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Introduction
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1.1 Graphite and graphene

Figure 1.1: Close up of a pencil, with its core in graphite clearly shown. ("Pencil tip macro"
by GuySie is licensed under CC BY-SA 2.0).

Inside most pencils, we can find a core made of an inexpensive, useful and com-
mon material called graphite. Graphite is made (at least in theory) exclusively of
atoms of carbon, it does not have a three-dimensional crystal structure (which di-
amond, another allotrope of carbon, has) and instead consists of crystalline layers
stacked on each other and linked together by a weak Van der Waals force. Due to
this layered structure, the properties of graphite vary along different directions;
for instance, it conducts electricity and heat quite well along the layers but badly
between the layers [2]. This anisotropy also permits the layers to easily slide over
each other, allowing the use of graphite as a lubricant and inside pencils, where the
friction between the paper and the graphite core is enough to shred layers of the
material, leaving a dark grey trace.

Each of these layers is a two-dimensional crystal, called graphene. Its carbon bond-
ing is sp2 (trigonal) hybridised, unlike diamond which is sp3 (tetrahedral) hy-
bridised, and each atom is connected to three other atoms in a hexagonal lattice.
This layered structure has been reported more than 160 years ago [3] and graphene,
a single crystal layer, has been the focus of theoretical studies for more than seventy
years [4–7], both as a way to describe properties of carbon-based materials and as
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Figure 1.2: Structure of two allotropes of carbon. Diamond (left) has a three-dimensional
crystalline structure given by the sp3 hybridisation of the carbon bonding. Graphite
(right) is composed of multiple two-dimensional crystalline layers (graphene) given by the
sp2 hybridisation of the carbon bonding, glued together by the weak Van der Waals in-
teraction produced by a delocalised π orbital. ("File:Diamond and graphite2.jpg" by Itub,
with derivative work by Materialscientist, is licensed under CC BY-SA 3.0).
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a condensed-matter analogue of (2+1)-dimensional quantum electrodynamics [8–
10]. At the same time, it was described as just an "academic" material [9] and
two-dimensional crystals, in general, were believed to be thermodynamically un-
stable [11–13]. Quite unexpectedly, a single layer of graphene was isolated in 2004
by mechanical exfoliation with scotch tape [14], a discovery so remarkable that it
was rewarded with the Nobel Prize in Physics just six years later, in 2010 [15].

Right after its isolation, graphene has immediately emerged as a remarkable mate-
rial with surprising and unusual thermal, mechanical, optical and electronic prop-
erties [16–23]. As Geim, who shared the Nobel Prize with Novoselov for the
isolation of graphene, summarises [17]:

Graphene is a wonder material with many superlatives to its name. It is
the thinnest known material in the universe and the strongest ever mea-
sured. Its charge carriers exhibit giant intrinsic mobility, have zero ef-
fective mass, and can travel for micrometres without scattering at room
temperature. Graphene can sustain current densities six orders of magni-
tude higher than that of copper, shows record thermal conductivity and
stiffness, is impermeable to gases, and reconciles such conflicting qualities
as brittleness and ductility.

Graphene and other 2D materials have repeatedly been predicted to revolutionise
electronics and other industries, motivating not just scientists and engineers but
also entrepreneurs and manufacturers [24]. Notwithstanding the intrinsic diffi-
culties in synthesising graphene at a commercial scale [25], over 350 companies
have been reported already producing related products [24, 26]. Graphene can
now be found in batteries, printable electronics, photodetectors and both chem-
ical and biological sensors [24]. New and innovative graphene products are ex-
pected to reach the market in this decade, such as biomedical technologies (for in-
stance, biosensors, neural interfaces and drug delivery), electronics (for instance,
low-cost printable electronics and flexible devices), sensors and imaging technolo-
gies (for instance, physical-chemical sensors, broadband CMOS cameras and spec-
trometers), telecommunication technologies and new graphene-based composite
materials with different possible applications. [27].

1.2 Synthesis challenges
Nevertheless, there are currently still important issues with the production of
graphene that require significant trade-offs between size, purity, yield and cost of
graphene products [25]. In particular, the graphene that we are currently able to
produce is in general polycrystalline (Figure 1.3), structural defects are extremely
common [28] as confirmed by experimental observations [29–31], while some
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a)

b)

Figure 1.3: Polycrystalline graphene, in two (a) and three (b) dimensions, with an exag-
gerated z-axis. Note that the regions where the material is oriented in the same direction
(crystalline domains) are separated by dislocation defects (in (a), pentagons are show in red
and heptagons in blue), and how the material buckles in the third dimension around them.
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Figure 1.4: A Stone-Wales defect in graphene: four hexagons are replaced by two pentagons
(red) and two heptagons (blue).

studies have been dedicated to their controlled production [32]. Defects have, of
course, a negative effect on the properties expected from pristine graphene [33,
34] but they can also cause new effects that are otherwise absent [35–38]. Intrinsic
defects (i.e. without foreign atoms) in particular, such as Stone-Wales (SW) [39]
(Figure 1.4), are quite common since they can form both due to rapid quenching
from a high temperature or irradiation [30].

While graphene is a two-dimensional material (i.e. a flat surface), it is embedded in
the three-dimensional space that we all inhabit; atoms are therefore allowed to dis-
place outside of the plane, in the third dimension [40]. When structural defects are
present, the tension introduced in the material is relaxed via an out-of-plane buck-
ling [28, 41, 42], as confirmed through electron microscopy observations [43, 44].
The study of the interaction between structural intrinsic defects and the collective
behaviour of the material is therefore an interesting field of study to further our
knowledge about this material.

1.3 The model
Amorphous materials, such as glasses [45] and amorphous silicon [46], have been
studied with Continuous Random Network (CRN) models since their introduc-
tion almost 90 years ago by Zachariasen [45]. The strength of this type of model
lies in its simplicity: the configuration of the sample is stored as a list of atoms,
together with their position, and a list of the bonds between them. Since unsatu-
rated carbon bonds are energetically very costly [28], we assume that each atom
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is always perfectly coordinated. In the case of graphene, that means that all atoms
are bonded to exactly three other atoms.

The atoms are placed on a rectangular box of size Lx × Ly , while they are not
limited in the third dimension. The rectangular box has periodic boundary condi-
tions [47], to approximate an infinite system and prevent boundary effects, since
from the point of view of an atom there are no boundaries. This is implemented
with only a condition on the distance on the x− and y−component, without al-
tering the coordinates of the atoms; if the distance along the x (or y) axis is more
than Lx/2 (Ly/2), the size of the box is subtracted from it; if it is less than −Lx/2
(−Ly/2), it is added.

For this thesis, we have opted for the semi-empirical potential for polycrystalline
graphene introduced by Jain et al. [48]:

E =
3
16
α

d 2

∑

i , j

�

r 2
i j − d 2

�2
+

3
8
βd 2

∑

j ,i ,k

�

θ j ,i ,k −
2π
3

�2
+ γ

∑

i , j k l

r 2
i , j k l . (1.1)

The first term is the two-body term, which represents the tendency of the bonds
to return to their ideal length d = 1.42Å. The parameter α = 26.06eV/Å is com-
puted from density functional theory (DFT) calculations, the sum is over all bonds
and ri j is the length of the bond between the atoms i and j , after applying the pre-
viously described periodic boundaries.

The second term is the three-body term, which represents the tendency of the
angles in the sample to return to the amplitude of angles in regular hexagons (2π/3
or 120◦). The parameterβ= 5.511eV/Å

2
is computed from DFT calculations and

the sum is over all the angles θ j ,i ,k formed by the bonds j , i and i , k insisting on
the same atom i .

The third term is the out-of-plane term, a term representing the tendency of pla-
narity of the material. The parameter γ = 0.517eV/Å

2
is computed from DFT

calculations, ri , j k l is the distance between the atom i and the plane generated by
its neighbours j , k , l . The sum is over all atoms.

This potential allows for graphene to buckle in the third dimension, albeit at an
energetic cost, reproducing correctly the behaviour of polycrystalline graphene.
It can of course be extended with other terms that might be useful in different
settings. For instance, we can reproduce the interaction with a substrate on which
the sample lies with a harmonic term

Esub =K
∑

i

z2
i , (1.2)
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where the sum is over the distance of all atoms from the initial plane, which is
placed conveniently at z = 0, and K is a constant set in such a way to constrain the
buckling to the experimentally observed range of a given substrate. We can also
strain the sample by adding a term

Eσ =−σLx Ly (1.3)

with Lx Ly the area of the periodic box and σ a parameter that allows the modeller
to control the straining force on the sample.

To prevent biases in our sample, the simulation starts from a non-physical fully
random configuration. The periodic box is initialised to a sensible size, slightly
larger than a crystalline sample with the same number of atoms N , and N/2 points
are randomly placed on it. We then identify the Voronoi vertices, points equidis-
tant to at least three random points, and we place an atom on each of them. Each
bond is the line made of points equidistant from the same couple of initial random
points, provided there is no other random point closer than the two. The resulting
diagram is perfectly coordinated (i.e. each atom is connected to three other atoms),
although it is extremely chaotic and very far from a realistic configuration [48, 49].

While the semi-empirical potential does allow the sample to relax towards the en-
ergy minima given its structure (i.e. the list of bonds), it does not allow for changes
in the bonds between atoms. The model discussed in this thesis uses the algo-
rithm described by Wooten, Winer and Weaire (WWW) that allows for structural
changes in the material while keeping detailed balance [46, 50]. In a WWW bond
transposition, a string of four connected atoms is randomly selected and two of
the bonds between them are switched. The system is then relaxed, usually through
molecular dynamics, and the probability that this change is accepted is given by
the Metropolis probability

P (accept) =min
�

1, exp
�

Eb−Ea

kBT

��

, (1.4)

where Eb is the energy of the system before the bond transposition, Ea after the
bond transposition, kB the Boltzmann constant and T the temperature of the sam-
ple, a parameter set by the modeller. If a bond transposition reduces the total en-
ergy of the system (i.e. makes it more crystalline), it is always accepted, while one
that does increase the energy of the system can still be accepted, albeit with a prob-
ability that decays exponentially with the energy difference. This way the system
can go through sub-optimal metastates on its way to a more energetically con-
venient configuration. Through this process, our initial random sample evolves
towards a more realistic polycrystalline configuration.
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1.4 Limits of the model
After each attempted bond transposition, the system is relaxed through molecular
dynamics, with a time scale that is dictated by the dynamics of the system; at each
time step, the energy and the forces on all N atoms are recomputed, requiring a
large number of calculations each. Thousands of these time steps are necessary to
reach relaxation. To see the collective behaviour that we expect from polycrys-
talline graphene, we need a large system: N can be arbitrarily big. At this scale,
the performance of the simulation becomes critical for any meaningful study there-
fore significant effort has been put into analysing and optimising its code. Van Di-
eten [51]wrote an optimised parallel implementation of this simulation, resulting
in a performance boost of just under a factor 8 on an ordinary computer.

Once a sample has evolved to a somewhat realistic configuration, most of the at-
tempted bond transpositions are rejected; it is quite normal for a well-relaxed sam-
ple to require hundreds or thousands of attempts before a further structural change
is accepted. This is also a limit to how much we can allow the structure of a sample
to relax, as the simulations grind to a halt for well-relaxed systems, rejecting almost
all bond transpositions.

Barkema and Mousseau [52] designed a modified WWW algorithm for amorphous
silicon that allows for the rejection of bond transpositions during the relaxation of
the entire sample, arresting it once it becomes clear that it will not be accepted. Un-
fortunately, the assumptions necessary are not valid for polycrystalline graphene
and a different algorithm is necessary to reduce the computational time dedicated
to relaxing hopeless changes in the structure of the sample.

Alternatively, it would be tempting to get rid of the rejections altogether, where
almost all the time is wasted on hopeless bond transpositions. After their rate (i.e.
the expected number of realisations in a given unit of time) has been computed,
we can treat the bond transpositions that are available in a given configuration as
events and directly sample them one at a time.

We are faced with two challenges in implementing such an Event-Based model. In
theory, after each change, all the pre-computed rates are invalidated as the initial
state from which they are computed is no longer the current state of the system;
the computational cost of this computation would be prohibitive for samples of
non-trivial size. Even if we were able to limit this update to a limited fraction of
all events, we still need a data structure that allows for both efficient sampling and
updating (i.e. change in rate) of the events stored inside itself.
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1.5 Thesis outline
In Chapter 2, we introduce two variations on the WWW algorithm where the fi-
nal energy after the bond transposition is approximated by relaxing only the neigh-
bours around the atoms involved in the structural change: the early rejection, which
rejects hopeless moves; and the early decision, where a final decision on either ac-
ceptance or rejection is made.

In Chapter 3, we apply the computer model previously described to investigate the
behaviour of polycrystalline graphene under stretching and show that it evolves in
a discontinuous fashion: a tiny increase in the stretching force can lead to signifi-
cant, avalanche-like displacement in the sample due to the collapse of the buckling
in the sample, which causes vibrations in the material.

In Chapter 4, we consider different data structures for the problem of sampling
from a dynamically changing discrete probability distribution (i.e. from a list of
events with a given, but dynamic, rate), where some prior information is known
on the distribution of the rates, in particular the maximum and minimum rate,
and where the number of possible outcomes N is large.

In Chapter 5, we lay the groundwork for an Event-Based model for graphene, built
on top of the results on the locality of the structural changes (Chapter 2) and data
structures for dynamic sampling given some assumptions on the distribution of
rates (Chapter 4).





CHAPTER 2

Efficient structural relaxation
of polycrystalline graphene

models





Abstract - Large samples of experimentally produced graphene are poly-
crystalline. For the study of this material, it helps to have realistic com-
puter samples that are also polycrystalline. A common approach to pro-
duce such samples in computer simulations is based on the method of
Wooten, Winer, and Weaire, originally introduced for the simulation of
amorphous silicon. We introduce an early rejection variation of their
method, applied to graphene, which exploits the local nature of the struc-
tural changes to achieve a significant speed-up in the relaxation of the ma-
terial, without compromising the dynamics. We test it on a 3,200 atoms
sample, obtaining a speedup between one and two orders of magnitude.
We also introduce a further variation called early decision specifically for re-
laxing large samples even faster and we test it on two samples of 10,024 and
20,000 atoms, obtaining a further speed-up of an order of magnitude. Fur-
thermore, we provide a graphical manipulation tool to remove unwanted
artifacts in a sample, such as bond crossings.

This chapter is partially based on the following publication:

F. D’Ambrosio, J. Barkema, and G. T. Barkema, “Efficient structural relaxation of poly-
crystalline graphene models”, Nanomaterials 11, 1242 (2021).

https://doi.org/10.3390/nano11051242
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2.1 Introduction
Graphene is a crystal of carbon atoms that form a three-coordinated honeycomb
lattice. It is a material with a large set of exotic properties, both mechanical and
electronic, and it has the particularity of being a two-dimensional crystal embed-
ded in a three-dimensional space [16–23]. Large samples experimentally produced
are usually polycrystalline, containing intrinsic [40, 54, 55], as well as extrinsic [56]
lattice defects. These defects warrant a thorough study as they both have a signifi-
cant detrimental effect on the properties expected from pristine graphene [33, 34],
and they can also cause new effects that are otherwise absent [35–38].

In particular, structural defects are both prominent and common in graphene [28],
as they can easily host lattice defects due to the flexibility of the carbon atoms in
hybridization. Such defects can be frozen in the sample during the annealing pro-
cess and have been experimentally observed [29–31]. Their controlled production
in graphene has been explored [32].

Since unsaturated carbon bonds are energetically very costly [28], polycrystalline
graphene samples can be studied with the use of continuous random networks
(CRN) models [48], introduced by Zachariasen almost 90 years ago to represent
the lack of symmetry and periodicity in glasses [45]. The rules of this type of
model are quite simple: the only requirement is that each atom is always per-
fectly coordinated, i.e. their bonding needs are fully satisfied. Wooten, Winer,
and Weaire (WWW) introduced an explicit algorithm to simulate the evolution of
samples of amorphous Si and Ge, the so-called WWW algorithm that became the
standard for this kind of model [46, 50]. In the WWW approach, a configuration
consists of a list of the coordinates of all N atoms, coupled with an explicit list of
the bonds between them.

We opted for the empirical potential for polycrystalline graphene recently pro-
posed by Jain et al. [48]:

E =
3
16
α

d 2

∑

i , j

�

r 2
i j − d 2

�2
+

3
8
βd 2

∑

j ,i ,k

�

θ j ,i ,k −
2π
3

�2
+ γ

∑

i , j k l

r 2
i , j k l (2.1)

with ri j the distance vector between the atoms i and j , θ j ,i ,k the angle centered
on the atom i between the atoms j and k, ri , j k l the distance between the atom i

and the plane described by its neighbors j , k , l , and d = 1.420Å the ideal bond-
length of graphene. The other parameters, extracted from DFT calculations [48],
are α = 26.060eV/Å

2
, β = 5.511eV/Å

2
and γ = 0.517eV/Å

2
. The interaction
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with the substrate on which the sample lays is simulated by an harmonic confining
energy term in our potential

Ec =K
∑

i=1

z2
i (2.2)

where zi is the z-coordinate of the atom with index i and K a prefactor that is
determined empirically in order to constrain the maximum buckling height to
the range of 4-8 Å, experimentally observed with scanning tunneling microscopy
(TEM) [55].

