ¢
as follows. For a set X, the underlying set of P4 4X is still (DA)¥, but now
we say that ¢ Fx x iff there exists a p € ¢ such that p - ¥(z) C x(z) for all
x € X. It is easy to check that this indeed yields a tripos, and therefore we have
a corresponding topos RT(A, ¢). Its category of assemblies Asm(A, ¢) (that is,
the full subcategory of the subobjects of constant objects, see Remark
can be described as follows. The objects are simply assemblies over A, but a
function f: |X| — |Y] is a morphism of assemblies iff there exists a p € ¢ such
that p - Ex(z) C Ey(f(y)) for all x € |X|. In other words, every element of p
should be a tracker of f: X — Y in the usual sense.

In this setting, if X is a partitioned assembly and g: Y — X in RT(A4, ¢)
is regular epi, then there exists a p € ¢ such that p- Ex(z) C UyelY\ G(y, ),
rather than a single element r. Because of this, the proof of Proposition
no longer goes through. In fact, we can give an explicit example of such a
‘realizability-like’ topos RT(A, ¢) in which the terminal object is not projective.

Example 4.1.2. Let A be a PCA that is not absolute, and let B = (T'A)[X] (as
in Example[2.2.15), where X = A\A# € TA. That is, B is the PAP (T4, -, C),
equipped with the filter ¢ = ((TA)#* U{X}). As in Example we see that
a € TAis in ¢ iff there exists a p € (TA)# such that p- X C «, that is, iff there
exists an r € A% such that r - X C .

Consider the assembly Y given by |Y| = X and Ey(z) = {{z}. Then the
unique arrow Y — 1 is a regular epi, since p := k- X € F satisfies p - Fy () C
X = U,y Ev(z). I 1 € RT(A, F) is projective, this implies that Y has a
global section, i.e., there exists an @ € X such that 1 % Y is a morphism of
assemblies. This implies in particular that [{a} € F, so there exists an r € A%
such that rz < a for every z € X.

Now let A be the relative version of Scott’s graph model (Pw, (Pw)™, -, =).
Then the above says that there exist an r.e. set r and a non-r.e. set a such that
rx = a for every non-r.e. set . In particular, for every m € a, there must
exist an n such that (n,m) € r. Conversely, suppose that we have a coded
pair (n,m) € r. If x is any non-r.e. set such that e, C z, then we see that
m € re = a. Thus, we can conclude that a = {m | In((n,m) € r)}. But since
r is r.e., this implies that a is r.e. as well, contradiction.

This example depends crucially on the fact that the PCA A is relative.
However, we will see that, if we combine the ideas here with base change, then
we will also be able to ‘break’ the projectivity of 1 if we start with absolute
PCAs.

Remark 4.1.3. The description of Asm(A4, F') above Example shows that
Asm(A, F) is actually PAsm(B). In particular, PAsm(B) is a regular category,
which means that B is a T-algebra; see [HvOO03, Theorem 4.2]. We also see
that, even though every object of PAsm(B) becomes projective via PAsm(B) —
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Asm(B), this does not mean that every object of PAsm(B) itself is projective,
even if PAsm(B) is a regular category.

4.2 Pushouts

In this section, we investigate the pseudopushout, over Set, of two toposes of the
form RT(A). We will prove both a negative and a positive result, corresponding
to the analoga of Question resp. Question [£.0.2] for pseudopushouts. The
negative result is that, barring trivial cases, such a pseudopushout is never a
realizability topos (Theorem . We will see that this is a consequence of
the nonexistence of pseudoproducts in OPCA7. On the positive side, such a
pseudopushout is a subtopos of a realizability topos. This leads to the positive
result that certain subtoposes of realizability toposes, namely, those that include
Set, are closed under pseudoposuhout over Set (Theorem . We will estab-
lish these results in Section while Section collects some necessary
background on pseudopushouts of geometric inclusions, and dense subtopses.

4.2.1 Pushouts and dense subtoposes

First of all, let us describe pseudopushouts of geometric inclusions. The proof of
the following proposition serves mainly to record the parts of the construction
that will be important for our purposes.

Proposition 4.2.1 ([Joh77, Proposition 4.26]). In the 2-category of toposes,
geometric morphisms and geometric transformations, pseudopushouts of pairs
of inclusions exist. Moreover, inclusions are stable under pseudopushouts over
inclusions.

Sketch of proof. Suppose we have geometric inclusions £ <i> S c]—> F. Its pseu-
dopushout
L F

. (4.3)
— G

J

(N iy

is constructed by constructing the pseudopullback in CAT:

*

q

J

%

7

J—.'
I
S

That is, G is the iso-comma object of ¢* and j*, and p* and ¢* are the obvious
projections. The direct image of p is the essentially unique arrow such that the

NG*
M —Q

|
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diagram

N *

G2 F
4 b

£ 8

<

commutes up to isomorphism. In particular, p is an inclusion, and similarly for
q. Now suppose we have a commutative diagram

S—1s F
j lg (4.4)
&L n

of toposes (or even in GEOM). Then by the definition of G, there is a unique
h*: H — G such that p*h* = f* and ¢*h* = g*, which is left exact. Its right
adjoint h* can be defined by requiring that there is a commutative diagram

J l (4.5)

fsp" — fulldp* = guJuj "

which is a pullback square at each coordinate. The final thing to show, which is
of course the challenging part, is that G is actually a topos. This is a consequence
of the glueing construction in topos theory; for details, we refer to [JohTT7,
Section 4.2]. O

In the remainder of this section, we prove two lemmata concerning pseudo-
pushouts of geometric inclusions. These lemmata may be known, but we have
not been able to find a reference for them. Therefore, we state and prove them
for the sake of completeness.

Note that, as a consequence of the definition of p, in the proof above, we
have ¢*p, = j.i*, which is known as the Beck-Chevalley Condition for the
square (4.3). In the same way, we also have p*q, = i.j*, even though, for
general squares, these two BCCs are not equivalent.

Lemma 4.2.2. Suppose given a pseudopushout of toposes as in (4.3) and a
commutative diagram as in (4.4) such that:

e f and g are both inclusions;
o the square (4.4) satisfies both BCCs: g* f. = j.i* and f*g. 2 i.j".

Then the unique mediating arrow h: G — H is an inclusion.
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Proof. The fact that f*g, = i,j* factors through j* implies that f*g, —
f*9+7sj* is an isomorphism. Taking the image of the diagram under f*
yields that f*h* — f*f.p* is also an isomorphism (since the square is a pullback
at each coordinate). This yields p*h*h, = f*h, = f* f.p* = p*. Similarly, we
find ¢*h*h, = ¢*, and these two isomorphisms combine into an isomorphism
h*h, = idg, as desired. O

As we have seen in Section the subtopos of ~—-sheaves in RT(A) is
equivalent to Set. If A is absolute, then this is in fact the only inclusion Set <
RT(A), as was shown by Johnstone in [Johl3, Corollary 1.4]. In the setting
of relative PCAs, however, this is no longer true. Indeed, the noncommutative
triangle in Example above provides a counterexample. On the other
hand, we know that —=—: Set < RT(A) is the smallest dense subtopos of RT(A).
That is, a subtopos J < RT(A) is dense iff there exists a factorization (which
is automatically essentially unique):

Set —————— RT(A)

o~

In particular, any dense inclusion Set — RT(A) must be equivalent to the
inclusion of ——-sheaves.

Lemma 4.2.3. Dense geometric inclusions are stable under pseudopushouts
over arbitrary inclusions. That is, in the diagram (4.3)), if ¢ is dense, then q is
also dense.

Proof. Assume that ¢ is dense and let X € G be such that ¢*(X) = 0. Then
(p(X) =77 (¢" (X)) =7(0) =0,

so by our assumption, p*(X) = 0 as well. Therefore, we have ¢*(X) = 0
¢*(0) and p*(X) = 0 = p*(0), and these two isomorphisms combine into an
isomorphism X 20 in G, as desired. O

In particular, if, in the diagram (4.3)), ¢ and j are both dense, then pi & jq
is also dense, since dense inclusions are closed under composition.

4.2.2 Pushouts of realizability toposes

First, we prove the promised negative result, stating that the pseudopushout,
over Set, of two realizability toposes is almost never a realizability topos.

Theorem 4.2.4. Let Ag and Ay be PCAs. If the pseudopushout of Set —
RT(Ag) and Set — RT(A;) is a realizability topos, then at least one of Ay and
Ay is trivial.
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Proof. Suppose we have a pseudopushout diagram

Set — = RT(A;)

ﬁ{ [

RT(4y) —=— RT(C)

of toposes. Then by Lemma the composite Set < RT(C) is dense, and
therefore it must be the inclusion of ——-sheaves. In particular, we have the
pseudopullback

RT(C) —s RT(A))

v i \c) lml
RT(AQ) —— > Set
L,
of categories.

Since p; is an inclusion, we have p*Ve 2 pf(p;)sVa, = Va,. Moreover,
the resulting isomorphism piVele 2 Va,Ta,pf identifies pii: pi — piVele
with Apt: pr — Va,Da,pr. Now, if X € RT(C), we see that: X is an assembly
iff 7)x is mono; iff pi7x is mono for ¢ = 0, 1; iff 7y x is mono for ¢ = 0,1; iff
p; X is an assembly for ¢ = 0,1. Thus, the pseudopullback above restricts to a
pseudopullback of categories:

Asm(C) —— Asm(4;)

l K lr;u

Asm (A()) F—AO> Set

Since all the categories and functors in this diagram are regular, this is even a
pseudopullback in REG, which means that I'c is the pseudoproduct of I 4, and
I'4, in REG/Set.

To finish the proof, let B be an arbitrary PCA. By Corollary iii) and
the above, we have natural equivalences:

OPCA7(B, C) ~ (REG/Set)(I's, I'c:)
~ (REG/Set)(T'5,T'4,) x (REG/Set)(I'z,T4,)
~ OPCA7(B, Ag) x OPCA(B, Ay).

We conclude that C' is a pseudoproduct of Ag and A; in OPCA7, so the result
follows by Theorem [2.4.21 O

As we have seen in the previous section, for every dense subtopos J <
RT(A), there is an essentially unique inclusion Set < 7 such that the composite
Set — J < RT(A) is the inclusion of ——-sheaves. Thus, we can ask what the
pseudopushout, over Set, of two such dense subtoposes looks like. The following
theorem shows that it must also be a dense subtopos of a realizability topos.
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Theorem 4.2.5. Dense subtoposes of realizability toposes are closed under
pseudopushout over Set.

Proof. Let Ag and A; be PCAs. First, we will show that the pseudopushout
€ of the span RT(Ag) <= Set — RT(A;) is a dense subtopos of a realizability
topos. Recall from Section that there is an arrow m; 4 k;: A; — Ag X A
in OPCA,q4j, which satisfies m;x; ~ ida,. Regarding m; and x; as projective
applicative morphisms yields a geometric inclusion RT(7;) 4 RT(k;): RT(4;) —
RT(Ag x A1). Thus, we get a square of inclusions:

Set — 5 RT(4,)

- T~ |

RT(A()) — RT(AO X Al)
Moreover, we know that m1k¢ is a zero morphism, i.e., the diagram

AO&)A()XAl

| |

11— A

commutes. Taking the image of this diagram under RT yields RT(71)oRT (ko) &
VT4, (see Example . Similarly, we find RT(m) o RT (k1) & V4,4, ,
so our square of geometric inclusions satisfies both BCCs. By Lemma [£.2.2]
the mediating arrow & — RT(Ag x A;) is an inclusion. Moreover, =—: Set —
RT(Ag x A;) factors through this inclusion, which shows that £ is a dense
subtopos of RT(Ag x 41).

For the general case, suppose we have dense inclusions Set — J; < RT(4;)
for ¢ = 0,1. Then we construct pseudopushout squares:

Set Ji RT(A;)
| | |
Jo J o
I
RT(Ao) . £

So we see that the pseudopushout 7 of Jy and J; over Set is a dense subtopos
of £, which is a dense subtopos of RT(Ag x A;). This completes the proof. [

We can describe the situation in Theorem [4.2.5| a bit more explicitly. In
Proposition [3.4.5] we saw that every geometric morphism of triposes f: P — Q
yields a geometric morphism of toposes C[P] — C[Q], and that the latter is
an inclusion iff the former is an inclusion, i.e., f*f. ~ idp. Now consider the
tripos morphism j := f,f*: Q — Q; it is left exact, and moreover, it satisfies
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idq < j and jj ~ j. In other words, j satisfies analogous conditions to those
of (Lawvere-Tierney) topologies on a topos, and accordingly, such morphisms j
are called topologies on the tripos Q. It can be shown that every subtopos of
C[Q] arises in this way, and in particular, corresponds to a topology on Q; see
[Pit81], Chapter 5].

For a realizability tripos P4, topologies on P4 correspond to idempotent
morphisms of PCAs j: DA — DA such that idps < j. Now consider the
pseudopushout & of the span RT(Ag) <= Set — RT(A;). As we have shown
in Theorem £ is a subtopos of RT(Ap x A;), so it must correspond to
a topology on Py x4,, i.e., a map j: D(Ag X A1) — D(Ap x Ay). First of
all, we note that RT(A4;) — RT(Ap x A;) is given by D(k;m;): D(Ag X A1) —
D(Ag x Ay). Explicitly, we can describe D(komg) as:

D(komo)(a) = Dmg(a) x A1 = {(ag,a1) | Ja) € A1 ((ap,a}) € )},

and similarly for D(k171). Since RT(4;) is contained in £, we must have j <
D(k;m;) for i = 0,1. Conversely, suppose that j': D(Ag x A1) = D(Ag x A1)
is a topology such that j' < D(k;m;) for i = 0,1. If & < RT(A4g x A1) is the
subtopos corresponding to j’, then we get a commutative diagram:

Set —— RT(Al)

£

RT(A()) — &

\\H

RT(AO X Al)

where the square commutes since £ < RT(Ap x A;) is an inclusion. But
since &£ is the pseudopushout of the RT(A;) over Set, this means that &£ is
contained in &', that is, j/ < j. We can conclude that j is the largest topology
D(Aox A1) = D(Agx Ay) such that j < D(k;m;) for i = 0,1. But that is simply
to say that j is the meet of D(kgm) and D(k17), which we can describe, up
to isomorphism, by:

jla) = Dmp(ar) x Dmy(a).

Geometrically, we can think of j(«) as the smallest ‘rectangle’ that contains .
Note also that, if h: TAg x TA; — T'(Ap x A1) is the map of OPCA,q; defined
in the proof of Proposition then j(a) = h.h*(a) for @ € T(Ag x A),
and j(0) = 0.

For the general case, suppose we have dense subtoposes J; < RT(A;) cor-
responding to topologies j;: DA; — DA;. Then a similar argument shows
that the pseudopushout J of Jy and J; over Set corresponds to the topology
j! D(AO X Al) — D(AO X Al) given byZ

j(a) = jo(Dmo(ar)) x j1(Dmi(a)).
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4.3 PCAs internal to a regular category

In this section, we treat a framework of generalized PCAs suitable for handling
products and slices of categories of assemblies. As we mentioned at the begin-
ning of this chapter, this framework considers PCAs constructed over general
base categories, and allows a very liberal notion of relative PCA, which can be
motivated by Example

Before we proceed, we introduce some notation concerning the internal logic
of regular categories. If C is a regular category, then Subcs: C — PreOrd°P
soundly interprets typed regular logic, as discussed in Section [3.1.2] Thus, if ¢
is a formula of regular logic in context I' = xg: Xo, ..., 2p—1: Xp—1 (with the X;
objects of C), then ¢ receives an interpretation [¢] € Sube(Xo X -+ x Xp—1).
Since we are working with subobjects, we will write this more suggestively as:

{(1'0,...7:17n,1)EX0X-~-><Xn,1|(,D}§X0X-~-><Xn,1.

In particular, we will use the usual subset sign to denote subobjects in C. We
will often write U(z) := ¢(z) to indicate that we define the subobject U C X
as {x € X | p(x)}, and similarly for contexts with multiple variables.

Of course, if ¢ and ¢ are regular formulas in context I', then we say that
the sequent ¢ Fr 9 is valid in C if:

{(zo,...,2n_1) € Xox-- - xXp_1 |0} C{(z0,...,2n-1) € Xox---xXp_1 | ¥}

In this case, we write C: ¢ Fr ¥, or ¢ Fr 9 if C is understood. This inter-
pretation is sound in the following sense: if the sequent s is derivable (in some
proof system for typed regular logic) from a set of sequents S, and all members
of S are valid in C, then s will be valid in C as well. We will often signal an
application of soundness by writing ‘reason inside C’, or ‘work internally in C’.

4.3.1 Internal PCAs

Throughout this section, C denotes a regular category which serves as our ‘base
category’.

Definition 4.3.1 (Cf. [Stel3, Definition 1.2.1]). A partial applicative poset
internal to C, or IPAP over C, is an object A of C equipped with:

e a partial order < C A x A;

e a partial binary application map A x A — A, that is, a subobject D C
A x A and an arrow D — A: (a,b) — a - b,

satisfying:
(iA) o’ <aANb <bAD(a,b)Eqapp:a D@, V)Nad -0 <a-b.

We say that A is total if D = A x A, and discrete if < is the discrete order
(i.e., the diagonal (id,id): A— A X A).
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As for ordinary PAPs, we will omit the dot for application whenever possible,
and adopt the convention that application associates to the left. Moreover, in
the sequel we will write ab/ for the formula D(a,b). In this way, we see that
axiom (iA) above expresses axiom (A) from Definition ‘internally in C’.

If ¢(Z) is a pure term in n variables, then we get a partial map AZ.t: A — A
in the obvious way. The domain of A\Z.t can be expressed by a regular formula
involving D and the application map. We abbreviate this formula by t(a)J,
where @: A™. For example, abc| may be expressed as D(a,b) A D(ab, c).

Remark 4.3.2. The reader may object to this, and to the formulation of axiom
(iA) above, that the function symbol for application is a unary function symbol
with domain D, rather than a binary function symbol taking inputs from A. We
can circumvent this difficulty by saying that officially, the application map is a
tertiary single-valued relation symbol on A expressing ‘ab = ¢’. In this setup,
we can define D as {(a,b) | 3c(ab = ¢)}. The formula abc] is then actually an
abbreviation of Jw: A(ab = w A D(w,c)). Likewise, if t(@){, then we can still
freely use the expression ¢(@) in our formulas. E.g., we may write abc A p(abe),
which should really be read as Jv, w: A (ab = wAwe = vAp(v)). Other solutions
may also be employed as well; in particular, it is possible to treat formulas
involving the application function without using existential quantification at
all, therefore staying within the realm of cartesian logic. However, we will
need existential quantification in the sequel of this chapter anyway (e.g., in
Definition (ii) and Deﬁnitionbelow), so the approach presented here
is satisfactory.

Next, we need to define internal partial applicative structures and combina-
tory completeness. At first glance, it would seem reasonable to equip an IPAP
A with a subobject A% satisfying internal versions of axioms (B) and (C) from
Definition 2.1.15] However, with Example in mind, we really want to be
talking about filters on the PCA T'A of nonempty downsets of A. We cannot do
this inside C if C is merely a regular category. Of course, we can evade this issue
by simply assuming that C is a topos. There is an alternative solution, however,
which only requires C to be regular. This solution is taken from [Stel3|; the key
idea is to view T'A as an object external to C.

Definition 4.3.3 (Cf. [Stel3], Definitions 1.3.11 and 1.3.14]). Let A be an IPAP
over C.

(i) We write TA for the set of all inhabited downsets of A. That is, TA
consists of all subobjects U C A such that:

e FJda:A(U(a)) (that is, U — 1 is regular epi);
o o/ <aNnU(a)Faa.aU(d).

(ii)) We make T A into a PAP (T A,-,Q) as follows. For U,V € TA, we say
that UV | iff U x V. C D, and if this is the case, we set:

UV={acA|3b,c:AUb)ANV(c)ANa<bc)}.
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(iii) An external filter on A is a filter on T A in the sense of Definition .

(iv) A partial applicative structure internal to C, or IPAS over C, is pair

(A, ¢), where A is an IPAP over C and ¢ is an external filter on A. We
say that (A, ¢) is absolute if ¢ = T A.

Even though we qualify the entirety of (A, ¢) as ‘internal to C’, we emphasize
that really only A is internal. Indeed, T A is an external PAP, that is, simply a
PAP in the sense of Definition In particular, ¢ is a set, namely, a subset
of T A, and not something living inside C.

Finally, we need to say what it means for (4, ¢) to be an internal PCA. Of
course, our realizers will be elements of ¢, so in particular, they will be external
objects, but they will need to realize terms internally in C.

Definition 4.3.4. Let (A, ¢) be an IPAS over C.

(i) Suppose that t(Z,y) is a pure term. We say that U € T A realizes \*Z,y.t

if:
o U(r) Fra.a rdl (where d has the same length as &);
o U(r)At(a@,b)l Frgp.a rabl A rab < t(a,b).

(i1) If ¢ is an external filter on A, then we say that the IPAS (A, ) is a

partial combinatory algebra internal to C, or IPCA over C, if there
exist K, S € ¢ realizing N*xy.x and N*xyz.xz(yz), respectively.

Let us make a few remarks concerning Definition |4.3.4

Remark 4.3.5. (i) We warn the reader that in the current setting, the iso-

(i)

lated expression A*Z,y.t does not mean anything (but see also item (ii)
below). This is in contrast with the situation for ordinary PCAs, where
\Z,y.t denotes an element of A#. In the setting of IPCAs, we can only
use A*Z,y.t in the expression ‘realizer of \*Z, y.t .

There are two important differences between [Stel3|] and our setup. First
of all, we require the external filter ¢ to consist of inhabited subobjects of
A. In [Steld], there is no such requirement (but see also Remark
below). Second, in [Stel3], the base categories are Heyting categories,
which means they interpret full (typed) first-order logic. This allows a
slightly more elegant treatment of the definition of an IPCA. For a pure
term (&, y), we can then define:

NZyt={reA|Va,b:A(rdl A (t(a,b)] — rabl A rab < t(a,b)))}.

Then ¢ contains a realizer of \*Z, y.t in the sense of Definition i) iff
it contains the element \*Z,y.t defined above; see also [Stel3l Definition
1.2.4]. If C is merely regular, however, then we need to use the notion
‘realizer of \*¥, y.t’, because we cannot define the object \*¥,y.t inside C
as we did above.
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(iii) If (A, ¢) is an IPCA, then in particular, (T A,¢,-,C) is a PCA, as is
witnessed by K,S € ¢. We will denote this PCA simply by T (A4, ¢).

We have the following analogue of Proposition [2.1.24] The construction is
similar, so we omit the proof.

Proposition 4.3.6. If (A,¢) is an IPCA over C, then \*Z,y.t has a realizer
in ¢, for every pure term t(Z,y).

The reader may have noticed that, thus far, we have only talked about pure
terms, and not about terms with parameters. In fact, since A is not a set but an
object of C, it is not entirely clear what a term with parameters from A should
be. On the other hand, T A is a set, and it will be useful to have a notion of
‘realizer of \*Z,y.t’, where t contains parameters from 7 A. In order to achieve
this, we note that a term with parameters from 7 A can be written as t(ﬁ, Z,y),
where #(Z, Z,y) is a pure term and U € T A.

Definition 4.3.7. Let A be an IPAP over C, let t(Z,Z,y) be a pure term
and let U € TA (of the same length as Z). We say that V € T A realizes
AT, y.t(ﬁ,f, y) if there exists a realizer W of \*ZZy.t such that V C wU.

Clearly, Proposition [4.3.6| above can be extended to terms with parameters
from ¢, since ¢ is closed under defined application.

Remark 4.3.8. Definition will occasionally create an ambiguity. For
example, if we say that V realizes \*z.UU, then this could mean two things.
We could mean that V' C WU, where W realizes \*yx.yy, or we could mean
that V. C WUU, where W realizes A\*yzx.yz. Therefore, we adopt the following
convention: if we use the parameter U more than once in a term, then we assume
we have substituted all these occurrences for the same variable, that is, we go
with the first option. This is only for the sake of definiteness; in practice it
does not matter which option one uses, except for the fact that the first option
introduces fewer variables.

In addition to K and S, we also introduce a few other useful combinators, in
the same way as in Section We have the identity combinator | realizing
Az.z, a combinator K realizing Azy.y, and pairing and unpairing combinators
P, Py and P; realizing Azyz.zxy, Az.zK and Az.zK respectively. For any choice
of these pairing and unpairing combinators, we have:

P(p) A Po(po) Fp.po.ab:a po(pab)l A po(pab) < a,

P(p) AP1(p1) Fppi.ab:a pr(pab) L A pi(pab) <b.

We prove the first of these in detail, since it elucidates how Definition [4.3.7
works. By definition, there exists a realizer U of A*yz.xy such that Py C UK.
Now reason internally in C and suppose that P(p) and Pg(pg). Then there exist
r,k: A such that U(r), K(k) and pg < rk. We know that kab is defined and
kab < a. This implies that pabk is defined as well, and pabk < kab < a. This,
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in turn, implies that rk(pab) is defined and rk(pab) < pabk < a. Finally, this
implies that po(pab) is defined and py(pad) < rk(padb) < a, as desired.

Because T A is simply a PAP in the sense of Chapter [2] the notion of a
generated filter is available to us. That is, if G C T A, then there is a least
external filter (G) on A extending G. We treat two definitions involving the
notion of a generated filter, both of which will be needed in the sequel of the
chapter, espacially when we consider slicing in Section [1.4:2]

Definition 4.3.9 (Cf. [Stel3| Definition 2.4.1]). Let A be an IPAP over C.

(i) We define a function 64: Hom(1,A) — T A as follows. If a: 1 — A is a
global section of A, then da(a):={be A|b<a} e TA.

(i) If ¢ is an external filter on A, then we say that ¢ is generated by sing-
letons if, for every U € ¢, there exists an a: 1 — A such that E U(a) and

5,4(0,) € ¢.

Intuitively, if ¢ is generated by singletons, then everything that is realized by
some member of ¢ is also realized by a ‘principal downset’ in ¢. The following
proposition explains the name ‘generated by singletons’.

Proposition 4.3.10. Let (A,¢) be an IPCA over C. Then ¢ is generated by
singletons iff there exists a set C C Hom(1, A) such that ¢ = ({04(a) | a € C}).

Proof. If ¢ is generated by singletons, then ¢ = 1{da(a) | a € C}, where C =
{a: 1 — A]da(a) € ¢}, so in particular, we also have ¢ = ({Ja(a) | a € C}).

Conversely, suppose that ¢ = ({da(a) | « € C}) for some C C Hom(1, A).
Note the IPAP structure on A makes Hom(1, A) into a PAP, and the function
d4: Hom(1,A) — T A preserves application and the order on the nose. Now
define the generated filter (C) C Hom(1, A). Then an easy argument shows
that:

Hoala)[a e (C)} = ({oa(a) |acC}) =,

so in particular, ¢ is generated by singletons. O

An TPAP over Set is, of course, simply a PAP A, and we have TA = TA.
Thus, every PCA in the sense of Chapter [2] can be regarded as an IPCA
(A, (T A)¥) over Set. With Definition we can even say a bit more: PCAs
are exactly IPCAs over Set whose filters are generated by singletons. It is
certainly possible to have IPCAs over Set whose filters are not generated by
singletons. In fact, Example [£.1.2]is an example of such an IPCA, as we shall
see shortly. The following definition generalizes the construction used in Exam-

ple

Definition 4.3.11. Let (A, ®) be an IPCA over C and let X € TA. We define
the IPCA (A, 9)[X] as (A, (¢ U{X})), and we say that the filter (¢ U {X}) is
finitely generated.
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4.3.2 Applicative morphisms

In this section, we will consider applicative morphisms between IPCAs. First, we
will define a notion of applicative morphism between IPCAs over a given base;
this definition also occurs in [Stel3]. Next, we introduce a notion of base change,
thus obtaining a bicategory of IPCAs over arbitrary regular base categories.
This approach allows us to compare IPCAs constructed over different bases,
which will be useful when discussing products and slicing in the next section.

