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CANCER - ORIGIN, PATHOGENESIS AND TREATMENT 
Cancer represents a group of chronic diseases characterized by abnormal cell growth 
and the ability to invade or spread to other parts of the body1. This acquired capacity of 
cancer cells to sustain growth, invade and disseminate, is considered one of the most 
important hallmarks of cancer, in contrast to benign tumors which have limited and 
localized growth capabilities1-3. 

Approximately 90% of all cancers occur due to somatic mutations caused by 
environmental factors and lifestyle4. Therefore, cancer is usually a late onset disease 
that requires stepwise acquisition of multiple genetic alterations, which progressively 
lead to transformation of a normal cell into a malignant one. Although all cancer 
cells arise from a single malignant cell, individual cancer cells continue to acquire 
additional genetic lesions, resulting in a continuous process towards heterogeneity and 
selection of cancer clones with higher proliferative potential or better adaptation to the 
circumstances in order to survive. Over time, new clones may outgrow existing cancer 
clones and become the dominant population of cells in the tumor2,3,5. 

Treatment of cancer is dependent on tumor type and on individual characteristics 
of a patient. In the past, cancer treatment was largely based on the use of multidrug 
chemotherapy regimens, radiation therapy and surgery6. The discovery of frequently 
altered genes and their roles in cancer initiation and progression during the last 
decades have facilitated the introduction of innovative therapies7-9. Novel treatment 
options, improved risk stratification, and cancer screening programs have all resulted 
in improved survival rates in the last 40 years10,11. However, due to acquired resistance 
and other causes for treatment failure, cancer still remains one of the leading causes of 
death7,12-17. Treatment resistant cancer cells often originate from a minor clone present 
already at the time of diagnosis. These (sub)clones harbor genetic lesions which 
maintain cell fitness during treatment and can eventually cause treatment failure13,18-20. 
Therefore, better understanding of the mechanism driving acquisition of genetic lesions 
associated with treatment resistance, as well as their interactions within the cancer 
cells and with the host genome, may lead to better therapeutic strategies, improved risk 
stratification and overall survival. 

Cancer can occur in all age groups, but generally is a late-onset disease. Therefore, 
the prevalence increases with age, particularly after the age of 50, and in children cancer 
is very rare5,21. Despite low prevalence, cancer represents the second most common 
cause of death in children after injuries22. The majority of childhood cancers are caused 
by spontaneous somatic mutations which are acquired early in life, sometimes even 
before birth, and, less often, heritable germline cancer predisposing mutations. However, 
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1childhood cancers do not have the strong link with lifestyle and environmental risk 
factors as adult cancers do, and cancers that are most common in adults, e.g., lung, 
colon, breast, are rare in childhood. The most common pediatric malignancies include 
cancers of blood, brain and liver, with acute lymphoblastic leukemia being the most 
prevalent5,21. 

PEDIATRIC ACUTE LYMPHOBLASTIC LEUKEMIA
Once Alfred Velpeau in 1827 and Rudlof Virchow in 1845 gave the first accurate 
descriptions of leukemia, this disease was considered incurable23,24. More than a century 
later, the Boston pathologist Sidney Farber reported the first “temporary remissions” in 
acute pediatric leukemia induced by aminopterin, marking the advent of chemotherapy 
for this disease24-26. Already in 1961 Emil Frei, Emil Freireich and James Holland 
introduced the first combinatorial treatment of methotrexate and mercaptopurine, 
achieving complete remission in 59% of the children25,26. Only a year later Pinkel and 
colleagues introduced the first structured clinical trial with a novel multidrug therapy 
approach “total therapy” in St. Jude research hospital. One of these trials (Total Therapy 
Study V, 1967-1968) achieved remarkable results, with almost half of all the enrolled 
patients in a remission. The success of the St. Jude treatment protocols inspired similar 
worldwide clinical trials, paving the way for further improving the outcome over the 
years25,26. In 1975, another milestone was achieved with the first risk group stratification 
based on clinical parameters, e.g., white blood cell count, age and central nervous system 
involvement27,28. In parallel, research on the biology of leukemia was ongoing, which led 
to recognition of the first cytogenetic parameters for risk stratification, e.g., the presence 
of the specific chromosomal translocations and aneuploidies29,30. Finally, introduction of 
the first cell surface antibodies for T cell differentiation in 1981 marked a new era in 
risk group stratification with the introduction of minimal disease monitoring (MRD)31. 
Improvements in molecular genetics technology and introduction of Next Generation 
Sequencing (NGS) approaches has opened new horizons in the research of leukemia 
biology with the discovery of novel genetic alterations32-36, and paved the way for the 
introduction of novel targeted therapy in leukemia treatment, e.g., tyrosine kinase 
inhibitor (imatinib) for the treatment of BCR-ABL1-positive leukemia37. 

Modern treatment of ALL consists of three phases: remission induction, consolidation 
(intensification) and maintenance (continuation). The complete course of all three 
treatment phases lasts 2-3 years, depending on the treatment protocol. Based on the 
clinical and genetic features, patients are stratified into different treatment arms, with 
the goal to provide more intensive treatment for patients with less favorable prognostic 
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features and to limit the treatment-associated toxicity for patients with good prognosis38,39. 
Male gender, infancy or adolescence, central nervous system (CNS) involvement, a T-cell 
immunophenotype, white blood cell (WBC) count at diagnosis higher or equal to 50x109/l 
are associated with less favorable prognosis of ALL. Minimal residual disease (MRD), 
representing the burden of leukemic blast in 103 - 106 cells at the days 33 and 78 from 
the start of the treatment, can accurately predict patients at risk to develop relapse and 
represents another important treatment stratification marker. 

Remission induction is composed of corticosteroids (prednisone and 
dexamethasone), vincristine, asparaginase and anthracyclines administered over 4-6 
weeks. This treatment phase is able to induce remission in over 90% of patients and 
is followed by intensification which consists of cyclophosphamide, cytarabine and 
mercaptopurine. Finally, maintenance treatment relies on the use of mercaptopurine, 
methotrexate (sometimes combined with vincristine) and dexamethasone pulses. 
Although most of the drugs contained in the backbone of ALL therapy have been used 
for more than five decades, dosage and applications were adjusted based on clinical 
studies involving different clinical characteristics, MRD response, genetic subtypes, 
pharmacogenomic studies as well as their tolerability and toxicity39-43. 

Clinical characteristics of pediatric ALL 
ALL is the most common pediatric malignancy accounting for up to 20% of all cancers 
diagnosed in children44. Currently, on average 130 children per year are diagnosed with 
ALL in the Netherlands45. Perturbation of normal lymphocyte development leads to 
uncontrolled proliferation of immature cells, called blasts. These cells have impaired 
function and their infiltration of healthy bone marrow causes anemia, neutropenia and 
thrombocytopenia due to suppression of healthy cells46. Furthermore, infiltration of 
secondary organs can give rise to a variety of additional clinical signs and symptoms, 
which complicates diagnosis and treatment47-49. 

Origins and differentiation of B- and T-cells 
In order to understand how leukemia develops, we need to understand normal immune 
cell development. B- and T-cells originate from aorta-gonad-mesonephros, a descendent 
of mesoderm, which colonizes developing fetal liver early in embryogenesis. Differentiated 
hematopoietic stem cells (HPSC) are slowly seeded from fetal liver into the bone marrow, 
which becomes the main compartment of hematopoiesis in adulthood, where the 
development of B- and T-cell lymphoid progenitors takes place50-52 (Figure 1.1). 
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Figure 1.1. Schematic representation of hematopoiesis.

B-cells form an essential component of the adaptive humoral immune system, through 
secretion of antibodies, cytokines and antigen presentation. Early B-cell development 
is bone marrow dependent, and includes successful VDJ recombination of heavy chains, 
as well as VJ rearrangement of the light chains by RAG1/2 (recombination activated 
gene). Upon successful rearrangement of μ heavy chains, immature B-cells leave 
the bone marrow in order to inhabit secondary lymphoid organs where the B-cells 
mature50,53. These B-cells represent a population of cells that express clonally diverse 
immunoglobulin (Ig) receptors with the ability to recognize diverse epitopes50,53. 
Antigen recognition-mediated B-cell activation causes changes in gene expression, 
activation of AID (activation-induced cytidine deaminase), and clonal proliferation. AID 
activation drives localized somatic hypermutation (SHM) in variable Ig loci resulting in 
formation of clones each carrying different Ig receptors with affi nity for a wide variety of 
epitopes. B-cells that show high affi nity for recognized epitopes further proliferate and 
differentiate into antibody secreting plasma cells. These antibodies retain the unique 
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ability to recognize the same antigen epitopes as B-cell Ig receptors and, together 
with cytokines produced by activated B-cells, they represent essential components of 
adaptive and humoral immunity50,53.

Unlike B-cells, the development of early T-cell progenitors is thymus dependent. 
Upon commitment and differentiation, common lymphoid progenitors (CLP) leave the 
bone marrow and inhabit the thymus where RAG-mediated VDJ recombination of the 
T-cell receptor (TCR) α and β chains occurs. Following successful rearrangement and 
expression of TCRs, T-cells undergo positive and negative selection, a process during 
which the majority of maturing T-cells die. T-cells that survive this process represent 
naive T-cells, which are then released into the bloodstream54-56. 

Figure 1.2. Schematic representation of leukemogenesis with key genetic alterations affecting maturation 
and differentiation pathways. Genes frequently affected with gain of function (GoF) alterations are shown in 
blue, genes with loss of function (LoF) mutations in red, while genes that can be affected with both GoF and 
LoF alterations are shown in purple.
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1During B- and T-cell differentiation, maturation and proliferation, several 
transcription factors become selectively active in different developmental stages. For 
example, EBF1, PAX5, TCF3, FOXO1, PU1 and IKZF1 (Ikaros) play a key role in the commitment 
and differentiation of B-cells, whereas the transcription factors FOXP3, GATA3, TCF7, 
BCL11B, RUNX1 and ERG determine T-cell development50,51,53,55-58. Dysregulation of these 
transcription factors can lead to altered B- and T-cell development and function, and 
eventually lead to malignancies, including leukemia59 (Figure 1.2). 

Leukemogenesis
The pathophysiology of pediatric ALL is complex and involves acquisition of multiple 
genetic lesions in a stepwise process, leading to transformation of lymphoid blasts 
into malignant cells60. Genomic alterations, such as aneuploidies (hyperdiploidy and 
hypodiploidy) and chromosomal translocations (e.g., ETV6-RUNX1, TCF3-PBX1, BCR-
ABL1, and multiple rearrangements involving KMT2A), are early mutually exclusive 
events in leukemia development and are referred to as primary alterations. In a subset 
of cases none of the well-defined primary genomic alterations can be identified, and 
this subgroup has been referred to as B-other39,61,62 (Figures 1.2 and 1.3). The primary 
alterations can have prenatal origin, but are usually not sufficient to drive development 
of the disease62,63. Therefore, pre-leukemic cells need to acquire additional driving 
alterations in oncogenes and tumor suppressor genes in order to overcome the intrinsic 
proliferative block and increase their potential for clonal expansion62,63 (Figure 1.2). 
Furthermore, although not all secondary alterations directly contribute to disease 
development, they may be associated with treatment resistance18,19,33. The first genome-
wide studies unraveled remarkable genomic heterogeneity of pediatric ALL32,33,64 and 
revealed the importance of B-cell differentiation-specific transcription factor alterations, 
like PAX5, IKZF1, and EBF1, in disease development33,65. Deletions of the IKZF1 gene 
were even shown to be an important predictor for treatment failure in various clinical 
studies65-72, leading to specific adaptations in some treatment protocols66,73. 

With improvements in the NGS technologies over the past decade, new ALL 
subtypes emerged, particularly from the B-others group. First among them were BCR-
ABL1-like cases, characterized by heterogeneous genomic alterations and an expression 
profile similar to what is observed in the BCR-ABL1-positive ALL72,74. Later studies 
unraveled a plethora of novel primary alterations, including MEF2D-BCL9, ZNF384 and 
NUTM1 gene rearrangements, and even new groups characterized by heterogeneous 
genomic alterations and expression profiles similar to one of the known subtypes, e.g., 
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ETV6-RUNX1-like, KMT2A-like and ZNF384-like75-79 (Figure 1.3). Identification of these 
novel entities in ALL have prognostic and therapeutic significance and may aid further 
treatment optimization, as was previously demonstrated with BCR-ABL1-like cases80-82. 
Furthermore, improved detection of secondary alterations revealed their association 
with primary alterations, e.g., CREBBP and RAS pathway mutations with hyperdiploidy83,84, 
as well as their importance for relapse development, e.g., CREBBP, TP53, WHSC1, KRAS, 
NRAS, NT5C218,19,83,85-88.		

Figure 1.3. Frequency of primary driving alteration in pediatric ALL. Adapted from Inaba H. et al. , 2013, 
Iacobucci I. et al. , 2017, and Inaba H. et al. , 202039,61,89. Alterations previously assigned to the B-other subgroup 
are underlined.

With improved genetic characterization of ALL, certain somatic alterations were found 
to be associated with less favorable prognosis, which could explain previous association 
with observed clinical factors. Subtypes such as ETV6-RUNX1 and high hyperdiploid ALL 



General introduction and outline of the thesis

17   

1(>50 chromosomes) have better prognosis compared to hypodiploid (<44 chromosomes), 
KMT2A-rearranged, BCR-ABL1 and BCR-ABL1-like leukemias, which are generally 
associated with worse prognosis in different treatment protocols32,38,39,41,46,61,66,90,91. 
Acknowledging distinct clinical and biological features of different ALL subtypes, 
special international treatment studies have been initiated for leukemias for the more 
rare leukemia subtypes, with particularly unfavorable prognosis, e.g., infant ALL and 
BCR-ABL1-positive ALL41,42,82,92.

Figure 1.4 - Kaplan-Meier curves depicting event free and overall survival in four consecutive Dutch 
Childhood Oncology Group (DCOG) ALL treatment protocols (ALL7-ALL10). Analyses were limited to patients 
between 1-16 years of age. Older patients, infants, BCR-ABL1-positive and patients with Down syndrome 
are excluded from the analyses because of the large differences in inclusion criteria between compared 
protocols. Furthermore, the high-risk patients who were treated according to institutional protocols (patients 
with T-ALL treated in Amsterdam Medical Center and cases with CNS involvement treated in ErasmusMC) in 
the protocols ALL7, ALL8 and ALL9, were not included in the analyses. Figure courtesy of DCOG.

Improved genetic characterization of ALL over the past decades has led to 
discovery of new alterations with unfavorable prognosis, like BCR-ABL1-like subtype 
and IKZF1 deletions, resulting in the treatment adjustment for cases with a high risk 
for treatment failure. In addition, introduction of novel therapeutics, such as first- 
and second-generation tyrosine kinase inhibitors (e.g., imatinib and dasatinib) in the 
treatment of BCR-ABL1-positive ALL, further underpinned the importance of targeted 
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treatment and the need for improvements in genetic characterization of ALL. Novel 
genetic findings, improved diagnostic and personalized treatment protocols, coupled 
with introduction of the new drugs, resulted in a gradual improvement of overall 
survival of patients diagnosed with ALL, now reaching 90% in developed countries40,93 
(Figure 1.4). In the remaining 10% of the cases, treatment is failing due to relapse, 
refractory disease, infections or drug toxicity39,40,46,93. The main goal of further clinical 
trials remains reduction of treatment intensity, in order to alleviate treatment associated 
toxicity, while still achieving stable long-term remission.	

Relapse in ALL
Relapse is the most common cause of treatment failure in childhood ALL, and outcome 
among these cases remains poor94. Treatment of relapsed ALL is complicated, because 
these leukemic cells have survived the exposure to multiple drugs and, therefore, require 
the use of more intensive therapeutic options compared to frontline ALL treatment, 
including harsher chemotherapeutic therapy regimens and HPSC transplantation. 
Furthermore, novel experimental therapies are often initially tested at this stage 
of disease. Examples are targeted drugs like Janus kinase inhibitors, or proteasome 
inhibitors, and the immunotherapy-based modalities using the CD19/CD22 inhibitors 
blinatumomab, inotuzumab ozogamicin, or chimeric antigen receptor (CAR) T-cell 
therapy94-96. However, relapse treatment often bears risks of increased toxicity94 and may 
cause severe long-term side effects97,98, indicating the need to develop better treatment 
strategies in order to prevent relapse of ALL. 

Relapse development is a complex process which may be influenced by several 
factors, including therapy-induced side-effects, interactions between leukemic cells and 
local microenvironment in which tumor cells reside, and genomic aberrations present 
in leukemic cells. Toxicity and infections caused by the treatment may lead to relapse 
due to treatment interruptions or suboptimal levels of chemotherapeutics. Furthermore, 
recent studies have shown that leukemic cells may be protected from the treatment by 
the surrounding microenvironment99, e.g., by hiding in a protective extramedullary niche 
where drugs commonly used in the treatment cannot penetrate, like the eye and the 
testis100,101, or through the formation of tunneling nanotubes102-104. These relapses may 
develop into systemic disease long after treatment has finished, or present as localized 
relapses. The extraordinary heterogeneity of ALL, represented by a genetically diverse 
population of leukemic cells that constantly competes for the resources, may give rise 
to a relapse by enabling survival of leukemic clones during treatment18,19,85. Clones with 
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1genetic composition that enable treatment resistance, or increased cell fitness, may 
be present already at the time of diagnosis, as has been shown for clones with IKZF1 
deletions19,65,66,72,105,106. Furthermore, they may be present even on a low, subclonal level, 
as is the case with clones harboring mutations in WHSC118,19,86 and CREBBP18,19. In other 
cases, genetic alterations associated with treatment resistance may not be present 
already at the time of diagnosis, but are actually acquired during treatment87,88, and 
in some cases by frequently used chemotherapeutics, e.g., NT5C2 and TP53 mutations 
during treatment with thiopurines87,107. Despite good initial treatment response, 
leukemic cells with the newly acquired NT5C2 mutations can grow out, giving rise to a 
very early, on-treatment, relapse. Furthermore, genetic polymorphisms, that affect drug 
metabolism, are frequently retained in the leukemic cells and can lead to treatment 
resistance108. Overall, relapsed ALL is a heterogeneous disease, both with respect to the 
mechanisms leading to its development as well as the genomic landscape. Therefore, 
relapses should not be considered as a single entity. 

Clonal evolution in ALL
Neoplasms like ALL are genetically heterogeneous and can thus be considered as a large 
population of cells which are genetically subtly different. Genetic alterations can be 
beneficial for neoplastic cells by inducing cellular expansion and/or increasing fitness 
of leukemic clones, or they could confer evolutionary disadvantages leading to their 
contraction2,18,20,87,88,109. However, the majority of genetic alterations are neutral for the 
clone, meaning that they do not confer an evolutionary advantage or disadvantage110,111. 
Nevertheless, these alterations, known as passenger or hitchhiker mutations, together 
with primary and secondary disease drivers, increase the pool of genetic diversity within 
the tumor, and may improve tumor adaptation under changing environmental conditions, 
e.g., during chemotherapy18,19,65,105,112,113. Following the Darwinian model of survival of the 
fittest, these cells may proliferate during treatment, giving rise to a relapse18,19. 

Although the idea of cancer as an evolutionary problem is not new, historically 
little attention has been given to it. One of the first studies that interrogated the 
tumor heterogeneity in ALL made use of multiplex fluorescence in situ hybridization 
(FISH) probes. This approach enabled the elucidation of genetic heterogeneity at the 
cellular level and revealed a remarkable diversity in evolutionary trajectories between 
individual patients109, very similar to what had been observed in epithelial cancers114-117. 
Introduction of the first genome-wide technologies improved our understanding of the 
mutational landscape in cancer118. Albeit limited in their resolution to capture tumor 
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heterogeneity, in combination with backtracking studies, they gave the first insights into 
the composition of rare populations of cells in ALL and the influence of treatment on 
clonal selection106. In order to overcome the problem of examining the genetic landscape 
of predominant clones, many studies in recent years have focused on comparing tumor 
evolution by obtaining spatio-temporally separated samples, e.g., samples at diagnosis 
and relapse18,19,88, samples from primary tumor and metastasis119,120, or even by employing 
limited dilution xenotransplantation of primary tumor samples121,122. These studies 
unraveled unprecedented intra-tumor heterogeneity and even very complex patterns 
of tumor evolution. Finally, the advent of single cell approaches now offers promise for 
ultimate resolution to study tumor complexity at the cellular level, by capturing even 
the rarest cell populations and bottlenecks preceding the rise of complex (epi)genetic 
landscapes in ALL. 

The use of NGS approaches, such as whole exome and whole genome sequencing 
(WES and WGS) enabled the identification of a number of pathogenic mutations 
driving development, progression and therapy resistance in ALL18,19,33,65,68-70,72,75,83,86-

88,113,123,124. Studies examining similarities and differences between diagnosis and 
relapse have identified several key alterations frequently enriched in relapsed ALL, 
including alteration affecting RAS pathway genes (KRAS, NRAS, PTPN11, FLT3), chromatin 
remodelers (CREBBP, EP300, WHSC1), glucocorticoid receptor gene NR3C1, transcription 
factor IKZF1 and purine hydrolase NT5C218,19,65,66,72,83,85,86,113,123,124. Alterations in many of 
these genes were frequently found to be preserved between diagnosis and relapse, 
while others, e.g., NT5C2, are almost exclusively found in relapse samples88,113. 

MUTATIONAL PROCESSES IN ALL
The somatic DNA sequence alterations in ALL genomes can find their origin in several 
endogenous and exogenous mutational processes or repair defects. The “scars'' or 
“footprints” of these alterations may be very typical for the underlying mechanisms, 
which can give highly relevant insights into the etiology of leukemia development. For 
example, many of the (focal) copy number aberrations that have been observed in ALL 
show hallmarks of cryptic RAG-mediated recombination. Physiological function of RAG 
recombinase involves double strand DNA breaks near RSS sequences in order to initiate 
V(D)J recombinations and represent evolutionary trade-off between genome integrity 
maintenance and adaptive immunity. Due to their aberrant activity, RAG recombinase 
family enzymes initiate double strand DNA breaks near cryptic RSS motifs, thus causing 
acquisition of secondary leukemia-driving lesions in genes essential for normal B-cell 
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1development, such as IKZF1 deletions125-127. 
Another example is a very complex genomic rearrangement, intrachromosomal 

amplification of chromosome 21 (iAMP21), which arises through breakage-fusion-
bridge (BFB) cycles128,129. BFB is a mutational mechanism caused by double strand break 
of telomeres. Upon DNA replication, sister chromatids fuse in the G2 phase by non-
homologous end-joining, forming a dicentric chromosome. During mitosis, centromeres 
are being pulled in the opposite directions forming an anaphase bridge. Breakage of 
the anaphase bridge during cytokinesis once again results in a loss of telomeres at 
the end of the amplified chromosome, causing the cycle to repeat until the affected 
chromosome finally receives a telomere129-131. As with other mutational processes, BFB 
leaves a unique footprint, a fold-back inversion, which can be recognized by closely 
aligned read pairs that are in inverted orientation130.	

Similar to large chromosomal aberrations caused by BFB cycles or RAG 
recombinase activity, small mutations like substitution, insertions and deletions can 
also show typical patterns that can be linked to underlying mutational processes132-134. 
Historically, analysis of six single-base substitution types have unraveled simple 
mutational patterns in tumors, but showed full potential only after the revelation that 
adjacent 5’ and 3’ nucleotides also contribute to mutational rates in the genome132,134. 
Based on adjacent nucleotides, each of six possible single-base substitution types 
can occur in one of the 16 possible trinucleotide contexts, resulting in much higher 
complexity with 96 mutation possibilities. These 96 mutation possibilities represent 
footprints of underlying mutational processes, also known as single-base substitution 
(SBS) signatures132-134 (Figure 1.5). Mutational processes driving these signatures can 
be initiated by intrinsic factors, like aging and DNA repair defects, or environmental 
factors, like UV light exposure, or tobacco smoking. On the level of individual samples, 
the mutational profile may originate from several mechanisms, each represented by 
different SBS signatures, which indicates the presence of multiple distinct mutational 
mechanisms132-134. By comparing individual mutational profiles with known, curated 
profiles of SBS signatures the processes operative in individual samples can be 
identified. So far, more than 70 SBS signatures have been reported in COSMIC133. 

In addition to single-base substitution biases, some mutational processes can 
show bias for acquisition of other genomic alterations, e.g., small indels in mismatch 
repair deficiency, or for specific genomic regions. Combining this information allows the 
identification of mutational processes present in individual samples without previous 
knowledge of the individual environmental exposure or the presence of specific 
genomic lesions133. 
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Figure 1.5. Biases towards mutations occurring in specific trinucleotide contexts represent patterns which 
enable recognition of underlying biological processes driving mutagenesis. 

Mutational processes were intensively studied in different cancers, including 
pediatric ALL132,133,135,136. However, data about mutational mechanisms in the context 
of relapsed ALL remains limited and their better understanding may aid further 
improvement in treatment outcome.

OUTLINE OF THE THESIS
Despite improvements in the treatment of pediatric ALL over the past decades and 
the introduction of innovative treatment approaches, relapse still remains the leading 
cause of treatment failure among children with ALL, and the outcome of relapse is 
poor. Therefore, the aim of the work described in this thesis is to unravel the genomic 
background of relapsed ALL and to identify biomarkers that may be used for risk 
stratification and treatment adjustment. In chapter 2 we present a novel approach to 
reliably detect low-level mosaic mutations in leukemia samples and compare it with 
conventional DNA capture and sequencing techniques. We subsequently applied this 
approach in chapter 3 to a cohort of 503 Dutch ALL patients, in which we examine the 
clinical and prognostic relevance of subclonal alterations for relapse development. In 
chapter 4 we present genomic alterations in cases that develop a relapse already before 
the end of treatment and discuss our findings at the level of individual patients. In chapter 
5 we report on a comprehensive analysis of a large cohort of relapsed ALL patients, 
which was studied in collaboration with colleagues from the St. Jude Children’s research 
hospital and the University of Toronto. In this study we demonstrate that hypermutation 
is a frequent phenomenon in relapsed ALL and that different mutational mechanisms, 
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1sometimes in combination, can drive this hypermutation phenotype. In chapter 6 we 
present a strategy to study the spatial and temporal timing of these mechanisms in 
patients with multiple relapses and show that mutational mechanisms can be active 
during the entire process of leukemia development and progression, or switched on or 
off at later time points. Chapter 7 provides a general discussion of the work presented in 
this thesis, highlighting the impact of our findings as well as some future perspectives. 
Summaries of this thesis (in English, Dutch and Serbian) are provided in the appendix. 
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ABSTRACT
Pathogenic mutations in relapse-associated genes in pediatric acute lymphoblastic 
leukemia may improve risk stratification when detected at subclonal levels at primary 
diagnosis. However, to detect subclonal mutations upfront, a deep-sequencing approach 
with high specificity and sensitivity is required. Here, we performed a proof-of-principle 
study to detect low-level mosaic RAS pathway mutations by deep sequencing using 
random tagging-based single molecule Molecular Inversion Probes (smMIPs). The 
smMIP-based approach could sensitively detect variants with allele frequency as low as 
0.4%, which could all be confirmed by other techniques. In comparison, with standard 
deep-sequencing techniques we reached a detection threshold of only 2.5%, which 
hampered detection of 7 low-level mosaic mutations representing 24% of all detected 
mutations. We conclude that smMIP-based deep-sequencing outperforms standard 
deep-sequencing techniques by showing lower background noise and high specificity, 
and is the preferred technology for detecting mutations upfront, particularly in genes in 
which mutations show limited clustering in hotspots.
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INTRODUCTION
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Although 
long-term overall survival reaches 90% in most Western countries, relapse occurs in 
at least 10% of children with ALL1,2. Recent studies have demonstrated that relapses 
in pediatric ALL can arise from minor subclones present at diagnosis and genetic 
alterations identified at relapse can be traced back to subclonal levels in samples 
taken at diagnosis, sometimes in just a few percent of the tumor cells3-8. This raises 
the interesting possibility to use subclonal mutations in relapse-associated genes 
for upfront risk stratification at time of diagnosis and during treatment. To determine 
the prognostic value for risk of relapse of subclonal mutations in candidate genes, 
unselected cohorts of diagnosis samples need to be screened for (low-level) mosaic 
mutations.

Next-generation sequencing (NGS) provides the opportunity to rapidly sequence 
genes of interest at high read depth and commonly uses PCR-based strategies for 
targeted enrichment. The error rate introduced by most sequencing platforms as well as 
by the DNA polymerase during amplification is reasonably low and can be compensated 
by creating more sequencing depth. However, when applying this approach for the 
detection of low-level mosaic mutations, sensitivity and accuracy of variant calling is 
challenged9,10. Particularly when applying prospective screening of subclonal mutations, 
where mutation status and location is not known in advance, the reliable detection of 
mutations is problematic and validations are demanding. Therefore, it is essential to 
use an approach that minimizes sequencing errors and accurately quantifies subclonal 
burden of targeted genes of interests.

Molecular Inversion Probes (MIPs) have been used to perform targeted deep-
sequencing using multiplex targeted capture of selected genomic regions of interest11. 
Recently, this technology was adapted with single molecule tagging to enable the 
reliable detection of low-level mosaic mutations. This so-called single molecule 
Molecular Inversion Probe (smMIP) technology allows the clustering of reads amplified 
from the same template DNA molecule, which is subsequently used to generate single 
molecule consensus (smc) reads12. Variant calls derived from these smc-reads contain 
much lower per-base substitution error rates, hence creating higher specificity for 
detecting low variant allele frequency (VAF) mutations in targeted genes12. As such, 
this approach may be highly suitable for determination of clinically relevant low-level 
mosaic mutations in leukemia samples.

In this study, we aimed to develop a smMIP-based NGS assay with a lowest 
possible false-positive rate to perform quantitative detection of subclonal mutations 
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in ALL diagnosis samples. As a pilot study, we made use of the fact that mutations 
in RAS pathway genes are common in relapsed ALL, and frequently originate from a 
minor or major clone at initial diagnosis. We applied the smMIP approach to detect 
subclonal KRAS, NRAS and PTPN11 mutations in 21 ALL diagnosis samples from patients 
with mutations in these genes at time of relapse. We evaluated the performance of the 
smMIP approach, and assessed its specificity. Our data indicate that smMIP-based NGS 
is able to accurately detect low-level mosaic mutations in leukemia samples down to 
a level of 0.4%.

MATERIAL AND METHODS
Patient materials and DNA isolation
A total of 21 primary diagnosis ALL samples from children who later developed relapse 
were included in this study. These patients carried previously identified mutations in 
KRAS (n = 11), NRAS (n = 8) and PTPN11 (n = 2) at the time of relapse (Table S2.1). Genomic 
DNA of the diagnosis sample was extracted from mononuclear cells and purified using a 
QIAamp purification kit (Qiagen, Valencia, CA, USA), followed by sequencing of targeted 
amplicons in KRAS, NRAS or PTPN11 using two alternative deep sequencing approaches.

smMIP-based sequencing
The smMIP technology (Figure 2.1) was applied according to a previously published 
protocol.12 These smMIP probes carry two 5-nt stretches of degenerate bases, which 
offers the theoretical possibility to distinguish over 1 million captured molecules 
(Figure 2.1A). The smMIP probes targeting exons in RAS pathway genes that carry 
hotspot mutations were designed (Figure 2.1B and Table S2.2), ordered (Integrated DNA 
Technologies, Leuven, Belgium), pooled and phosphorylated as previously described12. 
The genomic regions of interest were captured using 100 ng of genomic DNA and 43.8 
picomole of each probe (resulting 800 smMIP molecules per DNA molecule) for each 
reaction (Steps 1-3 in Figure 2.1C). Subsequently, the uniquely-tagged circular molecules 
were amplified in the presence of sample-specific barcodes, using PCR containing 23 
cycles of 10 seconds at 98°C, 30 seconds at 60°C and 30 seconds at 72°C (Steps 4-5 in 
Figure 2.1C). PCR products were purified using Agencourt AMPure XP beads (Beckman 
Coulter Genomic, Brea, CA, USA). Paired-end sequencing (2x150 bp) was performed 
using the Illumina NextSeq 500 Desktop Sequencer (Illumina, San Diego, CA, USA; Step 
6 in Figure 2.1C). Reads were mapped to the human reference genome (hg19) using 
SeqNext software (v4.2.5, JSI, Ettenheim, Germany). 
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Figure 2.1. Overview of the smMIP approach12. (A) A smMIP consists of two 16-24 nucleotides (nt) targeting 
arms, the extension and the ligation probe, joined by a constant 30-nt backbone. Each smMIP molecule 
contains two unique random 5 nt degenerate molecular tags, which could theoretically distinguish over 1 
million captured molecules. (B) smMIPs are designed to target both the sense and the antisense DNA strand. 
(C) Schematic of the smMIP approach. Phosphorylated smMIP probes hybridize to the targeted genomic 
region. The gap is filled through extension and ligation reactions. After exonuclease treatment, only 
circularized smMIP probes are left, which are subsequently amplified by PCR and sequenced. (D) Schematic of 
the formation of a single molecule consensus read (smc-read) from a tag-defined read group (TDRG). Raw 
reads from the same probe and sharing the same molecule tag form a TDRG in which random errors (yellow) 
are filtered out and true variants (red) are kept based on the presence in >70% of the raw reads. (E) The smc-
reads are used to call variants. Variants are called if they are supported by at least 5 smc-reads.

In order to evaluate the efficiency of random tags in eliminating amplification and 
sequencing errors during data analysis, we analyzed sequencing data in two alternative 
ways: (i) a standard variant calling setting using raw sequencing reads (after trimming 
the 10-nt random tags) and, (ii) a smMIP-based consensus variant calling setting that 
makes use of the random tags to generate smc-reads. In the first method, sequence 
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reads were mapped to the human reference genome (hg19) and analyzed using 
SeqNext software (v4.2.5, JSI, Ettenheim, Germany). Variants were called when present 
in at least 200 raw reads with a VAF>0.5%. In the latter method, the raw sequencing 
reads that align to the same genomic region and share the unique molecular tag form 
a tag-defined read group (TDRG; Figures 2.1D and S2.1). Each TDRG composed of at 
least 5 raw sequencing reads was used to form a single molecule consensus read (smc-
read). Within a TDRG, a variant was established to be valid (and was thus maintained in 
the smc-read) when 70% of the raw reads contained the same nucleotide substitution. 
Other variants were determined random errors and were excluded from the analysis. 
The smc-reads were used to call variants occurring in the samples. Variants were called 
when present in at least 5 smc-reads (Figure 2.1E).

Ampliseq-based deep sequencing
As an alternative method for deep sequencing, we used a previously developed Ion 
Ampliseq sequencing panel13. Primers targeting the three genes were designed using 
Ion Ampliseq designer (version 1.2.9, Life Technologies, Carlsbad, CA, USA; Table S2.3). To 
minimize amplification bias, four independent PCR reactions with each 15 ng of genomic 
DNA as input (60 ng in total) were performed for each amplicon. After barcoding and 
adaptor ligation, products were purified with Agencourt AMPure XP beads (Beckman 
Coulter Genomics, Brea, CA, USA). Emulsion PCR was performed using OneTouch 200 
Template kit (Life Technologies, Carlsbad, CA, USA). Polymerase and sequencing primers 
were added before loading onto the chip. Sequencing was performed on the Ion Personal 
Genome Machine (PGM) System (Life Technologies, Carlsbad, CA, USA). Sequence reads 
were mapped to the human reference genome (hg19) and analyzed using SeqNext 
software (v4.2.5, JSI, Ettenheim, Germany). Variants were called when present in at least 
200 raw reads with a VAF>0.5%.

Sanger sequencing
Sanger sequencing was performed in order to validate one mutation (KRAS p.G12A) in 
patient P0098 observed by the smMIP-based consensus variant calling approach (VAF = 
16%), but missed by standard deep sequencing approaches. The following PCR primers 
were used for amplification and sequencing: forward 5’-TCATGAAAATGGTCAGAGAAACC-3’ 
and reverse 5’-AAAAGGTACTGGTGGAGTATTTGA-3’.
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RNase H2-based PCR
In order to validate low-level mosaic variants identified by the smMIP-based consensus 
variant calling approach, RNase H2-based PCR (rhPCR) assays were performed (Figure 
S2.2)14. The allele-specific primers (Integrated DNA Technologies, Leuven, Belgium) 
contain the mutant RNA base at position -6 and a 3’ mismatch that prevents extension 
during PCR (Figure S2.2A and Table S2.4). Extension can only occur when the DNA-
bound primer is cleaved by the RNase H2 enzyme to remove the 3’ mismatched 
sequence (Figure S2.2B). PCR was performed in 10 µl reactions, each containing 10 ng 
of genomic DNA, 200 nM of each primer, 5ul 2x Bio-Rad iQ SYBR Green Supermix (Bio-
Rad, Hercules, CA, USA), and 200 mU RNase H2 enzyme (Integrated DNA Technologies, 
Leuven, Belgium). Following 2 minutes at 95°C, the PCR included 40 cycles of 10 
seconds at 95°C and 30 seconds at the optimal annealing temperature for each primer 
pair (range 60-65°C). PCR products were visualized on a 2% gel or the Agilent 4200 
Tapestation system (Agilent, Santa Clara, CA, USA).

RESULTS
Mutations in the RAS pathway genes KRAS, NRAS and PTPN11 are relatively common 
in relapsed ALL, and frequently originate from a minor or major clone at initial 
diagnosis5,15,16. To increase the chance to detect low-level mosaic mutations, we made 
use of this phenomenon and selected 21 ALL diagnosis samples in which we previously 
identified mutations in one of these RAS genes in the major clones at relapse (Table 
S2.1). Next to the smMIP-based enrichment of the mutation hotspot regions in these 
RAS pathway genes, we used for comparison an Ampliseq enrichment panel that we 
previously designed for the same regions. Subsequently, we evaluated the performance 
of low frequency variant calling between routine variant calling pipelines applied to 
both datasets, and a sensitive consensus-based variant calling strategy.

Variant calling from deep sequencing raw reads
The smMIP-based and Ampliseq-based amplicons carry linkers for Illumina and 
IonTorrent PGM sequencing platforms, respectively. Although both platforms sequence 
DNA by monitoring the addition of nucleotides during DNA synthesis, they use different 
chemistry, which may result in differences in sequencing performance. Therefore, we 
evaluated the overall performance of the two sequencing strategies, by first applying 
similar analysis and variant calling pipelines to the two raw datasets. Average read depth 
around the mutation hotspot regions was 50,526 for the Ampliseq-based amplification 
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and 103,763 for the smMIP-based amplification (Figure S2.3). To reveal the level of 
noise we analyzed the results obtained after sequencing of two DNA samples from 
healthy donors and defined that, for both methods, 99.8% of the called variants had a 
VAF<0.5%, and that the number of called variants raised rapidly below a VAF of 0.5%, 
suggesting that these variants predominantly represent sequence errors (Figure S2.4). 
Based on this observation, we only considered variant calls in the leukemia samples 
with VAF>0.5%.

