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1
I N T R O D U C T I O N

1.1 grasping the microbial world

Intuitions about how the world around us works are shaped and fundamentally limited by
the things we observe. However, the vast majority of organisms in the world are invisible
to the naked eye. It was not until Antoni van Leeuwenhoek (1676) peered through his mi-
croscope that we first observed new, small and tumbling organisms [206]. Such organisms
(viruses, bacteria, archea and certain algae species), together called microorganisms, often
exist out of only a single cell and live in any thinkable (and unthinkable!) habitat on earth —
deep sea [140], volcanoes, human skin [30], even space satellites [80, 105]. Microorganisms
have an astonishing diversity and multitude, and, interestingly, are quite far beyond the
grasp of our basic intuitions. For example, bacteria are not really affected by gravity, since
the random, tiny collisions with molecules in their environment (e.g., water molecules) al-
ready have a larger effect on the bacterium’s movement than gravity [186]. Due to these
frequent collisions with molecules, bacteria experience water as a very thick, viscous liquid.
A seemingly easy task like swimming, then suddenly becomes an enormous challenge1.

Most microorganisms have such a small volume that diffusion (the ‘slow’ process by
which a drop of ink randomly spreads out in a glass of water) inside the cell is actually
very fast. Concentrations of molecules quickly equilibriate throughout the cell’s tiny vol-
ume (∼ 1 µm3), such that diffusion is the main driver of intracellular molecular transport
[92, 93]. However, the random motion of molecules through the cell’s volume still has an im-
portant impact on biochemical reactions happening inside the cell. If a reaction takes place
only when two molecules meet, the reaction can happen quickly, or, by chance, happen
only after a while. Reactions happening inside cells are therefore unavoidably stochastic
(i.e., the timing of reaction event cannot be completely controlled, but is instead based on
probability). The unavoidable uncertainty in the timing of cellular processes in microor-
ganisms is a key focus point of this thesis, and we will discuss stochasticity in more detail
later.

Microorganisms live everywhere in rich diversity, often performing important and com-
plex ecological tasks. Indeed, although they are commonly associated with a broad range
of diseases, many microorganisms are actually mutualistically symbiotic with humans [8,
35]. In our gut, bacteria help with our metabolism by pre-processing certain sugars into
smaller metabolites that our gut can absorb. Many microorganisms are moreover used to
produce a range of useful biochemical compounds, such as penicillin, vinegar, insulin, etc.,
which are still hard, or expensive to synthesise in a lab or factory [33, 74, 202]. The indus-
trial value of understanding the growth, metabolism, and biosynthesis of microorganisms
is therefore immense [34, 152].

1 Imagine a swimming through syrup! Flapping with something like an arm will not get you anywhere: moving
your ‘arms’ forward to make a swimming stroke will push you backwards! Instead, bacteria use an ingenious
rotary mechanism to swim [14].
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6 introduction

Still, partly due to the fact that the bacterial world is so vastly different from ours, hu-
mans lack a strong intuition of its functioning. Therefore, concise, quantitative experiments
are essential, alongside (mathematical) models that can help us gain a deeper understand-
ing of the microbial world2.

1.2 bacteria : ingenious tiny factories

This thesis will focus on bacteria, an immensely diverse clade of organisms, of which only
< 10% can be cultured in a lab [197], meaning that the shape and functioning of a vast ma-
jority of bacterial species is completely unknown. Bacteria are small (about one-tenth the
size of human cells), but are incredibly abundant —more bacteria live inside each human,
than humans live on earth. Bacteria have no nucleus or other evident compartmentalisa-
tion. Instead, genetic material, as well as proteins (the cell’s working units), metabolites
(small building blocks) and even the ribosomes (relatively large complexes that synthesise
proteins) float around in the cell. This has classically lead to the view of bacteria as ‘bags of
proteins’, a view that is now debated [121, 142], but is a useful first approach to describing
bacteria [76]. Bacteria have a surprisingly constant density (the number of proteins and
metabolites, relative to the size of the bag is seemingly fixed under many external condi-
tions, possibly even at the single-cell level [24, 50, 58, 101, 119, 201]), a feature that will
return many times throughout this thesis.

Due to the complexity and overwhelming diversity of species, the workflow biologists
have so far been following is to study only a few species extensively, in the hope to learn
general features of all organisms. Countless biological experiments, and therefore almost
all theoretical models, concern the model bacterium Escherichia coli. This bacteria primarily
lives in the guts of animals, such as humans. There, it provides us with certain vitamins3

(K2 [28], B12 [150]). Since by far the most experiments have been done with E. coli, exper-
imental tools for this particular bacterium are widely available, and new experiments are
therefore again performed in E. coli. In turn, thanks to the overwhelming amount of E. coli
data, most quantitative models are tailored to fit this specific bacterium as well. Still, our
goal is to understand the functioning of bacteria in general, so our models will include as
little biochemical detail as possible, only to be fitted to (coarse-grained) E. coli data in a
later stage. General concepts that we learn, and intuitions that we build, hopefully apply
to other bacterial species as well.

1.3 environment and growth

The growth rate, the rate at which cells expand their volume and eventually divide, is
a crucial physiological variable. The fitness of bacteria is to a certain extent determined
by their rate of clonal expansion —genotypes that result in a higher growth rate increase
in frequency in the population, increasing their chances of survival4. Since bacteria divide
according to the adder principle (division is initiated after a fixed amount of mass is added

2 Such an approach to science has also been used in modern physics, where any hope of gaining intuitions
seems to be abandoned and mathematics is to be followed instead.

3 Sadly, E. coli is still mostly known for its rare role in food poisoning, and other very rare diseases.
4 Fitness is here defined as the expected, long term number of offspring. To increase the chance of having a

large number of offspring, bacteria of course need to perform other tasks as well: survive stress, heat shocks,
antibiotics, etc. However, growing as fast as possible while still performing the other tasks can never hurt.
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Figure 1.1: Example of two growth laws in E. coli. Approximately linear relationships between the
growth rate in a particular environment, and the proteome fraction allocated to catabolic
protein (φC, black line and dots) or to ribosomes (φR, dashed lines and grey circles).
Nutrients (carbon sources) of higher quality allow for a faster growth rate, because a
smaller catabolic sector is required and the concentration of ribosomes can be increased.
Data from You et al [198].

[103, 170, 194]), bacteria that have a higher growth rate, also have a higher replication rate.
Therefore, it is of crucial importance for bacteria that they are able to grow as fast as their
environment and their biophysical constraints allow.

In the different environments encountered, bacteria produce different proteins. For in-
stance, depending on the current nutrients in the environment, specific proteins are ex-
pressed to import, and metabolise the specific carbon source(s) available [65, 75, 155, 198].
However, not every carbon source provides, per imported molecule, an equal number of
carbon molecules or an equal amount of energy. In any environment, bacteria thus also
have to carefully tune the concentration of each protein species, to try and increase their
growth rate [159, 198]. E. coli mainly regulates this by measuring the internal concentration
of certain key metabolites5. The concentrations of internal metabolites inform the cell about
the richness of the medium, such that regulatory metabolites, by binding to transcription
factors, can tune the expression of many genes in consort [94, 136, 198]. Interestingly, E.
coli makes use of a few very important transcription factors, so-called master regulators,
that regulate enormous parts of the proteome at the same time [94, 95, 155, 198]. Indeed,
the many E. coli genes (∼ 4500) are regulated by a still large, but much smaller, number of
transcription factors (∼ 250) [53, 82, 95, 114].

In the light of the roughly constant density of the cell, adjusting protein concentrations
with the goal to increase the cell’s growth rate poses new challenges to the cell: only a
limited number of proteins fit inside the ‘bag of proteins’. An increase in the concentrations
of particular proteins ultimately comes at the expense of others. Experiments show that this
is indeed the case in populations of cells: when, in response to a poorer carbon source, the
cells up-regulate proteins responsible for catabolism, the expression of other parts of the
proteome (such as ribosomal proteins) becomes lower [91, 95, 155, 158, 159].

5 Instead, another strategy would be to have specific, external receptors for every possible environment, but this
might crowd the cell wall too much, and it would cost a lot of resources to make many different receptors.
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Under variation of the environment, the expression of many proteins show a simple,
approximately linear, correspondence to the realised growth rate, called a growth law6

(Fig. 1.1) [91, 155, 159]. As mentioned above, in reaction to a certain change in growth con-
dition some protein species increase in abundance, while others decline. Classes of proteins
whose concentrations show a similar relationship with the growth rate are called proteome
sectors. So far, the following sectors have been observed, each showing a qualitatively
different (linear) relationship with the growth rate in response to different limitations: a ri-
bosomal sector (R), a catabolic sector (C), a nitrogen-fixating sector (N), an anabolic sector
(A) and a part of the proteome that seems to have a fixed size in every environment (called
Q or sometimes H sector) [68]. In Box 1, we discuss the regulatory mechanism behind the
C-sector growth law: the master-regulator CRP that activates the expression of catabolic
proteins by allosterically binding the metabolite cAMP. Growth laws as found in E. coli
have also been found in other species, such as yeast [19, 88, 124], showing that, in this case,
lessons learned from E. coli apply more generally.

Box 1. cAMP-CRP regulation. The cAMP Receptory Protein (CRP)7 is a regulatory
protein that, when bound to the internal metabolite cyclic adenosine monophosphate
(cAMP), promotes the expression of over 100 proteins [36, 46, 54, 68, 83, 94, 95, 203].
The cAMP-CRP complex activates many important enzymes that have a role in central
carbon metabolism, including all enzymes from the TCA circle, and certain steps in the
glycolysis pathway. CRP-activated proteins therefore belong to the catabolic C-sector
(Fig. 1.1), and sometimes the term ‘C-sector’ is used to describe the set of proteins that
are regulated by cAMP-CRP.

The molecule cAMP itself is synthesised from the energy carrier ATP by the enzyme
adenylate cyclase (cyaA), and actively degraded by cAMP phosphodiesterase (cpdA).
Multiple central metabolites (mainly α-ketoacids, including oxaloacetate (OAA) and
pyruvate (PYR)), themselves synthesized by enzymes that are activated by cAMP-CRP,
inhibit the synthesis of cAMP [55, 198]. The cAMP-CRP network is therefore a closed,
negative feedback loop: C-sector proteins are responsible for the import of carbohy-
drates and their conversion into smaller metabolites via the TCA cycle and glycolysis,
and those metabolites inhibit the production of the C-sector (Fig. 1.2). It is this negative
feedback that is thought to be responsible for the negative slope in the C-line [181, 198]
(Fig. 1.1).

Figure 1.2: Cartoon of the cAMP-CRP regulatory network.

6 Not to be confused with ‘the growth law’ which usually refers to the positive relationship between cell size
and growth rate.
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The growth laws can be understood from the point of view of resource allocation [116,
128, 159]. ‘Richer’ nutrient conditions require less investment in catabolic proteins (that im-
port and degrade external carbon), because per imported molecule more energy or carbon
is present, or simply because fewer enzymatic steps are required to degrade the nutrient
to basic building blocks. Instead, more cellular resources can be allocated towards mak-
ing new biomass (ribosomes). For each specific environment, the cell must thus balance
the amount of resources it allocates towards each proteomic sector, such as the C-sector
(nutrient import and catabolism) and the R-sector (ribosomes). Expressing, for example,
higher concentrations of catabolic proteins might increase the import rate and the inter-
nal concentrations of metabolites, but would also result in fewer ribosomes due to cellular
constraints. At some point, the ribosomes present can not match the flux generated by the
C-sector, resulting in high internal metabolite concentrations that inhibit the working of
the C-sector proteins. As a result, the efficiency of those C-sector proteins (flux catalysed
per invested protein) decreases, and the growth rate would not be optimal. On the other
hand, expressing too many ribosomes at the expense of catabolic proteins would deplete
internal metabolites, causing translation to slow down and therefore an inefficient use of
ribosomes.

Interestingly, multiple studies, both theoretical and experimental, suggest that for many
carbon sources the particular division of resources (what part of the cell’s internal metabolic
flux is invested in which protein sectors) E. coli chooses results in the highest possible
growth rate [32, 98, 128, 157, 181, 204].

1.4 stochasticity in gene expression : noise

The seemingly perfect regulation at the population level is in sharp contrast with the in-
evitable randomness involved in the expression of proteins. As mentioned above, the micro-
scopic world in general, including bacteria, is prone to stochasticity [42, 174]. The random
thermal motion of all molecules causes an unavoidable uncertainty in the timing of all
biochemical processes happening inside the cell: in order to react, the trajectories of two
randomly diffusing molecules have to intersect in exactly the right way for the reaction to
occur. Due to the small volume of bacteria, and the low copy number of many internal
molecules, the stochasticity of reaction events in a cell do not simply average out, causing
for example protein copy numbers to fluctuate over time [40, 86, 189]. The stochasticity in
gene expression, referred to as ‘noise in gene expression’, has been intensely studied in the
last decades, ever since the first single-cell experiments became possible [4, 25, 40, 42, 100,
168, 173, 189].

Generally, noise in protein species i is quantified in terms of the coefficient of variation-
squared (often written as CV2 or η2):

η2i =
Var {xi}

E [xi]
2

, (1)

where xi is the protein’s concentrations and E [xi] the protein’s mean concentration. Con-
text should make clear what kind of mean and variance one is currently talking about: an
average over time, over a population, or over a lineage.

7 CRP was earlier named CAP: catabolite gene activator.
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1.4.1 Two ways of describing a stochastic process

Theoretical definitions and descriptions of noise, in increasing levels of detail, have been
useful to guide follow-up experiments, and to unravel the mechanisms underlying pro-
tein stochasticity. For example, during the process of creating new proteins, a distinction
can be made between the stochastic waiting times between transcription events (to create
mRNA), and the (exponentially distributed [25]) number of times a single mRNA molecule
is translated during its lifetime (order of 3-8 minutes [11]). These processes have been neatly
summarised by Friedman and Cai [47], in the following set of reactions and equations, that
are explicitly solvable:

DNA k1−→ mRNA k2−→ protein, mRNA
γ1−→ ∅, protein

γ2−→ ∅, (2)
∂p(x)

∂t
=
∂[γ2xp(x)]

∂x
+ k1

∫x
0

w(x, x ′)p(x ′)dx ′. (3)

Here, k1 and k2 are the mRNA and protein synthesis rates, γ1 and γ2 are their decay
rates8. The probability distribution for the protein concentration (x = n/V , the protein’s
copy number n divided by the cell’s volume V) is denoted with p(x), and w(x, x ′) is the
rate at which, due to translation from a single transcript, the protein concentrations jumps
from x ′ to x, determined by the parameters γ1 and k2. These equations can be solved to
give the steady-state probability of finding a certain protein concentration. The solution
predicts a Gamma-distributed probability distribution. For many protein species in E. coli,
the measured protein distributions —determined by measuring, via a fluorescent marker,
the protein’s concentration in many single cells— match the predicted distributions strik-
ingly well [25, 173].

The above description of stochastic processes is common and intuitive, where the process
is described using rates of the stochastic process (in this case k1, γ1, etc) that are themselves
fully, deterministically, determined given the system’s current state. Stochasticity arises
only from the timing between (and therewith also the order of) events, and from the exact
realisation of each event (e.g. the number of translated proteins from one transcript). If the
rate is constant (i.e. does not depend on the system’s state), the rate can straightforwardly
be interpreted as the number of events per unit of time, averaged over a long period that
includes many events. An equation that describes a stochastic process in terms of the time-
evolution of its probability distribution is called a Master Equation (ME)9 [78], a differential
equation that describes how the probability distribution (deterministically) changes over
time. Note that indeed the equations themselves are deterministic, although they describe a
stochastic process. Of course, the specific example mentioned can be extended by allowing
rates to change as some function of time and/or the system’s state, or by adding cellular
process in more details. Sadly, the mathematics involves becomes complicated very quickly.

A different framework and a conceptually different approach of describing (mostly con-
tinuous) stochastic systems is the use of Stochastic Differential Equations (SDE)10 [147]. Here,

8 Note that since most proteins are stable for a long time, the protein’s decay rate, γ2, is not much higher, and
thus approximately equal to, µ, the (mean) growth rate (will be made more explicit later).

9 Master equations are continuous in time, with, for biochemical processes, often discrete states, although the
example presented here is a continuous ME. A (discrete) ME can be approximated by a continuous Fokker-
Planck equation (FPE) that is sometimes slightly easier to solve.