The process starts with a completely random 2D sample with all atoms perfectly
coordinated, in the case of graphene threefold connected, generated with the Voronoi
diagram algorithm described in [48]. In order to generate an initial configuration
with N atoms, we place N/2 random dots in a 2D square box, which is then sur-
rounded by 8 copies of itself to implement periodic boundary conditions. We then
compute the N vertices of the Voronoi diagram [49] of these random dots, which
will be replaced by atoms, and connect them along the edges of the diagram to form
the bonds by them. This highly-energetic configuration is then carefully relaxed
with molecular dynamics.

The structure of the sample evolves through a series of bond transpositions in-
volving four connected atoms with two bonds that are broken to create two new
bonds. After each bond transposition, the system is relaxed; the move is accepted
according to the Metropolis acceptance probability [57, 58]:

P (X ′|X ) =min
�

1, exp
�

E(X )− E(X ′)

kb T

��

(2.3)

where X and X ′ are the configurations of the system respectively before and after
the bond transposition, both the coordinates and the list of bonds. kb is the Boltz-
mann constant, T is the temperature, and E(Y ) the energy of the configuration
Y after complete relaxation. Relaxing the sample, even with an optimised molec-
ular dynamics algorithm such as the FIRE algorithm [59], has a significant com-
putational cost, which is wasted if the bond transposition is ultimately rejected.
As the energy of the sample is gradually lowered through bond transpositions,
the accepted ratio becomes smaller, often well below one per cent, and almost all
computational time is wasted on proposed bond transpositions that are eventually
rejected.

Barkema and Mousseau [52] developed a method for amorphous silicon, that al-
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lows the early rejection of bond transpositions before completing the relaxation of
the sample. It generates a stochastic energy threshold beforehand, given by

Et = Eb − kb T ln(s ) (2.4)

with s a random number between zero and one. In the first ten relaxation steps,
the sample is relaxed only locally up to the third neighbour shell. The energy is
assumed to be harmonic around the minimum, therefore the final energy can be
approximated as proportional to the square of the force

E(X ′)≈ E − c f |F |
2 (2.5)

with c f an empirically determined constant and F the force vector. Once we are
close enough to the minimum, we can immediately reject the bond transposition
if, at any moment during the relaxation, E − c f |F |

2 > Et . The efficiency of this
method is dependent on the quality of the assumption Eq. (5.11); for amorphous
silicon, the type of model for which it has been developed, this approximation is
generally valid after just a few relaxation steps.

In theory, this approach could also be applied to polycrystalline graphene. Unfor-
tunately, the harmonic approximation of Eq. (5.11) is only valid very close to the
minimum; as we show in Figure 2.1, the trajectory of the system in the phase-space
fluctuates rapidly and erratically during the relaxation, instead of following the ex-
pected linear relation between the excess energy and squared force magnitude after
a certain number of relaxation steps. Without this approximation, a very costly
full relaxation is necessary after each attempted bond transposition. A different
approach is needed.

In this work, we propose a new method where only the atoms up to a shortest-
path distance l from the atoms involved in the bond transpositions are initially
allowed to relax. The energy of the sample after this local relaxation is then used
to predict the final energy and immediately reject hopeless bond transpositions,
without requiring a full relaxation. We test this approach on a 3200 atoms sample,
comparing the performance for different values of l . The quality of the results
is also compared to those obtained only through global relaxation. We further
propose a variation of this method for relaxing large samples and we test it by
generating and relaxing a 20,000 atoms random sample.

2.2 Methods
The initial configuration of the sample is a disordered, perfectly three-fold coordi-
nated, and two-dimensional random network. It is generated following the proce-
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Figure 2.1: Some typical relaxation trajectories of a 3200 atoms sample, farther a) and
closer b) to the origin. Even after thousands of iterations, the approximation of Eq. (5.11)
cannot be applied to this system as it fluctuates rapidly in the phase space. ∆E is the energy
difference with the relaxed (final) energy, |F |2 the magnitude of the forces.
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a b

c d

Figure 2.2: Successful bond transposition on a sample of graphene: a) initial configuration
b) bond transposition, atoms involved are marked with red dots c) local relaxation, atoms
involved are marked with blue squares d) final configuration after global relaxation.
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dure described in [48].

The coordinates of the sample are relaxed to an energy minimum with molecular
dynamics, following the FIRE technique [59]. After setting a temperature lower
than the melting point of graphene, several bond transpositions are performed un-
til it reaches reasonably low energy and a realistic configuration. Once this flat sam-
ple is sufficiently relaxed, every atom is placed at a random non-zero distance out
of the two-dimensional plane and allowed to relax to a buckled three-dimensional
configuration.

Our approach to the structural relaxation of graphene can be followed in Fig-
ure 2.2. Four consecutive atoms are randomly selected (Figure 2.2a) and the bonds
between the first two and the last two are transposed (Figure 2.2b). The energy
threshold is computed from Eq. (2.4) and we perform a local relaxation around
the four atoms involved in the bond transposition; instead of limiting it to a cer-
tain number of relaxation steps, the atoms up to a shortest-path distance l from the
transposed bonds are allowed to relax completely (Figure 2.2c). The list of atoms
involved in the local relaxation is computed after each attempted bond transposi-
tion by iteratively exploring the network, starting from the four atoms involved
in the bond transposition, and checking against duplicates. After local relaxation,
attempted bond transpositions for which El (X

′)− c f |F |
2 > Et , with El (X

′) the
energy of the sample after local relaxation up to distance l , are immediately re-
jected. In contrast with the method from [52], the criterion is applied only once,
instead of at each point of the relaxation (with possibly some upper bound on the
force strength). As we note in Figure 2.3, the force strength after local relaxation
(Figure 2.3b) is a good estimator for the final energy, especially in comparison to
the force strength during the global relaxation (Figure 2.3a) , which is used by the
method in [52].

2.2.1 Early rejection
In the early rejection approach, the whole sample is otherwise allowed to relax (Fig-
ure 2.2d) and, if E(X ′) < Et , the bond transposition is finally accepted. As less
than one per cent of proposed moves are accepted in a relaxed sample, we expect
the speed-up to be significant: most are rejected after relaxing a limited number of
degrees of freedom.

The value of c f is fine-tuned from empirical data collected from the simulation
itself, targeting a higher bound on the rate of false negatives (i.e. bond transposi-
tion that are rejected erroneously), which in this work was fixed at 2% of the total
number of attempts that should have been accepted. No transposition is accepted
without complete relaxation, regardless of the result of the local minimization;
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Figure 2.3: Two dimensional histograms of the energy difference with the relaxed (final)
energy ∆E and the force strength |F |2 over many relaxations of a 3200 atoms sample,
from the values assumed during global relaxation, a), and at the end of local relaxation, b).
Frequency is show in logarithmic scale. We can see that the values assumed at the end of
local relaxation follow the harmonic approximation of Eq. 5.11.
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therefore, no false positive (i.e. a bond transpositions is accepted erroneously) can
be introduced by this technique.

2.2.2 Early decision
While the computational time required for each local relaxation is constant with
regards to the size of the sample, the same cannot be said for the global relax-
ation after each tentatively accepted bond transposition. For large samples, due
to the amount of computational time that this requires, the structural relaxation
still grinds almost to a halt. This is particularly problematic for the initial struc-
tural relaxation of a large random sample, which requires a large number of bond
transpositions to reach a realistic, more relaxed state.

We propose as an alternative for such cases the early decision approach: the decision
on whether to reject or accept a bond transposition after the local relaxation is
treated as final, without having to perform a global relaxation to accept it. The
parameter c f is still fine-tuned from empirical data but in this case, we opt for the
value that best fits it. After a successful bond transposition, the system will not
reach the energy it would have reached with global relaxation and the forces on
atoms outside those involved in the last local relaxation will not go to zero. To
correct for this issue, the energy threshold for accepting a bond transposition, see
Eq. (2.4), will be computed replacing the current energy of the system (Eb ) with an
estimation of the energy that our current configuration would reach after a global
relaxation according to Eq. (5.11). It can also be useful to set an upper value for the
magnitude of the forces that, when reached, will trigger a global relaxation that will
stop when the magnitude of the forces is comparable to those that are leftover after
a single bond transposition, to reduce the time spent on these occasional global
relaxations.

It must be noted that since we are replacing the energy of the relaxed system after a
bond transposition in Eq. (2.3) with an estimate, the early decision method does not
guarantee detailed balance, as opposed to the early rejection method. Nevertheless,
this method is extremely powerful when performance is more critical than accu-
racy, for instance for the structural relaxation of a very large randomly generated
sample when it is still far away from equilibrium. In these cases, detailed balance
is not as critical and a large number of bond transpositions are required to reach a
state closer to the equilibrium.

2.2.3 Manipulation tool
The initial random configuration can incorporate artifacts such as two bonds cross-
ing each other. While in most cases these defects will gradually disappear as the
sample relaxes to a more ordered configuration, some artifacts might be particu-
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l c f

�

s2u−1
�

〈Nl oc 〉

1 3.21 · 10−3 13
2 4.63 · 10−3 28
3 5.33 · 10−3 53
4 9.08 · 10−3 90

Table 2.1: Empirically determined values of the harmonic coefficient c f and average num-
ber of atoms involved in local relaxation 〈Nl oc 〉 for different local relaxation distances l ,
in a sample of size N = 3200 atoms.

larly resilient and can persist even when the sample is otherwise sufficiently re-
laxed. Such defects have to be removed manually. We have developed a graphical
tool called Graphene Editor 1 to facilitate this work. This tool allows the user to
upload and download a sample, explore it visually, add and remove bonds, move
one or more atoms, replace a single atom with three connected atoms and vice-
versa and check the consistency of the sample over the number of bonds for each
atom and bond crossings.

2.3 Numerical simulations and results
2.3.1 Early rejection
A random sample with N = 3200 atoms was generated following the procedure
described in the previous section. WWW bond transpositions are performed un-
til the sample is relaxed to reasonably low energy, approximately 625eV (less than
0.2eV/atom). The values of c f , seen in Table 2.1, for different values l of the local
relaxation radius are chosen empirically, with the constraint of keeping the ratio of
false negatives (successful bond transpositions that are nevertheless rejected) over
successful bond transpositions under 2%, while still rejecting a large part of unsuc-
cessful moves. The quantity c f is expressed in units of seconds squared over the
atomic mass unit. The average number of atoms involved in the local relaxation
for different values of l is also shown in Table 2.1.

Starting from the same initial sample, we perform bond transpositions both using
the usual WWW algorithm with full minimization and the early rejection method
proposed here, with different values of l . The temperature is set to T = 3000K
for both samples. After each successful bond transposition, we record the energy,
the elapsed time in CPU clocks, and the number of attempts since the last suc-
cessful move. The simulation is stopped once the system reaches a final energy

1Available at https://github.com/jorisBarkema/Graphene-Editor

https://github.com/jorisBarkema/Graphene-Editor
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Figure 2.4: Average speed-up per accepted bond transposition, as ratio between CPU time
required with full relaxation and early rejection, for different values of l : blue dots (2),
orange squares (3) and grey crosses (4). The shaded area shows one standard deviation
from the average. The speed improvement grows as the sample becomes more crystalline
and its energy lowers, while best results are obtained for l = 3, with an improvement of a
factor between 20 and 40.
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Atoms Full relaxation Early rejection

Size # % # %

5 56 3.50 60 3.75
6 1489 93.06 1480 92.50
7 54 3.38 60 3.75
8 1 <0.01 0 0.00

Table 2.2: Ring statistics for the two final configurations of the 3200 atoms sample, relaxed
with full relaxation (left) and Early Rejection (right). We note that they both have reached
similar statistics, with around 93% of the rings being hexagons, 3 − 4% heptagons and
pentagons, while octagons are too rare at this energy to compare between the two.

of E f = 200eV, equivalent to 0.0625eV/atom. At least ten relaxation cycles are
performed with the early decision method (with different values of l ) and with
complete relaxation after each bond transposition. As we note in Figure 2.4, the
average CPU time per accepted bond transposition is improved by at least an order
of magnitude. The speed-up grows as the sample grows larger crystalline domains
and more random attempts are necessary per accepted bond transposition. Best
results are obtained for l = 3, which leads to an efficiency improvement of a factor
between 20 and 40.

The early rejection method does not alter the amount of relaxation obtained at the
end of the process. As we note in Figure 2.5, both the level of separation between
crystalline domains, i.e. the degree to which the defects are present on the borders
between them, and the size of the domains are consistent. The ring statistics of the
two final configurations, computed with the Ring Statistics Algorithm2 [60] and
reported in Table 2.2, are also consistent. In this final configuration, the ratio of
false negatives is lower than 0.5%.

2.3.2 Early decision
As we noted in the previous section, while the early rejection technique is quite
powerful for most samples, it is insufficient for very large samples; our attempt to
relax a very large sample (N = 20,000) could not reach our initial energy target
of 1 eV /atom after more than a month, due to the computational time required
by each global relaxation that takes place at least once per accepted bond trans-
position. In the early decision method, the decision on whether to accept a bond
transposition or not takes place directly after performing a local relaxation, based
on the estimated relaxed energy of the sample.

2https://github.com/vitroid/CountRings

https://github.com/vitroid/CountRings
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a)

b)

Figure 2.5: Final configurations of the sample at E ≈ 200eV obtained a) through only
global relaxations b) through our local relaxation method with l = 3. Highlighted in blue
are the defective (i.e. non-hexagonal) rings. The two samples are qualitatively indistin-
guishable: same level of separation between crystalline domains of similar sizes.
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Figure 2.6: Structural relaxation of a large, randomly generated sample (N = 20,000),
starting from an energy of 1.15eV/atom with early rejection (blue solid line) and with
early decision (orange dotted line) methods. The early decision method performs signifi-
cantly faster, reaching a speed-up of a further order of magnitude. We also notice a plateau
around 4 · 1010 CPU cycles in the early decision line where, due to the forces accumulated
from previous bond transpositions, our algorithm was incorrectly rejecting bond transpo-
sitions, slowing the evolution of the sample significantly.
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Atoms 10,024 20,000

Size # % # %

5 231 4.6 487 4.87
6 4554 90.86 9043 90.43
7 223 4.45 453 4.53
8 4 0.08 17 0.17

Table 2.3: Ring statistics for the two large samples of 10,024 and 20,000 atoms. We note
that they both have reached similar statistics, with over 90% of the rings being hexagons,
4− 5% heptagons and pentagons and less than 0.2% octagons.

We relaxed with both approaches a randomly generated sample of 20,000 atoms.
We opted again for l = 3 for the local relaxation and c f is set after fitting the data
from 1̃00 global relaxations. The force magnitude thresholds are set in such a way
that a global relaxation should be triggered each 50-100 successful bond transposi-
tions and stop when the force magnitude reaches a value comparable with what is
usually left after just one local relaxation. The temperature is set to T = 3000K.

We initially performed the relaxation on a sample with energy of 1.15eV/atom.
As we can see in Figure 2.6 the early decision approach leads to a significant speed-
up that we estimate to be around one further order of magnitude. The speed-up
factor per bond transposition is stable during the relaxation at approximately 22.
Both methods accept on average a bond transposition every seven attempts, but
the early decision method is, as expected, less stable: there can be phases where
it is not able to correctly estimate the correct decision to take. In these extreme
cases, bond transpositions are erroneously rejected and the evolution of the sample
slows down. This is especially the case when the magnitude of forces accumulated
from previous bond transpositions become significantly large. We can see such a
case in the plateau of the orange dotted line in Figure 2.6 and it underscores the
importance of setting a correct threshold for the magnitude of forces accumulated
before triggering a global relaxation.

Finally, we relaxed the 20,000 atoms sample and another sample of 10,024 atoms
down to 1488.05eV (0.074eV/atom) and 695.51eV (0.066eV/atom) respectively.
The temperature is initially set at 3000K and then gradually reduced, in order
to reach lower energies. The resulting samples, as we note in Figure 2.7, present
large crystalline domains with defects accumulating on their boundaries, similarly
to 2.5. As we note in Table 2.3, both samples have reached similar ring statistics,
with less than 10% of defected rings and only a handful (less than 0.2%) defected
by more than one atom (i.e. octagons). The ring statistics is computed with the
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Ring Statistics Algorithm [60].

All the samples presented in this chapter are available online3.