Figure 2.2. Overview of RAS mutations detected in the diagnosis samples. (A) The total number of SNVs 
observed by Ampliseq and smMIP raw reads. (B) The VAF of 21 variants determined by the two approaches 
correlates well. All of these variants were located in hotspot regions. (C) VAF of variants that were only 
identified by one method. Out of 28 variants, five were located in hotspot regions (HS; Orange). (D) RAS 
mutations detected in the diagnosis samples by analysis of Ampliseq reads and smMIP raw reads. Top panel 
shows sample IDs with the RAS pathway mutation detected in the relapse sample. All called variants (before 
filtering) are depicted as dots, ranked by their genomic position in each vertical panel. Variants that did not 
pass filtering are colored in blue, while variants that passed the detection limit are colored in orange (known 
hotspot mutation) or black (non-hotspot mutation). The cut off used for calling of the variants using Ampliseq 
and smMIP raw reads analysis was VAF >0.5% and >200 variant reads. We detected 26 variants using Ampliseq 
and 44 variants using smMIP raw reads. Blue circles mark variants previously identified in the paired relapse 
sample (Table S2.1). Details of all identified mutations are displayed in Table S2.5.
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In the 21 diagnosis samples, a total of 26 single nucleotide variants (SNVs) were 
called in the Ampliseq reads, and 44 SNVs were found in the smMIP raw reads (Table 
S2.5). Of these variants, 21 were identified by both approaches with highly comparable 
allele frequencies (Figures 2.2A and 2.2B), all of which were located in mutation hotspots 
as expected for RAS pathway mutations (Tables S2.5 and S2.6). Discordancy between 
the two methods was exclusively observed for variants called in the low-mosaic range 
(VAF<2.5%; Figure 2.2C), and the majority of these were located outside the hotspots 
(Figure 2.2C), indicating high false-positive rates in Ampliseq reads (3/5; 60%) and 
smMIP raw reads (20/23; 87%). Furthermore, none of these variants reappeared in the 
relapse sample, whereas 16 variants that were identified by both approaches, including 
7 with low VAF at time of diagnosis (range 0.8-13%), were present at relapse (Figure 
2.2D). Collectively, we conclude that the two methods perform similarly in detecting 
single nucleotide substitutions that are present in at least 5% of the leukemic cells 
(VAF>2.5%), but generate many variants with lower confidence below this threshold.

smMIP-based consensus variant calling
The smMIP raw sequence reads carry random single-molecule tags that allow an 
additional analysis step that corrects for post-capture amplification bias and sequence 
errors by generating single molecule consensus (smc) reads (Figures 2.1 and S2.1). 
This provides the opportunity to obtain lower numbers of false-positive variant calls 
and better estimates of clonality. Smc-reads had an average 142 underling raw smMIP 
reads (range 105-174; Figure S2.5A) and each probe, was covered with an average of 
336 smc-reads (Figure S2.5B). Up to 75% of the targeted genomic regions was covered 
with at least 2 independent probes, mostly in two orientations. All hotspot regions 
were targeted with more than 3 probes, reaching a total average smc-read coverage 
of 1,432x (range 512-2,284x; Figure S2.6). Variants were included only if they were 
supported by at least 5 smc-reads (Figure 2.1E). 

We assessed whether this smMIP-based consensus calling approach could 
sensitively determine the presence of RAS mutations at primary diagnosis. The total 
number of variants detected in smc-reads (301 variants) was drastically lower compared 
to Ampliseq (36,391) and smMIP raw reads (4,258). In total, 29 variants in NRAS (n = 
13), KRAS (n = 13) and PTPN11 (n = 3) passed filtering, of which 2 were with a VAF 
below 0.5% (Table 2.1 and Figure 2.3A). All mutations were located in known hotspot 
regions in these genes5,15,17. Two samples were determined to carry 3 hotspot mutations 
in KRAS (p.G12A, p.G12V, p.G13D) and NRAS (p.G12S, p.G12D, p.G13D), respectively. For 
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each of these two samples, one hotspot mutation was detected as major clone at time 
of relapse (Cases P0098 and P0160; Table 2.1 and Figure 2.3A). Of the 21 mutations 
identified at relapse, 18 could be detected in the paired diagnosis samples, including 2 
mutations with a low VAF (Figure S2.7). This indicates that the smMIP-based consensus 
calling approach could sensitively detect low-level mosaic mutations.

To confirm low-level mosaic variants called by smc-reads we applied allele-specific 
RNase H2-based PCR (rhPCR), a cost-effective mutation-specific amplification strategy 
(Figure S2.2)14. We analyzed eight low-level mosaic variants including all variants with 
VAF<1% and a variant with a low VAF (1.8%) uniquely detected by the smMIP-based 
consensus approach. Each variant assay was highly specific and did not show cross 
reactivity for variants located in adjacent codons (Figures S2.8A and S2.8B and data not 
shown). The rhPCR technique confirmed all eight variants, including five variants with 
an allele frequency of ≤0.6% (Figures 2.3B and S2.8C).

We next evaluated whether the 29 variants called by the smMIP-based consensus 
approach were also found by the above-mentioned strategies, which was the case for 
21 mutations (72%). One variant was missed by the smMIP raw read analysis, two were 
missed by the Ampliseq-based sequencing analysis and 5 variants were not detected 
by either of the two approaches (Table 2.1). One of these variants was a KRAS p.G12A 
variant with a VAF of 16%. This, however, was most likely caused by the fact that this 
variant overlapped with another KRAS mutation at the same position (p.G12V; VAF = 
32%). Both variants were confirmed by Sanger sequencing (Figure S2.9). Interestingly, 
of the 13 variants with VAF<2.5%, 6 and 5 were missed by Ampliseq and smMIP raw 
read analysis pipelines, respectively (Figures 2.3C and S2.10). Furthermore, whereas 
all variants detected by the smMIP-based consensus approach were hotspot mutations, 
23 of the 25 low-frequency variants only detected by the standard deep sequencing 
techniques were located outside hotspot regions (Figures 2.3C and S2.10), suggesting 
that they mainly represent false-positives. However, since validation of these 25 variants 
was not performed, they may include some true variants that have been excluded by our 
stringent filtering approach, and should thus be considered as false-negatives of our 
smMIP-based consensus approach. Taken together, we conclude that the random-tagged 
smMIP approach outperforms standard deep sequencing techniques by detecting more 
low-level mosaic mutations and less false-positive calls.
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Table 2.1. Variants called from smMIP smc-reads 

Sample Gene Variant Amino acid 
change

Number of smc-
reads supporting 

the variant
VAF (%)1

Present in 
major clone 
at relapse

Detected by 
Ampliseq and/
or smMIP raw 

reads

Confirmed by 
other technique

P0053 PTPN11 c.226G>A p.E76K 7 0.4 Yes No rhPCR

P0120 PTPN11 c.205G>A p.E69K 6 0.4 No No rhPCR

P0160 NRAS c.38G>A p.G13D 7 0.6 No Yes (smMIP raw) rhPCR

P0024 NRAS c.34G>T p.G12C 6 0.6 No Yes (smMIP raw) rhPCR

P0145 KRAS c.38G>A p.G13D 6 0.6 Yes No rhPCR

P0029 NRAS c.35G>A p.G12D 9 0.8 No Yes (both) rhPCR

P0053 PTPN11 c.205G>A p.E69K 13 0.9 No Yes (Ampliseq) rhPCR

P0151 NRAS c.34G>A p.G12S 14 1.0 Yes Yes (both) no

P0098 KRAS c.38G>A p.G13D 12 1.3 No Yes (both) no

P0160 NRAS c.34G>A p.G12S 21 1.5 No Yes (both) no

P0166 KRAS c.35G>T p.G12V 17 1.8 No No rhPCR

P0151 NRAS c.35G>A p.G12D 29 2.2 No Yes (both) no

P0051 KRAS c.34G>A p.G12S 13 2.4 Yes Yes (both) no

P0160 NRAS c.35G>A p.G12D 59 4.3 Yes Yes (both) no

P0029 NRAS c.34G>A p.G12S 69 5.7 Yes Yes (both) no

P0024 NRAS c.35G>A p.G12D 73 6.4 Yes Yes (both) no

P0128 KRAS c.179G>A p.G60D 91 6.5 Yes Yes (both) no

P0037 NRAS c.35G>A p.G12D 60 8.8 Yes Yes (both) no

P0098 KRAS c.35G>C p.G12A 152 16.1 No No Sanger

P0051 KRAS c.35G>A p.G12D 109 19.0 No Yes (both) no

P0166 KRAS c.35G>A p.G12D 295 28.4 Yes Yes (both) no

P0098 KRAS c.35G>T p.G12V 302 31.9 Yes Yes (both) no

P0111 KRAS c.351A>T p.K117N 608 33.1 Yes Yes (both) no

P0076 KRAS c.436G>C p.A146P 218 33.3 Yes Yes (both) no

P0150 KRAS c.35G>A p.G12D 562 34.7 Yes Yes (both) no

P0063 NRAS c.37G>C p.G13R 386 35.5 Yes Yes (both) no

P0070 KRAS c.35G>A p.G12D 305 40.3 Yes Yes (both) no

P0035 NRAS c.38G>A p.G13D 527 42.3 Yes Yes (both) no

P0143 NRAS c.35G>A p.G12D 601 45.4 Yes Yes (both) no

1VAF: variant allele frequency
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Figure 2.3. Overview of RAS mutations detected in paired diagnosis samples by smMIP single molecule 
consensus reads (smc-reads). (A) A total of 29 mutations and a dramatically decreased background were 
detected in the diagnosis samples by consensus-based variant calling using smc-reads. The top panel shows 
sample IDs with the RAS pathway mutation detected in the relapse sample. All called variants (before 
filtering) are depicted as dots, ranked by their genomic position in each vertical panel. Variants that did not 
pass filtering are colored in blue, while variants that passed the detection limit are colored in orange (known 
hotspot mutation) or black (non-hotspot mutation). The cut off used was presence in >= 5 smc-reads. Blue 
circles mark variants previously identified in the paired relapse sample (Table S2.1). Details of all identified 
mutations are displayed in Table S2.5. (B) Variants with a low VAF identified by smMIP consensus variant 
calling were confirmed by RNase H2 based PCR (rhPCR). The black arrow on the right of the gel indicates the 
expected amplicon size. (C) Comparison of the variants detected by smMIP based consensus calling approach 
and standard deep sequencing approaches. To achieve this, we divided all mutations identified from these 
approaches into two groups according to the VAF. Comparison of variants with a VAF<2.5% and VAF>2.5% are 
shown in Venn diagrams on the left and right. The number of hotspot mutations are shown in bold and non-
hotspot mutations are underlined and italic. Details for variants are displayed in Figure S2.10.
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DISCUSSION
In this study, we have developed a smMIP panel to sensitively and accurately detect 
low-level mosaic mutations in leukemia samples. We compared the widely applied 
deep sequencing strategy with a smMIP-based approach, which generates consensus 
reads for variant calling. To test these approaches, we chose to target three commonly 
mutated RAS pathway genes. Driver mutations in these genes cluster in hotspots, which 
facilitates the discrimination of true mutations from background noise. All methods 
had high sensitivity rates, making them suitable for backtracking of relapse-associated 
mutations. However, variant calling on smMIP-based consensus reads resulted in 
drastically reduced false-positive rates, thereby creating much higher specificity in 
determining the presence of subclonal mutations in primary diagnosis samples from 
ALL patients, irrespective of the applied sequence depth. Therefore, this smMIP approach 
is very suitable for upfront detection of subclonal mutations in ALL in an unbiased 
manner, particularly in genes where mutations are more randomly distributed.

The reliable detection of low-level mosaic mutations by NGS sequencing is 
hampered by the occurrence of amplification-based errors that arise during the 
preparation and sequencing processes9,10. We here demonstrate that common deep 
sequencing approaches can reliably estimate the VAF of variants, but cannot correct 
for random errors resulting in high error rates. Even with very high sequencing 
depth (>50,000x), the common NGS approach could not accurately determine mosaic 
mutations with a VAF below 2.5%. In comparison, the smMIP approach uses a unique tag 
in each molecule with which we could eliminate random errors. This results in a notable 
reduction of background noise and thus allows for the sensitive detection of mutations 
in leukemia samples with VAF as low as 0.4%. 

We experienced a relatively low capture efficiency with our smMIP-based approach, 
which leaves room for improvement. Using 100 ng genomic DNA as input (which equals 
approximately ~15,000 haploid copies) and an average smc-read coverage of 1,432x 
in the hotspot regions (which represents 1,432 unique DNA molecules in the patient 
sample), we detected around 10% of total input, which creates a limit to the detection 
of very low-level mosaic alterations (VAF>0.4% when using a 5-smc read threshold). 
Actual capture efficiency may be higher, because inefficiently amplified fragments may 
have been missed with sequencing. This can be easily optimized by deeper sequencing 
to reach saturation of the capture. In addition, the efficacy can be further improved 
by increasing the DNA input during capture, and by applying multiple PCR reactions 
in parallel. Such improvements will directly improve detection variants below 0.4%. 
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For further increase in sensitivity, towards levels that enable the detection of minimal 
residual disease detection (i.e., the presence of residual tumor cells <0.01% during or 
after treatment), alternative strategies are required like duplex sequencing or droplet 
PCR18,19.

A problem with prospective screening of subclonal mutations is that they are 
more difficult to validate. This is particularly problematic in genes, such as TP53 and 
CREBBP, where mutations are scattered throughout the coding sequence, because the 
region where mutations are expected is much larger. In this study, we performed allele-
specific rhPCR to validate variants with low VAF, a cost-effective technique with improved 
selectivity between the mutant and wild-type allele. In addition, we made use of the 
fact that mutations in RAS pathway genes specifically occur in hotspot regions, which 
provides an alternative and indirect way to discriminate between true mutations and 
noise. The combined use of these two approaches allowed us to establish that all variants 
detected by the smMIP-based consensus method between 0.4-1% VAF are indeed true. 
Therefore, with the smMIP-based consensus method and stringent filtering process, we 
can reduce the number of false-positive calls to nearly zero, which largely decreases time 
and costs for validation. The consequence of the stringent filtering process is that some 
true variants might be missed. In fact, among the 25 variants detected by the standard 
deep-sequencing strategies that were missed or excluded by filtering in the smMIP-based 
consensus approach, may be true variants present in very small subclones. Therefore, it 
is crucial to establish the desired sensitivity of low-level variants and determine the 
required smMIP sequencing depth. Together, we believe that smMIP based sequencing 
can be applied to detect subclonal mutations in a prospective manner, also in genes like 
TP53 and CREBBP, where true pathogenic mutations show much less clustering.

Common alterations identified in relapsed ALL are frequently present in minor or 
major clones at initial diagnosis. This raises questions about the impact of subclonal 
alterations at the time of initial diagnosis and their prognostic significance on the risk 
of relapse. Prospective screening of leukemia-associated alterations in large unselected 
ALL cohorts can reveal their prognostic relevance. However, this requires a technique 
that can accurately and reliably determine low-level mosaic mutations with low 
rates of false-positives. Since all low-level mosaic variants, with VAFs down to 0.4%, 
could be confirmed independently by other techniques, the smMIP-based consensus 
variant calling approach is highly suitable to study the prognostic value of (sub)clonal 
alterations identified at the time of diagnosis.

In clinical practice, it is important to track multiple genetic markers in follow-up 
samples to monitor leukemia development. Commonly used sensitive techniques like 
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quantitative real-time PCR and digital droplet PCR are limited in use due to obstacles 
for multiplexing in one experiment20. In contrast, a single smMIP panel is capable of 
sensitively and accurately identifying subclonal mutations and copy number variants in 
a large set of cancer genes21-23, as was recently demonstrated for leukemia-associated 
mutations24,25. In addition, probes for new interesting regions can easily be added 
into an optimized smMIP panel. smMIP offers a scalable and rapid workflow to track 
genetic alterations in leukemia samples and monitor clonal changes during leukemia 
development in clinical practice.

In conclusion, we have shown that the random tagging based smMIP approach 
is sensitive and can accurately identify subclonal mutations in leukemia samples. Our 
data indicate that the smMIP approach can eliminate mistakes that likely occur during 
PCR and sequencing, thereby drastically reducing the background noise. The technique 
provides opportunities to study prognostic value of low-level mosaic mutations in 
relapse development, and monitor leukemia development in routine clinical practice. 
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SUPPLEMENTARY DATA
Supplementary Tables

Table S2.1. RAS mutations identified in relapse samples

Sample ID Gene Variant Amino acid change
P0024 NRAS c.35G>A p.G12D

P0029 NRAS c.34G>A p.G12S

P0035 NRAS c.38G>A p.G13D

P0037 NRAS c.35G>A p.G12D

P0039 KRAS c.68T>G p.L23R

P0051 KRAS c.34G>A p.G12S

P0053 PTPN11 c.226G>A p.E76K

P0055 KRAS c.35G>A p.G12D

P0063 NRAS c.37G>C p.G13R

P0070 KRAS c.35G>A p.G12D

P0076 KRAS c.436G>C p.A146P

P0098 KRAS c.35G>T p.G12V

P0111 KRAS c.351A>T p.K117N

P0120 PTPN11 c.172A>T p.N58Y

P0128 KRAS c.179G>A p.G60D

P0143 NRAS c.35G>A p.G12D

P0145 KRAS c.38G>A p.G13D

P0150 KRAS c.35G>A p.G12D

P0151 NRAS c.34G>A p.G12S

P0160 NRAS c.35G>A p.G12D

P0166 KRAS c.35G>A p.G12D

Table S2.2. smMIP sequences

Gene Exon Chromosome hg19 start hg19 stop smMIP probe sequence*

NRAS 2 1 115258658 115258769 gtactcagtcatttcacaccagcNNNNNCTTCAGCTTCCCGATATCCGACGG-
TAGTGTNNNNNtcaggtcagcgggctac

NRAS 2 1 115258731 115258842 cagtactttaaagctttctataatNNNNNCTTCAGCTTCCCGATATCCGACGG-
TAGTGTNNNNNgctggattgtcagtgc

NRAS 2 1 115258683 115258794 cccactatagaggtgaggccNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNtactggtttccaacaggttc

NRAS 2 1 115258683 115258794 cccaccatagaggtgaggccNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNtactggtttccaacaggttc

NRAS 2 1 115258717 115258828 gctaatccagaaccactttgtagaNNNNNCTTCAGCTTCCCGATATCCGACGG-
TAGTGTNNNNNtgtagatgtggctcgc

KRAS 2 12 25398181 25398292 actaccacaagattatattcagtcNNNNNCTTCAGCTTCCCGATATCCGACGG-
TAGTGTNNNNNaatggtcctgcaccag
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Gene Exon Chromosome hg19 start hg19 stop smMIP probe sequence*

KRAS 2 12 25398181 25398292 actaccacaagtttatattcagtcNNNNNCTTCAGCTTCCCGATATCCGACGG-
TAGTGTNNNNNaatggtcctgcaccag

KRAS 2 12 25398200 25398311 cagtcattttcagcaggcctNNNNNCTTCAGCTTCCCGATATCCGACGGTAGTGT-
NNNNNgtaatatgcatattaaaaca

KRAS 2 12 25398261 25398372 cacacataaggttaatacacNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNattctgaattagctgtatcg

KRAS 2 12 25398178 25398289 gtgcaggaccattctttgatNNNNNCTTCAGCTTCCCGATATCCGACGGTAGTGT-
NNNNNtataatcttgtggtagttgg

KRAS 2 12 25398178 25398289 gtgcaggaccattctttgatNNNNNCTTCAGCTTCCCGATATCCGACGGTAGTGT-
NNNNNtataaacttgtggtagttgg

KRAS 2 12 25398247 25398358 cagaatcattttgtggatgaNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNtgtgtgacatgttctaatat

KRAS 2 12 25398247 25398358 cagaatcattttgtggacgaNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNtgtgtgacatgttctaatat

KRAS 3 12 25380186 25380297 ccaagagacaggtttctccaNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNacctataatggtgaatatct

KRAS 3 12 25380226 25380337 gtaggaatcctgagaagggaNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNtatggcaaatacacaaagaa

KRAS 3 12 25380242 25380353 agaactggggagggctttctNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNatccagactgtgtttctccc

KRAS 3 12 25380242 25380353 aggactggggagggctttctNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNatccagactgtgtttctccc

KRAS 3 12 25380260 25380371 atgagggaccagtacataagNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNaaaaggtgcactgtaataat

KRAS 3 12 25380260 25380371 atgagggaccagtacatgagNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNaaaaggtgcactgtaataat

KRAS 4 12 25378485 25378596 gctaagtcctgagcctgtttNNNNNCTTCAGCTTCCCGATATCCGACGGTAGTGT-
NNNNNtgagagaaaaactgatatat

KRAS 4 12 25378561 25378672 catcttcagagtccttaactctNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNcttacctgtcttgtcttt

KRAS 4 12 25378640 25378751 atatctttcaaaacctgtccacNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNctactgttctagaaggca

KRAS 4 12 25378549 25378660 ggtaagtaacactgaaataaaNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNgaagatgtacctatggtcc

KRAS 4 12 25378557 25378668 acaagacaggtaagtaacactgNNNNNCTTCAGCTTCCCGATATCCGACGG-
TAGTGTNNNNNggactctgaagatgtacc

KRAS 4 12 25378613 25378724 aggctcaggacttagcaagaNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNactaatgactgtgctataac

PTPN11 3 12 112888079 112888190 gaaatttgccactttggctgaNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNtgattttactggtgtaact

PTPN11 3 12 112888099 112888210 aggcaaggggacaaataaagaNNNNNCTTCAGCTTCCCGATATCCGACGG-
TAGTGTNNNNNatgtaatactggaccaact

PTPN11 3 12 112888152 112888263 atcttgatgtgggtgacagcNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNtatttaagctcaatgacatc

PTPN11 3 12 112888191 112888302 cctacctctgaaaggtcagtaaNNNNNCTTCAGCTTCCCGATATCCGACGGTAGT-
GTNNNNNtgacctgtatggagggga

* N refers to random nucleotides in the unique tags; lower case indicates ligation and extension probes, upper 
case indicates backbone sequence.

Table S2.2. Continued
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Table S2.3. Ampliseq panel sequencing primers

Gene Exon Chromosome hg19 start hg19 stop Forward primer Reverse primer

KRAS 2 chr12 25398051 25398267
GGTTACATATAACTT-
GAAACCCAAGGTA

GCCTTGACGATA-
CAGCTAATTCAGAA

KRAS 2 chr12 25398214 25398393
TGTTGGATCATATTC-
GTCCACAAAATGA

AGTGTATTAACCTTAT-
GTGTGACATGTT

KRAS 3 chr12 25380223 25380385
GAAAGCCCTC-
CCCAGTCC

TGCACTGTAATAATC-
CAGACTGTGTTT

KRAS 3 chr12 25380135 25380262
AATGTCAGCTTAT-
TATATTCAATTTAAAC-
CCAC

GCAATGAGGGACCAG-
TACATGA

KRAS 4 chr12 25378390 25378605
GGATTAAGAAGCAAT-
GCCCTCTCA

GGACTTAGCAAGAAGT-
TATGGAATTCCT

KRAS 4 chr12 25378548 25378679
CTGTCTTGTCTTTGCT-
GATGTTTCAATA

GAAGATGTACCTATG-
GTCCTAGTAGGAA

KRAS 4 chr12 25378624 25378773
ACTGTTCTAGAAGG-
CAAATCACATTTA

GTGGACAGGTTTT-
GAAAGATATTTGTGT

NRAS 2 chr1 115258622 115258845
CGACAAGTGAGAGA-
CAGGATCA

CTGTAGATGTGGCTC-
GCCAA

PTPN11 3 chr12 112887956 112888177
ACATGTGGT-
TATTTCACCCATCGT

GGTCATAGTAATCAC-
CAGTGTTCTGAAT

PTPN11 3 chr12 112888129 112888350
GGAGCTGTCACCCA-
CATCAAG

CAGCAGACTTTGTGGT-
CACTAAAATG

Primer sequences are depicted 5’-3’.

Table S2.4. Primers for RNase H2 based PCR assay

Gene Variant Amino acid 
change Forward primer* Reverse primer*

NRAS chr1:115258747C>T p.G12D GCTTTTCCCAACACCArUC/SpC3//
SpC3/TA 

TAGATGTGGCTCGCCAATTrAA/SpC3//
SpC3/CT 

NRAS chr1:115258748C>A p.G12C CGCTTTTCCCAACACCACrAT/3Sp-
C3//3SpC3/GA

CTCVCCMATTAACCCTGATTAC

NRAS chr1:115258744C>T p.G13D CACCTCTATGGTGGGATCATATTC GGTGGTTGGAGCAGGTGrAT/3Sp-
C3//3SpC3/GC

KRAS chr12:25398281C>T p.G13D TGGTCCTGCACCAGTAATATG TGGTAGTTGGAGCTGGTGrAC/iSpC3//
iSpC3/GA

KRAS chr12:25398284C>A p.G12V CACTCTTGCCTACGCCArAC/3Sp-
C3//3SpC3/AC

AACCTTATGTGTGACATGTTCT

PTPN11 chr12:112888210G>A p.E76K AGAAATTTGCCACTTTGGCTrAA/3Sp-
C3//3SpC3/GC

GACCTTTCAGAGGTAGGATCTG

PTPN11 chr12:112888189G>A p.E69K GAGCTGTCACCCACATCAA AGCCAAAGTGGCAAATTTCTrUC/3Sp-
C3//3SpC3/CA

* /SpC3/ is a C3 propanediol spacer. rN (A, C, G, U) is a ribonucleotide linkage and the cleavage site of RNase 
H2 which activates the amplification after cleavage
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Table S2.5. Variants detected by standard deep sequencing

Sample Gene Variant1 Amino acid change Hotspot2

VAF (%)
Ampliseq reads smMIP raw 

reads
P0024 NRAS c.-17-11G>A No 0 0.9

P0024 NRAS c.-17-12G>A No 0 1.5

P0024 NRAS c.-17-19G>T No 0 1.7

P0024 NRAS c.-17-30C>A No 0.9 0

P0024 NRAS c.34G>T p.G12C Yes 0 0.5

P0024 NRAS c.35G>A p.G12D Yes 5.0 6.9

P0029 NRAS c.-17-11G>A No 0 0.9

P0029 NRAS c.-17-12G>A No 0 1.4

P0029 NRAS c.-17-30C>A No 1.1 0

P0029 NRAS c.34G>A p.G12S Yes 3.4 6.6

P0029 NRAS c.35G>A p.G12D Yes 0.6 0.9

P0035 NRAS c.-17-11G>A No 0 0.9

P0035 NRAS c.38G>A p.G13D Yes 34.5 44.0

P0037 NRAS c.-17-11G>A No 0 1.1

P0037 NRAS c.35G>A p.G12D Yes 7.1 9.2

P0051 KRAS c.34G>A p.G12S Yes 1.6 0.9

P0051 KRAS c.35G>A p.G12D Yes 13.6 17.9

P0051 KRAS c.38G>A p.G13D Yes 0.6 0

P0051 KRAS c.58A>G p.T20A No 0 0.6

P0053 PTPN11 c.205G>A p.E69K Yes 0.9 0

P0055 KRAS c.16C>T p.L6F No 0 0.7

P0063 NRAS c.-17-11G>A No 0 0.9

P0063 NRAS c.-17-19G>T No 0 1.4

P0063 NRAS c.37G>C p.G13R Yes 22.9 35.0

P0070 KRAS c.35G>A p.G12D Yes 34.6 36.1

P0076 KRAS c.436G>C p.A146P Yes 26.5 33.0

P0076 KRAS c.450+32T>C No 0 0.5

P0098 KRAS c.35G>T p.G12V Yes 27.3 28.6

P0098 KRAS c.38G>A p.G13D Yes 0.7 1.5

P0111 KRAS c.351A>T p.K117N Yes 23.0 33.0

P0128 KRAS c.179G>A p.G60D Yes 6.8 7.0

P0143 NRAS c.-17-11G>A No 0 1.1

P0143 NRAS c.-17-12G>A No 0 1.8

P0143 NRAS c.-17-19G>T No 0 1.8

P0143 NRAS c.35G>A p.G12D Yes 38.3 46.0

P0150 KRAS c.35G>A p.G12D Yes 25.0 37.5

P0151 NRAS c.111+12T>C No 0 0.6

P0151 NRAS c.34G>A p.G12S Yes 0.6 1.1

P0151 NRAS c.35G>A p.G12D Yes 1.8 2.9

P0160 NRAS c.-17-11G>A No 0 0.9
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Sample Gene Variant1 Amino acid change Hotspot2

VAF (%)
Ampliseq reads smMIP raw 

reads
P0160 NRAS c.-17-12G>A No 0 1.6

P0160 NRAS c.-17-30C>A No 0.9 0

P0160 NRAS c.34G>A p.G12S Yes 0.9 1.7

P0160 NRAS c.35G>A p.G12D Yes 3.2 5.9

P0160 NRAS c.38G>A p.G13D Yes 0 0.7

P0166 KRAS c.14A>G p.K5R No 0 0.5

P0166 KRAS c.35G>A p.G12D Yes 21.3 29.7

P0166 KRAS c.39C>T p.G13G Yes 0 0.6

P0166 KRAS c.56T>C p.L19S No 0 0.6

1NRAS mutations at position c.-17 are located in intron 1, upstream of the start codon in exon 2; 2Recurrently 
observed in COSMIC (see Table S2.6).

Table S2.6. Mutation hotspot regions in the three RAS genes

Gene Exon Substitution*

KRAS 2 G12D, G12V, G12A, G12S, G12C, G12R, G12G, G13D, G13C, G13G, G13A, V14I, A18D, L19F, Q22K, L23R, 
D33E

KRAS 3 T58I, A59G, A59E, G60D, Q61H, Q61R, Q61P, Q61L, E63K, Y64N

KRAS 4 K117N, A146T, A146V, A146P

NRAS 2 G12D, G12S, G12V, G12C, G12A, G12R, G12N, G13D, G13R, G13V, G13C, G13A, Q22K

PTPN11 3 T52S, N58Y, G60V, G60R, G60A, D61Y, D61V, D61N, D61H, D61G, E69K, F71L, A72V, A72T, A72D, A72S, 
T73I, E76K, E76G, E76A, E76Q, E76V

*Only substitutions that have been recurrently identified in hematologic malignancies are included (based on 
COSMIC database, version 81).

Table S2.5. Continued
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Supplementary Figures

Figure S2.1. Schematic of raw reads forming a tag-defined read group. Groups of raw smMIP reads that share 
the unique molecular tag plus sample index and align to the same genomic region form a tag-defined read 
group (TDRG). Random errors (yellow) that occur during library construction and sequencing may be present 
in some reads within the TDRG at some positions, but are eliminated in the analysis pipeline, while true 
variants (red) that occur in >70% of the raw reads are kept.
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Figure S2.2. A schematic of the allele-specific RNase H2 based PCR (Adapted from Dobosy et al, 2011)14. (A) 
Structure of the blocked cleavable primer used for RNase H2 based PCR (rhPCR). D and M represent DNA 
bases that match and mismatch to the target genomic region, respectively. The RNA base that matches to 
the mutant is depicted by r. X depicts a C3 propanediol spacer. (B) Schematic flow of rhPCR approach. RNase 
H2 enzyme is an endoribonuclease, which prefers to cleave a single RNA residue within the context of RNA-
DNA duplex. After cleavage of 3’ RNA residue, the primer is activated to amplify the targeted genomic region. 
However, the blocked primer is not able to support extension and amplification during PCR.
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Figure S2.3. Read depth per sample at the targeted position of the mutation for the two deep sequencing 
approaches.



Chapter 2

56

Figure S2.4. Detection limit of deep sequencing approaches using raw reads. In order to define the background 
noise levels, we sequenced the targeted amplicons in DNA from healthy donors. For further analysis, we set 
the detection limit as variant allele frequency (VAF) >0.5% with >200 variant reads, which excludes 99.8% 
of the variants detected in the healthy samples. (A-B) VAF of all variants called from reference samples 
in targeted regions, using Ampliseq-based NGS approach sequenced on the Ion Personal Genome Machine 
platform (A) and the smMIP approach sequenced on the Illumina platform (B). The dashed line indicates VAF 
= 0.5%. Genomic position is based on hg19. (C) Cumulative number of variants identified from the reference 
samples by the two approaches. (D-E) Cumulative frequency of variants detected in reference samples by the 
Ampliseq (D) and smMIP raw reads (E). 
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Figure S2.5. The smMIP-based variant calling performance. (A) Number of raw reads in each tag-defined read 
group (TDRG) for each probe. (A) TDRG is composed of all raw smMIP sequence reads amplified from the same 
unique molecule present in the patient material (Figure 2.1D). On average, each TDRG was comprised of 142 
individual raw sequencing reads (range 105-174). (B) Number of single molecule consensus (smc) reads for 
each probe. Each smc-read is derived from a TDRG (Figure 2.1D).
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Figure S2.6. Average smc-read depth of the targeted regions in KRAS (A), NRAS (B) and PTPN11 (C). The x-axis 
shows the genomic position for the targeted region. The y-axis shows average single molecule consensus 
(smc) read depth of the targeted position. The structure of the targeted regions is shown below, where bigger 
boxes represent exons, smaller boxes represent introns and black lines indicate positions for hotspots and 
known RAS mutations. Gradient color represents the number of smMIP probes covering the position.

Figure S2.7. RAS mutations detected in relapse samples were determined in the paired diagnosis samples. 
The y-axis shows the VAF determined by the smMIP consensus variant calling approach. Details of each 
mutation are shown below the x-axis.
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Figure S2.8. Variants called by smc-reads were analyzed by RNase H2 based PCR. To assess the specificity 
of the assay, we performed RNase H2 based PCR (rhPCR) using allele specific primers on the sample with a 
variant located on the adjacent position in KRAS (A) and NRAS (B). Failure to detect the product indicates that 
concurrent variants within the primer annealing region do not interfere with the specificity of the reaction. 
(C) PTPN11 p.E69K detected by the smMIP consensus variant calling in two samples was confirmed by the 
rhPCR assay and gel electrophoresis. Genomic DNA from a healthy donor was used for the negative control.

Figure S2.9. Variant called from smMIP-based smc-reads validated by Sanger sequencing. Two KRAS mutations 
are observed at the same position in sample P0098 by smMIP-based consensus variant calling approach: 
chr12: 25398284C>A (p.G12V, VAF = 32%) and chr12: 25398284C>G (p. G12A, VAF = 16%). The latter was not 
called in Ampliseq, but was confirmed by Sanger sequencing. 
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Figure S2.10. Overview of variants identified from 21 diagnosis samples by approaches studied. Details of 
samples and variants are displayed on top. Variants located in known hotspot regions are colored in orange. 
Variants identified by each deep sequencing approach are shown in bottom. Variants with a VAF<2.5% and 
VAF>2.5% are colored in light blue and dark blue, respectively.
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ABSTRACT
Genomic studies of pediatric acute lymphoblastic leukemia (ALL) have shown 
remarkable heterogeneity in initial diagnosis, with multiple (sub)clones harboring 
lesions in relapse-associated genes. However, the clinical relevance of these subclonal 
alterations remains unclear. We assessed the clinical relevance and prognostic value 
of subclonal alterations in the relapse-associated genes IKZF1, CREBBP, KRAS, NRAS, 
PTPN11, TP53, NT5C2, and WHSC1 in 503 ALL cases. Using molecular inversion probe 
sequencing and breakpoint-spanning polymerase chain reaction analysis we reliably 
detected alterations with an allele frequency below 1%. We identified 660 genomic 
alterations in 285 diagnostic samples of which 495 (75%) were subclonal. RAS pathway 
mutations were common, particularly in minor subclones, and comparisons between 
RAS hotspot mutations revealed differences in their capacity to drive clonal expansion 
in ALL. We did not find an association of subclonal alterations with unfavorable outcome. 
Particularly for IKZF1, an established prognostic marker in ALL, all clonal but none of 
the subclonal alterations were preserved at relapse. We conclude that, for the genes 
tested, there is no basis to consider subclonal alterations detected at diagnosis for risk 
group stratification of ALL treatment.
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INTRODUCTION
Improvements in the treatment of pediatric acute lymphoblastic leukemia (ALL) have 
resulted in high overall survival rates, now approaching 90%1,2. Nevertheless, relapse 
still remains the most common cause of treatment failure and death in children with 
ALL, and better recognition of individuals at risk of developing relapse will likely aid 
further improvements in outcome. Recent studies describing the genomic landscape 
of relapsed ALL have shown that relapse often originates from a minor (sub)clone at 
diagnosis, at a cellular fraction often undetectable by routine diagnostic methods3-5. 
These minor (sub)clones harbor genomic alterations acquired later during leukemia 
development, which could potentially contribute to clonal drift, but are unlikely to be 
essential for initiation of the primary disease. However, selective pressure of the upfront 
treatment may provide a competitive advantage to subclones that harbor alterations in 
cancer genes, enabling their selective survival, eventually leading to treatment failure. 
Both the number and clonal burden of the alterations in these genes are expected to 
be increased at the time of relapse, compared to initial diagnosis. Indeed, mutations in 
relapse-associated genes, such as those in the histone acetyltransferase (HAT) domain 
of the histone methyltransferase CREBBP, can often be traced back to minor subclones 
in the diagnostic sample4,6,7.

Genomic characterization of relapsed pediatric ALL has revealed multiple 
alterations that are enriched compared to diagnosis, including activating mutations 
in RAS pathway genes, HAT domain mutations in CREBBP and deletions or mutations 
in the B-cell transcription factor IKZF16-13. The presence of these aberrations at the 
time of diagnosis can be of potential prognostic relevance, as has been demonstrated 
extensively for IKZF1 in many different treatment protocols12,14-19 and can even lead to 
adjustments in stratification and treatment14,20. However, it remains unclear whether 
mutations in relapse-associated genes when present in a minor subclone at initial 
diagnosis are also clinically relevant.

Subclonal mutations can be identified using deep targeted, next-generation 
sequencing techniques21,22. Despite the sensitivity of these techniques, both amplification 
and sequencing can easily lead to errors that hamper the reliable detection of low-
level mosaic mutations. We previously demonstrated that single molecule Molecular 
Inversion Probes (smMIP), which use unique molecular identifiers to barcode each DNA 
copy, can correct for sequencing and amplification artefacts, resulting in a reliable 
detection of low-level mosaic mutations, down to a variant allele frequency of 0.4%23.

In this study we used the smMIP-based sequencing approach to perform deep 
targeted sequencing of seven relapse-associated genes in a cohort of 503 pediatric 
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ALL samples taken at initial diagnosis, resulting in the detection of 141 clonal and 
469 subclonal mutations. In addition, we performed real-time quantitative polymerase 
chain reaction (PCR) to sensitively detect subclonal IKZF1 exon 4-7 deletions (del4-
7), which were found at a similar frequency as full-clonal deletions. Subsequently, we 
estimated their potential as drivers of clonal expansion and prognostic markers for 
relapse development.