10 SDE are not completely different from MEs, since for every SDE, one can write a corresponding FPE that can
be seen, in turn, as an approximation of a ME.
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instead of tracking individual events, the concept of an ordinary differential equation
(ODE) is followed. However, rates of a process are now no longer fully determined by
the system’s current state, but are instead stochastic —constantly and randomly changing
over time. Below is a general example of a SDE:

dXt = f(Xt, t)dt+ g(Xt, t)dWt. (4)

Here, Xt is the current state of the process, which each ‘timestep’ (dt) is updated with
a normal (deterministic) rate of change, f(Xt, t)dt. However, each timestep the process is
also affected by a stochastic variable (scaled by g(Xt, t)), dWt, called a Wiener increment.
Over each time interval dt, the Wiener increment, dWt, is a stochastic normally distributed
variable with mean 0 and variance

√
dt, i.e. dWt ∝ N(0,

√
dt). The sum of all the increments

is called the Wiener process, W(τ) =
∑τ dWt. Box 2 describes a famous example of a SDE:

the Ornstein-Uhlenbeck (OU) process. Ornstein-Uhlenbeck processes will be used often in
this thesis.

Box 2. The Ornstein-Uhlenbeck Process[183]. A common Stochastic Differential
Equation, used often in this thesis, describes the motion of a particle that diffuses,
while it is constantly pushed back to the origin with a linear force:

dNt = −βNt dt + θ dWt. (5)

Here, Nt is the current state of the process, which each ‘time step’ (dt) decays with
a deterministic rate β representing the restoring force. However, each time step the
process is also again disturbed by a Wiener increment. This Wiener increment, dWt

is an independent, stochastic variable that follows a normal distribution with mean 0
and variance

√
dt. The parameter θ sets the variance of the stochastic kicks. Still, for

all values of θ, the Ornstein-Uhlenbeck process itself has mean zero and finite variance
(the probability that N reaches infinity is zero, see also Fig. 1.3).

The OU Process is often used to describe a phenomenological noise source: a stochas-
tic time series that, when added to a deterministic rate, results in a stochastic rate that
randomly fluctuates over time. Note that no biochemical details are taken into account.
The OU process instead simulates the net result of many stochastic process that to-
gether cause the rate of a certain process to be stochastic. Many stochastic signals have
a timescale at which its fluctuations die out. The parameter β in the OU process sets
this timescale.

Figure 1.3: Example path of an Ornstein-Uhlenbeck Process, with β = 1
2 , θ = 2, dt = 10−2.

Shaded area represents the standard deviation of many OU processes that all started
at Nt=0 = 0. The dashed line is the corresponding Wiener Process (Wt).
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Another crucial difference between the ME-approach and the SDE-approach, is that the
solution to a SDE is always a single realisation of the process (one of infinitely many tra-
jectories that the process could possible take). Different realisations of the Wiener process,
W(t), will result in different values of X(t). Only by then averaging over all possible tra-
jectories can one calculate the mean E [X(t)], the variance Var {X(t)}, or the probability
distribution p(X, t). Averaging over many paths may seem a daunting task, but mathe-
matical tricks to do this luckily exist. In the Appendix, we work out an example: given
an Ornstein-Uhlenbeck noise source (Box 2) that influences the rate of protein production,
what is the resulting variance and distribution of the concentration of that protein, and
how does this relate to (the mean and variance of) the same system modelled according to
the ME approach?

1.4.2 Noise propagation

Since protein content is stochastic, and proteins perform countless important tasks for the
cell, noise in gene expression results in a wide range of phenotypical behaviour [113, 145].
Genetically identical cells in the same, controlled, environment, can still grow at different
rates, become locked into different metabolic states, or differ in their sensitivity to antibi-
otics [144, 145, 171, 176, 192]. The intrinsic stochasticity of cellular reactions thus seems to
have a large impact on the cell’s physiology. However the opposite is also true: growth of
cell volume, while protein copy numbers remain constant, results in lower (diluted) protein
concentrations. Since most proteins are stable for times (much) longer than the cell cycle,
most proteins leave the cell due to dilution by growth and division rather than by degrada-
tion [133]. Thus, while noise in protein concentrations can influence the cell’s growth rate,
growth in turn adds additional feedback to the noise in protein concentrations. Complica-
tions due to feedbacks such as this ‘dilution-by-growth-feedback’, has sparked the interest
of many biologists, physicists and mathematicians that aim to quantify and understand
cellular noise properties.

Although the mathematical definition and description of gene expression noise is quite
clear, it remains difficult to understand how noise in gene expression influences (and is
influenced by) downstream process such as the expression of (other) proteins, the growth
rate, fitness, population fitness, etc. Note that the examples mentioned so far ignored any
effect of the modelled protein on the growth rate! Until recently, models of stochasticity
in gene expressions have often assumed the growth rate to be constant, although time-
lapse experiments show that the growth rate of individual E. coli cells differs significantly
between cells [61, 170], and fluctuates over time, on timescales faster than a single cell cycle
[86, 189]. Additionally, noise in the expression of proteins is known to propagate through
gene regulatory networks [21, 40, 139] and, via the proteins’ effect on metabolism, even
propagate to the cellular growth rate directly [48, 86, 171, 185]. Models that try to elucidate
not only the origin of observed noise, but also the effect of noise —how noise propagates
and reverberates through the cell to affect its functioning [86, 160, 178]— must thus include
the biological wiring of the cell, and, ultimately a biological level of complexity.
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Figure 1.4: Fluorescence over time of two reporters with identical promoters whose stochastic dy-
namics are dominated by extrinsic noise (A), or both extrinsic and intrinsic noise (B).
(C) In a scatter plot of the expression of the two reporters in a snapshot of a population
of bacteria, the shape of the cloud yields information about the relative importance of
extrinsic and intrinsic noise. Figure is adapted with permission from Elowitz et al [42].

1.4.3 Intrinsic and extrinsic noise

Early work decomposed the noise in the concentration of a particular protein into an intrin-
sic and extrinsic component. As discussed above, not all noise observed in a single protein
species stems only from the stochasticity that is intrinsic to the processes of transcription
and translation (intrinsic noise) of that specific protein species. Rates of transcription and
translation themselves may be influenced by (noisy) factors determined by the rest of the
cell, or even the cell’s local environment. Additionally, imperfect (asymmetrical) cell divi-
sion adds noise to the copy number of each protein. Such noise contributions are called
extrinsic noise sources. Extrinsic noise acts similarly on multiple protein species, and there-
fore causes the noise in two similar reporters to be, to some extent, correlated. If the stochas-
tic dynamics are mainly determined by the same, extrinsic noise sources, two fluorescent
reporters with identical promoters but different colours, should still give cells of similar
hue only (Fig. 1.4A). If instead noise in transcription and translation would be dominant,
individual cells should display different colours, changing over time, displaying the colour
of the reporter that happens to be most abundant at that time (Fig. 1.4B). This realisation
has lead to the operational definition of intrinsic and extrinsic noise as respectively the
decorrelated and the correlated part of the expression of two equal reporters (Fig. 1.4C). It
turns out that the intrinsic noise component scales as η2in = 1/E [x], with E [x] the protein’s
mean concentration11 [173]. The extrinsic noise component however, adds a baseline noise
level to all proteins and is dominant when the mean expression is large (and the intrinsic
component therefore small). Which processes contribute to extrinsic noise, and how strong
those contributions are, is a topic of ongoing discussion and study [18, 42, 87, 97, 109, 168,
177].

11 This scaling is reminiscent of a Poisson process, where events with a two times higher rate (in this case more
transcription/translation events per unit of time) have a two times lower coefficient of variation.
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1.4.4 Cross-correlations

When noise in the concentration of a particular protein propagates to other protein species
and to the growth rate, and growth itself also affects protein expression, the cell’s stochastic
dynamics very quickly become complicated. One way to further dissect the noisy dynam-
ics of gene expression and growth as they are happening inside living cells is by using
time-lapse microscopy. Experimental advances have made it possible to follow a single bac-
terial lineage over an extended period of time while measuring reporter concentrations and
the single-cell growth rate at a sub-cell-cycle time resolution [86, 167, 189]. The resulting
stochastic time-traces can be analysed by using a mathematical concept called the cross-
correlation function [16, 40, 59, 86, 132]. Cross-correlations capture the similarity between
two time-dependent signals of which one has been shifted by a certain delay time τ. If,
for example, stochastic fluctuations that first appear in the expression of protein A propa-
gate through the cell and at a later time arrive at protein B, the cross-correlation between
the concentrations A(t) and B(t) will have a positive value at certain positive delay times
(Fig. 1.5). Mathematically, the cross-correlation between two (real-valued) signals A(t) and
B(t) at delay time τ, RA,B(τ) is similar to their convolution:

RA,B(τ) :=
1√

Var {A}Var {B}

∫
(A(t) − E [A]) (B(t+ τ) − E [B])dt, (6)

where the means and variances of the signals are also calculated over time. For discrete
measurements the integral turns to a summation. For finite time-series, practical problems
appear when the overlap over which the correlation is calculated becomes too narrow
(Fig. 1.5B). Throughout this thesis we will revisit cross-correlation functions multiple times,
in order to dissect how their shapes are determined by the propagation of noise through
bacterial cells.

1.5 about this thesis

Up to here, this introduction has given an overview of the microbial world, of regulation
in the bacterial cells at the population level, and of the inherent stochasticity at the single
cell level. So far, limited by the experimental possibilities, earlier work mainly focused on
noise that propagates from a single protein species. This thesis started with the idea that
although the expression of only a small number of protein species can be measured at the
same time, the expression of all protein species in the cell is stochastic. Together, all these
proteins, all deviating from their regulated average, determine the current metabolic flux
and growth rate. In other words, the intrinsic noise of all unmeasured proteins contributes
to the extrinsic noise of a particular protein of interest. To make things more complex, all
proteins again receive feedback via global (density) constraints and growth, while individ-
ual protein species might receive additional, specific regulatory feedback. To gain intuition
about such a complex, noisy system with countless feedback loops, a mathematical frame-
work can be of great use. The goal is to calculate how the noise in all individual protein
species can transfer through the cell to influence the stochastic dynamics of a particular
protein of interest. In this thesis we try to derive such frameworks and compare, where
possible, with experimental data.

Chapter 2: Noise propagation in a holistic cell model. First, we build a general frame-
work that allows noise propagation properties to be calculated for an arbitrary number
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Figure 1.5: Visual explanation of the cross-correlation function between two finite, stochastic, dis-
crete time series. Although both time series are noisy, on average the signals can corre-
late, or anti-correlate, depending on the chosen delay. (A) The cross-correlation without
any delay (τ = 0) equals the correlation between the two signals. (B) For non-zero de-
lay times, a completely different correlation is measured between the signals (calculated
over the grey area). Each possible delay time results in a correlation-value as plotted
in the panels on the right. Here, the boundary effects also become tangible: for a large
delay time, the correlation is calculated over very little data and can therefore become
dominated by noise.

of protein species. The resulting analytical expressions predict cross-correlations between
the expression of a reporter gene and the growth rate. We found important quantities that
shape the cross-correlations: “Growth Control Coefficients”. Growth Control Coefficients
(GCCs) quantify to what extent a particular protein exerts control over the growth rate. (If
a protein’s GCC is large, it means that the growth rate is sensitive to the fluctuations in
the concentration of that particular protein.) Further study of the GCCs and their role in
the cross-correlations, shows how the noise in all proteins can affect the measured cross-
correlation of the single protein that is currently tracked. Using an extensive library study,
we distil noise parameters of the model from the measured noise levels of more than 1000

E. coli genes. Resulting cross-correlations qualitatively fit published cross-correlations in
three conditions.

Chapter 3: Growth Control Coefficients are subjected to evolution. This chapter contin-
ues the study of Growth Control Coefficients. In Chapter 2 we show that the GCCs shape
noise propagation properties in growing bacterial cells. Here, we argue that the GCCs
themselves are subject to evolution. If a cell could grow (on average) faster by increasing
the expression of a particular protein (i.e., that protein has a (too) high GCC!), natural selec-
tion for fast growth rates might well result in an increased average expression, as long as
no other constraints are hit. For cells that, by means of natural selection, optimised a part of
their proteome for faster growth, the GCCs of all proteins can be derived formally. In such
an optimum, a protein’s GCC scales linearly with its average abundance. In other words:
the higher the expression level of the protein, the stronger its fluctuations affect the growth
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rate! We show that abundant proteins, despite their low noise levels, are then responsible
for most of the variance in the cellular growth rate. This result is counter-intuitive, because
a common intuition was that proteins with a low expression level, due to their high noise
levels, are the important drivers of stochasticity at the cellular level.

Chapter 4: Noise propagation and cAMP-CRP regulation. So far, regulatory networks,
and the effect they possibly have on the single-cell stochasticity, have been ignored in this
thesis. This chapter therefore studies the interplay between the cAMP-CRP regulatory net-
work and stochasticity at the single-cell level, in a fixed environment. Measurements of
the stochastic dynamics of a CRP-regulated reporter, together with measurements of the
growth rate, show that removal of the cAMP-CRP feedback changes the stochastic dynam-
ics of E. coli cells. To explain this behaviour, a mathematical model is constructed and
analysed. The model matches the experiments and confirms that the changes in stochastic
dynamics are indeed caused by removing the regulation. Although the model itself de-
scribes only a small number of protein species (in contrast to the earlier, holistic cell model
from Chapter 2), intuitions learned about growth control are used in this study. Again,
we show an important role for fluctuations in other, not explicitly measured or modelled
proteins, in this case via their effect on the metabolic flux: due to (intrinsic) stochasticity of
all the metabolic proteins, the metabolic flux becomes stochastic, further transmitting the
noise to other parts of the cell.

Chapter 5: Dynamical cell model that predicts noise propagation in each condition.
The model presented in Chapter 4 was independently fitted to data from several condi-
tions: to describe cells growing in different conditions, different sets of a parameters had
to be found. A more logical approach would be to start with a model of gene expression
and growth that includes non-linear regulation functions with which (population of) cells
react to changes in their external environment. Hopefully, a stochastic extension of such a
model will then also be able to describe, in a fixed environment, the stochastic fluctuations
observed in individual cells. In this chapter we set the first steps in deriving a stochas-
tic mathematical model of a growing cell that sets the correct average expression upon
changing environments, but also reproduces the measured, single-cell stochastic dynam-
ics within each fixed environment. We stay as close to (population-level) data as possible,
while trying to explain the multiple experiments from Chapter 4 with a single set of pa-
rameters.
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abstract

In bacterial cells, gene expression, metabolism, and growth are highly interdependent and
tightly coordinated. As a result, stochastic fluctuations in expression levels and instanta-
neous growth rate show intricate cross-correlations. These correlations are shaped by feed-
back loops, trade-offs and constraints acting at the cellular level; therefore a quantitative
understanding requires an integrated approach. To that end, we here present a mathe-
matical model describing a cell that contains multiple proteins that are each expressed
stochastically and jointly limit the growth rate. Conversely, metabolism and growth affect
protein synthesis and dilution. Thus, expression noise originating in one gene propagates
to metabolism, growth, and the expression of all other genes. Nevertheless, under a small-
noise approximation many statistical quantities can be calculated analytically. We identify
several routes of noise propagation, illustrate their origins and scaling, and establish im-
portant connections between noise propagation and the field of metabolic control analysis.
We then present a many-protein model containing > 1000 proteins parameterized by pre-
viously measured abundance data and demonstrate that the predicted cross-correlations
between gene expression and growth rate are in broad agreement with published measure-
ments.

The contents of this chapter are published as:
Kleijn, Krah, and Hermsen, “Noise propagation in an integrated model of gene expression and

growth’’, PLoS Computational Biology, 2018. doi: 10.1371/journal.pcbi.1006386

17

10.1371/journal.pcbi.1006386


18 noise propagation in an integrated model of gene expression and growth

2.1 introduction

Few processes are more fundamental to life than the growth and proliferation of cells.
Bacterial cells in particular are highly adapted to grow rapidly and reliably in diverse
habitats [70]. Yet, the composition of individual bacteria grown in a constant environment
is known to fluctuate vigorously, in part due to the stochastic nature of gene expression [42,
86, 123, 174]. Many experimental and theoretical studies have shed light on the origins,
characteristics and consequences of this “noisy” expression [21, 25, 42, 47, 86, 104, 123, 137,
139, 149, 161, 168, 174, 176, 195, 200]. Still, it remains unknown to what extent, and by
what routes, noise in gene expression propagates through the cell and affects the rate of
growth [61, 86, 178], which is often considered a proxy for its fitness [17, 178].

Recently, important progress towards understanding noise propagation in single cells
has been made through experiments in which the instantaneous growth of individual Es-
cherichia coli cells was monitored in real time under fixed growth conditions [86, 170]. Such
experiments have revealed large fluctuations in the growth rate, with coefficients of varia-
tion of the order of 25%, which in part result from noise in the concentrations of metabolic
enzymes [86]. Conversely, growth-rate fluctuations affect the concentrations of individual
enzymes, because the cell’s constituents are diluted whenever the cell grows [182]. Such
results emphasize that a clear understanding of these processes is complicated by the fact
that gene expression, metabolism, and growth are highly interdependent, involving multi-
ple layers of feedback and cellular constraints.