2.4 Discussion and outlook
In summary, we introduced two techniques that, through local relaxation, can esti-
mate the success of bond transpositions reducing or eliminating the need for relax-
ing the entire sample, which is extremely time-consuming. Both techniques signif-
icantly reduce the computational time required per accepted bond transposition:
the early rejection method by immediately rejecting, without a global relaxation,
hopeless attempts; the early decision method avoids global relaxations entirely, re-
lying on the estimate of the energy of the relaxed sample.

The early rejection technique should be preferred for average-sized samples, espe-
cially if already well-relaxed since it gives an already significant speed-up while it
guarantees that the dynamics are not compromised. Furthermore, its accuracy also
improves as the energy of the sample is reduced. The early decision technique leads
to an even larger speed-up but does allow for attempts to be erroneously rejected
and should therefore be used when performance is a priority above accuracy, for
instance when the sample is still very far from equilibrium and detailed balance is
less critical. Since thousands of bond transpositions are required to reduce the en-
ergy of a few hundreds of electron volt, the cumulative speed-up obtained through
either of these techniques can easily reach multiple orders of magnitude. These
techniques open up the possibility of generating larger random samples with ordi-
nary computers in an affordable amount of time.

Finally, our manipulation tool Graphene Editor makes those small manipulations
that are often necessary as simple and quick as they can be.

3https://github.com/federicodambrosio/graphene-samples

https://github.com/federicodambrosio/graphene-samples


CHAPTER 3

Discontinuous evolution of
the structure of stretching
polycrystalline graphene





Abstract - Polycrystalline graphene has an inherent tendency to buckle,
i.e., develop out-of-plane, three-dimensional structure. A force applied
to stretch a piece of polycrystalline graphene influences the out-of-plane
structure. Even if the graphene is well relaxed, this happens in nonlin-
ear fashion: Occasionally, a tiny increase in stretching force induces a sig-
nificant displacement, in close analogy to avalanches, which in turn can
create vibrations in the surrounding medium. We establish this effect in
computer simulations: By continuously changing the strain, we follow the
displacements of the carbon atoms that turn out to exhibit a discontinuous
evolution. Furthermore, the displacements exhibit a hysteretic behaviour
upon the change from low to high stress and back. These behaviours open
up another direction in studying dynamical elasticity of polycrystalline
quasi-two-dimensional systems, and in particular the implications on their
mechanical and thermal properties.

This chapter is partially based on the following publication:

F. D’Ambrosio, V. Juriĉić, and G. T. Barkema, “Discontinuous evolution of the structure
of stretching polycrystalline graphene”, Phys. Rev. B 100, 161402 (2019).

https://doi.org/10.1103/physrevb.100.161402
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3.1 Introduction
Graphene, a crystal of carbon atoms arranged in a honeycomb lattice, shows a
plethora of exotic mechanical and electronic properties, and emerged as a paradig-
matic example of a crystalline membrane embedded in the three-dimensional space
[16–23]. In particular, it exhibits an intrinsic tendency to spontaneously buckle
when it is polycrystalline, i.e, when it features many crystalline domains, or due to
the presence of lattice defects, such as disclinations and Stone-Wales defects [28, 41,
42]. This effect arises due to the competition of stress, introduced either by mis-
match between the domains or by the defects, and the tendency of the membrane
to relieve the stress by bending, which yields a rather rich landscape of configura-
tions for a relaxed membrane [61]. In addition, a graphene sheet can experience
external stress, for instance when graphene is held by clamps which exert a pulling
force, which further enriches the landscape of the ground state configurations.

It is well known how a polycrystalline or defected graphene sheet relaxes when
subjected to a constant, static external stress [62], but the case of dynamic strain
remained rather unexplored. The latter case can be experimentally relevant as ex-
ternal perturbations creating strain are in reality time-dependent. In particular,
when external stress is gradually applied to a polycrystalline graphene sample, it is
of a fundamental and practical importance to establish whether the change of the
shape of the graphene membrane is continuous or it follows a discontinuous path
in this rather complex configuration space.

In this chapter, by performing computer simulations, we show that the evolution
of the shape of a polycrystalline graphene membrane is discontinuous: as the stress
is uniformly increasing, occasionally a tiny increase in stretching force induces a
significant displacement, analogous to avalanches, see Figure 3.2 and Supplemental
Material online1 for a video of the evolution of the sample due to the external
stress that highlights this avalanche-like behaviour, which, as a result, can create
vibrations in the surrounding medium. Furthermore, if the stretching force is then
decreased again to its starting value, the system does not follow the same path in the
configuration space, but rather exhibits a hysteretic behaviour while undergoing
a cycle in the configuration space, see Figure 3.1. The change of the profile of the
sample takes place through the creation and annihilation of ridges and vertices,
with the elastic energy concentrated in these defects, as shown in Figure 3.3. Our
findings should have implications for the dynamical elasticity in polycrystalline
and defected sheets of graphene, and, in particular, we expect that various elastic
moduli, phonon density of states, and thermal conductivity will be affected.

1https://journals.aps.org/prb/supplemental/10.1103/PhysRevB.100.161402/

https://journals.aps.org/prb/supplemental/10.1103/PhysRevB.100.161402/
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(a)

(b)

Figure 3.1: A sample of relaxed buckled graphene with N = 1600 atoms, before and after a
cycle in the configuration space at fixed topology. This is shown both from the side (a) and
from the top (b). Its hysteretic behaviour is clearly visible: the states at the beginning and
at the end of a cycle are dramatically different. The energies of the two states are 70.90 eV
(red) and 71.63 eV (blue). The depicted sample has been selected because the hysteretic
behaviour is particularly visible.

3.2 Model
We opted for the empirical graphene potential introduced in Ref. [48], which is
based on Kirkwood’s potential [63]. This potential has been used, for instance,
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Figure 3.2: Evolution of the non-affinity parameter as the stretching force is gradually
applied to a sample of relaxed graphene with N = 3200 atoms at fixed topology. The
evolution of the shape of the sample during the straining is discontinuous, as occasionally a
tiny increase in stretching force causes a significant displacement, which manifests through
the discontinuity of the derivative of the non-affinity parameter A, with respect to the
applied stress σ , analogous to avalanches.

for studying the long-range relaxation of structural defects [48], for probing crys-
tallinity of graphene samples via their vibrational spectrum [64], for the study of
twisted and buckled bilayer graphene [65] as well as of the shape of a graphene
nanobubble [66]. In detail, for a two-dimensional hexagonal network for which
out-of-plane deformations are also allowed, this potential can be written as

E0 =
3
16
α

d 2

∑

i , j

�

r 2
i j − d 2

�2
+

3
8
βd 2

∑

j ,i ,k

�

θ j ,i ,k −
2π
3

�2
+ γ

∑

i , j k l

r 2
i , j k l (3.1)

with d = 1.420Å, the ideal bond length for graphene. A two-body bond stretch-
ing energy contribution is parametrised by α = 26.060eV/Å

2
, β = 5.511eV/Å

2

controls the bond shearing contribution, while γ = 0.517eV/Å
2

corresponds to
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the energy cost for the out-of-plane deformation of the graphene membrane [48].
Since the periodic boundary conditions apply, we can represent the contribution
to the elastic energy due to external stress by an additional term of the form

Eσ = E0−σLx Ly = E0−σS (3.2)

where Lx and Ly are the lateral dimensions of the two-dimensional periodic box,
S its surface and σ the parameter that controls the strength of the stretching force.

We first generate a polycrystalline flat sample by following the procedure described
in Ref. [48]. A sample is allowed to relax to a lower energy configuration follow-
ing the Fast Inertial Relaxation Engine (FIRE) algorithm [59]. The values of the
parameters in this algorithm (Nmin, finc, fdec, αstart and fα) are taken as suggested
in Ref. [59]. Further relaxation of the sample requires topological changes in the
network, which we perform through so called bond transpositions [46]. In this
procedure, four connected atoms are selected, two bonds are then broken and re-
assigned between them. In the implementation we use an improved algorithm
[52] that avoids complete relaxation before rejecting a bond transposition. After a
random bond switch the complete sample is relaxed and the new configuration is
accepted with the Metropolis probability

P =min
�

1, exp
�

Eb − Ea

kB T

��

(3.3)

which includes the effect of thermal fluctuations: a move that increases the en-
ergy of the sample might be accepted, with a higher probability as temperature
increases. However, note that no bond transposition is allowed while we perform
the cycle in the configuration space. Temperature does therefore partially influence
the evolution of the sample, and as long as there are still topological lattice defects
around which the stress can accumulate, the discontinuous evolution persists.

Once this flat sample is sufficiently relaxed, every atom is placed at a random non-
zero distance from the two-dimensional plane and allowed to relax to a buckled
three-dimensional configuration. As topological defects increase the elastic energy
of the sample, both globally and locally, they cause stress in the material that, once
the material is allowed to relax in a three-dimensional configuration, is released by
buckling [48]. Using such configuration of the graphene membrane, we perform
a cycle in the configuration space by manipulating the stretching force σ in the
empirical potential, given by Eq. (3.2), while the topology of the sample is kept
fixed. During this process, we increase the stress in steps of size ∆σ , and, after
each step, the sample is allowed to relax. Once the value of the maximum stress
σmax is reached, it is decreased in the same way. In this work,∆σ = 8×10−9 uµs−2

and σmax = 8× 10−6 uµs−2, with u the atomic mass unit.
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Between each stretching step, the atoms in the graphene membrane translate to a
different position, and the relevant translations are only the non-affine (intrinsic)
ones, which are defined in the reference frame fixed to the sample itself, and there-
fore they are not related to the expansion or contraction of the sample. In order to
characterise the evolution of the graphene sample under the applied external stress,
we thus use the non-affinity parameter defined in Ref. [67] as

A=
〈
�

ri − ri ,A
�2
〉

Lx Ly

(3.4)

where ri is the in-plane position of the atom i , while ri ,A is its expected position
due to the expansion of the reference frame and 〈·〉 is the average on all the atoms.

We can also extract the local energy distribution at a given moment with distinct
energy contributions for the different terms in the total elastic energy, given by
Eq. (3.1). This is computed by dividing the two body energy of every bond equally
between the two atoms and assigning the three body and out of plane energy to
the central atom.

3.3 Numerical simulations and results
We first adiabatically stretch and relax a sample with N = 1600 atoms in the way we
previously described. After completing a cycle in the parameter space, the sample
is in a different configuration, as it can be seen in Figure 3.1. By repeating this
procedure a limited number of times, our sample ends up in a stable configuration.
After repeating the cycle, the system reaches again a stable configuration, which
is, however, different than the initial one.

The same procedure is then applied to a large sample containing N = 3200 atoms
but in this case we further characterise the sample during a gradual application of
the external stress.

We start with a stable configuration and perform a cycle during which we compute
the non-affinity parameter, defined in Eq. (3.4) and its derivative with respect to
the stretching parameter. Figure 3.2 shows that the evolution of the sample during
the straining is clearly discontinuous. Significant changes in the configuration are
caused by small increases in stretching force, which results in discontinuities in the
derivative of the non-affine parameter.

We now analyse in more detail these discontinuities, in particular how the local
energy distribution changes. As we can see in Figure. 3.3, the change of energy
is not uniform in the sample. The energy difference, both positive and negative,
is concentrated on and around the ridge defects in the sample [41, 61]. Separat-
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(a)

(b)

Figure 3.3: (a) Distribution of local energy in the graphene sample before a transition; (b)
the local energy difference before and after the transition during stretching. The graphene
sample contains N = 3200 atoms. The figure shows that the changes in the local energy
distribution due to the transition are concentrated on and around ridges and vertices.

ing the different energy contributions, we notice that, at each transition during
the straining, the sample increases its internal energy E0 given by Eq. (3.1), even
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though not all the terms contributing to it are necessarily positive. Nevertheless,
the total elastic energy decreases during these transitions as the contribution of
the stretching term, given by Eq. (3.2) is negative, indicating a sudden increase of
the surface area of the sample. This is confirmed by subtracting the affine compo-
nent corresponding to the surface expansion or contraction during the transition,
computed through a fit of the data points immediately preceding the transition,
which show a significant non-affine component (see Supplemental Material2 for
a breakdown of the affine and non-affine components of the surface changes dur-
ing the transition). Finally, a minimal size of the sample in which this effect can
be observable in our numerical experiment can be estimated as follows. In Fig-
ure 3.2 the highest peak is 2.7× 10−3, while the threshold for the observation of
the discontinuity is 0.4× 10−3. Given that the sample we used in our simulations
(Figure 3.3) contains about 15 grains, and assuming a linear scaling of the size of
the discontinuity with the number of grains, yields an estimate of a critical size of
about 3 crystalline grains.

3.4 Discussion and outlook
In summary, we established that the evolution of graphene sheets is discontinuous
under gradually applied external stress. It proceeds through a series of avalanche-
like processes in which the ridges and vertices are created and annihilated, with the
energy concentrated in these defects. Furthermore, the behaviour of the graphene
membrane is hysteretic: the system does not follow the same path back in the con-
figuration space. Our results imply that if twisting is applied gradually to graphene
bilayers and multilayers, the change of the shape of such structures should be
discontinuous in nature, which could be possibly relevant to recent experiments
[68–71]. Our results should also be pertinent to other two-dimensional polycrys-
talline materials, including phosphorene, MoS2 and hexagonal boron nitride (h-
BN) whose experimental realization has been recently reported in Refs. [72–74],
as well as in van der Waals heterostructures [75]. A continuous application of
stress to a graphene elastic membrane necessarily involves a creation and annihi-
lation of the topological defects in the form of ridges and vertices, which can be
consequential for the electronic and mechanical properties of these systems. On
the other hand, our findings should motivate experimental studies of the dynam-
ical elasticity in these systems, in particular the evolution of the elastic moduli,
vibrational density of states and thermal conductivity with the adiabatically ap-
plied external stress. Finally, although we considered a specific case of monolayer
graphene, we expect that our findings will be applicable to generic membranes em-
bedded in three-dimensional space. In particular, within this approach it would be

2https://journals.aps.org/prb/supplemental/10.1103/PhysRevB.100.161402/

https://journals.aps.org/prb/supplemental/10.1103/PhysRevB.100.161402/
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interesting to study the dynamical properties of origami metamaterials [76].



CHAPTER 4

Dynamic sampling from a
discrete probability

distribution with a known
distribution of rates





Abstract - In this chapter, we consider several efficient data structures for
the problem of sampling from a dynamically changing discrete probability
distribution, where some prior information is known on the distribution
of the rates, in particular the maximum and minimum rate, and where the
number of possible outcomes N is large.
We consider three basic data structures, the Acceptance-Rejection method,
the Complete Binary Tree and the Alias method. These can be used as
building blocks in a multi-level data structure, where at each of the levels,
one of the basic data structures can be used, with the top level selecting a
group of events, and the bottom level selecting an element from a group.
Depending on assumptions on the distribution of the rates of outcomes,
different combinations of the basic structures can be used. We prove that
for particular data structures the expected time of sampling and update is
constant when the rate distribution follows certain conditions. We show
that for any distribution, combining a tree structure with the Acceptance-
Rejection method, we have an expected time of sampling and update of
O (log log rmax/rmin) is possible, where rmax is the maximum rate and rmin
the minimum rate. We also discuss an implementation of a Two Levels
Acceptance-Rejection data structure, that allows expected constant time
for sampling, and amortized constant time for updates, assuming that rmax
and rmin are known and the number of events is sufficiently large.
We also present an experimental verification, highlighting the limits given
by the constraints of a real-life setting.

This chapter is partially based on the following publication:

F. D’Ambrosio, H. L. Bodlaender, and G. T. Barkema, “Dynamic sampling from a discrete
probability distribution with a known distribution of rates”, Comput Stat, 10.1007/

s00180-021-01159-3 (2021).

https://doi.org/10.1007/s00180-021-01159-3
https://doi.org/10.1007/s00180-021-01159-3
https://doi.org/10.1007/s00180-021-01159-3
https://doi.org/10.1007/s00180-021-01159-3
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4.1 Introduction

B

1 2 3 4

5 6
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A

Figure 4.1: In the continuous time simulation of MBE growth on a metallic substrate, the
hopping rate of an atom of copper from a position A to a position B is dependent on the
occupational state of the ten surrounding sites: each move will influence the hopping rates
of the surrounding atoms. It is critical to store these rates in a data structure that allows
for updates.

4.1.1 The problem
In this chapter, we consider the design of data structures for the following problem.
We have a dynamic discrete probability distribution, more precisely, we have a
finite set of events, each with a rate. We have the following operations on the
data structure: an event can be deleted, inserted, change its rate, and we want to
randomly select an event, with each event selected with a probability proportional
to its rate. This problem is well understood when the number of events is small,
but in many applications, we need to sample from a very large collection of events.

In this chapter, we make one further assumption: we assume that the rates of possi-
ble events are distributed according to a known and unchanging probability distri-
bution ρ(r ), i.e. the expected number of events with a rate between r and r +∆r
out of N total events can be computed as:

E
�

nr,r+∆r

�

=N

∫ r+∆r

r

ρ(x)d x. (4.1)
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From this continuous distribution, which we call rate distribution, events are gen-
erated to populate and update the discrete distribution that we intend to sample.
Knowledge about the rate distribution might come from theoretical knowledge
about the underlying processes, direct observation, Monte Carlo simulations, etc.
(For more details, see Section 4.2).