METHODS
In this study we analyzed two cohorts of diagnostic samples from B-cell precursor ALL 
patients treated according to the Dutch Childhood Oncology Group (DCOG) protocols 
DCOG-ALL9 (n = 131)12,24 and DCOG-ALL10 (n = 245) (Table S3.1). Both cohorts were 
representative selections of the total studies12,24 (Table S3.2). The median age at 
diagnosis of the patients in these cohorts was 4 and 5 years, and the median follow-
up time, estimated with a reverse Kaplan-Meier method, was 138 and 104 months, 
respectively25. Relapse occurred in 18% (24/131) and 11% (27/245) of the patients, 
while 0.7% (1/131) and 2.8% (7/245) died during the follow-up. DNA was isolated from 
mononuclear cells obtained from bone marrow or peripheral blood. The median blast 
percentage of the samples was 92% (Table S3.3). To increase the number of patients 
for the comparisons between relapsed and non-relapsed cases, we used an extended 
cohort of diagnostic samples from 127 additional ALL patients treated according to 
the DCOG-ALL9 (n = 76) or DCOG-ALL10 (n = 51) protocols; this cohort was enriched 
for patients who had a relapse and also contained 55 patients with T-cell ALL. This 
latter cohort was not included in the survival analyses. In order to detect mutations 
preserved in major clones at relapse, we performed Sanger sequencing (73/171) or 
used previously published Ampliseq-based deep-sequencing data (98/171) to verify 
alterations observed at diagnosis26. In accordance with the Declaration of Helsinki, 
written informed consent was obtained from all patients and/or their legal guardians 
before enrollment in the study, and the DCOG institutional review board approved the 
use of excess diagnostic material for this study (OC2017-024).

In order to accurately detect subclonal alterations in diagnostic samples, 166 
smMIP were designed in CREBBP, PTPN11, NT5C2, WHSC1, TP53, KRAS and NRAS, seven 
genes that are frequently mutated in relapsed ALL (Table S3.4 and Supplementary 
Materials and Methods). IKZF1 and ERG deletion status was assessed using the multiplex 
ligation-dependent probe amplification assay (MLPA) SALSA P335 ALL-IKZF1 and P327 
iAMP-ERG kits, respectively (MRC-Holland, Amsterdam, the Netherlands), according to 
the manufacturer’s instructions and as described before12,24. Additionally, IKZF1 4-7 
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deletions were assessed with Sanger sequencing and real-time quantitative PCR, using 
an IQ SYBR Green supermix (Bio-Rad, Hercules, CA, USA). For detailed descriptions 
of the smMIP-based sequencing, IKZF1 deletion detection and data analysis, see the 
Supplementary Materials and Methods (Figures S3.1, S3.2, and Tables S3.4-S3.6).

To test continuous and categorical variables, the nonparametric Wilcoxon signed 
rank and Fisher exact tests were used, respectively (R packages ggpubr version 0.2 and 
stats version 3.5.1). Cumulative incidence of relapse (CIR) was estimated by employing 
a competing-risk model with death as a competing event27. To assess the statistical 
difference between CIR, the Gray test28 was applied. To investigate the effect of prognostic 
factors on relapse, univariate and multivariate Cox proportional hazard regression 
models were estimated. Competing risk analysis was performed with the R packages 
cmprsk (version 2.2-7) and survminer (version 0.4.3). Univariate and multivariate Cox 
models were estimated using R package survival (version 3.1-12). Data were visualized 
using the R package ggplot2 (version 3.2.1) and cBioPortal MutationMapper29,30.

RESULTS
A total of 503 diagnostic samples from children with ALL (Table S3.1) was subjected to 
targeted deep sequencing of the relapse-associated genes TP53, CREBBP (HAT domain), 
KRAS, NRAS, PTPN11, NT5C2 and WHSC1 using smMIP, which contain random molecular 
tags to accurately detect low-level mosaic variants23. Each targeted region was covered 
with an average of 308 unique capture-based consensus reads (Figures 3.1, S3.1A and 
S3.1B), enabling the reliable detection of alterations with allele frequencies even below 
1%. A total of 7,836 quality-filtered variants was detected, of which 610 were absent 
in public and private variant databases and were predicted as pathogenic. The allele 
frequency of these mutations ranged from 0.03-100% (Figure 3.2A and Table S3.3). The 
majority of the mutations (473/610; 78%) was found in one of the three RAS pathway 
genes (KRAS, NRAS, PTPN11), of which 418 (88%) were known hotspot mutations.

In addition to sequencing the seven relapse-associated genes, we performed 
sensitive screening for IKZF1 deletions, which are strongly associated with the occurrence 
of relapse. We chose to focus on exon 4-7 deletions, which represent 25% of all IKZF1 
deletions, have a similar unfavorable outcome as other IKZF1 deletions31, and show 
the strongest clustering of deletion breakpoints, thus enabling their sensitive upfront 
detection by breakpoint-spanning semi-quantitative PCR32. Applying this strategy to the 
503 diagnostic samples revealed all 22 IKZF1 exon 4-7 deletions previously identified 
using a standard MLPA method, as well as 28 additional cases carrying deletions that 
were missed with the MLPA technique. All breakpoints were sequenced to determine 
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their unique breakpoint-spanning sequences (Table S3.6). Using a dilution series of a 
control sample with a full-clonal IKZF1 exon 4-7 deletion, we determined the level of 
clonality of the deletions, which ranged from 100% down to 0.32% (Figures 3.1, 3.2 and 
S3.1C). All but one of the subclonal IKZF1 exon 4-7 deletions had allele frequencies 
below 10% (Table S3.7).

Figure 3.1. Schematic representation of the study design. Single molecule Molecular Inversion Probe-based 
sequencing approach and real-time quantitative polymerase chain reaction were used in order to detect 
alterations in known relapse-associated genes in a large cohort of diagnostic samples from patients with 
acute lymphocytic leukemia. Detected alterations were correlated with outcome and Sanger sequencing 
was performed on available relapse samples in order to confirm that exactly the same alteration was 
present in the major clone in relapse. smMIP: single molecule molecular inversion probe; MLPA: multiplex 
ligation-dependent probe amplification assay; PCR: polymerase chain reaction; qPCR: real-time quantitative 
polymerase chain reaction.

Subclonal alterations in relapse-associated genes are common at diagnosis
Combining sequence mutations and IKZF1 exon 4-7 deletions, we detected 660 genomic 
alterations in 285 diagnostic samples, of which 165 (25%) were present in the major 
fraction of cells (allele frequency ≥25%), which were referred to as high-clonal. The 
remaining 495 mutations (75%), most of which had an allele frequency <10% were 
referred to as subclonal (Figure S3.2 and Table S3.7). A total of 147/285 patients carried 
at least one alteration in a major clone, while 138/285 (48%) patients carried exclusively 
subclonal alterations. NRAS and KRAS were the most frequently affected genes, showing 
major clone mutations in 6% and 8% of the cases and subclonal mutations in 20% and 15% 
of the cases, respectively (Figures 3.2A and 3.2B). The proportion of subclonal alterations, 
relative to major clone alterations, was variable among different genes, ranging from 59% 
for IKZF1 exon 4-7 deletions to 86% for PTPN11 mutations (Figure 3.2B).
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Figure 3.2. Prevalence and distribution of alterations in eight relapse-associated genes. (A) Violin plot 
showing the variability in mutation allele frequency at diagnosis in the genes studied. The color of the dots 
indicates whether the mutation was detected in a case without relapse (blue) or with relapse (red). (B) Bar 
plot showing the frequencies of major clone (high-clonal) and subclonal alterations per case in the genes 
studied. RAS pathway genes (NRAS, KRAS, PTPN11) were the most frequently mutated. Subclonal mutations 
(yellow bar) were highly prevalent in all genes tested. A subset of cases had both clonal and subclonal 
alterations in the same gene (gray bar).



Chapter 3

72

Only one thus far unknown (subclonal) NT5C2 mutation (p.Arg507Trp) was 
identified in a leukemia sample from a patient who did not relapse (Figures 3.2A and 
3.2B). Subclonal mutations were relatively common in hyperdiploid ALL (184 cases), 
particularly for mutations in RAS pathway genes (190/256; 74%), WHSC1 (22/26; 85%) 
and CREBBP (13/27; 48%) (Table S3.8). Major clone WHSC1 mutations were mostly 
identified in ETV6-RUNX1-positive cases (4/10, 40%).

Potency of RAS pathway genes as drivers of clonal expansion
We identified 473 RAS pathway mutations in 225/503 (45%) cases, of which 78% were 
subclonal (median allele frequency = 3.5%). Over half of the RAS-affected cases were 
hyperdiploid (>47 chromosomes), in line with previous studies indicating that RAS 
mutations are associated with hyperdiploidy at diagnosis10,33. The abundance of these 
mutations in major and minor clones suggests that these mutations drive clonal expansion 
during the development of leukemia. Major clone RAS pathway mutations (n = 102; all 
being known hotspots) were found to be mutually exclusive, and 52/102 (51%) of these 
RAS-mutated cases had at least one additional subclonal mutation in one of the three 
RAS pathway genes. The mutations mostly affected codons 12 and 13 of KRAS and NRAS 
(Figures 3.3A-3.3C), and considerable variability in the level of clonality was observed 
between the different RAS hotspot mutations at the time of diagnosis. For example, NRAS 
p.G12A (10 cases), NRAS p.G12V (7 cases), and PTPN11 p.E76K (7 cases) were never found 
to be present in a major clone, whereas 55% (n = 11) of the KRAS p.G13D and 27% (n = 9) 
of the KRAS p.G12D mutations were found in major clones. With these high numbers of 
RAS mutations, the variability in clonal burden between hotspot mutations may provide 
an opportunity to compare the capacity of different hotspots to drive clonal expansion 
of ALL. In order to test this hypothesis we compared allele frequencies and performed 
statistical analyses. We found that KRAS hotspot mutations had a significantly higher 
allele frequency compared to both NRAS and PTPN11 mutations (Wilcoxon signed-rank 
test, P < 0.01) (Figure 3.3D). When comparing the different hotspot mutations within 
KRAS, p.A146V showed the lowest allele frequency, indicating a weaker potential of this 
hotspot to drive clonal expansion compared to the other KRAS hotspots. Furthermore, the 
allele frequency of KRAS p.G13D was significantly higher than that of the NRAS hotspot 
mutations p.G13D, p.G12D and KRAS p.A146V (Figure 3.3E). This finding indicates that 
some RAS hotspot mutations (e.g., KRAS p.G12D, p.G13D, p.A146T) may result in a stronger 
expansion potential compared to others (e.g., KRAS p.A146V, NRAS p.G12D, p.G13D), and 
further illustrates the complex heterogeneity of RAS hotspot mutations in their potential 
to drive clonal expansion.
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Figure 3.3. Potency of RAS pathway mutations to drive clonal expansion. (A-C) Schematic representation of 
KRAS (A), NRAS (B) and PTPN11 (C) indicating the prevalence of common hotspot mutations. (D) Violin plot 
showing allele frequency in hotspot mutations of three investigated RAS pathway genes. The median allele 
frequency was significantly higher in KRAS, indicating a high potential of KRAS hotspot mutations to drive 
clonal expansion. (E) Violin plot showing allele frequencies in frequent KRAS and NRAS hotspot mutations. 
The median allele frequency was significantly higher in KRAS p.G13D, suggesting their higher potential to 
drive clonal expansion compared to other RAS hotspot mutations.
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Relevance of gene alterations to relapse development
The high number of alterations in these relapse-associated genes at the time of 
diagnosis triggers the hypothesis that these could be used as prognostic biomarkers 
for relapse development, even when present at subclonal levels. To test this hypothesis, 
we first explored whether alterations in each of the eight genes were enriched in 
diagnostic samples from patients who subsequently relapsed compared to diagnostic 
samples from patients who did not relapse. In general, subclonal alterations were very 
common at primary diagnosis in patients who relapsed (60/82; 73%) as well as in 
patients who did not (165/203; 81%). For high-clonal alterations, we only observed a 
higher percentage of relapse development in cases with IKZF1 deletions compared to 
wild-type cases, whereas an association with relapse development was not observed 
for diagnostic samples with subclonal alterations in any of the genes, including IKZF1 
(Figure 3.4). Furthermore, patients with high-clonal IKZF1 4-7 deletions were more 
often classified as having high minimal residual disease (MRD; >5×10−4 at day 79 or 
84 after start of the treatment) in both representative ALL9 and ALL10 cohorts (Fisher 
exact test, P < 0.01 and P < 0.05, respectively), compared to patients without an IKZF1 
deletion (Table S3.10). 

Figure 3.4. Prevalence of relapse-associated genomic alterations at diagnosis. Bar plot showing the 
percentage of relapses in cases with high-clonal (blue) or subclonal (yellow) mutations in seven relapse-
associated genes, and in cases that were wild-type (black) for these genes. Only cases with high-clonal IKZF1 
4-7 deletions showed a significantly higher percentage of relapse development compared to wild-type cases 
(Fisher exact test, P < 0.01) (Table S3.9).

The CIR at 5 years was 41.7% (SE 0.04%) and 42.9% (SE 0.03%) in patients with 
high-clonal IKZF1 4-7 deletions treated according to the ALL9 and ALL10 protocols, 
respectively (Figure 3.5). The cause-specific hazard ratio (HRCS) in the two representative 
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cohorts (n = 376), estimated with a univariate Cox proportional hazards regression model, 
revealed an association of high-clonal IKZF1 exon 4-7 deletions with relapse (HR = 7.22; 
95% CI: 3.27-15.95; P < 0.01). In the multivariate Cox model, in which age at diagnosis, 
gender and MRD status were included, the adjusted HRCS was 3.6 (95% CI: 1.38-9.55; P 
< 0.01) (Tables 3.1 and S3.11). These data are in line with those from earlier studies on 
these cohorts in which all IKZF1 deletions were included12,24. However, when we assessed 
the clinical relevance of subclonal alterations for relapse development in IKZF1, or 
any of the other genes, Cox regression analysis revealed no significant associations in 
the combined ALL9 and ALL10 cohorts compared to wild-type cases (Tables 3.1 and 
S3.11), and the CIR was similar in the two groups (Figure 3.5). Furthermore, patients 
with subclonal IKZF1 4-7 deletions did not have significantly different levels of MRD 
compared to IKZF1 wild-type patients (Table S3.10). Since previous studies have shown 
a lack of association of IKZF1 deletion with relapse in patients who carry a deletion in 
ERG34,35, we used MLPA to test whether there was an enrichment of ERG deletions in 
cases with subclonal IKZF1 exon 4-7 deletions compared to those with clonal IKZF1 
exon 4-7, but these deletions were infrequent in both groups (Table S3.12). 

Figure 3.5. Cumulative incidence of relapse for high-clonal and subclonal IKZF1 deletions. The cumulative 
incidence of relapse (CIR) was estimated using a competing-risk model with death as a competing event. CIR 
plots are presented for the representative ALL9 (left) and ALL10 (right) cohorts. Lines represent the IKZF1 
deletion status and include wild-type (black line), subclonal exon 4-7 deletion (yellow), other high-clonal 
deletion (purple), and high-clonal exon 4-7 deletion (blue). Straight lines depict relapses and dotted lines 
death. P-values shown are obtained by employing the Gray test to compare CIR curves. The 5-year CIR was 
higher in cases with high-clonal IKZF1 deletions, compared to wild-type cases in both representative cohorts.
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Table 3.1. Cox regression analysis in combined representative ALL9 and ALL10 cohort (n = 376).

Status Number of 
patients Univariate Cox regression1 Multivariate Cox regression1

IKZF1 High-clonal3 18 P < 0.01; HR = 7.22 [3.27-15.95] P < 0.01; HR = 3.6 [1.38-9.55]

Subclonal 22 P = 0.39; HR = 1.69 [0.51-5.57] P = 0.34; HR = 1.8 [0.53-6.24] 

Other high-
clonal4

13 P < 0.01; HR = 19.92 [9.76-40.66] P < 0.01; HR = 13 [5.68-29.79]

MRD Low 111 1 (Ref) 1 (Ref)

Medium 227 P = 0.1; HR = 2 [0.88-4.61] P = 0.28; HR = 1.6 [0.67-3.78]

High 22 P < 0.01; HR = 10.85 [4.16-28.28] P < 0.01; HR = 5 [1.64-15.23]

Age at 
diagnosis

0-4 173 1 (Ref) 1 (Ref)

5-9 133 P = 0.34; HR = 1.34 [0.73-2.46] P = 0.6; HR = 1.2 [0.64-2.25] 

10-14 47 P = 0.83; HR = 0.9 [0.34-2.38] P = 0.6; HR = 0.8 [0.27-2.12] 

15-18 23 P = 0.3; HR = 1.76 [0.6-5.12] P = 0.3; HR = 0.34 [0.04-2.66]

Gender Male 215 1 (Ref) 1 (Ref)

Female 161 P = 0.06; HR = 0.56 [0.31-1.03] P = 0.08; HR = 0.53 [0.26-1.1]

1The hazard ratio is given with a 95% confidence interval. Multivariate Cox regression analysis included 
gender, age at diagnosis and minimal residual disease status as covariates; 2Analysis was done on the 
combined cohort stratified on treatment protocol. Representative ALL9 and ALL10 cohorts are outlined 
in Table S3.1. 3Clonality status based on detection at initial diagnosis; high-clonal: AF ≥ 25%, subclonal: 
AF < 25%. 4Detectable using multiplex ligation-dependent probe amplification assay. A full overview of all 
comparisons is given in Table S3.11. MRD: minimal residual disease.

Tracing of major and minor clone mutations at the time of relapse
To obtain further insight into the clinical relevance of the identified alterations in 
relapse development, we investigated whether these were preserved in the cases that 
relapsed. For this analysis, we used all 146 cases that later developed a relapse, of 
which 82 carried alterations in a major or minor clone in one or more of the genes 
(Tables S3.13 and S3.14). Overall, we found that for most genes at the time of diagnosis 
the frequency of subclonal alterations was similar or slightly higher compared to that of 
the alterations detected in a major clone (Figure S3.3A, Tables S3.13 and S3.14).

We collected 73 relapse samples from patients who carried these major or minor 
clone alterations at the time of diagnosis (89%), which enabled us to trace 171 of the 
185 sequence mutations, and 25 of the IKZF1 exon 4-7 deletions. We did not assess 
whether mutations detected at diagnosis were still preserved in minor clones at relapse, 
since these clones were unlikely to be true relapse drivers. Overall, 56% (22/39) of the 
tested major clone mutations were found to be preserved in the major clone at relapse, 
whereas the value for the subclonal mutations was 7% (9/132) (Fisher exact test, P < 
0.01) (Figures 3.6, S3.3B and Table S3.7). For IKZF1 exon 4-7 deletions, the difference 
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was even more striking. Here, the presence of deletions was studied in 19 available 
relapse samples using breakpoint-spanning PCR, followed by Sanger sequencing to 
confirm that the breakpoint sequences were identical at diagnosis and relapse (Figures 
3.6, S3.3B, Tables S3.6 and S3.7). All major clone IKZF1 exon 4-7 deletions were found 
to be preserved in the major clone at the time of relapse (n = 12), which is in agreement 
with earlier findings and illustrates their relevance to relapse development in these 
treatment protocols12,24. In contrast, none of the subclonal exon 4-7 deletions in IKZF1 (n 
= 13) was preserved in either the major or a minor clone at relapse. Collectively, the data 
from the present study indicate that these deletions, when present at initial diagnosis 
at a subclonal level, do not drive relapse in pediatric ALL.

Figure 3.6. Preservation of clonal and subclonal mutations at the time of relapse. Tracing of major clone 
(top) and subclonal (bottom) alterations detected in initial diagnosis samples from relapsed patients in the 
matched relapse samples. The pie charts depict the fractions of preserved (blue) and lost (orange) alterations 
at the time of relapse.

DISCUSSION
ALL is a heterogeneous disease in which specific genomic alterations show strong 
associations with relapse risk and outcome. In this study, we assessed the clinical 
relevance and prognostic value of subclonal alterations in eight genes frequently 
mutated in relapsed B-cell precursor ALL in a cohort of 503 diagnostic samples. Our 
data demonstrate that subclonal alterations in these genes are very common at the 
time of diagnosis, but that these mutations do not provide a basis for risk stratification 
in pediatric ALL. This finding is particularly relevant for IKZF1 alterations, which are 
currently used or implemented for treatment stratification in multiple upfront treatment 
protocols14,20. 
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The selection of these genes was made based on enriched mutation frequencies 
in relapse found in previous studies. Of all alterations identified in this study, 75% 
were subclonal at diagnosis, suggesting that these relapse-associated gene mutations 
accumulate during progression of the leukemia before the initial diagnosis, thereby 
increasing the clonal complexity. Whereas seven of the genes selected in our study 
showed this high mutational burden at diagnosis, both in terms of numbers and level 
of clonality, we identified only a single, not previously reported, subclonal NT5C2 
mutation in a non-relapsed case (follow-up time 9.5 years). NT5C2 encodes the cytosolic 
nucleotidase, which is responsible for inactivating cytotoxic thiopurine monophosphate 
nucleotides, and activating mutations in this gene are recurrently found in relapsed 
ALL, mainly T-cell ALL4,9,36-38. One explanation for the low number of activating NT5C2 
mutations at diagnosis is that these mutations decrease cell fitness, and only obtain 
their selective advantage during treatment with thiopurine36. If already present at the 
time of initial diagnosis, these mutations are usually detectable in only a very small 
subset of cells, far below the detection level of our smMIP analysis36.

Hotspot RAS pathway mutations have been detected in nearly half of the cases, 
often of the hyperdiploid subtype, and their frequency and clonal burden varied between 
the different mutations. In our study, we used this variability to compare the potential of 
different hotspot mutations to drive clonal expansion under physiological conditions. 
Compared to diagnosis, we observed a less diverse spectrum of KRAS and NRAS hotspot 
mutations in relapse, with p.G12D, p.G12V and p.G13D together accounting for two-
thirds of KRAS and NRAS hotspot mutations found in relapse-fated clones. Studies 
in other cancers have demonstrated that the prevalence of different RAS pathway 
mutations varies depending on the type of cancer and tissue of origin, with KRAS 
mutations p.G12D, p.G12V, p.G13D and p.G12C being among the most common ones39,40. 
Comparison of oncogenic capacities of different RAS hotspots has also been performed 
using in vitro and in vivo modeling studies, focusing primarily on KRAS. These studies 
identified KRAS mutations p.G12D, p.G12V and p.G13D as having higher proliferative 
and transforming potential compared to other common hotspots in various tumors of 
epithelial origin39,41,42. Our data indicate that in competition of multiple RAS hotspot 
mutations, some of these not only confer a proliferative advantage but can also more 
effectively sustain a treatment-induced selective sweep4,10.

The presence of IKZF1 deletions has been shown to be associated with relapse and 
survival in multiple clinical ALL studies12,14-19, and these deletions have been described 
to play a role in resistance to tyrosine kinase inhibitors and glucocorticoids43-46. 
Therefore, with the advance of more sensitive detection techniques, the question of 
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whether subclonal alterations are also associated with relapse is very relevant, both 
from biological and from clinical perspectives. We here demonstrate that, in contrast to 
major clone IKZF1 exon 4-7 deletions, cases that carry this deletion only in a subset of 
the cells do not show an association with relapse. Moreover, whereas all major clone 
exon 4-7 deletions were preserved in cases that relapsed, none of the relapses from 
cases with subclonal exon 4-7 deletions at diagnosis carried this deletion. Importantly, 
the majority of subclonal deletions had allele frequencies below 10% (Table S3.7). 
Therefore, since a threshold to distinguish subclonal from major clone deletions is 
difficult, deletions closer to our threshold of 25% should be evaluated with caution. 
Nevertheless, the difference between major and minor clone IKZF1 4-7 deletions is 
striking, and the reason behind this remains unclear. Possibly, the functional impact of 
full-clonal IKZF1 deletions, which arise early during leukemia development, is different 
from that of deletions that occur in later stages when the leukemia has already 
expanded. Other deletions in IKZF1 show much less clustering in their breakpoints and, 
therefore, screening for these subclonal deletions in diagnostic samples is much less 
efficient. We did not, therefore, directly assess the stability and potential prognostic 
importance of whole gene and rare intragenic IKZF1 deletions. However, a previous 
study showed that other IKZF1 deletion subtypes have similar prognostic relevance 
as exon 4-7 deletions31, suggesting that subclonal alterations in these other IKZF1 
deletions may show the same lack of association.

In summary, we show that subclonal alterations in the relapse-associated genes 
IKZF1, CREBBP, KRAS, NRAS, PTPN11, TP53, and WHSC1 in pediatric ALL are frequently 
present at initial diagnosis, often at a subclonal level. At relapse, however, most of these 
subclonal mutations are lost, suggesting that their selective advantages over wild-
type clones during treatment is limited. This finding has direct implications for clinical 
practice, particularly in the case of IKZF1, where deletion status is used for routine risk 
stratification. We conclude that, at least for the investigated set of genes, there is no 
basis for the use of subclonal alterations at initial diagnosis as a prognostic marker.
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SUPPLEMENTARY DATA
Supplementary material and methods
smMIP-based sequencing and variant calling 

In order to accurately detect subclonal alterations in diagnosis samples, a total of 166 
smMIP probes was designed to cover the hotspot regions of the genes CREBBP, PTPN11, 
NT5C2, and WHSC1, and coding regions of TP53, KRAS and NRAS, seven genes that are 
frequently mutated in relapsed ALL (Table S3.4). All genomic regions of interest were 
covered by at least two probes, preferably covering both the sense and antisense strands. 
smMIP-based sequencing was performed as previously described using paired-end 
sequencing on an Illumina NextSeq 500 Desktop Sequencer (Illumina, San Diego, CA, 
USA), after which smMIP-based consensus variant calling was performed using SeqNext 
software (JSI) version 4.2.5, as previously described23. Mutant allele frequencies were 
corrected based on the blast percentage of the sample. We achieved an average on-target 
read depth of 22,985 raw reads per probe (Figure S3.1A). After removing random errors 
present in less than 70% of raw reads, consensus reads were formed from reads with the 
same unique molecular identifier. We achieved an average on-target depth of 308 (median 
141) unique-capture-based consensus reads per probe (Figure S3.1B), with multiple 
probes overlapping on hotspot regions23. After exclusion of the variants called from 
repetitive regions, poorly performing probes, variants called from less than 2 independent 
probes and variants called by less than 5 unique reads in one consensus read, a total of 
7,836 variants remained with an average on-target depth of 1,419 consensus reads. We 
further filtered out variants present in an in-house database of the Radboud University 
Medical Center (Nijmegen, the Netherlands) containing exomes from 20,000 individuals47 
and variants predicted as non-pathogenic (synonymous, phyloP < 2.5, CADD score < 15) 
(Table S3.3). For the final list of variants, a correction of the mutant allele frequency was 
made based on the percentage of blast cells determined at the time of diagnosis, which 
was high for the majority of cases (>70% for 93% of cases). In a low number of cases an 
aneuploidy required a correction of mutant allele frequency for copy number as well, 
which involved WHSC1 (17 mutations), TP53 (10 mutations), KRAS (6 mutations), NRAS (5 
mutations), PTPN11 (3 mutations) and CREBBP (1 mutation) (Table S3.5). 

IKZF1 deletion detection

IKZF1 status was assessed using the Multiplex ligation probe assay (MLPA) SALSA P335 
ALL-IKZF1 kit (MRC-Holland, Amsterdam, The Netherlands), according to manufacturer’s 
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instructions and as described before12,24. Additionally, IKZF1 4-7 deletions were 
assessed using real-time quantitative PCR. Primers covering the breakpoint clusters in 
introns 3 and 7 were designed using Primer3 software version 0.4.0. Quantitative PCR 
(qPCR) was performed using an IQ SYBR Green supermix (Bio-Rad, Hercules, CA, USA) 
according to manufacturer’s instructions. The primer sequences used for qPCR were: 
5’-CTCCCAGCCCATAGGGTATAA-3’ (forward) and 5’-GTTAAATAAAGAACCCTCAGGCATT-3’ 
(reverse). The sensitivity of the qPCR assay was tested using dilution series of a sample 
with a high tumor load (96% blasts) and a full-clonal IKZF1 4-7 deletions (detected by 
MLPA). All qPCR reactions were performed in duplicate, and the percentage of cells with 
IKZF1 exon 4-7 deletions was calculated based on the dilution series of the control 
sample, and a correction was made based on the percentage of blast cells determined 
at the time of diagnosis. For every sample with a clonal or subclonal IKZF1 exon 4-7 
deletion, PCR products were sequenced with both forward and reverse primers using 
Sanger sequencing, after which the sequences were mapped to the reference genome 
(hg19) to determine the exact breakpoint positions and unique interstitial sequences 
(Figure S3.1C and Table 3.6). 

Defining clonal and subclonal alterations

Previous studies have used allele frequency (AF) thresholds to define mutations as 
being present in a minor subclonal or major clone (clonal) ranging between 20% and 
30%4,10,48,49. In this study, we used an AF threshold of 25% to separate major clonal from 
subclonal alterations, since mutations below 25% represent a minor cell fraction. The 
same threshold was used for defining clonal IKZF1 4-7 deletions, which correlates with 
deletions that are detectable using MLPA. 

Cox regression analysis

Multivariate Cox regression model was estimated including all covariates significant in 
the univariate model, as well as age at diagnosis, gender and MRD as clinically relevant 
covariates. Multivariable model including combined ALL9 and ALL10 cohorts was 
stratified based on the treatment protocol. Proportional hazard assumption was checked 
by visual inspection of Schoenfeld Residuals. The score test was used to test violation of 
the proportional hazard assumption for each variable50. We did not identify violation of the 
proportional hazard assumption for any of the tested covariates. Potential multicolinearity 
was inspected using variance inflation factor (VIF). Univariate interactions were inspected 
for each of the tested covariates and reported in the Table S3.11. 
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Supplementary Tables
Supplementary Tables are available online using the following link: 	  
https://doi.org/10.3324/haematol.2020.259226.
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Supplementary Figures

Figure S3.1. (A) Box plot showing total raw read depth per probe. (B) Box plots showing unique-capture-
based consensus reads (smc) depth per probe. (C) Schematic representation of the IKZF1 gene, indicating 
the position of the common breakpoint cluster in introns 3 and 7 (top panel). The bottom left panel shows a 
representative example of qPCR amplification curves of dilution series and the bottom right panel displays 
the dilution curve from the same experiment indicating high correlation (R2 = 0.9948) for quantifiable samples.
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Figure S3.2. Histogram (left panel) and density plot (right panel) showing the distribution of the mutant 
allele frequency in cases with mutations and IKZF1 4-7 deletions. Allele frequency (AF) of 25% was chosen 
as the threshold for clonal versus subclonal mutations (indicated in red). Mutations above this threshold are 
present in more than 50% of the cells and thus always represent a major clone. As depicted in these panels 
the majority of (subclonal) mutations and deletions have AF below 10%.
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Figure S3.3. (A) Bar plot showing alteration frequencies at diagnosis for relapsed (red) and non-relapsed 
cases (blue). Major clone alterations are shown upwards, while subclonal are presented downwards. (B) Bar 
plot indicating fraction of alterations preserved to major clones in available relapse samples for all genes 
tested (left panel) and per gene (right panel). Samples are grouped based on the alteration allele frequency 
detected in diagnosis. Absolute numbers for each group are shown on the top of the bars (Table S3.7).
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ABSTRACT
Introduction
One-quarter of the relapses in children with B-cell precursor acute lymphoblastic 
leukemia (BCP-ALL) occur very early (within 18 months, before completion of treatment), 
and prognosis in these patients is worse compared to cases that relapse after treatment 
has ended.

Methods
In this study, we performed a genomic analysis of diagnosis-relapse pairs of 12 children 
who relapsed very early, followed by a deep-sequencing validation of all identified 
mutations. In addition, we included one case with a good initial treatment response 
and on-treatment relapse at the end of upfront therapy.

Results
We observed a dynamic clonal evolution in all cases, with relapse almost exclusively 
originating from a subclone at diagnosis. We identified several driver mutations that 
may have influenced the outgrowth of a minor clone at diagnosis to become the major 
clone at relapse. For example, a minimal residual disease (MRD)-based standard-risk 
patient with ETV6-RUNX1-positive leukemia developed a relapse from a TP53-mutated 
subclone after loss of the wild-type allele. Furthermore, two patients with TCF3-
PBX1-positive leukemia that developed a very early relapse carried p.E1099K WHSC1 
mutations at diagnosis, a hotspot mutation that was recurrently encountered in other 
very early TCF3-PBX1-positive leukemia relapses as well. In addition to alterations in 
known relapse drivers, we found two cases with truncating mutations in the cohesin 
gene RAD21.

Conclusion
Comprehensive genomic characterization of diagnosis-relapse pairs shows that 
very early relapses in BCP-ALL frequently arise from minor subclones at diagnosis. A 
detailed understanding of the therapeutic pressure driving these events may aid the 
development of improved therapies.
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INTRODUCTION
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common pediatric 
malignancy1-4. Despite treatment improvements over the past decades, relapse still 
represents the most common cause of therapy failure5,6. Studies describing the genomic 
landscape of relapsed ALL have identified alterations in several genes associated with 
treatment resistance, including IKZF1, CREBBP, and NT5C27-12. Selective pressure during 
upfront treatment can give competitive advantage to leukemic cells harboring these 
alterations, eventually leading to the rise of relapse. For example, activating mutations 
in the NT5C2 gene, encoding cytosolic nucleosidase, accelerate depletion of intracellular 
purine nucleotides and lower proliferative potential of the tumor cells harboring 
these mutations10,13,14. During treatment with thiopurines, NT5C2 mutations decrease 
cell vulnerability, thus giving the leukemic blasts a competitive and proliferative 
advantage compared to cells without these mutations. Nevertheless, exact mechanisms 
in which genomic alterations enable leukemic cells to develop resistance against 
chemotherapeutics are not fully elucidated. Furthermore, recent studies have shown 
that treatment failure may not always be the consequence of genomic alterations 
conferring treatment resistance and proliferative advantage, but rather persistence of 
leukemic cells in a protective niche15-17.

Over 40% of BCP-ALL relapses present late, 6 months after the end of treatment 
(>30 months from initial diagnosis)18,19. These relapses may originate from leukemic 
(sub)clones that remained in a quiescent state during treatment or that could not be 
reached by the chemotherapeutics, for example, due to presence of physiological blood-
organ barriers. On the other side of the spectrum are patients with very early relapses 
(<18 months from initial diagnosis), which represents approximately 25% of relapses 
that occur during treatment, and which are associated with dismal outcome18-20. Very 
early relapses may be different in that they display clonal outgrowth in the presence 
of chemotherapeutics. Alternatively, relapses may be the result of a suboptimal 
treatment, for example, due to toxicity-related discontinuations or omissions. Therefore, 
mechanisms driving relapses during treatment are not yet fully understood.

In this study, we explored the genomic abnormalities in 12 children with BCP-ALL 
who experienced very early relapse, and included one additional case with good initial 
treatment response and on-treatment relapse (within 24 months from diagnosis). We 
subsequently characterized the genomic alterations at diagnosis and relapse using whole 
exome sequencing (WES) and digital multiplex ligation-dependent probe amplification 
(MLPA) assay, and investigated the clonal dynamics of these leukemias. These different 
cases revealed diverse but relevant lessons of on-treatment relapses in BCP-ALL.
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METHODS
Patients and samples
In this study, we selected and analyzed a cohort of 12 children diagnosed with BCP-
ALL, who experienced very early bone marrow relapse (<18 months after diagnosis), 
according to the definition of Berlin-Frankfurt-Münster (BFM) study group, and for which 
samples from diagnosis, complete remission, and relapse were available. These children 
were treated according to a Dutch Childhood Oncology Group (DCOG) protocol ALL9 (n 
= 6), ALL10 (n = 2), ALL11 (n = 3), or Interfant-06 (n = 1). In addition, we included a child 
with favorable cytogenetics (ETV6-RUNX1-positive leukemia) and good initial treatment 
response, who developed an unexpected bone marrow relapse at the end of DCOG-
ALL10-based standard-risk treatment (23 months). Median age at diagnosis for the total 
cohort was 8 years (range 1-14 years), and median remission time was 13 months (range 
6-23 months) (Table S4.1). Deoxyribonucleic acid (DNA) was isolated from mononuclear 
cells obtained from bone marrow or peripheral blood at the time of diagnosis, complete 
remission, and relapse using QIAamp DNA Mini Kit (Qiagen, Hilden, Germany), according 
to the manufacturer's instructions. Remission status of remission samples was determined 
according to the criteria of the respective study protocols, and all 13 patients reached 
complete remission. Informed written consent was obtained from all patients and/or 
their legal guardians before enrollment in the study. In addition, we collected 16 relapse 
samples from patients diagnosed with TCF3-PBX1-positive BCP-ALL. Primer sequences 
used to perform screening for mutations in WHSC1 hotspots are given in Table S4.2.

Whole-genome amplifications (WGA)
Due to limited amounts of genomic DNA in 17 samples from six patients, we performed 
WGA using the REPLI-g mini kit (Qiagen, Hilden, Germany). Master mix was prepared 
using 50 ng of genomic DNA. In order to limit unspecific amplification and random errors, 
incubation was done in four independent reactions of 12.5 μl. After an 8-hour incubation, 
the four reactions for each patient were pooled and purified. WGA material was used 
only for the discovery of somatic mutations using WES and all detected mutations were 
subsequently validated using targeted deep sequencing on non-amplified genomic DNA.

WES and whole-genome sequencing (WGS)
WES was performed by the Beijing Genome Institute (BGI) in Copenhagen and Hong 
Kong using 3 μg of genomic DNA or whole-genome amplified material. DNA was 
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randomly fragmented using Covaris technology and exon capture was done using 
Agilent SureSelectXT Human All Exon v4 or v5. Sequencing was performed using the 
Illumina HiSeq4000 platform. We achieved an average on-target sequencing depth of 
93.3 (range 52-152.8; Table S4.3).

WGS was performed by BGI in Hong Kong using genomic DNA obtained from primary 
patient material. Genomic DNA was randomly fragmented using Covaris technology and 
sequenced on the BGISEQ-500 platform. We achieved an average sequencing depth of 
45.7 (range 43.2-47.3; Table S4.4).

After excluding low-quality reads, clean reads were mapped to GRCh38 using 
Burrows-Wheeler aligner (BWA). Variant calling was done using HaplotypeCaller and 
Mutect2 of GATK. We excluded the following variants from further analysis: (i) likely 
germline variants (allele frequency >5% in the germline sample and variants detected in 
multiple independent germline samples); (ii) variants supported by only a single read; (iii) 
variants with multiple alternative alleles; and (iv) variants called within homopolymer 
regions. All remaining candidate somatic variants were manually curated using Integrated 
Genome Viewer (IGV) before subjecting them to deep-sequencing validation.

Targeted deep-sequencing validation of somatic variants
In order to exclude possible false-positive somatic mutations and to obtain accurate 
estimates of the mutant allele frequency (MAF), we performed deep targeted 
sequencing using the SeqCap EZ HyperCap workflow (Roche, Rotkreuz, Switzerland). 
Library preparation was done according to the manufacturer's instructions using 100 ng 
of genomic DNA from diagnosis, relapse, and complete remission. One patient (P0135) 
underwent a stem cell transplantation and for this patient remission samples before 
and after stem cell transplantation were used for deep-sequencing validation. Following 
enzymatic fragmentation, adapter ligation, and pre-capture amplification of ~300 bp 
fragments, DNA capture was done at 47°C for 48 hours. After post-capture amplification, 
paired-end 2 × 150 sequencing was performed on Illumina NextSeq 500 sequencer.