For ordinary PCAs, an applicative morphism A — B is a function A — T'B.
Such a definition is not available here, because the ‘PCA of inhabited downsets’
T B lives outside C. But note that a function A — T'B can also be viewed as
a relation between the sets A and B, with certain properties. In fact, when
applicative morphisms were first defined in [Lon94l Definition 2.1.1], they were
defined as relations, and not as functions. A regular category C has a well-
behaved calculus of relations, so this approach seems promising.

For the time being, fix a regular base category C. We first define a notion of
applicative morphism between IPCAs over C.

Definition 4.3.12 (Cf. [Stel3, Definition 2.3.20]). Let (A, ¢) and (B,) be
IPCAs over C. An applicative morphism f: (A, ¢) — (B, ) is a subobject
f € A x B with the following properties:

(i) Fa:a 3b:B(f(a,b));

(i1) f(a,b) NV <bEgapp:.s fla,b);
(i11) if V € ¢, then f(V):={be B|3Ja:A(V(a) A f(a,b))} € ¢;
(iv) there is a T € 1 such that

T(t)A fla,b) A f(a' V) Nad' ) Eaaranpp.p V' LA flad,tbb');

(v) there is a U € ¢ such that

U(u) A fla,b) Na < a' Foaramps ubl A f(a’,ub).

Ttem (i) says that f is a total relation, i.e., that ‘f(a) is inhabited’, for each a
(but of course, we cannot talk about f(a) directly inside C). This requirement is
absent in [Stel3l Definition 2.3.20], which can therefore we viewed as a version
of what we have called partial applicative morphisms. For the purposes of this
chapter, the notion of applicative morphism will suffice, which is why we include
(i). Ttem (ii) says that f is ‘downwards closed on the right’, and amounts to
requiring that ‘ f(a) is a downset’. Items (iii)-(v) correspond to the requirements
for applicative morphisms between ordinary PCAs. Of course, we will also say
that T, U € 9 realize f: (A, $) — (B,1), or more specifically, that f preserves
application up to T and preserves the order up to U.

Remark 4.3.13. (i) Note that V — f(V) as defined in item (iii) makes f
into a morphism of PCAs T (4, ¢) — T (B, ).
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(ii) Since applicative morphisms are the only morphisms we will consider be-
tween IPCAs, we use the ordinary arrow symbol to denote f: (A, ¢$) —
(B, 1), rather than —o.

Definition 4.3.14. Let (A, ¢) and (B,v) be IPCAs over C. If f, f' C A X B,
then we say that f < [’ if there exists a V € 1 such that

V(S) A f(a7 b) ’:a:A;s,b:B Sb\lf A f/(a, Sb)

Such an element V is said to realize the inequality f < f', and we write f ~ f’
if both inequalities f < f' and f' < f hold.

Proposition 4.3.15. IPCAs over C, applicative morphisms, and inequalities
between applicative morphisms form a preorder-enriched bicategory, which we
denote by IPCA¢.

Proof. The identity on (A4, ¢) is given by {(a,a’) € Ax A|a>da'}. If (A, ¢) EN
(B, ) EN (C,x) are applicative morphisms, then gf is their composition as
relations, i.e., gf = {(a,¢) € Ax C | 3b:B(f(a,b) Ag(b,c))}. Let us verify in
detail that gf preserves application up to a realizer, and leave the remaining
properties of gf to the reader. Let f and g preserve application up to T € ¢
resp. 7" € x. Now let T € x be a realizer of N*xy. T (T - g(T) - x)y. That is,
we suppose that T C WT' - g(T), where W realizes A\*zz'zy.z(22'x)y. Now
reason inside C, and suppose that 7" (¢"), gf(a,c), gf(a’,¢') and aal. Then
there exist r,t', to: C such that W(r), T'(t'), g(T)(to) and t”" < rt'ty. Moreover,
there are b, b’ : B such that f(a,b), g(b,c), f(a’,b") and g(¥, '), and finally, there
is also a ¢ : B such that T'(¢) and ¢(t,tp). From these data, we can conclude
that tbd’ | and f(ad’,tbd’). In particular, tb|, so t'toc] as well, and g(tb, t'tgc).
This yields that ¢/ (t'tgc)c’ | and g(tbb',t' (t'tgc)c’). Thus, rt'tgec’ | as well, and
rt'toed < t'(t'tge)c, so g(tb',rt'tgec’). This, in turn, gives that e’ |, and
t"ec < rt'toec, so g(th',t"cc’). Combining this with f(aa’,tbb’) finally yields
gf(ad';t"cc’), as desired.

That the axioms for a 1-category hold up to isomorphism, follows by reason-
ing internally in C. Suppose we have relations f, f/, f": (A, ¢) — (B,%). Then
| € ¢ realizes f < f, and if V,V’ € 4 realize f < f' resp. f/ < f”, then a
realizer of \*x.V'(Vz) also realizes f < f”.

Now suppose we have relations f, f* C A x B such that V' € 9 realizes f < f/,
and an applicative morphism g: (B,v) — (C, x) that preserves application up
to T € x. Then any realizer of \*z.T - (V) - = also realizes gf < gf’. Finally,
if fC Ax Band g,g C B x C are relations, then any realizer of g < ¢’ also
realizes gf < g'f. O

Remark 4.3.16. In the construction of 7" above, the parameter T” occurred
twice, so we used the convention from Remark Had we chosen the other
convention, then two elements from 7" would have played a role in the internal
argument in C, rather than one. This does not make an essential difference to
the argument, but it introduces even more variables.
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In the internal reasoning that T" works as desired, we really do the following:
first, we unpack all the existential quantifiers, and then, we give the ‘usual’
argument that composition in OPCAr is well-defined, but internally inside C.
Moreover, this internal argument has to be formulated somewhat cumbersomely
because we only have regular logic at our disposal. In the sequel, we will usually
only specify the term to be realized, and omit the internal argument that the
corresponding realizer works as desired.

Again, we needed to say that IPCA¢ is a bicategory since foid = f iff f
preserves the order on the nose, i.e., f(a,b) Aa < a' Fyaap.8 f(a’,b). Asin
Lemma we see that foid = {(a,b) € Ax B|3a’:A(d’ <aA f(a',b))} is
isomorphic to f and preserves the order on the nose.

Example 4.3.17. Suppose that A is an IPAP over C and that ¢,9 C T A are
two combinatorially complete external external filters on A such that ¢ C 1.
Then we have an applicative morphism f: (A, ¢) — (A,4) given by {(a,d’) €
AXx A ] a>d}. In the special case where ¢ is a finite extension of ¢, say
Y = (¢ U{X}) with X € TA, we will denote this f by tx, in analogy with

Example [2.2.15

Next, we will define, for each regular functor p: C — D between regular
categories, a 2-functor p*: IPCA¢ — IPCAp. Before we can do so, we need a
few auxilliary results. The first of these generalizes Lemma [2.2.5

Lemma 4.3.18. Let (A,¢) and (B,y) be IPCAs over C, and suppose that
¢ = (G) for a certain G C TA. Let f C A X B be a relation satisfying (i), (ii),

(iv) and (v) from Definition and also:
(i11)” if U € G, then f(U) € ¢.
Then f is an applicative morphism (A, ¢) — (B, ).

Proof. Apply Lemma [2.2.5] to the PCAs T (A, ¢) and T (B,v), and the function
f:TA—TB. 0

If p: C — D is a regular functor and A is an IPAP over C, then p(A) is an
IPAP over D in the obvious way. Note also that p yields an order-preserving
function TA — T (p(A)), that we also denote by p. If U = Uy,...,U,—1 is a

—

sequence of elements of 7 A, then we write p(U) as a shorthand for the sequence

p(Uo); -, p(Un—1) € T(p(A)).
Lemma 4.3.19. Let p: C — D be a regular functor, let A be an IPAP over C.

(i) If t(Z) is a pure term and U € TA are such that t(U) ], then t(p([j)) is
defined as well, and equal to p(t((j))

(it) If G C TA, then (p((G))) = (p(G)).



130 Chapter 4. Products and Slicing

Proo (i) is an easy induction on t.

or (ii), we first note that p(G) C p({G)) C (p({G))), which implies (p(G)) C
(p (< )). For the converse, suppose that we have an element V € p((G)), that
is, V.= p(V’) for some V € (G). By Lemma [2.1.14] there are a pure term ¢(Z)
and U € G such that ¢(U) ] and t(U) C V'. By (i), t(p(0)) is also defined, and
we have t(p(U)) = p(t(U)) C p(V’') = V, which shows that V € (p(G)). We
conclude that p((G)) C (p(Q)), hence also (p((G))) C (p(G)). O

Remark 4.3.20. The converse of Lemma i) does not hold. Indeed, for
U,V € TA, it may very well be the case that p(U)-p(V){, but UV is undefined.
For an example of this phenomenon, consider the case where D is the terminal
category.

Construction 4.3.21. Let p: C — D be a regular functor. We define a 2-
functor p*: IPCA¢s — IPCAp as follows.

o If (A, ¢) is an IPCA over C, then p*(A, ¢) := (p(4), (p(¥)))-

o If f: (A, ¢) — (B, ) is an applicative morphism, then p*( f) is the relation
p(f) € p(A) x p(B).

Proposition 4.3.22. If p: C — D is a regular functor, then p* as defined in
Construction [4.3.21] is a well-defined 2-functor IPCA¢c — IPCAp. Moreover,
Construction [4.3.21] is functorial in the sense that id; = idipca, and (gp)* =
qp

Proof. First, let us show that p*(A4, ¢) is an IPCA over D. In general, if U € T A
realizes A\*Z,y.t w.r.t. the IPAP A, then p(U) € T (p(A)) realizes A\*Z, y.t w.r.t.
the IPAP p(A), since p preserves regular logic. In particular, if K;S € ¢ witness
the fact that (A, ¢) is an IPCA over C, then p(K), p(S) € p(¢) C (p(¢)) witness
the fact that p*(A, ¢) is an IPCA over D.

Now suppose that f: (A,¢) — (B,) is an applicative morphism. Since
p preserves regular logic, we have that p(f) C p(A) x p(B) satisfies the first
two requirements from Definition Moreover, if f preserves application
and the order up to T,U € 1, then p(f) preserves application and the order
up to p(T),p(U), again because p preserves regular logic. Since T,U € 1),
we have p(U),p(T) € p(¥) C (p(v)), so it remains to check that p(f) maps
(p(9)) to (p(v)). For this, we use Lemma Suppose that V' € p(¢), so
V = p(V’) for some V' € ¢. Then f(V') € 1, and since p is regular, we have
p(NV) = p(F) (V) = p(F(V")) € p) C (p(e)), as desired.

In order to see that p* preserves the order on homsets, we note: if f, f': AxB
are relations such that V' € ¢ realizes f < f’, then p(V) € p(v)) C (p(¢))) realizes
p(f) < p(f).

Using the fact that p is regular once more, it is clear that p* preserves
identities and composition. For the final statement, the only nontrivial thing to
check is that ¢*(p*(A, ¢)) and (gp)* (A4, ¢) are equipped with the same external
filter. This follows from Lemma ii), which tells us that:

(a((p(9)))) = {a(p())) = ((ap)(9))- -
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Remark 4.3.23. Consider the map 7 (A, ¢) — T (p*(A, ¢)) given by V +— p(V).
By Lemma [4.3.19(i), we have p(U)-p(V) < p(UV'), which implies that this map
is a morphism of PCAs.

Can we extend Construction to natural transformations, thus obtain-
ing a 2-functor from REG to the category of preorder-enriched bicategories? If
p,q: C — D are regular functors and p is a natural transformation p = ¢, then
we can define:

fia = {(a,b) € p(4) x q(A) [ pala) = b} (4.6)

for IPAPs A over C. If (A, ¢) is an IPCA over C, then i, does not in general
seem to be an applicative morphism p*(A4, ¢) — ¢*(A, ¢). Specifically, if U € ¢,
the applying the naturality of  to the inclusion U C A tells us that 4 (p(U)) C
q(U). However, if we want to show that T4 (p(U)) € q(¢), then we would need
the reverse inequality, which does not seem to hold in general. Still, fi4 is a
relation between p(A) and g(A), and relations can be composed. The following
lemma says that the naturality of & is lax.

Lemma 4.3.24. Let f: (A, ¢) — (B,y) be an arrow of IPCA¢, and let p: p =
q, where p,q: C — D are regular functors. Then igop(f) C q(f)oTia-

Proof. Applying the naturality of p to the inclusion f C A x B shows that
p(f)(a,0) Fapaypps)y 4(f)(nala), pp(b)). Now the statement of the lemma
follows by an easy internal argument in D. O

In any case, Construction defines a 1-functor from REG to preorder-
enriched bicategories. In such a situation (ignoring for the moment that OPCA¢
is merely a bicategory), we can perform (the opposite of) the Grothendieck
construction and obtain a category [ IPCA(_) that is opfibred over REG. Since
Construction[£.3.21] does not seem to extend to natural transformations, it is not
a priori clear that [ IPCA_y will be a bicategory, but it turns out that i IPCA
is, in fact, a bicategory. First, let us give the full definition of [ IPCA(_y; we
will denote this category simply by IPCA.

Definition 4.3.25. The bicategory IPCA is defined as follows.

(i) The objects are triples (C, A, ¢), where (A, ¢) is an IPCA over the regular
category C. We will usually just write (A, ¢) instead of (C, A, ).

(i) If (A, ¢) and (B,) are IPCAs over C and D respectively, then an arrow
(A, ¢) — (B, ) is a pair (p, ), where p: C — D is a reqular functor and
f:p*(A,¢) = (B,v) is an applicative morphism.

(ii) A 2-cell (p, f) = (q,9) is a natural transformation p: p = q such that
f<gom,.

An arrow of IPCA is also called an applicative morphism, whereas a 2-cell is
called an applicative transformation.
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In order to prove that this is indeed a bicategory, we need to have a closer
look at the proof of Proposition First of all, we have shown that, if
(A, ¢) and (B, ) are IPCAs over C, the set of all relations from A to B form a
preorder. That is, we do not need that the relations are applicative morphisms.
Moreover, the inference g < ¢ = ¢f < ¢'f holds for all relations f,g,g¢’. On
the other hand, the inference f < f/ = g¢gf < gf’ holds for all relations f
and f’, but we do need that g is an applicative morphism. Furthermore, in the
proof of Proposition [£.3.22] we saw that a regular functor p: C — D preserves
the order on all relations between IPCAs over C, not merely on applicative
morphisms.

Theorem 4.3.26. The bicategory IPCA as defined in Definition[{.5.25 is indeed
a bicategory.

Proof. The identity on (A,¢) is (idc,id(a,¢)). The composition of two ap-

plicative morphisms (A, ¢) (1) (B,v) (@.9) (C,x) is given by (gp,g o q*f) =
(gp,g o q(f)). Tt is easily verified that the axioms for a l-category hold up
to isomorphism. Again, the only identity that does not hold on the nose is
(p, f) o (id,id) = (p, f), which holds up to the invertible 2-cell id,.

We define the vertical and horizontal composition of 2-cells as in REG. Sup-
pose that we have parallel applicative morphisms (p, f), (¢,9), (r,h): (4,¢) —
(B, 1) and that

(. f) £ (q,9) % (1,h)

are applicative transformations. Then U4 ofiy = Tiv 4, as follows by an easy in-
ternal argument in C (using the fact that v4: ¢(A) — r(A) is order-preserving).
Now we see that vy is an applicative transformation (p,f) = (r,h) since
f<gofia<hovaoliy=hoty,.

Now suppose that (p, f),(q,9): (A,¢) — (B,1) are applicative morphisms
and that p is an applicative transformation (p, f) = (¢,g). Let (r,h): (B,¢) —
(C, x) be another applicative morphism. Since r is left exact, we have r(fiy) =
T 4. Now we see that

hor(f)<hor(gofiy) =hor(g)or(fiy) =hor(g)oriy,

so ru is an applicative transformation (r, h) o (p, f) = (r,h) o (q, g).
On the other hand, if (r,h): (C,x) — (A4, ¢) is another applicative mor-
phism, then, using Lemma [£.3:24}

fop(h) <gomaop(h) <goq(h)oh,c)=goq(h)opre,

so pr is an applicative transformation (p, f) o (r,h) = (g, 9) o (r, h).
Finally, all the required coherence conditions follow trivially from the fact
that REG is a 2-category. O

Remark 4.3.27. Consider an applicative morphism (p, f): (4, ¢) — (B, ).

Combining Remark|4.3.13|(i) and Remark[4.3.23] we see that the map T (A4, ¢) —
T(B,v) given by U — f(p(U)) is a morphism of PCAs, and we will denote it by
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T(p, f). Moreover, if u: (p, f) = (q,9) is an applicative transformation, then
any realizer of f < go i, also realizes T(p, f) < T(q,g). It is easy to check
that this makes 7 into a 2-functor IPCA — PCA.

Before we proceed to define the category of assemblies in the next section, let

us have a closer look at the IPCA p*(A4, ¢) = (p(4), (p(¢))). By Lemma [2.1.14
the external filter (p(¢)) can be described as:

0 {t(p((j)) | (&) a pure term, U € ¢ and t(p([j))i} .

But as we saw in Remark [4.3.20} the fact that ¢(p()) is defined does not imply
that ¢(U){. In the sequel, it will be convenient to have an alternative description
of (p(¢)) and its finite extensions as defined in Definition [4.3.11

Lemma 4.3.28. Let (A, ¢) be an IPCA over C, let p: C — D be a regular
functor, and let X € T (p(A)). Then:

(p() U{X}) =M{p(U) - X |U € ¢ and p(U) - X|}.

Proof. Clearly, any filter on T (p(A)) containing p(¢) U{X } must contain the set
Hp(U)- X |U € ¢ and p(U)- X |}, so it remains to show that the latter is itself
a filter on T (p(A)). Upwards closure holds by definition, so we need to verify
closure under defined application. Consider V,V’ € T (A) such that VV’], and
suppose that we have U,U’ € ¢ such that p(U)- X CV and p(U’)- X CV’. As
observed in the proof of Proposition if S € ¢ realizes AN*xyz.xz(yz) w.r.t.
A, then p(S) realizes \*zyz.z2(yz) w.r.t. p(4). Now we see that U” = SUU’ is
defined and an element of ¢, and:

p(U")- X = p(S)-p(U) -pU")- X <pU)-X - (pU")-X)CVV’,
as desired. O]

Corollary 4.3.29. If (A, ¢) is an IPCA over C and p: C — D is a regular
functor, then:

(p(¢)) = MHpU) -p(A) | U € ¢ and p(U) - p(A)l}.

Proof. Since A € ¢, we have p(A) € p(¢), so (p(¢)) = (p(¢) U {p(4)}). Now
apply Lemma O]

4.3.3 Assemblies and the realizability topos

In this section, we primarily discuss the category of assemblies for an IPCA
(A, ¢), and regular functors between these categories of assemblies. We will
also, for the case where the base category is a topos, define the realizability
topos.

In the case of PCAs, an assembly is a set |X| equipped with a function
Ex: |X| — TA. In the current case, this definition is not available, because T'A
cannot be defined inside C. We use the same solution as we did for applicative
morphisms, that is, we view Ex as a relation between |X| and A.
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Definition 4.3.30. Let (A, ¢) be an IPCA over C.
(i) An assembly over (A, ¢) is a pair X = (|X|, Ex), where | X| is an object
of C and Ex C |X| x A satisfies:
Fux| 3a:A(Ex(z,a)) and Ex(z,a) Ad' < aFyxjae.a Ex(z,d).

(i) A morphism of assemblies f: X — Y is a function f: |X| — |Y]| for
which there exists a T € ¢, called a tracker of f, such that:

T(t) NEx (1‘, CL) j::v:|X\;t,a:A tCL\l, A EY(f(x)a ta)
As for the case of ordinary PCAs, the category of assemblies has the following
properties.

Proposition 4.3.31. Assemblies over (A, ¢) and morphisms between them form
a regular category that we denote by Asm(A, ¢). Moreover, there is an adjunction

r
<;
C é Asm(A, ¢)

where I' and V are both regular, and T'V = id¢.

Proof. The proof is of course similar to the proof of Proposition with
appropriate adjustments. We give the main constructions required for the proof.

e I is the obvious forgetful functor given by I'X = |X| and T'f = f.
e If X is an object of C, the VX = (X, X x A).

e If X and Y are assemblies, then their product is given by |X x Y| =
| X| x Y], and:

Exxy(z,y,a):=3b,c,d: A(P(b) A Ex(z,¢) A Ey(y,d) A a < bed).

o If f.g: X — Y are morphisms, then their equalizer m: U — X is con-
structed by first taking the equalizer m: |U| — |X]| of f,¢: |X| = |Y| in
C, and then putting Ey (u, a) := Ex(m(u),a).

e A morphism e: X — Y is regular epi iff there exists a U € ¢ such that
U(r) N By (y,a) Fyyjra:a ral A x| X|(e(z) = y A Ex(2,ra)). O

Of course, we will say that an assembly X is constant if it is isomorphic
to an object in the image of V. This is equivalent to saying that there exists a
U € ¢ such that U(a) Fux|,a:a Ex(z,a), or more succinctly, |[X| x U C Ex.
Moreover, we say that a morphism of assemblies is prone if its naturality square
for : idasm(a,¢) = VI is a pullback. This is equivalent to the existence of a
reverse tracker T' € ¢ satisfying:

T/(t/) A Ey(f(l’), a) ':x:|X\;t’,a:A t’ai N Ex(l’,t,a).

Now we see that m: X < Y is a regular mono iff m: |X| < |Y| is a regular
mono in C, and m is prone.
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Remark 4.3.32. The definition of Asm(A, ¢) only works well under the assump-
tion that every member of ¢ is inhabited. As we mentioned in Remark ii)7
this is not assumed in [Stel3], but it is assumed in our setup. For an example
of why this is important, consider the characterization of regular epis given at
the end of the proof of Proposition Since I' is supposed to be a regular
functor, this characterization had better imply that e: | X| — |Y] is also regular
epi in C. And this is indeed the case, as follows by reasoning internally in C,
but the argument uses that U is inhabited.

For the more general case where members of ¢ need not be inhabited, one
can also define the category of assemblies Asm(A, ¢). In [Stel3] Theorem 2.2.14],
it is shown that every category of the form Asm(A, ¢) is equivalent to one where
every member of ¢ is inhabited. So we see that our assumption that ¢ consists
of inhabited downsets is not very restrictive.

We have the following analogue of Lemma [3.1.5

Lemma 4.3.33. If (A,¢) is an IPCA over C, then (A, @) is absolute iff the
diagram

Asm(A N N
Hom & Am(l -)

commutes up to isomorphism.

Proof. First, suppose that ¢ = T A; we need to show that, if X is an assembly,
every global section z: 1 — |X| is also a global section 1 — X. If we define
U:={a€A|Ex(z,a)} € TA, then KU realizes z: 1 — X, as desired.
Conversely, suppose that there exists a U € T A such that U € ¢. Then we
can define an assembly 1y with [1y| =1 and Ey, =U C A 21 x A, which has
no global sections. O

Next, we define, for each applicative morphism (A4, ¢) — (B,), a regular
functor Asm(A4, ¢) — Asm(B,). As we did in the previous chapter, we will
write I'y and V4 to disambiguate the various functors involved. Of course, we
should really write I'( 4 4) and V(4 4), but this would clutter notation too much.

Construction 4.3.34. Let (p, f): (A, ¢) — (B, ) be an applicative morphism,
where p: C — D.

(i) We define a functor Asm(p, f): Asm(A, ¢) — Asm(B, ) as follows. If X
is an object of Asm(A, @), then |Asm(p, f)(X)| := p|X| and

Epsm(p,1)(x) (@, b) := 3a:p(A) (p(Ex)(z, a) A f(a,b)).
If g: X — Y is a morphism of assemblies, then Asm(p, f)(g) := p(g).

(i) If u: (p, f) = (g,9) is an applicative transformation, then we define the
natural transformation Asm(u): Asm(p, f) = Asm(q,g) by Asm(u)x =
x| s plX| = gl X
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Proposition 4.3.35. If (p, f): (A,¢) — (B,v) is an applicative morphism,
then Asm(p, f) is a well-defined regular functor Asm(A, ¢) — Asm(B, 1)), and
we have T'g o Asm(p, f) 2 poT'4 and Asm(p, f) o V4 = Vg op. Moreover, if
w: (p, f) = (q,9) is an applicative transformation, then Asm(p) is a well-defined
natural transformation Asm(p, f) = Asm(q,g). Finally, this makes Asm into a
2-functor IPCA — REG.

Proof. We easily verify that Asm(p, f) = Asm(idp, f) o Asm(p,id,-(a,4)). Thus,
in order to verify that Asm(p, f) is well-defined and regular, it suffices to check
that both Asm(idp, f) and Asm(p,idy«(4,4)) are well-defined and regular. For
Asm(idp, f), this follows of course by an ‘internalization’ of the proof that
Asm(f) is well-defined and regular for arrows f of OPCAp. We omit this part
of the proof, and check that Asm(p,id,-(a,4)) is well-defined and regular.

We will abbreviate Asm(p,idy-(a,4)) by F, so that |[FX| = |X|, Erx =
p(Ex) and F(g) = p(g) for morphisms ¢g: X — Y. First, we need to check that
p(g) is also a morphism of assemblies. Suppose that T € ¢ tracks g: X — Y,
that is:

T(t) N Ex(z,a) Fpx|it,a:4 tal ABy (g(x), ta)

Since p preserves regular logic, this implies:

p(T) () Ap(Ex)(2; @) Fapl X it.aip(a) tad A p(Ey)(p(g)(2), ta),

so p(T) tracks p(g): FX — FY. Since p(T) € p(¢) C (p(¢)), this shows that
p(g) is a morphism of assemblies p(g). For finite limits, the only nontrivial thing
to check is that F' preserves binary products. If X and Y are assemblies over
(A, ¢), then since p preserves regular logic, we have p(Exxy)(z,y, a) iff:

3b, ¢, d:p(A) (p(P)(b) A p(Ex)(z, ¢) Ap(Ey)(y,d) A a < bed).

Again because p preserves regular logic, we know that p(P) € (p(¢)) realizes
Nxyz.zxy, which shows that idp) x|xp[y| is an isomorphism between F(X xY)
and F X x FY. The regularity of F' follows by a similar argument, using the char-
acterization of regular epis given at the end of the proof of Proposition [£.3:31]

The fact that Asm(p, f) is compatible with the I'- and V-functors is easily
verified. Now let p: (p, f) = (¢, g) be an applicative transformation. We need
to check that p x| is a morphism of assemblies Asm(p, f)(X) — Asm(q, g)(X).
Applying the naturality of u to the inclusion Ex C |X| x A yields:

p(Ex)(CC, CL) ':I:p\X\;a:p(A) Q(EX)(H\XI (LE), Ha (a))

Now it easily follows that any realizer of f < go iy also tracks u x| as a
morphism Asm(p, f)(X) — Asm(q, g)(X), as desired. Finally, the functoriality
of Asm is easily verified. O

Note that, analogously to Asm: OPCA; — REG, we have that Asm: IPCA —
REG is a 2-functor even though IPCA is merely a bicategory.