This interdependence is also central to a series of recent studies that characterize the aver-
age composition and growth rate of Escherichia coli cultures in balanced exponential growth
under variation of the growth medium [68, 89, 91, 112, 155, 172, 198]. In particular, these
experiments have revealed striking linear relations between their mean proteomic compo-
sition and their mean growth rate [65, 68, 89, 155, 158, 198]. Phenomenological models
have demonstrated how such “growth laws” can be understood as near-optimal solutions
to constrained allocation problems [17, 116, 128, 157]. These results also stress that global
physiological variables and constraints strongly affect the expression of individual genes.
As such, both these experiments and the single-cell experiments mentioned above sug-
gest a “holistic” perspective: the behavior of individual components cannot be understood
without some knowledge of the cell’s global physiological state [12, 160].

Here, we present a model of bacterial cells growing under fixed external growth condi-
tions, in which gene expression, metabolism and growth are fully integrated. We offer a
highly simplified description that nevertheless imposes several essential global cellular con-
straints. Both gene expression and growth rate fluctuate due to the stochastic synthesis of
many protein species that together control the rates of metabolism and growth. Conversely,
the rate of metabolism constrains the protein synthesis rates and the growth rate sets the
dilution rate of all proteins. As a result, noise in the expression of each gene propagates
and affects the expression of every other gene as well as the growth rate—and vice versa.

Below, we first introduce the generic modeling framework and its assumptions. We then
make an excursion to the theory of growth control, in order to define growth-control
coefficients and establish connections between the propagation of noise and the field of
Metabolic Control Analysis. Next, we discuss how the concentration of each protein is af-
fected by the synthesis noise in all other proteins; this exposes a hidden assumption in a
standard operational definition of intrinsic and extrinsic expression noise. We subsequently
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Figure 2.1: Integrated model of stochastic gene expression and cell growth. The cell contains many
protein species, with proteome mass fractions φi that sum to 1. Mass fractions are in-
creased by protein synthesis but diluted by growth. The synthesis rate πi of each species
i is modulated by a noise source Ni. The instantaneous growth rate µ reflects the total
rate of protein synthesis. Proteins affect metabolism and thus the deterministic growth
rate µd(~φ), as quantified by growth-control coefficients Cµi . A fraction fi of the total
metabolic flux is allotted to the synthesis of protein i. The inherent noise in the expres-
sion of each gene reverberates through the cell, affecting cell growth and the expression
of every other gene.

explain the noise modes that characterize the noise propagation between gene expression
and growth in the context of a toy model with just two proteins. Lastly, we present a many-
protein model that includes 1021 protein species with experimentally measured parameters.
We demonstrate that the cross-correlations functions between expression and growth rate
predicted by this model capture the main features of published measurements.

2.2 results

2.2.1 Modeling framework

We here discuss the key assumptions of the modeling framework (Fig. 2.1); see SI, sec-
tion S2.1 for details. We consider a culture of bacterial cells that has reached steady-state
exponential growth under fixed external growth conditions. We study fluctuations of gene
expression within individual cells in this steady state, and in particular how these fluctu-
ations reverberate through the growing cell. Similar assumptions connecting the increase
in biomass, the cellular growth rate, protein synthesis, and growth-mediated dilution were
explored in a recent review article [76].

The mass density of E. coli cells is dominated by protein content [20] and under tight
homeostatic control [101]. We assume that this homeostasis also eliminates long-lived
protein-density fluctuations in single cells. Then, the volume of a cell is proportional to
its protein mass M :=

∑
i ni, where ni is the abundance (copy number) of protein i. (We

ignore that different proteins have different molecular weights.) The instantaneous growth
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rate is then defined by µ := Ṁ/M, and the proteome fraction φi := ni/M of enzyme i
measures its concentration. Differentiation of φi with respect to time then yields

φ̇i = πi − µφi, (2.1)

where πi is the synthesis rate per protein mass. (Here we neglect active protein degradation,
which on average amounts to about 2% of the dilution rate [122].) By definition, proteome
fractions obey the constraint

∑
iφi = 1. Combined with equation 2.1 this results in

µ =
∑
i

πi. (2.2)

That is, the growth rate equals the total rate of protein synthesis.
Another key assumption of our model is that the cellular growth rate is an intensive quan-

tity. That is: given fixed mass fractions, the growth rate does not depend on the cell size, as
suggested by the observation that individual E. coli cells grow approximately exponentially
within their cell cycle [71, 86]. Based on this, we express the synthesis rate of protein i as:

πi = fi µd(~φ) +Ni, (2.3)

in which
µd(~φ) := J/M. (2.4)

The first term in equation 2.3 is an intensive function; it captures the deterministic effect
of the cellular composition ~φ = (φ1,φ2, . . .) on the metabolic flux J that quantifies the rate
of biomass production, normalized by the protein mass M. (Note that, here and below,
we use the term metabolism in a broad sense; it is intended to encompass all catabolic
and anabolic processes required for biomass production and cell growth, including protein
synthesis.) The coefficients fi specify which fraction of this flux is allocated towards the
synthesis of protein species i. Because the fi are fractions,

∑
i fi = 1.

The second term of equation 2.3 couples each synthesis rate πi to a zero-mean Ornstein–
Uhlenbeck noise source Ni that represents the stochasticity of both transcription and trans-
lation [40]. Each noise source is characterized by an amplitude θi and a rate of reversion to
the mean βi; the latter’s inverse β−1

i characterizes the time scale of intrinsic fluctuations
in πi. The variance of Ni is given by Var(Ni) = θ2i /(2βi). All noise sources are mutually
independent, and we neglect other sources of noise, such as the unequal distribution of
molecules over daughter cells during cell division (see Discussion).

Combining equation 2.2 and 2.3 reveals that

µ = µd(~φ) +
∑
i

Ni, (2.5)

which identifies µd(~φ) as the growth rate afforded by a given proteome composition ~φ in
the zero-noise limit. Given a function µd(~φ), equations 2.1–2.4 fully define the dynamics of
the cell.

Below, we focus on the simplest case where, under given environmental conditions, the
allocation coefficients fi are constant. This means that the cell does not dynamically adjusts
its allocation in response to fluctuations in expression levels. We note, however, that such
dynamical effects of gene regulation could be included by allowing the fi to depend on
intra- and extra-cellular conditions, and in particular on the cellular composition ~φ. (See SI,
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sections S2.1.6 and S2.4.2) We also stress that the allocation coefficients may differ strongly
between growth conditions, as demonstrated by the growth laws mentioned above. For
example, the fi’s of ribosomal proteins must be considerably larger in media that support
a fast growth rate than in media with strong nutrient limitation, because the mean mass
fraction of ribosomal proteins increases with the growth rate [158]. Here, however, we
describe stochastic cell growth under fixed environmental conditions, so that the (mean)
allocation of resources is well-defined and knowable in principle—for example through
proteomics data.

Fig. 2.1 is an illustration of the modeling framework. Noise in the synthesis of a pro-
tein species induces fluctuations in its mass fraction (equation 2.1). Through their effect on
metabolism, these fluctuations propagate to the deterministic growth rate µd, which modu-
lates the synthesis of all protein species (equation 2.3). In parallel, all noise sources directly
impact the growth rate µ (equation 2.5) and thus the dilution of all proteins (equation 2.1).

Linearization under a small-noise approximation

The results below rely on the assumption that equations 2.1–2.5 may be linearized around
the time-averaged composition ~φ0. This transforms equation 2.5 to

δµ

µ0
=
∑
i

C
µ
i

δφi
φ0,i

+
∑
i

Ni
µ0

, (2.6)

where δφi is the deviation of φi from its time average φ0,i and δµ the deviation of µ from
µ0 := µd( ~φ0). (See SI, section S2.1 for derivations.) The coefficients Cµi are defined as

C
µ
i :=

[
φi
µd

∂µd

∂φi

]
~φ0

. (2.7)

In the terminology of linear noise models, the Cµi are transfer coefficients: they quantify to
what extent fluctuations in φi transmit to µd. Equation 2.6 demonstrates that the growth
rate is affected by all noise sources, both directly (second term on the right-hand side) and
indirectly through fluctuations in the protein mass fractions.

2.2.2 Transfer coefficients are growth-control coefficients

The transfer coefficients Cµi are reminiscent of the logarithmic gains defined in biochem-
ical systems theory, which relate enzyme abundances to the metabolic flux in a given
pathway [154]. It has previously been shown that these gains are relevant in the context of
noise propagation [138]. Here, however, we consider the growth rate of the cell rather than
the flux through a distinct pathway. In this section, we connect the transfer coefficients Cµi
to the control of cellular growth and the field of Metabolic Control Analysis (MCA) [63,
77].

In MCA, flux-control coefficients (FCCs) CJi are defined that quantify to what extent an
enzyme concentration φi limits (controls) a metabolic flux J [63, 77]:

CJi :=

[
φi
J

∂J

∂φi

]
~φ0

. (2.8)

In direct analogy to this definition of FCCs, the transfer coefficients of equation 2.7 can be
interpreted as growth-control coefficients (GCCs) that quantify each enzyme’s control of
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the growth rate. From equation 2.4 a direct link between FCCs and GCCs can be derived
(see also [196], SI section S2.3.1, and Fig. S2.1):

C
µ
i = CJi −φi. (2.9)

The GCCs are specified by the sensitivity of the growth rate µd(~φ) to changes in the
proteome composition ~φ, evaluated in the steady-state mean, ~φ0. Both the mean composi-
tion ~φ0 and the function µd clearly differ between growth conditions; therefore, the GCCs
depend on the growth conditions as well.

As mentioned, studies on the resource allocation of cells grown under different growth
conditions have revealed striking empirical relations between the mean proteome compo-
sition and the mean cellular growth rate [68, 155, 158, 198]. Even though these growth
laws describe relations between growth rate and composition, they should not be confused
with µd. The growth laws describe correlations between the mean composition and the
mean growth rate under variation of the growth conditions, whereas µd describes the de-
terministic effect of the instantaneous composition on the instantaneous growth rate under
a particular, fixed growth condition. There is no direct relation between the two. By exten-
sion, the growth laws do not directly translate into knowledge on the GCCs.

Growth-control coefficients and their sum rule

An important difference between metabolic flux and cellular growth rate lies in their behav-
ior under a scaling of the system size. It is routinely assumed that metabolic fluxes scale
linearly with the system size, meaning that an increase in the abundances of all enzymes
by a factor α increases the metabolic flux J by the same factor α. That is, fluxes are extensive
variables. Based on this assumption, a famous sum rule has been derived for FCCs [63, 77]:∑

i

CJi = 1. (2.10)

In contrast, we assumed the growth rate to be invariant under scaling of the system size,
i.e, that the growth rate is an intensive variable. (Indeed, as equation 2.4 directly shows, if
J is extensive, µd must be intensive, and vice versa.) Under this assumption, GCCs obey a
markedly different sum rule: ∑

i

C
µ
i = 0. (2.11)

This sum rules articulate a delicate trade-off: the excess of one protein implies the lack of
another.

Both sum rules are special cases of Euler’s homogeneous function theorem. Specific
derivations are presented in SI, section S2.3.2. In general, for an arbitrary function f with a
scaling relation f(α~φ) = αkf(~φ), a sum rule can be derived by differentiating this equation
with respect to α and evaluating the result in α = 1. The particular cases k = 1 (for the flux
J), and k = 0 (for the growth rate µd) lead to equations 2.10 and 2.11.

In theory, all expression levels could be regulated such that Cµi = 0 for all protein species
i. In reality, however, many protein species do not have a function within metabolism or
biomass growth. By definition, the metabolic flux J does not depend on the expression
levels of these proteins; therefore, their FCCs are zero. The GCC of such a protein, with
mass fraction φh, then follows from equation 2.9:

C
µ
h = −φh. (2.12)
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That is, the control of all non-metabolic enzymes on the growth rate is negative. The sum
rule then implies that the sum of GCCs of all proteins that do contribute to biomass growth
must be positive and equal to∑

i/∈H

C
µ
i = −

∑
h∈H

C
µ
h =

∑
h∈H

φh = φH. (2.13)

where H denotes the set of non-metabolic proteins. This goes to show that any system that
bears the cost of producing non-metabolic proteins must contain other proteins that have
positive growth control.

This conclusion has implications for the propagation of noise. We saw that the the noise
transfer coefficients appearing in the linear noise model are in fact GCCs. The analysis in
the previous paragraph demonstrates that these GCCs cannot all vanish; it then follows
that there must be linear-order noise transfer from protein levels to the growth rate in all
cells that maintain non-metabolic proteins.

Non-metabolic proteins are common, both in wild-type cells and in engineered con-
structs. In wild-type E. coli, the expression level of proteins that do not contribute to
biomass growth were estimated recently in a study that combined a genome-scale allo-
cation model with proteomics data sets [135]. Direct estimates of φH ranged from 25%
to 40%, depending on the precise growth conditions. Although not directly beneficial to
the growth of the cell in constant environments, the non-contributing proteome fraction
is thought to provide fitness benefits to cells that encounter frequent changes in growth
conditions [135]. Furthermore, synthetic biologists commonly study systems with a large
expression burden [15].

2.2.3 Separating in- and extrinsic noise components

Within the above framework, many statistical properties can be calculated analytically [40,
86]. In particular, the noise level of the concentration of protein i, quantified by the coeffi-
cient of variation ηi, can be expressed as:

η2i =
(1−φ0,i)

2

φ20,i

Var(Ni)
µ0(µ0 +βi)

+
∑
j6=i

Var(Nj)
µ0(µ0 +βj)

. (2.14)

The derivation is provided in the SI, section S2.2.2. Equation 2.14 shows that the coefficient
of variation has two components: the first term results from the noise in the synthesis of
the protein itself, the second from the noise in the synthesis of all other proteins. Each term
is proportional to the variance of the corresponding noise source, but weighted by a factor
that decreases with the mean growth rate µ0 and the reversion rate βi of that noise source.
This analysis confirms that the inherent noise in the synthesis of one protein affects all
other proteins.

A fundamental distinction is commonly made between intrinsic and extrinsic noise in
gene expression [138]. Intrinsic noise results from the inherently stochastic behavior of
the molecular machinery involved in gene expression; extrinsic noise from fluctuations in
the intra- and extracellular environment of this machinery. In this sense, the two terms in
equation 2.14 can be identified as intrinsic and extrinsic contributions.

Complications arise, however, if the standard operational definition of these terms is
applied [42, 168]. This definition considers two identical reporter constructs R and G ex-
pressed in the same cell (Fig. 2.2A). Noise sources extrinsic to both reporters affect both
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Figure 2.2: Limitations of the operational definition of in- and extrinsic expression noise.(A) Extrin-
sic noise is measured by the covariance between the expression levels of two identical
reporter systems R and G. This presupposes that the intrinsic noise NR of system R af-
fects concentration φR but not φG (orange outline), so that the covariance between φR
and φG quantifies the contribution of extrinsic sources Next,i. (B) But in our model, NR
affects the growth rate and thus the dilution of φG. This adds a negative term to the
covariance, which no longer measures just the extrinsic noise.

reporters identically, inducing positively correlated fluctuations in the concentrations of
the reporter proteins. Intrinsic noise sources instead produce independent fluctuations in
each concentration. Extrinsic noise is therefore measured by the covariance between both
expression levels; intrinsic noise by their expected squared difference. This operational-
ization, however, implicitly assumes that intrinsic noise does not propagate between the
reporters. This assumption is violated in our model because the synthesis of reporter R
directly contributes to the dilution of protein G (Fig. 2.2B). Consequently, the covariance
between the expression levels has two contributions:

Cov(φR,φG)

φ20,b
= −

2(1−φ0,b)

φ
0,b

Var(Nb)

µ0(µ0 +βb)

transmission between R and G

+
∑
j6=R,G

Var(Nj)
µ0(µ0 +βj)

other sources

, (2.15)

where the label "b" indicates quantities that are by definition identical for both expression
systems. The second term on the right-hand side is positive and stems from noise sources
that affect both reporters identically. The first term, however, is negative; it reflects the
transmission of noise between reporters R and G. It would be misleading to identify equa-
tion 2.15 as the extrinsic component of the noise—it is not even guaranteed to be positive.
We conclude that the operational definition is not suitable when noise propagates between
arbitrary genes.

2.2.4 Expression–growth correlations in a two-protein toy model

The circulation of noise in the cell can be studied by measuring cross-correlations between
expression and growth rate in single-cell experiments [86]. Interpreting measured cross-
correlations, however, is non-trivial. To dissect them, we now discuss a toy version of the
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model with just two protein species, X and Y. Despite its simplicity, it displays many fea-
tures seen in more realistic models.

Within the linear noise framework, φY–µ and πY–µ cross-correlations, respectively de-
noted RφYµ(τ) and RπYµ(τ), can be calculated analytically [40]. Up to a normalization, the
results can be written as:

RφYµ(τ) ∝ C
µ
YSY(τ)

Control

+φ0,YAY(τ)

Autogenic

−
∑
j=X,Y

φ0,j

[
C
µ
j Sj(τ) +φ0,jAj(τ)

]
Dilution

; (2.16)

RπYµ(τ) ∝ C
µ
YAY(−τ)

Control

+φ0,YBY(τ)

Autogenic

+
∑
j=X,Y

C
µ
j

[
C
µ
j Sj(τ) +φ0,jAj(τ)

]
Transmission

. (2.17)

(For a full derivation, not limited to the two-protein case, see SI, sections S2.1-S2.2. The two-
protein case is discussed further in SI section S2.4) These equations are plotted in Fig. 2.3A
and B (see caption for parameters). As the equations show, the cross-correlation functions
are linear combinations of three functions Si(τ), Ai(τ), and Bi(τ), which are also illustrated
in the figure.