Digital MLPA assay
Copy number status of the most frequently affected genes in BCP-ALL was assessed 
using SALSA D007-X3 ALL digital MLPA (MRC-Holland, Amsterdam, The Netherlands)21. 
In brief, 100 ng of input DNA was denatured for 10 minutes at 98°C, followed by probe 
hybridization for 16 hours at 60°C. Ligation master mix was added at 48°C, and after 
incubation for 30 minutes at the same temperature, PCR reactions were performed (1 
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minute at 65°C, 45 cycles of 30 seconds at 95°C, 40 seconds at 65°C, and 90 seconds at 
72°C). In total, 5 μl of each reaction was pooled and diluted to 10 nM amplicon library 
using 5 μl of mixture and 95 μl of water. Single-end 1 × 150 sequencing was performed 
on Illumina MiSeq sequencer.

Bioinformatics analysis
Fish plots were made using the R package fishplot (version 0.5)22. Mutational profiles 
were analyzed using R package MutationalPatterns (version 1.8.0)23. Data visualization 
was done using R package ggplot2 (version 3.2.1) and cBioPortal MutationMapper24,25.

RESULTS
A total of 13 cases (nine males and four females) with bone marrow relapse during 
upfront treatment (<2 years of initial diagnosis) were included in this sequencing study 
(Table S4.1). Of these 13 cases, 12 relapsed very early (<18 months from diagnosis), 
while one ETV6-RUNX1-positive case with good initial treatment response experienced 
a relapse after 23 months while under standard-risk maintenance therapy. The total 
cohort consisted of patients with ETV6-RUNX1 (n = 3), TCF3-PBX1 (n = 2), hyperdiploid 
(n = 3), hypodiploid (n = 1), and B-other (n = 4) ALL subtypes, the latter including one 
patient with Down syndrome (DS) (Table S4.1). Median time between initial and relapse 
diagnosis of the total cohort was 13 months. Treatment initiated according to various 
upfront protocols was discontinued due to infections in three patients and stopped due 
to severe toxicity in one patient (Table S4.1).

Following WES of samples taken at diagnosis, complete remission, and relapse, 
all identified somatic variant calls (single-nucleotide variants and small insertions and 
deletions) were subjected to targeted capture and deep-sequencing (average depth 
1,658) in order to validate the mutations and obtain accurate estimates of their MAFs 
at each time point. These approaches resulted in a total of 861 confirmed somatic 
mutations with mutant allele frequencies varying from 0.1% to 100% (Tables S4.5 and 
S6). Validation rate was 88% for mutations with MAF ≥ 25%, and for subclonal mutations 
(MAF <25%) 56% were confirmed. In addition, we identified 99 somatic aneuploidies 
and copy number alterations (CNAs) using digital MLPA (Tables S4.5 and S4.7). Median 
number of mutations was 21 (range 13-100) for diagnosis samples and 46 (range 20-
227) in those from relapse, while median number of aneuploidies and CNAs was five 
both at diagnosis (range 0-7) and at relapse (range 0-14) (Figure 4.1 and Table S4.5). We 
did not find a correlation between the number of mutations and CNAs in relapse and the 
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duration of first complete remission. After filtering for mutations that were predicted to 
be pathogenic (non-synonymous, phyloP ≥ 2.5, CADD PHRED score ≥ 15), we detected in 
total 186 mutations in the leukemias of 13 patients (Table S4.6). The most commonly 
affected genes, both at diagnosis and relapse, were KRAS and CDKN2A/B (Figure S4.1).
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Figure 4.1. Bar plot showing number of mutations (point mutations and indels; upper panel) and copy 
number alteration (CNAs) (bottom panel) per patient in diagnosis (left bars) and relapse samples (right bars). 
Gray bars are shared mutations, whereas colored bars represent alterations that are unique at diagnosis 
(yellow) or relapse (red). Remission time is shown in months. Case P0135 had between 5% and 10% blast 
cells in the relapse sample, which is below detection limit of the digital multiplex ligation-dependent probe 
amplification assay.

Clonal dynamics of BCP-ALL relapsing during treatment
Based on the clonal dynamics between diagnosis and relapse, we observed two patterns, 
which have been recognized in unselected diagnosis-relapse cohorts as well7,8,26-29. The 
first pattern was represented by a group of nine cases (69%), in which the dominant 
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clone detected at relapse emerged from one of the existing subclones at diagnosis 
while acquiring new relapse-specific alterations (Figures 4.2A and S4.2). 

Figure 4.2. Schematic representation of clonal evolution models and scatter plots of representative cases 
showing clonal dynamics in the two groups of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) that 
relapsed during treatment. In both models, we observed new mutations at time of relapse. In the first model 
(A) the dominant clone at relapse originated from a subclone at diagnosis (n = 9), while in the second model 
(B) the dominant clone at relapse originated from the major clone at diagnosis (n = 4). Scatter plots from all 
cases are presented in Figure S4.2. (C and D) Whole-genome sequencing (WGS) analysis of two patients from 
the second group revealed that in both patients, there are few mutations that support that the relapse did 
originate from a minor subclone at diagnosis. Diagnosis and relapse-specific mutations are in red and green, 
respectively, while alterations shared between two time points are depicted in blue.
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A second pattern was observed in a group of four cases (31%), in which the dominant 
clone at relapse emerged from leukemic cells that were part of the major clone in 
diagnosis (Figures 4.2B and S4.2). In both of these groups, we observed a cluster of full-
clonal mutations shared between diagnosis and relapse, indicating their origin from the 
common ancestral clone (Figures 4.2A, 4.2B and S4.2). In order to further investigate 
the second pattern and to identify subgroup-specific mutations, we performed WGS of 
all samples of the two TCF3-PBX1-positive cases from this group. Both cases relapsed 
very early (6 and 9 months after diagnosis). Upon targeted deep-sequencing validation, 
somatic mutations were compared between all samples of the same patient, which 
confirmed that in both patients the far majority of mutations were preserved (Figures 
4.2C and 4.2D). However, in both patients we also identified a small number of mutations 
in the major clone at relapse that were subclonal at diagnosis, suggesting that they 
represent the first pattern of clonal dynamics as well. Together, these findings indicate 
that the majority of the very early and on-treatment relapses in our cohort originated 
from a minor clone at diagnosis that branched off from the major clone.

Recurrently mutated genes in relapse samples
We identified 118 predicted pathogenic mutations in major clones at relapse, including 
established drivers of BCP-ALL relapse like NT5C2, CREBBP, WHSC1, and KRAS (Figure 
S4.3). In addition, in two relapsed cases, we detected nonsense mutations in the cohesin 
complex component gene RAD21, a gene previously not associated with relapse or 
treatment resistance in BCP-ALL (Figure S4.3E). Both mutations resulted in truncation 
of the C-terminal domain of RAD21. RAD21 is essential for sister chromatid cohesion, 
chromatin organization, and DNA looping through interaction with other members of 
the cohesin complex, while the C-terminal domain is involved in promotion of apoptosis 
in a positive-feedback manner30-33. Truncating mutations in RAD21, as well as other 
members of the cohesin complex, were previously reported as disease drivers in solid 
tumors and myeloid malignancies34-36, but not in BCP-ALL. Two cases, both with TCF3-
PBX1-positive tumors, were found to carry a hotspot WHSC1 p.E1099K mutation at 
diagnosis that was preserved at relapse. At diagnosis TCF3-PBX1-positive leukemia is 
associated with favorable outcomes37-39 and relapses are rare. However, if relapses occur, 
these are often fatal, particularly if they present very early40. Therefore, we investigated 
whether WHSC1 mutations were more common in TCF3-PBX1-positive relapses. In 
collaboration with eight other centers, we collected 16 additional TCF3-PBX1-positive 
relapses, of which six occurred very early (Table S4.2). Upon sequencing of the hotspot 
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region of WHSC1 in these tumors, one additional patient with very early relapse (1.3 
years remission time) was found to carry a p.E1099K mutation in the relapse. In a 
previous study, which included 376 patients from two representative Dutch ALL cohorts, 
we showed that full-clonal WHSC1 mutations occurred in 2% of pediatric ALL cases at 
diagnosis41. In TCF3-PBX1-positive ALL, these mutations were shown to be enriched at 
diagnosis (15%)7,42, similar to the percentage we found in TCF3-PBX1-positive relapses 
(3/18; 16%). However, when considering only very early relapses, three of eight (38%) 
carried WHSC1 mutations among the very early TCF3-PBX1 relapses.

Mechanisms causing hypermutation in BCP-ALL relapses during 
treatment
Three cases carried a high mutation burden (≥100), above the threshold of 85 
mutations in the coding regions (>1.3 mutation/megabase), which we previously used 
to define hypermutation in pediatric ALL8. This hypermutation phenotype was restricted 
to relapse in two cases and was already present at the time of diagnosis in a third 
case. We and others have previously identified several mutational mechanisms being 
responsible for a high mutation load, including activation-induced deaminase (AID)/
apolipoprotein B mRNA editing enzyme (APOBEC) activity8,43-45. These processes cause 
mutational patterns that can be recognized by analyzing single-base substitutions 
(SBSs) in specific three-nucleotide contexts46. Whereas in one case, the mutational 
profile was highly similar to the previously reported SBS1 mutational signature; we 
identified AID/APOBEC mutagenesis (SBS2/13) in the remaining two cases. In one 
of these cases, this mutational process was active at time of diagnosis, with 88% of 
the mutations being preserved at relapse (Figure 4.3), whereas the number of newly 
acquired relapse-specific mutations was low and unlikely to be driven by AID/APOBEC 
activity. In contrast, in the relapse sample of patient P0178, the far majority of relapse-
specific mutations appeared to be driven by AID/APOBEC activity (Figure 4.3).
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Figure 4.3. Mutational signatures at relapse. (A-C) Frequency of the substitutions (left panel) and mutational 
profile (right panel) of the three cases with high mutational load (>1.3 mutation/megabase). (D) Comparison 
of mutational profiles between four cases and known COSMIC signatures revealed high cosine similarity 
between SBS2 and SBS13 attributed to aberrant AID/APOBEC activity and SBS1 clock-like signature attributed 
to spontaneous deamination of methylated cytosine in CpGs.
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JAK2-mutated clones in leukemia of a DS patient
In a patient with DS, we identifi ed two dominant clones at diagnosis, each harboring 
different well-known JAK2 hotspot mutations, p.R683S and p.R683G, with MAF of 
24% and 27%, respectively (Figure 4.4). This observation indicates that most, if not 
all, leukemic cells in this patient carry either one of these mutations, illustrating the 
driving capacity of JAK2 mutations in DS-ALL as reported by others47-49. The clone with 
JAK2 p.R683S mutation expanded during treatment and gave rise to the sole dominant 
clone in relapse, while the clone with JAK2 p.R683G was preserved as a minor subclone 
in relapse (MAF = 7%) (Figure 4.4).

Figure 4. Clonal dynamics in a Down syndrome patient with two codominant clones in leukemia at diagnosis, 
each harboring JAK2 mutations. One of the clones expanded and became a dominant clone in relapse, while 
the other clone decreased to a subclone at relapse.

A standard-risk stratifi ed patient with on-treatment relapse
One patient in our cohort was diagnosed with a low-risk ETV6-RUNX1 subtype and, 
based on a good response to induction therapy, stratifi ed as standard risk. Nevertheless, 
he relapsed just before the end of treatment. Genomic characterization revealed that 
this patient had a subclonal TP53 p.R282W hotspot mutation at diagnosis (MAF = 18%). 
TP53 mutations are rare in ALL, particularly at diagnosis, but in relapse these aberrations 
are associated with poor outcome40,50-52. Relapse occurred during 6-mercaptopurine and 
methotrexate courses in which the TP53-mutated clone emerged with a whole gene 
deletion of the second allele. Furthermore, this relapse appeared to be driven by an AID/
APOBEC mutational mechanism (Figure 4.3).
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DISCUSSION
During disease progression, multiple clones emerge, some of which may harbor 
alterations associated with treatment resistance. Chemotherapy can drive selection 
of these resistant clones, which may lead to their expansion and to relapse during 
treatment. Furthermore, intrinsic factors, such as drug toxicity and infections, can cause 
treatment interruption and subsequently potential relapse. The relapses in our study 
occurred during treatment and have poor prognosis compared to late relapses, after 
treatment has ended. In this study, we performed WES and digital MLPA of diagnosis-
relapse pairs and complete remission samples of 12 cases who relapsed very early (<18 
months from initial diagnosis) and one case with favorable prognosis and relapse at 
the end of treatment. Most cases (9/13) did not experience any treatment interruptions 
before the relapse occurred, indicating that treatment-driven clonal selection may be 
the dominant mechanism.

Our data indicate that clonal evolution in cases that relapse during treatment is a 
dynamic process, with the majority of relapses evolving from a subclone present at the 
time of diagnosis, which acquired additional mutations. In the majority of cases, we were 
able to identify preserved or newly acquired relapse-associated genetic alterations in 
the rising clone at relapse. This finding supports the model in which early relapses are 
associated with more dynamic changes in clonal evolution compared to late relapses8,53.

In this study, we identified several genes recurrently altered in the major clone 
of relapsed ALL, including CREBBP, WHSC1, NT5C2, IKZF1, CDKN2A, and CDKN2B, which 
were previously associated with early relapse, in different studies7-11,14,54. Alterations in 
epigenetic modifiers (for example, ARID2, EP300, TOX, and ERG) were rare or absent, 
which is in line with previous studies suggesting their association with late relapse8,44,53. 
In addition, we found two cases with mutations in cohesin complex member RAD21, a 
gene that was previously not associated with relapsed BCP-ALL. Studies have shown 
that mutations in cohesin complex genes are often truncating and have the potential to 
disrupt the entire complex35,36. However, myeloid leukemias with truncating mutations 
in cohesin complex genes usually do not have aneuploidies, suggesting that the 
mechanism in which these genes drive malignant transformation might include one of 
their non-canonical functions30,31,33,35,36. Although previous studies indicate importance 
of the conserved C-terminal domain for induction of apoptosis30,31, the relevance of 
RAD21, as well as other cohesin complex mutations, for BCP-ALL development and 
treatment failure still needs to be fully elucidated.

We have identified a hotspot WHSC1 p.E1099K mutation in two patients with very 
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early relapse and TCF3-PBX1-positive leukemia, a subtype with favorable outcome at 
initial diagnosis. In both cases, the mutation was preserved from a major clone already 
present at diagnosis, indicating that this alteration was an early event during disease 
development. Further screening of 16 relapsed cases with TCF3-PBX1 leukemia revealed 
one additional relapse with the p.E1099K WHSC1 mutation, which interestingly also 
relapsed very early. Furthermore, Ma et al. reported five very early TCF3-PBX1-positive 
relapses, three of which carried WHSC1 mutations as well7,8. Although patients with 
TCF3-PBX1-positive BCP-ALL have favorable prognosis in modern treatment protocols 
and rarely relapse5,55,56, the outcome is poor when relapses occur57,58. Clinical diversity 
and discrepancies in outcome between relapsed and non-relapsed patients suggest the 
presence of additional prognostic biomarkers58. WHSC1 mutations may drive one of the 
mechanisms leading to (very early) relapse in TCF3-PBX1-positive leukemia. Mutations 
in the SET domain of methyltransferase WHSC1 were shown to cause perturbations 
in epigenetic makeup through chromatin remodeling42,59. Among pediatric tumors, the 
frequency of WHSC1 mutations is highest in BCP-ALL, especially in ETV6-RUNX1 (20%) 
and TCF3-PBX1 (15%) ALL subtypes42. Therefore, a WHSC1 mutation is unlikely to be 
a strong risk factor for relapse in these subtypes by itself. However, considering the 
apparent higher frequency of these hotspot mutations in very early TCF3-PBX1-positive 
relapses, an epigenetic event may be involved, which is worth studying further, for 
example, by comparing the epigenetic landscape of WHSC1-mutated non-relapsed and 
very early relapsed TCF3-PBX1-positive cases.

We did find interesting candidate mutations that could explain the observed 
clonal dynamics that preceded the relapse. For example, the proliferation of one of the 
two JAK2 mutated clones in the patient with DS-ALL is in line with previous functional 
studies, which showed that JAK2 p.R683S has higher proliferative advantage compared 
to p.R683G mutations in cell lines47,49. DS-ALL are more prone to treatment-related 
morbidity and mortality, which is the reason for reduction of treatment intensity in 
this group5,20,60. Our findings emphasize the fact that JAK2 mutations may enhance 
proliferative capacities of DS-ALL cells, and support current ongoing trials using JAK 
inhibitors in DS-ALL to prevent relapses while reducing treatment intensity.

A second example was the patient with minimal residual disease (MRD)-based 
standard-risk stratification, who nevertheless relapsed while on treatment. This study 
identified a likely explanation for this particular patient as he carried a hotspot TP53 
mutation in a subclone at diagnosis, which grew out to relapse upon deletion on the 
wild-type allele. TP53 alterations are enriched in relapsed BCP-ALL7,8, and associated 
with unfavorable outcome even in patients with good initial response to induction 
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therapy61. Previously, we have shown that subclonal (likely) pathogenic mutations in 
TP53 are relatively common, but do not necessarily indicate a high risk for relapse, even 
in standard risk-stratified patients (n = 9)41. Furthermore, mutations on both alleles are 
associated with poor outcome, as demonstrated in adult ALL62, but the risk of acquiring 
a second hit has not been studied in larger cohorts. Nevertheless, as TP53 mutations 
are enriched in relapse8,44,50,51, the detection at time of diagnosis, even at subclonal level, 
may warrant careful monitoring by MRD analysis, particularly when stratified in low-risk 
treatment arms.

Taken together, our data reveal highly dynamic clonal evolution in cases that relapse 
very early, with subclones present at diagnosis emerging as new dominant clones in the 
majority of cases. While the small cohort size limits our capacity to generalize, specific 
mutations detected at diagnosis, like the TP53 mutation in a standard-risk patient or the 
WHSC1 p.E1099K mutations in three TCF3-PBX1-positive leukemias, are likely to have 
contributed to these relapses. Furthermore, we identified recurrent mutations in RAD21 
at relapse, a gene previously not associated with relapsed BCP-ALL.
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SUPPLEMENTARY DATA
Supplementary Tables
Supplementary Tables are available online using the following link: 	  
https://doi.org/10.1002/pbc.29361.
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Figure S4.1. Heatmap indicating alterations in cancer-associated genes and genes frequently altered in 
relapse samples. Diagnosis (D) and Relapse (R) are compared for the 13 patients grouped by trial (ALL9, ALL10, 
ALL11). Genes with two mutations in the same sample are marked with asterisks. Mutation allele frequencies 
were normalized for blast percentage in respective samples. Due to low blast percentage in the relapse 
samples of P0135, copy number changes observed at diagnosis were likely below the detection threshold at 
relapse (see also Table S4.7). 
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Figure S4.2. Scatter plots showing clonal dynamics of point mutations and indels between diagnosis and 
relapse in cases that relapsed during treatment. Pie charts depict the number of CNAs, including aneuploidies. 
Diagnosis and relapse-specific mutations are in red and green, respectively, while alterations shared between 
two time points are depicted in blue. Mutation allele frequencies were normalized for blast percentage in 
respective samples. (A) Nine cases in which the relapse originated from a prominent subclone at diagnosis. 
(B) Four cases where the shared (preserved) mutations represent the major clone at diagnosis and relapse. 
Due to low blast percentage in the relapse samples of P0135, copy number changes observed at diagnosis 
were likely below the detection threshold at relapse (see also Table S4.7). 
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Figure S4.3. Schematic representation of the five frequently mutated genes NT5C2 (A), WHSC1 (B), CREBBP 
(C), KRAS (D) and RAD21 (E) in relapse samples indicating mutations and their status relative to the samples 
at diagnosis.
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ABSTRACT
Relapse of acute lymphoblastic leukemia (ALL) remains a leading cause of childhood 
cancer-related death. Prior studies have shown clonal mutations at relapse often arise 
from relapse-fated subclones that exist at diagnosis. However, the genomic landscape, 
evolutionary trajectories, and mutational mechanisms driving relapse are incompletely 
understood. In an analysis of 92 cases of relapsed childhood ALL incorporating 
multimodal DNA and RNA sequencing, deep digital mutational tracking, and xenografting 
to formally define clonal structure, we identified 50 significant targets of mutation 
with distinct patterns of mutational acquisition or enrichment. CREBBP, NOTCH1, and 
RAS signaling mutations arose from diagnosis subclones, whereas variants in NCOR2, 
USH2A, and NT5C2 were exclusively observed at relapse. Evolutionary modeling and 
xenografting demonstrated that relapse-fated clones were minor (50%), major (27%), or 
multiclonal (18%) at diagnosis. Putative second leukemias, including those with lineage 
shift, were shown to most commonly represent relapse from an ancestral clone rather 
than a truly independent second primary leukemia. A subset of leukemias prone to 
repeated relapse exhibited hypermutation driven by at least three distinct mutational 
processes, resulting in heightened neoepitope burden and potential vulnerability to 
immunotherapy. Finally, relapse-driving sequence mutations were detected prior to 
relapse using droplet digital PCR at levels comparable with orthogonal approaches 
to monitor levels of measurable residual disease. These results provide a genomic 
framework to anticipate and circumvent relapse by earlier detection and targeting of 
relapse-fated clones.

Significance: This study defines the landscape of mutations that preexist and arise 
after commencement of ALL therapy and shows that relapse may be propagated 
from ancestral, major, or minor clones at initial diagnosis. A subset of cases exhibit 
hypermutation that results in expression of neoepitopes that may be substrates for 
immunotherapeutic intervention.
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INTRODUCTION
Relapsed acute lymphoblastic leukemia (ALL) is the second leading cause of cancer-
related death in children1. There are few targeted therapeutic approaches for relapsed 
ALL and outcome is frequently poor2, even with the advent of immunotherapeutic 
approaches. ALL typically exhibits a relatively low burden of somatic mutations, which 
has allowed delineation of the nature and sequence of acquisition of genetic variants 
that drive treatment failure3. These include inherited variants that are often associated 
with leukemia subtype (e.g., TP53 mutations and low hypodiploid ALL), founding 
chromosomal rearrangements (e.g., BCR-ABL1 and rearrangement of KMT2A), secondary 
genomic alterations (e.g., alteration of IKZF1), and somatic alterations that are enriched 
from minor clones or acquired after initiation of therapy4. Mutations targeting signaling 
pathways, chromatin patterning, tumor suppression, and nucleoside metabolism are 
enriched at relapse5. These can confer resistance to specific drugs, such as mutations 
in NT5C2 to thiopurines4,6-10 and mutations in the glucocorticoid receptor NR3C1 and 
acetyltransferase CREBBP to glucocorticoids11, or confer sensitivity to targeted agents, 
such as RAS pathway mutations and MEK inhibition12. Prior studies also suggest 
that “relapse-fated” clones commonly exist as minor clones at diagnosis; along with 
the predominant major clone, these originate from a common ancestral clone that 
undergoes divergent evolution8.

The early identification and genetic characterization of relapse-fated clones offer 
the opportunity to improve treatment outcomes by anticipating relapse and adjusting 
therapy, or by targeting relapse-fated clones prior to the acquisition of additional 
mutations facilitating leukemic progression. However, prior genomic studies of relapsed 
ALL have typically been limited in cohort size and the extent of genomic analysis such 
that a rigorous analysis of the relapse driver mutations, formal delineation of clonal 
structure and disease progression, and deep sequencing to distinguish preexisting 
clones from acquired mutations has not been possible.

RESULTS
Patterns of Relapse in ALL
Multiple tools were used to describe mutational landscape, clonal structure, and clonal 
evolution for 92 children with ALL and sequential diagnosis, remission and relapse 
samples treated on St Jude Total Therapy Studies13,14, results of which may be explored 
at https://stjuderesearch.org/site/data/relapsed-all (Table S5.1). Somatic sequence 
variants detected at diagnosis and relapse were subjected to confirmatory capture-based 
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sequencing at each time point to optimize estimation of mutant allele frequency (MAF) 
and time acquisition of relapse-associated mutations (Figures S5.1A-S5.1D). The deep 
sequencing identified subclonal somatic mutations in a subset of the remission samples 
(Table S5.2), raising the possibility that mutational persistence early in therapy may predict 
relapse, as observed in acute myeloid leukemia (AML)15. However, comparative analysis of 
germline mutation burden in 12 cases from this relapsed cohort, with samples at days 
27 to 49 and 20 cases that did not relapse, showed no correlation between mutational 
burden early in therapy and likelihood of relapse (Supplementary Data).

The burden of single-nucleotide variants (SNV), short insertions/deletions (indels), 
and copy number alterations (CNA) increased with disease progression (Figures S5.2A-
S5.2D, S5.3A-S5.3C and Tables S5.3-S5.7). Across the cohort, the majority of CNAs (60%) 
were preserved from diagnosis to relapse, whereas the majority of SNV/indels (74%) 
were acquired (Table S5.8). Twenty-seven tumors from 18 patients were hypermutated 
(>85 mutations per sample, ~1.3 mutations/Mb; Figures S5.4A-S5.4F), including 9 of 14 
second relapses (64%), 6 of which were already hypermutated at first relapse. Apart from 
an increased mutational burden at early second relapse, no relationship was observed 
between mutation burden and time to relapse. CREBBP mutations (n = 15 cases) were 
associated with a longer time to relapse (mean 4.3 vs. 2.8 years, Student t test P = 
0.019; Table S5.9). Notably, 8 cases with outlier early relapse harbored combinations of 
alterations known to be involved in relapse development (Supplementary Data).

Frequently Mutated Genes and Pathways
A total of 4,509 genes harbored nonsilent sequence mutations at diagnosis (D) or 
relapse (R; Tables S5.3 and S5.4). Clonal, nonsilent SNV/indels, or focal CNAs were 
acquired or selected for in 125 genes at first relapse in at least 2 cases and 28 genes in 
at least 3 cases. Among the recurrent mutated genes (≥2 cases), 38 were known cancer/
leukemia genes16 and 87 had not previously been described (Table S5.10). Using GRIN17, 
a model that incorporates analysis of multimodal genomic data (Methods; Tables S5.11 
and S5.12), 23 genes were significantly mutated (q < 0.1) at diagnosis and relapse, and 
50 genes significantly enriched with mutations at R1 (by rising MAF or acquisition of 
mutation following diagnosis). Most (n = 20, 87%) of the D-R1 shared mutated genes, 
but only 14 (28%) R1 specific, were known targets of mutation in cancer/leukemia.

B-ALL relapses were enriched with mutations in RAS pathway (relapse 31.3% vs. 
diagnosis 17.9%) and epigenetic modifiers/regulators, including PRDM2 (n = 4), PHF19 
(n = 3), TET3 (n = 3), and SIN3A (n = 3), 16 of which had not been reported in ALL 
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(49.3% vs. 29.9%; Figures 5.1A, 5.1B, S5.5A, S5.5B, S5.6 and Table S5.13). Of 61 cases 
with signaling pathway mutations, 31 harbored at least one RAS pathway mutation at 
diagnosis, with 11 cases having multiple, commonly subclonal RAS pathway mutations 
at diagnosis (Table S5.14). Seven cases showed convergence to one or two clonal RAS 
pathway mutations. In contrast, only three cases showed acquisition of new RAS pathway 
mutations at relapse. Thus, multiclonality of signaling pathway mutations is frequent at 
diagnosis in ALL, indicating that they are secondary lesions in leukemia evolution, and 
the observed mutational extinction and convergence to clonal dominance supports a 
selective advantage to RAS pathway mutations in many cases. In contrast, PI3K-AKT 
pathway mutations were common at diagnosis in T-ALL but were often lost at relapse, 
suggesting that inhibition of this pathway may not reduce likelihood of relapse.

Of the genes known to play a role in the development of ALL, 29 (including IKZF1, 
TP53, NR3C1, TBL1XR1, and PTPN11) showed universal enrichment at relapse, whereby 
mutations were always retained from diagnosis to relapse (i.e., were truncal variants) 
or subsequently emerged at relapse (Table S5.15). Of these, six were never observed 
at diagnosis (NT5C2, LRP1B, USH2A, APC2, PIK3R4, and NCOR2). An additional 20 genes 
showed extinction of mutations present at diagnosis in only a single case (e.g., VPREB1, 
CREBBP, ETV6, and KDM6A). Several genes not previously reported to be mutated in 
ALL were notable for preservation or clonal selection of mutations from diagnosis to 
relapse, including PTPRT (n = 6), ROBO2 (n = 5), and TRRAP (n = 5), suggesting a role in 
promoting leukemogenesis and relapse (Figures S5.7A, S5.7B, Tables S5.16 and S5.17). 
Mutations in the glucocorticoid receptor (NR3C1) and purine/pyrimidine synthesis 
pathway (NT5C2) were frequent in both B- and T-ALL at relapse, but often as subclonal 
events, suggesting that additional targeting of these drug-specific resistance-driving 
mutations may eradicate all relapse clones in many cases.
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�Figure 5.1. Somatic mutation spectrum in ALL at diagnosis and relapse. (A) Nonsilent mutations in recurrently 
affected (≥3 cases) key genes (COSMIC Cancer Gene Census or reported leukemia relevant genes) in diagnosis 
(D) and first available relapse (R) sample per case. The B-ALL cases are grouped into well-defined disease 
subtypes, which include hyperdiploid (Hyper), hypodiploid (Hypo), KMT2A (MLL)-rearranged, DUX4-rearranged 
(DUX4), ETV6-RUNX1, BCR-ABL1 (Ph), Ph-like, and a group of other B-ALL subtypes including B-other, PAX5 
p.P80R, and iAMP21 ALL. Mutations in the form of SNV/indels and focal CNAs are shown as rectangles with 
different sizes. Mutations observed only in D, only in R or shared by D and R are shown in blue, pink, and 
dark red colors, respectively. The prevalence for each gene mutation is shown in bar graph on the right. (B) 
Distribution of recurrent mutations in key pathways. Top, all recurrent mutations; bottom, the clonal (MAF ≥ 
30%) nonsilent mutations. Samples are divided into B-ALL (n = 67) and T-ALL (n = 25) and the mutation ratio 
in diagnosis and relapse stages is shown. Detailed mutation types are indicated by different colors.

Integration of Mutational Landscapes with Clonal Structure
Using the rise and fall of CNAs and MAF of somatic SNV/indels, most tumor pairs [n = 
79 D-R1/secondary tumor (S; 86%), and n = 12 R1-R2/S (92%)], showed clonal extinction 
and evolution of new clones in the subsequent tumor, indicating branching evolution. 
One quarter of the relapses (n = 28, including 2 second relapses) arose from the major 
clone (MAF > 30%) present at diagnosis or the previous relapse, and half of the relapses 
(n = 53, of which 6 were second relapses) developed from a minor clone (Figures 5.2A, 
5.2B and Table S5.18). Of the 53 relapses arising from a minor clone, nine (17%) had 
relapse-enriched mutations already present in that subclone and 26 (49%) acquired 
new or additional relapse-enriched mutations following diagnosis. Nineteen tumors 
(18%), exhibited polyclonal evolution in which multiple diagnosis clones persisted at 
relapse. 

We found that second relapses evolved more often in a polyclonal fashion (χ2P 
= 0.043) and with a shorter remission time than first relapses (average 1.5 years vs. 
3 years, Student t test, P = 0.0044). Compared with first relapses, variants in second 
relapses were more often variants preserved from subclones (10% vs. 4%) or preserved 
at subclonal levels (11% vs. 2%) and less often acquired (69% vs. 79%), which reflects 
the polyclonal evolution model (χ2P < 2.2 × 10−16). Thus, initial evolution from diagnosis 
to relapse is characterized by mutational convergence, and commonly, emergence from 
a minor clone, but subsequent progression exhibits preservation of the initially selected 
clones and variants.



Chapter 5

124

Figure 5.2. Patterns of relapse in ALL. (A) Schematic overview of mechanisms of clonal evolution. Three 
patients developed a second primary tumor that was not clonally related to the previous tumor occurrence. 
Two patients developed a tumor that shared only one founding fusion between diagnosis and relapse, 
indicating the disease relapsed from a preleukemic cell. Further relapses arose through evolution from a 
minor clone, a major clone, or multiple clones. (B) Fish plots of the clonal evolution models inferred from 
somatic mutations detected in diagnosis and relapse samples. MAF of the somatic mutations was used by the 
sciClone R package14 to infer potential clonal clusters (shown in different colors) and visualized by Fishplot13 
(see Methods). Four major clonal evolution models were observed: 1, relapse sample is a second primary 
leukemia with no somatic mutations shared with diagnosis; 2, a minor clone (somatic mutations' median MAF 
of the clone is less than 30%) in diagnosis develops into the major clone in relapse; 3, a major clone (somatic 
mutations' median MAF of the clone is greater than 30%) is preserved from diagnosis to relapse (3.1) or 
emerges as a major clone at relapse (3.2); 4, multiple subclones in diagnosis develop as multiple subclones 
in relapse. For each exemplary case, the time from diagnosis to relapse is indicated. Focal deletions and 
nonsilent somatic mutations on cancer genes (according to the COSMIC Cancer Gene Census and well-known 
leukemia relevant genes) for each inferred clone are shown on the right side.
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Second Primary Leukemia
Four first relapses (SJBALL006, SJTALL142, SJPHALL005, and SJPHALL022425) and one 
second relapse (SJTALL049) were fully discordant for all genetic alterations (SV, CNA, 
SNV/Indel, and antigen receptor rearrangements) or shared only a leukemia fusion 
(Tables S5.19 and S5.20), suggesting distinct second leukemias masquerading as relapse. 
These scenarios are important to distinguish, as second leukemias may be curable with 
standard therapy and multiple primary tumors suggest heritable leukemia predisposition. 
Both tumors in SJBALL006 harbored MEF2D-BCL9 fusions, but with unique RNA and 
DNA breakpoints, and evidence of the second MEF2D-BCL9 fusion at low level in the 
primary sample (Tables S5.20 and S5.21). In addition, there was a constitutional gain 
of the chromosome 1q neuroblastoma breakpoint (NBPF)18 region on chromosome 1q 
that contains MEF2D and BCL9, and discordant somatic complex genomic amplifications 
of the NBPF region at diagnosis and relapse (Figures 5.3A-5.3D, Tables S5.6 and S5.22). 
Thus, while emergence of a tumor with the same fusion partners suggests relapse, this 
case represents germline structural variation promoting development of multiple tumors 
with distinct initiating fusions and different latencies of presentation. BCR-ABL1 cases 
SJPHALL005 and SJPHALL022425 lacked shared nonsilent variants at diagnosis and 
relapse, raising the possibility of second leukemia rather than relapse. 

However, whole genome sequencing (WGS) of SJPHALL005 identified identical 
rearrangement breakpoints at diagnosis and relapse and 65 shared somatic noncoding 
SNVs, demonstrating relapse from a common, ancestral clone (Table S5.20). SJTALL049 
developed three tumors: STIL-TAL1 rearranged T-ALL at age 6 that relapsed at age 14 
plus an independent BCR-ABL1-positive chronic myeloid leukemia (CML) at age 20. 
Breakpoint spanning PCR revealed unique STIL-TAL1 rearrangements at diagnosis 
and relapse, but WGS showed 19 shared noncoding SNVs. WGS showed no shared 
SNVs between either of the T-ALLs and the CML, indicating that the CML developed 
as a second primary tumor. Thus, completely genetically distinct second tumors 
masquerading as relapse of acute leukemia are rare, and even if complete nonsilent 
mutational discordance is present, they may arise from divergent evolution soon after 
leukemia initiation. Three relapses were clinically considered second tumors based 
on a shift to myeloid lineage (SJTALL008, SJTALL124, and SJTALL164). However, these 
tumors revealed shared mutations between diagnosis and relapse, indicating a common 
clonal origin (Supplementary Data). This recapitulates the lineage plasticity that is 
independent of genetic variegation we have recently described in acute leukemia of 
ambiguous lineage20 and highlights the importance of genomic analysis to accurately 
interpret the relationship of diagnosis and relapse samples.
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Figure 5.3. CNAs and MEF2D-BLC9 rearrangements in patient SJBALL006. Signal intensity from Affymetrix 
SNP6.0 microarrays was normalized to log2 ratio (>0 indicate copy gain; <0 indicate copy loss) and shown in 
the University of California, Santa Cruz Genome Browser in large (A) and focal scale (B) to show the distinct 
alteration patterns between diagnosis and “relapse” (second diagnosis) samples. Constitutional copy number 
gains were observed in the germline sample. (C) RNA-seq depth on exons of BCL9 gene. The sequencing depth 
was scaled from 0- to 270-fold for both diagnosis samples. The uptick of expression of exon 9 and 10 was 
observed for first and second diagnosis samples, respectively, indicating different rearrangement breakpoints 
on BCL9, which was consistent with fusions called from RNA-seq. The RNA-seq library for the first diagnosis 
sample was total RNA, so the intronic region was covered by sequencing reads. (D) Schematic visualization 
of MEF2D-BCL9 chimeric protein structure. Two fusion isoforms have been reported as the most recurrent 
MEF2D-BCL9 rearrangements19.
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Tracing the Evolution of Relapse
Bulk sequencing data may fail to unambiguously define a clonal evolution model, 
particularly for mutationally sparse samples and those exhibiting a continuum of 
variant MAFs. We performed limiting dilution xenografting and sequencing of eight 
matched diagnosis and relapse samples (Table S5.1). Most (90.5% of 232) of the somatic 
mutations detected in primary samples were identified in at least one diagnosis or 
relapse xenograft (MAF ≥ 0.01; Figure S5.8A). Of the 22 mutations not captured in 
xenografts, 20 were observed only in the bulk diagnosis sample and not in the relapse 
sample, suggesting that such nonxenografted diagnosis mutations must be present in 
cells that lack clonal propagating potential and are less likely to initiate relapse.

Genomic analysis including xenografting overcame the challenge of assigning 
mutations to individual subclones and enabled unambiguous delineation of clonal 
structure. Xenograft analysis of SJBALL036 (ETV6-RUNX1-like subtype) identified two 
linearly related clones (2.1 and 2.2) from mutations originally allocated to a common 
clone (Figure 5.4A). Mutations in relapse-fated clone 2.1 were clonal in all xenografts, 
including those propagated from diagnosis, whereas the CREBBP mutations in clone 2.2 
were observed in a subset of xenografts, indicating that subclone 2.2 arose from 2.1. In 
addition, xenografting demonstrated the selective advantage of clone 2.1 versus clone 
5 that was lost at relapse and was not represented in any of the xenografts transplanted 
with the diagnosis sample. Furthermore, the xenografts derived from the relapse sample 
captured mutually exclusive variants, providing definitive evidence that clones 3 and 
4 were unrelated, and represent branching evolution (Figures 5.4B and 5.4C). Similarly, 
xenograft data of SJETV010, of which the second relapse sample is hypermutated 
(1,699 somatic mutations), resolved 13 clones following linear and branching patterns 
of evolution (Figures S5.8B and S5.8C). These data support the notion of branching 
evolution in ALL suggested by FISH and bulk sequencing analysis21,22, but now with 
mutational data enabling unambiguous clonal delineation. A subset of xenografts 
has also been utilized to demonstrate that relapse-fated clones may be detected at 
diagnosis that already exhibit resistance to therapy23,24.
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Figure 5.4. Integration of mutational landscape and xenografts resolves clonal structure in ALL. (A) Somatic 
mutation spectrum of diagnosis (D), first relapse (R1), and xenografted leukemia samples. Leukemic cells from D 
(D.*.#) and R1 (R.*.#) from patient SJBALL036 were xenografted in mice and collected from bone marrow (*.BM.#), 
central nervous system (*.CNS.#), and spleen (*.SP.#). Cancer genes with nonsilent mutations are highlighted 
in red. FS, frameshift; NS, nonsense; SP, canonical splice site; proteinInDel, protein insertion/deletion. (B) 
Delineation of clonal model from xenografted samples. MAF of SNV/indels were analyzed by sciClone14 to 
infer clonal clusters. On the basis of the MAF in D and R1, clone 2.1 and 2.2 were indistinguishable. Xenograft 
data shows that clone 2.1 rises as a major clone (MAF = 0.5) in relapse alone or together with clone 2.2, 
indicating that 2.1 is the parental clone of 2.2. In addition, xenograft data showed variability in MAFs between 
clones 3 and 4, indicating that clones 3 and 4 were two distinct subclones. The clones are color-coded in 
the schema as in A. The number of somatic mutations in each clone is shown in parentheses. (C) Fishplot of 
the leukemia evolution model. The top plot shows the original evolution model based on D and R1, and the 
bottom plot is the refined evolution model after incorporating the information from xenografted samples. The 
time (T) at diagnosis is defined as 0 and the first relapse was observed 4 years later. Nonsilent mutations and 
focal deletions (Del) affecting cancer genes are highlighted for each clone.