4.1.2 An illustrative example
To better understand the problem studied in this chapter, let us first introduce an
example from a real life application: a continuous-time simulation of Molecular-
Beam-Epitaxial (MBE) growth on a metallic substrate [47, 78], in the sub-monolayer
regime. The set of energetically preferred positions of adatoms (atoms dropped on
the surface) located on top of the metallic substrate forms a natural lattice with
coordination number z (i.e. z denotes the number of neighbors of each site), typ-
ically a square lattice with z = 4 or a honeycomb lattice with z = 3. While new
atoms are arriving on the substrate with a statistical rate determined by the beam
intensity, the ones already present are hopping from one such preferred (lattice)
position to a neighboring one, usually resulting in coalescence in islands. The
hopping rate for an atom from site A to a neighboring site B depends on the atoms
in the immediate vicinity of A and B . If site B is not occupied, the hopping rate
is in very good approximation determined by the occupational state of the closest
neighbors of A and B . In the case of z = 4, seen in Figure 4.1, this results in 210

possible configurations, and, for each of these configurations, we can pre-compute
the hopping rate [79]. The simulation then proceeds by two steps:

a) the time is moved forward by a value ∆t equal to the inverse of the sum of
all the rates of all possible events;

b) after this time increment, one event (hopping or arrival) is selected, with a
probability proportional to its rate.

Therefore, we compute the rate of every possible move of every atom at every it-
eration and we sample a random event, employing a simple data structure: usually
an array of size zN which contains at every index the sum of the rates of all the
events up to that one. A random number between zero and the sum of all the
rates is generated and we move through the array until we reach a value larger than
our random number and we sample that event. This might work well, but it does
not scale as the sampling time grows linearly with the number of possible events.
With limited literature search we find better structures for our problem, for in-
stance, Complete Binary Trees (see Section 4.3.2 and [80] or, for a more flexible
implementation, the Differential Search Tree from Maurer [81]), which sampling
time grows logarithmically with the number of possible events, and even an op-
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timal solution: the Alias method (see Section 4.3.4), proposed by Walker in 1974
[82, 83], an ingenious method that, employing two tables of the same size as the
number of possible events, allows constant time sampling, regardless their number
or their rate. Alternatively, if we assume that all rates can be written as multiples
of a unit, these can be stored in an array and sampled in constant time by picking
a random site of the array; the obvious downside is the size of such array. While
it can be compressed with the method from Marsaglia [84], sampling from a com-
pressed array requires O (log rmax), with rmax the highest rate.

However, we see no significant improvement if we employ one of these structures.
After each move, some of the configurations will have changed and we will have
to rebuild the whole data structure from scratch, which costs a time that grows
linearly with the number of possible moves zN , compromising the time saved with
the sampling, even though only a limited number of possible moves have changed
their rates. We can implement a (costly) update for the Complete Binary Tree (see
Theorem 1) that requires O(logN ) time, but that would still not scale well for
larger numbers of atoms, and we would be tempted to optimize it in such a way
that closer atoms are in the same branches, minimizing the number of operations
required for the update, but as the atoms move they change neighbors, invalidating
the optimization.

As the number of atoms necessary to study larger scale effects can be quite large,
we would need a data structure that allows both optimal sampling and update of
a random element. Unfortunately, and quite surprisingly, we were unable to find
one for the general case. A quasi-optimal solution to the problem was given in
2003 by Matias et al. [85]. This method allows sampling in O(log∗N ) time, with
log∗ the iterated logarithm, and the update of an arbitrary item in O(2log∗N )worst-
case time and O(log∗N ) amortized expected time. Unfortunately, the method of
Matias et al. is very complex to implement.A preliminary experimental study was
done by van der Klundert [86]. Alternatively, the Acceptance-Rejection method
(see section 4.3.3) does allow constant time updates, at the cost of performing sam-
ples in non-deterministic time, in which the expected value is dependent on the
distribution of rates (see Theorem 2). Rajasekaran and Ross [87] and Hagerup et
al. [88] developed different solutions that allow for expected constant time up-
dates and samplings by imposing restrictions on the updates that are not in general
satisfied in our example or in similar settings, where the ratio between the largest
and smallest rate can be quite large or even arbitrarily large.

Our example is not unique. Similar problems have been described not just in ma-
terial physics, but also chemistry [89] and biochemistry [90], and is in general
relevant when we have an arbitrarily large number of possible events of known
rate and their realization does not alter a significant fraction of them. It is there-
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fore quite striking that we were not able to find in literature a general solution for
such a relevant problem.

Since this is an intrinsically stochastic problem, it is sensible to ask whether the
properties of the distribution of the rates of the possible outcomes, which can
be determined either analytically or numerically assuming that the process that
generates them is known, relates to the problem. An analysis from this point of
view is also, to the best of our knowledge, missing in literature while there are
some assumptions (see Section 4.2) that can be reasonable employed for large sets of
applications that lead to some interesting solutions that we present in this chapter.

4.1.3 Our main contributions
Our main contributions are twofold. First, we identify several cases where assump-
tions on the distribution and/or the number of events lead to expected constant
time for sampling an event; while insertions and deletions of events can be done in
amortized constant time. In particular, the known Acceptance-Rejection method
gives expected constant time for non-increasing distributions; our new two-level
Cascade method gives expected constant time for two large classes of distributions,
and our new two-level Acceptance-Rejection method gives expected constant time
regardless of the distributions. In several cases, the result only holds for a suffi-
ciently large number of events; in all cases, bounds for the smallest and largest rate
of events have to be known. Second, we give an experimental evaluation of several
of the data structures, both from existing literature and those introduced in this
chapter.

4.1.4 Organization of this chapter
We start by defining our assumptions and the problem we are setting ourselves to
solve (Section 4.2), then we will define and study the property of the data struc-
tures, both simple (Section 4.3) and multilevel (Section 4.4), that we employ to
solve our problem. We perform an experimental analysis of our findings (Section
4.5). Some conclusions are given in Section 4.6.

4.2 Problem Statement and Assumptions
The data structures we study maintain an Event Set E. The event set is a dynamic
finite set (i.e. a finite set that can change over time). We call the elements of the
Event Set events. Each event has a known, real, non-negative rate, that also can
change over time; we denote the rate of event ei by r (ei ). The rate of an event
represents the number of expected occurrences in some arbitrary time unit.

Our data structures support as operations the insertion of an element (with a given
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rate), the deletion of an element, the change of the rate of an element, and a fourth
operation: the sampling from the set of events. When we sample from the set of
events, we randomly pick an event with a probability that is proportional to its
rate. Thus, the probability that ei ∈E is sampled equals to

p(ei ) =
r (ei )

∑

e∈E r (e)
. (4.2)

We make a further assumption, namely that we know the distribution of the rates
of the events. More precisely, we have a probability density function ρ such that
the expected frequency of events with a rate between a and b equals

∫ b

a
ρ(x)d x.

We assume that ρ is known and fixed. This of course does not guarantee that at all
times the possible events will be distributed following ρ, but that as the number
of possible events N → ∞ it will tend to ρ. It is useful to think of ρ(r ) as the
continuous distribution from which the rates of the elements of the Event Set, the
events that are possible at each given time, are sampled. We also assume that the
rate has known and finite maximum rmax and minimum rmin (i.e.,

∫ rmax
rmin
ρ(x)d x =

1 and ρ(r ) = 0 for r /∈ [rmin, rmax]). We finally also note that, by definition, rates
of possible events are strictly positive, and therefore also rmin and rmax are defined
as positive.

For the cases where N is instead small, the Complete Binary Tree (see Section 4.3.2)
is a good option, as it gives an O(logN )method that does not requires assumptions
on the distributions of rates.

In many practical cases, the assumptions may be approximations of the real situa-
tion. Often, in such cases, the predicted expected times for our data structures can
be good approximations of the true behaviour.

Given these assumptions, our problem is the following:

Problem. Given these assumptions, what is the most efficient method that allows for
an event set E:

1. sampling of an event (with each element selected with a probability that is pro-
portional to its rate);

2. update of the rate of an arbitrary number of events;

3. removal or addition of an arbitrary number of events.

Our problem statement represents a not-so-uncommon type of problems in dy-
namic simulations where the processes are only locally interdependent, i.e. the
realisation of a process influences only up to a constant fraction of all possible
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processes. An update of an event can be implemented by deleting the event and
inserting a new event with the new rate; in several cases, we thus do not discuss
updates of rates separately.

4.3 Data Structures
In this section, we describe several data structures for the problem studied in this
chapter and briefly discuss dynamic arrays. After a short discussion of dynamic
arrays, we review two basic well-known data structures: a Complete Binary Tree
and the Acceptance-Rejection method. After that, we introduce three derivative
methods which provide an efficient solution in different cases, depending on the
probability distribution of the rates.

4.3.1 Dynamic arrays
In several cases, we store the events (or pointers to groups of events) as elements in
an array. As we can add new elements to the data structure, the size of such an array
can become too small. For this, we can use the standard data structure of dynamic
arrays, also known as dynamic tables, see e.g., [91, Chapter 17.4]. Several standard
programming languages have this data structure built-in, e.g., dynamic arrays are
provided under the name of vectors in the C++ Standard Library. The main idea
is that we use an array that is at least as large as needed, and copies all elements
to an array of double size when the current array is too small. Occasionally, we
have an operation that uses time, linear in the number of stored elements, but this
happens infrequently, and the amortized time per insert (i.e., the total time divided
by the number of operations) is bounded by a constant. For the details, we refer
to e.g. [91, Chapter 17.4].

4.3.2 Complete Binary Trees
A data structure that is commonly used for event sampling is the Complete Binary
Tree. Here, a Complete Binary Tree is a binary tree (i.e., a rooted tree with each
node having at most two children), with all levels completely filled, except possibly
the lowest, which is partially filled. (Complete Binary Trees are also sometimes
known as treaps.) If we also impose that the lowest level is filled from the left,
there is a simple implementation of Complete Binary Trees in arrays: we store the
elements in an array A[1 · · ·n], with the parent of node A[i] being A[⌊i/2⌋] (i > 1).
See e.g. [91, Chapter 6.1], or [92].

While it would be tempting to group together in the same branch the events whose
rate we might know to be correlated, for instance, the hopping rate of two spa-
tially close atoms, we cannot assume that they will stay that way as the system
evolves dynamically. The Complete Binary Tree has the advantage of an easier im-
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Figure 4.2: In the Complete Binary Tree, each node stores a variable called rate. Leaves,
representing events, have the same rate as the corresponding event. Internal nodes have
a rate equal to the sum of the rates of their children. An event is sampled by generating
a random number between zero and the rate of the root (i.e. the sum of all rates): if this
is smaller than the rate of the left node, we move to this node; otherwise, we subtract
the left rate and move to the right node. This is repeated until we reach a leaf and the
corresponding event is sampled.

plementation, and it minimizes the average depth of the tree over all binary trees
to d = ⌊log2 N ⌋, with N the number of events.

A schematic representation of the structure of a Complete Binary Tree is shown
in Figure 4.2. Each leaf represent an event and it is associated with its rate; internal
nodes also have a rate associated with them and it is equal to the sum of the rates of
their children. Sampling is intuitive: a random number between zero and the sum
of the rates of all the events (rtot) is generated and, starting from the root, if this
is smaller than the rate of the left node we move in that direction; otherwise, we
subtract the rate of that node and we move to the right. This is repeated at most
d times until we reach a leaf. An update is performed by changing the rate of the
corresponding leaf and updating the rate of the internal nodes between itself and
the root. It is also possible to add or remove an event, by adding or removing a
leaf with the usual methods, the rate of the affected internal nodes is updated. This
is easiest in the array implementation: adding a new leaf just adds the element at
the end of the array; in a deletion, we move the last element of the array to the
position of the deleted element; in both cases, we update the rates of all nodes that
are an ancestor of a replaced, inserted or deleted leaf. Under these assumptions,
it is quite trivial to prove that all the operations that are interesting for us require
logarithmic time. The following result can be easily derived from well-known
insights and given here for completeness reasons.

Theorem 1 (Complete Binary Tree). Given an Event Set E of cardinality N repre-
sented as a Complete Binary Tree:

(a) the sampling of an event can be performed in O(logN ) time;
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(b) the update of the rate of an event can be performed in O(logN ) time;

(c) the addition or removal of an event can be performed in O(logN ) time.

Proof. (a) The sampling of an event requires a number of operations propor-
tional to the number of nodes on the path between the root and the sampled
leaf. For a Complete Binary Tree, this is at most d = ⌊log2 N ⌋ [93] and
therefore it is O(logN ).

(b) In order to update the rate of an event, we perform a single operation on the
leaf and then we update the internal nodes following backwards the same
path as in (a). Therefore this is also O(d ) =O(logN ) operations.

(c) First the leaf is deleted or added, which, for a binary heap, requires O(logN )
time and then the rate of the nodes in the path from the deleted/added node
to the root is updated. As we already mentioned, this costs also O(logN )
time.

4.3.3 The Acceptance-Rejection method
One of the classic methods is the Acceptance-Rejection method. Here, we have
an array of size N where each entry represents a possible outcome and its value is
equal to its rate. Since the distribution is known, we assume that the maximum
rate is also known. As no ordering is necessary, an element can be added and re-
moved by simply adding or removing it from the array at any time, without any
further preprocessing required. To sample an event, we randomly select an ele-
ment and generate a random number between zero and the highest possible rate
(rmax), which is known (see Section 4.2); if this is larger than the value of the se-
lected element, it is rejected and we draw a new one. Otherwise, it is accepted and
sampled. The rate of an event is updated by simply changing the value of the corre-
sponding element. A simple way to represent such data structure is as a histogram
where each bin represents an element and their height is determined by their rate,
up to the known maximum value rmax. An example of such representation can be
seen in Figure 4.3.

We can make the data structure dynamic by using a dynamic array instead of a
(usual) array; see the discussion at the start of this section. A new event can be
added at the end of the array, and an element can be removed by moving the last
element of the array to its position.

In contrast with other methods, the sampling time does not depend on the cardi-
nality of the Event Set (i.e. the number of possible events N ) while the updating
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Figure 4.3: Acceptance-Rejection structure. Each element of the array represents the rate
of a possible event. An event is sampled by selecting a random element and generating a
random number between zero and the rmax: if the latter is smaller than the former, the
corresponding event is sampled; otherwise the process is repeated.

time is always trivial, but we have to investigate how the rate distribution affects
the sampling time. As this is a stochastic method, it is sensible to look at the ex-
pected time. We give a simple analysis of this method below.

Theorem 2 (Acceptance-rejection). Given an Event Set E of cardinality N and
largest rate rmax, represented as an Acceptance-Rejection structure:

(a) the sampling of an event can be performed in expected O
�

rmax
E[r ]

�

time, with E[r ]

the expected value of the rate according to the distribution ρ(r );

(b) the update, addition or removal of an event can be performed in constant time.

Proof. (a) The probability of selecting an event with rate r is equal to the fre-
quency of such events, which is expected to be ρ(r ). Then, a random num-
ber S is generated from a uniform distribution with support [0, rmax] and
the event is accepted if S ≤ r , the probability of which is r

rmax
. We can then

integrate it over all possible values of r and write the probability of accepting
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an event of any rate as:

Psample =
1

rmax

∫ rmax

rmin

ρ(r ) r d r =
E[r ]

rmax
. (4.3)

Since this is a Bernoulli trial, the expected number of attempts before the
first success is

E[n] =
1

Psample
=

rmax

E[r ]
, (4.4)

and the number of operations is proportional to the number of attempts.

(b) The addition or removal of an event is performed by adding or removing an
element to or from the vector. The rate of an event can be updated by simply
changing the value of its element in the vector. All these actions require a
constant number of operations, therefore they can be performed in constant
time.

As the expected value of the rate cannot be smaller than the smallest possible rate,
we can also say that

Corollary 1. The sampling of an event can be performed in expected O (rmax/rmin)
time, with rmin the smallest rate in the Event Set.

To avoid confusion, we can visualize the Event SetE as a histogram of bins of equal
width and height proportional to their rate, with the expected frequency given by
the rate distribution ρ(r ). Note that, as we can see in Figure 4.4 the histogram
does not look like the rate distribution. The sampling of an event is analogue to
randomly shooting a dart on this area: if it lands inside a bin, that event is sampled;
otherwise, it is rejected.

Let us step back to the result of Theorem 2 for sampling. We can easily imagine a
worst-case, where all the events except one have a rate arbitrarily smaller than the
largest and the sampling time, therefore, grows arbitrarily, and a best-case, where
all the events have the same rate and the sampling time is constant. Is there a
more general assumption we can introduce on the rate distributionρ(r ) that would
still guarantee expected constant time? We will show that assuming that the rate
distribution is non-decreasing is sufficient to guarantee expected constant time.