To aid interpretation, the cross-correlations can be decomposed into four noise modes,
as indicated in equations 2.16 and 2.17.

The control mode (Fig. 2.3C) reflects the control of enzyme Y on the growth rate. Noise
NY in the synthesis of Y causes fluctuations in φY, which transfer to the growth rate in pro-
portion with the GCC C

µ
Y . Because the effect of φY on µ is instantaneous, the contribution

to the φY–µ cross-correlation is proportional to the symmetric function SY(τ). In contrast,
the effect of πY on µ involves a delay; hence the contribution to the πY–µ cross-correlation
is proportional to the asymmetric function AY(τ). In both cases, the amplitude scales with
C
µ
Y .
The autogenic mode (Fig. 2.3D) is a consequence of equation 2.2. Because the growth

rate matches the total rate of protein synthesis, noise in the synthesis of Y instantly affects
the growth rate, resulting in a noise mode in the πY–µ cross-correlation that is proportional
to the symmetric function BY(τ). With a delay, this noise also affects φY, adding an asym-
metric mode to the φY–µ cross-correlation. This mode does not depend on the control of Y;
instead, its amplitude is proportional to the mean concentration φ0,Y.

The dilution mode (Fig. 2.3E) pertains only to the φY–µ cross-correlation. It reflects
that the growth rate of the cell is also the dilution rate of protein Y (equation 2.1). With
a delay, upward fluctuations in µ therefore cause downward fluctuations in φY. A subtle
complication is that noise in the synthesis rate of both proteins reaches µ via two routes:
through the immediate effect of πY on µ, and through the delayed effect of πY on φY, which
in turn affects µ in proportion with CµY (see in equation 2.6). Together, these routes result
in a mode towards which each protein contributes both a symmetric and an asymmetric
function.

Lastly, the transmission mode (Fig. 2.3F) is unique to the πY–µ cross-correlation. It re-
flects that all noise sources affect the cell’s composition ~φ and therefore µd; this in turn
induces fluctuations in the synthesis rate πY. The noise sources again affect the growth rate
via the two routes explained above, causing a symmetric and an asymmetric component to
the πY–µ cross-correlation for each protein.
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Figure 2.3: Noise modes in a toy model containing only two protein species, X and Y. (A): Analytical
solution for the cross-correlation between protein Y’s proteome fraction φY and growth
rate µ (gray curve), verified by simulations (gray diamonds, details in SI, section S2.4).
The contributing noise modes are indicated (colored curves). (B): Same as (A), but for the
synthesis rate πY. The cross-correlation functions are linear combinations of three classes
of functions, called Ai(τ), Bi(τ), and Si(τ) (see SI, section S2.2, equations S2.47–S2.49 for
their definitions). In panels (A) and (B), noise modes that are proportional to just one of
these functions are annotated accordingly. (C)–(F): Noise propagation routes underlying
the noise modes. The control mode and the autogenic mode arise from noise source NY
alone. Both noise sources NX and NY contribute to the dilution and transmission modes,
but only the contribution of NX is illustrated in Fig. (D) and (F). Parameters for (A) and
(B): CµY = 0.25; φ0,Y = 0.33; mean growth rate µ0 = 1 h−1; noise sources of NY and NX
have amplitudes θY = 0.5 and θX = 0.5 and reversion rates βY = βX = 4µ0.
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The above analysis shows that, even in a highly simplified linear model, the cross-
correlations are superpositions of several non-trivial contributions. The intuitions gained
from this exercise will be used below when we present the results of a more complex
model.

The effects of gene regulation

Above, we assumed that the cell allocates a fixed fraction fi of its metabolic flux towards the
synthesis of protein i. Within this two-protein model all cross-correlations can still be com-
puted if the fi are linear(ized) functions of the concentrations ~φ (see SI, sections S2.1.6 and
S2.4.2, and Fig. SS2.2). The resulting feedback regulation affects the decay of fluctuations:
a negative feedback shortens the correlation time scales and reduces variance, whereas
positive feedback lengthens them and increases variance (cf. [39, 47, 174]).

2.2.5 Expression–growth correlations in a many-protein model

In single E. coli cells, the cross-correlations between gene expression and growth rate have
been measured by Kiviet et al[86]. To test whether the above framework can reproduce their
results, we constructed a model that includes 1021 protein species with realistic parameters.

In the experiments, micro-colonies of cells were grown on lactulose (a chemical analog of
lactose) and expression of the lac operon was monitored using a green fluorescent protein
(GFP) reporter inserted in the operon. Because intrinsic fluctuations in GFP expression af-
fect the cross-correlations directly as well as indirectly, through their impact on the growth
rate and the expression of other genes, we modeled this reporter construct explicitly (see
Fig. 2.4A, and SI, section S2.5). Specifically, the lac operon O was represented as a collection
of three proteins Y, Z, and G (for LacY, LacZ, and GFP) affected by a shared noise source
NO in addition to their private sources NY, NZ, and NG. The GCC of the operon as a whole
is the sum of the GCCs of its genes.

By varying the mean expression of the lac operon with a synthetic inducer, Kiviet et al
measured cross-correlations in three growth states with different macroscopic growth rates:
“slow”, “intermediate”, and “fast” [86]. Empirically, the macroscopic growth rate obeyed a
Monod law [129] as a function of the mean lac expression. We therefore mimicked the three
growth states by choosing their mean lac expression levels and growth rates according to
three points on a Monod curve that approximates the empirical one (Fig. 2.4B, labels D, E,
and F). Via equation 2.7, the same curve also is also used to estimate the GCC of the lac
operon in each condition. Under “slow” growth conditions, the lac enzymes limit growth
considerably (large GCC); under “fast” conditions, lac activity is almost saturated (small
GCC).

To choose realistic parameter values for all other proteins, we used a published dataset
of measured means and variances of E. coli protein abundances [173]. For each of the
1018 proteins in the dataset, the model included a protein with the exact same mean and
variance (see Fig. 2.4C). This uniquely fixed the amplitudes of all noise sources. The GCCs
of all proteins were randomly sampled from a probability distribution that obeyed the sum
rule of equation 2.11.1 (See Materials and Methods, and SI, section S2.5.2)

1 More about this distribution in Chapter 3.



28 noise propagation in an integrated model of gene expression and growth

protein copy number n

η2
(n
)

C

D E F

A

φY

πZ φZ
C
μ
ZNZ

NY C
μ
Y

πG φG
C
μ
GNG

+
1µ

+

+ +
φO CO

+
πO

+
0

NO

μ

πY

μd(φ)

fG

fZ

fY

0.00 0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

D

E

F

B

g
ro

w
th

ra
te

 µ
(h

-1
)

operon mass fraction φO

D FE

time delay(h)

fast growth

πG-μ

φG-μ

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

slow growth

φG-μ

πG-μ

time delay(h)

intermediate

φG-μ

πG-μ

time delay(h)

π
G
-μ

cr
o

ss
co

rr
e

la
tio

n
φ

G
-μ

cr
o

ss
co

rr
e

la
tio

n
cr

os
sc

or
re

la
tio

n

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 -6 -4 -2 0 2 4 6

dilution

total φG-μ

control
(operon)

autogenic
(operon)

transmission

total πG-μ

control 
(GFP)

autogenic
(GFP)

Legend for panels D, E, F

50

10
5

1
0.50

0.10
0.05 0.1 1 10 100 1000

Figure 2.4: (A) Cartoon of the noise propagation network. (B) Monod curve describing the mean
growth rate as a function of lac expression. Black dots indicate the operon mass fractions
and growth rate used to calculate the cross-correlations in (D)-(F). (C) Noise distribution
of the proteome (gray cloud) taken from Ref. [173], and the values chosen for proteins
on the lac operon (black dots). Green dashed lines are guides for the eye. (D)-(F) Exper-
imental [86] (top panels) and theoretical (middle and bottom panels) cross-correlations
for three growth conditions. Proteome fraction–growth and production–growth cross-
correlations are plotted as solid and dashed black lines, respectively. As in Fig. 2.3A and
B, coloured lines show the contributing noise modes.
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Comparison with measured cross-correlations

The experimental results on the cross-correlations between GFP synthesis πG, GFP expres-
sion φG, and growth rate µ [86] are reproduced in Fig. 2.4D–F (top panels), together with
the model predictions (middle and bottom panels).

The predicted cross-correlations are linear superpositions of the same noise modes as
described for the two-protein model. However, the dilution and transmission modes are
now driven by all 1022 noise sources, and there are two instances of the control and au-
togenic modes: one associated with the expression and GCC of the operon as a whole,
and one with the expression and GCC of GFP separately. (See SI, equations S2.89–S2.94,
section S2.5.)

At slow growth, the φG − µ cross-correlation is almost symmetrical (Fig. 2.4D, middle
panel). Here the control mode of the operon dominates due to its large GCC. At higher
growth rates, the autogenic modes become more prominent because their amplitudes are
proportional to the expression level of the lac genes; at the same time, the amplitudes of
the control modes decrease with the GCCs (Fig. 2.4F). As a result, the cross-correlation
becomes weaker and more positively skewed.

At slow growth, the πG–µ cross-correlation is negatively skewed because the operon
control mode is dominant (Fig. 2.4D, bottom panel). It also shows a notable transmission
mode. With increasing growth rate, the autogenic modes increase in importance, which
narrows the peak, increases its height, and reduces its asymmetry. The patterns seen in
both cross-correlations are in good qualitative agreement with the experimental data (top
panels).

Alternative dataset, similar results

In the dataset that we used to parameterize protein expression, the abundances are con-
sistently low compared with other studies [1, 155]. However, an alternative analysis based
on different abundance data [1] and sampled variances [195] yielded similar results (SI
section S2.5.3, and Fig. S2.3). We conclude that the qualitative trends are insensitive to the
precise dataset used.

2.3 discussion

We have presented a model of stochastic cell growth in which the growth rate and the
expression of all genes mutually affect each other. Systems in which all variables commu-
nicate to create interlocked feedback loops are generally hard to analyze. Analytical results
were obtained by virtue of stark simplifying assumptions. Nevertheless, the predicted and
measured cross-correlations have similar shapes and show similar trends under variation
of the growth rate.

That said, a few differences are observed. Chiefly, at slow and intermediate growth rates
the model consistently underestimates the decorrelation timescales (peak widths). In the
model, the longest timescale is the doubling time; this timescale is exceeded in the experi-
mental data. This suggests a positive feedback that is not included in the model, possibly
as a result of gene regulation (also see Fig. S2), or else a noise source with a very long
auto-correlation time.
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Alongside their measurements, Kiviet et al published their own linear noise model,
which fits their data well. In fact, the shapes of the noise modes emerging in that model
are mathematically identical to those presented above [40]. Yet, the models differ strongly
in their setup and interpretation. Kiviet et al model a single enzyme E that is produced and
diluted by growth. It features only three noise sources: one directly affects the production
of E (“production noise”), one the growth rate µ (“growth noise”), and one affects both
simultaneously (“common noise”). While these ingredients are sufficient to fit the data, the
interpretation and molecular origins of the common and growth noise are left unspecified.
In our model, which includes many proteins, similar noise modes emerge without explicit
growth or common noise sources. Each enzyme perceives fluctuations in the expression of
all genes as noise in the growth rate; this results in a dilution mode similar to that of Kiviet
et al. Furthermore, noise in the synthesis of each enzyme instantaneously affects the growth
rate (equation 2.2) due to the assumed homeostatic control of protein density. Hence, this
noise behaves as a common noise source, which explains why the autogenic mode is math-
ematically identical to the common-noise mode of Kiviet et al. We conclude that noise in
the expression of many enzymes, combined with homeostatic control of protein density,
can contribute to the observed but unexplained common- and growth-noise modes.
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Figure 2.5: Deceptive concentration–growth cross-correlations. (A) Positive Pearson correlation de-
spite a negative operon GCC, due to a dominant autogenic mode. Same parameters
as Fig. 2.4F, but with C

µ
O = −0.035. (B) Negative Pearson correlation despite a posi-

tive operon GCC, due to noisy GFP expression. Same parameters as Fig. 2.4F, but with
operon noise much smaller than GFP noise (see Materials and Methods).

Control coefficients are routinely used in metabolic control analysis [45, 63, 77, 130]
and have also been studied in the context of evolutionary optimization [10, 196]. In our
linearized model, GCCs emerged as transfer coefficients, indicating that these quantities
also affect the propagation of noise. Conversely, this suggests that GCCs could be inferred
from noise-propagation measurements. For example, the Pearson correlation coefficient
(cross-correlation at zero delay) between φi and µmight be used as an indication of control.
However, we have seen in Fig. 2.3 that the φ–µ correlation involves several noise modes
that are independent of the GCC. As a result, the signs of the Pearson correlation and the
GCC do not necessarily agree (see Fig. 2.5A). In addition, the intrinsic noise and GCC of
the reporter protein can result in a negative cross-correlation even if the operon’s control
is positive (Fig. 2.5B). Alternatively, the asymmetry of the control mode in the π–µ cross-
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correlation could perhaps be exploited [86] (Fig. S2.4). Unfortunately, this asymmetry is
also affected by other modes, such as the transmission mode, which can mask the effect
(Fig. S4C). We conclude that, in any case, such results have to be interpreted with great
caution, ideally guided by a quantitative model.

Future theoretical work should aim to relax assumptions and remove limitations. The
assumed strict control of protein density can be relaxed by allowing density fluctuations. If
these are long-lived, they will likely weaken the autogenic mode and introduce new modes
of their own. Also, additional noise sources can be included that do not stem directly from
protein synthesis. In particular, we ignored noise originating from cell division despite its
importance [52, 149, 188]. In addition, gene regulation will affect some noise modes; this
can be studied by allowing the fi to depend on ~φ. It will also be interesting to include
non-protein components of the cell, such as RNAs.

A further caveat is that the linear approximation used here is only reasonable if the
noise is sufficiently weak. In fact, in the presence of strong non-linearities, the approach
may even break down completely. For instance, it has been shown that cellular growth can
be stochastically arrested when an enzyme whose product is toxic to the cell is expressed
close to a threshold beyond which toxic metabolites build up to lethal doses [146]. In such
circumstances, expression level noise in those enzymes can have a highly nonlinear effect
on the cellular growth rate, resulting in subpopulations of growth-arrested cells [146]. That
said, under more ordinary conditions linear models that describe noise in cellular networks
have previously been used to great success [40, 86].

Throughout this document we have considered noise sources that act on each production
rate independently. Alternatively, one could hypothesize that the observed fluctuations in
protein concentrations might instead originate from noise in the allocation of the flux—that
is, from fluctuations in the allocation coefficients fi. This would be expected under the sup-
position that ribosomes are always fully occupied and translating at a constant, maximal
rate, so that the relative rates of protein synthesis are determined solely by competition be-
tween different mRNAs based on their relative abundances and their translation initiation
rates. Protein synthesis rates then become intrinsically correlated: an increase in the syn-
thesis rate of one protein requires an simultaneous decrease in the synthesis rates of other
proteins. In future work, such alternative models could be explored in detail. Preliminary
simulations, however, show a striking symmetry in the φi–µ cross-correlation and a consis-
tent asymmetry in the πi–µ cross-correlation (for details see SI, section S2.6, and Fig. S2.5).
This can be understood as follows. If an increase in a particular synthesis rate is always
compensated by a decrease in other production rates, the noise does not affect the sum
of all production rates nor the growth rate instantaneously. Therefore, no autogenic mode
should be present. Notably, in our model it is the autogenic mode that explains the asym-
metry in the measured φi–µ cross-correlations as well as the dominant symmetric mode in
the πi–µ cross-correlations under the fast growth condition. We conclude that noise on flux
allocation alone cannot readily explain these experimental findings and additional noise
sources would have to be included, such as the common noise as defined by Kiviet et al.

Lastly, we hope that this work will inspire new experiments that can confirm or falsify
the assumptions and results presented above. In particular, single-cell measurements of
mass-density of protein-density fluctuations [58, 119] could establish whether our assump-
tion of density homeostasis is warranted. Also, additional single-cell measurements could
determine whether expression noise indeed propagates between reporter proteins, adding
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to their covariance, and whether the amplitude of the various noise modes scales with the
GCCs and mass fractions as predicted.

Material and Methods
We here specify the parameters used for the many-protein model; see also SI section S2.5.2.