Tracing Mutation Acquisition Prior to Relapse
As xenografting identified resistance-driving mutations in relapse-fated subclones 
present at diagnosis, we sought to determine whether these mutations could be 
detected in patient samples obtained between diagnosis and relapse. We used droplet 
digital PCR (ddPCR) to track the emergence of relapse-specific mutations in CREBBP, 
NRAS, KRAS, NT5C2, and WHSC1 in 50 samples from 5 patients (Table S5.23). With an 
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input of 500 ng DNA a frequency of >0.005% (>7 copies) could be consistently detected 
(Figures S5.9A-S5.9D and Table S5.24). ddPCR identified previously undetected minor 
clones in three tumor samples (NRAS p.G12R MAF = 0.4% in SJBALL013-R1, KRAS p.G12S 
MAF = 0.4% in SJBALL022481-D, NT5C2 p.R39Q MAF = 0.006% in SJBALL192-R1; Figure 
5.5), confirming the minor clone evolution model for these tumors.

Figure 5.5. ddPCR reveals mutations at low levels in intermediate complete remission samples. MAF of 
the indicated variants was determined in bone marrow (circle) and peripheral blood (triangle) samples 
for 5 patients. The time to diagnosis is scaled on the x-axis, with the treatment blocks indicated in black 
(induction), red (consolidation), blue (maintenance), and orange (relapse treatment). SJBALL192, SJHYPER127, 
and SJTALL001 relapsed during maintenance treatment. Detection limits are indicated with a red horizontal 
line and shaded background. Detection limits in gray were extrapolated from the other assays (i.e., not 
experimentally determined). The MAF at relapse of WHSC1 in SJHYPER127 was determined in our capture 
validation analysis as no DNA was available for ddPCR. The y-axis is in logarithmic scale.

Difference in the temporal dynamics and occurrence of mutations in SJBALL022481 
(CREBBP and KRAS), SJBALL192 (two NT5C2 mutations), and SJTALL001 (NT5C2 and KRAS) 
demonstrated clonal exclusivity of these mutations in each case. Despite complete 
remission by conventional minimal residual disease (MRD) testing, we detected tumor-
specific mutations up to 534 days after the diagnosis (SJBALL022481, CREBBP p.R1446C), 
as well as 40 days prior to relapse (SJBALL013 NRAS p.G12R) in complete remission bone 
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marrow samples. Moreover, in SJBALL022481, the KRAS p.G12S mutation was detectable 
at regular intervals during the 1,169 day period between diagnosis and relapse, even 
though the samples were deemed complete remission. Peripheral blood samples 
obtained from patients with B-lineage (SJBALL192, SJHYPER127) as well as T-lineage 
ALL (SJTALL001) with eventual bone marrow relapse were negative or contained much 
lower MAFs compared with the bone marrow. Thus, leukemic cells may persist in bone 
marrow and may be detected at low levels during complete remission, indicating the 
utility of this approach for disease monitoring and early relapse detection.

Mutational Drivers of Hypermutation and Neoepitope Expression
Three percent of diagnoses, 17% of first relapse, and 64% of second relapse cases 
exhibited hypermutation. This was defined by an inflection at 85 mutations, approximately 
1.3 mutations/Mb, a burden that was more conservative than the cutoff determined 
by the Segmented algorithm25 (Figure S5.4A). Hypermutation was observed in cases 
relapsing from minor or multiple clones of all 3 hypodiploid, 2 of 5 ETV6-RUNX1, 5 of 13 
hyperdiploid, 1 Ph-like, 2 unclassified B-ALL, 1 ETP, and 4 T-ALL cases. To understand the 
processes responsible for hypermutation, we used non-negative matrix factorization 
(NMF)26 and extracted four single-base substitution (SBS) signatures (Figures 5.6A, 5.6B, 
S5.10A and S5.10B). The high prevalence of hypermutation in second relapses suggests 
that hypermutation may be driven by treatment exposure. 

However, we did not uncover a mutational signature associated with treatment, 
such as temozolomide-associated signatures found in glioblastoma and melanoma26. 
On the basis of the most prominent mutational signature (Figure S5.10B), we classified 
17 hypermutated relapses from 13 patients into four groups (Figure 5.6C). Two of 
these groups were characterized by well-established mutational processes. Group 
2 (signature B mutations) resembles signatures associated with activity of the AID/
APOBEC family of cytidine deaminases27,28. This mutational process is common in 
human cancer including ALL26 and was postulated to occur in short bursts initiated 
by retrotransposon mobility29. The mutational burden in this group was relatively low 
(99-156 acquired mutations) compared with the other three groups (group 1; 220-
1,210, group 3; 860-1,218, group 4; 104-710). Group 3 cases have high contribution 
of signature C, which clusters with mismatch repair (MMR)-associated signatures, with 
highest similarity to SBS15 (Figure 5.6B). Indeed, the three relapses in this group all had 
biallelic mutations in one of the MMR genes (see Supplementary Data) and had high 
levels of single-base insertions or deletions in simple repeats (Figure 5.6D), a feature 
of MMR deficiency30. Genetic alterations in the MMR pathway have been associated 
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with resistance to drugs such as thiopurines in ALL19, suggesting that this mechanism 
of hypermutation directly contributed to relapse in these cases. Two signatures could 
not be assigned to known mutational processes. Signature D (group 4) lacked a strong 
bias for a particular trinucleotide context and showed similarity to multiple mutational 
signatures. Signature A (group 1) resembled clock-like signature SBS1, which is a known 
consequence of a slow but progressive accumulation of C to T transitions at CpG sites 
owed to spontaneous deamination of methylated cytosines and is more apparent 
in cancers diagnosed at older age30. Because the patients in our cohort are young, 
this process appears to be accelerated by an acquired imbalance between damage 
and repair. This was not caused by alterations in genes encoding regulators of DNA 
deamination. Interestingly, the signature A mutations in SJETV010 were subclonal (MAF 
< 0.5%) in the first relapse, but showed a much wider spread of allele frequencies in 
the second relapse, suggesting an ongoing endogenous mutational process initiated 
in a minor clone at first relapse (Figure 5.6E). Recently, an SBS1-like signature (SBS74) 
has been reported that appears to be associated with MMR deficiency31. Indeed, all 
hypermutated ALL relapses with MMR deficiency show signature A mutations (Figure 
5.6C and Supplementary Data).

To further compare the characteristics of signature A with the clock-like signature 
SBS1, we performed WGS of relapse and remission samples of SJETV010, SJHYPER022, 
and SJHYPO117, followed by somatic SNV calling and mutational signature extraction. 
In line with our findings in the coding regions, we identified highly concordant mutation 
densities, as well as composition and relative contribution of the four mutational 
signatures (Figures S5.10C-S5.10F). Signature SBS1 mutations have been described 
to occur throughout the genome and do not show strand asymmetry in transcribed 
regions26,32. We confirmed these observations using three recently published colon 
organoid samples33, which are characterized by high prevalence of signature SBS1 
mutations, mainly outside gene bodies. In contrast, we found that signature A mutation 
density was highest in gene bodies and showed strong transcription strand bias, 
particularly in genes with high expression in the respective samples (Figures 5.6F, 5.6G 
and S5.10G). We did not observe strand asymmetry associated with DNA replication for 
either signature A or signature SBS1 (Figure S5.10H). Transcriptional strand asymmetry 
can be the result of more efficient repair of the transcribed strand, or increased damage 
on the single-stranded, nontranscribed strand, two mechanisms that show opposite 
correlations with expression34. Because signature A mutations are enriched in highly 
expressed genes, they may originate from transcription-coupled damage at the single-
stranded, nontranscribed strand, as has been described for liver cancer34.
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�Figure 5.6. Mutational signature analysis of hypermutated relapses identifies multiple distinct mutational 
processes in hypermutation. (A) Four mutational signatures identified in hypermutated ALL. Relative 
contribution of the different mutation types in their trinucleotide context, and cosine similarity values to 
reported COSMIC signatures are shown. (B) Cosine similarity heatmap showing the hierarchical clustering of 
de novo signatures identified in this study with 30 known SBS signatures, including those associated with AID/
APOBEC (orange bar), spontaneous deamination of methylated cytosines (red bar), and mismatch repair (blue 
bar). (C) Absolute contribution of each of the four signatures to the acquired mutations in 17 hypermutated 
relapse samples from 13 patients. Samples are grouped on the basis of the most prominent contributing 
signature. (D) Average number and size of acquired indels in samples assigned to each group (top) and the 
number of repetitive subunits surrounding an inserted or deleted subunit (bottom). A value of 0 indicates 
that the indel is not located within a simple repeat. (E) Total number of mutations (acquired and preserved) 
assigned with >95% confidence to signature A in the tumors of SJETV010, binned based on the mutation allele 
frequency (MAF). (F) Density of C>T transitions in CpGs inside and outside gene bodies of two hypermutated 
relapses (SJETV010R2 and SJHYPER022R1) with high contribution of signature A mutations (top and middle) 
and healthy colon organoids with high contribution of SBS1 mutations (average of 3 organoids; bottom). (G) 
Bar plots showing number of C>T transitions in CpGs on the transcribed and nontranscribed strand in relation 
to gene expression (top) and density of C>T transition in CpGs (bottom) in genes with no, low (<median) and 
high (≥median) expression (*, P < 0.05).

The high prevalence of hypermutation in relapsed ALL suggested that this may 
result in increased generation of expressed neoepitopes that may be exploited by 
immunotherapeutic approaches to enhance antitumor responses of autologous T 
cells. We used WGS and RNA sequencing (RNA-seq) data to infer HLA class I types from 
each sample35, predicted the binding affinities of all unique 8-12 amino acid peptides 
corresponding to SNVs and fusion proteins36, and developed unweighted (UPAS) and 
weighted putative antigenicity scores (WPAS), the latter of which incorporates predicted 
sample-specific peptide: MHC binding with variant-specific expression. Although we 
observed variation in the number of fusion-encoded, predicted MHC-binding peptides 
across individual fusions (0-20, median = 1), fusion-encoded neoepitopes remained 
unchanged over time (Table S5.21). In contrast, we observed that the number of predicted 
HLA-binding mutant peptides37 (≤500 nmol/L) per tumor rose with disease progression 
as a function of increased mutation burden, and thus particularly in hypermutated 
samples (P < 0.001, Table S5.25 and Figure S5.11A). In addition, the number of predicted 
MHC-binding peptides per tumor was significantly correlated with disease (B- and T-ALL), 
disease progression (D, R1, and R2), and signatures of hypermutation (Figure S5.11B). An 
expression-weighted antigenicity analysis comprising the subset of missense SNVs with 
expression data showed a significant effect of disease progression, with median WPAS 
lowest in R1 and highest in R2 variants (Figure S5.11C), and was particularly marked 
for known cancer genes (Figure S5.11D). These patterns may correspond to variations 
in immunologic pressure owed to, for instance, the distinct etiologies underlying B- and 
T-ALL and the successive use of immunosuppressive agents in treatment, respectively.
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DISCUSSION
Using multiple orthogonal approaches, we have described the patterns, dynamics, and 
drivers of clonal evolution in a large cohort of childhood relapsed ALL. These results 
have implications for the development of new approaches to monitor and treat ALL 
more effectively.

The scope of our study allowed us to identify relapsed enriched driver mutations 
more comprehensively than in prior studies and included newly identified targets of 
mutation as well as recurrent mutations in genes previously identified at relapse11,38,39. 
We were able to identify distinct patterns of temporal acquisition across relapse-
enriched targets of mutation, with mutations in genes such as CREBBP preserved 
from or acquired after diagnosis, and others in genes such as NT5C2 and USH2A only 
observed after initial therapy; importantly, these findings suggest a role for therapy 
in the induction of mutation, and/or a deleterious effect on initial leukemic fitness of 
these mutations38. Mutations observed in different gene regulation pathways showed 
different frequencies of relapse-enriched genes between B- and T-ALL, indicating that 
distinct biological mechanisms drive the genetic alterations of the disease progression.

Tumors that evolved from, or retained multiple clones all had a short time to 
relapse, supporting a model in which early relapses are associated with dynamic clonal 
evolution and late relapses to a more inert pattern40. These patterns of evolution, and 
description of the targets of mutation, have important implications for anticipation of 
relapse and modulation of therapy. Over half of relapses arise from a minor clone that 
commonly harbors, or acquires, relapse-enriched mutations that drive drug resistance. 
Analysis of this large cohort also enabled demonstration that relapse enriched 
drivers such as alterations of CREBBP, IKZF1, and NT5C2 are rarely lost if present at 
diagnosis or subsequently acquired, indicating that early detection may predict an 
increased likelihood of treatment failure. Moreover, in parallel studies using a subset 
of the xenografts described here, we have shown relapse-fated minor clones already 
exhibiting resistance to therapy are present at the time of diagnosis23,24. Thus, it is 
imperative that mutational profiling must now strive to achieve MRD levels of mutation 
detection at diagnosis or early in therapy, and we have shown the feasibility of this 
approach using ddPCR. An alternative approach is capture-based deep sequencing 
of regions of sequence and structural variation in ALL. Early detection will facilitate 
close monitoring and consideration of alternative treatment approaches such as 
intensification, immunotherapy, or novel drug approaches for drug-specific resistance 
(e.g., NT5C2 and thiopurines and CREBBP and corticosteroid resistance).
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We show hypermutation is common at relapse, and driven by distinct mechanisms 
of mutation, including tumor-intrinsic processes, such as cytidine deaminase DNA editing 
activity (AID/APOBEC) as previously observed in diagnosis samples41 and experimental 
models42, or the acquisition of mutations that cause MMR deficiency, which may 
represent a mechanism of MMR-induced resistance to thiopurines in ALL19. In addition, 
we identified a new SBS1-like signature (Signature A), characterized by transcriptional 
strand asymmetry and enrichment in expressed genes, caused by an unknown 
mutational mechanism that is acquired during leukemia progression. Importantly, the 
identification of hypermutation as a common phenomenon in relapsed ALL suggests that 
immunotherapeutic approaches intended to restore autoreactivity against neoantigen 
expression, such as checkpoint blockade, should be formally explored. Although long 
assumed to be poor targets for immunotherapy due to the relatively low mutation 
burden in comparison with other tumors43, recent data have demonstrated that pediatric 
hematologic malignancies promote the generation of abundant and functional immune 
responses to tumor-specific neoepitopes despite the apparent inability of the immune 
system to control those tumors44. In conjunction with those findings, our results suggest 
that not only does hypermutation drive the generation of HLA-restricted neoepitopes, 
but that these are expressed in an immunologically tolerized milieu that may be 
exploited with strategies to augment T-cell antitumor reactivity. It will now be of great 
interest to formally document the presence of autoreactive T-cell clones directed at 
neoepitopes induced by hypermutation, as we have described at diagnosis in ALL44, and 
to formally test, in experimental models, whether immunomodulatory approaches can 
augment or restore antitumor reactivity in hypermutated ALL.

METHODS
Subjects and Samples
The cohort included 92 children (31 female, 61 male) with relapsed B-progenitor (B-ALL, 
n = 67) or T-lineage [T-ALL, n = 25; including 7 early T-cell precursor ALL (ETP-ALL)] ALL 
patients treated on St. Jude Total Therapy Studies XI-XVI45-47 (median age at diagnosis 
7.8 years; range 1 month-18.7 years; Table S5.1). The median time from diagnosis to 
first relapse was 2.7 years (range 3 months-9.9 years). Sixteen cases developed a second 
relapse (range 3 months-7 years). Relapse was very early (<1 year) in 17 patients, early 
(1-2 years) in 21 patients, and late (>5 years) in 14 patients. Nine cases developed a 
second tumor of different lineage, including 2 basal cell carcinomas, 1 B-cell lymphoma, 
1 CML, and 5 AMLs. A total of 46 patients received bone marrow transplants at a median 
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age of 12 years (range, 7 months-22 years), and all except one were allogeneic. Tumor 
samples with a blast percentage of less than 80% were flow sorted for the tumor 
population. Written informed consent was obtained from the patient and/or parent. The 
study was conducted in accordance with the Declaration of Helsinki, and was approved 
by the St. Jude Children's Research Hospital Institutional Review Board.

Genomic Analyses
DNA copy number aberrations were determined using SNP 6.0 microarrays (Affymetrix) 
in 307 samples from 92 patients (92 diagnosis, 84 relapse, 14 second relapse, 5 second 
tumor, and 91 germline samples; Table S5.1). Data were analyzed using reference 
normalization48 and circular binary segmentation49.

We performed whole exome sequencing (WES) on 276 samples from 92 cases 
(Table S5.26) and WGS on 99 samples from 36 cases (Table S5.27). Exomes were captured 
using the TruSeq Exome Library Prep Kit (67 Mb, 1 μg DNA input) or the Nextera Rapid 
Capture Expanded Exome Kit (62 Mb, 50 ng DNA input; Illumina). Paired-end sequencing 
was performed with the HiSeq 2500 sequencer (Illumina). The data were mapped to 
human reference genome hg19 and variant calling was performed using Bambino50-52. 
All somatic SNVs and indels identified at diagnosis or relapse were validated using 
NimbleGen SeqCap Target Enrichment according to manufacturer's instructions (Roche 
NimbleGen) and resequenced using a HiSeq 2500 genome sequencer to a mean coverage 
>350 × (250-500 ng DNA input; Table S5.28). We performed transcriptome sequencing 
(RNA-seq) for TRIzol extracted RNA for 115 samples obtained from 66 cases (Table 
S5.29). We used 1 μg RNA for library preparation with the TruSeq RNA Library Prep Kit 
v2 (Illumina) and 2 × 100 bp paired-end sequencing was performed on a HiSeq 2500 
sequencer (Illumina). RNA-seq data were mapped to human reference genome hg19 
using StrongArm and fusions were identified using CICERO53 and FusionCatcher54,55.

B-ALL Subtyping Based on Gene Expression Profile from RNA-seq
Read counts for annotated genes (Ensembl Homo sapiens GRCh37 v75) were called 
by HTSeq56 (version 0.6.0) and processed by DESeq2 R package57 to normalize gene 
expression into regularized log2 values (rlog). A subtype predication model was trained 
by Prediction Analysis of Microarrays based on a cohort of 309 samples from our 
previous studies16,53,58, which consists of 8 B-ALL subtypes: IGH-DUX4 (n = 42), TCF3-
PBX1 (n = 41), ETV6-RUNX1 (n = 42), hyperdiploid (n = 46), MEF2D-rearranged (n = 21), 
KMT2A (MLL)-rearranged (n = 44), BCR-ABL1 (n = 44), and ZNF384-rearranged (n = 27). 
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The trained model was applied with 100 evenly divided thresholds (control selected 
feature genes from 5,000 to 50) and the probability score was averaged to predict 
subtypes for the enrolled RNA-seq samples.

Mutation Analysis and Clonal Modeling
Variants with a total coverage of <5 reads (combining WGS/WES and validation) were 
excluded. Variants with ≤2 variant reads were considered wild type; those with 3 to 
8 variant reads only considered mutant when both WES/WGS and capture validation 
techniques identified the variant or the variant was called with higher coverage in other 
(tumor) samples of the same patient. A MAF of <30% was considered subclonal, 30% to 
75% heterozygous, and MAF ≥ 75% homozygous.

MutSigCV59 and the Genomic Random Interval Model17 (GRIN) analyses were 
performed to identify potential driver lesions (Tables S5.11 and S5.12). MutSigCV is 
limited to analysis of sequence mutations, whereas GRIN incorporates multimodal 
genomic data including sequence and structural variants with robust adjustment for 
background mutation rate to identify significantly altered genes/regions, and unlike 
CNA-specific tools such as GISTIC60, is not influenced by full chromosomal aneuploidies.

Two-dimensional MAF plots were used to visualize the relationship between 
sequential samples4. We used sciClone14 and manual curation incorporating xenograft 
data to assign variants to clones. Clonal evolution was visualized using ClonEvol61 and 
fishplot13. Noncoding variants were also considered to resolve the nature of clonal 
evolution in cases with presumed evolution from a major clone, which resulted in 
required reclassification from evolution from a major to a minor clone in 5 of 27 cases. 
Retention of multiple clones was deemed polyclonal evolution, and relapse from an 
ancestral precursor where D/R tumors share only the founding translocation and up to 
two SNV/indels.

Xenografting
Diagnosis and/or relapse tumors of 8 cases [3 ETV6-RUNX1, 1 ETV6-RUNX1-like, 2 
KMT2A (MLL)-rearranged, 1 DUX4 and 1 case without subtype data; Table S5.1] were 
transplanted at limiting dilution from 250,000 cells to 10 cells into the femur of 8 to 
12 week-old sublethally irradiated (225 cGy) female NOD.Cg-Prkdcscid Il2rgtm1Wjl/
SzJ (NSG) mice. Engrafted tumor cells were harvested from bone marrow, spleen, and 
the central nervous system when mice displayed evidence of disease or at 30 weeks 
posttransplantation. Cells from the bone marrow and spleen were purified using the 
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Miltenyi Mouse Cell Depletion Kit (Miltenyi Biotec; samples with >20% engraftment) 
or by cell sorting. All animal experiments were done in accordance with institutional 
guidelines approved by the University Health Network (Toronto, Canada) Animal 
Resource Centre (AUP#1117.37).

ddPCR
Seven relapse-associated mutations were genotyped by ddPCR technique (RainDance 
Technologies) using custom (NT5C2 p.P414A, CREBBP p.R1446C, NRAS p.G12R, and 
WHCS1 p.E1099K) or available (NT5C2 p.R39Q, KRAS p.G12S, and KRAS p.G12C) primers 
and probes (Table S5.30). An average of 7 million droplets were generated by the 
RainDrop Source instrument, and emulsion PCR was performed using the C1000 Thermal 
Cycler (Bio-Rad, Hercules, CA, USA). Droplet fluorescence of the amplified product was 
detected by the RainDrop Sense instrument, and data analysis was carried out using 
the RainDrop Analyst II Software. Detection limits were determined by testing serial 
dilutions of flow purified-mutant leukemia cells in wild-type REH cells. A frequency 
of >0.005% (>7 copies) could be consistently detected (Figure S5.9 and Table S5.24). 
ddPCR MAF correlated well with the MAFs called from WES (r = 0.971) or CapVal (r = 
0.9964; Figure S5.9 and Table S5.23).

IGH and TCR Rearrangement Sequencing
IGH and TCRB loci were genotyped by ImmunoSeq (Adaptive Biotechnologies) to analyze 
clonal relationships of putative second tumors lacking shared genomic alteration (34 
samples from 15 cases; Table S5.19).

Germline Analyses
Germline copy number variants were filtered by the Database of Genomic Variants62 
and in-house databases. To prioritize germline SNV/indel variants, we filtered for rare 
variants (<0.01% population frequency in ExAC, dbSNP, GoNL, ESP, Wellderly, Kaviar, and 
Complete Genomics' 60 genomes databases) that were predicted to be deleterious 
(nonsense, frameshift, or canonical splice site variants, and missense variants with PhyloP 
> 3) and were present in genes known to be associated with leukemia susceptibility 
and pediatric cancer syndromes (Tables S5.31 and S5.32). Second, we used St. Jude's 
Medal Ceremony algorithm to identify Gold Medal variants63 (truncating mutations in 
tumor suppressors, matches to hotspots or truncating mutations in somatic mutation 
databases, and matches to locus-specific databases).
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Mutational Signature Analysis
We defined hypermutation as samples containing >85 SNV/indels (~1.3 mutations/Mb) 
based on the density histogram of the number of variants per sample in our cohort 
(Figure S5.4), which is more conservative than the cutoff determined by Segmented25 
(>56 SNV/indels, 0.8 mutations/Mb).

For de novo extraction of somatic mutational signatures, we selected 22 hypermutated 
ALL samples from this cohort, and WES and WGS from patients with hypermutated B-ALL 
(n = 38) and WGS from B-cell lymphoma samples (n = 10, ICGC). Mutational signatures were 
extracted using NMF64,65 and MutationalPatterns66. Similarity between two signatures, A 
and B, defined as non-negative vectors with n mutation types, was calculated using cosine 
similarity. We defined two signatures to be the same if the cosine similarity is ≥0.95 (range 
0-1). We calculated the cosine similarity between the mutational profiles of the samples 
and the mutational signatures and included the COSMIC mutational signatures and the 
de novo extracted mutational signatures in this analysis.

Finally, we studied the strand asymmetry of signature A mutations in the context 
of transcription and replication. This analysis requires that individual mutations are 
assigned to a single signature. Using the number of trinucleotide changes and the 
signature probabilities per sample, we calculated the relative contributions of each 
signature for each trinucleotide context in a sample. Only trinucleotide changes with 
a relative contribution of ≥95% to one of the four signatures were assigned to that 
particular signature.

Replication timing in leukemia samples was determined using Repli-seq data 
obtained from five lymphoblastoid cell lines in the ENCODE project67 (GM06990, 
GM12801, GM12812, GM12813, GM12878), using median values per 1-kb bin33. For 
intestinal organoids, we used Repli-seq data described previously68. Predefined 
signature A mutations were assigned to early, intermediate, and late replicating 
regions, as described previously33. Replication asymmetry analysis was done using the 
MutationalPatterns R package66. On the basis of the distribution of rlog values from 
RNA-seq, genes were stratified into three groups for each sample: not expressed (genes 
with no or few supporting reads), genes with low expression (below the median level), 
and genes with high expression (median expression level or higher). We confirmed 
presence of SBS1 mutations by comparing their mutational profile with signature SBS1 
for each sample (cosine similarity = 0.98; Figure S5.10). Gene expression stratification 
for healthy colon organoids was performed as described for the ALL samples. Testing 
of strand asymmetries within three groups was done using Poisson test for strand 
asymmetry significance testing.
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Neoepitope Analyses
To characterize the antigenic potential of missense variants, we developed putative 
antigenicity scores that consider predicted patient-specific peptide: MHC binding 
variant-specific expression. WGS and RNA-seq data were used to infer class I HLA 
alleles to four-digit resolution for each patient using OptiType35. For each missense 
SNV and patient HLA allele, we then used NetMHCcons 1.136 to predict the binding 
affinities of all unique, mutated peptides of lengths 8-12 amino acids, excluding 
peptides that could be found elsewhere in the human proteome. Predicted binding 
affinities are often categorized as presumptive binders (≤500 nmol/L) and nonbinders, 
which can be useful for narrowing epitope targets44, but to estimate total antigenic 
potential, we also conceptualized binding affinities as correlated with probabilities of 
peptide: MHC binding to consider all predicted binding affinities additively. The UPAS 
was calculated as the natural logarithm of the summation of the inverse of all putative 
binding affinities; for the subset of SNVs for which expression data were available, 
this value was then weighted by adding the natural logarithm of 0.01 + the fraction of 
expressed alternate-to-total bases to generate a WPAS specifically for those variants. 
Each of these scores is best considered in comparison across variants, with increasingly 
positive scores indicative of increasing putative antigenicity.

To investigate potential correlates of antigenic potential (e.g., disease, disease 
progression, hypermutator status, and interactions thereof) while controlling for the 
nonindependence of the data owed to multiple variants across patients, we used the 
lme4 R package69 to fit linear mixed models with patient as a random effect. The car 
R package70 was used to assess the statistical significance of the fixed effects, and 
residuals of models with significant effects were verified as unbiased and homoscedastic 
via visual inspection.
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SUPPLEMENTARY DATA
Supplementary Note
Rise in mutation burden with disease progression

All somatic sequence variants detected in the exomes of diagnosis and relapse samples 
(n = 16,615) were subjected to confirmatory capture-based sequencing to provide 
a more accurate estimate of mutant allele frequency (MAF) and facilitate detection 
of subclonal variants. Overall, there was excellent concordance in mutation calling 
between discovery and verification sequencing (89.7% of mutations), with discordance 
in defining subclonal (MAF <30%), heterozygous (MAF, 30%~75%) and homozygous 
(MAF >75%) status in 2% of the mutations (Figures S5.1A-S5.1C). Importantly, 3.4% of 
the mutations initially considered relapse-specific from analysis of WES/WGS data were 
shown to be present at diagnosis, including NOTCH1, NRAS, KRAS, TP53, and CREBBP 
(Figure S5.1D). In line, our deep sequencing efforts revealed tumor specific mutations 
in the complete remission samples (Table S5.3). A total of 936 tumor specific mutations 
(6.7% of the mutations) were detected in the complete remission samples of 72 patients 
(median of 4 mutations per sample, range 1-195 mutations). The median MAF of tumor 
specific mutations in the complete remission samples was 1.43% (range 0.1% - 29.8%), 
which increased to 43.2% (range 1.2% - 99.5%) in the corresponding tumor samples. The 
median increase in MAF from complete remission to tumor sample was 95.4% (range 
19.5% - 99.9%). This indicates various degrees of discernable tumor contamination in 
the complete remission samples. To test whether the residual of somatic mutations in 
complete remission is an indicator of relapse, we identified 12 diagnosis-relapse cases 
(drawn from this study) and 20 ALL cases that did not relapse with remission samples 
obtained between 27-49 days (median 44 days) after diagnosis. High depth exome 
sequencing was performed for all germline samples (depth 377-515X, median 423X) 
and the somatic mutations identified in tumor samples were examined in the remission 
samples (Table S5.2). In contrast to prior data in AML, there was no association between 
the presence of residual somatic mutations in the germline samples and the risk of 
relapse (5 out of 12 relapses ALL cases have residual somatic mutations in remission 
samples compared to 12 out of 20 non-relapse ALL cases; Fisher exact test, P = 0.467).

The most frequent mutation types identified in the cohort were missense mutations 
(coding, silent or located in the UTRs) and single copy number deletions (Figure S5.2). 
The burden of mutations increased with disease progress from a median of 23 (range 
1-164) single nucleotide variants (SNVs) and short insertions/deletions (indels) at 
diagnosis to 41 (range 4-1,139) at relapse and 117 (range 26-1,699) at second relapse 
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(Figure S5.3). This increase was observed for coding and noncoding variants, and for 
clonal and subclonal variants, suggesting ongoing mutational processes. No differences 
in mutation burden were observed according to disease lineage, sex, outcome (cure 
or death due to disease), or by age at diagnosis (with the exception of cases of infant/
KMT2A-rearranged leukemia that have a low mutation burden; Figure S5.3 and Tables 
S5.3-S5.5).

A modest increase in the number of structural genetic alterations was also 
observed, with a median of 9, 10 and 23 DNA copy number alterations (CNAs) at 
diagnosis, first and second relapse respectively (Figure S5.3, and Tables S5.6-S5.7). In 
exceptional cases, mutations compromising DNA repair were associated with genomic 
instability. For example, case SJBALL022431 had somatic bi-allelic alterations of 
ATM from deletion of 11q and a nonsense mutation, and over 100 small losses and 
gains involving chromosomes 11, 15, and 21 reminiscent of a chromothripsis event 
(D: n = 109 affecting 368.5 Mb and R: n = 113 affecting 467.8 Mb; Table S5.7). This 
is in contrast to other cases with relatively high CNA burden but without DNA repair 
defects (e.g., SJETV043 and SJTALL023 with over 50 CNAs per sample), which contained 
predominantly small deletions but no amplifications (Figure S5.2B).

Early relapses

Next to CREBBP mutations, we found that mutations in ERG (n = 3) and ARID2 (n = 
4) associate with relatively late relapses (mean 7.0 vs 2.9 years, P = 0.011; and 
mean 6.6 vs 2.9 years, P = 0.013, respectively). Mutations in ERG and ARID2 occurred 
exclusively in leukemias of the DUX4 subtype. Several genes were correlated to early 
relapse, but the number of mutations was low (Table S5.9). We identified 8 cases who 
relapsed disproportionately early (>1.5 inter-quartile range) within their ALL subtype. 
Aberrations that were present exclusively in this group were i(9)(q10) with homozygous 
PAX5 p.P80R mutation (SJBALL192) and NR3C1 frameshift mutations (SJETV010 and 
SJBALL199). Other relapse-associated aberrations in this group were (combinations 
of) hypermutation (SJBALL022428 and SJETV010), SNV/indels in NT5C2 (SJBALL192 
and SJHYPER098), SNV/indels in TP53 (SJBALL022428 and SJETV010) and SNV/
indels and CNAs in IKZF1 [SJBALL0212924 (p.G158S and del7-8), SJHYPER098 (del1-
4), SJPHALL020 (del1-8), and SJTALL093 (p.E76*)], CNAs in TBL1XR1 (SJETV010), CNAs 
in ETV6 (SJBALL199 and SJETV010) and homozygous loss of CDKN2A/B (SJBALL192, 
SJETV010, SJHYPER098, and SJTALL093). These data indicate that time to relapse is 
influenced by the combined action of unique aberrations within ALL subtypes.
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Frequently mutated genes and pathways

A total of 4,509 genes harbored nonsilent SNV/indels mutations, of which 1,063 were 
mutated in at least two cases (Table S5.3). Two-hundred and twenty-one were known 
targets of mutation in cancer according to the COSMIC Cancer Gene Census databse71 or 
leukemia studies (Figure S5.7A and Table S5.16). Among the 293 genes recurrently (n ≥ 
2) and exclusively targeted in the major clones at relapse (i.e., not targeted at diagnosis) 
by acquired SNV/indels or CNAs (Table S5.16), 82 were targeted by nonsilent variants, 
of which 6 were CGC genes (reported in the COSMIC Cancer Gene Census or in recent 
leukemia studies; NCOR2, NT5C2, FOXA1, MED12, PABC1, and PPMID)72. Twelve genes 
harbored recurrent clonal and acquired nonsilent mutations uniquely at second relapse, 
including AASDH, AGBL3, ARGHAP29, ATP11C, CSF3R, DCK, LRP6, SCRIB, SDK2, TENM3, 
TNIP1, and ZNF436 (Table S5.17), suggesting a possible role in treatment resistance or 
evasion.

In general, B- and T-lineage ALL show distinct genetic alteration profiles, e.g., 
genes involved in B cell development are enriched in B-ALL (Fisher exact test, P = 0.002), 
while mutations in transcription factor NOTCH1 involved in maturation of both CD4+ 
and CD8+ cells in the thymus were exclusively observed in T-ALL (Figure S5.6). Fifteen 
genes were associated with disease lineage, e.g., VPREB1 and CREBBP with B-ALL, and 
NOTCH1, WT1, PTEN, STIL, and NT5C2 with T-ALL (Fisher exact test P < 0.05). The most 
common alteration perturbing B cell development involved the lymphoid transcription 
factor gene IKZF1, which is commonly mutated in BCR-ABL173, Ph-like39 and DUX4-
rearranged ALL16. Consistent with the known association of IKZF1 alterations with high-
risk B-ALL39,73 IKZF1 alterations were strongly enriched at relapse, with preservation (n = 
21) or acquisition (n = 5) in 26 cases (Table S5.15). Subtype-associated gene mutations 
were also observed such as CREBBP in hyperdiploid (9 of 14) and low hypodiploid (2 of 
3) ALL; ARID2 mutations in DUX4-rearranged (4 of 7) and ARID5B in hyperdiploid (4 of 
14) ALL.

Overall, 76% B-ALL and 80% T-ALL harbored at least one signaling pathway 
mutation (median 3, range 1-8). The most frequently were the RAS (B-ALL 47.8%, T-ALL 
36%), JAK-STAT (B-ALL 19.4%, T-ALL 28%) and PI3K-AKT (B-ALL 13.4%, T-ALL 28%; 
Figures 5.1 and S5.5A). RAS signaling pathway mutations were observed in 41 cases, 
and 26 (63.4%) of them were preserved from diagnosis to relapse, with 24.4% (n = 
10) acquired and 12.2% (n = 5) lost in disease progression. The data also provide new 
insight by showing common multiclonality of RAS pathway mutations at diagnosis and 
frequent convergence to a dominant mutation at relapse. Of 61 cases with signaling 
pathway mutations, 31 harbored at least one RAS pathway mutation at diagnosis, with 
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11 cases having multiple, commonly subclonal RAS mutations (Table S5.14). Seven 
cases showed convergence to a single or two clonal RAS pathway mutations. For the 
JAK-STAT pathway, similar enrichment in preserved mutations was observed (n = 10, 
50.0% preserved; n = 5, 25.0% acquired; and n = 5, 25.0% lost). However, most of the 
PI3K-AKT pathway mutations in B-ALL were acquired in relapse (8 out of 10), whereas 
in T-ALL, most of the mutations identified in diagnosis were lost at relapse (11 out of 
13; Tables S5.13-S5.14).

Genes encoding regulators of cell cycle and tumor suppression were commonly 
mutated in both B-ALL (n = 42, 62.7%) and T-ALL (n = 21, 84%), with gene-specific 
patterns of enrichment. Ten TP53 alterations (8 cases) were preserved from diagnosis 
or acquired as new alterations at relapse. In contrast, CDKN2A mutations were lost (n = 
6), preserved (n = 34) or acquired (n = 15) in disease progression. Epigenetic modifier/
regulator mutations were observed in 67.2% of B-ALL (n = 45) and 72% of T-ALL (n = 18) 
(Figure S5.5B), most of which were acquired (n = 85, 56.7%) or preserved (n = 48, 32.0%) 
from diagnosis to relapse. CREBBP mutations (22 mutations in 17 B-ALL and 1 T-ALL 
case) showed preservation or acquisition in all but one case.

Second primary leukemia

To verify clonal relatedness in a subset of patients, we examined IGH (11 B-ALL patients) 
or TCRB (3 T-ALL patients) gene rearrangements by targeted next generation sequencing, 
which revealed that the relapses were clonally related to major (n = 5) or minor (down 
to 0.005%; n = 7) clones at diagnosis (Table S5.19). Three cases (SJBALL006, SJTALL049 
and SJTALL142) revealed fully discordant tumors for all genetic alterations (SV, CNA, SNV, 
Indel and IgH/TCRβ rearrangements), raising the possibility of a distinct second primary 
leukemia. SJBALL006 is described in the main text. This patient exhibited intellectual 
impairment, short stature, and thrombocytopenia. SJTALL049 is a boy and described 
in the main text. He suffered a grand mal seizure at age 4 and has a mild nystagmus. 
Analysis of the germline WES data revealed two indels on one allele in TSC2, leading to 
an in-frame deletion of 3 amino acids. Mutations in TSC2 are associated with tuberous 
sclerosis (OMIM #613254) and can cause brain and kidney tumors, but leukemia has 
not been reported. SJTALL142 developed T-ALL at 15 years of age and KMT2A-MLLT10 
rearranged MDS at 18. Additional WGS analysis revealed no shared SV or SNVs (Table 
S5.20). The boy had neck surgery at 6 months of age due to cysts, and he has a history 
of renal insufficiency. The family history was inconclusive for cancer occurrence and the 
boy did not harbor any constitutional variants in a gene on our gene list.
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Our cohort contained five patients who developed a myeloid tumor after T-ALL. 
Two of these tumors were identified as clonally unrelated second primary leukemias. 
However, three AMLs were clonally related relapses originating from a minor clone 
(SJTALL124: T-ALL; 20 mutations shared, e.g., TP53 p.R273H and CDKN2A deletion), a 
major clone (SJTALL164: ETP-ALL; 20 mutations shared, e.g., NF1 deletion), or polyclonal 
(SJTALL008: ETP-ALL; 20 mutations shared, e.g., NRAS p.Q61H), indicating that lymphoid 
and myeloid tumors can share a common origin. This is in line with lineage plasticity 
and multipotent common ancestor cells identified in mixed phenotype acute leukemia20 
and histiocytic tumors74.