The probability of selecting an outcome with a given rate is proportional to the
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Figure 4.4: On the left, a uniform rate distribution; on the right, the visualization of
the corresponding Event Set. In order to avoid confusion in the following proofs, it is
important to remember this distinction. Since order does not affect sampling, rates are
ordered for clarity.

number of elements with that rate. We can therefore write
∫ r̄

rmin

ρ(r ) d r =

∫ rmax

r̄

ρ(r ) d r, (4.5)

with ρ(r ) the rate distribution and r̄ the median of the distribution ρ(r ) [94], i.e.
the real number for which

∫ r̄

rmin

ρ(r ) d r =
1
2

∫ rmax

r̄

ρ(r ) d r =
1
2

, (4.6)

which is guaranteed to be unique if ρ(r )> 0 in the open interval (rmin, rmax). Since
the possible outcomes are selected from an uniform distribution, this implies that
the probability of selecting a possible outcome whose rate is at least r̄ or larger is

Pselect(r ≥ r̄ )≥
1
2

. (4.7)

Lemma 1. If the rate distribution ρ(r ) is a non-decreasing function of r , its median

is at least the middle of the interval [rmin, rmax] (i.e., at least
rmin+ rmax

2
).

Proof. First, we rewrite Equation 4.5 as
∫ r̄

rmin

ρ(r ) d r −

∫ rmax

r̄

ρ(r ) d r = 0. (4.8)
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Using that ρ( r̄ ) ≥ ρ(r ) for each r ∈ [rmin, r̄ ] and ρ( r̄ ) ≤ ρ(r ) for each r ∈
[ r̄ , rmax], as we assume that ρ is a non-decreasing function, it follows that

ρ( r̄ )

∫ r̄

rmin

d r −ρ( r̄ )

∫ rmax

r̄

d r ≥ 0, (4.9)

assuming that ρ( r̄ ) is non-zero. Finally,

r̄ − rmin− rmax+ r̄ ≥ 0 ⇒ r̄ ≥
rmax+ rmin

2
. (4.10)

We are ready to prove the following theorem:

Theorem 3. An Acceptance-Rejection structure with a non-decreasing rate distribu-
tion performs sampling of a possible outcome in expected constant time.

Proof. Since the rates of possible events are strictly positive, we can write Equa-
tion 4.10 as:

r̄ ≥
rmax+ rmin

2
≥

rmax

2
. (4.11)

Remembering from the proof of Theorem 2a, we can write the probability of ac-
cepting an outcome with rate r , assuming that an outcome with rate r ≥ r̄ is
already selected, is

Paccept(r | r ≥ r̄ ) =
r

rmax
≥

rmax
2

rmax
=

1
2

. (4.12)

Remembering the result of Equation (4.7), the probability of successfully sampling
an outcome with r ≥ r̄ therefore is

Psample(r ≥ r̄ ) = Pselect(r ≥ r̄ ) · Paccept(r | r ≥ r̄ )≥
1
2
·

1
2
=

1
4

. (4.13)

The probability of successfully sampling an outcome from a subset of the Event
Set cannot be larger than the probability of sampling an outcome from the entire
Event Set, which puts an upper boundary on the expected number of attempts
before sampling an outcome

E[tsample] =
1

Psample
≤

1
Psample(r ≥ r̄ )

= 4=O(1), (4.14)

with Psample the probability of successfully sampling an outcome from the entire
Event Set.
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A visualization of this proof can be seen in Figure 4.5. This is a very powerful
result: such a simple method allows constant time sampling for any Event Set with
a non-decreasing rate distribution.

0

max

ra
te

outcomes

Figure 4.5: Each possible outcome is represented as a rectangle with unit width and height
proportional to its rate. Since order does not affect sampling, rates are ordered for clarity.
The probability of sampling an event is equal to the ratio between filled and total space
in such a representation. From this geometric argument we can prove that, for a non-
decreasing rate distribution, the probability of sampling an outcome is at least 1

4 due to
Lemma 1.

4.3.4 The Alias Method
The Alias method, introduced by Walker [82, 83] is a very ingenious solution to
the static case of our problem. Each event is conceptually stored in a "bucket"
of size rtot/N ; if a bucket is not already full, the remaining space is assigned to
another event, denoted as its alias, that is overfilling its bucket. The rate that has
been assigned to the alias is then removed from its original bucket. This is repeated
until each bucket is exactly full.

The buckets are represented as an array of size N , each element storing the fraction
of the bucket assigned to the alias. To sample an event, an element and a random
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number between zero and one are generated. If this is larger than the value stored
in the element, the corresponding event is sampled; otherwise, we sample its alias.

As the number of steps required for sampling is fixed, the time required is con-
stant. Unfortunately, except for some very particular cases, any update would
be extremely costly and it would often require a complete rebuild of both tables,
which takes at least O(N ) time. Nevertheless, we are presenting this method both
for completeness and as a potential building block for multilevel methods.

4.4 Multilevel Methods
As we have seen, the Acceptance-Rejection method works better when the possible
outcomes have a limited range of rates; if this is not the case, we can split the Event
Set in multiple groups according to their rate, use one of the other methods to
sample a group, and then the Acceptance-Rejection method to sample an element
from that group [90]. We call such combinations of different methods multilevel
methods and the structure that stores the groups superstructure. In this section, we
present some of these combinations that have very powerful proprieties that will
be shown in the next section.

4.4.1 Exponential grouping
All our two level methods employ the same data structure for the lower level.

The events are grouped according to their rates. Each group consists of all events
with a rate in a specific interval. The sizes of these intervals grow exponentially,
and hence we will refer in the successive subsection this grouping method by expo-
nential grouping.

Fix some constant c > 1. A typical example would be to take c = 2. Different
choices for c can affect the constant factors of the running time: larger values of c
would slow down selection in the lower level of the data structure, but could speed
up selection in the upper level of the data structure.

Number the groups starting at 1. The group with index i consists of all events
with rate r in the interval

�

c i−1 · rmin,min
�

c i · rmin, rmax
	�

, (4.15)

adding the value rmax to the last group, (i.e., all intervals except the last are right-
open.)

For each group, we use a separate Acceptance-Rejection data structure to sample
an event.
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Lemma 2. After a group is selected, sampling an event from that group can be done
in O(c) expected time.

Proof. Note that the ratio between the largest and smallest rate of events from one

group is bounded by c i ·rmin
c i−1·rmin

= c . Thus, the expected number of ‘rounds’ of the
Acceptance-Rejection method until an event is selected from the group is bounded
by c , which we assumed to be a constant.

Updating rates, inserting new events, and deleting events in the lower level data
structure all can be done in constant time. An update can be performed by delet-
ing the event with the old rate, and inserting an event with the new rate. We fix an
array with an element for each group, that points to the Acceptance-Rejection data
structure of that group. If we insert an element, with a constant number of arith-
metic operations, we can determine its group, find the corresponding Acceptance-
Rejection data structure, and add the event. To delete an event, we need a pointer
to its location in its Acceptance-Rejection data structure, and delete it as in Theo-
rem 2.

What remains is to build data structures to sample a group, where we need to select
each group with a probability that is proportional to the total rate of all events in
the group. For this, we have for each group a variable that maintains this total rate
of all events in the group. Apart from that, we have different method to sample
groups, which are discussed in the successive subsections.

4.4.2 Tree of Groups
Let us assume that the Event Set has an arbitrarily large cardinality but the range
of rates is such that the number of groups required to cover it is limited. In such a
case we can employ a Complete Binary Tree as a superstructure and obtain a very
useful result: both update and sample are performed in O

�

log log rmax
rmin

�

expected
time. While this is not constant time, it is very small without requiring any further
assumption on the rate distribution. A similar method, called SSA-CR (Stochastic
Simulation Algorithm - Composition and Rejection), was introduced in [90].

The method thus works as follows. We group the events by the exponential group-
ing method (see Section 4.4.1). Each group is represented both as a leaf of a Com-
plete Binary Tree (see Section 4.3.2), whose rate is given by the sum of the rates of
all the events in the group, and as an Acceptance-Rejection structure where all its
events are stored. This total rate can easily be maintained under insertions, dele-
tions and updates; after such an operation the difference is added or subtracted
from the group rate.
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To sample an event, we first sample a group from the Complete Binary Tree in the
previously described way (see Section 4.3.2) and the Acceptance-Rejection sam-
pling (see Section 4.3.3) is performed inside it. Updates are trivial unless they re-
quire events to be moved to a different group; in that case, the relative element is
removed from its group and added to the new one.

Theorem 4 (Tree of Groups). Given an Event SetE represented as a Tree of Groups:

(a) the sampling of an event can be performed in O
�

log log rmax
rmin

�

time;

(b) the update, addition or removal of an event can be performed in O
�

log log rmax
rmin

�

time.

Proof. (a) Since the groups are stored in a Complete Binary Tree, the time to
select a group grows logarithmically with the number of groups; the lower
boundary of the i-th group is, by definition, rmax

k i ; and the general lower
boundary is rmin, we can write the number of groups n as

rmax

kn
= rmin ⇒ n = logk

�

rmax

rmin

�

. (4.16)

Therefore, the time required to select a group from the Complete Binary
Tree is O (log n) =O

�

log log rmax
rmin

�

. Once we have selected a group, sampling
an event from the group uses expected constant time (Lemma 2.)

(b) Adding, removing and updating an event inside its group is performed in
constant time (see Theorem 2 and Section 4.4.1). In order to maintain consis-
tency it is necessary to update the rates in the Complete Binary Tree, which
is performed in the same time as a sampling (see Theorem 1).

4.4.3 Cascade of Groups
We have previously shown that the Acceptance-Rejection is optimal for any non-
decreasing rate distribution. While we would like to find a similar result for all de-
creasing rate distribution, therefore completing the solution for the general prob-
lem, we will split them into different subsets and attack them one at the time. Let
us first consider those rate distributions that, according to some definition, de-
crease fast enough. For such rate distributions, most of the events will have lower
values of rate; we must therefore store groups in a way that prioritize events with
a lower rate.

Again, we use exponential grouping, see 4.4.1.
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group 1 group 2

R1

Rtot −R1

R2

Rtot −R1 −R2 Rtot −R1 −R2 −R3

group 3

R3

Figure 4.6: The first three groups in the Cascade of Groups structure. The numbers give
the expected proportion of times the arrow is followed.

In the analysis below, we assume that rmax is a multiple of rmin. If this is not the
case, we can have a slightly smaller last group. It is easy to see that the difference
in expected running time is bounded by a constant.

Our data structure is as follows. We have a linked list [91, Chapter 10.2] with an
element for each group, which has both a pointer to its Acceptance-Rejection data
structure and the value of the sum of all the rate in the group (denoted, for the i th
group, as Ri ). See Figure 4.6 for visualization of such superstructure.

Sampling is, again, in two phases. A random number rand ∈ [0, Rtot] is generated,
with Rtot =

∑

Ri ; if rand is larger than the sum of the rates in the first group R1,
this is subtracted from rand and we move to next group. This is repeated until
a group is selected. A sample from the selected Acceptance-Rejection structure is
then performed. Updates, addition or removal of events are performed inside the
groups following the methods described in Section 4.3.3; Rtot and the sum of the
rates in the involved group (or groups, for an event that changes group after an
update) are also updated.

Let us start by introducing this useful Lemma for the Cascade of Groups:

Lemma 3. In a Cascade of Group, if there is a constant α < 1 such that, for each
group, the expected sum of rates of a group is at most α times the expected rate of the

previous group, then the expected time to select a group is O
�

1
1−α

�

=O(1).

Proof. Once we reach the i th group in the Cascade of Group, the expected prob-
ability of selecting it is the expected rate of that group divided by the sum of the
expected rate of that and all of the following groups. We call the expected rate of
the i th group E[Ri ]. Supposing we have g groups, the expected total rate of the
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i th group and all following groups is at most

E





g
∑

j=i

R j



=
g
∑

j=i

E[R j ]≤
g
∑

j=i

E[R j ] ·α
j−i ≤

∞
∑

j=i

E[R j ] ·α
j−i

= E[Ri ] ·
∞
∑

j=0

α j =
E[Ri ]

1−α
. (4.17)

The expected probability that when we are at a group i , take an element from that
group is thus here at least

E[Ri ]

E[Ri ] ·
�

1
1−α

� = 1−α. (4.18)

We can view the execution of the algorithm as an experiment that is repeated till the
first success; with each round, we have a probability of success that is at least 1−α.

The expected number of steps before selecting a group is thus at most O
�

1
1−α

�

=

O(1).

Following this Lemma, we can prove that the Cascade of Groups is a constant time
solution if the rate distribution decreases fast enough:

Theorem 5. Suppose we have a constant c > 1 such that for all r ∈ [rmin, rmax/c]:

ρ(c r )≤ ρ(r )/cβ, (4.19)

withβ> 2, then the Cascade of Groups data structure gives expected constant time to
sample an event.

Proof. We first relate the expected total rate of group i , E[Ri ], with the expected
total rate of group i − 1, E[Ri−1]:

E[Ri ] =

∫ c i+1 rmin

c i rmin

r ρ(r ) d r = c

∫ c i rmin

c i−1 rmin

c r ′ ρ(c r ′) d r ′

≤ c

∫ c i rmin

c i−1 rmin

c

cβ
r ′ ρ(r ′) d r ′ = c2−βE[Ri−1],

(4.20)

which follows by using the substitution r ′ → r/c . Thus, we get the result by
Lemma 3, and noting that c2−β < 1, when β> 2.

Once inside a group, sampling takes expected constant time by Lemma 2.
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4.4.4 Reversed Cascade of Groups
We can obtain a similar result when rates decrease sufficiently slow, just by revers-
ing the superstructure. In the Reversed Cascade of Groups, we use exponential
grouping (see Section 4.4.1), and again place these in a linked list (as for the Cas-
cade of Groups), except that we link the groups in the reversed order, i.e., we start
with the group with the events with the largest rate. Thus, if we have g groups,
we first decide if we sample an element from g th group, then from g −1th group,
etc.

Theorem 6. Suppose we have a constant c > 1 such that for all r ∈ [rmin, rmax/c]:

ρ(c r )≥ ρ(r )/cβ, (4.21)

with β < 2, then the Reversed Cascade of Groups data structure gives expected con-
stant time to sample an event.

Proof. Let i < g , i.e., group i is not the group with the events with largest rates.
We again relate the expected total rate of group i , with the expected total rate of
group i − 1. By substitution r ′→ r/c , we obtain:

E[Ri ] =

∫ c i+1 rmin

c i rmin

r ρ(r ) d r = c

∫ c i rmin

c i−1 rmin

c r ′ ρ(c r ′) d r ′

≥ c

∫ c i rmin

c i−1 rmin

c

cβ
r ′ ρ(r ′) d r ′ = c2−βE[Ri−1].

(4.22)

All groups, except group g , thus fulfill the condition of Lemma 3. Visiting the first
group costs constant time, and thus, with Lemma 3, and because cβ−2 < 1 here,
we see that the expected time to select a group is bounded by a constant. Again,
the sampling inside a group costs expected constant time (Lemma 2).

We now have optimal solutions for small numbers of events (Tree of Groups,
see Section 4.3.2), small range of rates (Tree of Groups, see Section 4.4.2), non-
decreasing rate distributions (Acceptance-Rejection, see Section 4.3.3), fast decreas-
ing rate distributions (Cascade of Groups, see Section 4.4.3) and slow decreasing
rate distributions (Reverse Cascade of Groups, see Section 4.4.4). In the next Sec-
tion, we will introduce an optimal solution of our problem for any rate distribu-
tion, if the number of events is significantly large.

4.4.5 Two Levels Acceptance-Rejection
We now discuss a Two Levels structure where both levels use the Acceptance-
Rejection method.
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Again, we group the events with exponential grouping (see Section 4.4.1).

The elements of the top-level Acceptance-Rejection structure are called bins. Each
bin has a rate, and points to a group. We allow that groups have multiple bins,
and the total rate of all the bins of a group equals the total rate of all events of the
group.

By using multiple bins per group, we can obtain a constant expected time to sam-
ple an event, regardless of the rate distribution, and amortized constant time for
insertions and deletions. However, insertions and deletions can require multiple
pointer operations and can be slow in practice.

Suppose we are given the values of rmin and rmax. We now choose two values B ≥

rmax and c > 1 that we consider to be constants. Let g = logc

 

rmax
rmin

£

be the number
of groups we obtain by using exponential grouping.

Now (as described in Section 4.4.1), each group at the lower level uses an Acceptance-
Rejection data structure to sample an event from the group, but also the superstruc-
ture is an Acceptance-Rejection structure, where the bins play the role of events.
Each group has at least one bin in the superstructure. Each bin has associated with
it a non-negative real number, called value. For each group, all its bins have value
B , except possibly the last (or the only) bin of the group.