Growth rates and protein abundances. The Monod curve (Fig. 2.4B) is given by µ0 = µmaxφ0,O/(φhalf +

φ0,O), with µ0 the mean growth rate, φ0,O the mass fraction of the lac-operon proteins, µmax =

0.8 h−1, and φhalf = 0.005. The three growth states correspond to three points on this curve, with
φ0,O/φhalf = {0.3, 1.3, 15}; this mass is shared equally among proteins Y, Z, and G. The mass fractions
of the remaining proteins matched the proportions of the dataset [173].

Ornstein–Uhlenbeck noise sources. The amplitudes of all noise sources were uniquely fixed by
the constraints that (i) the CV of each Lac protein was 0.15, (ii) the amplitude of NO was 1.5 times
that of NG [42], and (iii) all other CVs agreed with the dataset [173]. All noise reversion rates were
set to β = 4µmax.

GCCs. To select the GCCs, we first randomly assigned proteins (≈ 25% of the total mass) to the
non-metabolic sector H. After the lac reporter construct was added, the GCC of each protein h ∈ H
was set by equation 2.12. In each growth state, the GCC of the lac operon was calculated from the
Monod curve, which yielded CµO = {0.77, 0.43, 0.063}. Assuming GFP is non-metabolic and the GCCs
of Y and Z are equal, we set CµG = −φ0,G and CµY = C

µ
Z =

(
C
µ
O −CµG

)
/2. The GCCs of all other

proteins were sampled from a probability distribution that respects equation 2.11 and assumes that
proteins with a larger abundance tend to have a larger GCC (see SI section S2.5.2).
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S U P P L E M E N TA RY I N F O R M AT I O N C H A P T E R 2

In this part, we provide detailed derivations and analyses pertaining to the results pre-
sented in the main text.

We aim to describe the stochastic behavior of a cell under conditions of steady-state ex-
ponential growth. A cell contains many protein species. Each of these may affect growth
to some extent via an effect on metabolism. (Note that, here and below, we use the term
metabolism in a broad sense; it is intended to encompass all catabolic and anabolic pro-
cesses required for biomass production and cell growth, including protein synthesis.) As
mentioned in the main text, our results are based on several crucial assumptions. In partic-
ular, we assume that

• the protein density of the cell is under tight homeostatic control,

• protein synthesis is inherently stochastic,

• the cellular growth rate is an intensive1 quantity.

These assumptions are used repeatedly in the text below.

s2.1 derivation of the linear noise model

We start with a detailed derivation of the linear noise model.

s2.1.1 Abundances, volume, and growth rate

The abundances of the protein species are given by the vector ~n(t) = {n1(t),n2(t), . . .},
where ni(t) is the copy number of protein species i at time t. We define the total protein
mass of the cell by

M :=
∑
i

ni, (S2.1)

where we ignore that different proteins have different molecular weights. (To avoid clutter,
we left out the explicit time dependence of the variables; below, we do so whenever this
is unlikely to cause confusion.) Under the assumption that the protein density of a cell is
tightly controlled, M is proportional to the volume of the cell. Therefore, we define the
instantaneous growth rate µ as the rate at which M increases:

µ :=
1

M

dM
dt

. (S2.2)

1 In this context, an intensive quantity is a quantity that does not change if the size of the cell is changed,
provided the concentrations of all enzymes are kept constant. By contrast, an extensive quantity is a quantity
that, under the same conditions, increases linearly with the size of the cell. It follows that any quantity that is
a function of intensive quantities only, is itself an intensive quantity. Also, the ratio of two extensive quantities
is an intensive quantity.

33
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s2.1.2 Proteome fractions and their dynamics

The proteome fractions of the different protein species in the cell are given by the vector

~φ :=
~n

M
. (S2.3)

Again, assuming that the mass M is proportional to the cellular volume, we can interpret
the mass fractions as concentrations.

We denote the rate of protein synthesis by the vector ~p(t) = {p1(t),p2(t), . . .} and as-
sume that, under conditions of balanced exponential growth, degradation of proteins is
negligible compared to protein dilution due to growth [122]. Then the time derivative of
equation S2.3 yields the following system of dynamical equations:

d~φ

dt
= ~π− µ~φ, (S2.4)

where the vector ~π := ~p/M is the protein synthesis rate per unit of protein mass.
By definition, the mass fractions add up to one:∑

i

φi = 1. (S2.5)

Therefore, an increase in the concentration of one protein must go at the expense of the
concentration of another. Applied to equation S2.4, this constraint also implies that

µ =
∑
i

πi. (S2.6)

That is, the growth rate is equal to the total rate of protein synthesis per unit of mass.
In reality, even if protein density is under strict control, it is likely to show fluctuations

on short time scales. In mammalian cells, mass fluctuations have indeed been measured,
but appeared to dissipate on time scales of less than 20 s [119]. By comparison, the auto-
correlation times of the expression and growth-rate fluctuations observed in E. coli cells
are very long—they are of the order of hours. On this time scale, we therefore expect
equation S2.6 to be a reasonable approximation.

s2.1.3 Stochastic protein-synthesis rate

The protein synthesis rate of each protein species i is assumed to have the following form:

πi = fiJ(~n)/M+Ni. (S2.7)

The first term on the right-hand side models the deterministic dependence of the protein
synthesis rate on the protein content of the cell. The function J(~n) represents the global
metabolic flux that fuels protein synthesis and growth. The vector ~f = {f1, f2, . . .} indicates
which fraction of this metabolic flux is allocated towards the synthesis of each of the protein
species. As such, it obeys the constraint ∑

i

fi = 1. (S2.8)
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In general, ~f is itself likely to be a function of intra- and extracellular variables, including
the protein content of the cell, due to the dynamical regulation of gene expression. Further
below we will reflect on this general case, but, unless indicated otherwise, we focus on the
special case where ~f is constant.

The second term on the right-hand size of equation S2.7 models the stochasticity of
protein synthesis. Each Ni is a colored Ornstein–Uhlenbeck noise source with zero mean,
reversion rate βi, and amplitude θi, obeying the following stochastic differential equation
(Itō):

dNi(t) = −βiNi dt+ θi dWi(t), (S2.9)

where each Wi(t) is a Wiener process. Importantly, all noise sources are assumed to be
mutually independent.

s2.1.4 Stochastic growth

Combined, equations S2.6 and S2.7 yield the following expression for the growth rate µ:

µ = J(~n)/M+
∑
i

Ni. (S2.10)

The first term, J(~n)/M, is a function of the protein content of the cell; we call it µd(~n). The
assumption that the growth rate is an intensive quantity translates to the requirement that

µd(α ~n) = µd(~n), (S2.11)

for any α > 0. Because µd is intensive andM is extensive, the metabolic flux J(~n) =Mµd(~n)

must be extensive, i.e.:
J(α ~n) = αJ(~n), (S2.12)

for any α > 0. This is indeed routinely assumed in the field of metabolic control anal-
ysis [77]. Using equation S2.11, we note that µd(~n) = µd(~n/M) = µd(~φ), so that equa-
tions S2.7 and S2.10 can be rewritten as

πi = fi µd(~φ) +Ni, (S2.13)

µ = µd(~φ) +
∑
i

Ni. (S2.14)

Equation S2.14 shows that all noise sources affect the growth rate in two ways: directly
through the second term, and indirectly through the first, because of fluctuations in the
composition ~φ.

Provided a function µd(~φ) is given, equations S2.4, S2.13 and S2.14 together fully specify
the dynamics of ~π, ~φ, and µ.

s2.1.5 Linearization

To obtain analytical results, we assumed that fluctuations in the concentrations ~φ are small
enough to warrant a linear approximation. Below, we describe the linearization of equa-
tions S2.4, S2.13, and S2.14 around the time average ~φ0 of ~φ.
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We start with equation S2.4. We introduce transformed variables:

~δφ := ~φ− ~φ0, (S2.15)

δ~π := ~π− ~π0, (S2.16)

δµ := µ− µ0, (S2.17)

where µ0 := µd( ~φ0) and ~π0 := ~fµ0. In terms of these variables, equation S2.4 reads:

˙δφi
µ0φ0,i

=

(
fi
φ0,i

− 1

)
+

(
fi
φ0,i

)
δπi
π0,i

−
δµ

µ0
−
δφi
φ0,i

−
δφi
φ0,i

δµ

µ0
. (S2.18)

To proceed, we exploit that fi = φ0,i to linear order. To see why, we first observe from
equation S2.13 that

fi =
E [πi]

E
[
µd(~φ)

] , (S2.19)

where E [X] denotes the steady-state expectation value of variable X. Next, equation S2.14

implies that
E
[
µd(~φ)

]
= E [µ] , (S2.20)

and equation S2.4 that
E [πi] = E [µφi] . (S2.21)

Therefore,
fi
φ0,i

=
E [µφi]

φ0,iE [µ]
= 1+ Cov

(
δφi
φ0,i

,
δµ

E [µ]

)
, (S2.22)

which is 1 up to quadratic corrections. We can estimate the size of these corrections (the
covariance term) as follows. We write:

Cov
(
δφi
φ0,i

,
δµ

E [µ]

)
= Rηφiηµ, (S2.23)

where R is the correlation coefficient between φi and µ, and ηx is the coefficient of variation
of variable x. Taking rather large estimates for each, we arrive at Rηφiηµ / 0.5× 0.4×
0.25 = 0.05. This shows that quadratic corrections are small and we can indeed assume
that fi = φ0,i to good approximation. (We also verified this using simulations; see below.)
Based on this, equation S2.18 takes the following form after linearization:

δφ̇i
µ0φ0,i

=
δπi
π0,i

−
δµ

µ0
−
δφi
φ0,i

. (S2.24)

We now move to equation S2.13. After linearization, it can be written as:

δπi
π0,i

=
∑
j

C
µ
j

δφj

φ0,j
+ νi, (S2.25)

where we introduce growth-control coefficients (GCCs), defined as

C
µ
j :=

[
φj

µd

∂µd

∂φj

]
~φ0

. (S2.26)
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(See section S2.3.1 for a further discussion of these quantities.) The Ornstein–Uhlenbeck
noise terms νi := Ni/π0,i are identical to the original noise terms Ni, except that their
noise amplitudes ϑi are rescaled as ϑi = θi/π0,i. Equation S2.25 shows that the synthesis
of a protein species is affected by its own noise source, but also by fluctuations in the
concentrations of all other proteins, in as far as these fluctuations affect the growth.

These same methods can be applied to equation S2.14, the linearized version of which is
given by

δµ

µ0
=
∑
i

C
µ
i

δφi
φ0,i

+N. (S2.27)

Here we introduced the shorthand

N =
∑
i

fi νi, (S2.28)

which is a weighted sum of all noise sources.
We now use equations S2.25 and S2.27 to rewrite equation S2.24 as

δφ̇i
µ0φ0,i

= νi −N−
δφi
φ0,i

. (S2.29)

Equations S2.25, S2.27, and S2.29 together form the basis for the analyses in the main
text.

To test the quality of the analytical results based on the linearization of the equations
and the approximation that fi = φ0,i, we simulated the nonlinear equations S2.4, S2.13

and S2.14 for a system containing just two proteins X and Y, using a convenient nonlinear
function µd(~φ) = (aXφX + aYφY)/(φX +φY). (Note that µd is indeed an intensive function,
as it should be. See p. 9 of this document for details on the simulation method.) We then
numerically calculated the cross-correlations based on these simulations, and compared
them to the corresponding analytical predictions. We chose the parameters of the simu-
lation (including aX and aY) such as to match the parameters used in Fig. 2.3A and B
of the main text. In that figure, the simulation results based on the non-linear equations
are plotted (gray diamonds) alongside the analytical predictions based on the linearized
equations (solid gray line). They show excellent agreement, despite significant noise lev-
els (coefficients of variation of φX, φY, and µ were 0.09, 0.19, and 0.26, respectively). This
shows that the approximations made in this section are excellent for sufficiently smooth
functions µd(~φ).

s2.1.6 Including dynamical gene regulation

In the previous sections, we assumed that a fixed fraction fi of the metabolic flux is allo-
cated towards the synthesis of protein i. In this section we briefly describe the more general
case where ~f depends on the composition of the cell, as expected due to transcriptional and
translational regulation. For this case, analytical solutions are generally much harder to ob-
tain. Nevertheless, we can gain some insight into the regulated system by studying the
structure of the resulting equations.

We assume that ~f is an intensive quantity—that is, that it can be written as a function of
the relative abundances ~φ. Then equation S2.13, for the production rate πi, generalizes to:

πi = fi(~φ)µd(~φ) +Ni, (S2.30)
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with 0 6 fi(~φ) 6 1 and
∑
i fi(

~φ) = 1. This expression describes how the composition
~φ of the cell differentially affects the production rate of each protein species. Linearizing
equation S2.30 around ~φ0, we find:

δπi =
∑
j

∂

∂φj

[
fi(~φ)µd(~φ)

]
δφj +Ni

= fi( ~φ0)µ0
∑
j

(
φ0,j

µ0

∂µd

∂φj
+

φ0,j

fi( ~φ0)

∂fi
∂φj

)
δφj

φ0,j
+Ni, (S2.31)

which results in:
δπi
π0,i

=
∑
j

(
C
µ
j +Cfij

) δφj
φ0,j

+ νi. (S2.32)

Here, new control coefficients emerge: regulational control coefficients (RCCs), defined as:

Cfij :=

[
φj

fi

∂fi
∂φj

]
~φ0

. (S2.33)

These RCCs quantify to what extent small changes in the cell’s composition affect the
allocation of the metabolic flux over the synthesis of various proteins species. As apparent
from equation S2.32, the RCCs modulate the GCCs in an additive fashion.

Remarkably, the RCCs vanish from the expression for δµ:

δµ =
∑
i

π0,i
∑
j

(
C
µ
j +Cfij

) δφj
φ0,j

+
∑
i

π0,iνi

= µ0
∑
j

C
µ
j

δφj

φ0,j
+ µ0

∑
i,j

fi( ~φ0)C
fi
j

δφj

φ0,j
+ µ0N

= µ0
∑
j

C
µ
j

δφj

φ0,j
+ µ0

∑
j

(∑
i

∂fi
∂φj

)
δφj + µ0N

= µ0

∑
j

C
µ
j

δφj

φ0,j
+N

 . (S2.34)

This derivation uses π0,i = µ0fi( ~φ0) and hinges on the fact that
∑
i fi(

~φ) = 1, so that∑
i ∂fi/∂φj = 0.
The linearized dynamical equation for δφi in the presence of regulation becomes:

˙δφi
φ0,iµ0

=
δπi
π0,i

−
δµ

µ0
−
δφi
φ0,i

= νi −N−
δφi
φ0,i

+
∑
j

Cfij
δφj

φ0,j
. (S2.35)

By comparing with equation S2.29 we concluded that gene regulation adds a single term
that describes (to linear order) the combined effect on fi of the fluctuations in the concen-
trations of all proteins species j.
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s2.2 calculating statistical properties

s2.2.1 Fourier transforms

The linearized expressions (section S2.1.5 ) enable us to calculate various statistical proper-
ties. To do so, it is convenient to work with Fourier-transformed equations and variables.
Based on equations S2.25, S2.27, and S2.29, we will now derive expressions for the Fourier
transforms of the protein concentrations, the synthesis rates, and the growth rate. Further
below, these expressions will be used to compute (co-)variances and correlations between
the variables.

We denote the Fourier transform of variable y as ỹ. Taking the Fourier transform of both
sides of equation S2.29 and using the transforms of equations S2.25 and S2.27, we find

δ̃φj

φ0,j
=

µ0
µ0 + ı̊ω

(
ν̃j − Ñ

)
, (S2.36)

where ω is the Fourier frequency and ı̊ denotes the imaginary unit (to distinguish it from
indices i). To arrive at this result, we used that

∂̃f

∂t
= ı̊ωf̃ (S2.37)

for any time-dependent function f.
By combining equation S2.36 with the Fourier transform of equation S2.27, we find a

direct expression for the Fourier-transformed growth-rate deviations:

δ̃µ

µ0
=
∑
j

C
µ
j

µ0
µ0 + ı̊ω

(
ν̃j − Ñ

)
+ Ñ

=
∑
j

(
µ0

µ0 + ı̊ω
C
µ
j +φ0,j

)
ν̃j (S2.38)

Here we used the definition of N (equation S2.28), the fact that fi = φ0,i to linear order,
and the sum rule for GCCs presented in the main text:∑

i

C
µ
i = 0. (S2.39)

(See section S2.3.2 for a derivation.) After analogous algebra, equation S2.25 yields

δ̃πi
π0,i

=
∑
j

µ0
µ0 + ı̊ω

C
µ
j ν̃j + ν̃i. (S2.40)

s2.2.2 Statistical quantities

In this section, we first provide analytical expressions for cross-covariance functions be-
tween several variables [40]. Equations S2.36, S2.38, and S2.40 have the same mathemati-
cal form as analogous equations appearing in earlier models [40, 86]. Consequently, our
derivations of the cross-covariance functions are directly parallel to their earlier work. The
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resulting expressions are then used to calculate various stochastic quantities, including
the coefficients of variation of the protein expression levels and the (cross-)correlations be-
tween growth rate and expression. Based on these, we provide details on several results
presented in the main text, notably the complications in the distinction between intrinsic
and extrinsic noise, and the mode decomposition of expression–growth cross-correlation
functions.