Constitutional variants and ALL susceptibility

We analyzed our complete cohort for constitutional variants in genes known to be 
associated with leukemia prone syndromes or with leukemia development (Tables 
S5.31 and S5.32). We found two truncating variants in TP53 (p.Y163Tfs*7 and p.R196*), 
which are causative for Li Fraumeni syndrome in patients SJHYPO126 and SJTALL164, 
respectively. The tumors of both patients showed loss of the wild type allele through 
somatic deletion of the short arm of chromosome 17. SJHYPO126 developed hypodiploid 
leukemia and has an extensive family history for cancer (breast cancer, liposarcoma, 
lung cancer, colon cancer and leukemia). SJTALL164 developed ETP-ALL with a clonally 
related but phenotypically myeloid relapse. In addition to the truncating TP53 variant, 
SJTALL164 harbored constitutional truncating variants in NOTCH1 (p.Q2440*) and in 
DNM2 (p.T78Nfs*18), both genes that are involved in leukemia development75,76. Clinical 
data was not available for this patient.

In patient SJBALL022480 we found a constitutional truncating mutation in 
PRDM1 (p.R25Sfs*13), which is a DNA-binding transcriptional repressor involved in 
B-cell differentiation. The probability of intolerance for this gene is very high (pLI 
= 0.98), suggesting a severe effect of functional loss. Finally, SJBALL013 harbored a 
truncating mutation (p.I1085Hfs*60) in PTCH1, which is associated with basal cell nevus 
syndrome or Gorlin syndrome (OMIM #109400). The patient presented with low set 
ears, macrocephaly and intellectual disability. In addition, the boy developed a basal cell 
carcinoma at age 5, concurring the diagnosis of Gorlin syndrome.

We identified 13 heterozygous variants (13 patients) in genes associated with 
autosomal recessively inherited syndromes (e.g., Fanconi Anemia, CMMRD). Likely, these 
latter variants are not directly causative for the leukemia in these patients. None of the 
variants, except for PMS (p.G108R) in SJHYPER127, obtained a second hit in the tumors 
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of the patients. We did not identify homozygous or compound heterozygous variants 
(Table S5.32). In SJHYPER021925, we found a missense variant in PHF6 (p.R163H), a 
gene associated to the X-linked recessive Borjeson-Forssman-Lehman syndrome 
(OMIM #301900) and somatically affected in ALL77,78. The patient was female with 
no phenotypical features of Borjeson-Forssman-Lehman syndrome reported. A large 
cohort study is needed to reveal whether heterozygous PHF6 variants in females lead 
to a susceptibility to leukemia development.

We identified 12 variants of unknown significance (in 11 patients) in genes 
associated with autosomal dominantly inherited cancer prone disorders. Three variants 
were found in genes associated with Noonan syndrome (OMIM #616564, #610733, and 
#616559) or Noonan-like syndrome (OMIM #613563). LZTR1 p.G711R (SJHYPO126) is 
located in the BTB/POZ domain; SOS1 p.N622S (SJHYPER009) is located in the RasGEFN 
domain, and SOS2 p.E422K (SJTALL098) and CBL p.P684S (SJERG023) were not located 
in a defined domain. None of the genes harbored second hits in the tumors of the 
patients. The phenotype of SJHYPO126 and SJHYPER009 did not resemble Noonan 
syndrome. SJHYPER009 was diagnosed with Duane syndrome (OMIM #126800) and 
developmental delay with speech deficits. SJERG023 presented with skin moles on the 
back, but no Noonan-like syndrome phenotype. Phenotypic data was not available for 
SJTALL098.

We included SAMD9 and SAMD9L in our gene list because of recent reports 
associating missense mutations in these genes to MIRAGE syndrome (OMIM #617053)79, 
myelodysplasia and leukemia syndrome with monosomy 7 (MLSM7; OMIM #252270)80 
and ataxia-pancytopenia syndrome (ATXPC; OMIM #159550)81. We identified variants in 
SAMD9 in the germlines of SJBALL022479 (p.I1549Sfs*10) and SJPHALL029 (p.C283Y). 
The frameshift variant is not likely to be associated with leukemia development in this 
patient as SAMD9 is completely tolerant to loss of function mutations (ExAC pLI = 0). For 
both these patients’ phenotypic data was not available.

Finally, we found variants of unknown significance in the genes PAX5 (associated 
with leukemia susceptibility, OMIM #615545), TYK2 (associated with leukemia 
susceptibility) 82, NF1 (associated with neurofibromatosis, OMIM #16220), and CDH1 
(associated with familial gastric cancer, OMIM #137215). We identified a 7 amino acid 
in-frame deletion p.P51del7aa in PAX5 in SJHYPER021999. The variant p.G183S in the 
octapeptide domain of PAX5 was associated with susceptibility to ALL development 
in three families83,84, but further studies should reveal whether a deletion of 7 amino 
acids in the paired box domain of this gene can drive leukemia development. No 
second hits in this gene were found in the tumor of the patient. We identified a p.P120L 
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variant in TYK2 in patient SJTALL055. Variants in the DPG motif of TYK2 have been 
associated with leukemia susceptibility82, but no data is available on whether TYK2 is 
functionally affected by the p.P120L variant in the FERM domain. There was no second 
hit in the tumor, and phenotypical data for this patient was not available. The NF1 
variant p.K1385E is located in the RasGAP Neurofibromin domain and was found in 
SJTALL092. For this patient no phenotype was reported, but the maternal branch of the 
family did harbor some cases of cancer (lymphoma in a maternal uncle, breast cancer in 
a maternal aunt and colorectal cancer in the maternal grandfather). A second hit in this 
gene was not present in the tumors of this patient, which suggests that this variant is 
not causative for the leukemia in SJTALL092. SJPHALL018 carried a p.P373L variant in 
CDH1, a gene associated with familial gastric cancer85, though no cancer was reported 
in the family. A link with leukemia predisposition has not yet been reported for CDH1.

Hypermutation and MMR mutations

Patients with hypermutated relapses with the MMR associated mutational profile 
(group 3) all harbored biallelic mutations in one of the MMR genes. These included 
a germline PMS2 p.G108R mutation and a somatic deletion of PMS2 with retention of 
the mutant allele in SJHYPER127-R1; somatic homozygous deletion of MSH2 and MSH6 
in SJTALL023-R1; somatic deletion and homozygous p.R680* mutation of MSH2 plus 
a hemizygous deletion of MSH6 in SJTALL023-R2; and somatic homozygous mutation 
in MSH2 (p.R340Nfs*17) in SJTALL057-R1. In group 1, SJETV10 harbored biallelic copy 
number deletions in MLH1 in both relapses, while an acquired subclonal missense 
mutation in MSH6 was identified in the relapse of SJHYPER022. SJHYPO177 had losses 
of all chromosomes where MMR genes are located (chromosomes 2, 3, and 7), but no 
additional mutations in these genes.
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Supplementary Tables
Supplementary Tables are available online using the following link: 	  
https://doi.org/10.1158/0008-5472.BCD-19-0041.

Supplementary Figures

Figure S5.1. Capture Validation and WES/WGS calling are highly concordant. (A) For most of the variants 
(90%), capture validation (CapVal) and WES/WGS agree on the variant calling. D, diagnosis; R1, first relapse; R2, 
second relapse; S, second tumor. (B) Sequencing metrics between the two techniques for the agreed variants 
calls (dark blue in A). The total reads number and the mutant reads per variant are higher for the CapVal, but 
the mutant allele frequency (MAF) for both techniques is comparable for the variants. The box and whiskers 
plots depict the median (black line), 25th and 75th percentiles (box borders) and the highest/lowest value 
that is within 1.5*IQR (inter-quartile range; whiskers). Data plotted as individual points beyond the end of 
the whiskers are outliers. (C) For a total of 1,466 variants CapVal and WES/WGS techniques differed on the 
calling category based on MAF. Most somatic mutations were called with MAF around 30% (indicated in red 
dashed line), which was used as a cut off for subclonal vs heterozygous (clonal) state; a few hover around 
the hetero-homozygous cut off of 75% (indicated in blue dashed line). (D) Somatic mutations in diagnosis 
samples missed in WES/WGS and rescued by CapVal. The analysis was done in cases with both diagnosis and 
first relapse samples sequenced by CapVal. With a minimum number (≥3) of mutant (mut.) reads support for a 
mutation, 3.4% of the somatic mutations were recovered by CapVal in the diagnosis samples.
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Figure S5.2. SNV/indel and CNA mutation burden. (A) Histogram of the number of SNV/indels (top) and the 
relative contribution of the mutation types (bottom) in each sample sorted from left to right by the total 
number of SNV/indels. The coding variants are indicated by shades of red, whereas the noncoding variants 
are indicated in shades of blue. (B) Histogram of the number of CNAs (top) and the relative contribution of the 
mutation types (bottom) in each sample sorted from left to right by the total number of CNAs. (C) Missense, 
silent and 3-prime UTR mutations are most frequent SNV/indels found in this study. (D) Deletions are the 
most common CNA in this study. Amp: amplification - gain of >2 copies, hgain: 2 copy gain, gain: 1 copy gain, 
aUPD: acquired uniparental disomy - copy number neutral loss of heterozygosity, del: 1 copy deletion, hdel: 
2 copy deletion. The box and whiskers plots depict the median (black line), 25th and 75th percentiles (box 
borders) and the highest/lowest value that is within 1.5*IQR (inter-quartile range; whiskers). Data plotted as 
individual points beyond the end of the whiskers are outliers. 
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�Figure S5.3. Mutation burden increases with disease progression. (A) The number of all SNV/indels (left), of 
clonal (MAF>30%; middle), and clonal nonsilent SNV/indels (right) increase from diagnosis to the subsequent 
relapses. This effect remains when the outliers are removed (data not shown). ** P < 0.0001, * P < 0.001. (B) The 
SNV/indel mutation burden is not influenced by the type of mutation, tumor lineage, gender, age at diagnosis, 
remission time and vital status of the patient. (C) The number of CNAs increase in second relapse (* P < 0.05). 
This effect is not influenced by tumor lineage, gender, age at diagnosis, remission time and vital status of the 
patient. The box and whiskers plots depict the median (black line), 25th and 75th percentiles (box borders) 
and the highest/lowest value that is within 1.5*IQR (inter-quartile range; whiskers). Data plotted as individual 
points beyond the end of the whiskers are outliers. D, diagnosis; R1, first relapse; R2, second relapse; S, second 
tumor.
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�Figure S5.4. Cut-off determination for hypermutated samples. (A) Histogram of the number of SNV/indels 
in all samples. (B) Histogram of the number of CNAs in all samples. Red arrows indicate the cut-off number 
of SNV/indels (n = 85) and CNA (n = 50) used for defining hypermutators. (C) Hypermutator distribution in 
different disease stages. The ratio of hypermutated samples was relatively high in the second relapses. (D) 
The number of SNV/indels detected in each sample categorized by subtype of ALL at diagnosis and colored 
by disease stage, showing variable number of mutations across subtypes. The horizontal dotted line indicates 
the cut-off of >85 SNV/indels. Box and Whisker plots in the background indicate the median (thick line), 
25th and 75th percentiles (box borders) and the highest/lowest value that is within 1.5*IQR (inter-quartile 
range; whiskers) number of SNV/indels. The ALL cases are grouped into well-defined disease subtypes, which 
include DUX4-rearranged (DUX4), ETV6-RUNX1, hyperdiploid, hypodiploid, KMT2A (MLL)-rearranged, BCR-ABL1 
(Ph), Ph-like, other B-ALL subtypes, early T-cell precursor ALL (ETP) and T-lineage ALL non-ETP (T-ALL). (E) 
Histogram of the number of SNV/indels (top) and the relative contribution of the mutation types (bottom) in 
each hypermutator (>85 SNV/indels) sorted from left to right by the total number of SNV/indels. The coding 
variants are indicated by shades of red, whereas the noncoding variants are indicated in shades of blue. (F) 
Histogram of the number of CNAs (top) and the relative contribution of the mutation types (bottom) in each 
CNA hypermutator (>50 CNAs) sorted from left to right by the total number of CNAs.
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�Figure S5.5. Signaling pathway and epigenomic mutations in ALL at diagnosis and relapse. (A) Genes 
involved in signaling pathways with somatic mutations identified in diagnosis (D) and/or first available 
relapse (R) sample per case. (B) Epigenetic regulators with somatic mutations identified in diagnosis (D) 
and/or first available relapse (R) sample per case are grouped into 6 epigenetic categories86. Same mutation 
annotation schema is applied as Figure 1A. 
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Figure S5.6. Transcription factor/regulator mutations in ALL at diagnosis and relapse. Genes with somatic 
mutations identified in diagnosis (D) and/or first available relapse (R) sample per case are grouped into 
transcription factors and transcriptional regulators. Same mutation annotation schema is applied as Figure 
1A.



Mutational landscape and patterns of clonal evolution in relapsed pediatric acute lymphoblastic leukemia

5

157   

Figure S5.7. Frequently mutated genes in relapsed ALL. (A) ProteinPaint visualizations of the most frequently 
clonally mutated genes by nonsilent SNV/indels. (B) ProteinPaint visualizations of three genes that were 
exclusively affected by clonal nonsilent SNV/indels in the tumors of more than 5 patients in our cohort. 
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�Figure S5.8. Mutational landscape of xenografts resolves clonal structure. (A) Elevated somatic mutation 
detection sensitivity in xenografted leukemia samples. To indicate the sensitivity of mutation calling, the 
highest MAF in the xenografts generated from the diagnosis sample (XDHM) was picked for each somatic 
mutation. Mutations showing increased MAF from D to XDHM are linked by lines. The mutations showing 
significant increment (MAF<0.05 in D and ≥0.05 in XDHM) are highlighted in blue and the mutations missed 
in D (<3 mutant reads) but rescued (≥3 mutant reads) in XDHM sample are highlighted in red. D: diagnosis 
patient sample, R1: first relapse patient sample. (B) Clonal evolution model of SJETV010 inferred from MAF 
of somatic mutations detected from primary patient samples and xenografted samples. In this case, only 
diagnosis and second relapse (R2) samples were available for transplantation. Nonsilent mutations in cancer 
genes (COSMIC Cancer Gene Census) in each clone are listed. The colors indicate whether mutations detected 
in bulk samples could be denoted as a parental clone (shared by D, R1 and R2), a D unique clone, an R2 
unique clone and two relapse shared clones. (C) Distribution of somatic mutations’ MAF in D, R1, R2 and 
xenografted leukemia samples from SJETV010. The color scheme for different clones is the same as in B. 
Without xenografts’ information, clones 3 and 4 and the clones 5-13 would be indistinguishable. D.*.#, samples 
originating from D; R.*.#, originating from R2, *.BM.#, samples collected from bone marrow, *.CNS.#, collected 
from central nervous system; *.SP.#, collected from spleen.
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�Figure S5.9. Validation of digital droplet PCR (ddPCR) assay. (A) Test sensitivity for the NT5C2 p.R39Q, 
CREBBP p.R1446C and NRAS p.G12R assays was determined using serial dilutions of patient derived leukemic 
cells containing the mutation with REH cells that were wild type for all mutations tested. The R-squared 
coefficient was 0.9994, 0.9987 and 0.9993 respectively. (B) A total of 9 samples were measured twice with 
high correlation (r = 0.9997). The four different assays are indicated by colors. (C) Representative images 
of the ddPCR output. Depicted are the results of the CREBBP p.R1446C assay for 2 tumor samples and 2 
remission samples from patient SJBALL013, plus the REH wild type control and the no template control (NTC). 
Wild type droplets are labeled with the VIC fluorescent reporter dye and droplets containing mutant PCR 
products are labeled with FAM fluorescent dye. The gates used for counting the wild type (WT) and mutant 
(MUT) droplets are indicated, as well as the number of droplets within these gates. T indicates the time point 
of the sample in number of days after diagnosis. (D) The MAF as measured by WES (left) or capture validation 
(CapVal, right) correlates well with the values measured by ddPCR. A total of 11 samples were found negative 
(MAF = 0%) on the listed mutations in WES and/or CapVal, but mutant droplets were detected with ddPCR. 
One sample was positive in WES (SJTALL001 KRAS p.G12C MAF = 3.2%), but measured 0% in both CapVal and 
ddPCR (Table S5.23). 
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�Figure S5.10. Mutational signatures. (A) Comparison between the de novo extracted signatures and known 
COSMIC signatures. Signature A resembles signature SBS1, characterized by spontaneous deamination of 
methylated cytosines in CpG context (red bar). Signature B closely resembles signatures SBS2 and SBS13, 
both AID/APOBEC associated signatures (orange bar). Signature C clusters close to signatures SBS6, SBS15, 
and SBS20, all signatures associated with mismatch repair (MMR; blue bar). Signature D shows highest 
resemblance to a group of signatures with less distinct characteristics. (B) Cosine similarity heatmap of the 
complete set of acquired mutations per sample relative to involved COSMIC and de novo extracted signatures 
(based on clusters identified in panel A) shows clustering of samples in the four groups presented in Figure 
5.6. Clusters are indicated by colored bars as in panel A. Samples marked by a grey bar all have a major 
contribution of the less distinctive mutational profile D. (C) De novo extracted mutational signatures using 
WGS data. Signature profiles are highly concordant with signatures extracted from WES data. (D) De novo 
extracted somatic mutational signature A using WGS data (top panel) and signature SBS1 (bottom panel) 
according to the 96-substitution classification. Signature A is hallmarked by a higher relative number of 
ApCpG, CpCpG and GpCpG compared to TpCpG. (E) Total mutation profiles (containing all substitutions) of 
SJETV10-R2 and SJHYPER022-R1 based on WGS data. (F) Absolute contribution of each of the four signatures 
(WGS data) to each of 26 diagnosis and relapse samples. Composition of the four signatures in individual 
samples was highly concordant with the composition obtained from WES data. (G) Relative contribution of 
C>T transitions at CpGs in transcribed and untranscribed strand of four samples with a prominent signature 
A contribution. (H) Absolute contribution of C>T transitions at CpGs in the leading and lagging strands (top 
panels) and CpG>TpG mutation density in early, intermediate and late replicated regions of two hypermutated 
relapses and three healthy colon organoids. 
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Figure S5.11. Neoepitope analysis of somatic missense SNVs. (A) Number of predicted HLA-binding mutant 
peptides (<=500nM) per tumor correlates significantly with missense mutation burden (P < 0.001). Correlation 
efficiency (r2) of the fitted functions are shown in hypermutators (HPM) and non-HPM samples, respectively. 
Different disease stages, including diagnosis (D), first relapse (R1), and second relapse (R2), are shown in 
different colors. The number of predicted binders also varies significantly as an effect of HPM status (P < 
0.001), with significant interactions between HPM status and mutation burden (P < 0.001) and between 
disease progression and mutation burden (P = 0.0452). (B) The number of predicted HLA-binding mutant 
peptides (<=500nM) per tumor varies as a function of disease stage (D-R1-R2; P < 0.001) and HPM status (P < 
0.001), with more putative binders evident in hypermutated tumors and as disease progresses. Differences in 
the number of binders per tumor owed to effects of disease (B- and T-ALL), though visually apparent, did not 
reach the threshold for statistical significance (P = 0.0511). No significant interaction between disease 
progression and HPM status was identified. (C) Distribution of WPAS (Weighted Putative Antigenicity Score) 
scores across disease progression using a subset of SNVs with available expression data. WPAS varies as an 
effect of disease progression (P = 0.015), with median WPAS highest at the R2 stage (suggesting more 
antigenic variants in tumors from prolonged disease progression). (D) Distribution of WPAS scores categorized 
by COSMIC cancer gene status in different disease stages. WPAS again varies as an effect of disease progression 
(as in C) but also according to COSMIC cancer gene status categories (P = 0.005), with COSMIC genes showing 
overall higher putative antigenicity. All P values were calculated by the ANOVA test.
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ABSTRACT
Pediatric acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy 
and is characterized by clonal heterogeneity. Genomic mutations can increase proliferative 
potential of leukemic cells and cause treatment resistance. However, mechanisms 
driving mutagenesis and clonal diversification in ALL are not fully understood. In this 
proof-of-principle study, we performed whole genome sequencing of two cases with 
multiple relapses in order to investigate whether groups of mutations separated in time 
show distinct mutational signatures. Based on mutation allele frequencies at diagnosis 
and subsequent relapses, we clustered mutations into groups and performed cluster-
specific mutational profile analysis and de novo signature extraction. In patient 1, who 
experienced two relapses, the analysis unraveled a continuous interplay of aberrant 
activation induced cytidine deaminase (AID)/apolipoprotein B editing complex (APOBEC) 
activity. The associated signatures SBS2 and SBS13 were present already at diagnosis, 
and although emerging mutations were lost in later relapses, the process remained 
active throughout disease evolution. Patient 2 had three relapses. We identified episodic 
mutational processes at diagnosis and first relapse leading to mutations resembling 
ultraviolet light-driven DNA damage, and thiopurine-associated damage at first relapse. 
In conclusion, our data shows that investigation of mutational processes in clusters 
separated in time may aid in understanding the mutational mechanisms and discovery 
of underlying causes.
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INTRODUCTION
Pediatric acute lymphoblastic leukemia (ALL) represents the most common pediatric 
malignancy1-4. Despite improvements in treatment, around 10-15% of the children do 
not achieve long-term remission and outcome among them remains poor5,6. Previous 
next-generation sequencing (NGS) studies revealed unprecedented diversity in the 
genomic alteration of ALL7-12. However, only a small subset of these alterations occurs 
in known cancer-driver genes, which have the potential to initiate and propel disease 
progression. Furthermore, these studies revealed genetic alterations which are not 
essential for cancer development but may drive treatment resistance and eventually 
give rise to a relapse7,8,13-20. Although the majority of genetic alterations in ALL represent 
passenger mutations and do not confer with selective advantage of leukemic cells, 
they still contain valuable information about tumor evolution, clonal dynamics, and 
mechanisms driving mutagenesis7,8,11,12,21-24.

In contrast to adult cancers, where external factors like ultraviolet (UV) light 
exposure, tobacco smoke, and alcohol consumption contribute to the incidence of 
cancer in the population, pediatric cancers are more likely the result of dysregulated 
intrinsic processes which directly impact normal development8,11,12,21,23-25. In some cases, 
a mutational process can become active in a (pre)malignant cell that may accelerate 
mutation accumulation and disease progression. Examples of these mutational 
processes are aberrant activity of the activation induced cytidine deaminase (AID)/
apolipoprotein B editing complex (APOBEC) class cytidine deaminases and mismatch 
repair deficiency (MMR), processes that also have been reported in ALL8,11,12,21,23,24,26. Each 
of these mutagenic processes shows biases represented by specific changes which 
occur in distinct genomic contexts8,21,23. These changes are recognized as footprints 
of underlying biological processes, also known as mutational signatures21,23,24. For 
example, mutations driven by aberrant AID/APOBEC activity typically present as 
C>T/G substitutions in TpCpN context. In addition, certain mutational processes may 
be accompanied by additional features, e.g., small indels in simple repeats in MMR 
deficiency, while others exhibit stronger mutational patterns in specific genomic 
regions, e.g., introns in AID/APOBEC-driven mutational signature21,23,24. So far, 72 single-
base substitution (SBS) signatures have been described in the Catalogue of Somatic 
Mutations in Cancer (COSMIC), many of which are of unknown etiology21. Tumor samples 
taken at defined disease stages may reveal the footprints of several of these processes, 
but these mutational processes may have been active at different times and in different 
cells during tumor development. For example, compared to tumors at primary diagnosis, 
relapses may exhibit specific mutational signatures that are a direct consequence of 
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Figure 6.1. Schematic representation of the approach. Mutational profi les are analyzed in clusters of 
mutations that follow similar dynamics over different time points. Leukemic cells are thought to collect 
mutations sequentially, indicated as different colored symbols in each cell (top panel). New clones evolving 
from the ancestral clone, depicted in different colors in the fi sh plot, can be extracted based on the dynamics 
of the variant allele frequency (VAF) between different time points, which are then used to investigate active 
mutational mechanisms by analyzing their mutational profi les and performing de novo signature extraction 
in a clone-specifi c manner.
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prior treatment with, e.g., DNA damaging agents as part of multidrug chemotherapy 
regimen23,27. Unraveling mutational patterns of processes driving mutagenesis in a 
spatial and temporal manner may give insights into the intrinsic and external influences 
and impact of therapy on disease evolution.

We and others have previously demonstrated that whole genome sequencing 
(WGS) of leukemia at diagnosis and relapse may aid in deciphering unique evolutionary 
trajectories of individual clones emerging from each other due to different quantities in 
which these clones occur at each time point7,8,22,27. This provides the opportunity to study 
mutational mechanisms that, for example, occurred before and after therapy, or can even 
be taken a step further by sequencing tumors from multiple tumor sites. Sequencing 
of multiple samples with different spatio-temporal origin can aid in discriminating 
clusters of mutations with similar clonal dynamics, which opens the possibility to allocate 
mutational mechanisms to individual clones with different behavior in time and space.

Based on our previous findings, we hypothesize that analyzing clusters of mutations 
in a clone-specific manner will improve the identification of mutational processes that 
are active in individual leukemic clones and different stages of disease progression 
(Figure 6.1). Here, we show a proof-of-principle for this approach by performing whole 
genome sequencing of 10 samples from two pediatric ALL patients with multiple 
relapses, revealing the sequential action of multiple mutational mechanisms in each 
of the two cases.

MATERIALS AND METHODS
Patient samples
In order to follow dynamics of a maximal number of individual somatic mutations 
at multiple time points during leukemia progression, we selected two patients with 
multiple relapses and performed WGS. Individual clones within a leukemia may have 
different dynamics during disease progression, which can be disentangled with greater 
resolution when more time points are available.

Patient 1 was a girl with Down syndrome who developed CRLF2-positive B-cell 
leukemia at the age of 7, who received treatment according to the Dutch Childhood 
Oncology Group (DCOG) ALL9 non-high risk protocol. After achieving complete 
remission, the patient experienced a first relapse 4 years after initial diagnosis and a 
second relapse 6.9 years after diagnosis (Figure 6.2A). She achieved complete remission 
and received an allogeneic stem cell transplant (SCT) but relapsed one year later, from 
which she passed away. No material was available from the third relapse.



Chapter 6

180

Patient 2 is a boy who developed B-cell leukemia at the age of 2 and was 
treated according to the DCOG-ALL10 standard risk treatment protocol. A preserved 
DDX3X-MLLT10 gene fusion was detected at all time points, but no subtype-specific 
abnormalities were identified. First relapse occurred 5.7 years after initial diagnosis, 
followed by a second relapse at 7.9 years and a third relapse at 8.3 years after initial 
diagnosis. As part of the treatment of the first relapse, this patient received an allogenic 
SCT (Figure 6.3A).

DNA was isolated from mononuclear cells derived from bone marrow or peripheral 
blood. The percentage of blast cells in tumor samples was high for most of the samples 
(>80% for 6 samples) (Table S6.1). In accordance with the Declaration of Helsinki, 
informed written consent was obtained from all patients and/or their legal guardians 
before enrolment in the study and the DCOG institutional review board approved the 
use of excess diagnostic material for this study (PMCLAB2019.054).

Whole Genome Sequencing
Whole genome sequencing for patient 1 and patient 2 was performed at Novagene 
(Hong Kong, China) and the Hartwig Medical Foundation (Amsterdam, The Netherlands), 
respectively. The library was constructed using NEBNext DNA Library Preparation Kit, 
following sequencing on an Illumina NovaSeq 6000 platform using 150 base-pair 
paired-end reads. The sample-specific overview of achieved sequencing depth can 
be found in Table S6.1. All samples were aligned to the HG38/GRCh38 of the human 
reference genome by using the Burrows-Wheeler aligner (BWA)28. Duplicate reads were 
marked using Picard. Tumor purity estimations were performed based on the allele 
frequencies of high-quality somatic variants detected in the WGS data. Manta (version 
1.6.0) was used for structural variant detection on the WGS data29.

Somatic variant calling, annotation, and filtering
Somatic variants were called by the MUTECT2 software of GATK package version 
4.1.1.0 followed by the FilterMutectCalls function as recommended by the authors. 
We removed the somatic variant that did not have a “PASS” filter status to ensure the 
highest likelihood of true somatic variants. Next, we annotated the filtered somatic 
variants with the Variant Effector Prediction (VEP) version 9230. Somatic variants were 
annotated with: (i) frequencies of the 76,156 whole genome sequenced samples from 
the GnomAD release 3.031, and (ii) frequencies from 498 whole genome sequenced 
samples of the Genome of the Netherlands31,32.
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Somatic variants were filtered on the following criteria: (i) allele Frequency in the 
GnomAD database and the Genome of the Netherlands below 0.01, (ii) a minimal overall 
coverage of at least 20X in all samples and a minimum of at least 3 reads containing 
the variant, (iii) a minimal variant frequency of 25% in at least one of the samples from 
a patient, (iv) location outside the centromere locations (as defined in the UCSC genome 
browser), and (v) no variant reads in the control samples.

Mutation clustering
We applied k-mean clustering, integrated in R package stats (version 4.0.2), of high-
confidence somatic variants to define clusters of variants with distinctive patterns of 
variant allele frequency (VAF) change between time points. These distinct clusters 
represent the same evolutionary trajectories as the cells from which they originate 
and, therefore, these clusters can be used to track dynamics of individual clones. For 
Patients 1 and 2, we created 10 and 15 clusters, respectively (Figures S6.1 and S6.2). 
Next, to increase the number of mutations per cluster, we merged clusters with the 
same evolutionary trajectory together based on manual inspection. Finally, we cleaned 
the merged clusters of outlier mutations and divided the cleaned clusters to create 
biological relevant clusters that we subjected to mutational signature analysis (Figures 
S6.1 and S6.2).

Mutational profile analysis
For each cluster of somatic substitutions, the 96-trinucleotide count matrices and 
mutation profiles were computed and visualized by the R package MutationalPatterns 
(version 2.0.0)33. For each cluster of mutations, we computed the cosine similarity of 
the 96-trinucleotide profile to the repertoire of 72 known single-base substitution 
(SBS) signatures reported in the Catalogue of Somatic Mutations in Cancer (COSMIC v3, 
URL: https://cancer.sanger.ac.uk/cosmic/signatures/SBS/index.tt). The cosine similarity 
is a measure ranging from 0 to 1 and is used to compute differences between two 
mutational profiles, where a value of 1 indicates an identical profile. Cosine similarity 
scores between the profiles of the clusters and the COSMIC signatures aids in the 
identification of recurrent active mutational mechanisms.

De novo mutational signature extraction
Mutational signatures were de novo extracted from the 96-trinucleotide mutation 
count matrix using non-negative matrix factorization (NMF). We used the R packages 
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MutationalPatterns (version 2.0.0)33 and NMF (version 0.23.0)34 to perform de novo 
signature extraction on the profiles of the somatic mutation clusters. To increase the 
power to perform de novo signature extraction, somatic variants of 214 whole genome 
sequenced pediatric ALL patients from a recent pan-cancer study were included11. The 
annotation and filtering of these somatic mutations were performed with the same 
pipelines and settings as the seven in-house sequenced tumor samples. We combined 
the 96-trinucleotide count matrices of the seven tumors of our two patients and the 
214 and performed the de novo extraction of signatures on the combined set of 221 
samples. The relative and absolute contribution of the de novo extracted signatures 
in the mutational profiles of the somatic mutation clusters were computed using the 
MutationalPatterns R package. Reconstruction of mutational profiles using de novo 
extracted mutational signatures was performed using the MutationalPatterns package 
in R33.

RESULTS
In order to unravel somatic mutations at each time point during tumor evolution, we 
performed WGS of tumor samples at diagnosis, remission, and all subsequent relapses of 
two patients diagnosed with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). 
We specifically selected cases with multiple relapses, because they offer much greater 
resolution to distinguish individual clones, compared to non-relapsed cases. Since 
patient 2 received an allogeneic SCT before his second relapse, we also sequenced a 
remission sample taken after SCT in order to filter out donor-derived variants identified 
in the second and third relapse. In total, we detected 8,922 and 8,759 single-base 
substitutions and 686 and 646 indels in patients 1 and 2, respectively (Tables S6.2-S6.4). 
Since the association between mutational signatures and underlying processes is best 
understood for single-base substitutions21, we focused on this type of mutations in the 
present study.

Using k-mean clustering of the mutation allele frequencies observed at each 
time point, we extracted multiple clusters of single-base substitutions that followed 
similar dynamics over the different time points for both patients. These clusters were 
subsequently manually curated based on biological criteria, resulting in six and five 
clusters of sufficient size or biological relevance for patients 1 and 2, respectively 
(Figures S6.1 and S6.2). Interestingly, the mutational profiles of the defined clusters in 
each of the two patients were highly different, even between clusters that co-occurred 
at one or more time points (Table S6.5). Furthermore, the mutation profiles of some 
of these clusters showed high similarity with known COSMIC signatures (Table S6.6), 
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suggesting that indeed clone-specific mutational processes could be revealed in this 
manner. Below, we will describe the clonal trajectories with underlying mutational 
processes in more detail.

(Re)activation of aberrant AID/APOBEC expression follows evolution of 
individual clones
In patient 1, we identified a total of six clusters of somatic single-base substitutions 
that presented with different dynamics between diagnosis, first relapse, and second 
relapse (Figures 6.2B and S6.1). Cluster 1 was composed of 745 mutations that were 
preserved between all time-points, suggesting their origin from a (pre)leukemic 
ancestral clone. In addition, we observed a large second cluster of mutations (5,562 
mutations) representing a falling clone that was dominant at diagnosis but disappeared 
at first relapse. The mutations in clusters 3 and 4 appeared at time of first relapse, but 
whereas the mutations in cluster 3 (n = 562) were preserved in the second relapse, the 
cluster 4 mutations (n = 65) were lost at relapse 2 (R2). This suggests that the dominant 
clone in the first relapse contained mutations from both of these clusters but was 
eradicated during treatment. In contrast, a minor preceding clone, which did not carry 
the cluster 4 mutations, evolved into a second relapse. This second relapse also carried 
new mutations, of which about half (cluster 5; n = 1,094) were already detectable in low 
amounts in relapse 1, whereas 887 mutations (cluster 6) appeared to be newly acquired. 
Therefore, the six mutational clusters represent distinct mutational episodes during 
progression of the disease in this patient. 

Next, we examined the mutational profiles of each of these clusters, which 
revealed that four of them showed high similarity with known COSMIC signatures 
(Figure 6.2C, Tables S6.5 and S6.6). Cluster 1, which carried the preserved ancestral 
mutations, showed high similarity with the clock-like mutational signature SBS1 (cosine 
similarity = 0.89). These mutations are associated with spontaneous deamination of 
methylated cytosines at CpGs and may have occurred during the pre-malignant phase 
of the leukemia-initiating cell. Three clusters showed high similarity with the COSMIC 
signatures SBS2 and SBS13, which are both attributed to AID/APOBEC mutagenesis. 
Cosine similarity of the merged SBS2/13 signature with clusters 2, 5, and 6 was 0.98, 
0.99, and 0.95, respectively (Figure S6.3). Clusters 3 and 4 appeared as mixed signatures, 
which were likely at least in part composed of SBS1 and SBS2/13. To confirm that this 
was indeed the case, we performed a de novo signature extraction in which we included 
all individual clusters as well as 214 publicly available ALL samples (see Methods, 
Tables S6.7 and S6.8). The de novo signature analysis revealed eight signatures with 
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high cosine similarities ranging to COSMIC signatures that resembled a variety of 
mutational processes (Figure S6.4 and Tables S6.7-S6.9). Four extracted signatures 
were prominently found in at least one of the clusters from the two patients (Figures 
6.2D and 6.3D). 

Figure 6.2. Analysis of mutational clusters in patient 1. (A) Schematic timeline of the analyzed samples with 
age at diagnosis (Dx) or relapse (R). A complete remission sample (CR) after first relapse was used as a normal 
control. (B) Clustering of high-confident somatic single-base substitutions based on allele frequencies at 
time of diagnosis and the two relapses (left) and the associated 96 trinucleotide mutation profiles (right). 
The clusters represent a (pre)leukemic ancestral clone (cluster 1), falling (cluster 2) and two rising clones 
(clusters 3 and 4) at first relapse, and rising clones at second relapse (clusters 5 and 6). The number of 
somatic mutations per cluster is indicated in the top right corner of each panel. (C) Heatmap showing the 
COSMIC signatures with a cosine similarity higher than 0.7 to the mutational profiles of at least one of the 
six clusters. For the complete overview of the six clusters to all 72 COSMIC v3 signatures, see Figure S6.3. (D) 
The absolute and relative contribution and reconstruction of eight extracted de novo signatures (Figure S6.4) 
for each of the clusters. The right panel depicts cosine similarities between the actual mutational profiles 
and the reconstructed profile based on the identified de novo extracted signatures, with a reliability threshold 
set at 90%.

In patient 1, this includes SBS H (cosine similarity of 0.98 to COSMIC signature 
SBS1), which represents 41% of the mutations in both clusters 1 and 3 (Figure 6.2D). 
Signature SBS C (cosine similarity of 0.98 to the combined COSMIC signatures SBS2 
and SBS13), which is indeed the prominent signature in clusters 2, 5, and 6, contributed 
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92%, 97%, and 61% of all somatic substitutions (Figure 6.2D). Also, in cluster 4, which 
only contains 65 mutations, resulting in lower accuracy, AID/APOBEC activity appears 
to be responsible for 38% of the mutations. Furthermore, we noted that clusters 5 
and 6 differ in their relative contributions between SBS2 and SBS13 (cluster 5: 0.75 
and 0.65 vs. cluster 6: 0.91 and 0.40, respectively; Figure 6.2C), suggesting that SBS13 
mutations were more prominent in the cluster 5 mutations, which were already present 
subclonally at R1 compared to the cluster 6 mutations. In conclusion, the six clusters 
of mutations demonstrate that AID/APOBEC-mediated mutagenesis appeared to be 
active in emerging clones at different stages of leukemia development in patient 1, 
particularly at diagnosis and relapse 2. Strikingly, these SBS2/13 mutations were hardly 
preserved but the underlying cause remained present in the different stages of disease.