A group is selected by randomly drawing a bin and a real number between 0 and
B . If this random number is at most the value of the bin, then we select the bin
and the group associated with it. Otherwise, we repeat this operation until a bin
is selected. It is easy to see that the probability to select a group is proportional to
the sum of the values of its bins, which is equal to the rate of the group.

The bins of a group have a pointer to the previous and next bin of the same group,
and to an object that represents the group. That object has a pointer to the last bin
of the group, a local variable equal to the rate of the group, and a pointer to the
Acceptance-Rejection structure of the group.

An element can be added by inserting it in the Acceptance-Rejection structure of
its group and then adding its rate to the value of the last bin of the same group. If
this becomes larger than B , say it becomes x > B , then we create a new bin for the
group, add it to the superstructure, set the value of the now second to last bin of
the group to B , set the value of the new last element of the group to x−B , and set
the pointers to and from the last and second to last bin of the group correctly.

Deleting an element is done by deleting it from the Acceptance-Rejection structure
of its group, and subtracting its rate from the last bin of the group. Suppose the
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rate of this last bin becomes y. If y is positive, it is simply updated. Otherwise,
we delete the last bin of the same group and decrease the rate of the bin that has
become the last of the group to B + y.

Note that these operations ensure that all bins have a non-negative value that is at
most B and that insertions and deletions involve a constant number of operations,
and thus cost amortized constant time.

Lemma 4. Suppose the total rate of all events is Rtot, and we have g groups. Then,

the expected time to select a group is O(1+ B g
Rtot
).

Proof. We have m ≥ g bins. All bins have a value at most B , and at most g bins
have a value smaller than B , so we have that Rtot > B(m− g ). The expected value
of a bin in this structure can be written as E[b ] = 1

m

∑1
i=m bi = Rtot/m, with bi

the value of the i -th bin. We now can apply Theorem 2. As the event in this step
is the selection of a bin, the expected value of a bin (E[b ]) plays the role of E[r ],
and the maximum value of a bin (B) plays the role of rmax , so, by Theorem 2, the
expected time to select a bin and therefore a group is O( B

Rtot/m
) = O(B m/Rtot).

Now, observe that

B m

Rtot
=

B m−B g

Rtot
+

B g

Rtot
<

Rtot

Rtot
+

B g

Rtot
= 1+

B g

Rtot
. (4.23)

The lemma now follows.

Thus, recalling Lemma 2 and that g = ⌈logc
rmax
rmin
⌉, we can state the following.

Theorem 7. The Two Levels Acceptance-Rejection method, with B ≥ rmax, c > 1,
allows to perform

1. insertions and deletions in amortized constant time, and

2. sampling in expected time

O

 

c +
B · logc

rmax
rmin

Rtot

!

, (4.24)

when Rtot is the total rate of all current events in the data structure.

Interestingly, this means that the Two Levels Acceptance-Rejection method allows
for constant time sampling if Rtot > B · g . Therefore if there are enough events
in the structure to satisfy this condition, we have a method than can be applied to
any rate distribution, as long as rmax and rmin are known.
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Two parameters can be set that influence the expected time, namely B and c . When
we increase B , we can expect fewer operations that create or delete a bin, and thus
would decrease the time needed for pointer operations, but it also means that the
term B g

Rtot
is larger, thus making the data structure viable only for larger total rate

values R. When we increase c , we have fewer groups (as g is
 

logc
rmax
rmin

£

), which
decreases the time in the superstructure, but it increases the time to sample inside
a group.

4.5 Experimental Analysis
We have performed an experimental analysis of the sample time of the previously
described methods in order to confirm our asymptotic findings. We implemented
these methods in the C++ language, building on top of C++11 Standard Library
(in particular random). We computed the expected sample and the update time of
each data structure by recording the time required with the high_resolution_clock
method of the chrono library. Average and variance are computed according to the
Walford method [95]. Our implementation is available in a GitHub repository1.

Since rates can be re-scaled to different time units, the maximum rate is fixed to 1
in some arbitrary units, while rmin, the minimum possible rate, is a controllable
parameter, together with N , the number of possible events, and the rate distribu-
tion.

We have included 5 monotonic rate distributions:

1. an increasing distribution, ρ(x) = k ∗ x;

2. a uniform distribution, ρ(x) = k;

3. a decreasing distribution with β< 2, ρ(x) = k/x;

4. a decreasing distribution with β= 2, ρ(x) = k/x2;

5. a decreasing distribution with β> 2, ρ(x) = k/x3;

with k the appropriate normalization constant. We set the constant for exponen-
tial grouping (see Section 4.4.1) to c = 2 in all the Multilevel Methods. For each
distribution, we vary the values of rmin and N and generate 100 random Event Sets
for each of them. On each Event Set, we perform 104 samplings, 104 updates only
on the Two Levels Acceptance-Rejection and 100 updates on all the others, and
we compute the average of the CPU time required over all of them. The code is
compiled and executed on the following system:

1github.com/federicodambrosio/dynamic-sampling-code

github.com/federicodambrosio/dynamic-sampling-code
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Processor: AMD Ryzen 5 3600X
RAM: 16 GB
Storage: Crucial P2 1 TB M.2-2280 NVME Solid State Drive
Compiler: gcc 9.3.0.

4.5.1 Complete Binary Trees
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Figure 4.7: Average sample time from a Complete Binary Tree for different values of the
number of events N , expressed in seconds. The x-axis is in logarithmic scale. The per-
formance of this structure is sensitive only to the parameter N and it follows O(logN ),
although the performance degrades after ≈ 107. Only a rate distribution (the uniform
distribution) is shown, as it does not affect performance. The average update time, not
shown, has a similar behaviour.

We opted for an object-oriented implementation of the Complete Binary Tree,
slightly more complex than the heap-based implementation mentioned in Section
4.3.2 but more flexible. It is clear in Figure 4.7 that the sample time is proportional
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to log(N ), as we expected from Theorem 1. The average update time, not shown,
follows the same pattern.

Performance degraded significantly when we tried to push the simulation to values
of N larger than shown in Figure 4.7. One of the underlying assumptions of our
work is that we have a vector-like structure that can access a random element in
constant time. Once a data structure grows beyond the limits of the cache of the
computer we are running our experiment on, we reach slower memory and this
assumption is no longer valid.

Different implementations of this method that restrict its memory footprint can
in theory allow for larger values of N before hitting the cache memory limits.

4.5.2 The Acceptance-Rejection method
We implemented the Acceptance-Rejection method with a dynamic maximum, i.e.
the maximum value is set to the largest value encountered so far, which is clearly
≤ rmax. The Acceptance-Rejection performance appears insensitive to the range of
rates for non-decreasing rate distributions, as we can see in Figure 4.8 and expected
from Theorem 3. For decreasing rate distributions we notice that the performance
degrades linearly with the ratio rmax/rmin, as expected from Lemma 1.

We note that it seems to be a correlation with the number of possible events N ,
if they follow a decreasing distribution. As more events are added to the struc-
ture, the discrete probability distribution that we sample from gets closer to the
underlying rate distribution, in particular for small values of rate, which affects
the performance of the structure. Similarly to what we mentioned in the previ-
ous section, we also expect further performance degradation for larger values of N
once we hit the cache memory limit and we lose constant time access to the vector
containing the events.

4.5.3 Tree of Groups
The Tree of Groups method has similar performance for all rate distributions and,
as we can see in Figure 4.9, it does not seem to be significantly sensitive even to the
range of the rates. The asymptotic behaviour of the sample time, which we expect
to be O

�

log log rmin
rmax

�

, is too small to be noticeable even for extremely large values

of rmax
rmin

.

There is a minor correlation with the number of events N for the decreasing dis-
tribution that we can explain with the same arguments of the previous subsection.
Nevertheless, since the complexity grows with the logarithm of the ratio the sta-
tistical effect for small values of N is significantly less dramatic than previously.
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Figure 4.8: Average sample time from an Acceptance-Rejection structure for different val-
ues of the minimum rate rmin (a) and the number of events N (b). We show the uniform
distribution (orange) and a decreasing distribution with β < 2 (light blue). The sample
time clearly follows the expected logarithmic law with the ratio rmax/rmin for decreasing
distributions and it is (relatively) constant for non-decreasing ones. We also note a cor-
relation with N for decreasing distributions: as more events are added to the structure,
the discrete probability distribution that we sample from gets closer to the underlying rate
distribution, in particular for small values of rate, which affects the performance of the
structure.
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Figure 4.9: Average sample time from a Tree of Groups data structure for different val-
ues of rmax/rmin (a) and the number of events N (b). We show the increasing distribu-
tion (light blue), uniform distribution (orange) and a decreasing distribution with β > 2
(green). The expected degradation of performance for this data structure is so slow
(O(log log rmax/rmin)) that it appears constant with regards to rmin. We note that the sample
time for the decreasing distribution grows with N for the previously described statistical
effect and both grow for N = 105, which is when we start hitting the cache memory limit
in this experiment.
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Finally, the average sample time grows for all rate distributions once we reach
N = 105, which is when we start hitting the cache memory limit in this experi-
ment.

4.5.4 Cascade of Groups
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Figure 4.10: Average sample time from a Cascade of Groups data structure for different
values of rmax/rmin. We show three decreasing distributions: β < 2 (blue), β = 2 (pink)
and β > 2 (green). The experimental results confirms the constant time sampling for
β ≥ 2, which is a stronger results than our Theorem 5. The effect of N on the sampling
time is negligible in comparison to the difference between rate distributions.

The Cascade of Group shows a stronger result we expected from Theorem 5. As
we can see in Figure 4.10 it guarantees expected constant time sampling for rate
distributions that decrease at least as fast as 1/r 2. The effect of N on the sampling
time is negligible in comparison to the difference between rate distributions.
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Figure 4.11: Average sample time from a Reverse Cascade of Groups data structure for
different values of rmax/rmin. We show three decreasing distributions: β< 2 (blue),β= 2
(pink) andβ> 2 (green). The result is, as expected, exactly the opposite of the Cascade of
Groups: the sampling is performed in expected constant time forβ< 2. The effect of N on
the sampling time is negligible in comparison to the difference between rate distributions.
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4.5.5 Reverse Cascade of Groups
Quite appropriately, the Reverse Cascade of Groups has the opposite result of the
Cascade of Group; as we can see in Figure 4.11, the structure performs the sampling
in expected constant time for rate distributions that decrease slower than 1/r 2,
which is in line with our Theorem 6. The effect of N on the sampling time is
negligible in comparison to the difference between rate distributions.

4.5.6 Two Levels Acceptance-Rejection
We implemented the Two Levels Acceptance-Rejection that we previously described,
setting B = rmax and c = 2. Theorem 7 tells us that the performance of this data
structure is correlated with the amount of total rate inside it: if Rtot > B g , both
sampling and update should require constant time, regardless of the rate distribu-
tion. Events are therefore added to the data structure until this condition is satis-
fied, implying that N is no longer an experimental parameter in our control. We
also note that the number of events required for this condition becomes rapidly
large for (faster) decreasing distributions and bigger ratio ranges.

As we can see in Figure 4.12, this data structure does in fact guarantee constant
time samples and updates, albeit with some variability, as long as the condition on
the amount of rate is satisfied. Unfortunately, the number of events required for
decreasing distributions quickly fill the cache memory and already for rmax/rmin =
104, in our specific implementation and system, we lose the expected constant time
performance.

4.6 Discussion and outlook
In this work, we have presented two basic data structures for sampling from a
discrete probability distribution, the Acceptance-Rejection method and the Com-
plete Binary Tree, and used them as building blocks for some multi-level data struc-
tures for the dynamic case: the Tree of Groups, the Cascade of Groups and Two
Levels Acceptance-Rejection.

We have proved, under our assumptions, constant time sampling and updates for
different classes of rate distributions and a generic result that requires an assump-
tion on the amount of rate in the structure. These results have been confirmed
by our experimental analysis, which has also highlighted the practical advantages
of the Tree of Groups when faced with real-life constraints and the downsides of
the theoretically optimal Two Levels Acceptance-Rejection. Multilevel methods
allowed us both to optimize the sampling to the particular conditions of the prob-
lem, and obtain significant general results.

While inspired by a practical application, our set of assumptions is arbitrary. Fur-
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Figure 4.12: Average sample (a) and update (b) time from a Two Levels Acceptance-
Rejection data structure for different values of rmax/rmin, constructed such that Rtot > B g .
We show four distributions: an increasing distribution (light blue), a uniform distribution
(orange), a decreasing distribution with β < 2 (blue) and one with β > 2 (green). Under
its assumption, this method guarantees both constant time update and sampling, but we
note that the number of events required to satisfy the condition grows with both the ratio
rmax/rmin and faster decreasing distributions, to the point where the cache memory limit
is clearly hit at around rmax/rmin = 104 for β> 2.
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ther study is warranted for other sets of assumptions, both inspired by theoretical
interest and realistic applications. For instance, we could make assumptions on the
updates and assume that the rates are increased or decreased by a known constant
quantity when updated while removing other assumptions.





CHAPTER 5

An Event-Based model for
polycrystalline graphene





Abstract - The structural evolution of polycrystalline graphene can be
simulated following the method of Wooten, Winer and Weaire, originally
intended for simulations of amorphous silicon. Bond transpositions
are randomly proposed and either accepted or rejected following the
Metropolis probability. In a well-relaxed sample, almost all bond
transpositions are rejected. The simulation grinds to a halt, effectively
introducing a floor to the simulated energy.

In this chapter, we consider an Event-Based approach for simulating the
evolution of polycrystalline graphene as a more performing alternative
for well-relaxed samples, as its performance is not correlated to the state of
the sample. Furthermore, the bulk of the calculations under this method
lends itself to a straightforward parallel implementation.

Under the assumptions that the transition rates can be computed from just
the neighborhood surrounding the relative bond transposition, two fur-
ther techniques are introduced. In the Local Event-Based technique, the
transition rates are determined by relaxing the degrees of freedom of only
the atoms in the neighborhood of those involved in the bond transposi-
tion of interest; only transitions involving atoms in the neighborhood of
those involved in an accepted bond transposition are recomputed. We fur-
ther assume that the graphs described by the atoms in the neighborhood
of a bond transposition determines its rate and introduce the Topologi-
cal Event-Based technique which reduces the number of required compu-
tations by assigning the same rate to bond transpositions presenting the
same local graph.
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5.1 Introduction
Graphene is an allotrope of carbon, shaped like a honeycomb lattice. It presents a
large set of exotic properties, both mechanical and electronic, and is a two-dimensional
crystal [16–23]. Large samples experimentally produced are typically polycrys-
talline, with both intrinsic [40, 54, 55] and extrinsic [56] lattice defects. Structural
defects are common in graphene [28], as it can easily host them thanks to the flex-
ibility of the carbon atoms in hybridization and they can easily be frozen in the
sample during the annealing process [29–31]. Study of these defects is warranted
as they both have a significant detrimental effect on the properties expected from
pristine graphene [33, 34], and they lead to new and different effects [35–38].

Polycrystalline graphene can be studied with continuous random network (CRN)
models [48], following the method from Wooten, Winer, and Weaire (WWW), an
explicit algorithm initially introduced to simulate samples of amorphous Si and
Ge [46, 50]. In the WWW approach, a configuration consists of a list of the (three-
dimensional) coordinates of all N atoms, coupled with an explicit list of the bonds
between them. Atoms are allowed to occupy any point in the three-dimensional
space; the only constraint is that each atom is always perfectly coordinated (in the
case of graphene, all atoms have exactly three bonds), a fair assumption given that
unsaturated carbon bonds are energetically very costly [28]. Molecular dynamics
allows us to follow the actual dynamical evolution of the system, once a potential
is defined, such as the empirical potential for polycrystalline graphene proposed
by Jain et al. [48]:
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with ri j the length of the bond between atoms i and j , θ j ,i ,k the angle centered on
the atom i between the bonds with atoms j and k, and ri , j k l the distance between
the atom i and the plane described by the three atoms j , k , l to which it is bounded.
The ideal bond-length of graphene is d = 1.420Å. The other parameters, extracted
from DFT calculations [48], are α = 26.060eV/Å

2
, β = 5.511eV/Å

2
and γ =

0.517eV/Å
2
. Further terms can be added as need, for instance the substrate term

described in Chapter 2 or the straining term described in Chapter 3.

The molecular dynamics algorithm can be altered in such a way to converge the
system to a minimum faster than just integrating the equations of motion. For
instance, FIRE (Fast Inertial Relaxation Engine) achieves significantly faster relax-
ation than ordinary molecular dynamics [59]. The system is frozen (i.e. all veloc-
ities are set to zero) if v̂ · F̂ < 0, which means that the system is moving away from
a minimum; this prevents it from oscillating around a minimum. The direction of
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the velocity vector is also mixed at each step with that of the force vector, point-
ing the system slightly towards the minimum. Both the magnitude of the mixing
and the size of the time steps are increased while the system is moving towards a
minimum and sharply decreased when it overtakes it.

a b

c d

a

b

c d

Figure 5.1: A bond transposition according to the Wooten, Winer, and Weaire (WWW)
algorithm. Four consecutively connected atoms (a, b , c and d ) are selected; two bonds
(ab and cd ) are switched, maintaining the sample perfectly coordinated.