As in the case of ordinary PCAs, we can show that all regular functors
between categories of assemblies that are compatible with both I' and V, must



4.8. PCAs internal to a regular category 137

arise from an applicative morphism. The proof of the following proposition is
of course similar to the proof of Theorem but we need to make a few
adjustments. Most importantly, the object of nonempty downsets T4 used in
the proof of Theorem is not available in the current setting. On the other
hand, we do still have the object of realizers R4 := (4, >), which will play a
vital role.

Proposition 4.3.36. Let (A,¢) and (B,v) be IPCAs over C resp. D, and
suppose that p: C — D and F: Asm(A,¢) — Asm(B, ) are regular functors
such that TgF = pl'y and FV 4 = Vgp. Then there exists an applicative

morphism (p, f): (A, ¢) — (B, ) such that F = Asm(p, f).

Proof. We may assume that g F = pI'4 on the nose, that is, |FX| = p|X| for
every assembly X over (A4, ¢). First, we show that F preserves prone morphisms,
using a trick by Longley [Lon94, Proposition 1.4.4]. Consider the naturality
diagram:

F
F— Vgl'pF
Fnl lVBFBFn
NEV AT 4

FVI'y ———= VpI'gFV AT 4

Since I'g F' = pI' g, we have that VgI'gFn is an isomorphism, and since F'V 4 &
V Bp, we have that nF'V 4I' 4 is an isomorphism. Thus, we have an isomorphism
FV ATy =2 VgIl'gF that identifies F'np and nF. Since F is also left exact, this
implies that F' preserves prone morphisms.

Now consider FR4 € Asm(B,1): we have |FRa| = p|Ra| = p(A4), which
means that f := Frg, is a subobject of p(A) x B. We claim that (p, f) is the
desired applicative morphism.

Requirements (i) and (ii) from Definition hold by definition. In order
to see that f preserves application up to a realizer, consider the prone subob-
ject P of Ry x Ry with |P| = D C A x A and the morphism of assemblies
app: P — R4 given by the application map. Then F P is a prone subobject of
FRAXFRy, and from a tracker of F(app) we then easily construct the required
realizer. Similarly, in order to see that f preserves the order up to a realizer,
we can consider the assembly O with |O] = {(a,d') € Ax A | a < @'} and
Eo(a,a’,a"”) := a > a”. Then the first projection mg: O — R4 is prone, and
the second projection 71 : O — R4 is a morphism of assemblies. Now, using the
fact that F'my also prone, and the fact that F'rry is a morphism of assemblies,
one easily constructs the desired realizer. For the final requirement on f, we use
Lemma [£.3.18] Thus, suppose that U € ¢; we need to show that f(p(U)) € 9.
Consider the prone subobject Ry of R4 with |Ry| = U. Then Ry — 1 is regu-
lar epi, so FRy — F'1 2 1 is regular epi as well. Combining this with the fact
that F'Ry is a prone subobject of FRy4, one easily deduces that f(p(U)) € 1.

It remains to show that F = Asm(p, f). Let X be an assembly over (4, ¢).
Consider the prone subobject Y of V|X| x R4 given by |[Y| = Ex C |X|x A=
|[V|X]|| X |Ra|. Then the first projection 7: |Y| — |X]| is easily seen to be a
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regular epimorphism Y — X. Now, using the diagram:

FYy &% FV|X| x FRy = Vp|X|x FRy

FX

we can deduce that id,| x| is an isomorphism of assemblies F'.X = Asm(p, f)(X),
which yields F' 2 Asm(p, f), as desired. O

In the case of applicative morphisms between ordinary PCAs, we showed
that Asm yields a local equivalence from OPCAr to REG/Set. This result of
course required that every regular functor Asm(A4) — Asm(B) that commutes
with the I's, also commutes with the Vs. The proof of this, which was given in
Lemma ii)7 was nonconstructive and thus does not seem to be available in
the current setting. However, we may still present Asm as a local equivalence by
considering functors that commute with both I" and V. Longley uses the notion
of a ‘VI-functor’ in [Lon94]. We will formulate the result a bit differently, in
terms of a functor category.

Let Z be the 2-category with two objects 0 and 1, which is freely generated
by 1l-cells /: 1 — 0 and r: 0 — 1 and a 2-cell n: id; = rl, subject to the
equations Ir = idg, ¢n = idy and nr = id,.. Then a pseudofunctor Z — REG
is simply a geometric inclusion between regular categories. Moreover, these
pseudofunctors form a 2-category REG in the straightforward way, where the
1-cells are pseudonatural transformations and the 2-cells are modifications.

Theorem 4.3.37. The 2-functor IPCA — REG” that sends:
e an IPCA (A, ¢) over C toT A V:C < Asm(A, ¢);

e an applicative morphism (p, f) to the pair (p, Asm(p, f)), equipped with the
natural isomorphisms from Proposition [{.3.35);

o an applicative transformation p: (p, f) = (q,9) to the pair (u, Asm(p)),
is a local equivalence.

Proof. It is readily checked that IPCA — REGT as given in the theorem is well-
defined and a 2-functor. Now let (A, ¢) and (B,1) be IPCAs over C resp. D.
We need to check that

IPCA((A, ¢), (B,v)) — REGE(C < Asm(A, ¢), D — Asm(B, 1))

is an equivalence of categories. Essential surjectivity follows from Proposi-
tion and faithfulness holds automatically. For fullness, we need to check
the following: if (p, f),(q,9): (4,¢) — (B,v) and p: p = ¢ are such that
X — pjx| is a natural transformation Asm(p, f) = Asm(q, g), then p is an ap-
plicative transformation (p, f) = (q,9). If R4 = (A, >) is the object of realizers,
then id,(4) is an isomorphism Asm(p, f)(Ra) = (p(4), f), and similarly, idy(a)
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~

is an isomorphism Asm(B,1)(R4) = (q¢(A),g). Thus, ;4 must be a morphism
of assemblies (p(A), f) — (q(A), g), and a tracker of this morphism is precisely
a realizer of f < gofiy. O

Finally, let us treat realizability toposes for internal PCAs. If (A, ¢) is an
IPCA over C, then we expect the realizability topos for (A, ¢) to arise from a
tripos P44 on C. If X is an object of C, then an element of P4 4X should
be a subobject U C X x A such that U(z,a) A d’ < a Fpxig,0:4 Uz, d).
This certainly yields a pseudofunctor P4 4: C — PreOrd°® (where substitution
is given by pullback), but if C is merely regular, P4 4 will not be a tripos. In
particular, if P4 4 is to have a generic predicate, then the ‘object of downsets
of A’ must be present inside C itself. The most obvious way to achieve this
is to assume that C is a topos. In this case, P4 4 is indeed a tripos, which
means that C[P4 4] is a topos. Moreover, its category of assemblies, that is,
the full subcategory on the subobjects of the image of Vp, ,: C — C[P4 g], is
equivalent to Asm(A4, ¢). The proof of this fact is similar to the proof we gave in
the case of ordinary PCAs in Section but one has to replace ‘nonempty’
by ‘inhabited’ everywhere.

For the official definition of the realizability topos for IPCAs, we use the
alternative approach to toposes-from-triposes given in Remark

Definition 4.3.38. If (A, ¢) is an IPCA over the topos C, then we define its
realizability topos RT(A, ¢) as Asm(A, @) ex/reg-

Let us write IPCAyop for the full (on 1- and 2-cells) sub-bicategory of IPCA
on the IPCAs constructed over toposes. Then RT automatically extends to a
pseudofunctor IPCA¢., — REG, by means of Proposition Moreover, as in
Chapter |3} we write ¢ for the inclusion Asm(A4, ¢) — RT(A4, ¢), we let V =iV,
and we write I' for the essentially unique extension of I' along ¢. Then as in
Chapter 3] ' 4 V is a geometric inclusion C < RT(A4, ¢).

4.4 Applications

In the previous section, we introduced the framework of IPCAs, and the notions
of applicative morphism and assembly. In this section, we treat several applica-
tions of this framework. The most important application is that categories of the
form Asm(A, ¢) are closed under small (2-)products and under slicing. More-
over, we will connect products and slices of categories of the form Asm(A, @)
to the notion of computational density. Finally, we will partially extend these
results to realizability toposes, for the case where the base category is a topos.

4.4.1 Products of categories of assemblies

In this section, we show that categories of the form Asm(A, ¢) are closed under
arbitrary (small) products. Moreover, we investigate the existence of pseudoco-
products in IPCA, and their interaction with 2-products.
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In Section [2.4] we established that, while OPCA has all small 2-products,
OPCA7 does not have any nontrivial pseudo- or 2-products. On the other
hand, the possibility of base change allows us to construct all small 2-products
in IPCA.

Proposition 4.4.1. The bicategory IPCA has small 2-products.

Proof. Let I be a set and suppose that for each i € I, we have an IPCA (A;, ¢;)
over C;. Consider the product category C = [],.; Ci, which is the 2-product of
the C; in REG. The object A = (A;);er is an IPAS over C in the obvious way.
Moreover, an element of 7 A is an I-indexed collection (U;);cr, where U; € T A;
for each ¢ € I. Thus, we can define an external filter ¢ on A by:

¢ ={(Ui)icr | Vi € I(U; € ¢:)}-

If, for each i € I, we pick suitable combinators K;,S; € ¢; for A;, then
(Ki)ier, (Si)ier € ¢ are suitable combinators for A, so (A4, ¢) is an IPCA over
C. Moreover, for each i € I, we have the projection map m;: C — C;, which
satisfies 7w} (A, ¢) = (4;, ¢;), so in particular, we have an applicative morphism
(m3,1d): (A, ¢) — (A, ¢;). We claim that this makes (4, ¢) into the 2-product
of the (Al, ¢1)

First, suppose that (B,) is an IPCA over D and that, for each i € I, we
have an applicative morphism (p;, f;): (B,%) = (A;, ¢;). The p; have a unique
amalgamation p: D — C such that m; op = p; for all i € I. Moreover, there
exists a unique relation f C p(B) x A such that m;(f) C p;(B) x A; is equal
to f;. It is easily seen that (p, f) is an applicative morphism (B,¥) — (A, ¢);
again, we need to pick realizers T;, U; € ¢; for each f;, which then combine into
realizers T, U € ¢ of f. Finally, it is immediate that (m;,1d) o (p, f) = (ps, fi),
so (p, f) is an amalgamation of the (p;, f;).

Finally, suppose that (q,g),(r,h): (B,v) — (A, ¢) are applicative mor-
phisms, and p: ¢ = r. We need to show that, if u; is an applicative transfor-
mation (g;, g;) = (ri, h;) for each 7 € I, then u is an applicative transformation
(¢,9) = (r,h). But this is immediate, since we can pick a realizer U; € ¢ of
gi < h;o(f;)p for each i € I, so that (U;);er € ¢ realizes g < hofig. O

Remark 4.4.2. At various occasions in the proof of Proposition [4.4.1] we
needed choice on the index set I, because we needed to pick, for each i € I,
an element of ¢; that realizes something. If the base categories C; are Heyting
categories, then the use of AC can actually be avoided. Indeed, then we can
define, for each i € I, the desired element of ¢; using first-order logic inside C;

cf. Remark ii).

Now we can state and prove the main result of this section.

Theorem 4.4.3. The 2-functor Asm: IPCA — REG preserves small 2-products,
and in particular, categories of the form Asm(A, ¢) are closed under small 2-
products of categories. If, for each i € I, we have an IPCA (A;, ¢;) over C;,
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then the isomorphism Asm (I],(Ai, ¢:)) = 1, Asm(A;, ¢;) makes the triangles
in following diagram commute:

Asm (IT;(4i, ¢:)) - [1; Asm(As, ¢4)

Hi Ci

Proof. Let us write C = [[,C; and (A,¢) = [[;(Ai, ¢i), and denote the pro-
jection (A, ¢) — (A, ¢;) by (m;,id). Now, an object X of Asm(A, ¢) consists
of an object | X| = (] X|i)ier of C, and a subobject Ex C |X| x A, that is, a
subobject (Ex); € |X|; x A; for each ¢ € I. The fact that X is an assem-
bly over (A, ¢) means precisely that (|X|;, (Ex);) is an assembly over (A4;, ¢;),
for each i. Moreover, a morphism X — Y of Asm(A,¢) is precisely a fam-
ily of functions (f;: |X|; — |Y]i)ier such that f; is a morphism of assem-
blies (|X|;, (Ex):) — (|Y;,(Ey);). Thus, we have an obvious isomorphism
Asm ([, Ai, ¢:)) = T, Asm(A;, ¢;), and we readily check that it makes the dia-

gram

Asm(A, ¢) ———————— []; Asm(4;, &)
Asm ﬂbm /
Asm(A“d)Z)

commute, for each ¢ € I. This establishes the claim that Asm preserves small
2-products. Moreover, from the triangle above one easily deduces that the
triangles from the statement of the theorem commute as well. O

Now let us turn to pseudocoproducts. The following proposition generalizes

Corollary

Proposition 4.4.4. For every reqular category C, the category IPCA¢ has finite
pseudocoproducts. Moreover, if p: C — D is regular, then p*: IPCA¢ — IPCAp.
preserves finite pseudocoproducts.

Proof. The pseudoinitial object of IPCA¢ is of course (1,71 = {1}). Now sup-
pose that (A, ¢) and (B, ) are IPCAs over C. Then we can make A x B into
an IPAP over C by defining application and the order coordinatewise. Let us
write p x Y ={U xV |U € ¢,V € ¢} C T(A x B). Then (A x B, {¢ x ¢)) is
an IPCA, since suitable combinators are given by K x K and S x S.

There is an applicative morphism i: (A, ¢) — (A x B, (¢ x 1)) given by
i ={(a,a’,b) € AX(AXB) | a > da'}, and similarly, j: (B, ) — (Ax B, (¢ x 1))
given by j = {(b,a,b’) € Bx (Ax B) | b > ¥}. Now, if f: (A4,¢) = (C,x)
and g: (B,v¥) — (C,x) are applicative morphisms, then their amalgamation
h: (A x B,{¢ x 1)) = (C,x) is given by:

h(a,b,c) :=3d,d',d":C(P(d) A f(a,d) A g(b,d") ANe < dd'd").
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The remainder of the proof that (A x B, (¢ x 1)) is the pseudocoproduct of
(A, ¢) and (B, ) is similar to the proof of Theorem [2.4.9] and is omitted. Note
that, in order to show that h as defined above is an applicative morphism, we
need to use Lemma because (A x B, (¢ x 1)) carries a generated filter.

For the second statement, we in fact have that p*(A x B, (¢ x ¢)) is equal
to the pseudocoproduct of p*(A, ) and p*(B,). The only nontrivial part is
showing that both are equipped with the same filter, i.e., that (p((¢ x ¥))) =

((p(¢)) x (p(1))). By Lemma [£.3.19(ii), it suffices to show that (p(¢ x ¢)) =
({p(0)) x (p(¥))). In one direction, since p is left exact, we have:

p(¢ x ) = p(d) x p(1) € (p(¢)) x (p()) € ({(p(¢)) x (P(¥))),

which yields (p(¢ x ©)) C {{p(¢)) x (p(¢))). For the other direction, suppose
we have U € (p(¢)) and V € (p(¢)). By Corollary [1.3.29] there exist U’ € ¢
and V' € ¢ such that p(U’) - p(A) C U and p(V') - p(B) C V. Now we see that

p(U" x V') -p(Ax B) = (p(U") - p(A)) x (p(V') - p(B)) U x V,

which implies U x V' € (p(¢ x1)). Thus, we can conclude that (p(¢)) x (p(¢0)) C
(p(é x ). hence also that {(p(6)) x (p())) C (p(6 x ). O

For an opfibration between 1-categories, we have the following result: if the
base has finite coproducts, all the fibers have finite coproducts, and the reindex-
ing functors preserve finite coproducts, then the total category has finite coprod-
ucts as well. Since REG has finite pseudocoproducts, Proposition [£.4.4] seems to
be the kind of result we need to conclude that IPCA has finite pseudocoproducts
as well. However, IPCA — REG is not an opfibration in a 2-categorical sense,
since 2-cells p: p = ¢ of REG fail to lift to arrows p*(A,$) = ¢*(A, ¢). On the
other hand, if p is a natural isomorphism, then the functors p*,¢*: IPCA; —
IPCAp will clearly be isomorphic as well. This allows us to obtain a partial
result concerning coproducts, in the following way. Given a bicategory B, we
can make it into a 1-category Bl; in the following way. The objects of B|; are
simply the objects of B, but the arrows of B|; are isomorphism classes of arrows
of B. Proposition suffices to ensure the existence of coproducts in IPCA|;,
and in fact, they are biproducts.

Corollary 4.4.5. The I-category IPCA|; has finite biproducts.

Proof. The zero object of IPCA|; is the unique IPCA over the terminal category
1. Now suppose that (Ao, ¢g) and (A1, ¢1) are IPCAs over Cy resp. C;. We have
the functor ko: Co — Cy x Cq given by ko X = (X, 1), and similarly, we have a
functor r1: C; — Co x C1. Note that xf(Ao, do) = ((Ao, 1), {(U,{1}) | U € ¢}),
and similarly for k3 (A1, ¢1). Now it is easy to check that the pseudocoproduct of
kg (Ao, ¢o) and K5 (A1, ¢1) in IPCA¢«p is isomorphic to the 2-product (Ao, ¢o) X
(A1,01) = ((Ao, A1), {(Uo,U1) | Ui € ¢;}). The pseudocoproduct inclusion
io: kg (Aos po) — (Ao, @o) X (A1, ¢1) is given by io = ({(a,a’) | @ > @'}, 1x A1) C
(Ao x Ap,1 x Aq), and similarly for i;. Now it is easy to show that

(Ao, ¢0) _od) (Ao, do) x (A1, ¢1) ) (A1, ¢1)
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yields a coproduct diagram in IPCA|;. Moreover, denoting the 2-product projec-
tion (Ag, ¢o) X (A1, 1) — (A1, ¢1) by (m;,1d), we easily compute that (g, id) o
(Ko, 70) = id(4,,¢0), Whereas (m1,id)o (Ko, o) is a zero morphism. This completes
the proof. O

4.4.2 Slicing categories of assemblies

In this section, we show that categories of the form Asm(A, ¢) are closed under
slicing. This result is already obtained in [Stel3 Corollary 2.2.18], but in an
‘indirect’ way. More precisely, [Stel3] first offers a characterization of categories
of the form Asm(A, ¢) (Theorem 2.2.17), and then shows that categories satis-
fying this characterization are closed under slicing. Thus, the proof does not
describe the ‘underlying’ IPCA of a slice category Asm(A, ¢)/I, where I is an
assembly over (4, ¢). The main additional contribution of this section is that
we do offer an explicit description of the underlying IPCA of Asm(A, ¢)/I. More
precisely, we show that the underlying IPCA of Asm(A, ¢)/I arises from com-
bining base change (Construction with the notion of a finitely generated
filter (Definition [4.3.11]). This explicit description will have two main applica-
tions. First, we will be able to give a simple presentation of slice categories of
the form Asm(A)/I, where A is a PCA. Moreover, in the next section, we will
see that there is a connection between slicing and the notion of computational
density.

Before we turn to slicing, let us see that, in the current setup, the terminal
object of Asm(A, ¢) is not necessarily projective.

Proposition 4.4.6. Let (A,¢) be an IPCA over C. Then 1 € Asm(A,¢) is
projective iff 1 € C is projective and ¢ is generated by singletons.

Proof. First, suppose that 1 € Asm(A, ¢) is projective. Since I': Asm(A4, ¢) — C
has a regular right adjoint, we know that I' preserves projectives (see Re-
mark , so I'l 2 1 € C is projective as well. Now suppose we have a
U € ¢, and define the prone subobject Ry of the object of realizers Ry with
|Ry| =U C A. Then Ry — 1 is a regular epimorphism, which means that Ry
has a global section a: 1 — Ry . In particular, a is a global section 1 — A such
that £ U(a). Moreover, the fact that a: 1 — Ry is a morphism of assemblies
implies that d4(a) € ¢, as desired.

For the converse, suppose that 1 € C is projective and that ¢ is generated
by singletons. First of all, we observe that there must exist a global section
ap: 1 — A such that d4(ap) € ¢. Now we can describe the terminal object
of Asm(A, ¢) as the assembly 1 with |1| = 1 and E; = d4(ap) € A =21 x A.
In order to show that this assembly 1 is projective, suppose we have a regular
epimorphism X — 1. Then there exists a U € ¢ such that:

Ur)Na<agFpgaral A Jz: | X|(Ex(z,ra))).

By our assumtion, there exists a global section a;: 1 — A such that E U(ay)
and d(a1) € ¢. We can conclude that ajag, and F Jz: | X|(Ex(x,a1a0)). Since



144 Chapter 4. Products and Slicing

1 € C is assumed to be projective, this implies that there exists a global section
xo: 1 — | X| such that F Ex (zg,a1a0), and 04 (a1) € ¢ tracks z( as a morphism
1 — X, as desired. O

Example 4.4.7. In Example we defined an IPCA (A4, ¢) over Set such
that 1 € RT(A,¢) is not projective. The same argument shows that 1 €
Asm(A, ¢) is not projective, which means that (A, ¢) is not generated by sing-
letons.

If (A, ¢) is an IPCA over C and T is an assembly, then our goal is to show
that Asm(A, ¢)/I is equivalent to the category of assemblies for an IPCA over
C/|I|. Therefore, we first make some general remarks on IPCAs internal to a
slice of C.

Thus, let (A4, ¢) be an IPCA over C and let J be an object of C. We consider
the regular category C/J and the pullback functor J*: C — C/J sending X to
J x X =% J. This pullback functor is regular, so J*(A) is an IPAP over C/J.
Note that J*(A) x; J*(A) is simply J x A x A — J. The order on J*(A) is
given by {(j,a,a’) € J x Ax A|a < a'}, the domain of the application map is
JxD C JxAx A, and the application map J x D — J x A is the product of id y
with the application map D — A. We will spell out what an IPCA (J*(A),v)
over C/J is in terms of the internal logic of C (rather than C/J).

First, let us describe T(J*(A)). Since an arrow is mono in C/J if and only if
it is mono in C, we see that the subobjects of J*(A4) in C/J are the subobjects of
JxAinC. A subobject U C Jx A is inhabited in C/J if and only if it is fiberwise
inhabited in C, i.e., Fj.; Ja: A(U(4,a)). Moreover, U is downwards closed iff
is if fiberwise downwards closed, i.e., U(j,a) A a’ < a Fj.jiq,0:4 U(j,a"). The
application of two such subobjects U,V C J x A is defined iff U x ; V C J x D,
and in this case, UV is the image of the map U x; V C Jx D = J x A. In
other words,

UV ={(j,a) e I x A|3b,c: A(U(5,0) ANV (j,c) Na < bc)}.

A filter ¢ on J*(A) is then a subset of T (J*(A)) that is upwards closed and
closed under the application displayed above.
Suppose that an IPCA (J*(A),v) over C/J is given. An assembly X over

this IPCA is an object |X| 5% T of C/J, together with a subobject Ex C
| X| x s J*(A) satisfying the two conditions from Definition [4.3.30|(i). But note
that | X| x ; J*(A) = | X]| x A, and that the requirements on Ex simply say that
(|X], Ex) is an assembly over (A4, ¢).

Now consider another assembly Y, and suppose that f: |X| — [Y] is an
arrow of C/J, that is, ky o f = kx. Then U C J x A tracks f: X — Y iff

Ukx(x),7) N Ex(x,a) Fpx|ira:a Tad A By (f(z),ra).

In other words, if U(j,r), then r should track f as if it were a morphism
(X, Ex) — (|Y], By) in Asm(A, ¢), but only for those x € |X| that lie in
the fiber of j.
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Now let I be an assembly over Asm(A, ¢). Then E; C |I] x A is by definition
fiberwise (over |I|) inhabited and downwards closed, that is, E; € T(|1]*(A4)).
This is the key insight behind the the following definition. This definition uses
base change along the functor |I]*: C — C/|I|. The resulting 2-functor IPCA¢ —
IPCA¢ /1| should be denoted by (|I]*)*, which is slightly unfortunate. Therefore,
we denote this 2-functor using the slightly longer notation IPCAf-: IPCAc —
IPCAc /-

Definition 4.4.8. Let (A, ¢) be an IPCA over C and let I be an assembly over
(A, ¢). We define the IPCA (A, ¢)/I over C/|I| as:

(IPCA1- (A, 0)) [E1] = (I1]"(A), ([I]"(6) U{EI})).

We will denote the external filter (|I|*(¢) U {E}) on |I|*(A) by ¢1, so that
(4, 9)/1 = (II]*(A), é1)-

By Lemma [4.3.28] we have:
or=M|II"(U)-Er |U € ¢ and |I|*(U) - Erl}. (4.7)
Now we are ready to prove the main result on slicing.

Theorem 4.4.9. Let (A,¢) be an IPCA over C, and let I be an assembly
over (A,¢). Then there exists an equivalence of categories Asm(A,¢)/T ~
Asm((A, @)/I) that makes the triangles in the following diagram commute (up
to isomorphism,):

In particular, categories of the form Asm(A, @) are closed under slicing.

Proof. When working with Asm((A, ¢)/I), we employ the notation introduced
above, with J = |I|. That is, an assembly over (A, ¢)/I will be denoted as
(kx:|X| — |I], Ex), where (|X|, Ex) is an assembly over (A, ¢). Moreover, we
will denote objects of Asm(A, ¢)/I by £x: X — I, where X is an assembly over
(A, ¢) and fx is a morphism of assemblies.

We define the desired equivalence F': Asm(A, ¢)/I — Asm((A, ¢)/I) as fol-
lows. Given £x: X — I, we define FX € Asm((A, ¢)/I) simply by |[FX| = |X]|,
kpx = fx and Epx = Ex, and on morphisms f, we set F(f) = f. In order
to see that f is well-defined, we need to check: if f: X — Y is a morphism
of assemblies over (A, ¢) such that ¢y o f = £x, then f is also a morphism of
assemblies FX — FY over (A4,¢)/I. But this is easy, since if T € ¢ tracks
f: X =Y, then [I|*(T) € |I|*(¢) C ¢ tracks f: FX — FY.

In order to see that F' is full, we should check the converse, that is: if
f:|X]| — |Y] is an arrow such that ¢y of = £x and f is a morphism of assemblies
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FX — FY over Asm(A, ¢)/I, then f is already a morphism of assemblies X —
Y over (A,¢). Let T € ¢y track f: FX — FY, that is:

T(lx(x),t) N Ex(z,a) Fa: X |it,a:A tad A Ey (f(z),ta).
By (4.7)), there exists a T' € ¢ such that |[I|*(T”) - E; C T, which is to say:
T/(t/) A E[(i, CL) ':i:\I\;t’}a:A t/CL\l, N T(Z, t/&).