Episodic activity of mutational mechanisms
In patient 2, we identified a cluster of preserved mutations (cluster 1), a falling clone 
at diagnosis (cluster 2), and rising clones at the first, second, and third relapse (clusters 
3, 4, and 5; Figures 6.3B and S6.2). Therefore, similar to patient 1, patient 2 presented 
with different dominant clones at diagnosis and first relapse, which shared the cluster 
1 mutations combined with the mutations in either cluster 2 or cluster 3, respectively. 
Strikingly, however, clusters 1, 2, and 3 were highly similar in their mutational profile 
and strongly resembled a known COSMIC mutational signature associated with UV-
associated DNA damage (SBS7a, cosine similarities of clusters 1, 2, and 3 were 0.93, 0.97, 
and 0.89, respectively; Figure 6.3C and Table S6.6). Thus, this mutational mechanism 
strongly contributed to the majority of mutations in both diagnosis and first relapse. 
The mutations in clusters 4 and 5 were clearly different, suggesting that after first 
relapse, this mutational mechanism was no longer active. To gain more insight into 
the mutational mechanisms active at all time points, de novo signature extraction on 
the individual clusters was performed, which confirmed the presence of the mutational 
signature SBS7a, in clusters 1, 2, and 3 (Figure 6.3C, Tables S6.7 and S6.8). Signature 
SBS7a has been associated with UV light exposure and is commonly found in head and 
neck cancers and melanoma. Previous studies reported this mutational signature also 
in several pediatric ALL patients11,27, but the etiology is still unknown. However, despite 
the fact that the number of mutations in clusters 4 and 5 was too low to reliably assign 
signatures, SBS7a seemed to be absent, suggesting that this mutational mechanism 
was no longer present after first relapse. Furthermore, SBS7a represented only 89% of 
the mutations acquired in relapse 1-specific cluster 3, and it may be possible that these 
mutations were already present at low levels at time of diagnosis. Additionally, relapse 
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1-specific cluster 3 showed a strong presence of a different, therapy-related signature, 
as 39% of the mutations in cluster 3 were assigned to de novo extracted signature 
SBS A that have a cosine similarity of 0.97 to COSMIC signature SBS87. SBS87 was 
recently identified in relapsed BCP-ALL and was associated with thiopurine treatment27. 
The latter study reported pathogenic mutations in the cytosolic 5’-nucleotidase II gene 
NT5C2 in five patients with SBS87-associated mutations at relapse, but this mutation 
was not identified in patient 2, and no other pathogenic mutations were found that 
could explain the presence of thiopurine-related damage (Tables S6.8 and S6.9).

Figure 6.3. Analysis of mutational clusters in patient 2. (A) Schematic timeline of the analyzed samples with 
the age at diagnosis (Dx) or relapse (R). The patient received an allogenic stem cell transplantation (SCT) after 
his first relapse. Complete remission before (CR1) and after (CR2) were sequenced to correct for patient- and 
donor-derived normal variation. (B) Clustering of all high-confidence somatic single-base substitutions based 
on allele frequencies at diagnosis and three relapses (left) and the associated 96-trinucleotide mutation 
profiles corresponding to these clusters (right). The clusters represent a (pre)leukemic ancestral clone (cluster 
1), falling (cluster 2) and rising clone (cluster 3) at relapse 1, and rising clones at relapse 2 (cluster 4) and 
relapse 3 (cluster 5). Total number of somatic mutations in each cluster is indicated in the top right corner 
of each profile. (C) Heatmap showing the COSMIC signatures with a cosine similarity higher than 0.7 to the 
mutational profiles of at least one of the five clusters. For the complete overview of all five clusters to the 
72 COSMIC signatures, see Figure S6.3. (D) The absolute and relative contribution of eight extracted de novo 
signatures (Figure S6.4) for each of the clusters. The contribution of SBS E (with a cosine similarity of 0.98 to 
COSMIC signature SBS7a) in clusters 1, 2, and 3 is 93%, 97%, and 89%, respectively. The contribution of SBS 
A (with a cosine similarity of 0.97 to COSMIC signature SBS87) in cluster 3 is estimated to be 39%. The right 
panel depicts cosine similarities between the actual mutational profiles and the reconstructed profile based 
on the identified de novo extracted signatures, with a reliability threshold set at 90%.



Unravelling the sequential interplay of mutational mechanisms during clonal evolution in relapsed pediatric acute lymphoblastic leukemia

6

187   

DISCUSSION
Pediatric ALL is a heterogeneous disease characterized by the presence of multiple 
leukemic clones7-9. Clonal diversification at different stages during disease development 
may be a ramification of mutational mechanisms that are active during episodes of 
disease progression or throughout the entire disease course8,26,27. These processes drive 
clonal heterogeneity and may lead to selection of therapy-resistant clones27. Various 
mutational mechanisms have been identified in (relapsed) ALL cases, but the spatial and 
temporal activity of these mechanisms is still far from understood. In this whole genome 
sequencing study on two BCP-ALL patients with multiple relapses, we demonstrated 
that by clustering mutations based on the clonal dynamics during disease progression, 
distinct mutational processes can be unraveled, and their timing can be specified. This 
proof-of-principle can be applied to past and future whole genome sequencing studies 
involving multiple samples of the same tumor, separated in time or space in order to 
unravel the sequential interplay of mutational mechanisms during cancer progression.

Both cases revealed complex evolutionary patterns, with multiple clones rising 
and falling during disease progression. The clusters of mutations underlying these 
individual clones revealed distinct mutational mechanisms in these patients. In patient 
1, the outgrowth of multiple relapses appeared to be derived from subclones that 
acquired new mutations by a sustained AID/APOBEC-driven mutational mechanism. 
This mechanism is responsible for high mutational burden in a subset of ALL8,23,27, and 
can be recognized by the presence of two distinct signatures, SBS2 and SBS13. These 
signatures are thought to arise from the same mutational mechanism (cytosines to 
uracil deamination at TpC dinucleotides), but whereas SBS2 directly results from the 
replication of a U:A mismatch, SBS13 appears to be caused by error-prone polymerases 
that fill in the excised uracil23. SBS2 and SBS13 often co-occur in similar amounts, which 
explains why the two patterns can be recognized as a single mutational signature8. 
Interestingly, however, we observed a difference in the relative contribution of SBS13 
between clusters 5 and 6 in patient 1. Since cluster 5 contains relapse 2 mutations that 
were already present subclonally at the first relapse, this observation may be suggestive 
of a relatively higher level of uracil excision in the subclonal stage, for example because 
of lower replication rates. Inclusion of more ALL cases with underlying AID/APOBEC 
mutagenesis in future studies may further clarify this aspect.

In patient 2, two mutational mechanisms were identified which, in contrast to 
patient 1, were active only temporarily. The mutations detected at diagnosis could be 
linked to mutational signature SBS7a, which has been associated with DNA damage 
caused by UV light exposure11,21,23,24,27. SBS7a-associated mutations have been observed 
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occasionally in ALL11,27, but the underlying cause of these mutations in the bone marrow 
is still unknown. Acquired mutations in the first relapse also contained a substantial 
number of SBS7a-associated mutations, but in the later relapses, this mutational 
mechanism was no longer active. In fact, we cannot rule out the possibility that relapse 
1 emerged from a subclone that was already present at diagnosis, and that the SBS7a 
mutations all arose before first diagnosis. Whereas SBS7a appears to be caused by 
an intrinsic process, a substantial number of mutations in the first relapse could be 
linked to thiopurine treatment (SBS87)27. Presence of these thiopurine-related scars 
may indicate that this therapy was (partially) ineffective, which may have contributed 
to the development of relapse. Strikingly, however, also, this mutational mechanism 
was no longer present in later relapses, despite the use of thiopurines in the ALL-R3-
based therapy he received after his first relapse. The absence of thiopurine scars may 
suggest that the later relapses were either completely resistant or completely sensitive 
to thiopurine-induced DNA damage.

CONCLUSIONS
In summary, we showed that the use of samples taken at multiple time points 
during tumor evolution may improve separation of distinct cell populations that 
evolve independently, thereby unravelling clone-specific mutational mechanisms. 
Clonal inference can be further improved by deep targeted resequencing of somatic 
mutations, as well as utilization of limited dilution xenograft models, as previously 
demonstrated8,35. Furthermore, we showed that independent examination of mutational 
clusters reveals distinct mutational profiles which correspond to previously reported 
mutational signatures. We therefore conclude that analyzing mutational signatures in 
the clusters of mutations, in a clone-specific manner, can improve our understanding of 
mutational processes occurring in a single parental cell.
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SUPPLEMENTARY DATA
Supplementary Tables
Supplementary Tables are available online using the following link:	  
https://doi.org/10.3390/genes12020214.

Supplementary Figures

Figure S6.1. Mutation clustering in patient 1. The left panel shows the 10 clusters (k-means clustering; k = 
10) of high-confidence filtered somatic mutations identified in the whole-genome sequence experiments in 
patient 1. The middle panel shows the 96 trinucleotide mutation profiles corresponding to 10 clusters on the 
left. We manually merged clusters with the same evolutionary trajectory (left panel) and similar mutational 
profiles together. The clusters represent a (pre)leukemic ancestral clone (yellow), falling (blue) and two rising 
clones (green and red) at first relapse, and rising clones at second relapse (pink). Finally, we cleaned the 
merged clusters of outlier mutations and divided the cleaned clusters to create biological relevant clusters, 
indicated with an asterisk (*), that were subjected to mutational signature analysis. 
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Figure S6.2. Mutation clustering in patient 2. The left panel shows the 10 clusters (k-means clustering; k = 
10) of high-confidence filtered somatic mutations identified in the whole-genome sequence experiments in 
patient 2. The middle panel shows the 96 trinucleotide mutation profiles corresponding to 10 clusters on the 
left. We manually merged clusters with the same evolutionary trajectory (left panel) and similar mutational 
profiles together. The clusters represent a (pre)leukemic ancestral clone (yellow), falling (blue) and rising clone 
(green) at relapse 1, and rising clones at relapse 2 (red; top cluster) and relapse 3 (red; bottom cluster). Finally, 
we cleaned the merged clusters of outlier mutations and divided the cleaned clusters to create biological 
relevant clusters, indicated with an asterisk (*), that were subjected to mutational signature analysis. 

Figure S6.3. Cosine similarity heatmap of the mutational profiles. Heatmap showing the cosine similarity of 
the profiles of the 6 clusters extracted from patient 1 and the 5 clusters extracted from patient 2 versus the 
72 single-base signatures present in the version 3.1 of the COSMIC database.
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Figure S6.4. De novo mutational signature extraction. (A) De novo mutational signature extraction yielded 8 
single-base substitution signatures that resemble known COSMIC mutational signatures. The four extracted 
signatures that were found to contribute significantly to the two patients in this study were SBS A (cosine 
similarity of 0.97 to COSMIC signature SBS87), SBS C (cosine similarity of 0.98 to the merged COSMC signatures 
SBS2 and SBS13), SBS E (cosine similarity of 0.98 to COSMIC signature SBS7a, and SBS H (cosine similarity of 
0.98 to COSMIC signature SBS1).The complete overview of the cosine similarity comparison to the COSMIC 
signatures can be found in Tables S6.7, S6.8 and S6.9. (B) Cosine similarity heatmap of all eight extracted 
signatures to the known COSMIC signatures.
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Acute lymphoblastic leukemia (ALL) represents the most common childhood malignancy. 
Despite the fact that cure rates approach 90% in developed countries1-4, relapse and the 
associated treatment resistance still represent major clinical and scientific challenges. 
Among cases that relapse, outcome is much poorer5 and prevention of relapse may aid 
further improvement in the outcome. Although numerous studies have vastly improved 
insight into the genomic landscape of ALL, overall survival rates have not improved 
dramatically in the contemporary clinical trials2. Furthermore, it is still unclear how 
different factors contribute to treatment failure. In this thesis we aimed at performing 
comprehensive characterization of relapsed pediatric ALL in order to investigate the 
mechanisms driving relapse and treatment failure. 

In general, there are several possible causes for patients to develop a relapse 
(Figure 7.1). For example, relapses may be driven by undertreatment of leukemia due 
to treatment modifications, omissions or interruptions caused by drug toxicity and 
infections. In other cases, relapses may be driven by outgrowth of the clones residing in 
distinct body compartments (niches), in which they are protected from chemotherapy, 
e.g., eye and testis6,7. Furthermore, dormancy of leukemic cells may decrease their 
vulnerability against commonly used chemotherapeutics. These dormant, non-
proliferative, leukemic cells can exit their dormant state at the end of treatment leading 
to development of relapse8,9. Similarly, the presence of genetic alterations associated 
with treatment resistance in leukemic clones may enable their survival, outgrowth and 
relapse development10-19. These genetic alterations may be present already at the time 
of diagnosis, often in a minor clone and undetectable by routine diagnostic methods, or 
can be newly acquired during the treatment10,13,17,18, and sometimes even driven by the 
treatment20,21. Despite differences in the etiology of relapse, lack of treatment pressure 
against a subpopulation of leukemic cells is the main force driving clonal selection and 
clonal outgrowth. Therefore, better understanding of how these different mechanisms 
contribute to relapse development is essential in order to prevent relapse.

In this thesis we have examined the genetic basis of relapse, and how different 
genomic alterations may contribute to the development of treatment resistance, clonal 
outgrowth and relapse. Furthermore, we investigated mutagenic processes that drive 
acquisition of these genetic alterations and their activity during disease progression. 
Finally, we examined the predictive role of relapse-associated genomic alterations for 
relapse development in the context of contemporary Dutch ALL treatment protocols.
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Figure 7.1. Schematic representation of the mechanisms driving relapse in pediatric ALL. Relapses may occur 
due to ineffective treatment (blue outer circle), which can be driven by drug resistance (orange), cellular 
senescence (green) or inability of a drug to reach therapeutic concentrations in a niche in which leukemic 
cells reside (black). Remaining relapses occur due to treatment omissions and interruptions (red outer circle), 
which can be caused by drug toxicity (blue) and infections (magenta). 

Clonal heterogeneity and evolution of ALL 
In his landmark article from 1976, Peter Nowell proposed a model explaining the 
development of a malignant tumor in a multi-step process from a single, initially normal 
cell, very similar to Darwin’s model on the evolution of species22. In his model, a single 
normal cell acquires an alteration that provides an evolutionary advantage over other 
normal cells. This advantage can be metabolic or proliferative, but on its own it is not 
enough to cause malignant transformation of the cell. During a variable period of time 
this cell, or its progeny, can acquire additional alterations with variable effects on their 
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fitness. Cells with alterations that give evolutionary advantage continue to proliferate 
and acquire new alterations until a single precancerous cell becomes malignantly 
transformed. Up to this point, tumor initiation and evolution from a single ancestral 
cell (monoclonal tumors) is linear. Although Nowell left open the possibility that 
multiple cells enter initiation processes, each of them would need to acquire alterations 
necessary to reach complete malignant transformation before emergence of tumors 
with different ancestry (polyclonal tumors). After malignant transformation is complete, 
the transformed cell and its progeny gain the ability to proliferate uncontrollably, while 
at the same time acquiring new genomic alterations. At this point, cancer cells harboring 
genomic alterations with competitive advantage over the first malignantly transformed 
progenitor may arise, thus resulting in branching of propagating tumors in multiple 
clones22. Remarkably, Nowell’s model of cancer evolution has survived decades of cancer 
research, and even the large number of comprehensive genomics studies, including the 
ones presented in this thesis, have confirmed its validity. For instance, deep sequencing 
studies revealed a plethora of mutations unique for specific time points, with variable 
allele frequencies, consistent with Nowell’s model of tumor cell branching into multiple 
clones.	

Studies in twins with pediatric ALL have confirmed that the presence of strong 
drivers, such as a ETV6-RUNX1 translocation, are essential for leukemia development, 
but these lesions on their own are not sufficient for malignant transformation of 
the lymphocytes23,24. Once new mutations occur in a single cell, they may lead to 
relative outgrowth of the new clone. Similarly, deep sequencing studies in adults 
have also identified many crucial, leukemia-driving lesions in non-leukemic cells in 
the hematopoietic stem cell (HSC) compartment. Interestingly, non-malignant HSCs 
harboring these genetic lesions showed higher proliferative potential over HSCs that do 
not harbor these lesions, leading to formation of healthy HSC subclones, a phenomenon 
known as clonal hematopoiesis25,26. Although these alterations are not enough for 
disease development, their gradual, stepwise accumulation in a non-transformed HSC 
may eventually lead to acquisition of alterations that induce HSC transformation and 
development of leukemia, similar to what was observed in solid malignancies, and 
resembling a linear model of tumor evolution27. In addition, as we demonstrated in 
chapter 5, in a small subset of cases the presence of leukemia-driving alterations in 
preleukemic HSCs can lead to branching of a new clone and development of second 
leukemia, seemingly as a relapse event. This finding suggests that branching of 
(pre)leukemic cells can occur at any point during disease development, even before 
transformation of HSC into malignant cells. 
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Figure 7.2. Schematic representation of leukemia development and the emergence of clonal heterogeneity. 
Through acquisition of genetic alterations, leukemia branches into smaller subpopulations and gives rise to 
new subclones. The majority of the mutations will stay below the detection limit of current sequencing assays, 
making the observed heterogeneity in ALL much less complex. Higher sequencing depth may enable more of 
these subclones to reach the detection threshold of the assay. However, only real disease-driving alterations 
will enable progeny of this new clone to grow out and become dominant in the tumor (depicted in yellow, 
green and gray). 

Through spontaneous mutations that occur with every cell division, as well as 
by the influence of various mutagenic mechanisms, new clones arise that lead to the 
development of heterogeneity in ALL (Figure 7.2). A minor subset of these mutations 
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increases proliferative potential and cellular fitness, leading to relative expansion of the 
new clones. Despite the fact that each leukemic cell in diagnosis has unique mutations, 
making it a new subclone, only clones with the potential to rise above the detection 
threshold of currently used techniques will be detected. Therefore, the remarkable 
heterogeneity of ALL observed in current studies represents only the tip of the iceberg 
of true clonal diversity, with many unique subclones still remaining hidden.

Clonal dynamics in relapsed ALL
During development of ALL, clonal evolution is driven by natural selection and 
competition between healthy HSC and heterogeneous populations of (pre)leukemic 
clones. Therefore, at diagnosis, the genetic makeup of the most prominent clones 
will be represented by those alterations that increase the natural fitness of leukemic 
cells. Initiation of treatment represents a game-changer in the evolution of ALL, since 
treatment-challenged leukemic clones now need to compete in different conditions 
compared to the ones in which they initially evolved. Selective pressure introduced by the 
treatment forces leukemic cells to adapt to the new conditions in order to survive, break 
through the constraints introduced by the treatment, and give rise to a relapse. Using 
evolutionary modeling, we demonstrated that more than half of the relapses evolved 
from a minor subclone at diagnosis (chapter 5), which suggests that indeed selection 
has taken place. In the remaining cases, relapse-driving clones originated from the 
major clone observed at diagnosis (27%), or had a polyclonal origin (18%). In addition, 
in chapter 4, where we studied very early, on-treatment relapses, in almost all of these 
cases relapses originated from a minor subclone in diagnosis, suggesting that these 
minor subclones may harbor lesions driving relapse. The dynamic clonal evolution we 
observed in these studies, with clones rising and falling from diagnosis to relapse in all 
cases that relapsed during treatment, indicates that these cases undergo strong clonal 
selection due to selective pressure of the treatment, and supports a branched model of 
clonal evolution. Furthermore, based on the clonal dynamics observed between major 
clones in diagnosis and release, we were able to discern four different patterns leading 
to the development and outgrowth of relapse clones. First, we observed relapses from 
the major clone, which are rare and can be driven by aberrations associated with very 
poor prognosis, like TCF3-HLF-positive leukemias (Figure 7.3A). Most other scenarios 
do involve development of relapse as a consequence of continuous clonal evolution, 
thus from a subclone in diagnosis. For example, a second model was observed in cases 
where a relapse-driving alteration is present in a subclone already at diagnosis, and 
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where a treatment-driven selective pressure may lead to outgrowth of this subclone 
early during remission (Figure 7.3B). Examples of alterations associated with this type 
of evolution model are those in IKZF1, which can be found preserved from a major 
or minor clone, or those in WHSC1 and CREBBP, which typically arise from a minor 
clone at diagnosis. Third, compared to a model where relapse-prone clones are present 
already in diagnosis, intensive treatment of ALL may lead to acquisition of alterations 
that drive relapse-development, resulting in formation of a new relapse clone at a later 
time point during remission (Figure 7.3C). NT5C2 and TP53 mutations are examples that 
typically (but not exclusively) follow this model of evolution. Finally, a premalignant 
clone, or one of its early branches, may still survive the treatment and give rise to a new 
leukemia presenting as a very late relapse (Figure 7.3D).	 In chapter 5 we have 
identified several examples of this latter model, including two cases with BCR-ABL1 
ALL that did not share mutations between diagnosis and relapse, raising the suspicion 
that these patients actually developed a second ALL rather than a relapse. Subsequent 
whole genome sequencing (WGS) for one of these cases, however, revealed identical 
breakpoints of the BCR-ABL1 fusion between diagnosis and relapse, as well as 65 shared 
somatic variants, demonstrating that this was indeed relapse from a premalignant 
common ancestral clone. 

The presence of multiple, genetically heterogeneous clones creates a pool of 
diverse cell populations that may drive mutual competition, natural selection and clonal 
selection induced by the treatment. After treatment has been initiated, the evolutionary 
bottleneck created by the therapy becomes the major factor influencing the evolution 
of tumors and mutational landscape of relapsed ALL. Although previous studies have 
shown that alterations in these genes confer treatment resistance in ALL in vivo and 
in vitro, only alterations affecting IKZF1 have been identified as a strong predictor 
for relapse development in different treatment protocols11,12,16,28-31, and have been 
demonstrated to cause resistance to several drugs in vitro and in vivo32-35. Lack of such 
a strong association for other genes, and often discordant findings between different 
clinical studies, suggests that despite the clear connection with treatment resistance in 
vivo and in vitro, the presence of additional factors may be needed for the development 
of relapse. Furthermore, despite growing knowledge about genetic heterogeneity, it 
remains unclear how functional heterogeneity, e.g., different responses to medicines 
in genetically similar leukemic clones, may influence relapse development. Therefore, 
examining the functional heterogeneity of these tumors and the evolution of clones 
which harbor alterations in genes frequently mutated in relapse, during treatment itself, 
may further improve our understanding of factors contributing to relapse development. 
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Figure 7.3. Models of clonal evolution from diagnosis to relapse. In children with ALL, harboring genomic 
lesions associated with a poor prognosis, relapse can develop from all branches of the major clone in 
diagnosis, and the subclonal heterogeneity present at diagnosis may be preserved at relapse (A). In other 
cases, relapse evolves from a subclone already present in diagnosis (B) or one that may evolve during 
treatment (C). Relapse can also evolve from a premalignant clone that branched off early during leukemia 
development and survived the therapy in which the malignant cells were eradicated (D). Dots with different 
colors represent clone-founding driver mutations.
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Although many of these genes are drivers associated with relapse, it is unclear how 
big their impact is to drive relapse by themselves. As such, genes involved in relapse 
formation may not always be prognostically relevant.

Methods to study clonal evolution and heterogeneity in ALL
Whole exome and genome sequencing (WES, WGS) approaches, which we used in 
chapters 4, 5 and 6, dramatically improved the resolution in which the process of clonal 
evolution can be studied. However, although the costs of sequencing are dropping, a 
choice has to be made in these studies between sample size, which increases the power 
of a study, and sequencing depth, where the sensitivity to detect subclones is higher. 
Because of the heterogeneity that is observed between individual patients with ALL, 
inclusion of more samples usually has the preference. As a result, limited sequencing 
depth can cause subclonal mutations that are below the detection limit to be missed, 
which hampers the ability to fully capture the diversity of clonal composition in ALL. 
Although increasing sequencing depth may aid the discovery of mutations occurring 
in smaller subclones, it may also increase the number of sequencing artefacts. These 
sequencing artefacts, which usually present with low alternate read counts, may be hard 
to distinguish from real subclonal mutations, leading to unreliable results. We have 
tried to tackle this problem by performing targeted deep-sequencing of all detected 
mutations in samples from a single individual, using an independent targeted next 
generation sequencing (NGS) approach (chapters 4 and 5). In this way, true positive 
subclonal mutations can be effectively identified, but also a more accurate estimate of 
the subclonal allele frequency can be obtained. 

Another strategy that we used to identify relevant clones and subclonal mutations 
is to study their evolutionary trajectories over time. When the subclone detected at 
diagnosis expands and becomes dominant at relapse, the effect of mutations in this 
subclone on relapse development becomes noticeable. With every subsequent time point, 
chances for divergence of evolutionary trajectories of individual clones are increasing, 
therefore the more time points available for sequencing, the better evolutionary 
modeling works in individual samples. Although the majority of mutations in these 
(sub)clones are non-pathogenic, their identification helps in defining distinctive clones 
and clonal dynamics. This approach was proven to be particularly beneficial in cases 
where genomic alterations were found to coexist in independent clones on a similar 
frequency in individual samples (chapters 4, 5 and 6). In situations when samples taken 
at subsequent time points are not available, the use of xenograft models can aid in 
further uncovering clonal composition and clonal heterogeneity of ALL. Besides a 
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characterization of the genetic landscape of individual clones, xenograft models can 
provide information about their preferences for different body compartments and 
response to treatment36-39. Therefore xenograft models provide a powerful tool to 
identify different aspects of clonal heterogeneity, including the presence of relapse 
initiating subclones at diagnosis36. 

Finally, the emerging single cell sequencing (SCS) approaches offer unprecedented 
resolution to study the mutational landscape of individual cells and heterogeneity of 
total tumor. These SCS-based techniques offer the possibility to study even the rarest 
population of cells, and the unique genetic and epigenetic contexts in which relapse-
prone clones evolve40-48. Furthermore, SCS techniques give unprecedented resolution for 
minimal residual disease (MRD) monitoring while the patient is undergoing treatment. 
However, SCS-based techniques are still under development, which, in addition to the 
high costs and the need for viable cells, limits their broad application.

Detection of subclonal alterations and their prognostic relevance 
The observation that relapsed ALL frequently originates from a minor clone at 
diagnosis suggests that these minor subclones may have had a selective advantage 
during therapy. If these subclones harbor alterations in specific genes associated 
with treatment resistance and relapse, the early detection of these alterations could 
have prognostic relevance. However, to reveal a possible correlation with relapse, an 
unbiased approach is needed to detect all subclonal mutations in such genes in a large 
cohort of diagnosis samples. The studies dealing with clinical relevance of subclonal 
genetic alterations in different cancer types, including ALL, are sparse. A good method 
to reliably detect subclonal alterations is digital droplet PCR (ddPCR), which offers 
much higher sensitivity compared to conventional NGS techniques. However, ddPCR is 
mutation specific, which makes it unsuitable to perform high-throughput detection of 
subclonal mutations in an entire gene. Furthermore, single cell technologies, although 
promising for studying subclonality and clonal heterogeneity in ALL, are not suitable for 
high-throughput detection of subclonal mutations. 

We tackled this problem in chapter 2, where we demonstrated that the use of 
random molecular tagging and deep sequencing can be used to reliably detect low-
level mosaic mutations in a large cohort of patients in a predefined set of genes. The 
scalability of this approach offers the possibility to add at any point more molecular 
targets and perform deep sequencing while correcting for possible amplification biases. 
We subsequently used this approach to investigate the clinical relevance of subclonal 
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alterations in relapse-associated genes by screening a large cohort of patients treated 
according to two Dutch treatment protocols: DCOG-ALL9 and DCOG-ALL10 (chapter 3). 
We selected the genes KRAS, NRAS, PTPN11, CREBBP, WHSC1, TP53, and NT5C2, for which 
it was previously shown that they are frequently altered in relapsed ALL. Subclonal 
mutations were found to be common, particularly in RAS pathway genes (KRAS, NRAS, 
PTPN11). Despite their abundance, alterations in examined genes were not predictive 
of relapse development, neither when present in the major, nor in the minor clones. 
This finding suggests that the presence of alterations in relapse-associated genes may 
not be sufficient to give rise to a relapse, and may require that leukemic cells acquire 
additional genetic alterations. An example is presented in chapter 4, where we described 
a patient with a subclonal mutation in TP53. During treatment, this subclone lost the 
p-arm of chromosome 17, resulting in a complete loss of the wild type TP53 gene, which 
subsequently expanded into a new major clone in relapse. Therefore, alterations in 
relapse-associated genes may give slight proliferative advantage at diagnosis, resulting 
in detectability of this subclone, due to relative outgrowth of the leukemic cells harboring 
these alterations. However, these alterations also may predispose subclones to develop 
into more aggressive phenotypes after acquiring additional alterations, which is why 
they are frequently found in major clones at relapse. 

Deletions affecting IKZF1 were previously shown to be a strong predictor of 
relapse in different treatment protocols11,12,16,28-31,49. Therefore, subclonal IKZF1 deletion 
may show the same strong association with relapse development. To examine this 
hypothesis, we included IKZF1 exon 4-7 deletions (chapter 3), which represent around 
25% of all IKZF1 deletions50. These deletions harbor tightly clustered breakpoints51, 
thereby enabling their detection using breakpoint-spanning semi-quantitative PCR. 
Surprisingly, although we observed a strong association of IKZF1 exon 4-7 deletions in 
major clones with relapse, this was not the case with subclonal deletions. Furthermore, 
failure to find back any of these IKZF1 4-7 deletions in matched relapse samples, even 
on a subclonal level, suggests that they may have been eradicated during treatment, 
which further underscores their lack of association with relapse development. The 
reason behind this striking difference remains unclear. Possibly, the functional impact of 
full-clonal IKZF1 deletions, which arise early during leukemia development, is different 
from those that occur in later stages when the leukemia has already fully expanded. For 
example, it was suggested that IKZF1 acts as a metabolic gatekeeper in the developing 
B-cell by repressing glucose uptake and pentose phosphatase activity in cells harboring 
oncogenic lesions, leading to energy stress and cell death52,53. IKZF1 haploinsufficiency 
may release the B-cell from the limitations in energy supply, allowing pathological 



Chapter 7

208

proliferation of these cells. Subclonal IKZF1 deletions arise during proliferation, where 
the cell may have overcome this metabolic restriction in another way (e.g., by a deletion 
of PAX5). On the other hand, the presence of an IKZF1 deletion in a leukemic cell may 
increase cell survival under therapy, but the majority of children reaches complete 
remission, indicating that most IKZF1-deleted cells are killed effectively. Therefore, 
at the cellular level, therapy resistance and relapse development will also have a 
stochastic component, which may minimize the selective advantage of minor IKZF1-
deleted subclones. Although in this study we did not assess the prognostic relevance of 
whole gene and rare intragenic IKZF1 deletions, a previous study has shown that these 
deletions have similar unfavorable outcomes as IKZF1 4-7 deletions50. Whole gene 
IKZF1 deletions, as well as deletions encompassing exon 2, which contains the ATG 
translation start site54, are considered to cause haploinsufficiency, thus likely having 
similar functional consequences and prognostic value. In contrast, loss of four zinc 
finger DNA binding domains in IKZF1 4-7 deletions results in expression of a dominant-
negative isoform (isoform 6). This dominant-negative isoform lacks DNA binding 
activity, but retains the ability to interact with wild type IKAROS, thereby effectively 
altering its function. Studies on IKZF1 knockout mouse models have demonstrated that 
while haploinsufficiency leads to the development of B- and T-cell tumors, dominant-
negative mutants experience widespread failure of hematopoiesis and shorter latency 
in tumorigenesis compared to wildtype mice55. Furthermore, a previous study has 
demonstrated different outcomes in BCR-ABL1-negative adult ALL patients, depending 
on whether IKZF1 deletion resulted in haploinsufficiency or expression of a dominant-
negative isoform56. Taken together, these findings indicate that IKZF1 deletions with 
expression of a dominant-negative isoform, such as the case with exon 4-7 deletions, 
have different mechanisms in which they can contribute to leukemia development and 
treatment failure, compared to the whole gene and deletions involving exon 2. Thus, we 
cannot completely rule out that the other IKZF1 deletions may have different effects 
than the ones observed in subclonal IKZF1 exon 4-7 deletions. 

Previous studies, including the ones presented in this thesis, observed that NT5C2 
mutations are almost exclusively found in relapse17,18,57, and when they do occur at time 
of diagnosis, they are present in a minor subclone. Previously, it was demonstrated that 
upfront treatment influences the genetic composition of relapsed ALL through selective 
pressure of the drugs that represent the backbone of different treatment protocols58. 
This strong influence of individual drugs used in frontline ALL treatment is particularly 
important for alterations affecting NT5C2. NT5C2 is a cytosolic 5’ nucleotidase 
responsible for dephosphorylation of 6-hydroxypurine monophosphates, such as inosine 
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monophosphate (IMP) and guanosine monophosphate (GMP). Furthermore, in patients 
receiving thiopurines, e.g., 6-mercaptopurine, NT5C2 catalyzes dephosphorylation of 
their thiolated metabolites, e.g., 6-thioinositol monophosphate and 6-thioguanosine 
monophosphate17,59-62. Dephosphorylated endogenous and thiopurine-originating 
6-hydroxypurine products are then exported from the cell, while endogenous 
6-hydroxypurine products can also be used as substrates in the degradation or purine 
salvage pathways59,60,62. Under conditions present in untreated leukemia, activating 
mutations in NT5C2 result in an increased export of nucleosides from the cell, thus 
decreasing cell fitness and proliferative potential, which may ultimately lead to collapse 
of the clone. However, under the pressure of thiopurine treatment, clones harboring these 
mutations not only survive, but even have a higher proliferative potential compared to 
clones without these mutations17,57,59. This striking effect of activating NT5C2 mutations 
during treatment with thiopurines can be explained by the higher substrate affinity of 
mutated NT5C2 for thiolated 6-hydroxypurine monophosphates60. Therefore, mutated 
NT5C2 increases dephosphorylation and transport of 6-MP metabolites, while their 
lower substrate affinity for endogenous purine nucleotides effectively increases the 
pool of available purines for DNA synthesis. Exclusive enrichment of NT5C2 mutations 
in relapses (chapters 4 and 5), and the lack of NT5C2 mutations, even subclonal ones, in 
diagnosis (chapter 3) can therefore be explained by conditions favoring expansion of 
the NT5C2 mutated clones during treatment, as well as by a limited detection threshold 
of the NGS assays in diagnosis. 

Mutational processes in relapsed ALL
Genomic alterations in ALL have the potential to drive disease development, clonal 
expansion, treatment resistance and relapse. However, our knowledge about the 
mechanisms that drive the acquisition of these genomic alterations is still limited. 
Although mutagenic processes do not directly cause disease development, they may 
introduce leukemia-driving and treatment resistance-associated lesions, thus leading 
to the emergence of disease and facilitating adaptation of leukemic cells to treatment. 
Therefore, better understanding of the mutational processes that are active in ALL may 
result in improved risk-stratification and even better strategies for treatment.

Previous studies have discovered a diverse range of different mutational 
mechanisms active in ALL, some of which may cause extensive lesions such as 
chromothripsis in dicentric rob(15;21)c-associated iAMP2163,64, a breakage-fusion-bridge 
mechanism often followed by chromothripsis in sporadic iAMP2164,65, or focal deletions 
due to cryptic activity of the RAG family recombinases66-68. In this thesis we focused 
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on the processes driving development of single-base substitutions in relapsed ALL. 
When studied in a trinucleotide context, groups of single-base substitutions (SBS) can 
be linked to underlying mutational mechanisms, which represent a fingerprint known 
as a mutational signature69-71. Until now, 72 SBS signatures have been described in the 
Catalogue of Somatic Mutations in Cancer (COSMIC), of which 41 have a known etiology. 

Mutational signatures can be de novo extracted from a well-curated set of 
somatic mutations using the dimensionality reduction method of non-negative matrix 
factorization (NMF)72,73. Although powerful, this method is limited by the number of 
samples with distinct mutational patterns.	 One solution to overcome limitations 
related to the sample size is to extend the dataset by procuring data derived from 
samples of similar origin, as we applied in chapter 5. Another approach in mutational 
signature analysis is based on the fitting of mutational profiles of individual samples 
to known COSMIC SBS signatures in order to quantify their contributions to the overall 
mutational spectrum72. This approach is independent of other samples included in the 
same analysis, which makes it suitable in situations where the number of samples is 
limited. However, the biggest drawback of this method remains the inability to identify 
novel mutational mechanisms due to its dependency from the previously defined SBS 
signatures.

The initiation and duration of mutation accumulation appears to be different 
between the various mutational processes that are found to be active in ALL. Whereas 
some processes are regularly found to be active already at diagnosis, others arise later 
as a direct consequence of therapy or because of an acquired pathogenic mutation 
(Figure 7.4). 

In chapter 5, we analyzed WES data of 92 pediatric ALL cases obtained from 
diagnosis and relapse. At diagnosis we observed a high mutational load in a limited 
set of samples (3%), but the mutational load increased with every subsequent relapse, 
suggesting that hypermutation is associated with cell proliferation and/or the impact of 
therapy. Therefore, in chapters 4, 5, and 6 we examined the phenomenon of hypermutation 
and analyzed mutational mechanisms driving mutagenesis. Our analysis unraveled 
that the hypermutation may occur at each time point during leukemia development 
and can be driven by intrinsic processes such as AID/APOBEC mutagenesis, or acquired 
mechanisms, like mismatch repair deficiency (MMR). Alternatively, it can be caused by 
treatment, such as the case with mutational signature SBS87, which is associated with 
thiopurine treatment. 
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Figure 7.4. Schematic representation depicting stages of ALL development and evolution during which 
specific mutational processes may become active. Intrinsic mutational processes are outlined in magenta, 
external are in blue, while the processes without apparent etiology in ALL are in grey. Although signs of 
activity of distinct mutational processes may be found at each stage during ALL evolution, certain processes 
are more likely to be more active at specific time points. For example, mutations caused by aberrant AID/
APOBEC activity and UV light exposure-associated DNA damage are often found at diagnosis, while MMR 
deficiency and thiopurine-associated mutations are often found in relapses. 

In this thesis we identified the presence of several known mutational signatures, 
including SBS15, associated with the mismatch repair deficiency (MMR), SBS2 and 
SBS13, both associated with aberrant AID/APOBEC mutagenesis, and, surprisingly, 
SBS7a associated with UV light exposure. Although we were not able to unravel the 
exact etiology of SBS7a, UV light exposure in ALL seems unlikely, and further analysis 
may aid our understanding of this mutational process. For example, defects of one of 
the DNA repair pathways may make these leukemic cells more susceptible for UV light-
like DNA damage. Furthermore, we and others have demonstrated that SBS7a was often 
found at diagnosis, but never in the second relapse, suggesting that the impact of this 
mutational process is temporary and may even be limited only to diagnosis20,74,75. In 
this scenario, the acquired SBS7a mutations at first relapse may in fact represent rising 
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clones that were present at a subclonal level already at diagnosis. We also identified a 
novel signature strongly resembling SBS signature 1, a clock-like signature previously 
associated with spontaneous deamination of methylated cytosines in TpCpG context. 
The high load of newly acquired mutations in relapse samples of these patients, 
comparable to the ones observed in cases with MMR deficiency, already suggests that 
this process might have been accelerated by an acquired imbalance between damage 
and repair. In addition, in independent cases we observed a wide spread of mutation 
allele frequencies (MAF) that could be assigned to the SBS1-like mutational signature. 
This finding was particularly prominent in case SJETV010, where most of the SBS1-like 
mutations occurred on a low subclonal level (MAF < 0.5%) in the first relapse. In the 
second relapse these mutations were much wider spread, indicating that the SBS1-like 
mutations arose in an ongoing mutational process, which was initiated in the subclone 
at first relapse. 