Through this process, we are able to resolve individual atomic vibrations, which
requires time-steps of the scale of a few femtoseconds. Structural changes (i.e.
changes in the bond list), however, have a significantly larger characteristic time,
which puts them beyond the reach of our computational capabilities, and would
require a more complex potential, without an explicit bond list. In the WWW
approach, the structure of the sample is instead allowed to evolve through dis-
crete events denominated bond transpositions in which, as shown in Figure 5.1,
two bonds are switched among four atoms which are consecutively connected
(the first is neighbour to the second, etcetera) and distinct (i.e. the same atom
does not appear twice in the sequence). A sequence of four atoms that satisfies
these conditions identifies a bond transposition. It is equivalent to its reverse
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({a, b , c , d} ≡ {d , c , b ,a}), as both sequences break the same bonds ((a, b ) and
(c , d )), replacing them with (a, c) and (b , d ).

In amorphous silicon, a material similar to polycrystalline graphene, WWW bond
transpositions have been shown to be the predominant mechanism of structural
evolution of graphene [96]. While this confirmation is missing for polycrystalline
graphene, it has been shown that realistic samples of graphene can be produced
through just WWW bond transpositions, starting from a random seed [48, 53].
The difference in characteristic time allows us to decouple the two processes and
study the structural changes in polycrystalline graphene with the Transition State
Theory formalism.

5.1.1 Transition State Theory in graphene

A

B

C

Figure 5.2: Schematic illustration of the Transition State Theory approach. In the config-
uration space, the system lies in the basin of the minimum A until it manages to cross one
of the surrounding saddle points and falls into the basin of another minimum, either B or
C depending on which saddle point it crosses, where it quickly settles before the sequence
can begin again. According to TST, the transition rate between two states is determined
by the activation energy, i.e. the energy difference between the current state and the saddle
point between the two states.

In the configuration space, the system vibrates within the basin of a minimum and
only occasionally jumps to another one, where it quickly settles around the min-
imum before the sequence can begin again [97]. In the Transition State Theory
(TST) formalism, the transition between two different states A and B is a Poisson
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process with a rate equal to the equilibrium flux through the dividing surface be-
tween A and B in the configuration space [97–100]. Close to the minimum, the
potential energy is well described by a harmonic energy expansion and the rate of
a transition from the state A to the state B can be written following Arrhenius’
Law [98, 101]:

kA→B = ν0 exp (−Ea/kB T ) = ν0 exp
�

−
ESAB
− EA

kB T

�

. (5.2)

Here, Ea is the energy difference between the saddle point SAB and the initial state
A, T is the temperature of the system (which is considered at thermal equilibrium)
and kB is the Boltzmann’s constant and ν0 a constant with the dimension of a rate,
which connects the time scale of the simulation to that of the real dynamics of the
process.

At least the order of magnitude of the characteristic vibrational frequency ν0 can
be estimated from Raman spectrography. The most prominent modes in poly-
crystalline graphene are the G band, related to the covalent carbon-carbon bonds,
and the defect-induced D band. They show a Raman shift (expressed in wavenum-
bers) of respectively 1582 and 1350 cm−1, when excited by a laser with wavelength
514 nm [102]. The corresponding wavelength for both bands is around 550 nm,
which suggests a characteristic vibrational frequency ν0 in the order of 1014Hz.

Once the saddle point is crossed, the system inevitably falls in the next basin, no re-
crossings are allowed. It quickly settles around its minimum: before the sequence
can begin again, the system has lost memory of the trajectory that led it to that
state. Under these assumptions, Eq (5.2) is the exact rate [97, 103] and detailed
balance at equilibrium is preserved:
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In general, the energy of the saddle point has to be higher than that of both states
involved in the transition. If we assume that it is always larger than their maximum
of a fixed amount, i.e.

ESAB
≈max{EA, EB}+∆E (5.4)

for some constant energy ∆E , we can write the rate for a generic transition from
a state A to a state B as:

kA→B = ν0 exp (−∆E/kB T ) min
�

1, exp
�

−
EB − EA

kB T

��

. (5.5)
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Under this strong, but sensible, assumption, a transition can be interpreted as a
continuous Metropolis process [104–106] with rate

k0 = ν0 exp
�

−
∆E

kB T

�

, (5.6)

where a random transition to a state B is selected from an uniform distribution
and it is accepted according to its Metropolis probability:

PMet(A,B) =min
�

1, exp
�

−
EB − EA

kB T

��

. (5.7)

This expression can be further simplified if we are not interested in the relationship
between simulated (Monte Carlo) and real-time by setting k0 = 1 in some arbitrary
unit, resulting in the transition rate being equal to the Metropolis probability in
Monte Carlo time units.

5.1.2 Performance challenges

0.08 0.10 0.12 0.14 0.16 0.18
Energy (eV / atom)

10 6

10 5

10 4

10 3

P a
cc

Figure 5.3: Average acceptance probability (i.e. the inverse of the average number of at-
tempts required per accepted bond transposition) at different energy densities for the sam-
ple of 3200 atoms studied in Chapter 2. The shaded area shows one standard deviation from
the average. An accepted bond transposition requires between 5′000 (at 0.18eV/atom) and
almost 600′000 (at 0.07eV/atom) attempts on average.

The approach that we have discussed so far is quite powerful if a significant fraction
of attempted bond transpositions is accepted. A sample that is far from equilib-
rium, such as the initial random seed, evolves quickly as most of the changes would
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lower its energy significantly and are, therefore, (deterministically) accepted. Re-
alistic samples are at, or very close to, equilibrium; most of the possible changes
would increase its energy and it usually takes hundreds of attempts before a single
bond transposition is accepted.

In Chapter 2 we have introduced a few techniques to accelerate the selection pro-
cess, discarding bond transpositions earlier than before completing molecular dy-
namics on the entire sample. While the average time spent on a rejected bond
transposition is significantly reduced, their number is unchanged. As a sample
is relaxed to lower energies, the average acceptance probability reaches extremely
small average acceptance probabilities, as shown in Figure 5.3, necessitating a large
number of attempts in order to further evolve the sample. At very low energies,
the simulation grinds to a halt, introducing an effective floor to the energy that can
be reached. Furthermore, this approach does not easily lend itself to parallel com-
puting. While the molecular dynamics itself can be parallelised [51], the evolution
of the sample must proceed sequentially, as it would not be simple to reconcile
different accepted transitions. A different approach is needed.

5.1.3 An Event-Based approach
In this chapter, we explore the possibility of replacing the acceptance-rejection al-
gorithm with a sampling algorithm from a list of bond transpositions with precom-
puted rates. We introduce an assumption that limits the number of bond transpo-
sitions that are recomputed after each structural change to a constant and describe
a method based on this assumption. We then introduce a stronger assumption that
connects the rate of a possible bond transposition to the graph described by the
atoms in its surroundings and describe a method based on this assumption that
would be an efficient solution for the simulation of polycrystalline graphene at
low energies.

5.2 Methods
In an Event-Based approach, the list of available events from the current state of
the system together with their rate is explicitly maintained.

The event set can be generated iteratively, given the bond list and the rules of
WWW bond transpositions. Under the assumption of Eq. (5.4), the rate of a bond
transposition can be computed in a way similar to the acceptance probability in the
acceptance-rejection approach. In a sample in a state A, relaxed with molecular dy-
namics to an energy minimum EA, each possible bond transposition is attempted
and the coordinates of the sample are allowed to relax with molecular dynamics to
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an energy minimum EB . The rate is then computed as:

kA→B = k0 min
�

1, exp
�

−
EB − EA

kB T

��

, (5.8)

in Monte Carlo time units. The bond transposition is then reverted to the state A
and the atoms restored to their initial positions. As a result of this approximation,
all possible bond transpositions that reduce the energy of the system have the same
rate, in the same way that in the WWW approach they have an equal probability
of being selected and accepted.

On the same central bond, (b , c) in our example, insist four unique possible bond
transpositions: {a, b , c , d}, {a′, b , c , d}, {a, b , c , d ′} and {a′, b , c , d ′}. Since each
atom is coupled to three other atoms, from each state there are 3/2× 4×N bond
transpositions available, minus those that are prohibited because they would be
labeled by a sequence with repeated atoms, a small number in a well-relaxed sample.

The sampling itself can be performed with one of the data structures discussed
in Chapter 4. The important quantities for determining the best solution for our
problem are the size of the event set, which as we have shown is O(N ), and the max-
imum and minimum rate allowed; the rate has a ceiling at rmax = 1, in arbitrary
Monte Carlo time units, while there is no theoretical floor rmin. Nevertheless, it
is hard for a well-relaxed sample to see an increase of energy for more than a few
eVs in a single bond transpositions; we can place a (generous) higher bound to the
energy increase at≈ 10eV, resulting in a rate ratio of rmax/rmin ≈ 10−17: if the rate
of an energy-reducing event is of the order of the ns−1, as it is the typical scale of
such phenomenon, the rate of an event beyond the cutoff would occur, on aver-
age, every 1157 days (3.17 years). We can either consider these events practically
forbidden and discard them or place them in a different group, adding a step to the
sampling process: stochastically determine whether we are going to sample from
the allowed (r > rmin) or rare (r < rmin) events.

It could be sensible, for a very small sample, to implement the event sampling as
either a Complete Binary Tree (see Chapter 4, Section 4.3.2) with expected sample
and update time O(logN ). In any other case, due to the empirical limits of the
range of rates, it is more appropriate to implement the event sampling as a Tree of
Groups (see Chapter 4, Section 4.4.2) with expected sample time proportional to
O (log log rmax/rmi n) and constant update time.

The transition is then applied to the system and the simulated time is increased by
a quantity [107]

∆t =−
ln(u)
∑

i∈E ri

, (5.9)
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with u ∈ [0,1] a random number. The coordinates of the system are then relaxed
with molecular dynamics.

The system is now in a different state with a different topology. It is not possible
to just take the previous event set and sample a new event from it. The list of
available bond transpositions was computed from the previous bond list, which
has now changed. The rate of a bond transposition was computed from the energy
difference between the previous state and the state that would have been reached
by applying it to the previous state.

Before sampling a transition, it is, therefore, necessary to again identify and com-
pute the rate of all 6×N available events: a huge computational cost to pay for
sampling a single event. This is especially clear when compared to the acceptance-
rejection approach. Let us assume that a well-relaxed sample in a WWW simulation
has a very small Metropolis acceptance probability Paccept; the average number of

attempts before a bond transposition is finally accepted is τW =
�

Paccept

�−1
, each of

them requiring a single relaxation with molecular dynamics. With an Event-Based
simulation, no molecular dynamics is necessary to sample a transition; after a bond
transposition is applied, though, rebuilding the event list requires τE ≈ 6×N re-
laxations with molecular dynamics, one for each possible bond transposition, with
N the number of atoms in the sample. For samples with more atoms than

Nth =
τW

6
=

1
6 PA

(5.10)

such an Event-Based model will be on average slower. Even if one of every 10,000
attempted bond transpositions is accepted, a WWW model will be faster on average
if the sample has at least 1667 atoms, half the size of the sample we have studied in
Chapter 3. Such a model would be competitive only for either very small samples,
where the long-range effects are barely, if at all, visible, or extremely well-relaxed
samples at low temperatures.

The Event-Based approach naturally lends itself to a parallel implementation. Most
of the computational time is spent in calculating transition rates: we can consider
each of them a separate task, independent from each other, that is performed con-
currently, while the sampling is still sequential. Nevertheless, for large samples, the
performance gain from a parallel implementation would be insufficient to make a
difference.

In this section, we describe two methods that would curb this cost and allow
for an efficient Event-Based simulation of polycrystalline graphene, at least for
reasonably-relaxed samples.
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5.2.1 Local Event-Based technique
As we discussed in Chapter 2, most of the energy lost during the relaxation is
localised in the neighborhood of the applied bond transposition (i.e. atoms up
to a hopping distance l from those involved in it). After applying a possible bond
transposition, we allow only the atoms in its neighborhood to relax with molecular
dynamics to an energy minimum E loc

B . Assuming a harmonic approximation close
to the minimum, we can estimate the energy that the sample would reach if fully
relaxed EB as

ẼB ≈ E loc
B − c f |F̂ |

2 (5.11)

with E loc
B the energy of the system after local relaxation, c f an empirically deter-

mined constant and F̂ the global force vector. Since we are not relaxing the entire
sample, the computational time required is not dependent on the size of the system,
but only on the constant l (see Table 5.1), resulting in a significant performance
improvement for larger samples.

Events are sampled according to the approximated rate, obtained from the approx-
imated relaxed energy:

k̃A→B = k0 min

¨

1, exp

�

−
ẼB − EA

kB T

�«

. (5.12)

After selecting an event, we correct for the exact rate by allowing the entire sample
to relax completely to the actual relaxed energy EB . Then, the proposed structural
change is accepted according to a probability

PA→B =min

¨

1,
kA→B

k̃A→B

«

, (5.13)

with kA→B the exact rate. Meanwhile, the average ratio

R=

®

kA→B

k̃A→B

¸

(5.14)

is monitored during the simulation, as a diagnostic. Only one global relaxation
is required for each sampled bond transposition. This computational cost can be
amortised by performing a global relaxation only after a certain number of sam-
plings or, similarly to some of the techniques described in Chapter 2, when a cer-
tain threshold of |F̂ |2 is reached, at the risk of possibly introducing artefacts. In
these cases, if the average ratio R strays significantly from 1, the details of the amor-
tisation should be reassessed.



94 | Ch. 5 – An Event-Based model for polycrystalline graphene

l 〈Nloc〉 PA

2 28 0.5%
3 53 0.3%
4 90 0.2%

Table 5.1: Average number of atoms involved in local relaxation 〈Nloc〉 for different local
relaxation distances l (see Table 2.1). The number of relaxations required is approximately
6×〈Nloc〉, which is equivalent to the expected number of attempts required for an Early De-
cision simulation (see Chapter 2) with acceptance probability PA. The Local Event-Based
method becomes competitive for well-relaxed samples with an acceptance probability sig-
nificantly below 1%, regardless to their size, without taking into account any performance
gain from parallelisation of the computation of transition rates.

Under the assumptions of this method, atoms not belonging to the neighborhood
of a transition have no effect on the rate of such transition. After a bond transpo-
sition has been sampled and applied to the sample, the transitions involving atoms
belonging to its neighborhood are deleted and reconstructed iteratively, with their
rates recomputed accordingly. The rates of transitions that have atoms in their
neighborhood that are also in that of a sampled transition, without being involved
in either, are not recomputed as the change is expected to be negligible and can be
corrected through the acceptance process after a global relaxation.

If there are Nloc atoms in the neighborhood of a sampled transition, rebuilding the
event list requires τloc = 6×Nloc global relaxations, regardless of the size of the
sample. The performance of this method is constant with the size of the sample
and is dependent only on the hopping radius of the neighborhood l . Nevertheless,
the number of local relaxations required is quite large, even without accounting for
some occasional rejected events. As we show in Table 5.1, for reasonable values of l
the performance of this method is comparable to the Early Decision method from
Chapter 2 when the acceptance probability is between 0.2 and 0.5%, ignoring the
occasional global relaxations in both methods, and faster for more relaxed samples,
without taking into account the performance gain from a parallel implementation
of the computation of transition rates.

5.2.2 Topological Event-Based technique
We further assume that, if the neighborhoods of two proposed bond transposi-
tions have the same topology, their transition rate is approximately the same. This
is equivalent to assuming that, given two neighborhood-sized samples with the
same topology, they will reach approximately the same energy through molecular
dynamics. We expect this to be a reasonable assumption, at least when the sample
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is not subjected to other processes in the meanwhile. For instance, if a stretching
force is applied to the sample, it can access a different minimum with the same
topology, as we showed in Chapter 3.

Under this technique, before computing the (approximated) rate of a transition
according to Equation (5.12), we check whether we have already encountered the
graph described by the bonds between the atoms in the neighborhood. Similarly to
the k-ART technique [108], an event with local graph G is labelled by the canonical
form C anon(G); since the canonical forms of two graphs that are isomorphic are,
by definition, identical, we can easily determine whether the rate for a transition
isomorphic to the current one is already known. In that case, the local relaxation
is not performed and the (approximated) transition rate is set equal to that of the
transition with the same canonical form C anon(G).