Now let U € ¢ be a tracker of £x: X — I, and let V € ¢ be a realizer of
N2 T'(Uzx)x. We claim that V tracks f: X — Y. By definition, we have
V C WT'U for some realizer W of M*yzz.y(zx)z. Now reason inside C, and
suppose that V(r) and Ej(z,a). Then there exist r',¢,u: A such that W (r'),
T'(t"), U(u) and r < r't'u. We see that ua is defined and Ej(¢x(z),ua). This
implies that t'(ua) is defined as well, and T'(¢x(z),t'(ua)). This implies that
t'(ua)a is defined as well, and Ey (f(x),t'(ua)a). Finally, we see that r't'ua and
ra are defined as well, that ra < r't'ua < t'(ua)a, and thus Ey (f(z),ra), as
desired.

Clearly, F is faithful, so in order to show that F' is an equivalence, it remains
to establish essential surjectivity. Let X = (kx: |X| — |I|, Ex) be an assembly
over (A, ¢)/I. We define the morphism of assemblies £x : X’ — I by | X'| = |X]|,
EX/ = kX7 but:

Ex:/(z,a):=3b,c,d: A(P(b) AN Er(kx(z),¢) N Ex(z,d) A a < bed).

Note that £y is indeed a morphism X’ — I, for it is tracked by Py. In order
to see that X' = X, we note that |I|*(P) - Er € ¢r tracks id|x| as a morphism
X — F'X, whereas |I|*(P1) € ¢ tracks id|x| as a morphism F'X — X.

From the definition of F, it is clear that F' commutes (strictly) with the
I'-functors. But now, since F' is an equivalence, it easily follows that

C/11| —Y s Asm(A, 6)/T —E— Asm((A, )/1)

is right adjoint to T': Asm((4, ¢)/I) — C/|I|, so we get the other triangle as
well. O

Remark 4.4.10. In the proof of the essential surjectivity of F' above, we cannot
simply take X’ = (|X|, Ex), since kx may fail to be a morphism of assemblies
(IX|, Ex) — I. On the other hand, kx is always a morphism (|X|, Ex) — V||,
and X’ is obtained via the pullback square:

X' —— (|X], Ex)

| |

I —" 5 V||

Note that the replete image of njoV: C/|I| — Asm(A, ¢)/I consists precisely
of the prone morphisms of Asm(A, ¢) with codomain I. Thus, we see that the
constant objects in Asm(A, ¢)/I ~ Asm((A, ¢)/I) are precisely the prone arrows
with codomain I.
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Example 4.4.11. Let (A4, ¢) be an IPCA over C and let f: I — J be a mor-
phism of assemblies. The pullback functor f*: Asm(A,¢)/J — Asm(A,¢)/I
sends prone arrows with codomain J to prone arrows with codomain I. Un-
der the equivalences of Theorem we get a functor F': Asm((A,¢)/J) —
Asm((A, ¢)/I) that preserves constant objects. Now we easily see that both
squares in

Asm((4,¢)/J) —— Asm((4,¢)/1)

I

C/| —————C/l

commute. Since F' is also regular, we must have F' = Asm(f*,g) for some ap-
plicative morphism (f*,g): (A,¢)/J — (A,¢)/I. Note that IPCA;-((4,¢)/J)
is f*(]J|*A) = |I]*(A), equipped with the external filter:

(f*(00)) = (f*(1II"(¢) U{ES}) = (I"(6) U{S*(ES)}),

where we used Lemma (ii). (Note that we also wrote IPCAy+ to avoid
writing (f*)*.) If T € ¢, then T tracks f: I — J if and only if |I|*(T) - Er C
f*(Ey) holds in T(|I]*(A)). Thus, we see that the fact that f is a morphism
I — J means precisely that f*(E;) € ¢, which is equivalent to saying that
(f*(¢)) C ¢1. In particular, ¢; is a finite extension of (f*(¢s)) by means of
the element E; € T(|I|*(A)). If we let g = vp, as in Example then a
direct calculation shows that Asm(f*, g) = F.

In particular, if we take J = 1, then we get the applicative morphism
(H*,te,): (A, ¢) — (A, ¢)/1, such that

Asm(|1]" u5,;)

Asm(A, ¢) Asm((A, ¢)/I) ~ Asm(A, ¢)/I

is isomorphic to the functor that pulls back along I.

Example 4.4.12. Suppose that the IPCA (A, ¢) over C is generated by single-
tons (Definition . Consider a partitioned assembly I over Asm(A, ¢), that
is, we suppose there exists an arrow ey: |I| — A such that Ef(i,a) :=a < e (3).
In [Steld], it is shown that, when ¢ is generated by singletons, the projectives
in Asm(A4, ¢) are reasonably well-behalved. More precisely, an assembly X is
projective in Asm(A, ¢) iff X is partitioned and | X| is projective in C.

Note that global sections of |I|*(A) in the slice category C/|I| are sim-
ply functions |I| — A. If a: 1 — A is a global section, then |[I|*(d4(a)) =
8i11+(4)(I1]*(a)), and |I[*(a) is the global section |I| — 1 % A of |I|*A. The
object Ej, viewed as an element of 7 (|I|*(A)), is equal to dj7j-(a)(er). Thus,
if ¢ is generated by {da(a) | a € C} for some C C Hom(1, A), then (using
Lemma ii)) we see that ¢y is generated by {0|7-(4)(f) | f € D}, where:

D={I| +1-"AlaecC}U{es} CHom(|I|, A).

In fact, we can be a bit more explicit here. As we saw in the proof of Propo-
sition [4.3.10, we may take C' = {a € Hom(l,A) | da(a) € ¢}, so that
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¢ = Moala) | a € C'}. Now U C |I] x A is in ¢y iff there exists a V € ¢
such that |I|*(V) - Ey C U, which holds iff there exists an a € C’ such that
[1]*(64(a)) - Er € U. In the internal logic of C, this is equivalent to ;g
a-er(i)} ANU(i,a-er(i)). Thus, we see that ¢; = 1{d1-(a)(f) | f € D'}, where:

D' = {f € Hom(|I|, A) | 3a € €' (Funy a-es (i) L A a-ex(i) < J(0))}.

Example 4.4.13. Let A be a PCA in the sense of Chapter Then we can
view A as the IPCA (A, (T A)#) over Set, whose external filter is generated by
singletons. Now let I be an assembly over A. First of all, let us note that Set/|I|
is equivalent to Set!!l and that, modulo this equivalence, the pullback functor
|[I|* is simply the diagonal functor Set — Set!l. Applying base change along
this functor, we obtain the IPAP (A);¢|s over Set!!l. An object of T((A)ig1)
is simply a sequence (U;);¢|7|, where each U; is in T'A, and a global section of
(A)ig|r| is simply a sequence (a;);¢|7|, where each a; is in A. Now Asm(A)/I is
equivalent to Asm((A);e|7|, ¢1), where:

¢] = {(Uz)lem dr e A#VZ c |I|(’I’ . E](Z)\l, AT E[(Z) - Ul)}

Now suppose that I is partitioned, so that E;(i) = da(es(¢)) for some function
er: |I| = A. Then by the previous example, ¢; is also generated by singletons.
Indeed, a suitable generating set ¢ C Al is {(r);es | 7 € A#} U {er}, and we
can also describe ¢ as:

{(Us)igyr) = 3r € A#YGi € I (r-ef(i)L A r-er(i) € Uy}

It follows that Asm(A)/I may be described as follows. Its objects are families
X = (Xi)ig1), where each X; is an assembly over A. An arrow X — Y is a
family of morphisms of assemblies f;: X; — Y; for which there exists an r € A#
such that r - e;(¢) tracks f;, for all ¢ € |I].

Example 4.4.14. Again, let A be a PCA in the sense of Chapter [2, and let
be a subterminal assembly over (A, (T'A)#) such that I is nonempty, i.e., I 2 0.
Then |I] = 1, which means that Asm(A)/I is equivalent to the category of
assemblies for an IPCA over Set again. We can write I as 1x, where |1x| = {*}
and Ey,(¥x) = X € TA. Then by Theorem Asm(A)/I is equivalent to
Asm((A, (TA)¥)[X]) = Asm(A, (TA)# U {X})). Thus, slices of Asm(A) over
nonempty subterminals correspond to finite extensions of the filter (T'A)#* C
TA.

Now suppose that I is projective. Then I must be isomorphic to a certain
partitioned nonempty subterminal 1,, where |1,] = {*} and E;_ (x) = {a}.
Then Asm(A)/I is equivalent to the category of assemblies for an IPCA over
Set which is generated by singletons; that is, a PCA in the sense of Chapter
Its underlying PAP is A itself, and by Example above, its filter is gene-
rated by A% U {a}. We have seen this PCA before: it is the PCA Ala] from
Example Thus, we can conclude that Asm(A)/1, ~ Asm(A[a]), and we
see: slices of Asm(A) over projective nonempty subterminals correspond to finite
extensions of the filter A# C A.
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Example 4.4.15. Let A be a PCA in the sense of Chapter [2| and consider a
constant object VI, where I is a set. Then Asm(A)/VI ~ Asm((A)icr, dvr),
where:

b1 = {Uier | A N[, U # 0}

Thus, we see that a morphism X — Y of Asm(A)/VI is a family of morphisms
of assemblies f;: X; — Y; for which there exists an r € A# that tracks all the
fi simultaneously.

Now let us, for simplicity, assume that I = 2, so that Asm(A4)/V2 ~
Asm((A, A), pv2), where ¢pge = {(U,V) € TAXTA | A#NUNV # 0}. We see
that, even if A is an absolute PCA, that is, A = A% the IPCA ((A, A), ¢v2) over
Set? will not be an absolute IPCA as well, provided that A is not semitrivial;
cf. Example

Moreover, while we know that ¢vs is generated by singletons, it does not
correspond to a subobject of (A, A) in Set? in any obvious way. Thus, while
we originally introduced the notion of an external filter to allow for slicing over
non-projective assemblies, we see that it is actually required to accommodate
slices over projective assemblies as well.

Example 4.4.16. Let A be a PCA in the sense of Chapter[2] and consider 1+1,
which is the projective assembly defined by |1 + 1| = {0,1}, E14+1(0) = J{T}
and Ei41(1) = J{L}. Then Asm(A)/(1+ 1) =~ Asm((A, A), $1+1), where ¢144
consists of all (U, V) for which there exists an r € A% such that rT € U and
r1l € V. But this is just to say that U and V both contain an element from
A7 so we see that ((A, A), ¢141) is the 2-product, in IPCA, of A with itself. In
particular, we see that Asm(A)/(1 + 1) ~ Asm(A)?, which we could also have
derived from the fact that Asm(A) is a quasitopos.

Example 4.4.17. We consider a few examples of slicing over the natural num-
bers object N of Asm(A).

(i) First, consider Kleene’s first model Ky, and the natural numbers object
N € Asm(K;) given by |[N| = N and Enx(n) = {n}. Now we see that
the arrows of Asm(K1)/N ~ Asm(K1/N) are sequences of morphisms of
assemblies f,,: X, — Y, over K; for which there exists a total recursive
function g such that g(n) tracks f,, for all n € N.

(ii) Second, consider the relative version of Kleene’s second model Ky =
(Ko, K5¢,-,=). The natural numbers object N of Asm(Ks) is given by
|N| = N and En(n) = {n}, where 71 denotes the constant function with
value n. Thus, the arrows of Asm(Ks2)/N ~ Asm(K3/N) are sequences
of morphisms of assemblies f,: X,, — Y, over Ky for which there exists
a total recursive function g such that g - 1 tracks f,,, for all n € N. In
general, if h: N2 — N, then there exists a total recursive g such that
(9 -n)(m) = h(n,m) iff h itself is recursive. Thus, we can also say that
there should exist a total recursive function h: N2 — N such that h(n, —)
tracks f,, for all n € N.
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We also have the absolute version (Ks)aps of Kleene’s second model. The
arrows of Asm((K2)apbs)/N =~ Asm((K2)aps/N) are now sequences of mor-
phisms of assemblies f,,: X,, — Y,, over K5 for which there exists any func-
tion g such that g - 7 tracks f,,, for all n € N. But this is just to say that
each f, has a tracker, so we see that Asm((Kz)aps)/N =~ Asm((K2)aps)"-
In fact, in Asm((K2)abs), the natural numbers object N is isomorphic to
the countable coproduct of copies of 1.

(iii) Finally, we consider the relative version of Scott’s graph model Pw =
(Pw, (Pw)™,-,=). The natural numbers object N of Asm(Pw) is given
by |[N| = N and En(n) = {{n}}. Thus, the arrows of Asm(Pw)/N ~
Asm(Pw/N) are sequences of morphisms of assemblies f,,: X, — Y;, over
Pw for which there exists an r.e. set A such that A-{n} tracks f,,, for all
n € N. For a set B € Pw, let us write B,, = {m | (n,m) € B}. Now it is
easy to show that there exists an r.e. set A such that A-{n} = B,, for all
n iff B itself is r.e. Thus, we can also say that there should exist an r.e.
set B such that B,, tracks f,, for all n € N.

If we do not require that A above is r.e., then for any set B, there
exists an A such that A - {n} = B,. From this, we can deduce that
Asm((Pw)abs)/N =~ Asm((Pw)aps), and indeed, inside Asm((Pw)aps) we
have N = | | 1.

Example 4.4.18. We consider an example of slicing over a non-partitioned
assembly. Consider Kleene’s first model £y and define the assembly ¥ by || =
{0,1}, Ex(0) = {n | ¢a(n) I} and Ex(1) = N — Ex(0) = {n | ¢n(n) 1}.
This assembly is also known as the r.e. subobject classifier; see, e.g., [vOO08,
Section 3.2.7]. It is easy to show that this assembly cannot be isomorphic to
a partitioned assembly. We will show an equivalent fact, namely that ¢y is
not generated by singletons. Note that ¢y consists of all pairs (U, V') of sets of
natural numbers for which there exists a (total) recursive function f satisfying:
if n € Ex(0), then f(n) € U, whereas if n € Ex(1), then f(n) € V. This
means that the pair (Ex(0), EFx(1)) is certainly in ¢y, so if ¢y is generated by
singletons, there must exist a € Ex(0) and b € Ex (1) such that ({a}, {b}) € ¢x.
Thus, there exists a recursive function f: N — N such that f(n) = a for all
n € Ex(0) and f(n) =b for all n € Ex(1). Since a # b, this implies that Fx(0)
is decidable, which we know to be false. (In fact, this argument is very similar
to the argument needed to show that 3 cannot be partitioned.)

4.4.3 Computational density

In this section, the notion of computational density, which we have defined for
arrows of OPCA, OPCA7 and OPCAp, is generalized to arrows of IPCA.

Definition 4.4.19. We say that an applicative morphism (p, f): (A, ¢) —
(B,v) is computationally dense (c.d. for short) if the morphism of PCAs
T(p, f): T(A,¢) — T(B,) is c.d. Explicitly, there should exist an N € ¢
such that for all V € 4, there exists a U € ¢ with N - f(p(U)) C V.
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Since T is a 2-functor, all the results for c.d. morphisms of PCAs we es-
tablished in Chapter [2] carry over automatically to morphisms of IPCA. Let us
state these properties explicitly.

e (».f) (2,9) L
Proposition 4.4.20. Let (A, ¢) == (B,v) = (C,x) be applicative mor-
phisms.

(i) If (p, f) and (q,g) are both c.d., then (q,g) o (p, f) is c.d. as well.

(i1) If (q,9) o (p, f) is c.d., then (q,9g) is c.d. as well.

(ii) Computational density is downwards closed, that is, if there exists an ap-
plicative transformation p: (p', f') = (p, f) and (p, f) is c.d., then (p, f')
is c.d. as well.

In particular, left adjoints in IPCA are c.d.

Let us consider a few examples of c.d. applicative morphisms. Some of these
will have right adjoints in IPCA.

Example 4.4.21. Let (A, ¢) be an IPCA over C, let p: C — D be a regular
functor, and let X € T (p(A)). Then the applicative morphism (p,tx): (A4, ¢) —
(p*(A, ¢))[X] is c.d. Indeed, by Lemma we can take N € (p(¢) U {X})
to be a realizer of \*y.yX.

In particular, if we take X = p(A), we see that the applicative morphism
(p,id): (A, ¢) — p*(A, ) is always c.d. This has the following consequence.
Note that any applicative morphism (p, f): (A, ¢) — (B,v) may be factored,
up to isomorphism, as a ‘horizontal’ part followed by a ‘vertical’ part:

(p.id)

(A, 9) P*(4,¢)

(m J(id’f)
(B,

¥)

Using Proposition [4.4.20] we see that an applicative morphism is c.d. iff its
‘vertical’ part is c.d.

Example 4.4.22. Let (Ao, ¢o) and (A;, ¢1) be IPCAs, and let ((Ag, A1), ¢) =
(Ao, do) x (A1,¢1) denote their 2-product. Then the applicative morphism
(mo,id): ((Ao, A1),0) — (Ao, do) is c.d. by the previous example. In fact,
(mo,1id) has a right adjoint inside IPCA. In the notation of the proof of Corol-
lary we have (kg,10): (Ao, d0) — ((Ag, A1), ), and we already verified
that (mg,id) o (ko,%0) is the identity on (Ap,¢p). Note that mg - ko is a
geometric inclusion Cy — Cp x C1, whose unit 7: id = komy is defined by
N(Xo,X1) = (ld,') (Xo,Xl) — (XQ, ].) = I<607T0(X0,X1). If (1,T(1)) denotes the
pseudoinitial object of IPCAp, then it is easily verified that

(k070)" ((Ao, A1), @) = ((A0,1),{(U,1) | U € o}) = (Ao, o) x (1,T(1)),
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and that (ko,d0) o (mo,id) = (komo, (Id(ay,¢0):1))- Moreover, 74, 4,y is the
applicative morphism (id(4,,4,),!): ((Ao, 41),¢) = (Ao, P0) x (1,7(1)). Now
it easily follows that 7 is an applicative transformation id = (ko,ig) o (7o, id),
which shows that (7, id) = (ko, o).

Example 4.4.23. If (A, ¢) is an IPCA and I € Asm(A, ¢), then the applicative
morphism (|I*,tg,): (A, ¢) = (A, @)/I is c.d., by Example Similarly, if
f: I — J is a morphism of assemblies, then (f*,tg,): (4,¢)/J — (A, ¢)/I is
c.d.

Example 4.4.24. Let (Ag, ¢o) and (A1, ¢1) be IPCAs over the same base C,
and consider their 2-product ((Ag, 41), ¢) in IPCA. We have the product functor
x: C x C — C, which is regular, and x*((Ag, 41),9) = (Ao X A1, {(Po X ¢1)) is
the pseudocoproduct of (Ag, ¢g) and (A;, ¢1) in the fiber IPCA¢. In particular,
we have the applicative morphism (x,id): ((Ao, 41),¢) = (Ao X A1, (¢ X ¢1)),
which is c.d., by Example However, (x,id) does not in general have a
right adjoint in IPCA, since that would require the product functor x to have a
right adjoint.

On the other hand, the product functor does have a left adjoint, namely,
the diagonal functor A: C — C x C. Let us denote the unit and counit of
this adjunction by 7 resp. e. Now we have (A, f): (Ag X A1, {¢o X ¢1)) —
((Ag, A1), @), where f is given by:

A*(Ag x Ar, (do X 61)) = (A 0 x)*((Ag, A1), 8) ~2020s (A, Ay), 6)

It is easily verified that (A, f) is indeed an applicative morphism, and that it is
c.d. In fact, we have (A, f) - (x,id). In order to see this, we first note that
is an applicative transformation (A, f) o (x,id) = id as a result of the way we
defined f. Moreover, the diagram of relations

>

A0><A1

”m x(f)

(Ao X Al) X (AO X Al)

A()XAl

commutes on the nose, as a result of a triangle identity for A 4 x. This implies
that n is an applicative transformation id = (x,id) o (4, f), as desired.

We will also need a formulation of computational density in the spirit of
cdm)) from Lemma In order to formulate a suitable internal version of
cdm]), we need to assume a bit more stucture on our base categories than we
have done thus far. More precisely, if (p, f): (A, ¢) — (B, ) is an applicative
morphism, we will assume that the base category of (B, ) is a Heyting category
and thus interprets full (typed) first-order logic. Now a statement live UV |,
where U,V € T B, can be expressed internally as Yu,v: B (U(u) AV (v) = uvl).
If a:p(A), then we may even consider a statement like U - f(a) ], which should
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be read as Yu,b: B (U(u) A f(a,b) — ubl). In the sequel, we will often use f(a)
as a standalone term, even though D is not assumed to be a topos, trusting that
the reader can translate the statements into first-order logic.

Lemma 4.4.25. Let (p, f): (A, ¢) — (B, ) be an applicative morphism, where
p: C — D and D is a Heyting category. Then (p, f) is c.d. if and only if there
exists an M € 1 with the following property:

for all' V € 1), there exists a U € ¢ such that UA] and:
p(U)(r) AV - fa)l Frapay M - f(ra) SV - f(a). (icdm)

Remark 4.4.26. Note that, while only requires ra to be defined if s- f(a)
is defined, requires UA to be defined always. This move is necessary,
because U A lives inside C, whereas V - f(a) is a statement inside D. Note also
that the proof of Lemma implies that in , we can also require that
ra is always defined.

Proof of Lemma[].4.25. For simplicity, we assume that f preserves the order
on the nose. First, suppose we have M € ¢ satisfying (icdm)). Given V €
1, apply with V' = KV € 4, and find U’ € ¢ such that U'A | and
p(U")(r) Eraipay M-f(ra) CV. IfU := U'A € ¢, then we have M- f(p(U)) CV
by an easy argument inside D. This shows that (p, f) is c.d.

Conversely, suppose that (p, f) is c.d., say that N € 1 satisfies for
T(p, f), and let f preserve application up to T € . Let M € v be a realizer
of:

N2N(T - f(Po) - 2)(T - f(Py) - ).

Given V € 4, find U’ € ¢ such that N- f(p(U’)) C V, and define U = PU’. Then
UA=PU' A, and p(U) = p(P)-p(U’), where p(P) is a pairing combinator (that
is, realizes N*zyz.zxy) w.r.t. p(A). Now the desired sequent p(U)(r) AV - f(a)l
Frapa) M- f(ra) C V- f(a) follows by a straightforward argument inside D. [

Now we can show that, even under the weak assumptions that C is a regular
category and D is a Heyting category, the functor Asm(p, f) has a right adjoint,
provided that p has one.

Theorem 4.4.27. Let (p, f): (A,¢) — (B,v) be an applicative morphism,
where p: C — D, and D is a Heyting category. If p has a right adjoint and
(p, f) is c.d., then Asm(p, f) has a right adjoint.

Proof. Let q: D — C be the right adjoint of p, and denote the unit and counit
of p 1 q by n: id = gp resp. €: pg = id. For simplicity, we assume that f
preserves the order on the nose. Let M € 1 satisfy . For the sake of
readability, we write F' for Asm(p, f).

We define the right adjoint G of F as follows. Let X be an assembly over
(B, ), and define E% C |X| x A by Ex(z,a) :== (M - f(a) C Ex(z)). Note
that here we also use Ex(x) as a standalone term while it really isn’t, so the
formula M - f(a) C Ex(x) should be read as:

Ym,b:B(M(m) A f(a,b) = mbl A Ex(x,mb)).
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Now ¢(E%) C q(|X|) x gp(A), and we define the subobject Ef, C ¢(|X]|) x A
as (id xna)*(q(EY%)), that is, Ex(z,a) := q(E%)(z,n4(a)). Note that, since
we assumed that f preserves the order on the nose, E is downwards closed on
the right. Since ¢ is left exact, this implies that ¢(F% ) is downwards closed on
the right, and since 74 preserves the order, this means that Ef,  is downwards
closed on the right. Now we can define the assembly GX over (A, ¢) by setting

GX[ = {z € q(|X]) | Fa: A(EGx (z,a))} C q(IX]),

and by letting Eqx be the restriction of Ef, y to [GX| x A.
Before we continue, we first formulate the following lemma.

Lemma 4.4.28. For every assembly X over (B,1), there is a commutative
diagram:
pEfy —  EX%

j j (4.8)

exid

pg| X[ x p(A) ——— | X[ x p(4)
Proof of Lemma[].4.28. The object Ef,y is defined by the pullback diagram

Egx > B

[ [

g X| x A 25 g|X| x gpA

This means that we can obtain the diagram (4.8) by pasting the following
squares:

pEfxy ————— pgBy —————— F%

[ [ [

pg|X| x pA =P 1| X| x pgpA —Z5 |X| x pA

and using the triangle identity for the bottom composition. O

Now suppose that g: X — Y is an arrow in Asm(B, ), tracked by T € .
Let V € ¢ be a realizer of Az.T(Mz), and find a U € ¢ as in (icdm|). We claim
that

C:U(r) N Egx(x,a) Epqx))imaa Eay(a(g9)(x),ra). (4.9)
To this end, we first prove that
D: p(U)(T) A E./X (J}, a‘) '::J::|X\;r,a:p(A) Eg/ (g(l‘), ra). (410)

Reason inside D and suppose that we have x:|X | and r, a: p(A) such that p(U)(r)
and E’ (x,a). Then by the definition of E’%, we have M - f(a) C Ex(x). This
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implies that T(M - f(a)) € Ey(g(z)), hence also V - f(a) C Ey(g(z)). Since
p(U)(r), this yields M - f(ra) C V - f(a) € Ey(g(z)), that is, E{ (g(z),ra),

which proves (4.10]).
Now we obtain a commutative diagram

pU X pElyy —————— pU x Efy —————— B},

[ | [

id xexid,

pU X pq|X| x pA ——= pU x | X| x pA ——— |Y| x pA

in D, where * is the arrow sending (r,z,a) to (g(z),ra). Indeed, the left-
hand square exists by diagram (4.8)), and the right-hand square expresses (4.10)).
Transposing this diagram yields the diagram

U x By —— qE},

l [

UxqlX|xA—""= qY| x gpA

in C, where *x is the arrow sending (r, z, a) to (¢(g)(z),na(ra)). (Observe that,
since UA ], we know that the application map p(U) x p(A) — p(A) is the image
of the application map U x A — A under p.) This diagram tells us that

C:U(r) N Egx(x,a) Faeq(IX])ra:A Ey(q(9)(2),na(ra)).
from which (4.9) immediately follows. Since U is inhabited, (4.9) implies that

C: Ja: A(Egx (x,a)) Fag(x)) Ja: A(Egy (4(9)(2), a),

which means that ¢(g) restricts to an arrow G(g): |GX| — |GY|. Moreover,
(4.9) implies that U tracks G(g) as a morphism GX — GY. It is immediate
that G is a functor, so it remains to show that F - G.
Applying (icdml|) to | € 1, we see that there exists a U € ¢ such that UA|
and
D: p(U) (T) ':r,a:p(A) M - f(ra) - f(a')

We claim that for every assembly X € Asm(A4, ¢):

D: p(U)(r) Ap(Ex)(x,a) Epp(x))irapa) Erx (@, 7a). (4.11)

Indeed, reason inside D and suppose that we have x:p(|X|) and 7, a:p(A) such
that p(U)(r) and p(Ex)(z,a). Then we find M - f(ra) C f(a) C Erx(z), which
means precisely that E%  (z, ra), so indeed holds.