To further unravel the basis of the SBS1-like mutational signature, we performed 
WGS and RNA sequencing in a subset of cases that showed a high contribution 
of this mutational process, and in addition used a previously published dataset of 
colon organoids for which it was shown to have mutations driven by COSMIC SBS 
signature 1. In contrast to previously published data on SBS1, our analysis revealed 
strand asymmetry for the transcribed regions in cases with the SBS1-like signature, 
complemented by high C>T mutational densities in CpGs. Furthermore, the mutational 
densities increased and strand asymmetry widened with higher gene expression levels 
in respective samples, a finding that could not be recapitulated in colon organoid 
samples with COSMIC SBS1 mutations. High prevalence of C>T substitutions in 
CpGs in gene bodies and gene expression-coupled strand asymmetry suggests that 
this mutational process may be caused by deficient transcription-coupled repair 
mechanisms, or increased damage on a single stranded, nontranscribed DNA strand. 
Indeed, a recent study involving children with relapsed ALL from the United States 
and China recapitulated our findings on SBS1-like mutational signatures and further 
unraveled the connection of this mutational signature with thiopurine treatment in 
leukemia with MMR deficiency (here referred to as the thio-dMMR signature)21. SBS1-
like/thio-dMMR signature is very similar to the COSMIC SBS74 mutational signature, for 
which association with MMR deficiency was already suggested70 (Figure 7.4). Moreover, 
incorporation of an active thiopurine metabolite, 6-thioguanine, causes stalling of RNA 
polymerase and activations of transcription-coupled nucleotide excision repair, which 
can explain our observation of high mutational densities in the transcribed DNA strand 
of expressed genes76. Nevertheless, it remains unclear why thiopurine treatment in 
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the context of MMR deficiency leads to different mutational signatures compared to 
previously observed SBS87. Although SBS74 was very prominent in relapsed ALL, we 
did not observe this mutational signature in the leukemia of patients that experienced 
relapse after treatment with one of the DCOG treatment protocols. This leaves the 
possibility that SBS74 is not caused only by thiopurine treatment in MMR deficient 
leukemia, but that the specific regimen of drug administration may also play a role. 
These findings emphasize the need to further examine the etiology of this SBS1-like/
thio-dMMR signature in the context of different treatment conditions. 

The finding that individual clones may harbor mutations driven by mutational 
processes unique for these clones, triggered the hypothesis that studying mutational 
signatures in a clone-specific manner may improve their identification and our 
understanding of clonal heterogeneity and clonal expansion at different stages of 
disease development. To test this hypothesis, we performed WGS of two cases which 
experienced multiple ALL relapses (chapter 6). Based on the MAF between diagnosis 
and subsequent relapses in these two cases, we clustered mutations in groups 
following unique evolutionary trajectories and performed mutational signature analysis. 
Mutations within the same cluster are likely to occur in the same cell which potentially 
creates a clearer picture of mutational mechanisms that occurred at a specific time, as 
well as changes in the activity of these mutational processes over time. In this study, 
we demonstrated that analysis of mutational processes in a clone-specific manner 
can unravel unique mutational processes active in these clones. To our surprise, the 
observation that multiple mutational processes may be present in a single tumor (chapter 
5) could be recapitulated even in individual clones. This finding suggests that distinctive 
mutational processes may affect multiple cell populations during tumor evolution, 
rather than a single clone. Furthermore, variable contribution of individual mutational 
processes across different clones in a single tumor suggests that their activity may 
vary during tumor development (temporal dynamics). In this scenario multiple clones, 
harboring variable contributions of different mutational mechanisms would evolve in 
stepwise processes, which is in line with previous observations showing sudden bursts 
of mutations specific to certain mutational processes at a single time point, e.g., AID/
APOBEC mutagenesis10,77,78. However, there may be additional factors that can contribute 
to the change of activity of these processes in a single time point, e.g., interaction 
with the microenvironment or conditions in the leukemic niche (spatial dynamics). In 
this case, these clones would evolve in parallel, with occasional clonal branching, and 
differences in the contribution of individual mutational processes between clones would 
not solely depend on the episodic character of certain mutational mechanisms, such as 
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AID/APOBEC activity or thiopurine treatment, but also how much these mechanisms 
were restricted by other factors in the environment in which leukemic cells were 
residing. Furthermore, these mutational processes may drive alterations necessary for 
another mutational mechanism to become active, or create a predisposition for other 
mutational processes to occur. Indeed, a previous study has shown that the activity of 
BFB mechanism in the formation of sporadic iAMP21 creates dicentric chromosomes 
which dramatically increases the risk of chromothripsis, a phenomenon commonly 
observed in sporadic iAMP2163,64. Finally, the prognostic relevance of the mutational 
mechanisms active in leukemic cells remains unclear. 

Future perspectives
Despite highly effective treatment strategies, relapse is still the most common cause 
of death in children with ALL5. This thesis gives directions for future research that may 
lead to our improved understanding of relapsed ALL and mechanisms leading to relapse 
development. 

In recent years, clonal heterogeneity has become one of the frequently investigated 
aspects of ALL and cancer in general. In this thesis we provided an additional layer to 
already complex models of heterogeneity in ALL, by showing that individual clones may 
also differ in the mutational mechanisms that are active. It remains to be elucidated 
whether activity of mutational processes has prognostic relevance in current treatment 
protocols, which mechanisms drive (de)activation of individual mutational mechanisms, 
as well as how these mutational processes may contribute to clonal heterogeneity 
and clonal outgrowth. The advent of single cell technologies may further deepen our 
understanding of tumor heterogeneity and the complex mechanisms driving clonal 
diversification and mutagenesis. Single cell sequencing may be particularly relevant 
in further identifying prognostic relevance of genetic lesions in the rare, subclonal, 
population of leukemic cells. Furthermore, additional layers of epigenetic information 
have already proved invaluable in improving our understanding of ALL, and may 
reveal novel aspects of how individual clones evolve from diagnosis to relapse. Finally, 
functional characterization of individual tumor clones in vivo and in vitro may aid our 
understanding of therapy resistance and context in which different (epi)genetic lesions 
may contribute to treatment failure. 

The analysis of mutational processes and our understanding of how they operate 
in human cancers has dramatically improved since 2013, when the first comprehensive 
catalogue of mutational processes in human cancers was published. Since then, 
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mutational signature analysis has become an integral part of every comprehensive 
NGS study of human cancer. Next to being a useful tool in cancer characterization in 
research settings, analysis of mutational signatures may find its way in routine cancer 
diagnostics, once the associated etiology and risk factors are fully unraveled. For 
example, identification of the thiopurine and thio-dMMR mutational signatures, as well 
as the presence of thiopurine-associated mutations in genes previously linked with 
relapse development20, suggests that these patients may benefit from further treatment 
adaptation. 

In this thesis, we have also shown that the presence of subclonal alterations in a 
set of relapse-associated genes are not of prognostic relevance. However, their higher 
frequency in cases that relapse, compared to the ones that do not, requires further study. 
For example, these subclonal alterations may still provide susceptibility for relapse 
development in a specific genomic context, by acquiring additional driving alterations, 
or subclonal alteration in other relapse-associated genes. In addition, subclonal 
alterations in other relapse-associated genes, not studied in this thesis, may prove to be 
associated with relapse and unfavorable outcome. Finally, it is important to be aware of 
the fact that the introduction of new treatment strategies may change the landscape of 
genetic alterations associated with relapse and, therefore, the predictive value of these 
(sub)clonal alterations at diagnosis. 

During the last decade our knowledge on genomic lesions driving treatment 
resistance has rapidly increased and with it our treatment strategies have improved, 
leading to better survival rates2,5,79. Although the majority of novel therapies are being 
assessed or introduced for salvage treatment in cases with relapsed or refractory 
disease, the ones with most exciting results are rapidly moving to the frontline of 
treatment80,81. For example, tyrosine kinase inhibitors (TKI) are already part of the 
frontline treatment of BCR-ABL1 positive ALL, with second generation of TKI inhibitors, 
e.g., dasatinib and nilotinib, already showing improved efficacy profile against leukemia 
with mutation in BCR-ABL1, compared to the first generation TKI inhibitor imatinib. 
Third generation TKI inhibitors are undergoing clinical testing and offer promising 
results in BCR-ABL1-positive ALL cases with resistance to the second generation of 
TKI inhibitors80,81. Detection of B-cell specific surface markers, e.g., CD19, CD20 and 
CD22, has led to development of different immunotherapeutic approaches, such as 
monoclonal bodies, antibody-drug conjugates, bispecific T-cell engaging antibodies, 
and chimeric antigen receptor (CAR) T-cells80-82. Particularly promising results were 
achieved with blinatumomab83, a bispecific antibody engaging both CD19+ B-cells and 
CD3+ cytotoxic T-cells, which leads to T-cells activation and apoptosis of CD19+ B-cells. 
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One of the most important observations that came from the studies comparing 
the genetic landscape of diagnosis and relapse is that the treatment-induced selective 
pressure represents the strongest individual factor influencing genetic composition of 
relapse. Although lesions such as IKZF1 may not be a strong predictor of unfavorable 
outcome as before, novel medicines and treatment strategies will undoubtedly lead 
to development of new ways in which leukemic cells survive treatment. Therefore, 
treatment adaptations and introduction of new therapeutics may have as a result that 
the cases which relapse today remain in remission tomorrow. For example, in the clinical 
trials using blinatumomab in the frontline ALL treatment, loss of CD19 antigen already 
emerged as a reason for treatment resistance82, and was also observed in other CD19 
directed therapies, e.g., CAR T-cells82,84. Loss of CD19 antigen was frequently connected 
with genomic alterations affecting CD1982,84, however, in a subset of cases the exact 
molecular mechanism is still unknown82, or could be explained by disrupted CD19 export 
from the endoplasmic reticulum85. The latter finding represents a completely novel 
mechanism of treatment resistance in ALL and illustrates new challenges that need to 
be tackled from both clinical and research perspective in order to overcome treatment 
resistance. Therefore, all the cases relapsing after treatment with novel drugs, should 
be carefully evaluated in order to understand mechanisms driving treatment failure. 
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SUMMARY
In the last seven decades, the outcome of pediatric acute lymphoblastic leukemia (ALL) 
and survival rates have improved dramatically, reaching 90% in the contemporary 
treatment protocols. However, around 10% of the children experience relapse and 
among them the outcome remains poor. Therefore, relapse remains a major clinical and 
scientific issue in pediatric ALL, and understanding etiology and mechanisms driving 
treatment failure may improve outcome and prevent relapse development. Because 
cancer is predominantly a genetic disease, and genetic alterations have a major role 
in driving development of ALL and treatment failure, we focused in this thesis on 
examining the genetic basis for relapse development and the competition between 
leukemic clones during treatment. In chapter 1 we give a broad overview of the current 
knowledge of the genetics of ALL, mutagenesis, relapse development, treatment 
resistance and clonal evolution. In the subsequent chapters we use specific approaches 
to investigate these topics in the context of relapsed ALL and explain mechanisms in 
which leukemic clones return after treatment has been successfully initiated.	

Previous studies comparing differences between samples from diagnosis and 
relapse have shown that the relapse driving mutations can be found already at 
diagnosis, often on a subclonal level and undetectable by routine diagnostic methods. 
However, the clinical relevance of these relapse-associated alterations in subclones has 
so far not been investigated. In order to accurately and sensitively detect mutations 
present even in a small fraction of cells, we developed an assay using single molecule 
Molecular Inversion Probe (smMIP), which we describe in the chapter 2. The smMIP 
approach utilizes random molecular tagging for each captured locus which enables 
correction for amplification and sequencing artefacts and their distinction from true 
somatic mutations. Using smMIP-based NGS sequencing we were able to reliably 
detect mutations with allele frequencies as low as 0.4%. We subsequently utilized this 
approach in chapter 3, to perform screening for mutations in the relapse-associated 
genes CREBBP, KRAS, NRAS, PTPN11, TP53 and WHSC1, in a cohort of 503 pediatric ALL 
patients enrolled in DCOG-ALL9 and DCOG-ALL10 studies. In addition, we developed 
a semi-quantitative PCR assay to study an intragenic exon 4-7 IKZF1 deletion, which 
occurs in 25% of the cases and represents the second most common IKZF1 deletion. In 
total we identified 660 alterations in 285 patients of which 495 (75%) were subclonal. 
Despite a high number of subclonal alterations, we did not find an association of either 
subclonal or major clone alterations with relapse development. The only exceptions were 
major clone IKZF1 exon 4-7 deletions, in line with previous studies done on all IKZF1 
deletions, suggesting their strong association with relapse development. In addition, we 
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traced the alterations detected at diagnosis in the relapse samples of the same patients 
and found that only 7% of subclonal alterations were preserved from diagnosis to major 
clones in relapse, compared to 56% of major clone alterations. Results were even more 
striking for IKZF1 exon 4-7 deletions where all detected deletions in major clones were 
preserved in available relapse samples, while all subclonal deletions from diagnosis 
were lost at time of relapse. These data suggest that for the investigated genes there is 
no basis to use subclonal alterations as a prognostic marker. 

Around one quarter of all the relapses occur very early (<18 months from diagnosis), 
while the treatment is still ongoing, and prognosis among these cases is poor compared 
to cases that relapse after treatment has ended. In chapter 4 we aimed to unravel the 
genomic basis of very early relapse. We performed whole exome sequencing (WES) of 
12 diagnosis-relapse pairs of children with ALL who relapsed very early, followed by a 
deep-sequencing validation of all identified mutations. In addition, we included one 
case with a good initial treatment response and on-treatment relapse at the end of 
upfront therapy. Despite short remission time, we observed dynamic clonal evolution, 
with relapse originating from a subclone in almost all the cases. In addition, we 
observed several driver mutations that may have influenced relapse development and 
outgrowth of treatment-resistant clones. For example, in the MRD-standard risk patient 
with ETV6-RUNX1-positive ALL we observed outgrowth of the TP53 mutated clone 
after loss of the wildtype allele, resulting in relapse development. Furthermore, two 
patients with TCF3-PBX1-positive leukemia, a subtype with favorable prognosis in the 
contemporary treatment protocols, harbored WHSC1 p.E1099K mutation in diagnosis. 
Since cases with TCF3-PBX1-positive ALL rarely relapse, and prognosis is poor in case 
of relapse, we collected 16 additional TCF3-PBX1-positive relapsed cases from eight 
collaborating centers, including six with very early relapse, and performed screening 
for WHSC1 mutations in these cases. Our analysis revealed one additional case with 
a p.E1099K mutation who experienced very early relapse, suggesting that WHSC1 
mutations may not be a strong predictor of relapse in TCF3-PBX1-positive ALL by itself, 
but in combination with additional alterations may contribute to relapse development 
in these cases. In addition to alterations in known relapse drivers, we identified two 
cases with truncating mutations in cohesin complex gene RAD21, which was previously 
not associated with relapsed ALL. 

In chapter 5 we performed a study on a large cohort of relapsed ALL patients 
in collaboration with colleagues from St. Jude Children’s research hospital and the 
University of Toronto. In this study we show that relapses may develop from ancestral, 
major and minor clones at diagnosis. Furthermore, we demonstrate that hypermutation 
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is a common phenomenon in relapsed ALL and that different mechanisms, often in 
combination, can drive this hypermutation phenotype. In addition to mutational 
signatures caused by mismatch repair deficiency and aberrant AID/APOBEC activity, we 
also describe a new mutational mechanism in this chapter, which is very similar to 
the already known age-related mutational signature SBS1. This SBS1-like signature 
is characterized by C>T substitutions occurring at CpGs but, in contrast to the known 
COSMIC SBS1 signature, shows a strong transcription bias in CpGs which correlates with 
gene expression. After our finding, another study revealed that this signature developed 
due to thiopurine-associated DNA damage in leukemias with mismatch repair (MMR) 
deficiency, therefore named thio-dMMR. This finding suggests that this thio-dMMR 
signature may be driven by a mechanism causing damage on a single stranded DNA 
during transcription, or lack of transcription coupled repair mechanism. Finally, we show 
that the hypermutation causes formation of neoepitopes which may be used as targets 
for immunotherapy. 

The observation that multiple processes can drive mutagenesis in a single tumor, 
led us to examine whether analysis of mutational signatures in a clone-specific manner 
may aid uncovering specific mutational processes active at particular time points 
during tumor development. Therefore, in chapter 6 we selected two cases with multiple 
relapses and performed whole genome sequencing (WGS) of samples taken at diagnosis 
and every subsequent relapse. We subsequently performed clustering of detected 
somatic mutations based on their allele frequencies and performed de novo mutational 
signature extraction in order to examine whether groups of mutations separated in 
time harbor distinct mutational processes. We demonstrated that examining mutational 
signatures in a clone-specific manner can improve our understanding of mechanisms 
active in a single parental cell. Furthermore, we demonstrated that multiple mutational 
processes can be active in a single clone, and that some processes are active at specific 
timepoints during tumor evolution, e.g., signatures resembling ultraviolet light-driven 
DNA damage and thiopurine-associated damage, while others show continuous interplay 
of aberrant activation, e.g., AID/APOBEC. 

In chapter 7 we discuss the clinical relevance of subclonal mutations in relapse-
associated genes, clonal heterogeneity, tumor evolution and mechanisms in which 
individual clones and genomic alterations may break through treatment-induced selective 
pressure and cause relapse. Furthermore, we discuss mechanisms driving mutagenesis in 
diagnosis and relapse and how our understanding of these processes may improve future 
ALL treatment. Finally, we elaborate on the future perspectives on examining clonal 
heterogeneity, mechanisms of relapse, treatment and prevention of ALL. 
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8

SAMENVATTING
Sinds de jaren ‘50 van de vorige eeuw is de overleving van kinderen met acute lymfatische 
leukemie (ALL) drastisch verbeterd, tot 90% in de huidige behandelingsprotocollen. 
Echter, ongeveer 10% van de kinderen ontwikkelt een recidief en bij hen blijft de 
uitkomst slecht. Het voorkomen van recidieven blijft daarom een belangrijk klinisch 
en wetenschappelijk aandachtspunt, waarbij een beter begrip van de oorzaak van een 
falende behandeling uiteindelijk moet leiden tot nog betere genezing van kinderen met 
ALL. In de basis is kanker een genetische ziekte en genetische afwijkingen spelen een 
belangrijke rol bij de ontwikkeling van ALL. Sommige van deze genetische afwijkingen 
kunnen ook de reden zijn dat de behandeling niet aanslaat, en in dit proefschrift 
hebben we de genetische basis voor het ontwikkelen van een recidief en de competitie 
tussen leukemische klonen tijdens de uitgroei en behandeling onderzocht. In hoofdstuk 
1 geven we een uitgebreid overzicht van de huidige kennis van de genetica van ALL bij 
kinderen, het ontstaan van genetische afwijkingen, klonale evolutie, resistentie tegen 
behandeling en de ontwikkeling van een recidief. In de daaropvolgende hoofdstukken 
onderzoeken we deze onderwerpen in de context van recidief ALL met specifieke 
benaderingen en beschrijven we verschillende mechanismen die de terugkeer van 
leukemische klonen na een behandeling kunnen veroorzaken. 

In eerdere onderzoeken naar genetische verschillen tussen ALL monsters 
van diagnose en recidief kon worden aangetoond dat de mutaties die het recidief 
veroorzaken veelal reeds aanwezig zijn bij diagnose, vaak op een subklonaal niveau 
en niet-detecteerbaar met standaard diagnostische testen. De klinische relevantie van 
deze met recidief geassocieerde afwijkingen in subklonen is tot dusver niet onderzocht. 
Om mutaties nauwkeurig en sensitief te detecteren, zelfs als ze slechts in een klein 
deel van de cellen aanwezig zijn, hebben we een test ontwikkeld met behulp van 
zogenaamde ‘single molecule Molecular Inversion Probes’ (smMIPs), die we beschrijven 
in hoofdstuk 2. De smMIP-benadering maakt gebruik van willekeurig geformeerde 
moleculaire herkennings-sequenties (‘tags’) voor elke geselecteerde locus, waardoor 
we kunnen corrigeren voor allerlei artefacten en we de echte afwijkingen met veel 
hogere gevoeligheid kunnen aantonen. In onze experimenten bleek het mogelijk om 
met behulp van smMIP-sequencing mutaties met allelfrequenties zo laag als 0.4% op 
betrouwbare wijze te detecteren. In hoofdstuk 3 hebben we deze smMIP benadering 
gebruikt om leukemiemateriaal van 503 kinderen met ALL te screenen op mutaties 
in de bekende recidief-geassocieerde genen CREBBP, KRAS, NRAS, PTPN11, TP53, 
WHSC1 en NT5C2. Daarnaast hebben we een semi-kwantitatieve PCR-test ontwikkeld 
om een exon 4-7 deletie in het gen IKZF1 te bestuderen die in 25% van de gevallen 
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van pediatrische ALL voorkomt. In totaal hebben we 660 mutaties bij 285 patiënten 
kunnen aantonen, waarvan er 495 (75%) subklonaal waren. Ondanks het grote aantal 
subklonale mutaties, hebben we geen verband gevonden tussen subklonale of klonale 
mutaties en de ontwikkeling van een recidief. Klonale deleties van exon 4-7 in IKZF1 
waren de enige uitzondering. Zoals in eerdere studies al was aangetoond, bleken 
deze deleties wel sterk geassocieerd te zijn met de ontwikkeling van een recidief. 
Door alteraties die gedetecteerd werden bij diagnose te traceren in recidiefmonsters 
van dezelfde patiënten ontdekten we vervolgens dat slechts 7% van de subklonale 
alteraties klonaal aanwezig waren in het recidiefmonster. Voor klonale alteraties was 
dit 56%. Voor exon 4-7 deleties in IKZF1 waren de resultaten nog opmerkelijker. Alle 
deleties die klonaal gedetecteerd werden in het diagnosemonster waren behouden in 
de beschikbare recidiefmonsters, terwijl alle deleties die subklonaal aanwezig waren in 
het diagnosemonster niet gedetecteerd werden in het recidiefmonster. Deze gegevens 
suggereren dat er voor de onderzochte genen geen basis is om subklonale alteraties als 
prognostische marker te gebruiken.

Ongeveer een kwart van alle recidieven treedt zeer vroeg op (binnen 18 maanden 
na diagnose), terwijl de patiënt nog behandeld wordt. De prognose van deze gevallen is 
slechter in vergelijking met gevallen die recidiveren na de behandeling. In hoofdstuk 4 
hebben we de genomische basis van zeer vroege recidieven onderzocht. Op 12 diagnose-
recidiefparen van kinderen met ALL die zeer vroeg een recidief ontwikkelden hebben 
we whole exome-sequencing (WES) uitgevoerd, gevolgd door een diepere sequencing 
om alle geïdentificeerde mutaties te valideren. Daarnaast hebben we één patiënt 
geïncludeerd met een goede initiële respons op de behandeling van de oorspronkelijke 
leukemie die binnen twee jaar (dus vlak voor het eind van de behandeling) toch een 
recidief ontwikkelde. Ondanks een korte remissietijd hebben we in vrijwel alle patiënten 
een dynamische klonale evolutie waargenomen, waarbij het recidief bijna altijd 
afkomstig was van een subkloon van de oorspronkelijke diagnose. Daarnaast hebben we 
verschillende driver-mutaties gedetecteerd die de ontwikkeling van het recidief en de 
uitgroei van therapieresistente klonen mogelijk hebben beïnvloed. Bij een op basis van 
therapie-respons laag-risico geclassificeerde patient met een ETV6-RUNX1-positieve 
ALL zagen we bijvoorbeeld uitgroei van een TP53-gemuteerde kloon na verlies van 
het wildtype allel, resulterend in de ontwikkeling van een recidief. Daarnaast vonden 
we bij twee patiënten met TCF3-PBX1-positieve leukemie, een subtype met gunstige 
prognose in de huidige behandelprotocollen, een WHSC1 E1099K-mutatie bij diagnose. 
Aangezien gevallen met TCF3-PBX1-positieve ALL zelden recidiveren en de prognose 
bij een recidief slecht is, hebben we met acht samenwerkende centra 16 extra TCF3-
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PBX1-positieve patiënten met een recidief verzameld, waaronder zes met een zeer vroeg 
recidief. Deze patiënten hebben we gescreend op WHSC1 mutaties. Onze analyse bracht 
één extra patiënt aan het licht met een E1099K-mutatie en een zeer vroeg recidief. 
Dit suggereert dat WHSC1-mutaties op zichzelf geen sterke prognostische factor zijn 
voor recidief in TCF3-PBX1-positieve ALL, maar dat ze in combinatie met aanvullende 
afwijkingen wel kunnen bijdragen aan de ontwikkeling van een recidief in deze gevallen. 
Naast afwijkingen in bekende genen in de context van recidieven, identificeerden we 
twee gevallen met truncerende mutaties in het cohesinecomplexgen RAD21.

In hoofdstuk 5 hebben we een studie uitgevoerd op een groot cohort van 
recidiverende ALL-patiënten in samenwerking met collega's van het St. Jude Children's 
Research Hospital in Memphis, de Verenigde Staten, en de Universiteit van Toronto 
in Canada. In deze studie laten we zien dat recidieven zich kunnen ontwikkelen uit 
reeds bestaande dominante klonen en subklonen bij diagnose. Verder laten we zien 
dat hypermutatie een veelvoorkomend fenomeen is bij recidiverende ALL en dat 
verschillende mechanismen, vaak in combinatie, dit hypermutatiefenotype kunnen 
aansturen. Naast de specifieke mutatiepatronen (mutational signatures) veroorzaakt 
door mismatch-repair deficiëntie en afwijkende AID/APOBEC-activiteit, beschrijven 
we in dit hoofdstuk ook een nieuw mutatiemechanisme dat erg lijkt op de bekende 
leeftijdsgerelateerde mutatiepatronen SBS1. Deze SBS1-achtige mutatiepatronen wordt 
gekenmerkt door C>T-substituties die optreden op CpG basevolgorden, maar vertoont, 
in tegenstelling tot het bekende COSMIC SBS1-patroon, een sterke transcriptie-
geassocieerde onbalans in CpG's die correleert met de mate van expressie van het gen. 
Na onze bevinding werd in een andere studie ontdekt dat dit specifieke patroon wordt 
veroorzaakt door thiopurine-geassocieerde DNA-schade bij leukemieën met mismatch-
repair (MMR)-deficiëntie. Daarom werd dit patroon het thio-dMMR patroon genoemd. 
Deze bevinding suggereert dat het thio-dMMR-patroon wordt veroorzaakt door een 
mechanisme dat schade toebrengt aan enkelstrengs DNA tijdens transcriptie, of door 
het ontbreken van een aan transcriptie gekoppeld reparatiemechanisme. Ten slotte 
laten we zien dat hypermutatie de vorming van neo-epitopen veroorzaakt die kunnen 
worden gebruikt als doelwit voor immuuntherapie.

De observatie dat mutagenese kan worden veroorzaakt door meerdere processen 
in één tumor bracht ons ertoe te onderzoeken of de analyse van kloonspecifieke 
mutatiepatronen kan helpen bij het blootleggen van mutatieprocessen die actief 
zijn op specifieke tijdstippen tijdens tumorontwikkeling. Daarom selecteerden we in 
hoofdstuk 6 twee patiënten met meerdere recidieven en voerden we whole genome 
sequencing (WGS) uit op monsters afgenomen bij diagnose en bij elk volgend recidief. 
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Vervolgens hebben we de gedetecteerde somatische mutaties geclusterd op basis 
van allelfrequentie en hebben we een de novo extractie van de	 mutatiepatronen 
uitgevoerd om te onderzoeken of groepen mutaties die op verschillende momenten 
ontstaan zijn, door verschillende mutatieprocessen veroorzaakt worden. We hebben 
aangetoond dat het onderzoeken van mutatiepatronen op een kloonspecifieke manier 
ons begrip van de mechanismen die actief zijn in een enkele voorlopercel kan verbeteren. 
Verder hebben we aangetoond dat meerdere mutatieprocessen actief kunnen zijn in 
dezelfde kloon en dat sommige processen actief zijn op specifieke tijdstippen tijdens 
tumorontwikkeling, bijvoorbeeld processen die duiden op DNA schade zoals die ook 
kan worden veroorzaakt door blootstelling aan UV licht of op thiopurine-geassocieerde 
schade, terwijl andere processen, zoals b.v. AID/APOBEC activiteit, voortdurend tot 
nieuwe mutaties kunnen leiden.

In hoofdstuk 7 bediscussiëren we al onze resultaten in een bredere context. We 
bespreken de klinische relevantie van subklonale mutaties in genen geassocieerd met 
recidieven en de klonale heterogeniteit van ALL in relatie tot de ontwikkeling van 
recidieven. Verder bespreken we de mechanismen die mutaties kunnen veroorzaken bij 
diagnose en recidief en hoe ons begrip van deze processen de toekomstige behandeling 
van ALL kan verbeteren. Tot slot gaan we dieper in op de toekomstperspectieven van 
het bestuderen van klonale heterogeniteit, mechanismen van recidief, behandeling en 
preventie van ALL.



Сажетак

231   

8

САЖЕТАК
Током протеклих седам деценија дошло је до драматичног побољшања исхода и 
стопе преживљавања код оболелих од педијатријске акутне лимфобластне леукемије 
(АЛЛ), која у савременим терапијским протоколима достиже и до 90%. Упркос 
напретку у лечењу, код 10% оболелих долази до релапса болести, и код ове деце 
исход је лош. Стога, релапс АЛЛ-а представља важан клинички и научни проблем, 
и боље познавање етиологије и механизама који доводе до неуспеха у лечењу 
може довести до побољшања исхода и спречити развој релапса. С обзиром да је 
рак претежно генетска болест, а генетске алтерације имају главну улогу у покретању 
развоја АЛЛ-а, као и неуспеха у лечењу, у овој тези смо испитали генетске основе за 
развој релапса и надметања између леукемијских ћелија током лечења. У поглављу 
1 дајемо преглед тренутних сазнања о генетици АЛЛ-а, мутагенези, развоју релапса, 
отпорности на третман и клонској еволуцији. У осталим поглављима користимо 
различите методе да објаснимо механизме који доводе до експанзије леукемијских 
клонова након што је третман успешно започет.

Упоређујући генетску структуру тумора из узорака узетих након иницијалне 
дијагнозе болести и релапса, претходне студије су показале да се генетске 
алтерације које изазивају релапс могу детектовати већ у дијагностичким узорцима, 
често у ретким и малобројним популацијама ћелија (недоминантни клонови), што 
онемогућава њихово откривање рутинским дијагностичким методама. Међутим, 
клинички значај генетских алтерација повезаних са релапсом у недоминантним 
клоновима до сада није истраживан. Да бисмо уз високу прецизност и осетљивовост 
открили мутације присутне чак и у малом броју ћелија, развили смо методу засновану 
на single molecule Molecular Inversion Probe (smMIP), коју описујемо у поглављу 2. 
smMIP метод омогућава насумично молекуларно обележавање сваког ухваћеног 
локуса, што обезбеђује могућност корекције артефаката који настају током реакције 
ланчаног умножавања (PCR) и секвенционирања, те њихово разликовање од правих 
соматских мутација. Користећи smMIP технологију, и нову генерацију метода за 
секвенцирање ДНК, успели смо да поуздано откријемо мутације са алелском 
учесталошћу до чак 0,4%. Овај метод применили смо у поглављу 3, како би извршили 
скрининг на мутације у генима за повезаним са развојем релапса: CREBBP, KRAS, 
NRAS, PTPN11, TP53, WHSC1 и NT5C2, у групи од 503 педијатријских АЛЛ пацијента 
укључених у клиничке студије DCOG-ALL9 и DCOG-ALL10. Поред тога, развили смо 
семи-квантитативни PCR тест како би испитали делеције егзона 4-7 IKZF1 гена, које 
представљају другу најчешћу IKZF1 делецију, и чине око 25% свих АЛЛ случајева са 
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IKZF1 делецијама. Укупно смо идентификовали 660 генетских алтерација код 285 
пацијената, од којих је 495 (75%) било у недоминантним клоновима. Упркос великом 
броју детектованих генетских алтерација, нисмо пронашли повезаност између 
развоја релапса и генетских алтерација у доминантним, нити у недоминантним	
клоновима. Једини изузетак су била делеције егзона 4-7 IKZF1 гена у доминантним 
клоновима, што је у складу са претходним студијама које су обухватиле све познате 
IKZF1 делеције, и указује на њихову снажну повезаност са развојем релапса. Поред 
тога, пратили смо појединачне генетске алтерације откривене током дијагнозе, 
у узорцима узетим након релапса код истих пацијената. У поређењу са 56% 
генетских алтерација у доминантним клоновима, само 7% алтерација детектованих 
у недоминантним клоновима је опстало и постало доминантно током релапса. 
Резултати су били још упечатљивији за делеције егзона 4-7 IKZF1 гена, где су све 
откривене делеције у доминантним клоновима опстале у доступним узорцима 
узетим након релапса, док су све делеције у недоминантним клоновима биле 
недетектабилне. Ови подаци сугеришу да за испитиване гене нема основа да се 
генетске алтерације у недоминантним клоновима користе као прогностички маркер.

Једна четвртина свих релапса јавља се веома рано (<18 месеци од постављања 
дијагнозе), док је лечење још увек у току, и њихова прогноза је лоша у поређењу 
са случајевима код којих се релапс јавља након завршеног лечења. У 4. поглављу 
имали смо за циљ да откријемо генетску основу веома раног релапса. Извршили 
смо секвенцирање егзома узорака узетих током иницијалне дијагнозе и релапса 
код деце код које је дошло до веома раног релапса, након чега је уследило дубоко 
секвенцирање свих идентификованих мутација у циљу њихове валидације. Поред 
тога, укључили смо један случај са добрим терапијским одговором на почетку лечења, 
код кога се релапс јавио на самом крају терапије. Упркос краткој ремисији, приметили 
смо динамичну клонску еволуцију, са релапсом који, у скоро свим случајевима, 
потиче од недоминантних клонова. Такође, идентификовали смо неколико мутација 
које су могле да утичу на развој релапса и селекцију клонова отпорних на третман. 
На пример, код пацијената са ETV6-RUNX1 леукемијом, који је на основу минималне 
резидуалне болести лечен у складу са терапијским протоколом за пацијенте са 
стандардним ризиком, дошло је до селекције и експанзију клона са мутацијом у 
TP53 гену, што је након потпуног губитка другог, дивљег алела, резултирало развојем 
релапса. Надаље, код два пацијента са TCF3-PBX1 леукемијом, подтипом са повољном 
прогнозом у савременим протоколима лечења, пронашли смо WHSC1 p.Е1099К 
мутацију у дијагнози. Пошто случајеви са TCF3-PBX1-позитивним АЛЛ ретко имају 
релапсе, а прогноза је лоша уколико до релапса дође, у сарадњи са осам других 



Сажетак

233   

8

центара прикупили смо 16 додатних случајева са TCF3-PBX1 леукемијом код којих је 
дошло до релапса, укључујући шест са веома раним релапсом, и извршили скрининг 
на WHSC1 мутације. Наша анализа је открила још један случај са мутацијом p.Е1099К 
код кога је дошло до веома раног релапса, што сугерише да иако WHSC1 мутације 
нису јак показатељ ризика за развој релапса код деце са TCF3-PBX1-позитивним АЛЛ, 
у комбинацији са додатним алтерацијама могу допринети развоју раног релапса. 
Поред генетских алтерација у познатим узрочницима релапса, идентификовали 
смо и два случаја са нонсенс мутацијама у гену кохезинског комплекса RAD21, који 
раније није био повезан са релапсом у АЛЛ.

У сарадњи са колегама из дечије истраживачке болнице “St Jude” и Универзитета 
у Торонту, у 5. поглављу извели смо студију на великој групи пацијената са АЛЛ, код 
које је дошло до релапса. У овој студији смо показали да се релапс може развити 
од предака леукемијских клонова, као и доминантних и недоминантних клонова 
приликом постављања дијагнозе. Надаље, показали смо да је хипермутабилност 
уобичајена појава у релапсу АЛЛ-а и да различити механизми, често у комбинацији, 
могу довести до хипермутабилности. Поред мутационих отисака узрокованих 
недостатком поправке неусклађености ДНК (MMR) и аберантном активношћу AID/
APOBEC деаминаза, у овом поглављу описујемо и нови механизам мутагенезе који 
је веома сличан већ познатом мутационом отиску SBS1 повезаним са старењем. 
Овај SBS1-сличан отисак карактеришу С>Т супституције које се јављају у CpG 
динуклеотидима, али за разлику од познатог COSMIC SBS1 отиска, значајно су	
чешће на транскрибованим ланцима ДНК, и корелишу са нивоом генске експресије. 
Након нашег истраживања, друга студија је показала да се овај мутациони 
механизам јавља као последица терапије тиопуринима код оболелих од леукемије 
са недостатком поправке неусклађености, због чега је назван thio-dMMR. Ово 
сугерише да thio-dMMR отисак може бити узрокован механизмом који доводи до 
оштећења једноланчане ДНК током транскрипције, или недостатаком механизма за 
поправку повезаног са транскрипцијом. Коначно, показујемо да хипермутабилност 
изазива формирање неоепитопа који се могу користити као мете за имунотерапију.

Запажање да више процеса може покренути мутагенезу у једном тумору, 
навело нас је да испитамо да ли анализа мутационих отисака на нивоу појединачних 
клонова може помоћи у откривању специфичних мутационих процеса активних 
током одређених временских периода у току развоја тумора. Стога смо у поглављу 
6 одабрали два пацијента са вишеструким релапсима и извршили секвенцирање 
комплетног генома узорака узетих након иницијалне дијагнозе болести и при сваком 
следећем релапсу. Затим смо извршили груписање откривених соматских мутација 
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на основу њихових алелских учесталости и извршили de novo екстракцију мутационих 
отисака, како бисмо испитали да ли су групе мутација одвојене у времену узроковане 
различитим мутационим процесима. Показали смо да испитивање мутационих 
отисака на нивоу појединачних клонова може унапредити наше разумевање 
механизама активних у једној родитељској ћелији. Штавише, показали смо да више 
мутационих процеса може бити активно у једном клону, и да су поједини процеси 
активни у одређеним временским периодима током еволуције тумора. На пример, 
отисци који подсећају на оштећења ДНК изазвана ултраљубичастим зрацима, као 
и оштећења повезана са терапијом тиопуринима, јављају се у кратким временским 
периодима током развоја тумора, док други показују континуирану аберантну 
активност, нпр. AID/APOBEC.

У 7. поглављу дискутујемо о клиничком значају генетских мутација, повезаних са 
развојем релапса, у недоминантним клоновима, разноврсности клонова, еволуцији 
тумора и механизмима у којима појединачни клонови и генетске алтерације могу да 
надвладају селективни притисак изазван применом лекова и изазову релапс. Надаље, 
разматрамо механизме који покрећу мутагенезу током иницијалне дијагнозе и 
релапса и како наше разумевање ових процеса може побољшати лечење АЛЛ-а. 
На крају, представљамо будуће правце за испитивање клонске разноврсности, 
механизама релапса, лечења и превенције акутне лимфобластне леукемије.
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