Definitions and notation

The cross-covariance χxy(τ) between variables x(t) and y(t) is defined as

χxy(τ) := E [δx(t)δy(t+ τ)] , (S2.41)

where δx(t) := x(t) − E [x] and δy(t) := y(t) − E [y]. In this notation, a positive value of
χxy(τ) means that the value of x co-varies with the value of y taken a time τ later; that is,
y “follows” x. The convolution theorem states that

χxy(τ) =

∫
eı̊ωτδ̃x

∗
δ̃y

2π
dω, (S2.42)

where the star denotes complex conjugation. The Fourier transforms that were computed
in the previous section can therefore be used verbatim to calculate (cross-co)variances for
all variables µ, φi and πi.

The functions χxy(τ) directly yield various other important quantities. In particular, the
variance of x is given by

Var(x) = χxx(0), (S2.43)

and the coefficient of variation (CV) is defined as

ηx :=

√
Var(x)
E [x]

=
σx

x0
, (S2.44)

with σx the standard deviation of x. The cross-correlation function Rxy(τ) is given by

Rxy(τ) =
χxy(τ)√

Var(x)Var(y)
; (S2.45)

at delay τ = 0 it reduces to the Pearson correlation coefficient.
The cross-covariances of µ, φi and πi are calculated by inserting S2.36, S2.38, and S2.40

into equation S2.42. In the process, we encounter products of noise sources ν̃i
∗ν̃j (Fourier-

transformed cross-covariances of the noise sources), which, based on equation S2.9, can be
expressed as:

ν̃i
∗ν̃j = δij

ϑ2i
β2i +ω

2
. (S2.46)

Here, the Kronecker delta δij reflects the mutual independence of the noise sources. After
using this identity, all cross-covariances can be written as linear combinations of three
families of functions, Bi(τ), Ai(τ) and Si(τ), resulting from three Fourier integrals that can
be solved explicitly with Cauchy’s residue theorem.
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The first function is

Bi(τ) :=

∫
eı̊ωτ

2π
|ν̃i|

2 dω

=
ϑ2i
2βi

e−β|τ|. (S2.47)

This function is symmetric; it is the auto-covariance of an Ornstein–Uhlenbeck process and
therefore characterized by a single timescale βi.

The second function is

Ai(τ) :=

∫
eı̊ωτ

2π

µ0
µ0 − ı̊ω

|ν̃i|
2 dω

= ϑ2iµ0


e−µ0|τ|

β2i − µ
2
0

−
e−βi|τ|

2βi(βi − µ0)
, if τ 6 0,

e−βi|τ|

2βi(βi + µ0)
, if τ > 0.

(S2.48)

This is an asymmetric function. It appears in the cross-correlation between variables X and
Y when X is instantaneously affected by an Ornstein–Uhlenbeck noise source, while Y is
affected by the same noise source with a delay characterize by rate µ0. For example, the
effect of noise in the synthesis of a protein on its concentration involves such a delay; as a
result, the function Ai(τ) appears in the covariance between πi and φi.

The third function is

Si(τ) :=

∫
eı̊ωτ

2π

µ20
µ20 +ω

2
|ν̃i|

2 dω

=
ϑ2iµ

2
0

2(β2i − µ
2
0)

(
e−µ0|τ|

µ0
−
e−βi|τ|

βi

)
. (S2.49)

This is again a symmetric function. It emerges whenever the covariance is taken between
variables that are both affected by an Ornstein–Uhlenbeck process with the same delay
characterized by rate µ0. We note that

Ai(τ) +Ai(−τ) = 2Si(τ). (S2.50)

Auto-covariances and coefficients of variation

In terms of the functions B(t), A(t), and S(t), the auto-covariances for φi, πi, and µ are
given by

χφiφi(τ)

φ20,i
= (1− 2φ0,i)Si(τ) +

∑
j

φ20,jSj(τ), (S2.51)

χπiπi(τ)

π20,i
= Bi(τ) + 2C

µ
i Si(τ) +

∑
j

(
C
µ
j

)2
Sj(τ), (S2.52)

χµµ(τ)

µ20
=
∑
j

[
C
µ
j

(
C
µ
j + 2φ0,j

)
Sj(τ) +φ

2
0,jBj(τ)

]
. (S2.53)
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From these auto-covariances we obtain the CVs ηx:

η2φi =

(
µ0(1− 2φ0,i)

2βi(βi + µ0)

)
ϑ2i +

∑
j

(
µ0φ

2
0,j

2βj(βj + µ0)

)
ϑ2j (S2.54)

η2πi =

(
1

2βi
+

C
µ
i µ0

βi(βi + µ0)

)
ϑ2i +

∑
j

 µ0

(
C
µ
j

)2
2βj(βj + µ0)

 ϑ2j (S2.55)

η2µ =
∑
j

(
C
µ
j (C

µ
j + 2φ0,j)µ0

2βj(βj + µ0)
+
φ2j,0

2βj

)
ϑ2j (S2.56)

Here we used equation S2.43 and the special cases Bi(0) = ϑ2i /(2βi) and Ai(0) = Si(0) =

ϑ2iµ0 [2βi(βi + µ0)]
−1 derived from equations S2.47, S2.48, and S2.49.

Intrinsic and extrinsic noise

Defining the shorthand

Si := Si(0) =
ϑ2iµ0

2βi(βi + µ0)
=

Var(Ni)
φ20,iµ0(µ0 +βi)

(S2.57)

as a compound parameter associated to noise source i, where Var(Ni) is the variance of
the Ornstein–Uhlenbeck process Ni, allows us to write equation S2.54 in the form of equa-
tion (14) of the main text, or as:

η2φi = (1−φ0,i)
2Si

intrinsic

+
∑
j6=i

φ20,jSj

extrinsic

. (S2.58)

The two terms can be interpreted as intrinsic and extrinsic components of the noise. A
discussion of this expression is given in the main text.

To see how the intrinsic and extrinsic components behave as a function of the protein’s
mean mass fraction φ0,i, we assume that the relative noise amplitude ϑi scales as φ−1/2

0,i ,
so that Si ∼ φ−1

0,i . Equation S2.58 then predicts two regimes: at low expression levels, the

intrinsic noise dominates and the CV scales as φ−1/2
0,i . At high expression levels, the in-

trinsic component becomes negligible compared to the extrinsic component, and the CV
approaches a plateau. This type of scaling has indeed been observed in experiments [173]
and has been predicted by other theory as well [195].

Cross-covariances and cross-correlations

The second half of the main text focuses on the analysis of cross-correlations between gene
expression and growth. Here we give explicit expressions for the cross-covariances between
expression levels ~φ, protein production rates ~π, and the growth rate µ; in conjunction with
the CVs from equations S2.54, S2.55, and S2.56, these expressions can be used to to compute
the cross-correlation functions.
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The cross-covariances are:
χφiµ(τ)

φ0,iµ0
= Cµi Si(τ)

Control

+φ0,iAi(τ)

Autogenic

−
∑
j

φ0,j

[
C
µ
j Sj(τ) +φ0,jAj(τ)

]
Dilution

, (S2.59)

χπiµ(τ)

π0,iµ0
= Cµi Ai(−τ)

Control

+φ0,iBi(τ)

Autogenic

+
∑
j

C
µ
j

[
C
µ
j Sj(τ) +φ0,jAj(τ)

]
Transmission

, (S2.60)

χφiφj(τ)

φ0,iφ0,j
= −φ0,iSi(τ) −φ0,jSj(τ) +

∑
k

φ2kSk(τ), (S2.61)

χπiπj(τ)

π0,iπ0,j
= Cµi Ai(−τ) +C

µ
j Aj(τ) +

∑
k

(
C
µ
k

)2
Sk(τ). (S2.62)

In these expressions we have indicated the four noise modes as defined and illustrated in
the main text.

The cross-covariance between expression levels of different proteins χφiφj(τ) is symmet-
rical. Any asymmetry that may be observed in this function will therefore remain unex-
plained by our model. Such an asymmetry could be explained by noise sources outside of
protein production that act differently on the two proteins, or by gene regulation.

Whereas χφiφj(τ) is fully determined by the expression levels ~φ and the noise properties
of the proteins, the cross-covariance between protein production rates χπiπj(τ) contains
information about the GCCs. Measurements on this function may therefore shed light on
the growth-control properties of proteins.

s2.3 results on growth-control coefficients

s2.3.1 Relation between GCCs and FCCs

As stated in the main text, the growth-control coefficient Cµi , flux control coefficient CJi ,
and mean mass fraction φ0,i of a protein species i are tightly related through

CJi = C
µ
i +φ0,i. (S2.63)

Here, we provide a derivation. (See also [10, 196] for a similar derivation and application
in an evolutionary context.)

By definition, µd(~n) := J(~n)/M(~n); equation S2.63 then follows from the product rule for
differentiation:

CJi =

[
φi

J(~φ)

∂J(~φ)

∂φi

]
~φ0

=
φ0,i

µd( ~φ0)M( ~φ0)

∂
[
µd(~φ)M(~φ)

]
∂φi


~φ0

=
φ0,i

µd( ~φ0)

(
1

M( ~φ0)

[
∂µd

∂φi

]
~φ0

+ µd( ~φ0)

[
∂M

∂φi

]
~φ0

)
= Cµi +φ0,i. (S2.64)
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In this derivation, we used that ∂M(~φ)/∂φi = 1 and M( ~φ0) = 1, which both follow from
the definition M(~n) :=

∑
ni.

s2.3.2 Sum rules

In this section, we provide derivations of the sum rules for flux control coefficients (FCCs)
and growth-control coefficients (GCCs)

In metabolic control analysis [63, 77] , the FCC of enzyme i with respect to a metabolic
flux J has been defined as

CJi :=

[
φi
J

∂J

∂φi

]
~φ0

(S2.65)

where φi is the concentration of enzyme i. A classical result is the sum rule for FCCs:∑
i

CJi = 1. (S2.66)

This result is ultimately based on the common assumption that metabolic fluxes are exten-
sive quantities; that is, for any α > 0 and any composition ~φ it is assumed that

J(α~φ) = αJ(~φ). (S2.67)

Differentiating both sides of this equation with respect to α and evaluating the result in
α = 1 yields: ∑

i

φi
∂J

∂φi
= J(~φ), (S2.68)

where the summation runs over all protein species. Dividing by J directly results in the
sum rule of equation S2.65.

Our definition of growth-control coefficients (GCCs) proceeds analogously, as

C
µ
i :=

[
φi
µd

∂µd

∂φi

]
~φ0

. (S2.69)

For GCCs, however, a different sum rule holds:∑
i

C
µ
i = 0. (S2.70)

The derivation of this result is directly analogous to that for FCCs, except that µd is as-
sumed to be intensive rather than extensive. That is, for any α > 0 and any composition ~φ

it is assumed that
µd

(
α~φ
)
= µd

(
~φ
)

. (S2.71)

Differentiating both sides with respect to α and evaluating the resulting expression in α = 1

now gives ∑
i

φi
∂µd

∂φi
= 0. (S2.72)

Dividing by µd directly results in the sum rule of equation S2.70.
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s2.4 application to the two-protein toy model

In the main text, a toy model is presented in which the cell contains only two protein
species, called X and Y. We here derive the mathematical expressions underlying these
results.

s2.4.1 Cross-correlations

For the two-protein model, the general expressions of equations S2.45, S2.59 and S2.60

evaluate to the following cross-correlations RφYµ(τ) and RπYµ(τ):

RφYµ(τ) =

Control

C
µ
YSY(τ)+

Autogenic

φ0,YAY(τ)−

Dilution

φ0,Y
[
C
µ
YSY(τ) +φ0,YAY(τ)

]
+φ0,X

[
C
µ
XSX(τ) +φ0,XAX(τ)

]
ηφYηµ

,

(S2.73)

RπYµ(τ) =

Control

C
µ
YAY(−τ)+

Autogenic

φ0,YBY(τ)+

Transmission

C
µ
X

[
C
µ
XSX(τ) +φ0,XAX(τ)

]
+CµY

[
C
µ
YSY(τ) +φ0,YAY(τ)

]
ηπYηµ

,

(S2.74)

where the coefficients of variation in the denominators are given by

η2φY
=

(
(1−φ0,Y)

2µ0ϑ
2
Y

2βY(βY + µ0)
+

φ20,Xµ0ϑ
2
X

2βX(βX + µ0)

)
, (S2.75)

η2πY
=

(
1+

µ0C
µ
Y

(
C
µ
Y + 2

)
βY + µ0

)
ϑ2Y
2βY

+
µ0
(
C
µ
X

)2
ϑ2X

2βX(βX + µ0)
, (S2.76)

η2µ =

(
µ0C

µ
X

(
C
µ
X + 2φ0,X

)
βX + µ0

+φ20,X

)
ϑ2X
2βX

+

(
µ0C

µ
Y

(
C
µ
Y + 2φ0,Y

)
βY + µ0

+φ20,Y

)
ϑ2Y
2βY

. (S2.77)

The expressions above can be further simplified by inserting the constraints

C
µ
X +CµY = 0, (S2.78)

φ0,X +φ0,Y = 1. (S2.79)

s2.4.2 Regulation in the two-protein model

In deriving the results above, we assumed that ~f is constant; that is, the synthesis rate of
the proteins is not dynamically regulated in response to fluctuations in the protein mass
fractions. Generally, if gene regulation is included, analytical results become hard to obtain.
The simple case of the two-protein toy model is an exception, as we now show.

Assuming, as before, that ~f is an intensive quantity, we find the additional constraint
(sum rule)

CfY
X +CfY

Y = 0. (S2.80)
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Furthermore, ~f denotes the fractional allocation of resources towards each protein species,
so that

fX + fY = 1. (S2.81)

Therefore, the regulation has only one degree of freedom and is thus fully characterized
by just one parameter:

CfX
X = CfY

Y = −CfY
X = −CfX

Y , (S2.82)

which quantifies the auto-regulation of protein X, that of Y, the regulation of Y by X, and
vice versa.

These constraints allow us to calculate the two-protein cross-correlations analytically.
Equation S2.35 simplifies to

˙δφY

φ0,Yµ0
= CfY

X
δφX

φ0,X
+CfY

Y
δφY

φ0,Y
+ (1−φ0,Y)(νY − νX) −

δφY

φ0,Y

= −CfY
Y

−δφY

1−φ0,Y
+CfY

Y
δφY

φ0,Y
+ (1−φ0,Y)(νY − νX) −

δφY

φ0,Y

=

(
CfY

Y
1−φ0,Y

− 1

)
δφY

φ0,Y
+ (1−φ0,Y)(νY − νX). (S2.83)

The Fourier transform then reads

δ̃φY

φ0,Y
= (1−φ0,Y)

(
µ0

µY + ı̊ω

)
(ν̃Y − ν̃X) . (S2.84)

This equation differs only slightly from equation S2.36: apart from a constant prefactor
(1−φ0,Y), a term µ0 in the denominator is replaced by

µY = µ0

(
1−

CfY
Y

1−φ0,Y

)
. (S2.85)

Because equations S2.36 and S2.84 have the same form, their solutions are analogous.
To illustrate the effect of regulation in this toy model, the expression–growth cross-

correlation function is plotted in Fig. S2.2A, for different values of CfY
Y . Positive auto-

regulation widens the cross-correlation function, indicating increased auto-correlation timescales;
negative auto-regulation narrows it, indicating decreased auto-correlation timescales. With-
out regulation, dilution by growth quenches fluctuations in the concentration φY with the
associated time scale µ−10 . In the presence of regulation this time scale is adjusted to µ−1Y .
This directly determines the time scales of the cross-correlations.

Furthermore, regulation affects the CV of the expression of both X and Y, because the
term µ0 in the denominator of equation S2.75 is replaced by to µY. This is shown in
Fig. S2.2B. If CfY

Y is negative (negative auto-regulation), fluctuations are actively quenched;
the variance of φY is therefore reduced. Conversely, if CfY

Y is positive (positive auto-regulation)
fluctuations are amplified; the variance in φY is therefore increased.

s2.4.3 Stochastic simulation of the two protein model

To test the analytical results on the two-protein toy model, we used the Euler–Maruyama
method to propagate the system of stochastic differential equations and thus calculated
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the cross-correlations numerically. These simulations are based on the non-linear equa-
tions S2.4, S2.13 and S2.14, and a non-linear function µd(~φ) was used. As such, they demon-
strate that, provided µd(~φ) is sufficiently smooth, the approximations used in the deriva-
tion of the linearized equations are appropriate. The results are included in Fig. 2.3A and
B.