The validity of can be expressed by a diagram

pU X pEx ———— Ehy

| I

pU x p|X| x pA —— p|X| x pA
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in D, where * is the arrow sending (r, x, a) to (z,ra). Transposing this diagram
yields a diagram
UxEx —— qElby

/ [

Ux|X|xA—"" qp|X| x qgpA

in C, where #x is the arrow sending (7,7, a) to (9x|(z),na(ra)). This diagram
tells us that C: U(r) A Ex(z,a) Fpx|ira:a ¢(ERx)(nx)(2),n4(ra)), which im-
plies:

C:U(r) N Ex(z,a) Fpx|ra:a Egrx (nx)(2),7a)). (4.12)
Since U is inhabited and Ex is total, (4.12) implies that

C: ':w\X| Ela:A(ElGFX(mX\(x)va'))a

so the image of nx|: [X| — ¢p(|X|) = q(|FX|) is contained in [GFX|. This
means that we have an arrow 7x: |X| — |GFX]|, and tells us that U
tracks it as a morphism X — GFX. The naturality of n implies that 7 is
natural transformation id = GF.

Now consider an assembly X € Asm(B,1). We have |FGX| = p(|GX]) C
pq(|X]), so g1x: pq(|X]) — |X] restricts to an arrow éx: [FGX| — |X]. We
will show that M tracks £x as a morphism FFGX — X, so that £ is a natural
transformation F'G = id. To this end, reason inside D and suppose we have
z:|FGX| = p(|GX|) and m,b: B such that M(m) and Epgx(x,b). Then there
exists an a:p(A) such that p(Ecx)(z,a) and f(a,b). By the diagram ([4.8), it
follows that E'%(e|x|(x),a). By the definition of E’, we conclude that mb |,
and Ex (e|x|(z), mb), as desired.

Finally, the triangle identities for € and n yield that the triangle identities
hold for € and 7 as well, so F' 4 G. This completes the proof. O

Our examples of computationally dense applicative morphisms thus yield the
following examples of geometric morphisms between categories of assemblies. Of
course, in the cases where we already have an adjunction in IPCA, we do not
need to appeal to Theorem [1.4:27]

Example 4.4.29. Let (Ao, ¢o) and (A1, ¢1) be IPCAs, and denote their 2-
product by ((Ag, A1), ). In Example we saw that the projection mor-
phism (m,id): ((Ao, 41),¢) — (Ao, do) has a right adjoint (kg,ip), and that
the counit of this adjunction is an isomorphism. According to Theorem [{.4.3]
the composition

Asm(mg,id
Asm(Ao, do) x Asm (A, ¢1) ~ Asm((Ag, A7), ¢) —omimotd)

Asm(Ag, @)

is the projection functor. Thus, we see that the adjunction (7, id) 4 (o, 7o) in
IPCA gives rise to the pseudocoproduct inclusion Asm(Ag, ¢g) < Asm(Ag, ¢o) X
Asm(Al,qSl) in GEOM.
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Example 4.4.30. In Section we showed that Asm(A4, ¢) is a regular ca-
tegory, where (A4, ¢) is an IPCA over a regular category C. If the base category
C has some further structure, then Asm(A, ¢) will have more structure as well.
We can give one example of this using the theory of slicing and of computational
density. Suppose that C is a Heyting category which is cartesian closed. We will
show that Asm(A, ¢) is cartesian closed as well. Let I € Asm(A4, ¢) be an as-
sembly. Then we have the applicative morphism (|I|*,tg,): (4,¢) = (A, ¢)/I,
which is c.d. according to Example Moreover, C/|I| is also a Heyting
category, and if C is cartesian closed, then |I|* has a right adjoint, so by The-
orem Asm(|I|*,tg,) has a right adjoint as well. Under the equivalence
Asm((A, ¢)/I) ~ Asm(A, ¢)/I, this means that I*: Asm(A4, ¢) — Asm(A,¢)/I
has a right adjoint, so Asm(A, ¢) is indeed cartesian closed.

By a similar argument, if C is a Heyting category which is locally cartesian
closed, then Asm(A, ¢) is locally cartesian closed as well.

Example 4.4.31. Let (Ag, ¢9) and (A1, ¢1) be IPCAs over the same base C.
In Example [1.4:24] we saw that there is an adjunction

(A1)

(Ao, A1), ) L (Ag x Ay, (¢o X ¢1))
(x,id)

in IPCA, which yields a geometric morphism Asm(Ag, ¢g) X Asm(Ay, ¢1) —
Asm(Ag x A1, (¢o X ¢1)).

Finally, we provide a partial converse to Theorem for which we assume
that D is a topos.

Proposition 4.4.32. Let (p, f): (A, ¢) — (B,¥) be an applicative morphism,
where p: C — D, and D is a topos. If Asm(p, f) has a right adjoint, then (p, f)
is c.d.

Proof. Again, we write F' for Asm(A, ¢). Suppose that F has a right adjoint G,
and let € be the counit of F' 4 G. Since D is assumed to be a topos, we can
view T B as an object of D. Now consider the assembly T € Asm(B, 1), where
|Tg| = TB and Er, C TB x B is the element relation, and let N € 9 track
ETg : FGTB — TB.

Suppose that V' € 1. Then the global section V': 1 — T B is also a morphism
of assemblies 1 — T, for it is tracked by KV. Since F'1 ~ 1, this morphism
can be transposed to an arrow V: 1 — GT’z of Asm(A, ¢). Then FV is a global
section 1 ~ F1 — FGTg, and by the adjunction, we have ep, (FV) = V.

Now define U = {a € A| Egr,(V,a)} € TA. f W € ¢ tracks V: 1 — GTjg,
then WA is defined and a subobject of U, which implies that U € ¢. Now
f(p(U)) = {b € B | Ercry,(FV,b)}, which means that N - f(p(U)) is defined
and a subobject of

{b€ B| Er,(er, (FV),0)} = {b€ B | Er,(V.b)} =V,

as desired. O



158 Chapter 4. Products and Slicing

4.4.4 Extension to realizability toposes

Thus far, we have discussed products and slicing for categories of assemblies over
IPCAs. In this section, we investigate to what extent these results generalize
to realizability toposes, in the case where the base categories are toposes. Here
the definition of RT(A, ¢) as Asm(A, ¢)ex/reg is particularly helpful.

Recall from Remark that, if R is a regular category, its ex/reg com-
pletion Rey /reg may be described as follows. Its objects are pairs (X, R), where
X is an object of R and R C X x X is an equivalence relation on X. An
arrow (X, R) — (Y, 5) is a subobject F' C X x Y which is relational, total and
single-valued. Moreover, R sits inside Rex /reg via the fully faithful functor that
sends X € R to X equipped with the diagonal relation. In this section, we will
denote this functor R < Rey/reg by 1R-

Now suppose that we have two regular categories R and S§. Because the
internal logic of the regular category R x S is computed ‘coordinatewise’, it is
immediately clear from the description of ex/reg completions above that there
is an isomorphism (R X S)ex/reg = Rex/reg X Sex/reg Which identifies nr s with
nRr X ns. Similar results hold for products of more than two regular categories,
so the following result follows immediately from Theorem [4.4.3]

Corollary 4.4.33. The pseudofunctor RT: IPCA¢, — REG preserves small 2-
products, and in particular, realizability toposes over IPCAs are closed under
small 2-products of categories. If, for each i € I, we have an IPCA (A;, ¢;)
over a topos C;, then the isomorphism RT (I], Ai, ¢:)) = [[, RT(Ai, ¢i) makes
the triangles in following diagram commute:

RT (IT,(As. 6:)) = [T, RT(Ai, ¢4)

Hi Ci

Example 4.4.34. Continuing Example [£.4:22)and Example [£.4.29] we see that
the pesudocoproduct inclusion RT(Ag, ¢g) — RT(Ag, ¢o) X RT(A1, 1) arises
from an adjunction in IPCA, provided (Ag, ¢o) and (A, ¢1) are both IPCAs
over a topos.

Example 4.4.35. Continuing Example [4.4.24{ and Example [4.4.31] let (Ao, ¢o)
and (A1, ¢1) be IPCAs over the same base topos C. Then we get a geometric

morphism RT(A(), ¢0) X RT(Al, (bl) — RT(AO X Al, <(b0 X ¢1>)

Now take C = Set, and suppose that Ag and A; are ordinary PCAs, seen
as IPCA over Set that are generated by singletons. Then the pseudocoproduct
of Ag and A; in the fiber IPCAge; is easily seen to coincide with the pseudoco-
product Ay x A; of Ag and A; in OPCA. Thus, we get a geometric morphism
RT(A4g) x RT(A4;) — RT(A4g x A1). This geometric morphism is the amal-
gamation of the inclusions RT(4;) < RT(Ap x A1) we used in the proof of
Theorem
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For slicing, we can only obtain a partial result: realizability toposes over
IPCAs are closed under slicing over assemblies. First, let us give a description
of the ex/reg completion of a slice category R/I, where I is an object of R.
This description may be known, but we have not been able to find a reference
for it, so we include it for the sake of completeness.

An object of (R/I)ex/reg is an object kx: X — I of R/I, equipped with an
equivalence relation R on X that lies over I in the sense that R C X x; X.
We may also express this final requirement in logical terms as R(x,z’) Fy 2.x
kx(x) = kx(z'). Similarly, an arrow (X, R) — (Y, S) of (R/I)ex/reg is an arrow
F: (X,R) — (Y,S) of Rex/reg, With the additional property that /' C X x7Y,
that is, F(z,y) Fa.xy kx(2) = ky (y).

Lemma 4.4.36. Let R be a regular category and let I be an object of R. Then
there is an isomorphism (R/1)ex/reg = (Rex/reg) /MR I that makes the following
diagram commute:

R/I

WV R

(R/I)ex/reg i) (Rex/reg)/nRI

Proof. We define the isomorphism ®: (R/I)ex/reg — (Rex/reg)/Mr1 as follows.
If (X, R) is an object of (R/I)ex/reg, then we let (X, R) be the arrow (X, R) —
nNrI of Rex/reg given by the relation kx(z) = i. This relation is clearly total
and single-valued, and relationality follows from the sequent R(z,z') Fy ..x
kx(l’) = kx(l‘/).

Before we define ® on arrows, let us check that ® is bijective on objects.
Injectivity is clear, so suppose we have an arrow K: (X, R) — nrI of Rex/reg-
Then K is total, i.e., Fy.x Ji: 1 (K(z,4)), and K is single-valued, i.e., K(z,7) A
K(z,i') Fy.xu0 @ = ¢'. This 1mphes that there is an arrow kX X =1
such that K is the relation kx(z) = i. Moreover, the relationality of K then
means precisely that R(z,2") E; ».x kx(z) = kx ('), so we can conclude that
K: (X,R) — ngr[ is in the image of ®.

For arrows, we note that an arrow ®(X, R) — ®(Y,S) of (Rex/reg)/nr 1 is
an arrow I: (X, R) — (Y, 5) of Rex/reg such that the diagram of relations

XLt 5y

kxm\ /y<y) =i

commutes. This diagram is equivalent to F(z,y) Faz.x.y:v kx(z) = ky(y), so
we see that setting ®(F') = F makes ® into a well-defined, fully faithful functor.
Finally, the diagram stated in the lemma is easy to check. O

From Theorem [£.4.9) and Lemma [£.4.36] we now immediately get the follow-
ing corollary.
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Corollary 4.4.37. Let (A, @) be an IPCA over a topos C, and let I be an as-
sembly over (A, ). Then there exists an equivalence of categories RT(A, ¢)/I ~
RT((A, ¢)/I) that makes the triangles in the following diagram commute (up to
isomorphism):

~

RT(A,¢)/I ———— RT((4,9)/1)

C/H|

In particular, realizability toposes over IPCAs are closed under slicing over as-
semblies.

Example 4.4.38. An open subtopos of a topos £ is a subtopos of the form £ /U,
where U is a subterminal object. In a realizability topos RT(A, ¢), subterminals
are assemblies, so by Corollary above, open subtoposes of RT(A, ¢) are
again realizability toposes over an IPCA.

Now suppose that A is a PCA. Continuing Example we see that every
nontrivial open subtopos of RT(A) is of the form RT(A, (T A)#U{X})) for some
X € T A. Thus, nontrivial open subtoposes correspond to finite extensions of the
filter (T A)# C T A. We also see that, if 1, denotes the partitioned subterminal
assembly with |1,| = {*} and E;_(x) = |{a}, then RT(4)/1, ~ RT(A[a]).



CHAPTER 5

Computing with Oracles and Higher-Order
Functionals

In this chapter, we investigate computation with oracles and higher-order func-
tionals in an arbitrary PCA A. The paper [vO06] describes how to ‘force’ a
partial function on A to become computable, using a general notion of oracle
computation. The paper [FvO16] generalizes this to type-2 functionals, i.e.,
functions that assume values in A, but whose inputs are functions on A. The
main goal of this chapter is to obtain similar results about type-3 functionals,
i.e., functions whose domain consists of type-2 functionals. Our main strategy
will be to view a type-3 functional on A as a type-2 functional on another PCA
BA, whose elements are partial functions A — A. This PCA BA is a generali-
zation of the Van Oosten model B from Example [2.1.38] and was first described
in [vOT11]. In order for this strategy to work, our treatment must diverge sub-
stantially from [vOTI] in the following respect. While [vO11] only discusses
absolute discrete PCAs, we will view BA as a relative ordered PCA, even when
A itself is absolute and discrete. As a consequence of this, we will also need to
generalize the material from [vO06] and [FvO16], which also discuss absolute
discrete PCAs, to relative ordered PCAs.

Thus, before we can treat the type-3 case in Section [5.4] below, we must first
revisit the constructions of A[a], A[F] and BA. Let us describe in a bit more
detail how these constructions occur in the literature, and what our contribution
is.

1. The paper [vO06] constructs, for an absolute discrete PCA A and partial
function a: A — A, a new PCA Ala] whose application map is given
by ‘computation with an oracle for o’. This PCA Afa] has the following
property: every applicative morphism A — B that ‘makes « computable’
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(in a precise sense to be specified below) factors, essentially uniquely,
through Ala] (see [vO06, Theorem 2.2]). Thus, A[a] may be viewed as the
‘universal solution’ to the problem of making o computable. In Section[5.1}
we construct a PCA A[a] with a similar universal property, but in the more
general setting where A is a relative ordered PCA.

The paper [vO11] constructs, for each absolute discrete PCA A, a new
PCA BA. As we mentioned, BA generalizes the Van Qosten PCA B from
Example 2.1.38] and its underlying set consists of all partial functions
A — A. Tts application map, like the application map on Ala], can be
seen as a computation with oracles. In Section [5.2] we construct a version
of BA which is relative and ordered, even when A is absolute and discrete.

The paper [EvO16] generalizes the construction of Ala] to partial func-
tions F': A4 — A, which, as we explained above, can be viewed as ‘type-2’
functionals. For each such a type-2 functional F', there is a new PCA A[F]
such that every applicative morphism A — B that ‘makes F' computable’
factors essentially uniquely through A[F]; this is [FvO16, Theorem 3.1].
It turns out, however, that the construction of A[F] is not quite as univer-
sal as the construction of A[a]; see Remark below. We will obtain
a generalization of [FvO16, Theorem 3.1] in Section below (Theo-
rem . This generalization will enable us to apply the construction
of A[F] to the PCA BA in Section

The fact that all our PCAs are relative and ordered presents a few challenges
that are absent in the absolute, discrete case:

e In the case of ordered PCAs, not all partial functions a: A — A are

suited to serve as oracles in the construction of A[a]. Thus, we will only
perform this construction for certain partial functions «. Similarly, BA
will in general be a proper subset of the set of all partial functions A —
A; see Definition below. Moreover, the definition of application in
Ala] and in BA must be adjusted slightly to suit the ordered context; see
Remark B.1.12] below.

The construction of A[F] will not work for arbitrary ordered PCAs. Thus,
we introduce a notion of chain-completeness (Definition , and show
that A[F] may be constructed for all PCAs A whose order is chain-
complete.

As we explained, the main application of having the constructions of Aa], BA
and A[F] for relative ordered PCAs is to obtain results for the case of type-3
functionals. Additionally, we get a number of other results that are absent in
the theory of absolute discrete PCAs:

e There is a morphism of PCAs i: A — BA. In the setup of [vO11], this

morphism is not c.d., since the cardinality of BA is larger than the cardi-
nality of A. In our setup, on the other hand, the morphism ¢ is c.d., and
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thus yields a geometric morphism RT(BA) — RT(A). We will see that
this geometric morphism is local (Proposition [5.2.13]).

e We show that the constructions of AJa] and A[F] are connected to BA in
a way that has not been observed before (see Proposition and the
discussion preceding Theorem. These connections depend crucially
on the fact that BA is a relative ordered PCA.

5.1 Oracle computation

In this section, we give the construction of A[a] for relative ordered PCAs A
and (certain) partial functions a on A. First, we give a precise definition of
the notion that ‘c is computable’, and that a morphism A — B ‘makes «
computable’. We will also treat the case of higher-type functionals, which we
will need later in the chapter. Then, we treat the construction of A[«] and prove
its universal property.

5.1.1 Representing functions and functionals

As announced above, the construction of A[a] will not work for every partial
function a: A — A, but only for those a that are ‘compatible’ with the order
on A. The following definition makes this precise.

Definition 5.1.1. Let A be a PCA. The set BA is defined as the set of all
partial functions a: A — A such that: if o’ < a, then a(a’) = a(a). We view
BA as a poset with the order from Definition[2.1.) i.e., a < B iff a(a) < B(a)
for all a € A.

Note that a € BA tells us two things. First, the domain of «, as a partial
function A — A, must be downwards closed, and second, o must be order-
preserving on its domain. Moreover, we have a < § iff both dom a O dom £,
and a(a) < B(a) for all @ € dom 3. As we shall see in the next section, BA can
be equipped with a partial applicative structure, making it into a PCA. In this
section, we will view BA simply as a poset.

Definition 5.1.2. Let A be a PCA and o € BA.

(i) We say that an element r € A represents « if ra < a(a) for all a € A.
The function « is called representable if it is represented by an r € A%,

(ii) Now let f: A — B be a morphism of PCAs. We say that an element
s € B represents o w.r.t. f if s- f(a) 2 f(a(a)) for all a € A. The
function « is called representable w.r.t. f if it is represented w.r.t. f by
some s € B¥.

Note that (i) is actually a special case of (ii), if we let f be id4.
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Remark 5.1.3. If € A, then the partial function a — ra is always in BA,
as follows from axiom (A) from Definition This means that the set of all
representable o can be described as 1{a +— ra | r € A#} C BA. This will be
relevant in the next section.

Lemma 5.1.4. Let A 15 B %5 C be morphisms of PCAs and let o € BA.
(i) If « is representable w.r.t. f, then « is representable w.r.t. gf as well.

(it) If g is an elementary inclusion (Definition [2.2.7) and « is representable
w.r.t. gf, then « is representable w.r.t. f as well.

In particular, if o € BA is representable, then it is representable w.r.t. any
morphism of PCAs f: A — B.

Proof. (i) Let t,u € C* realize g and suppose that s € B¥ represents a w.r.t.
f. If we define s’ € C# as Nx.u(t - g(s) - x), then

s+ g(f(a)) Zult-g(s)-g(f(a)) 2u-g(s- fa) 2 g(f(e(a))),

so s’ represents o w.r.t. gf.
(ii) Suppose that s € C# respresents a w.r.t. gf, and find an s’ € B# such
that g(s’) < s. Then:

g9(s" - f(a)) = g(s') - g(f(a)) =2 s~ g(f(a)) = g(f(ala))),
hence s’ - f(a) < f(a(a)), as desired. O

We will also need a notion of representability w.r.t. (partial) applicative
morphisms.

Definition 5.1.5. If f: A — B is an applicative morphism (resp. f: A+ B a
partial applicative morphism) and o € BA, then we say that « is representable
w.r.t. f if a is representable w.r.t. f: A—TB (resp. f: A— DB).

Note that, by Lemma (ii)7 «a € BA is representable w.r.t. an applicative
morphism f: A — B iff « is representable w.r.t. f, considered as a partial
applicative morphism A +-o B. Thus, we can say that « is representable w.r.t.
f without specifying whether we view f as an arrow of OPCA7 or of OPCAp.
Similarly, if f: A — B is a morphism of PCAs, then a € BA is representable
w.r.t. f: A — B iff a is representable w.r.t. the projective applicative morphism
0pf: A — B. This means we can say that « is representable w.r.t f without
specifying whether we view f as an arrow of OPCA or of OPCA7.

Let us also remark that Lemma [5.1.4fi) automatically extends to (partial)
applicative morphisms. That is, if « € BA is representable w.r.t. f: A —o
B, and we have g: B — C, then « is also representable w.r.t. gf: A — C.
Indeed, gf: A — C can be written as A JyrB 2, TC, so this follows fron
Lemma, i). The case of partial applicative morphisms is analogous.

If o € BA is representable w.r.t. a partial applicative morphism f: A <o B,
then there must exist an s € B# such that s- f(a) C f(a(a)) for all a € dom «.
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By the usual abuse of terminology, we say that such an s represents «, even
though the representer is really }{s}. By axiom (A) from Definition the
set of all representers of a forms a downset of A, for which we introduce the
following notation.

Definition 5.1.6. Let f: A «—o B be a partial applicative morphism and let
a € BA. We define:

rep/ (a) = {s € B |Va € doma(s- f(a) C f(a(a)))} € DB.

Note that rep/ (a) € DB is the largest representer of o w.r.t. f: A — DB,
and that « is representable w.r.t. f iff rep/ () € (DB)#. In Section we will
show that BA can be equipped with a PCA structure, and that rep’ : BA — DB
is always a partial applicative morphism BA «o B.

Now let us treat the representability of higher-type functionals, which we
will need in Section [£.3] and Section [£.4]

Definition 5.1.7. For a PCA A, we define posets B, A, where n > 0, by
induction on n:

o BoA = (4,<).

o B,11A consists of all partial functions F: B,A — A such that o <
implies F(a) <X F(B) for all a, 8 € B,A. Moreover, if F,G € B, 14,
then we set F < G iff F(a) < G(a) for all « € B, A.

Note that B A coincides with BA as defined in Definition Now let us
give the definition of representability for higher-type functionals. We phrase the
definition in terms of a ‘downset of representers’ as in Definition above.

Definition 5.1.8. Let f: A o B be a partial applicative morphism. We define,
for each n >0, a function rep] : B,A — DB, by induction on n.

o Ifn=0 andac A, then we set repg(a) = f(a).

o For F € B,11A, we set:

repr_l(F) = {s € B|VYa € domF(s-repl(a) C f(F(a)))} € DB.

If a € B, A, then we say that s € B represents o if s € repl(a), and we say
that a is representable w.r.t. f if repf (a) € (DB)#, that is, a is represented
w.r.t f by means of some s € B¥. Moreover, we say that r € A represents
« (without qualification) if v represents o w.r.t. ida: A ~—o A and similarly,
we say that « is representable (without qualification) if « is representable w.r.t.

ldA.

Note that here, we only define representability w.r.t. partial applicative mor-
phisms. Representability w.r.t. morphisms of PCAs and applicative morphisms
can be taken to be special cases of Definition [5.1.8]
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For n = 1, we have that rep{(a) = rep/ (), thus the notions of representa-

bility for o € By A = BA from Definition [5.1.5] and Definition coincide. For
n = 0, the notions from Definition[5.1.8 are somewhat degenerate. If f: A «— B,
then s € B represents a w.r.t. f iff s € f(a), and a € A is representable w.r.t.
f iff @ € dom™ f, where dom™ is as in Definition Now let us revisit
Example

Example 5.1.9. Let A be a PCA and let a € A. Then we have the PCA
Ala] = (A, (A# U {a}),-, <), and the morphism of PCAs ,: A — A[a], which
is simply the identity on A. This is the universal partial applicative morphism
that makes a representable in the ‘degenerate’ sense above. More precisely, for
each PCA B, composition with ¢, yields an isomorphism of preorders:

OPCAp(Ala], B) 2 {f € OPCAp(A, B) | a € dom™ f}.

This follows simply by observing that, if f: A <o B is such that a € dom™ f,
then f is also a partial applicative morphism A[a] <o B, by Lemma [2.2.5

For n > 1, we do not have a result analogous to Lemma i). In other
words, representability of higher-type functionals cannot be ‘transferred’ along
morphisms. Let us give an example of this phenomenon.

Example 5.1.10. Let A be Kleene’s first model &C;. In this case, BA is simply
the set of all partial functions N — N. Moreover, the minimal elements of BA
are the total functions of N — N. This means that any function NN — N is
automatically in Bo/C;. Consider the functional F': N¥ — N defined by:

Fla) 0 if « is recursive;
Q) =
1 otherwise.

Note that e € N represents a total function « iff ¢, = a. In particular, only
recursive functions have a representer at all, which means that any index for
the constant function with value 0 is a representer of F'.

In Example 2:3:21] we saw that there is a morphism of PCAs f: K; —
Ko that sends n to the constant function n with value n. Suppose that F' is
representable w.r.t. f. Define a recursive function p: N — N such that p([[z]]) =
1 and:

0 if 1 <
uy +2 ifi>y.

MWMWW”me:{

Then it is easily verified that pai(m) = a(n) for all @« € N¥ and m,n € N.
Thus, we have pan = 07(;), which means that pa € rep/(a) for all a € NV,
Using p and a representer of F' w.r.t. f, we can construct a recursive function
o such that ca = }@ for all & € NN, This yields:

0 if « is recursive;

omm—men—ﬂw—{

1 otherwise,
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for all @ € NN, In particular, we have ¢0(0) = 0. This implies that there
exists an N € N such that ca(0) = 0 for all a that agree with 0 on the inputs
0,1,...,N — 1. In other words, whenever a(n) = 0 for all n < N, we have that
oa(0) = 0, and thus that « is recursive. This is clearly a contradiction, so we
can conclude that F' is not representable w.r.t. f.

5.1.2 Adjoining a function to a PCA

The goal of this section is to define, for a € BA, a PCA Ala] with a similar
universal property as in Example[5.1.9|above. More precisely, partial applicative
morphisms A <o B with respect to which « is representable should correspond
to partial applicative morphisms A[a] <o B. The fact that our PCAs are
relative and ordered presents a few challenges. As we already mentioned, we
can only construct A[a] for partial functions « that behave well w.r.t. the order
on A, namely those « that are in BA. Moreover, due to the fact that A is
ordered, we need to be slightly more careful when defining the application map
on Ala]; see Remark below. For dealing with relativity, the notion of a
generated filter will once again be useful.

In order for the construction of Ala] to work, we need to assume that A is
not semitrivial. In fact, from this point onwards, we will assume that all PCAs
we consider are not semitrivial. The underlying set of A[a] will simply be A
itself, and the order on A[a] will simply be the order on A. However, we equip
Ala] with a new application operation. Informally, a computation in Afa] will
be a computation in A with an oracle for a. That is, the computation can feed
a finite number of inputs to a before coming up with the final result. In order to
distinguish this new application from the original one, we will write it as a ® b,
or a O b if a is not clear from the context.

Definition 5.1.11. Let A be a PCA and let o € BA. We define the PAP
Ala] = (4,3, <) as follows. For a,b,c € A, we say that a ® b = c if and only if
there exists a (possibly empty) sequence ug, ..., un—1 € A such that:

e for alli < n, we have:

po(a - [byug,...,u;—1]) < L and a(pi(a-[b,ug,...,ui—1])) = ug;
e pola-[byug,...,up—1]) < T and pi(a- [byug,...,un—1]) =c.
The sequence ug, . ..,un—1 15 called a b-interrogation of o by a.