The problem to write a canonical form of a graph is computationally equally hard
as determining whether two graphs are isomorphic. The computational com-
plexity of these problems is still an open problem in computer science [109]. In
particular, it has not been proven to be either NP-complete or in general solv-
able in polynomial time, while a polynomial-time solution is available in differ-
ent special cases [110–113] and the best theoretical result for a generic graph runs
in time n p(log n) for some polynomial p(X ) [114]. Fortunately, efficient graph
canonisation is implemented in publicly available tools such as nauty [115] and
RDKit [116]. The catalogue can be efficiently implemented with hash tables [91,
Section 11.2], which allow for both average constant time lookup and amortised
constant time insertion. The space required to store it grows linearly with the
number of elements in the library, which can lead to sub-optimal results in a real-
life situation as the data structure becomes too big for the faster memory and it is
moved to slower and slower memory.

Once all transition rates are known, either obtained through local relaxations or
from graph isomorphisms, sampling is performed as usual; as in the previous tech-
nique, a single global relaxation is performed after applying the sampled bond
transposition and its exact rate is computed. The proposed transition is then ac-
cepted according to Equation (5.13) in order to correct for the approximation.
Only the transitions involving atoms in the neighborhood of an applied bond
transposition are recomputed, as their local graph will have changed.

Careful consideration should be put in implementing this method for samples that
are still very chaotic, i.e. not yet relaxed to a realistic configuration, as the num-
ber of unique local graphs will be larger, the performance cost of maintaining the
catalogue of graphs larger and the gain from avoiding local relaxations smaller.
Nevertheless, there is no clearly defined boundary as with the method presented



96 | Ch. 5 – An Event-Based model for polycrystalline graphene

in the previous section, and, in most cases, this method should result in a signifi-
cantly faster evolution of the sample than the first or the original, non Event-Based,
methods.

Similarly to the previous technique, the computation of transition rates can be
implemented as a series of concurrent processes, exploiting the performance of
multiple processing units at the same time. It is also possible to amortise the global
relaxation by performing it once a specified threshold is reached, especially for very
large samples.

5.3 Conclusions
We initially set ourselves to design an Event-Based approach to simulating the evo-
lution of polycrystalline graphene because the performance of the Metropolis-
Based WWW approach slows significantly for well-relaxed samples, introducing
a practical lower limit to the energy of a simulated sample. The approach we in-
troduced in this Chapter does not suffer from this issue, as its performance is not
correlated with the state of the sample, but only with the number of rates that are
recomputed after each sampling while featuring the same dynamics. The bulk of
the computational load under this approach lends itself to straightforward parallel
implementation since the transition rates can be calculated concurrently, allowing
more efficient use of the computational resources when multiple processing units
are available.

We further introduced two techniques that improve the performance of this ap-
proach under the assumption that the transition rates can be computed only from
the neighborhood surrounding the bond transposition, similarly to the approach
we discussed in Chapter 2. The atoms in the neighborhood are relaxed with molec-
ular dynamics in order to compute the transition rates in both methods. In the
Topological Event-Based technique, if the graph describing the structure of the
neighbouhood is isomorphic to one of an already computed transition rate, the
relaxation is skipped and the transition rate is set equal to the already computed
one. Both methods have an error correction mechanism, through an Acceptance-
Rejection process.

Research on the details of the implementation, in particular the possibility of a
parallel implementation, and experimental verification of the performance of the
different techniques with different samples (i.e. chaotic or relaxed, large or small,
etc.) are now warranted. We expect future work to be focused on this matter and
on the study of larger, realistic samples of graphene that these techniques could
allow.
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It is important to mention that, while more simple and compatible with Metropo-
lis dynamics, it is not necessary for the transition rates to follow Eq. (5.8) and the
energy barriers to follow the approximation of Eq. (5.4). It is entirely possible
to replace the potential with an explicit bond list with a potential that is also de-
fined during a transition, explicitly compute the energy barrier during a transition
and derive the transition rate from Arrhenius’ Law, i.e. Equation (5.2). Such an
approach, combined with the Topological Event-Based technique, could replicate
the dynamics of the Kinetic Activation-Relaxation technique [108] with a signif-
icant performance boost from reducing the number of energy barriers that are
estimated, which could prove itself useful in certain situations. Nevertheless, for
most applications the Metropolis dynamics is sufficiently realistic, as we discussed
in the Introduction of this Chapter.

Finally, although we considered the specific case of graphene, we expect that this
approach will be applicable, and possibly quite effective, to the study of more
amorphous materials, representing an interesting alternative to the established Wooten,
Winer and Weaire approach.
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[65] S. K. Jain, V. Juriĉić, and G. T. Barkema, “Structure of twisted and buckled bilayer

graphene”, 2D Mater. 4, 015018 (2016).
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Summary

The isolation of graphene, a discovery worthy of a Nobel Prize, has led to an
explosion of research and industrial interest for this remarkable two-dimensional
material, due to its unique thermal, mechanical, optical and electronic properties.
Graphene can now be found in a plethora of different technologies, with new and
innovative products expected to reach the market during this decade. There are still
important issues with the production of graphene and structural defects are still
common, especially intrinsic defects that can easily form due to rapid quenching
from a high temperature or irradiation. Defects affect the material at a long-range
scale, and can significantly alter its properties; in particular, it leads to buckling of
the material in the third dimension. Computer simulations are an appropriate tool
for the study of the complex behaviour of defected graphene, in particular poly-
crystalline graphene, but performance is critical and can be a limiting factor in the
study of larger samples, especially in their production starting from a random seed.

In Chapter 2, we introduce and discuss two techniques and a tool for generating
computer samples of polycrystalline graphene efficiently, a necessary step for the
study of large-scale properties of graphene. Starting from a completely random
sample to prevent biases, we evolve it towards a more physical, less disordered
configuration. In the classical Wooten, Winer, and Weaire approach, the coordi-
nates of the sample are relaxed with molecular dynamics after each attempted bond
transposition and then the Metropolis acceptance probability is computed from
the relaxed energy. In our methods, we initially relax only the coordinates of the
atoms in the local neighborhood around those involved in the bond transposition;
the relaxed energy is then tentatively computed from a harmonic approximation,
based on empirical parameters. In the first method, called early rejection, moves
can be rejected based on the approximated relaxed energy; otherwise, the sample
is relaxed completely and the acceptance is based on the energy of the fully relaxed
sample, preserving detailed balance. In the second method, called early decision, the
acceptance or rejection is based exclusively on the estimated relaxed energy, with
global relaxation triggered after a certain number of accepted structural changes.
We test both methods on samples of 3,200, 10,024 and 20,000 atoms, showing a
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speed-up of multiple orders of magnitudes, especially for larger samples. We fi-
nally introduce a graphical manipulation tool to easily remove unwanted artefacts,
such as bond crossings, that are usually present even in well-relaxed samples that
are generated from a random seed.

In Chapter 3, we study a sample of polycrystalline graphene under a stretching
force, with a computer simulation. While graphene is a two-dimensional material,
polycrystalline graphene has an inherent tendency to buckle, developing an out-
of-plane, three-dimensional structure, which can be altered by applying a stretch-
ing force to the sample. In this chapter, we study the evolution of the buckling
structure of polycrystalline graphene under an adiabatic change in the stretching
force with a computer simulation, by continuously changing its amplitude and
relaxing the sample after each change. We establish that the evolution of the three-
dimensional structure of graphene under a stretching force happens in a non-linear
fashion: tiny increases of the magnitude of the force can lead to significant displace-
ments, similar to avalanches, which in turn can create vibrations in the material.
We further show that this displacement exhibits a hysteretic behaviour, reaching a
different energy minimum upon a cycle from low to high stress and back. These
behaviours open up another direction in studying the dynamical elasticity of poly-
crystalline quasi-two-dimensional systems, and in particular the implications on
their mechanical and thermal properties.

In Chapter 4, we study the problem of sampling from a dynamically changing dis-
crete probability distribution, i.e. from a list of events with a given rate that can
be updated at runtime. We assume that, due to knowledge of the underlying pro-
cesses, some prior information is known on the distribution of the rates, in partic-
ular the maximum and minimum rate, and that the number of possible outcomes is
arbitrarily large. We consider three basic data structures (the Acceptance-Rejection
method, the Complete Binary Tree and the Alias method) and we show that they
can be used as building blocks in multi-level data structures: events can be grouped
according to their rate and different data structures are used to sample the group
and then the event from the sampled group. We prove that for particular data
structures the expected time of sampling and update is (amortized) constant when
the rate distribution follows certain conditions or the number of possible events
is sufficiently large. We describe a data structure that guarantees sub-logarithmic
expected update and sample time in all cases. Experimental verification of all the
presented results is also given, highlighting the limits given by the constraints of a
real-life setting.

In Chapter 5, after discussing the theoretical background of the Metropolis pro-
cess in the WWW approach, we set ourselves to design an Event-Based approach
to simulating the evolution of polycrystalline graphene in well-relaxed samples.
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The Acceptance-Rejection process is replaced by sampling a transition with one
of the techniques described in Chapter 4, after computing the rates for all possi-
ble transitions. Following similar assumptions on locality to those of Chapter 2,
two techniques are introduced in order to reduce the number of computations re-
quired after each applied transition. In the Local Event-Based technique, the rate
is computed by relaxing only the neighborhood of the atoms involved in the bond
transposition of interest; the rate of transitions not involving atoms in the neigh-
borhood of an applied bond transposition is not recomputed. In the Topological
Event-Based technique we further assume that the graph described by the atoms in
the neighborhood of a bond transposition determines its rate. Before (re)comput-
ing a bond transposition, we check against already observed local graphs; if there
is a match, the same rate is assigned, without any further computations. We finally
discuss the consequences of this approach to future work.





Samenvatting

Het isoleren van grafeen, beloond met de Nobelprijs, heeft geleid tot een explosie
aan onderzoek en industriële belangstelling voor dit opmerkelijke tweedimensi-
onale materiaal, vanwege zijn unieke thermische, mechanische, optische en elek-
tronische eigenschappen. Grafeen wordt nu gebruikt in een wijd spectrum van
technologieën, met nieuwe en innovatieve producten die naar verwachting in dit
decennium de markt bereiken. Er zijn nog steeds grote uitdagingen bij de productie
van grafeen, dat vaak rijk is aan defecten, vooral intrinsieke defecten die gemakke-
lijk gevormd worden bij snelle afkoeling of bestraling. Defecten beïnvloeden het
materiaal over een grote afstand en kunnen de eigenschappen sterk veranderen,
met name leiden ze tot kromtrekking in de derde dimensie. Computersimulaties
zijn een geschikt tool voor de bestudering van het complexe gedrag van defectrijk
grafeen, en in het bijzonder polykristallijn grafeen, maar de rekenefficiëntie kan
van doorslaggevend belang zijn in het bestuderen van grotere samples, vooral als
deze geproduceerd worden vanuit een willekeurige kiemstructuur.

In hoofdstuk 2 introduceren en bespreken we twee technieken en een tool voor het
efficiënt genereren van computerstructuren van polykristallijn grafeen, een nood-
zakelijke stap voor de bestudering van de eigenschappen van grafeen op grotere
schaal. We beginnen met een volledig willekeurige structuur die vrij is van voor-
keursrichtingen, en evolueren deze naar een natuurlijke en meer geordende struc-
tuur. Hierbij volgen we de klassieke aanpak van Wooten, Winer en Weaire, waarin
de atoomcoördinaten volgen uit moleculaire dynamica, volgend op bondtranspo-
sities die geaccepteerd of verworpen worden op grond van de geminimaliseerde
energie, conform het Metropolis algoritme. In onze aanpak worden in eerste in-
stantie tijdens de minimalisatie alleen de coördinaten van de atomen in de directe
omgeving van de bondtranspositie aangepast; de energie na volledige minimali-
satie wordt vervolgens geschat met een harmonische benadering, gebruikmakend
van empirische parameters. In de eerste aanpak, die we early rejection noemen,
kunnen voorgestelde bondtransposities verworpen worden op grond van deze ge-
schatte energie; zo niet, dan volgt het definitief accepteren van de nieuwe structuur
op grond van de volledig geminimaliseerde energie; dit behoudt detailed balance.
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In de tweede aanpak, die we early decision noemen, volgt het al dan niet accepteren
van de voorgestelde bondtranspositie puur op grond de geschatte energie, waarbij
wel globale minimalisatie toegepast wordt na een zeker aantal geaccepteerde struc-
tuurveranderingen. Beide manieren van aanpak worden getest in simulaties van
structuren met 3200, 10.024 en 20.000 atomen, en ze laten een efficiëntieverho-
ging zien met meerdere orden van grootte, vooral bij de grotere structuren. Ook
introduceren we een grafische manipulatietool waarmee ongewenste structurele
artefacten eenvoudig opgelost kunnen worden, zoals elkaar kruisende atoomver-
bindingen die zelfs na lang gerelaxeerde structuren kunnen opduiken wanneer ze
zijn ontwikkeld vanuit een volledig willekeurige structuur.

In hoofdstuk 3 bestuderen we polykristallijn grafeen onder uitrekking, in een com-
putersimulatie. Waar grafeen een tweedimensionaal materiaal is, heeft polykristal-
lijn grafeen een inherente neiging tot kromtrekken, met driedimensionale struc-
tuurvorming buiten het vlak, die verandert onder invloed van een strekkracht. In
dit hoofdstuk bestuderen we het gedrag van de driedimensionale kromming on-
der invloed van een adiabatische verandering in de strekkracht, waarbij de struc-
tuur continu zich volledig aan kan passen na elke incrementele uitrekking. Wij
laten zien dat de veranderingen in de driedimensionale structuur bij uitrekking
niet-lineair zijn: een minuscule verandering in de strekkracht kan resulteren in
significante verplaatsingen in de derde dimensie, analoog aan een lawine (avalan-
che), en deze verplaatsingen kunnen resulteren in trillingen in het materiaal. We
laten ook zien dat deze verplaatsingen in de derde dimensie hysterese vertonen,
met een ander energie minimum na een cyclus van lage tot hoge strekkracht en
terug. Deze effecten openen nieuwe mogelijkheden om de dynamische elasticiteit
van polykristallijne tweedimensionale systemen te bestuderen, en dan met name
hun mechanische en thermische eigenschappen.

In hoofdstuk 4 bestuderen we het bemonsteren van gebeurtenissen met een in de
tijd veranderende discrete kansverdeling, i.e. het selecteren van één gebeurtenis uit
een lijst van gebeurtenissen, waarbij de frequenties regelmatig aangepast moeten
kunnen worden. We veronderstellen dat op grond van kennis van de onderlig-
gende processen er enige voorkennis is over de verdeling van de frequenties, speci-
fiek een minimale en maximale waarde voor de frequentie, en bovendien dat het
aantal mogelijke uitkomsten willekeurig groot is. Drie basisstructuren worden be-
schouwd (de Acceptance-Rejection methode, de Complete Binary tree en de Alias
methode), en we laten zien dat deze drie gebruikt kunnen worden als bouwstenen
in multi-level datastructuren: gebeurtenissen kunnen gegroepeerd worden op basis
van hun frequentie en verschillende datastructuren worden gebruikt om allereerst
de groep te selecteren, en vervolgens een gebeurtenis binnen de groep. We bewij-
zen dat voor bepaalde datastructuren de verwachte selectietijd en aanpassing van de
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frequenties (amortized) constant is als de frequentieverdeling voldoet aan bepaalde
voorwaarden of het aantal mogelijke gebeurtenissen groot genoeg is. We presen-
teren een datastructuur die gegarandeerd sub-logaritmische tijd nodig heeft voor
zowel een frequentieaanpassing als selectie. Deze resultaten worden experimen-
teel geverifieerd, waarbij ook de beperkingen in een realistische situatie getoond
worden.

In hoofdstuk 5 wordt eerst de theoretische basis van het WWW algoritme met
Metropolis acceptatie besproken, waarna toegewerkt wordt naar een Event-Based
benadering van de simulatie van polykristallijn grafeen in energetisch geminima-
liseerde structuren. De standaard aanpak waarin willekeurige bondtransposities
voorgesteld en vervolgens meestal verworpen worden, wordt vervangen door een
van de technieken die zijn beschreven in hoofdstuk 4, waarbij de frequenties voor
alle mogelijke transities worden berekend. Gebruik makend van de aanname van
lokaliteit die ook in Hoofdstuk 2 gedaan is, worden twee technieken geïntrodu-
ceerd voor de reductie van het aantal rekenoperaties benodigd per bondtransposi-
tie. In de Local Event-Based methode kunnen bij de berekening van de frequentie
alleen de atomen in de buurt van de bondtranspositie bewegen, terwijl de coördi-
naten van de andere atomen vastgehouden worden. In de Topological Event-Based
methode nemen we aan dat de topologie van de graaf gevormd door de atoombin-
dingen rondom de bondtranspositie bepalend is voor de frequentie. Voorafgaand
aan de (her)berekening van een bondtranspositie wordt opgezocht of eerder de-
zelfde graaf tegengekomen is; en als dat zo is, wordt de frequentie daarvan overge-
nomen. Het hoofdstuk wordt afgesloten met een bespreking van de gevolgen van
deze beide methoden voor toekomstig werk.
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