In this simulation we chose the parameters of the non-linear system such as to match the
parameters used for the plots in Fig. 2.3A and B. Specifically, we specified the allocation
coefficient as fY = 0.33, and the parameters of the noise sources as θY = 0.5, θX = 0.5,
βY = 4/h, and βX = 4/h, as in Fig. 2.3A and B. For the the deterministic part of the growth
rate we chose µd(~φ) := (aXφX +aYφY)/(φX +φY), with aX = 0.63/h and aY = 1.37/h, such
that µ0 = µd( ~φ0) ≈ µd(~f) = 1/h and the control coefficients would approximate the ones
in Fig. 2.3 (CµY = −CµX = 0.25).

We propagated the dynamical equations in discrete time steps ∆t by repeating the fol-
lowing calculations. (Here, the index i is either X or Y.)

µd(t) = (aXφX(t) + aYφY(t))/(φX(t) +φY(t)),

πi(t) = fi µd(t) +Ni(t),

µ(t) = µd(t) +NX(t) +NY(t),

φi(t+∆t) = φi(t) (1−∆tµ(t)) +∆t πi(t),

Ni(t+∆t) = N(t) (1−βi∆t) +
√
∆t θidW(t).

(S2.86)

In the last line, dW(t) is random variable drawn from a standard normal distribution
each time step. We ran the simulation for roughly 30.000 doubling times, using time steps
∆t = 10−3.

After the simulation, we measured φY to test whether fY ≈ φY as is assumed in sec-
tion 2.5. Indeed, fY did not differ from φY by more than 5%. We next verified that
µ0 := µd( ~φ0) ≈ 0.993/h was close to 1/h and that CµY = φ0,Y (aY/µ0 − 1) ≈ 0.249 was
close to 0.25, as intended.

s2.5 application to the many-protein model

As described in the main text, we applied the modeling framework to model a full cell,
containing 1021 protein species in total. We here provide the mathematical details of this
model. First we explain how the operon construct was represented. Then we describe our
parameter choices and how they were informed by previously published experimental
data.

s2.5.1 GFP reporter fused to the lac operon

As mentioned in the main text, Kiviet et al. performed experiments in which the expression
levels of the genes lacY and lacZ were reported by a green fluorescent protein (GFP), whose
gene was transcriptionally fused to the lac operon [86]. Thus, the GFP signal was used as a
proxy for the concentration of the lac proteins LacY and LacZ. To include this construct in
the model, we assumed that the synthesis noise of each protein, introduced by transcrip-
tion of the operon and the translation of its genes, can be linearly decomposed into two
components. The first component reflects noise originating from processes that similarly
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affect all genes on the operon, adding to the correlation between their expression levels. In
particular, this includes fluctuations in the copy number of the mRNA transcript due to
transcriptional noise. The second component reflects noise originating from processes that
affect each gene independently, including all post-transcriptional processes.

Formally, we included noise sources NY, NZ, and NG, respectively acting on LacY, LacZ,
and GFP synthesis only, as well an additional noise source NO that simultaneously affects
the synthesis of all of these proteins. That is, equation S2.13 was modified to:

πi = fiµd( ~φ0) +Ni + I
O
i

π0,i

π0,O
NO. (S2.87)

Here, IOi is an indicator function that specifies whether protein i is encoded on the lac
operon: IOi = 1 for i ∈ O := {Y, Z, G} and IOi = 0 otherwise.

As before, all noise sources are mutually independent Ornstein–Uhlenbeck processes
with zero mean. For simplicity, we incorporated the operon noise such that it affects the
three genes in proportion with their average production rate. In the limit that νi = 0 for
i ∈ O and NO 6= 0, the three proteins behave as a single protein O, with the same scaling
Nj = π0,jνj as the other genes.

After linearization (cf. equation S2.25) we arrive at

δπi
π0,i

=
∑
j

C
µ
j

δφj

φ0,j
+ νi + I

O
i νO. (S2.88)

Here, the summation runs over all 1021 proteins, including Y, Z, and G. Moreover, we
have defined νO := NO/π0,O = NO/(π0,Y +π0,Z +π0,G). To obtain the cross-covariances, the
analysis now proceeds exactly as before. Using the shorthands φ0,O := φ0,Y +φ0,Z +φ0,G

and CµO := CµY +CµZ +CµG, the resulting (cross-)covariances are given by

χφiφi(τ)

φ20,i
= (1− 2φ0,i)Si(τ) + I

O
i (1− 2φ0,O)SO(τ) +

∑
j

φ20,jSj(τ); (S2.89)

χπiπi(τ)

π20,i
= Bi(τ) + 2C

µ
i Si(τ) + I

O
i

[
BO(τ) + 2C

µ
OSO(τ)

]
+
∑
j

(
C
µ
j

)2
Sj(τ); (S2.90)

χµµ(τ)

µ20
=
∑
j

{
φ2jBj(τ) +

[(
C
µ
j

)2
+ 2φ0,jC

µ
j

]
Sj(τ)

}
; (S2.91)

η2φi = (1− 2φ0,i)
µ0ϑ

2
i

2βi(βi + µ0)
+ IOi (1− 2φO)

µ0ϑ
2
O

2βO(βO + µ0)
+
∑
j

φ20,j
µ0ϑ

2
j

2βj(βj + µ0)
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(S2.92)
χφiµ(τ)

φ0,iµ0
= Cµi Si(τ) +φ0,iAi(τ) + I

O
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C
µ
OSO(τ) +φ0,OAO(τ)

]
−
∑
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φ0,j

[
C
µ
j Sj(τ) +φ0,jAj(τ)
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(S2.93)
χπiµ(τ)

π0,iµ0
= φ0,iBi(τ) +C

µ
i Ai(−τ) + I

O
i

[
φ0,OBO(τ) +C

µ
OAO(−τ)

]
+
∑
j

C
µ
j

[
C
µ
j Sj(τ) +φ0,jAj(τ)

]
.

(S2.94)

The index j of the summations now runs over all proteins as well as the operon j = O, so
that all noise sources are included.



S2.5 application to the many-protein model 49

s2.5.2 Parametrization

In order to simulate a whole cell, we had to specify four parameters for each protein i,
namely its abundance φ0,i, its control coefficient Cµi , and its noise properties ϑi and βi.
In addition, the mean growth rate µ0 had to be set for each of the three growth states
presented in the main text (low, intermediate, and high).

Monod curve

Under the experimental conditions, the mean growth rate µ0 follows an empirical Monod
curve µM(φ0,O) as a function of the mean expression level φ0,O of the lac operon [86]. To
ensure that our parameters respect this relation, we constrain them with the Monod curve
shown in Fig. 2.4B,

µM(φ0,O) := µmax
φ0,O

φ0,O +φhalf
, (S2.95)

which is defined by a maximal growth rate of µmax = 0.8 h−1 and φhalf = 0.005. The
parameter φhalf was taken clearly larger than the abundance of an average protein, since
transporter proteins are highly expressed in growth media where they are utilized [155].

Choosing the average growth rate µ0

The average growth rates in the three growth states were chosen in rough agreement with
the experiments as µ0 = 0.19, 0.45, and 0.75 h−1.

Choosing reversion rates ~β

For simplicity, we assumed that the reversion rates βi of all noise sources were identical
and considerably larger than the average growth rate µ0; that is, we set βi = β := 4µmax

for all i.

Choosing ~φ0 and ~ϑ based on experimental data

Several experimental datasets are available that provide cell-wide estimates of E. coli pro-
tein abundances [1, 68, 155, 173]. In particular, Taniguchi et al. have measured the means
and variances of 1018 protein abundances [173]. We used these measurements to fix the
values of φ0,i and ϑi for all proteins i in our model, as we now explain.

First we determined the average mass fractions ~φ0. Given the mean growth rate µ0 for
a given growth condition, the average mass fraction of the operon, φ0,O, follows directly
from the Monod curve described above. We then assumed equal properties for the proteins
on the operon, i.e. φ0,G = φ0,Y = φ0,Z = φ0,O/3 and ϑ0,G = ϑ0,Y = ϑ0,Z. We denote the sum
of all measured protein abundances as m, and the mass of the whole cell including the lac
operon as M. Then M = m/(1−φ0,O), and the average mass fraction of protein i can be
calculated by dividing the measured abundance by M.

Next, we calculated the values of the noise amplitudes ~ϑ. Equation S2.92 shows that
the squared coefficient of variation of any given protein species is a linear function of
the squared noise amplitudes of all noise sources. Conversely, imposing the measured
variances of all protein species results in a linear system of equations, the solution of which
uniquely determines the ϑ2i (for given µ0, ~φ0 and ~β).
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To do so explicitly, we assigned all proteins an index in the range 1 to K+ 3, where K
is the number of proteins that are not encoded on the lac operon (in this case K = 1018);
proteins G, Y and Z were assigned indices 1 to 3, respectively. We set the amplitude of the
operon noise source to ϑO = αϑG = αϑY = αϑZ, where α defines the ratio of the amplitude
of νO to the amplitudes of νG, νY, and νZ .We used α = 1.5 to obtain the results in the main
text (Figure 4). This procedure allowed us to rewrite equation S2.92 in ((K+ 3)× (K+ 3)

dimensional) matrix form:
~ηφ
2 = ~T ~ϑ2, (S2.96)

where the vector ~ϑ2 contains the squared noise amplitudes, ~η2φ is the vector of squared
CVs, and the elements of matrix ~T are given by

Tij =
µ0

2β(β+ µ0)
×



(1−φ0,G)
2 + (1−φ0,O)

2α2 if i = j = 1.

φ20,G + (1−φ0,O)
2α2 if j = 1 6= i 6 3,

φ20,G +φ20,Oα
2 if j = 1, i > 3,

φ20,j if i 6= j 6= 1,

(1−φ0,j)
2 if i = j 6= 1,

(S2.97)

Lastly, ~ϑ2 was obtained by numerically inverting equation S2.96.

Choosing the growth-control coefficients

Large-scale measurements of growth-control coefficients are not readily available. There-
fore, we randomly sampled the GCCs using the following heuristic. First, we randomly
assigned proteins from the database measured by Taniguchi et al. to the non-metabolic H
sector, until the total H sector size was ∼ 25% of the sum of measured protein abundances
m. The size of this non-metabolic mass fraction has been directly estimated as 25% by
O’Brien et al. [135]; it has been described earlier by Hui et al. as part of a growth-rate inde-
pendent proteome fraction that amounts in total to about 60% of the total protein mass [68].
For these H proteins, we set Cµi = −φi (note that φi partly depends on the expression level
of the lac operon, as described earlier), in line with equation (11) from the main text.

Second, the GCCs of the lac-operon proteins Y, Z, and G were chosen in agreement
with the Monod curve discussed above. We next used the derivative of the Monod curve
µM(φ0,O) to estimate CµO:

C
µ
O :=

[
φO

µd

∂µd

∂φO

]
~φ0

≈ φ0,O

µM

dµM

dφ0,O
=

φhalf

φ0,O +φhalf
. (S2.98)

Here we implicitly assumed that the operon as a whole is never so strongly over-expressed
as to have a negative control on the growth rate.

Lastly, we chose CµY = CµZ = (CµO −CµG)/2 for simplicity.
Third, for the remaining proteins (which are neither in the H sector nor encoded on the

lac operon), we assumed that the GCCs tend to scale with their abundance, and enforced
the sum rule. In practice, we drew a uniformly distributed random number xi ∈ [0, 1] for
each protein that was not in the H sector and set

C
µ
i =

xiφ0,i∑
j/∈H xjφ0,j

(
φH −CµO

)
. (S2.99)
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As in the main text, φH is the mass fraction of all H proteins combined. To determine
the robustness of our results with respect to the sampling scheme, we also tried different
GCC distributions, for example using exponentially distributed variables xi. This yielded
visually indistinguishable results.

s2.5.3 Alternative choice for abundances and variances

Although the data set obtained by Taniguchi et al. [173] is unique to report both abundances
and variances for each measured protein, it suffers from a systematic underestimation
of the protein masses [1, 155]. We therefore also estimated the protein abundances from
another proteomics dataset, using a phenomenological model to calculate the variances in
the absence of explicit measurements.

In this case, the abundances φ0,i were taken from a dataset obtained from Arike et
al. [1]. Given that the mean copy number of protein i is ni, a theoretical minimum can
be calculated for its variance; it is given by n2iσab + niβW , with σab = 0.025 and βW =

450 [195]. The original paper reported variances that were typically higher than this lower
limit [195]. To empirically match these results, we chose

Vari = n2iσab +ni(βW + xi), (S2.100)

with xi an exponentially distributed random variable with mean 200.
The resulting cross-correlations are plotted in Fig. S2.3. They lead to the same qualitative

conclusions as the analysis based on the data from Taniguchi et al.

s2.6 alternative model : noise in the allocation of the flux

Throughout this document we have considered noise sources that act on each protein-
synthesis rate independently. Alternatively, one could hypothesize that the observed fluc-
tuations in protein concentrations instead originate from noise on the allocation of the
available metabolic flux. Especially when translation is a highly rate-limiting step in pro-
tein production, so that mRNAs compete for a limited capacity of ribosomes, a stochastic
increase in the synthesis of a given protein species may necessarily go at the expense of
the synthesis rates of other protein species. In this section, we therefore explore a model in
which such “allocation noise” is dominant instead of the pure “production noise” studied
above.

In the modified model, each protein species is allotted a fluctuating fraction fi(t) of the
total metabolic flux, with the additional constraint that

∑
i fi(t) = 1 at all times. We end

up with an adjusted version of equation S2.13:

πi := fi(t)µd(~φ), (S2.101)

with
fi(t) =

f0,i +Ni∑
j f0,j +Nj

=
f0,i +Ni
1+
∑
jNj

. (S2.102)

Here, the Ni are again independent Ornstein–Uhlenbeck processes. This also results in an
adjusted version of equation S2.14:

µ = µd(~φ). (S2.103)
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As before, in the small-noise limit µd can be linearized around the mean composition ~φ0:

µd(~φ) := µ0

1+∑
j

C
µ
j

(
φj

f0,j
− 1

) , (S2.104)

where we assumed that φ0,i ≈ f0,i, as previously.
Unfortunately, production rates as defined in equation S2.101 are intrinsically correlated

and therefore analytical expressions can not be obtained within our current framework.
To gain insight in the cross-correlations generated by this system, we therefore numeri-
cally integrated equations S2.101 and S2.104 for a model cell containing 40 proteins with
randomly sampled parameters (see next section for details about parameters and the sim-
ulation method). The cross-correlations obtained for one of the proteins (protein 1) are
shown in Fig. S2.5A.

A striking observation is that the φ–µ cross correlations of the model with “allocation
noise” (Fig. S2.5A and C) are always perfectly symmetrical, with their peak at zero delay
(τ = 0).

In itself, the presence of a symmetric mode is no surprise. Indeed, an increase in a protein
species’ synthesis rate, affects—with a delay—its concentration, and this in turn affects the
growth rate, in proportion with the protein’s GCC. Therefore, a symmetrical control mode
is to be expected.

However, when noise acts dominantly on the allocation of the flux, the growth rate is
not instantly affected by fluctuating production rates. Therefore, there is now pathway by
which noise in a protein’s production rate instantly affects the growth rate, and then—
after a delay—the protein concentrations (either by dilution or by direct production). This
removes the asymmetric autogenic mode that caused the asymmetry in the φ–µ cross-
correlation as well as the symmetric mode in the φ–µ cross-correlation in the “production
noise” model (see also Fig. 2.3C–F of the main text).

To check the the symmetric φ–µ cross-correlation is indeed a typical feature of the al-
location noise model and not just a feature of the particular cell sampled, we analytically
calculated cross-correlations for a similar cell (i.e. same protein variances, same mean pro-
tein abundances, same GGCs), but now according to the “production noise” model (i.e.,
production rates according to equation S2.13). The resulting cross-correlations are shown
in Fig. S2.5B and show clear asymmetry in the φ–µ cross-correlation (demonstrated in
Fig. S2.5C).

Since the measured cross-correlations by Kiviet et al. showed clear asymmetrical features
as well [86]—which in fact prompted them to propose a “common-noise” source—we con-
clude that noise on allocation alone cannot explain the observed cross-correlations.

s2.6.1 Simulations of the “allocation-noise” model

We here provide details on the simulations discussed in the previous section and presented
in Fig. S2.5.

We simulated a cell with 40 proteins. To choose their mean protein fractions, we drew uni-
formly distributed numbers (xj ∼ U[0, 1], where U[0, 1] is the uniform distribution over the
interval [0, 1]) and normalized them to obtain protein fractions, i.e., φi,0 = fi,0 = xi/

∑
xj.

Approximately 60% of the proteome was assumed to be metabolic. For the ≈ 40% non-
metabolic proteins, we set Cµh = −φh,0; for the remaining proteins we sampled GCCs
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according to a uniform distribution, scaled with the protein’s mean fraction, under the
constraint of the sum rule. That is: for any metabolic protein i, draw an xi ∼ U[0, 1], and
subsequently set Cµi =

(∑
h∈Hφj

)
(xiφi) /

(∑
j6∈H xjφj

)
. We also sampled the noise am-

plitudes ~θAN (here the label “AN” stands for “allocation noise”) uniformly and then scaled
them with

√
fi,0 , i.e., θAN,i ∼

(
0.1
√
fi,0
)
U[0, 1].