Intuitively, the coefficients in the interrogation sequence are the values the
oracle returns in the course of the computation of a ® b. At each stage of the
computation, the algorithm a is allowed to consult the input b and the values
ug, . - -, U;—1 obtained from the oracle so far. Formally, this means that we let a
act on the coded sequence [b, ug, ..., u;—1]. We view the result as carrying two
pieces of information. The first piece is a boolean, which tells us whether the
computation has gathered enough oracle values to output a result. If not, then
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the second piece of information is fed to the oracle; if the oracle need not be
consulted anymore, then this second piece is the output.

Since A is not semitrivial, there is at most one b-interrogation of « by a,
which also means that a © b = ¢ for at most one ¢ € A. Observe that a ® b may
fail to be defined in several ways. First of all, one of the applications in A could
be undefined. In addition, pg(a-[b, uo, ..., u;—1]) could fail to lie below either T
or L, or py(a-[b,ug,...,u;—1]) could lie outside the domain of « (i.e., the oracle
fails to return a value). Finally, it could happen that the computation keeps
feeding inputs to the oracle indefinitely, never coming up with a final output.
For example, if a = k(pLL), then a ®b will always be undefined, even if A itself
is a total PCA and « is a total function.

Remark 5.1.12. In the original definition of a ® b from [vO06, Theorem 2.2],
which is meant for discrete PCAs, the sequence uy, ..., u,_1 should satisfy:

o for all ¢ < n, there exists a v; € A such that a - [b,ug,...,u;—1] = pLv;
and a(v;) = u;

e there exists a ¢ € A such that a - [b,ug,...,u,—1] =pTgc,

in which case a ® b = ¢. Since we are working with ordered PCAs, however, we
cannot hope to get equalities between elements from A, since all the available
combinators only yield inequalities. We do have the following: if there are
g, .- -, Un_1,C € A such that:

e for all ¢ < n, there exists a v; € A such that a - [b,dg,...,4—1] < pLy;
and a(v;) < @;

® Q- [b,’t_l,o,...,’an_l] < p—|—C7

then a ® b is defined and a ® b < ¢. (We write @; rather than u; because this
sequence need not be the actual b-interrogation of a by a.)

Of course, we should show that A[a] is actually a PAP, which is also one of
the points where we need that @ € BA. Suppose we have a’ < a and b < b
such that a ® b, and let ug,...,u,—1 be the b-interrogation of a by a. Then
by induction, one easily shows that there exist u < u; such that wuf,...,u),_;
is a b'-interrogation of « by a’; and from this, we get that a’ ® b’ is defined and
a ®b <a®b, as desired.

In order to complete the definition of A[a] as a PAS, it remains to define
Ala]#. Note that we cannot simply take Ala]# = A#, since A# could fail to
be closed under (defined) ®. The following definition remedies this.

Definition 5.1.13. Let A be a PCA and let « € BA. The PAP Ala] is made
into a PAS by setting Ala]# := (A#), where the generated filter is taken in the
PAP Ala], rather than A.

This, by definition, makes A[a] into a PAS, which we now show to be a PCA.
The construction of the required k- and s-combinators for A[a] is the same as
in [vO06, Theorem 2.2], but adapted to the ordered setting.
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Proposition 5.1.14. For each PCA A and o € BA, the quadruple Ala] =
(A, Ala)#,®,<) is a PCA.

Proof. We need to exhibit suitable combinators k., and s, for Ala]. Let us
define fst € A# as A*x.read - = - 0, where read is as in Construction [2.1.32] Note
that fst - [ag, ..., an] < ag for a coded sequence [ag, ..., a,]. As kq, we can take

N z.pT(Ny.pT(fstr)) € A* C Ala]#.
Indeed, if a,b € A, then ko, ©® a < (A*y.pT (fstz))[[a]/z], and
(ko © a) - [b] = (pT(fstz))[[a]/z, [b]/y] = pT(fst[a]) < pTa,

which means that k, ®a ® b < a, as desired. Observe that k, does not, in fact,
depend on «, and that the computation of k, ®a ® b does not consult the oracle
at all.

The definition of s, (which will also not depend on «) is a little more in-
volved, and defining it explicilty using the combinators from A# would merely
obscure the main idea of the construction. Therefore, we informally describe
how to construct s,. Using the fixpoint operator from A#, elementary opera-
tions on sequences and numerals, and the if ...then...else... construction, we
may construct an element S € A% such that for all a, b and u = [ug, ..., u,]
from A, we have that Sabl, and:

o If po(a - [ug,...,u;]) < L for all i <mn, then Sabu < au;

e Suppose there is a least i < n such that po(a - [ug,...,u;]) < T, and set
d:=pi(a-[ug,...,u).

— If po(b- [uo, Wit1,...,u;]) < L for all j with ¢ < j <n, then:

Sabu < b [ug, Uit1, .-, Upl-
— Suppose there is a least j such that po(b- [uo, wit1,...,u;]) < T and
i <j<n,andset e:=pi(b-[ug, Uit1,-...,u;]). Then:
Sabu <d-[e,ujt1,. .., U]

Even more informally, the computation Sabu does the following. First, we
check whether, for some 4, the sequence uy,...,u; is a ug-interrogation of a by
a. However, since we are working in A, the oracle « is not available, so we have
to believe ‘on faith’ that each next value of the sequence u is the correct value
returned by the oracle a.. If the us run out before we find such an ¢, then the
next query to a that the computation of a ® ug was supposed to make, is our
output. If we do find such an 7, then we start looking for a j > i such that
Uig1,---,U; 1S & ug-interrogation of o by b. Again, if the us run out before we
find such a j, then the next query to « in the computation of b ® ug is our
output. If we do find such a j, then we know a ® ug and b ® ug, and we use the
remaining part of the sequence u to mimick the computation of a ®ug® (bOug).
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Suppose we have a,b,c € A such that a ®@ ¢, b©cand a © c® (b® ¢) are all
defined. Then from the informal description of S given above, it follows that
Sab ® ¢ is also defined, and Sab©®c < a®c® (b® ¢). Now we can set

So = N z.pT(\y.pT(S(fstz)(fsty))) € A" C Ala]*.

In the same way as we did for k,, one can verify that s, ® a ® b < Sab, so we
can conclude that Ala] is a PCA. O

Similarly to Example [2.2.15] we define ¢,: A — Ala] as the identity on A.

Proposition 5.1.15. The map 1o is a morphism of PCAs A — Ala], and «
is representable w.r.t. 1. Moreover, 1o has a right adjoint g: Ala] — A in
OPCAr7 satisfying tag =~ idaj)- In particular, iy is dense.

Proof. Since A# C Ala]*, it is clear that ¢, satisfies the first requirement from
Definition [2.2.1] and it is also obvious that ¢, preserves the order on the nose.
If we define

t:=XNa.pT(Ny.pT(fstz(fsty))),

where fst is as above, then an easy calculation shows that t ® a ® b < ab. Since
t € A# C A[a]#, this completes the proof that ¢, is a morphism of PCAs.
Now let

r = \*x.if zero(pred(lhz)) then p_L(fstz) else pT (readx1).
Then r € A% C Ala]#, and for a € dom «, we have:
e r-[a] < plaand ala)l;
o - [a,a(a)] < pTal(a),

which means that r ® a < a(a). We conclude that r, represents o w.r.t. ¢q.
We define the required right adjoint g: A[a] — A by:

gla) ={be A|boi<a},

where i € A% is the identity combinator for A. It is clear that g(a) is a downset,
and that g preserves the order on the nose. Now consider the S € A% con-
structed in the proof of Proposition If b € g(a) and V' € g(a’), then
S Oi X (bei)o B i) add,soif a®d |, then SHY € g(a ®a’). In
other words, g preserves application up to S € A#. In order to see that g is
a partial applicative morphism, Lemma [2.2.5] tells us that it suffices to show
that A# C dom? g. But this follows immediately from the observation that
k(pTa) € g(a) for all @ € A, which also shows that g is total.

We also see that \*x.k(pTx) € A% realizes ids < gio. Finally, idafa] < tag
and a9 < idy[q) are realized by k, and A*z.x © i, respectively. O

Before we proceed to establish the universal property of ¢, let us make a
few remarks.
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Remark 5.1.16. (i) The PCA Ala] is always not semitrivial, given that A
is not semitrivial. Indeed, if A[a] were semitrivial, then any two elements
of Ala] would have a lower bound. But as a poset, A[a] is simply A, so
every two elements of A would have a lower bound, which we assumed not
to be the case.

(ii) In general, the filter A[a]# is strictly larger than A#. This makes sense
given the intuition that A# consists of those elements of A that are actually
computable (or can be refined into such a computable element). In Ala],
the function « is computable, so if a certain a € A is computable, then
a(a) should be computable as well. However, we have not required that
A7 is closed under defined application of a, so making o computable will
also force the set of ‘computable elements’ to become larger. In fact, A[a]
can alternatively be described as the least filter on the PCA A that is
closed under defined application of «; we leave the proof to the reader.

(iii) Since ¢4 is dense, it is also decidable and c.d. Note that the computational
density of ¢, is not a priori obvious, since A[a]” can be larger than A%.

(iv) In analogy with Example [3.4.16] we see that RT(A[a]) is a subtopos of
RT(A).

Now we are ready to prove the universal property of ¢,: A — A[a]. The
main part of the proof is adapted from [vO06, Theorem 2.2]. In the proof of the
following theorem, we will use combinators ext, unit € A# with the following
properties: ext - [ag, ..., an—1] - @’ <lag,...,an—1,a’] and unit-a < [a].

Theorem 5.1.17. Let f: A — B be a decidable morphism of PCAs, and let
a € BA. Then f factors through o, if and only if o is representable w.r.t. f.

Proof. The ‘only if’ statement is clear, given Lemma i) and Proposi-
tion For the converse, we need to show that, if « is representable w.r.t.
f, then f is also a morphism of PCAs A[a] — B.

Let t,u € B¥ realize f: A — B, let d € B¥ be a decider for f, and let
s € B¥ represent a w.r.t. f. Fori = 0,1, we define p; = N z.u(t- f(p;)-x) € B¥,
so that: if p;a < a’, then p} - f(a) < f(a’). Similarly, we may define an element
unit’ € B# with the property that unit’ - f(a) < f([a]). Since ext is intended to
take two arguments, we set:

ext’ := Nzy.u(t(t - f(ext) - x)y) € B¥,

so that ext’ - f([ag,...,an-1]) - f(a') < f(lag,- .-, an-1,0a']).
Using the fixed point operator in B#, we may construct an element 7' € B#
satisfying:
Thv < if d(p(tbv)) then pf(tbv) else Th(ext'v(s(p] - (tbv)))). (5.1)
Suppose that a,a’ € A are such that a ® a’ |, and let uog,...,u,—1 be the
a’-interrogation of a by a. First of all, we claim that

T fa)- f([a',ug,y-- . ui1]) 2T~ f(a)- f([a',ug, ..., us)) (5.2)
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for all i < n. Indeed, apply with b = f(a) and v = f([a/, ug, ..., u;—1]). We
have tbv < f(a - [a/,ug,...,u;—1]), and since po(a - [a, ug, ..., u;—1]) < L, this
yields pg(tbv) < f(L), hence d(pj(tbv)) < L. This means that the ‘else’ clause
of applies, in other words, we have Tbhv < Th(ext'v(s(p] - (tbv)))). In order
to evaluate the latter, we note that pf(tbv) < f(pi(a-[a’,uo,...,u;—1])). Since
s represents «, this yields s(pf(tbv)) < f(a(pi(a - [a’,ug,...,ui—1]))) = f(u;).
This implies that Tbhv < Tb(ext'v . f(ul)) < Tb- f(ld,ug,... ,ui—1,ui])), as
desired.
Moreover, we have:

T- f(a)- f(la',ug,. ., un_1]) < fla®a'). (5.3)

Indeed, if we employ with b = f(a) and v = f([a/, ug, ..., un—_1]), then this
time we have d(p{,(tbv)) < T. This means that the ‘then’ clause of applies,
so Thv <X pj - (tbv) < flpi(a-[d,ug,y...,un—1])) = fla®d).

Combining (5.2)) and ( ., we get

T f(a)- f([a]) 2 fla®d),

for all a,a’ € A. Now it follows f: A[a] — B preserves application up to
Ny Tx(unit'y) € B¥.

Clearly, f: Ala] — B also preserves the order up to u € B#. Since f is a
morphism A — B, we have f(a) € B¥ for all a € A%, and now Lemma -
tells us that f is also a morphism A[a] — B, as desired.

We can reformulate Theorem [5.1.17] in the following way. Let us write
OPCAge. for the wide subcategory of OPCA consisting of only the decidable
morphisms of PCAs. We define OPCA7r g4oc and OPCAp e similarly.

Corollary 5.1.18. Let C be any of the categories OPCAqec, OPCAT gec and
OPCAD dec- If A, B are PCAs and oo € BA, then composition with 1o : A — Al
yields an isomorphism of preorders:

C(Ala],B) 2 {f € C(A, B) | « is representable w.r.t. f}.

Proof. For C = OPCAg4ec, we note that Lemma Lemma i) and
Theorem imply that composition with ¢, yields a well-defined bijection
between the preorders from the theorem. Moreover, it is immediate that com-
position with ¢, preserves and reflects the order.

For OPCAr gec and OPCAp gec, the result follows by applying the theorem
for OPCA4ec with T'B resp. DB in the place of B. O

Remark 5.1.19. By Lemma [2.2.10] we see that Corollary is still true
if we restrict to c.d. morphisms, or - in the case of OPCA and OPCA7 - dense
morphisms.

Example 5.1.20. In Remark [5.1.16(iii), we explained that it is not surprising
that Ala]? is, in general, larger than A% because ‘adding’ a new representable
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function « can also make more elements of A computable. Similarly, adding
« as a representable function makes other functions besides a representable as
well. By Corollary [5.1.18] a function f3 is representable w.r.t. ¢, iff the identity
on A is a morphism of PCAs A[f] — Ala].

Example 5.1.21. The construction of A[a] is a generalization of oracle com-
putations for classical Turing computability. Indeed, if f: N — N is a partial
function, then g: N — N is representable w.r.t. t5: 1 — Kq[f] iff g is Turing
computable relative to an oracle for f. This implies that the identity on N is
an isomorphism K1[f] 2 K7 see also Corollary 2.3 in [vO06].

Example 5.1.22. The construction of A[a] can be seen as a higher-order ver-
sion of the construction of Afa] from Example On the other hand, the
construction of Afa] can be seen as a special case of the construction Afa]. In-
deed, consider a € A and denote the constant function with value a, which is
an element of BA, by a. It is easy to see that, for any f: A «—o B, we have
that @ is representable w.r.t. f iff a € dom™ f. Tt follows that A[a] and A[a] are
isomorphic PCAs.

Example 5.1.23. Of course, if a € BA is already representable in A itself,
then tn: A — Ala] will be an isomorphism of PCAs. Now suppose that « is
represented by an element r € A (but not necessarily r € A#). Then « is
representable w.r.t. ¢,: A — A[r], so we get a factorization:

A
o] N
Ala] ----- y Alr]

It is worth observing that the mediating arrow Ala] — A[r] is not, in general,
an isomorphism. Indeed, consider a PCA with A# # A, and take a b € A\A#.
Then the partial function o € BA defined by
{Pla if poa <T;
a(a) =
undefined else
is representable, e.g., by means of p; € A#. This means that ¢, is an isomor-
phism. But « is also represented by r := A*x.if pox then pyx else b. Moreover,
we have r ¢ A%, because r(pLL) < b, so r € A# would imply b € A#. This
means that ¢, is not an isomorphism, so A[a] — A[r] cannot be an isomorphism

either. We see that the point here is, really, that a function o € BA can have
many representers.

Above, we have adjoined one function a to a PCA A, but of course, we can
also adjoin multiple functions at once. This will be useful in the next section, so
we give the construction explicitly. In fact, we can do this in several ways: we
can apply the construction of A[a] repeatedly, we can code a finite sequence of
functions into one funtion (cf. the remarks before Definition , or we can
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adjust the definition of ® directly. Here we choose the latter approach, because
it is the least heavy on coding.

Construction 5.1.24. If & = ay,...,ap € BA, then we define a new PCA
Ald] = (4,0 = 0g, <, (A[d])#) as follows. If a,b, c € A, then we say that a®b =
c iff there exists a b-interrogation of & by a, that is, a sequence ug, . .., up_1 € A,
such that:

e for all i < n, there exists a k € {1,...,¢} such that:

po(a - [bug,...,ui—1]) <k and ax(pi(a-[bug,...,ui_1])) = u;

d po(CL ' [b7u03 cee aun—l]) < 0 and Pl(a : [ba ugy - - - 7un—1D =c

Note that this application is well-defined if A is not semitrivial, because, as
remarked in Construction [2.1.31] no two numerals in A have a common lower
bound. Of course, we let A[@]” be the filter generated by A# under this new
application. This makes A[@] into a PCA, and the identity on A is a morphism of

PCAs 15: A — A[a] which is the ‘universal solution’ to making all of a1, ..., ay
representable. More explicitly, every decidable morphism of PCA f: A — B
with respect to which «q,...,ax are representable, factors through tz. The

proof uses the classical fact (see, e.g., [Lon94 Proposition 2.4.16]) that every
decidable morphism of PCAs also ‘preserves numerals’.

For ¢ = 1, this yields a slighty different definition of A[a], but of course,
the two definitions yield isomorphic PCAs, since they have the same universal
property. In the case £ = 0, we have that & is the empty sequence €, and it is
clear that t.: A — Ale] is an isomorphism.

5.2 The PCA of partial functions

5.2.1 Construction of the PCA

In this section, we show how to turn the set BA from Definition [5.1.1] into a
PCA. For the order, we take the order defined in Definition [2.1.4] In particular,
the empty function is the largest element of BA. It is worth noting that the
order on BA is not discrete even if the order on A is. Indeed, if A is discrete,
then BA consists of all partial functions A — A, and the order is the reverse
subfunction relation. In this case, the total functions are minimal elements of
BA. In the general case, the total functions in BA form a downwards closed set.

The application on BA will, in a sense, generalize the A[a] for @ € BA all
at once. As for the construction of AJa], we need the assumption that A is not
semitrivial. An important thing to note about the application on BA is that it
will be total.

Definition 5.2.1. Let A be a PCA. We define the PAP BA = (BA,-,<) as
follows. The order on BA is as in Definition[2.1.]} For o, B € A and a,b € A,
we say that aB(a) = b if and only if there are ug, ..., un,—1 such that:
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o for alli < n, we have:

po - a([a,ug, ..., ui—1]) < L and B(p1-alla,ug,. .., ui—1])) = ws;
e po-affa,ug,...,up—1]) < T and p1 - a([a, ug, ..., u;i—1]) =b.
The sequence ug, ..., un_1 s called an a-interrogation of 8 by «.
By the assumption that A is nontrivial, the sequence ug, ..., u,_1 is unique

if it exists, so we see that af8(a) = b for at most one b, which means that a8
is indeed a partial function A — A. Table compares the definition of af(a)
with the definition of a ®, b from Definition [5.1.11

a®ub | af(a)
Interrogator a «
Input b a
Oracle Q@ B8

Table 5.1: Application in A[a] versus BA.

In particular, we see that the function (x +— ax)-a coincides with the function
T a®qT.

Of course, we need to check that af is actually an element of BA, and that
the resulting application map on BA satisfies axiom (A) from Definition m
This is similar to the verification of axiom (A) for A[a], and we leave it to the
reader.

In order to make BA into a PAS, we will let (BA)# consist of all representable
functions. In order for this to work, we must show that the set of representable
functions is closed under the application map defined above. The proof will use
the same technique as the proof of Theorem[5.1.17} in particular, we will employ
the combinators ext and unit again.

Lemma 5.2.2. Let A be a PCA. If a, B € BA are representable, then a5 € BA
is representable as well.

Proof. Suppose that r,s € A# are such that ra < a(a) and sa < B(a). Using
the fixpoint operator in A%, we may construct a 7' € A# such that:

Tu < if po(ru) then py(ru) else T'(ext - u - (s(p1(ru)))).

Suppose a € A is such that af(a) is defined, and let ug,...,u,—1 be the a-
interrogation of 8 by a. Then it easily follows that

T la,ug,...,ui—1] T - [a,ug,. .., u

for i <m, and T - [a,ug, ..., un—1] < af(a). Thus, we get T - [a] < aB(a) for all
a € A, which means that \*z.T(unit - ) € A# represents af3. O



176 Chapter 5. Computing with Oracles and Higher-Order Functionals

Definition 5.2.3. Let A be a PCA. We make BA into a PAS by letting (BA)*
consist of all representable functions, that is:

(BAY# =1{a —ra | r € A*}.

In order to show that BA is a PCA, it remains to construct the appropriate
combinators. In [vOI1], this is shown by giving an alternative characterization
of representable functions BA — BA, using trees. Here, we will prove that BA
is a PCA using the argument that B is a PCA given in [vO08, Section 1.4.5].
Recall from Construction [5.1.24] the morphism of PCAs t5: A — A[@]. We need
the following two rather technical lemmata. The first lemma says that, given
representers of § and v w.r.t. 15, we can compute a representer of Sy w.r.t. ¢4,
and we can do this uniformly in the as.

Lemma 5.2.4. Let { > 0 be a natural number. There exists an element t, € A%
such that, for alld = ay,...,ap € BA and 8,y € BA, we have:

te - rep“® () - rep@ () C rep"®(By).

Proof. The construction of ¢, is similar to the construction of S in the proof of
Proposition For 7, s and u = [ug, . ..,u,], we should have that t,rs is
defined, and the computation of tyrsu does the following. In the course of the
computation, we construct natural numbers i, and j,, and elements v, € A for
p > 0. Initially, we set p = 0 and ig = 0. Then we repeatedly run through the
following loop.

e For i, < j < n, let us write w; = [[ug, vo, ..., vp—1],%i,11,...,u;]. If for
all j with 4, < j < n, we have that po(rwj) < k for some k > 0, then:

tersu X 1wy =1 - [[Uo, V0, -y Up— 1], Uiy 415 - - Un)-

Suppose, on the other hand, that there is a least j, such that i, < j, <n
and po(rw;,) < 0. Set @ := py(rw;, ).

— If pox < T, then tersu < p0(p1x).
— Suppose that por < L. If, for all i with j, < ¢ < n, we have
po(s - [p1z, Ujy 1y - - ,u;]) < k for some k > 0, then:

tersu X5 - [P1T, Wj, 11, - - 5 Un).

Suppose, on the other hand, that there is a least 7,4, such that
Jp < dpy1 < noand po(s - [P, uj, 41,005 Ui,,,]) < 0. Then set v, =
p1(s - [P1%, Uj, 41, .., Ui, ]), increase p by 1, and restart the loop.

Now, if 7,5 € A* represent 3 resp. v, and B7(a) is defined, then it follows that
tyrs Og a is defined as well, and t;rs ©z a < By(a). Thus, we have tyrs €
rep‘d (B7), as desired. O
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The following lemma says that, if we can compute a certain function
relative to oracles ay, ..., apy1, then we can effectively find a new function §’,
computable relative to a1, ..., ay, such that 8'ay11 < 5; and this can be done
uniformly in the as. Since 8'ayy; is, in effect, a computation with an oracle
for a1, this is simply a matter of rearranging the oracle calls appropriately.
Thus, while the proof of the following lemma is again rather technical, the idea
of the construction is quite simple.

Lemma 5.2.5. Let £ > 0 be a natural number. There exists an element s, € A#
with the following property: if & = aq,...,cpr1 € BA and r € A, then syrl
and:

(= 84T Oay.vap ) - Qg1 < (T =1 Og ).

.....

Proof. Again, we give an informal description of sy. Let r and u = [uq, .. ., uy]
be elements of A, where vy is itself a coded sequence [vy, ..., v,]. We should
have that s,r is defined, and that the computation of syru does the following.
In the course of the computation, we construct elements w, of A for p > 0.
Initially, we set p = 0 and ¢ = j = 1. Then repeatedly run through the following
loop.

Let « := 7 [vg, wo, - - ., Wp—1].

e If pox <0, then s;ru < p0(pT (p12)).

e Suppose pgz < k for some k € {1,...,£}. If i < n, set wp = U, increase
both p and 7 by 1, and restart the loop. If i > n, then spru < x.

e Suppose that pox < ¢+ 1. If j < m, set w, = vj, increase both p and j
by 1, and restart the loop. If j > m, then syru < pO(pL(p1z)).

If a € A is such that r ®5 a is defined, then ((a: = ST Oay,..ap &) ~ag+1)(a) will
be defined as well, and ((x > ST O ,..oap T) ~0¢g+1)(a) <r®ga, as desired. [

Remark 5.2.6. If ay,...,ap1 € BA, then the identity on A is an isomorphism
f of PCAs as in the following diagram:

A—— Aloa, ..., ap41]
| L
Alag, ..., ap —— Alaq, ..., ap)|oesq]
This follows by observing that Alay,...,ae11] and Afag, ..., ag]laes1] have the
same universal property, namely, that they make all of a,...,apy; represen-

table. By the remark below Table we see that the existence of s, as in
Lemma implies in particular that f preserves application up to a realizer.
But of course, Lemma [5.2.5 says much more than that: the crucial point of the
lemma is that s, does not depend on the as.
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Proposition 5.2.7. If A is a non-semitrivial PCA, then BA is also a PCA.

Proof. Let t = t(x1,...,2¢) be a pure term in £ variables. Then there exists an
r € A% such that r represents t(&) w.r.t. 15, for all @ = ay,...,a, € BA. This
follows by induction on ¢; the base case is similar to the construction of 7 in the
proof of Proposition [5.1.15] and the induction step follows by Lemma [5.2.4
Now let sg,...s.—1 € A# be as in Lemma Define the sequence

Te,T¢—1,...,71,70 € A¥ by 7y = r and r; = s;r;41 for i < £. Then:
tar,...,ap) > (T 70 OQay,....ap T)
> (2= 71021 Oay,yapy T) - Qg
> ..
> (@71 Ony &) oy
> (710 Oex)ay - ay.

Since rp € A* and t.: A — Ale] is an isomorphism, the function p € BA defined
by p(z) ~ ro ® = is in (BA)#. Thus, we see that, for each term #(&), there
exists a p € (BA)# such that pa@ < ¢(@) for all & € BA, which shows that BA is
indeed a PCA. O

Remark 5.2.8. (i) Note that the PCA BA is not semitrivial, given that A
is not semitrivial. Indeed, if BA were semitrivial, then the two constant
functions with values T and L would have a lower bound o € BA. But
then for any a € A, we get that «(a) is a lower bound of T and L, which
cannot be true.

(ii) Let us remark that BAC; is not quite the Van Oosten PCA B = (B, BP*, -, =)
from Example [2.1.38] but rather its (relative and) ordered version men-
tioned at the end of Example [2.1.38

(iii) The paper [vO11] also considers a generalization of Kleene’s second model
to arbitrary PCAs. It gives a construction that yields, for each absolute
discrete PCA A, a new absolute discrete PCA K2 A consisting of all total
functions A — A. This construction does not seem to have a ‘relative’
version, where (2 A)# consists of the total representable functions. For
each term t, we can certainly construct a p € (BA)# such that pa < t(d)
as above. However, such a p is not necessarily total. We can extend p to
a total function by assigning a default value on inputs outside the domain
of p, but of course, this may destroy the representability of p.

5.2.2 Universal property

Now that we established BA to be a relative ordered PCA, we will prove some

of its important properties. In particular, we will show that BA has a certain

(lax) universal property (Theorem . It is worth noting that almost none

of the results in this section are true if we view BA as an absolute discrete PCA!
For a € A, let @ € BA denote the constant function with value a.
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Proposition 5.2.9. There is a c.d. morphism of PCAs i: A — BA, defined by
i(a) = a.

Proof. If a € A%, then a is clearly represented by ka € A%, so a € (BA)¥,
meaning that ¢ satisfies the first requirement from Definition Moreover, i
clearly preserves the order on the nose, so it remains to show that ¢ preserves
application up to a realizer. Using the elementary operations on sequences, we
may contruct a t € A% satisfying:

o t-[[z]] < pT(pLi);
o t-[[z,y]] <pli

o t-[[,y],2] < pT(pT(2y)).

If 7 € (BA)# is defined by 7(x) ~ tx, then it is straightforward to check that
Tab(c) X ab for all a,b,c € A, so i preserves application up to 7.
For computational density, we take an n € A% satisfying:

e n-[z] < pli
o n-lz,y] 2 pT(yz).

If v € (BA)# is defined by v(a) ~ na, then it is easy to check that v7(a) < ra
for all a,r € A. So, if p € (BA)# is represented by r € A#, then v < p,
showing that v satisfies . O

Now we will prove the ‘lax universal property’ of i: A — BA. In [vO11]
Theorem 5.1], this universal property states: if f: A — B is a decidable ap-
plicative morphism such that every o € BA is representable w.r.t. f, then f
factors through ¢ in a maximal way. Since we defined BA as a relative PCA,
and since we have the notion of a partial applicative morphism, we can for-
mulate the universal property of BA in a simpler way: every decidable partial
applicative morphism A <o B factors through ¢ in a maximal way.

Theorem 5.2.10. Let f: A ~—o B be a decidable partial applicative morphism
and consider the function rep’ : BA — DB from Definition .

(i) rep’ is a partial applicative morphism BA <o B that satisfies repf o i ~ f.

(ii) Moreover, rep’ is the largest such partial applicative morphism, i.e., if
g: BA <o B satisfies gi ~ f, then g < rep/.

Proof. (i) If @ € (BA)#, then « is representable w.r.t. id 4, so by Lemmai),
a is also representable w.r.t. f, i.e., repf(a) N B# # (). Now assume, without
loss of generality, that f preserves the order on the nose. Then it is readily
seen that rep/ also preserves the order on the nose. Let f preserve application
up to t € B#, and let d € B# be a decider for f. For j = 0,1, we define
p; = tp; € B¥, where p; is some element of f(p;) N B#, so that: if pja < d,
then p’-f(a) C f(a'). Similarly, we may define unit’” € B# such that unit’- f(a) C
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f([a]), and we set ext’ = N zy.t(tex)y € B¥, where e € f(ext) N B¥, so that
ext'- f([av, . an-1]) - £(a') € f([ags- ., an_1,a)).

Using the fixpoint operator in B#, we may construct an element T € B#*
such that:

Txyv =< if d(pj(av)) then p)(xv) else Txy(ext'v(y(p}(zv)))).

If o, 8 € BA and a € A are such that afS(a) |, then analogously to the proof
of Theorem we find that T - rep” () - rep? (B) - f([a]) € f(aB(a)). We
conclude that rep/ preserves application up to A*zyz.Tzy(unit'z) € B#.

For a € A, we have:

(rep’ 0 i)(a) =rep’(a) = {be B |Vd' € A(b- f(d') C f(a))}.

Now it is easy to see that k € B¥ realizes f < rep/ o, and if j € f(i) N B#,
then \*z.2j € B# realizes repf o4 < f. So we indeed have rep/ o ~ f.

(ii) Suppose we have g: BA — B such that gi ~ f. Assume, without loss of
generality, that g preserves the order on the nose, and suppose that g preserves
application up to ¢’ € B#. Moreover, let ro,r; € B¥ realize gi < f and f < gi
respectively. Now construct an element p € A# such that:

e p-[[z]] < pT(pLi);
o p-llzyl] <ply;
o p-[lz,yl, 2] <pT(pT2),
If p € (BA)# is defined by p(z) ~ px, then it is readily verified that pad(r) <

aa) for all @« € BA and a,x € A. In other words, we have paa < a(a).
Let ¢ be an element from g(p) N B#. Now we claim that the element s :=
Nay.ro(t' (t'qr)(riy)) from B¥ realizes g < rep/.

Let o € BA and a € A such that a(a)l, and consider b € g(a) and ¢ € f(a).
Then ric € gi(a) = g(a), which yields that ¢'(¢'qb)(r1c) € g(paa) C g(a(a)) =
gi(a(a)). This gives sbe < ro(t'(t'qb)(r1¢)) € f(a(a)), so we can conclude that
s-g(a)- f(a) C f(a(a)). Since this holds for all @ € dom «, we can conclude
s-g(a) Crepf (a), as desired. O

Note that, by Lemma [2.2.10(ii), rep’ is decidable, since f is decidable.

Remark 5.2.11. The largest part of the proof of Theorem i) consists
of showing that rep/ preserves application up to a realizer. For f = id4, this
is Lemma For f = 15, this follows from Lemma [5.2.4 But of course,
Lemmal5.2.4)is stronger, because it also asserts that this realizer does not depend
on the &.

Corollary 5.2.12. Let f: A —o B be a decidable partial applicative morphism.
Then:

{a € BA| « is representable w.r.t. f}
is a filter on BA.
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Proof. The set in the corollary is dom™ (rep/). O

Since i: A — BA is c.d., we know in particular that it is decidable. This
means we can extend the construction A — BA to decidable partial applica-
tive morphisms f: A —o B, by defining Bf: BA o BB as rep'2/. By The-
orem this yields a ‘lax’ 1-functor in the sense that idgy < Bid4 and
Bg o Bf < B(gf). In fact, Proposition [5.2.13(i) below says that the first of
these inequalities is always an isomorphism. Note that there is no obvious way
to extend B to inequalities between morphisms. Indeed, if f,g: A <o B are
decidable and satisfy f < g, then this does not give any means of comparing
rep/ (@) and rep?(a), for a € BA.

Proposition 5.2.13. Consider i: A — BA.
(i) We have rep’ ~ idga.

(i) The morphism i has a right adjoint j: BA «—o A in OPCAp which satisfies
ji ~ idA.

In particular, there is a local geometric morphism RT(BA) — RT(A).

Proof. (i) Since idg o i = i, Theorem [5.2.10| tells us that idsa < rep’. For the
converse inequality, construct an r € A% such that:

o r-[z] < pL[i];

o r-[x,ug,...,u;] < if pou; then pT(pru;) else pL[i,z,...,x].
——

7+1 times

If p € (BA)¥ is defined by p(a) ~ ra, then pB(a) < Ba(i) for all a € A and

—

B € BA. Now suppose that 3 € rep‘(a), that is, fa < «a(a) for all a € A.
Then pB(a) =< Ba(i) = oz/(g)(i) ~ afa), so pB < a. We conclude that p realizes
rep’ < idga, as desired.

(ii) Let j = rep!da: BA +o A. Then by Theorem [5.2.10(i), we have ji ~ id 4.
This yields iji ~ i, so by Theorem [5.2.10[ii), we get ij < rep’ ~ idga, which
completes the proof of (ii).

The final statement follows from Corollary O

Remark 5.2.14. Now we can see that the inequality ¢ < rep’ in Theo-
rem [5.2.10] cannot, in general, be an isomorphism. Indeed, if that were the
case, then in the proof of Proposition [5.2.13] we could conclude that ij ~ idga,
and thus that ¢ and j constitute an equivalence of PCAs. By the remark fol-
lowing the proof of Theorem this means that j is an arrow of OPCA. In
particular, j is total, so every function in BA has a representer. Now take A to
be a (nontrivial) discrete PCA. Then the partial function 4 — A4 sending an
element of A to the total function it represents (if any), is surjective. But by
Cantor’s theorem, such a surjection cannot exist.
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Since idg4 < rep?, every a € BA has a representer w.r.t. i. On the other
hand, since we also have rep’ < idg4, any function that is representable w.r.t. i
(i.e., has a representer w.r.t. i in (BA)#) must already be in (BA)#. So we see
that ¢ creates no new representable functions. This also follows from the fact
that 7 has a retraction, along with Lemma [5.1.4{i).

In Example [5.1.20, we saw that a function 8 € BA is representable w.r.t.
ta: A — Ala] iff the identity on A is a morphism of PCAs A[fS] — Ala]. Using
the machinery developed in this section, we can give a succinct description of
the set of all such 5. Note that, since « is an element of BA, we can construct
the PCA BA[a] as in Definition The identity on BA is a morphism of
PCAs BA — BA|a], which we will denote by ¢/, in order to distinguish it from
to: A— Alal.

Proposition 5.2.15. Let a € BA.
(i) We have rep‘a® ~ /..

(ii) There is a morphism of PCAs iy : Ala] — BA[a], which has a right adjoint
Ja: BA[a] —o Ala] in OPCAp, satisfying jaia ~ ida[q)-

(iii) We have:
{B € BA | B is representable w.r.t. 1o} = (BA[a])# = (BA)¥ U {a}).

Proof. (i) Note that rep‘«f(3) = rep’(8), since the application map on BA[a] is
the same as on BA. So this follows immediately from Proposition [5.2.13(i).

(ii) By (i), we get that 3 € BA is representable w.r.t. /i iff 3 € (BA[a])?.
In particular, « itself is representable w.r.t. ¢/ i, so by the universal property of
Ala], we obtain i, : Ala] — BA[a] such that igte >~ ().

A—r s BA
LJ % JU

Ala] <2 BA[q

(2

Now define ko : BA <o Ala] as rep*~, so that k,i ~ t,. Since « is representable
W.I.t. Lo, we have that a € dom™ (k, ), which means that k, factors through ¢/,.
So we obtain j,: BA[a] <o Ala] such that j,t), ~ ko. Now we get:

Jolata = Jalhi =~ kot =~ L4,
which yields jaia >~ idg[o). Moreover, we have:
TaJalnt = iakal ™ igle = Lhi.
Now Theorem [5.2.10(ii) yields injat), < rep‘a’ ~ ¢, and from this, we can
conclude that iqjo < idgafe]. This concludes the proof of (ii).
(iii) Since i, has a retraction j,, Lemma i) implies that 8 € BA is

representable w.r.t. ¢, iff 8 is representable w.r.t. intq =~ tLi. By (i), the latter
holds iff 8 € (BA[a])#, as desired. O
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In particular, there is a local geometric morphism RT(BA[a]) — RT(Ala]).
Recall from Examplel4.4.38|that RT(BA[a]) ~ RT(BA)/1,, where 1, € RT(BA)
is the subterminal assembly given by |1,| = {*} and E;_(*) = |{a}. Now the
diagram

A—— BA

| I

Ala] —=s BA[a]

of c.d. morphisms of PCAs yields the following diagram of toposes:

RT(BA)/1, —— RT(BA)

l l

RT(Ala]) —— RT(A)

Thus, if we cover RT(A) by RT(BA), and then take the open subtopos corre-
sponding to the subterminal 1,,, then we can retrieve RT(A[a]) as the image of
the composite geometric morphism RT(BA)/1, — RT(BA) — RT(A).

5.3 The second-order case

The paper [FvO16] constructs, for each absolute discrete PCA A and partial
function F': A4 — A, a new PCA A[F] which is the ‘universal solution’ to mak-
ing F representable (but see also Remark below). In this section, we ge-
neralize this construction to relative and some ordered PCAs. It turns out that
the construction of A[F] does not work for all ordered PCAs. Therefore, in Sec-
tion [5.3.1] below, we will introduce a condition on A, called chain-completeness,
with the following two properties.

e Every discrete PCA is chain-complete, and for every chain-complete PCA
A and F € Bo A, we can construct A[F]. Thus, our construction is at least
as general as the construction in [FvO16].

e If A is chain-complete, then so is BA. This will allow us to apply the
construction of A[F] to BA in Section below (provided A is chain-
complete).

5.3.1 Chain-completeness and fixpoints

In [FvO16], the PCA A[F] is obtained as a special case of the construction
Ala], where « can be thought of as a ‘master function’ that encodes all relevant
information about F'. Here, we employ the same strategy, but we show that the
required « is an instance of a more general construction, namely of fizpoints in
BA. First, let us give the definition of chain-completeness.
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Definition 5.3.1. Let A be a PCA.
(i) A chain in A is a non-empty subset X C A that is totally ordered by <.

(i) A is called chain-complete if every chain X C A has a greatest lower
bound in A, which we will denote by A\ X.

Now suppose that A is chain-complete.

(#ii) A morphism of PCAs f: A — B is called chain-continuous if, for every
chain X C A, the set f(X) ={f(a) € X | a € X} has a greatest lower

bound \ f(X) in B, and \ f(X) = f (A X).

(iv) An applicative morphism f: A — B (resp. partial applicative morphism
f+ Ao B) is called chain-complete if f: A — TB (resp. f: A— DB) is
chain-complete.

Remark 5.3.2. (i) In Definition i) above, we exclude the empty chain
because we do not, in general, want to require that A has a top element.

(ii) If f: A — B is chain-complete, then f must preserve the order on the
nose. Indeed, if o’ < a, then {a,a’} is a chain with greatest lower bound
a/, and we get f(a') = f(a) A f(d), ie., f(a') < f(a). In particular, if
X C Ais a chain, then f(X) C B is a chain as well.

(iii) As usual, the notion of chain-completeness is invariant across the inclu-
sions OPCA — OPCA1 < OPCAp. We leave the proof to the reader.

(iv) In Definition iv) above, the condition that f is chain-complete can (in
both cases) be written as: if X is a chain in A then f (A X) =,cx f(a).

Example 5.3.3. Every discrete PCA A is chain-complete, since the only chains
are singletons. Thus, every morphism of PCAs A — B is trivially chain-
continuous if A is discrete.

Example 5.3.4. Note that DA is always chain-complete since DA has all
greatest lower bounds, given by intersections. On the other hand, T'A is never
chain-complete if A is not semitrivial. Indeed, the chain (J{m | m > n})nen
has empty intersection.

Example 5.3.5. Suppose that A and B are chain-complete PCAs. If we have
morphisms of PCAs A — B — C that are both chain-continuous, then their
composition A — C is chain-continuous as well. Similarly, if we have chain-
continuous A — B <o C, that is, a morphism of PCAs followed by a partial
applicative morphism, then their composition A <o C in OPCAp is chain-
continuous as well. On the other hand, the composition of two chain-continuous
partial applicative morphisms A «o B <o C'is not necessarily chain-continuous.
For example, let A be a PCA that is not semitrivial, and consider the partial
applicative morphism f: DA <o A given by f(«) = «, and the unique morphism
of PCAs g: A — 1. Both are clearly chain-continuous, but their composition
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gf: DA +- 1 is not. Indeed, we have gf(a) =1 if a # 0, and gf(0) = 0. Now
consider again the chain ({{m | m > n}),en that has empty intersection. Then

Nuso9f(H{m | m >n}) =N,501 =1# 0 = gf(0), so gf does not preserve
the greatest lower bound of this chain.

The following two lemmata explain the relation between chain-completeness
and the constructions from Section [£.2

Lemma 5.3.6. Let A be a chain-complete PCA. Then BA is chain-complete as
well, and i: A — BA is chain-continuous.

Proof. Let X be a chain in BA. We define its greatest lower bound 8 = A X as
follows. First of all, we set:

dom 3 = U doma={ae€ A|3aec X(a(a)l)}.

acX

For a € dom 3, the set X, = {a(a) | « € X and a € doma} is a chain in A.
This means we can define 8(a) = A\ X,. We leave it to the reader to show that
B € BA, and that 3 is indeed the greatest lower bound of X.

The final statement says that, for a chain X C A, we have A .y a = /T;(
This is easy to show. O

Lemma 5.3.7. Consider a decidable partial applicative morphism f: A <o B,
where A is chain-complete, and consider repf : BA «—o B as in Theorem|5.2.10,
Then f is chain-continuous if and only if rep? is chain-continuous.

Proof. By Example[5.3.5] and Lemma [5.3.6] we know that f is chain-continuous
if repf is chain-continuous. Conversely, suppose that f is chain-continuous. We
recall that, since f preserves the order on the nose, repf does so as well. If X
is a chain in BA with greatest lower bound 8 = A X, then this already implies
that rep’ (8) € N,cx rep’ (o). So it remains to show the converse inclusion,
i.e., if b € B represents all « € X w.r.t. f, then b also represents  w.r.t. f.

So suppose that b € B represents all a« € X w.r.t. f, and consider an
a € dom . Then a € dom « for at least one o € X, which implies that b- f(a) is
defined. Moreover, for all @ € X such that a € dom «, we have b-f(a) C f(a(a)).
This yields:

b-f@c () fla@)=7(Aa(a)|aeX andaedoma}) = f(5(a)),
acX
acdom o

as desired. |

The most important feature of chain-complete PCAs that we can construct
fixpoints of total, order-preserving functions on BA. The construction of such a
fixpoint proceeds by transfinite recursion; in order to handle the limit case, we
need chain-completeness.
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Proposition 5.3.8. Let A be a chain-complete PCA and let F € BBA be a
total function. Then F has a largest fixpoint in BA.

Remark 5.3.9. It may seem strange that we construct a largest fixpoint, since
recursion theory is usually concerned with smallest fixpoints. However, we
must keep in mind that ‘largest’ should be read w.r.t. the ordering on BA as in
Definition If A is discrete, then this is the reverse subfunction relation,
so what we identify as the largest fixpoint would usually indeed be called the
smallest fixpoint.

Proof of Proposition[5.3.8 Note that a total function F € BBA is simply an
order-preserving function BA — BA. We define, recursively, an ordinal-indexed
sequence (o )ycorp of elements of BA, as follows:

e «p is the empty function (;
o a1 = Fay);
o ay = /\,.,axif A>0is a limit ordinal.

Using transfinite induction and the fact that F' is order-preserving, one may
show that ay > a5 for v < 6, and that the sequence is well-defined. By car-
dinality considerations, the sequence must stabilize at some point, i.e., there
exists an ordinal ¢ such that F(a¢) = a¢. Then a¢ is a fixpoint of f. Moreover,
if 8 € BA is an element satisfying 8 < F(8), then by transfinite induction, it
easily follows that 8 < o, for every ordinal 7, and in particular, 8 < a¢. We
conclude that oy is the largest fixpoint of F'. O

As in classical recursion theory, we expect that, if the operation F' is ‘com-
putable’, then so is its largest fixpoint. We will obtain this as a corollary of the
following more general proposition.

Proposition 5.3.10. Let A be a chain-complete PCA, and let f: A —o B be
decidable and chain-continuous. If F € BBA is a total function which is repre-
sentable w.r.t. rep’ : BA «—o B, then the largest fixpoint of F is representable
w.r.t. f.

Proof. Let z € B¥ be the guarded fixpoint combinator as in Construction
We will show that, if » € B# represents F w.r.t. rep/, then zr (which is always
defined) represents the largest fixpoint of F' w.r.t. f. Clearly, this implies the
proposition, since zr € B#.

So suppose that 7 € B# represents F w.r.t. rep/. Define the sequence
(cvy)veorp as in the proof of Proposition so that the largest fixpoint of
F is a¢ for some ordinal (. We will show, using transfinite induction, that
zr € rep/ () for all ordinals 4. In particular, we will have zr € rep/ (),
which means that zr represents a¢ w.r.t. f, as desired.

First of all, we have rep/ (o) = rep” () = B, so the base case is trivial. Now
suppose that zr € rep/ (a,) for a certain ordinal v. Then r(zr) € rep/ (F(ay)) =
rep/ (ay11), i-e., (zr) represents a., 41 w.r.t. f. Now, since zrb < r(zr)b for all
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b € B, it follows that zr also represents a1 w.r.t. f, ie., zr € repf(a7+1).
Finally, Lemma tells us that rep’ is chain-continuous, from which the limit
case immediately follows. This completes the induction. O

Corollary 5.3.11. If A is chain-complete and F' € BBA is total and represen-
table, then the largest fixpoint of F' is representable as well.

Proof. Let « be the largest fixpoint of F. Recall from Proposition i) that
rep’ ~ idgs. Thus, if we apply Proposition to i: A — BA, we see: if
F is representable, then F is representable w.r.t. rep’, which means that « is
reprentable w.r.t. i. But we know that an element of BA is representable w.r.t.
1 iff it is representable, so « is representable, as desired. O

Remark 5.3.12. There is an alternative proof of Corollary [5.3.11| that does not
require Proposition Suppose that F' € BBA is represented by p € (BA)#,
and let & € BA be the largest fixpoint of F. If y € (BA)# is the unguarded
fixpoint combinator (Construction , then yp is defined since BA is a
total PCA. Moreover, we have yp < p(yp) < F(yp), which suffices to ensure
that yp < a. Since yp € (BA)¥, we see that a € (BA)# as well, i.e., a is
representable.

5.3.2 Adjoining a type-2 functional

In this section, we construct, for each chain-complete PCA A and F' € ByA,
a morphism of PCAs tp: A — A[F] such that F' is representable w.r.t. ¢p.
Moreover, if F' is representable w.r.t. a decidable and chain-continuous partial
applicative morphism f: A o B, then f will factor through tr. Note that, if
A is discrete, then A4 is the set of minimal elements of BA, which means that
every partial function A4 — A will be in BoA. Thus, [FvO16, Theorem 3.1] is
a special case of our result.

The construction we give of A[F] is essentially the same as in [FvO16], even
though this is not obvious at first glance. First, let us explain the main idea
behind the construction. If F' € By A is to be representable, then there should
exist an element r € A¥ such that 7 - rep(3) C |{F(B)} for all 3 € dom F.
We can force such an element to exist by adjoining a function o € BA (as
in Section that maps elements of rep(3) to elements below F(3). Then
we would like to say that tn: A — A[a] works as desired, but this does not
follow. The reason is that now we need an r € A[a]# such that r ®, rep*=(3) C
HF(B)}, and rep*~(3) is not the same as rep(3). Indeed, the whole point of the
construction A[a] is to make more functions representable! The main idea is to
extend « to a new function o/ that maps elements of rep* () to elements below
F(f). Then we are again faced with the same problem, so we do this transfinitely
many times, until the function « stabilizes. This will be the ‘master function’
we alluded to at the beginning of Section Of course, we have already
seen a construction using transfinite recursion in the previous section, in order
to construct greatest fixpoints in BA (Proposition [5.3.8). We will obtain the

‘master function’ « as a special instance of this fixpoint construction.
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Theorem 5.3.13. Let A be a chain-complete PCA and let F € B A. Then
there exists an o € BA such that:

(i) F is representable w.r.t. 1o,: A — Ala];

(ii) if f: A —o B is decidable and chain-continuous, and F is representable
w.r.t. f, then f factors, essentially uniquely, through tq.

Proof. Define the total function F' € BBA by:
F(B)(a) i~ F(z +— a®sz) ~ F((x ~ az) - B) for f € BA,a € A,

where the second Kleene equality is a consequence of the remark below Table[5.1]
First, let us show that F' is well-defined. If b < a, then we have (z — bx) <
(x — az) by axiom (A) from Definition so (z+—bx) f<(xrax)-p
by axiom (A) for BA. This yields

F(B)(b) = F((z = bx) - B) < F((& = az) - ) = F(B)(a),

since F' € By A, so we have F(8) € BA. Moreover, if v < 3, then (z — az) -y <
(x +— az) - f by axiom (A) for BA, which gives:

F(y)(a) = F((z = az) -7) 2 F((z = az) - B) = F(8)(a),

again since ' € ByA. This means that F(y) < F(3), so we indeed have
F € BBA. We take « to be the greatest fixpoint of F as provided by Proposi-
tion B.3.8

(i) Suppose that a € rep*=(f3) for some 3 € BA. Then a ®, = < B(x) for all
x € A, which means that (z — a ®4 z) < . This gives:

ala) ~ F(a)(a) ~ F(z—a®,z) = F(B),

since F' € By A. Thus, for all 5 € dom F and a € rep*=(8), we have a(a) < F(f),
which implies that any representer of « w.r.t. ¢, also represents F' w.r.t. to. Since
« is, by construction, representable w.r.t. ¢, this completes the proof of ().

(ii) By Theorem it suffices to show that « is representable w.r.t. f.
And Proposition tells us that, in order to show this, it suffices to show
that F' is representable w.r.t. rep’ : BA < B.

Let s € B¥ represent F w.r.t. f, i.e., s-rep/ (8) C f(F(B)) for all 3 € dom F.
Moreover, let repf: BA <o B preserve application up to t € B#. Finally, let
r € B* be an element such that 7 - f(a) € repf (x — ax) for all a € 4; e.g., we
can take r = \*zy.t'zy, where f preserves application up to ¢’ € B#. Now we
claim that the element g := \*zy.s(t(ry)x) of B# represents F w.r.t. rep/.

Let § € BA and a € A such that F(3)(a) |, and consider b € rep/(8) and
¢ € f(a). By definition, we have rc € rep/(z + az), which yields t(rc)b €
rep/ ((z + ax) - B). Since (z — ax)- B € dom F, this means that s(t(rc)b) is
defined and an element of f(F((z — az)-8)) = f(F(3)(a)). This gives that gbc
is also defined and an element of f(F(8)(a)). Since this holds for all ¢ € f(a),
we can conclude that gb € rep/ (F(3)) for all b € repf (), as desired. O
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Definition 5.3.14. Let A be a chain-complete PCA, let F € By A and suppose
that o € BA is as in Theorem |5.3.15. Then we denote t1o: A — Ala] by
tp: A— A[F].

Remark 5.3.15. As observed in Example[5.1.10} the representability of type-2
functionals is not ‘transferable’ along partial applicative morphisms. Thus, if
we have a partial applicative morphism A[F] <o B, it does not follow that F' is

representable w.r.t. the composition A %+ A[F] —o B. This means that we do
not have an analogue of Corollary [5.1.18in the type-2 case.

In Proposition i)7 we saw that rep’ ~ idg4, where i: A — BA. Infor-
mally, we might say that elements of BA and their representers (w.r.t. i) can
be used interchangably. An analogous result holds if we take a finite extension
of the filter (BA)# (Proposition 1)) The following example shows that
the same is not true if we equip BA with an oracle.

Example 5.3.16. Let A be Kleene’s first model ;. Consider the Kleene
functional E: NN — N defined by:

Bla) = 0 ?aneN(a(n):O
1 if 3n € N(«a(n) > 0),
which is in By/Cq sinie\its domain consists of total functions. Now define £ €

BBK, by E(a) = E(a) for a: N — N. We will now proceed to show the
following things about the composition:

K1 -5 BKy —£ BK,[E).

1. Every total function N — N which is representable w.r.t. ¢4, is an arith-
metical function, that is, its graph is an arithmetical relation.

2. The composition ¢ ;i does not factor through vg: K1 — Ky [E].
3. The type-2 functional E is not representable w.r.t. ¢ .
4. We have 1z, # repat.

For the first claim, we first observe the following. Since the range of E is
simply {0, 1} C (BK,)#, we have (BIC;L[E])# = (BK1)# (by Remark|5.1.16(ii)),
which is the upwards closure of the set of partial recursive functions. Now, if
a, B € BKy are partial functions, then the graph of a8 € BA can be defined
arithmetically in terms of the graphs of o and [, as is immediate from the
definition of application in BK;, and the fact that the relation p.(m) = n
is arithmetical. Moreover, if a € BK; and i € N, then E(a) = 7 can be
expressed arithmetically in terms of ¢ and the graph of . And we know that
all the combinators in (BK;)# can be taken to be partial recursive functions,
and therefore have arithmetically expressible graphs. Finally, we assume for
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simplicity that the booleans in (BK;)* are simply 0 and 1, which we can do,
because i: K1 — BK; is decidable. Now suppose that a: N — N is represented

L\
w.rt. tpi by p € (BICl[E}) = (BK1)#. Then we can assume without loss

of generality that p is partial recursive. Since « is total, we have a(a) = b iff
pOpa =>b Wesee that p ©p @ = b holds iff there exists a coded sequence
u = [ug,...,Un—1] of natural numbers, such that:

e for all i < n, we have

po(p- [&,ﬂo, . ,’l)i_l}) = () and E (pl(p- [d,ﬁo, . ,’l)i_1])) = Uy,

e polp-|a, i, ... 0n_1]) =1 and p1(p- [@, G, . . ., ln_1]) = b.

By the remarks above, this is an arithmetical relation in terms of a and b, so
we see that ‘a(a) = b’ is arithmetical, as desired.

The paper [FvOT6] shows that, when Theorem is applied to Kleene’s
first model and a type-2 functional NN — N, the result is equivalent to Kleene’s
original notion of computability w.r.t. a higher-order functional [Kle59]. In par-
ticular, the functions N — N which are representable w.r.t. g are precisely the
hyperarithmetical functions ([EvQ16], Corollary 4.1). Now, if ¢ ;i were to factor
through tg, then every hyperarithmetical function N — N would be represen-
table w.r.t. 1zt as well. But claim 1 tells us that this is not the case, since there
are certainly total hyperarithmetical functions which are not arithmetical (e.g.,
the characteristic function of a hyperarithemtical set which is not arithmetical).

Claim 3 immediately follows from claim 2 by Theorem [5.3.13]

Finally, in order to prove claim 4, suppose for the sake of contradiction that
o € (BKy)# realizes the inequality rep's’ < .. Moreover, let p € (BK;)#

represent I/ w.r.t. ¢5. Then it easily follows that
Na.p©Op (0 0p7) € (BK)*

represents £ w.r.t. ¢z o4, which is not the case by claim 3.

5.4 The third-order case

In this section, we investigate to what extent Theorem and Theorem|5.3.13
can be extended to type-3 functionals. We obtain a partial generalization: for
every chain-complete PCA A and ® € B3 A, we may obtain a morphism of PCAs
to: A — A[®D] such that:

1. ® is representable w.r.t. tg;

2. if ® is representable w.r.t. a decidable and chain-continuous f: A +o B,
then f factors through te in a mazimal (but not unique) way.

Moreover, we show that, under certain conditions, the set of functions from BA
that are forced to be representable if ® is representable, form a finite extension
of (BA)¥.
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5.4.1 Adjoining a type-3 functional

As the authors of [FvO16] mention as well, there is a fundamental obstacle
when studying the representability of type-3 functionals. A PCA A can only
‘talk about’ first-order functions by means of their representers. So as far as A is
concerned, only functions that have a representer really exist. For representing
type-2 functionals F', this is not a problem. On the contrary, is makes the task
easier: if a (type-1) function a does not have a representer, then we do not have
to worry about oo when constructing a representer for F. In other words, from
the point of view of A, the domain of F' may look smaller than it actually is.
This was also the reason why the ‘master function’ o in Theorem had to
be constructed using a transfinite recursion.

For a third-order functional ®, on the other hand, the second-order func-
tionals serve as inputs, and A may lose information contained in these inputs.
More precisely, there may be two distinct F, G € By A such that ®(F) and ®(G)
do not have a common lower bound, but which are the same from the point of
view of A. Let us give an example of this phenemenon.

Example 5.4.1. Again, we let A be Kleene’s first model ;. Consider the
third-order functional ® € B3k, defined by dom ® = {F € Bok; | NN C dom F'}
and
if N(F(a) =0);
B(F) = 0 1 Yo € NN( () = 0);
1 if 3a € NV (F(a) > 0).

We leave it to the reader to check that ® is actually in B3/C;. Recall from
Example [5.1.10| the functional F': N¥ — N defined by

Fla) 0 if « is recursive;
Q) =
1 otherwise.

Consider also the function G € ByK1, which is 0 on total functions, and un-
defined on non-total functions. Then we clearly have ®(F) = 1 # 0 = ®(G).
However, from the point of view of K1, the functionals F' and G are equal, and
both are represented by an index for the constant 0 function.

This does not yet exclude the possibility that, as for the second-order case,
we can construct a partial function a: N — N such that ® becomes representable
w.r.t. to: K1 — Ki[a]. However, we can adjust the example above to show that
this is impossible as well. Define F,,: NY¥ — N by:

Fa(ﬁ) =

0 if B is representable w.r.t. tq;
1 otherwise.

Once again, we have ®(F,) = 1 # 0 = ®(G), but Ki[a] cannot distinguish
between F,, and G. This means that ® is not representable w.r.t. to ¢, for any
partial function a: N — N.

This example shows that a construction as in the previous section, where
A[F] was of the form A[a] for an o € BA, simply cannot work in the type-3
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case. On the other hand, the example above would clearly be blocked if we move
to a PCA in which every (partial) function has a representer. Fortunately, we
have such a PCA, namely BA. This leads to the following ‘lax’ result about the
type-3 case.

Theorem 5.4.2. Let A be a chain-complete PCA and let ® € B3 A. Then there
exists a c.d. and chain-continuous morphism of PCAs 1g: A — A[®] such that:

(i) @ is representable w.r.t. Lg;

(it) if f: A —o B is decidable and chain-continuous, and ® is representable
w.r.t. g, then there exists a largest f': A[®] —o B such that 1o ~ f.

Proof. Define ® € ByBA by:
®(F)(a) ~ ®(a > F(a)(i)) for F € BBA and a € A.

Observe that if ®(F) is defined, then it is a constant function. We leave it to
the reader to check that ® is well-defined and in BoBA. If F € By A, then we

define F' € BBA by F(a) ~ F(a). Since

B(F)(a) ~ d(a — F(a)(i) = B(a — F(a)) ~ &(F),

we have ®(F) ~ <I>/(F) for all F' € By A.
We will show that tp: A — A[®] can be taken to be the composition:

A—" 4 BA —"*  BA[D]

For the sake of readability, we will just write ¢ for ¢, and we write © for the
application in BA[®].

(i) By construction, ® is representable w.r.t. ¢ by means of a p € (BA[®])#.
Let 0 € (BA[®])* realize ¢ < rep*®’, so that ¢ ® a represents a w.r.t. ¢ o4 for
all a € BA. We will show that

T=Nrpo (Nyro(ooy) e (BAD)*

represents ® w.r.t. t o 7. In order to establish this claim, let F' € By A be such
that ®(F') is defined, and suppose that 8 € BA represents F' w.r.t. ¢ o4. First
of all, we claim that (\*y.z ® (o ® y))[3/z] represents F' w.r.t. t. In order to
show this, let v € BA be such that F'(a) is defined. Then:

—

(\yz o (0coy)B/r]oa= e (0oa) 2 Fla) = F(a),
since o ® « represents « w.r.t. ¢t o and 3 represents F' w.r.t. + o 4. This proves

the claim, and it follows that

—

TOB 2P (Nyao(c@y)B/z]) = ®(F) = d(F),
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as desired.

(ii) Suppose that s € B# represents ® w.r.t. f, and consider rep/: BA «o
B. Since rep/ is also decidable and chain-continuous, it suffices to show that
® € ByBA is representable w.r.t. rep/. Then Theorem tells us that rep”
is also a morphism f’: BA[®] o B, and Theorem implies that this is the
largest partial applicative morphism by means of which f factors through ¢ o 1.
We will show that

t = XNazk(s(\'y.zyj)) € B?

represents ® w.r.t. rep’, where j is any element from f(i)NB#. So let F € BBA
be such that ®(F) is defined, and suppose that b € B represents F w.r.t.
repf. First of all, we claim that (A\*y.zyj)[b/z] represents o +— F(a)(i), as a
second-order functional on A, w.r.t. f. In order to prove the claim, let o € BA
be such that F(«)(i) is defined, and let ¢ € B represent o w.r.t. f. Then
c € rep/ (a), which means that bc is defined and in rep/(F(a)), i.e., bc repre-
sents F(a) w.r.t. f. Since j € f(i), this yields that ((A\*y.zyj)[b/x])c < bej
is defined and an element of f(F(«)(i)), which proves the claim. Now we
find that s((Ny.zyj)b/z]) € f(P(a — F(a)(i))), so it follows that tb =
k(s ((ANy.zyj)[b/x])) is defined and represents ®(F). In other words, we have
th € rep! (®(F)), as desired. O

The strategy for proving Theorem is clearly different from the strategy
we used in the type-2 case. The analogous strategy for the type-2 case would
be that we try to make F' € By A representable by adjoining F' € BBA to BA,

where F' is again defined by F'(o) ~ F(a). But we already know that this does
not work: Example is a counterexample. Therefore, it may seem strange
that a similar strategy does work for the type-3 case! Let us explain why this
is so. In the type-2 case, the task was to construct, given a representer of F, a
representer of F. Now, a representer of F' eats representers of a € BA, whereas
a representer of F' wants to eat « itself. So the task really is to effectively
find, given a representer of «, the function « itself so that it can be fed to the
representer of F. But the problem is exactly that, once we add an oracle to
BA, this may no longer be possible, as we saw in Example[5.3.16] On the other
hand, the converse construction obviously does work, i.e., given a representer of
F, we can construct a representer of F'. Since we constructed ® in such a way

that <I>(F) o~ <I>/(F), this is precisely what we need to construct a representer for
®, given a representer for d. We can also put this as follows: in the business
of representing ®, the representers of type-2 functionals F € By A are not the
things to be constructed, but the things that are given. Unfortunately, this also
reveals that the current strategy can probably not be pushed beyond the type-3
case, because in the type-4 case, things will be ‘the wrong way around’ againE

I This is related to an observation from [Lon05 Section 4.3.3]. Game semantics for PCF
suggests that there exists a ‘duality’ or ‘parity’ in higher-order computation, according to
whether a functional serves as an oracle or as an input to an oracle.
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5.4.2 The first-order effect

As we mentioned in Remark the construction of A[F] is not quite as
universal as the construction of Afa], since the representability of type-2 (or
higher) functionals fails to be transferable along partial applicative morphisms.
Still, the PCA A[F] is ‘universal’ in the sense that Theorem [5.3.13(ii) gives us
an essentially unique factorization. On the other hand, Theorem from the
previous section does not express a genuine ‘universal property’ of A[®] in this
sense, because item (ii) only says that f factors through i in a largest way.
We might say that this is only a ‘lax’ universal property (cf. Theorem .
Nevertheless, Theorem allows us to derive an interesting corollary about
type-3 functionals, which concerns the representability of (type-1) functions.
If we add an oracle a € BA to A, then inevitably, other functions become
representable as well. In Proposition iii), we gave a precise description
of the set of functions that are representable w.r.t. ¢o: A — Ala]. Using the
following definition, we can formulate this result in a slightly different way.

Definition 5.4.3. Let A be a PCA and let F' € B, A for somen > 0. We
define FOE(F) as the set of all a € BA with the following property: if F is
representable w.r.t. a decidable partial applicative morphism f: A — B, then «
is also representable w.r.t. f. We call this set FOE(F) the first-order effect
of F.

The following corollary now immediately follows from Theorem [5.1.17] and

Proposition [5.2.15((ii).
Corollary 5.4.4. For a € BA, we have FOE(a) = (BA[a))# = ((BA)# U{a}).

Note that Corollary is slightly more conceptual than Theorem
and Proposition [5.2.15(iii), because we do not need to mention the construc-
tion of 14: A — Ala] in the formulation of Corollary (Of course, the
construction of ¢ : A = Ala] is used in the proof of Corollary [5.4.4})

By Example we have FOE(a) = (BA[a])* for all a € A. Now let us
consider the type-2 case. We will only treat the case where A is a discrete PCA,
so that we do not need to worry about chain-completeness and -contintuity. If
F € By A, then from Theorem [5.3.13] we can deduce that FOE(F) is of the form
(BA[a])#, where « is the function provided by the theorem. The goal of this
section is to derive an analogous result or the type-3 case. First, we need the
following definition.

Definition 5.4.5. Let A be a discrete PCA and let f: A ~o B be a partial
applicative morphism. Then f is called discrete if f(a) N f(a') = O for every
two distinct a,a’ € A.

If f: A — B is a morphism of PCAs, then of course, we say that f is
discrete if f is discrete when considered as an arrow of OPCAp. Explicitly, this
means that f(a) and f(a’) should not have a common lower bound for disctinct
a,a’ € A.
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The following describes a general class of morphisms of PCAs for which the
set of all B € BA that are representable w.r.t. f is of the form (BA[a])#. The
proof is based on the proof of [EvO14, Theorem 2.12].

Lemma 5.4.6. Let A be a discrete PCA and let f: A — B be a morphism of
PCAs which is discrete and c.d. Then there exists an o € BA such that:

{B € BA| B is representable w.r.t. f} = (BA[a])¥.

Proof. Throughout the proof, we view f as a projective applicative morphism
A — B. By Theorem [2.3.14] f has a right adjoint g: B +o A in OPCAp. We
claim that the partial applicative morphism gf: A << A is discrete. Suppose
we have a,a’ € A such that ¢gf(a) Ngf(a’) is nonempty. Since f preserves the
order up to a realizer, it follows that fgf(a) N fgf(a’) is also nonempty. Since
f g, we have fgf ~ f, so this implies that f(a)N f(a') is nonempty, so a = o’
by the discreteness of f.

Now define the partial function a: A — A by: a(a) = o' if and only if
a € gf(a’), which is well-defined by the discreteness of gf. If a(a)l, then
f(a) C fgf(a(a)), soif s € B¥ realizes fgf < f, then s also represents a w.r.t.
f. This means that f factors through ¢, by means of an f': A[a] — B, which is
defined simply by f’(a) = f(a) for a € A. Now f’ is projective and c.d. as well,
so it has a right adjoint ¢’': B o Ala] in OPCAp. Moreover, we recall from
Proposition [5.1.15] that ¢, has a right adjoint k: A[a] — A in OPCAy satisfying
Lak ~ idA[a].

A

Since f = f’i,, we also have g ~ kg’ by taking right adjoints, hence 1,9 ~
takg’ ~ ¢’. This means we can assume without loss of generality that ¢'(b) =
g(b) for all b € B. In particular, ¢'f'(a) = gf(a) for all a € A. But now it
is clear that any representer r € (A[a])# of a will also realize the inequality
g'f" < idpe). Combining this with f - ¢’ yields ¢'f’ ~ id4[o). This implies
that 3 € BA is representable w.r.t. f ~ f’1, if and only if § is representable
w.I.t. Lo; if and only if 3 € (BA[a])#, by Proposition iii). O

Remark 5.4.7. In the notation of the proof of Lemma we know that
Lo 1 k yields a geometric inclusion RT(A[a]) < RT(A). Moreover, we have
shown that f’ - ¢’ is a coreflection, meaning that RT(B) — RT(A[a]) is local.
Thus, under the hypotheses of Lemma the image topos of the induced
geometric morphism RT(B) — RT(A) is again a realizability topos, namely
RT(Ala]); cf. [FvO14, Theorem 2.12].

Corollary 5.4.8. Let A be a discrete PCA and let ® € B3 A. Then there exists
an o € BA such that FOE(®) = (BA[a])¥.
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Proof. By Theorem [5.4.2] FOE(®) consists of all functions 8 € BA that are
representable w.r.t. tp. Thus, the statement follows from Lemma if we
can show that t¢ is discrete and c.d. Both are easy to check. O

Note that, even though Corollary [5.4.8] concerns discrete PCAs, the theory
of ordered PCAs is indispensable for proving it.



Samenvatting

In deze scriptie onderzoeken we de interactie tussen twee deelgebieden van de
wiskunde: abstracte recursietheorie aan de ene kant, en categorie- en toposthe-
orie aan de andere kant. Hieronder leggen we kort uit wat deze vakgebieden
inhouden, op welke manier ze bij elkaar komen, en wat onze bijdrage is.

Recursietheorie en PCAs

Recursietheorie bestudeert de notie van een berekening of algoritme. Om deze
begrippen vatbaar te maken voor wiskundig onderzoek, is het noodzakelijk een
precieze, wiskundige, niet-intuitieve formulering van deze begrippen te hebben.
Meerdere voorstellen voor zo'n precieze notie van algoritme werden in de jaren
’30 gedaan door, onder anderen, Church, Kleene en Turing, en al snel bleken
hun noties equivalent te zijn. Preciezer gezegd, een parti€le functie op de na-
tuurlijke getallen is berekenbaar volgens één van deze noties van algoritme, dan
en slechts dan als hij berekenbaar is volgens de andere noties. Dit leidde tot
een wiskundig robuuste definitie van een berekenbare parti€le numerieke functie;
zo’'n berekenbare functie noemen we recursief.

In 1945 gebruikte Kleene de theorie van recursieve functies om een inter-
pretatie te geven van intuitionistische rekenkunde, d.w.z., rekenkunde waarin
de wet van de uitgesloten derde niet wordt aangenomen. Deze interpretatie
staat bekend als de realizeerbaarheidsinterpretatie. Met behulp van deze inter-
pretatie bewees Kleene het volgende resultaat. Als een uitspraak van de vorm
Vx 3y A(z,y) bewezen kan worden in intuitionistische rekenkunde, dan bestaat
er een recursieve functie f: N — N zodanig dat A(n, f(n)), voor ieder natuurlijk
getal n. Dit resultaat bevestigt en onderstreept het constructieve karakter van
intuitionistische rekenkunde.

In deze scriptie zullen we recursietheorie vanuit een abstracter oogpunt be-
naderen. In 1975 formuleerde Feferman, voorbouwend op werk van Staples, de
notie van een partieel combinatorische algebra (PCA). Een PCA is een verza-
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meling, waarvan we de elementen tegelijktijd beschouwen als algoritmes en als
argumenten die aan deze algoritmes gegeven kunnen worden. Om een PCA te
vormen, moet de verzameling voldoen aan een aantal axioma’s die het compu-
tationele karakter van de verzameling uitdrukken. Zodanig kunnen we PCAs
beschouwen als algemene modellen van berekenbaarheid, en de bestudering van
PCAs als abstracte recursietheorie.

De PCAs die we in deze scriptie beschouwen zijn relatief en geordend. In een
relatieve PCA specificeren we een deelverzameling A% C A bestaande uit die al-
goritmes die daadwerkelijk uitgevoerd kunnen worden. De elementen buiten A%
stellen weliswaar ook algoritmes voor, maar zijn niet implementeerbaar. Laten
we een voorbeeld geven: er is een relatieve PCA Ko, genaamd Kleene’s tweede
model, bestaande uit alle functies N — N. In dit model codeert iedere functie
N — N een algoritme. Echter, alleen de algoritmes gegeven door recursieve
functies zijn daadwerkelijk uitvoerbaar. In dit model bestaat IC;‘7£ dus slechts
uit de recursieve functies. In een geordende PCA is er op de verzameling A een
partiéle ordening gedefinieerd. Hierbij kunnen we ‘kleiner’ lezen als ‘geeft meer
informatie’. Laten we opnieuw een voorbeeld bekijken: er is een geordende PCA
Ty bestaande uit alle niet-lege deelverzamelingen van de natuurlijke getallen.
De ordening is hier de voor de hand liggende ordening ‘deelverzameling van’.
Intuitief kunnen we als volgt over dit model denken. We werken met een on-
bekend natuurlijk getal z, en een niet-lege verzameling o« € TK; geeft ons de
informatie dat = behoort tot «. Hier geldt inderdaad dat, hoe kleiner de verza-
meling « is, hoe meer informatie we hebben over het onbekende getal x.

Categorietheorie

Een categorie is een abstracte wiskundige structuur bestaande uit objecten en
afbeeldingen tussen deze objecten. In deze scriptie zal een speciaal soort cate-
gorie, de topos, in het bijzonder van belang zijn. Grothendieck introduceerde in
de jaren '50 de notie van een topos van schoven, tegenwoordig ook wel bekend
als een Grothendieck topos. Rond 1970 isoleerden Lawvere and Tierney een aan-
tal ‘elementaire’ eigenschappen van Grothendieck topossen; een topos met deze
eigenschappen noemen we een elementaire topos. De kwalificatie ‘elementair’
wil zeggen dat de eigenschappen geformuleerd kunnen worden in zuivere cate-
gorietheorie, zonder te verwijzen naar verzamelingenleer. Er bestaat een rijke
theorie van elementaire topossen en afbeeldingen tussen deze, de zogeheten ge-
ometrische morfismen. Bovendien kan iedere elementaire topos gezien worden
als een model voor hogere-orde intuitionistische wiskunde.

De effectieve topos en realizeerbaarheidstopossen

Rond 1980 construeerde Hyland een elementaire topos gebaseerd op de the-
orie van recursieve functies, de zogeheten effectieve topos. Deze topos is geen
Grothendieck topos, en geeft dus een nieuw model van intuitionistische wiskunde.
Het blijkt dat rekenkunde in de effectieve topos precies overeenkomt met Kleene’s
interpretatie. Preciezer gezegd, een uitspraak van de rekenkunde is waar in de
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effectieve topos dan en slechts dan als deze waar is volgens Kleene’s realizeer-
baarheidsinterpretatie. Op deze wijze kan de effectieve topos gezien worden
als een natuurlijke uitbreiding van Kleene’s realizeerbaarheid naar hogere-orde
rekenkunde.

Zoals hierboven gezegd is de constructie van de effectieve topos gebaseerd
op de theorie van recursieve functies. De constructie werkt meer algemeen
als men uitgaat van een abstract model van berekenbaarheid, d.w.z., van een
partieel combinatorische algebra. Op deze wijze kan men voor iedere PCA A
een realizeerbaarheidstopos construeren, en deze noteren we met RT(A4). De
algemene theorie van deze constructie werd uitgewerkt door Hyland, Johnstone
en Pitts.

Tussen (realizeerbaarheids)topossen kunnen we verschillende soorten afbeel-
dingen bekijken: functoren en de hierboven genoemde geometrische morfismen.
Voor PCAs ligt een geschikte notie van morfisme minder voor de hand. In
1994 introduceerde Longley de notie van een applicatief morfisme tussen PCAs,
en toonde aan dat deze applicatieve morfismen precies corresponderen met
bepaalde functoren tussen de bijbehorende realizeerbaarheidstopossen. Op deze
wijze kan de constructie van de realizeerbaarheidstopos als functorieel worden
beschouwd.

Onderzoeksvragen

In deze scriptie bestuderen we de constructie die aan een relatieve geordende
PCA A de realizeerbaarheidstopos RT(A) toekent. In het bijzonder onder-
zoeken we hoe constructies in categorietheorie zich manifesteren in de wereld
van abstracte recursietheorie, en wvice versa. Laten we een voorbeeld bekij-
ken. Van twee realizeerbaarheidstopossen kunnen we het product nemen; is dit
wederom een realizeerbaarheidstopos? Anders gezegd, als A en B PCAs zijn, is
RT(A)xRT(B) dan ook van de vorm RT(C) voor een PCA C? Als het antwoord
ja is, kunnen we dan een beschrijving geven van deze ‘onderliggende’ PCA C?
En als het antwoord nee is, kunnen we dan een andere beschrijving geven van
de productcategorie RT(A) x RT(B)? Deze vragen worden in dit proefschrift
beantwoord. Daarnaast zullen we analoge vragen beschouwen met betrekking
tot het nemen van slices van realizeerbaarheidstopossen.

In het bovenstaande voorbeeld gaan we uit van een constructie uit de cat-
egorietheorie, maar we kunnen ook juist beginnen met een constructie uit de
(abstracte) recursietheorie. In deze scriptie bestuderen we berekeningen met
orakels en hogere-orde functionalen. FEen orakel voor een PCA A is een partiéle
functie « op de verzameling A. Een berekening met orakel o kan een willekeurig
(maar eindig) aantal keer een a € A kiezen en de waarde van a(a) opvragen
bij het orakel, alvorens met een eindantwoord te komen. Dit geeft een nieuw
model van berekening, oftewel een nieuwe PCA, die genoteerd wordt met Afa].
Daarnaast bekijken we een PCA BA bestaande uit alle mogelijke orakels voor
A. De PCAs A[a] en BA werden eerder bestudeerd door Van Oosten.

Een hogere-orde functionaal op A is een partiéle functie waarvan de argu-
menten geen elementen van A zijn, maar functies op A. Bijvoorbeeld, een type-2
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functionaal op A is een partiéle functie die orakels op A als argumenten neemt,
en elementen van A als uitvoer heeft. Een type-3 functionaal neemt vervolgens
type-2 functionalen als argumenten, enzovoorts. We onderzoeken of een ‘orakel-
PCA’ zoals Ala] geconstrueerd kan worden voor zulke hogere-orde functionalen;
dit zet voort op onderzoek door Faber en Van Oosten.

Overzicht van de scriptie

De introductie (Hoofdstuk [1) bevat een uitgebreidere historische inleiding van
het onderzoek, en een meer technische samenvatting van de hoofdresultaten van
de scriptie.

In Hoofdstuk [2| definiéren we relatieve geordende PCAs en drie verschillende
noties van een morfisme tussen PCAs. Dit resulteert in drie verschillende ca-
tegorieén van PCAs, die we noteren met OPCA, OPCAr en OPCAp. De twee
laatstgenoemde worden verkregen als een Kleislicategorie voor een monade op
OPCA. Tot slot bestuderen we het bestaan van producten en coproducten in
OPCA en OPCA~.

In Hoofdstuk [3| introduceren we de realizeerbaarheidstopos RT(A) en be-
handelen we de belangrijkste eigenschappen van RT(A). Daarnaast verfijnen
we Longley’s analyse van de correspondentie tussen applicatieve morfismen en
functoren tussen realizeerbaarheidstopossen. Meer specifiek bestaat onze bij-
drage erin dat we Longley’s resultaten veralgemeniseren naar relaticve PCAs.

In Hoofdstuk [ behandelen we het vraagstuk van het nemen van producten
en slices van realizeerbaarheidstopossen. Hiertoe introduceren we een veralge-
meniseerde notie van PCA, die we IPCA noemen, geinspireerd op het werk van
Stekelenburg. Daarnaast leggen we een verband tussen producten in OPCA en
OPCA7, en het nemen van producten van realizeerbaarheidstopossen over de
categorie van verzamelingen.

Ten slotte, in Hoofdstuk bestuderen we berekeningen met orakels en
hogere-orde functionalen. Eerst introduceren we de orakel-PCA Ala] en de
PCA van orakels BA. Vervolgens onderzoeken we berekening met betrekking
tot type-2 functionalen, en type-3 functionalen.
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Application map,
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Applicative transformation, [131
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BHK interpretation, [2]
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Case distinction,
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fixpoint,
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Verschmelzungsfunktion,
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Completion,

Computationally dense
morphism of IPCA,
morphism of PCAs,
(partial) applicative

morphism,

Constant object (functor), [73]
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Context, [77]

Decidable
morphism of PCAs,
(partial) applicative
morphism, [52]
Decider
of morphism of PCAs,
of (partial) applicative
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applicative morphism,
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Direct image, [I00} [102]
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of morphism of PCAs, [0]
of (partial) applicative
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Relational predicate, [82]
Representable
function,
functional, [I65]
Reverse tracker, [74]

Scott’s graph model,
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Sequence,
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