First we numerically integrated equations S2.101-S2.104 using the numerical integration
scheme below to calculate the cross-correlation for the allocation-noise model.

~φ(t+∆t) = ~φ(t)

(
1−∆t

∑
i

πi(t)

)
+∆t ~π(t), (S2.105)

~N(t+∆t) = ~N(t) (1−∆t β) +
√
∆t~θAN ∗ dW(t), (S2.106)

~π(t+∆t) = µ0

(
~f0 + ~N(t+∆t)

1+
∑
iNi(t+∆t)

)(
1+
∑
i

C
µ
i

(
φi(t+∆t)

f0,i
− 1

))
. (S2.107)

Here, ∗ denotes element-wise multiplication.
To define a similar cell in the “production-noise” model, we first measured ~ηφ,AN, in

the “allocation noise” simulation and used a method similar to equation S2.96 to calculate
which noise amplitudes ~θPN (PN stands for “production noise”) would create the same
variances in the “production-noise” model:

~ϑ2PN = (TPN)
−1 ~η2φ,AN.

With the matrix TPN similar to equation S2.97:

(TPN)ij =
µ0

2β(β+ µ0)

{
(1− fi,0)

2, if i = j,

f2i,0, else.

s2.7 supplementary figures
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Figure S2.1: Illustration of equation 2.9 of the main text. Pictured is the relation between flux-
control coefficients CJi , growth-control coefficients Cµi , and proteomic mass fractions φi
for a cell containing just three protein species T, R, and H. Proteins H do not contribute
to the global metabolic flux, so that CJH = 0. Purple arrows indicates the effect of a
reduction in φT in favor of φR, which increases the growth control possessed by T.
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Figure S2.2: The effects of regulation on noise parameters in the two-protein model. (A) Cross-
correlations between the expression level φY of protein Y and growth rate µ in the two-
protein model, for varying levels of positive (green) and negative (red) auto-regulation,
as quantified by the regulatory control coefficient CfY

Y . The curve plotted in gray is
based on C

fY
Y = 0 (no auto-regulation), and all other parameters are chosen as in

Fig. 2.3A; therefore the gray curve corresponds to the gray curve of Fig. 2.3A. (B) An-
alytical solution of the coefficient of variation of the concentration of protein Y in the
two-protein model, under varying levels of auto-regulation. The intrinsic and extrinsic
noise components are indicated by the two shades of gray. The colored circles indicate
the parameter choices belonging to the corresponding curves of panel A.
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Figure S2.3: Expression–growth cross-correlations in a many-protein model based on sampled
variances. Analysis of the model with protein abundances taken from Arike et al. [1],
and variances sampled from a phenomenological noise model (see [195] and equa-
tion S2.100). This figure is equivalent to Fig. 2.4, except that it is based on different
protein abundances and variances. (A) Distribution of protein abundances and vari-
ances. Each gray dot represents a protein; the black points indicate the abundance and
variance of the GFP reporter under the three growth condition (equivalent to Fig. 2.4C).
(B)–(D) Growth rate cross-correlations between GFP concentration and growth rate (top
panels) and GFP synthesis rate and growth rate (bottom panels), for the three growth
conditions (equivalent to Fig. 2.4D, E, and F).
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Laurens H.J. Krah, Rutger Hermsen

abstract

In bacterial cells, protein expression is a highly stochastic process. Gene expression noise
moreover propagates through the cell and adds to fluctuations in the cellular growth rate.
A common intuition is that, due to their relatively high noise amplitudes, proteins with a
low mean expression level are the most important drivers of fluctuations in physiological
variables. In this work, we challenge this intuition by considering the effect of natural
selection on noise propagation. Mathematically, the contribution of each protein species to
the noise in the growth rate depends on two factors: the noise amplitude of the protein’s
expression level, and the sensitivity of the growth rate to fluctuations in that protein’s
concentration. We argue that natural selection, while shaping mean abundances to increase
the mean growth rate, also affects cellular sensitivities. In the limit in which cells grow
optimally fast, the growth rate becomes most sensitive to fluctuations in highly abundant
proteins. This causes abundant proteins to overall contribute strongly to the noise in the
growth rate, despite their low noise levels. We further explore this result in an experimental
data set of protein abundances, and test key assumptions in an evolving, stochastic toy
model of cellular growth.

The contents of this chapter are published as:
Krah and Hermsen, “The effect of natural selection on the propagation of gene expression noise

to bacterial growt’’, PLoS Computational Biology, 2021. doi: 10.1371/journal.pcbi.1009208
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3.1 introduction

Stochasticity is inherent to gene expression [42, 144, 175]. Stochastic variation in the copy
numbers of proteins is observed even under constant external conditions, and among in-
dividual cells in a population of isogenic bacteria. How cellular stochasticity, and noise
in protein expression specifically, interferes with the functioning, survival and fitness of
bacteria has been of great interest for many years [41, 100, 144, 160, 176, 185].

Noisy gene expression is indeed commonly accepted as the dominant mechanism be-
hind the strong phenotypic variation that has been observed in populations of genetically
identical cells [145]. In an exponentially growing population of cells, even the growth rate
of individual cells is distributed surprisingly broadly [170]. Since cellular growth rate (and
its population average) is often considered an important proxy for bacterial fitness, the
growth rate —and how its variation is shaped by noisy gene expression— has received
much attention [61, 71, 81, 156]. Notably, noise in the concentration of metabolic proteins is
shown to propagate from the protein-level, via the metabolic network, to the instantaneous
single-cell growth rate [86].

Commonly, noise is characterised in terms of the coefficient of variation (CV), defined as
the standard deviation divided by the mean. In snapshots of bacterial populations, proteins
with a higher mean expression level (E [X]) generally have a lower coefficient of variation
squared (CV2) [4, 173]. For proteins with a low mean expression, noise is dominated by the
intrinsic stochasticity of the chemical reactions involved [138, 168] and CV2 scales as 1/E [X]

[25, 42, 47, 160, 173, 195]. For higher mean expression, noise levels decrease to eventually
reach a plateau, where fluctuations in gene expression are dominated by extrinsic noise,
such as noise resulting from cell division or environmental noise. Because of their larger
noise levels, lowly expressed proteins are commonly assumed to be particularly important
drivers of fluctuations in variables at the cellular level, such as the growth rate. At the same
time the effects of the relatively small fluctuations of highly abundant proteins have largely
been neglected.

However, while protein noise levels are mainly determined by mean abundance, the
mean abundance itself is a product of evolution. Under many external conditions, bacteria
indeed seem to tune their protein levels in order to grow, on average, at a near-optimal
rate [17, 32, 51, 106, 165, 181]. Optimal gene expression for fast growth has also been an im-
portant and fruitful assumption in countless modelling studies and techniques concerning
deterministic growth, including Flux Balance Analysis [56, 76, 131]. So far, however, the
possible effects of natural selection on how noise in protein expression affects the noise in
macroscopic variables such as the growth rate, have not been considered.

In this work, we therefore consider bacteria whose protein expression levels are shaped
by natural selection acting on the population growth rate. For the extreme case of cells
growing optimally fast, we obtain analytical predictions for the contribution of each pro-
tein to the noise in the growth rate as a function of its mean expression only. The main
result, directly opposing common intuitions, is that proteins with a high mean expression
are most important for the noise at the cellular level. The argument is, in short, that a pro-
tein’s contribution to noise in the growth rate does not only depend on the protein’s noise
level, but also on the sensitivity of the growth rate to that protein’s fluctuations. We show
that when protein expression levels are optimised for fast growth, the growth rate becomes
most sensitive to fluctuations of abundant protein species. This causes abundant proteins
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to overall contribute strongly to the noise in the growth rate, despite their low noise levels.
In a stochastic toy model of gene expression and growth, we verify and further investigate
the role of natural selection on shaping noise propagation properties. Lastly, an analysis on
experimental data of protein abundances and protein noise levels indicates that the com-
mon intuition –cells behave noisily because of the low copy number of certain molecular
species– might be incorrect.

3.2 results

To grow, bacteria need to express a certain set of (metabolic) proteins. Together, these
proteins create a metabolic flux used to build cellular components and new proteins. Since
the cell’s growth rate is limited by this metabolic flux, noise in the expression levels of the
proteins involved propagates through the metabolic network to affect the growth rate [86].
For any fixed external environment, we therefore assume the existence of an unknown
function µ(~X) that describes the instantaneous rate of cellular growth as a function of
the copy numbers of all proteins, ~X. The growth rate is thus a deterministic function of
stochastic variables. In a population snapshot, different individuals stochastically express
different copy numbers of their proteins and hence the growth rates of individuals will
differ.

To quantify how variation in the expression of protein i affects growth rate µ, we use pre-
viously defined Growth Control Coefficients, which measure the sensitivity of the growth
rate to small changes in the copy number of protein i [87]:

C
µ
i ≡

(
Xi
µ

∂µ

∂Xi

)∣∣∣∣
E[~X]

. (3.1)

Here, the expectation value is taken over the distribution of protein copy numbers across a
population of cells. As we will show below, these GCCs offer a way to decompose and anal-
yse the noise in the growth rate in terms of contributions by each of the noisy components,
the proteins.

To arrive at a comprehensive and useful noise decomposition, we adhere to two simplify-
ing assumptions. First, noise levels are assumed to be small, so that all protein abundances
are close to their means. The growth rate can then be approximated as a linear function
of the protein levels. Secondly, fluctuations in all protein species are assumed to be inde-
pendent. In bacterial cells, this is certainly not the case. However in the case of correlated
fluctuations, noise contributions can not be uniquely defined [18, 107]. Indeed, when two
proteins correlate, and their joint fluctuations affect growth, the attribution of the noise
contribution to either protein is arbitrary. Therefore, we here present the simplified case
where all protein abundances are uncorrelated so that noise contributions can be uniquely
defined and understood intuitively.

Under these assumptions noise in the growth rate, CV2µ, can be approximated as a sum
of contributions from all protein species:

CV2µ ≈
∑
i

CV2i
(
C
µ
i

)2 , (3.2)

where CVi is the coefficient of variation of the copy number of protein species i across a
population of cells (see SI, section S3.1 for the derivation). In this equation, each protein’s
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contribution consists of two factors. The first factor is no surprise: the proteins’ coefficient
of variation which quantifies the fluctuations in the expression of that particular protein.
The second factor is the protein’s GCC, which quantifies how strongly these fluctuations
actually affect the cellular growth rate.

3.2.1 Distribution of Growth Control Coefficients

To further quantify which proteins are important for noise in the growth rate, we need to
gain more insight into how growth control is distributed among proteins. This distribution
is not arbitrary due to three properties of the GCCs, which are discussed below.

Sum Rule

Firstly, the sum of the GCCs equals zero [87]:∑
i

C
µ
i = 0. (3.3)

This sum rule originates from the so-called intensivity of the growth rate: if all protein
copy numbers inside a cell are increased by the same factor, the cellular flux increases,
but the mass increases as well, such that the cell’s growth rate (mass increase per mass)
stays the same. That the growth rate is to a good approximation an intensive variable has
been shown in multiple experiments [86, 170] and is a common modelling assumption [76].
Moreover, it is analogous to the assumption that the metabolic flux and cellular mass are
extensive variables, which has been used in Metabolic Control Analysis to derive a similar
sum rules for fluxes [77].

H-proteins

Secondly, there is a set of proteins, here called H-proteins, that are crucial for the cell’s sur-
vival, but do not contribute to metabolism or cellular growth. This set H includes ‘house-
keeping proteins’ participating in, e.g., stress-response, immunity, and DNA damage repair;
in bio-engineering, H may also contain engineered pathways. In wild type Escherichia coli,
the H-sector comprises an estimated 25− 40% of the total protein mass [135]. Even when
H-sector proteins are not toxic or otherwise harmful to the cell, their control on the growth
rate will still be negative. This is because their synthesis does take up resources that oth-
erwise could go to growth-related enzymes. Previously, the GCC of such H-sector proteins
has been calculated [87] to be equal to their mass fraction:

C
µ
i∈H = −φi. (3.4)

Here we write φi := E [Xi] /
∑
jE
[
Xj
]

for the proteome mass fractions φi of each protein
species i and ignore, for simplicity of notation, that different proteins have different masses.
The mass fraction of the total H sector is denoted as φH.

Together with the sum rule, the presence of the H-sector has important consequences for
the distribution of GCCs: because some proteins have negative GCCs, others must have a
positive GCC.



3.2 results 61

Optimal Growth

Thirdly, natural selection tends to favour populations of cells that, on average, grow faster.
This drives the (mean) expression levels of many proteins to be (near)-optimal for growth
[32, 181]. We here show that this also affects their GCCs by considering the extreme case
of a cell in which the expression levels of all proteins (except for those in the H sector) are
fully optimised for growth.

To do so, evolution is treated mathematically as a constrained optimisation problem,
where the mean growth rate, E [µ], is optimised under two constraints. First, the cell’s
protein density is kept constant. Second, only a fixed fraction of the proteome (1 − φH)
can be allocated towards proteins related to growth. To maximise the growth rate, only the
(mean) protein abundances inside this fraction can be tuned by evolution while the total
abundance must stay the same.

Formally, the optimisation can be done using Lagrange multipliers on a linearisation of µ
(see SI, section S3.1). For all proteins that are not in the H sector, the result is the following
important expression for the GCCs in the optimal state:

Cµ
∗
=

(
φH

1−φH

)
φ∗i . (3.5)

Here, the asterisk indicates that the equation is only valid under optimality. Intuitively,
the result can be understood as follows. In the optimal state, all partial derivatives of
the growth rate must be equal: if the growth rate would increase more upon increasing
E [Xi] than upon increasing E

[
Xj
]
, increasing the expression of i at the expense of j would

increase the growth rate, and hence the growth rate would not be optimal.
equation 3.5 reveals two important properties for cells optimised for growth. First, growth

control is shared between all metabolic proteins: there is no single growth-limiting protein.
Secondly, and most importantly, enzymes with a higher mean expression level have a pro-
portionally larger control on the growth rate.

3.2.2 Combining all factors

The distribution of the GCCs in optimally growing cells (equation 3.5) can be combined
with the experimentally observed scaling of coefficients of variations to predict the con-
tribution of each protein species i to the noise in the growth rate. We write κPi for this
contribution, which is defined as the protein’s relative contribution to the CV of µ as ex-
pressed in equation 3.2:

κPi :=

(
C
µ
i

)2CV2i
CV2µ

≈
(
C
µ
i

)2CV2i∑
j

(
C
µ
j

)2
CV2j

. (3.6)

Inspired by experimental data [173, 195], the intrinsic noise component is assumed to be
inversely proportional to mean abundance:

CV2i = F/E [Xi] , (3.7)

with a fixed Fano Factor F. If we ignore the noise plateau caused by extrinsic noise sources,
equation 3.7 sets the noise levels of all protein species. Note that for the highly expressed
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proteins, noise levels are thus deliberately underestimated, resulting in a conservative esti-
mate for their contribution to noise in the growth rate.

To now analyse noise propagation in optimally growing cells, equations 3.4, 3.5 and 3.7
are inserted in equation 3.6. This results in:

κP
∗
i =


φH

1−φH
φ∗i for i not in H,

1−φH
φH

φi for i in H.

(3.8)

This equation is the pivotal finding of this study. It states that, in cells whose expression
levels are optimised for growth, κPi is proportional to φi, that is, proteins with a high mean
expression contribute most strongly to fluctuations in the growth rate.

The implications of the above equations become clear when applied to a data set of
measured protein abundances and protein noise levels in the model bacterium E. coli [155,
173]. Under the assumptions of equations 3.2 and 3.5, the top 5% most abundant protein
species are estimated to contribute over 90% of the noise in the growth rate (Fig. 3.1, red
dots). This contribution is significantly larger than might have been expected a priori: If all
GCCs are assumed equal (Fig. 3.1, purple dots) these abundant proteins contribute only
40%, and if the GCCs of the optimal state are shuffled so that the correlation between a
protein’s abundance and its GCC is broken (Fig. 3.1, black dots) their contribution becomes
negligible (< 2%). On the other hand, the 50% least abundant proteins are estimated to
contribute only 2% of the overall noise in the growth rate (Fig. 3.1, red curve), instead of
50− 90%. For details of the analysis, see SI section S3.2 and Fig. S3.1.

3.2.3 Stochastic Toy Model

To examine if our results still hold for the large noise levels seen in living cells, we study
noise propagation in a stochastic toy model of a growing, and evolving, cell. Specifically,
we test if a positive scaling between φ and κ can still be observed for genotypes that have
evolved by random mutations, under realistic noise levels.

To do so, we defined a highly simplified model of a growing cell with stochastic protein
expression levels. To mimic the effects of evolution, we then employ random mutations to
search for the mean protein expression levels that optimise the mean growth rate of such
cells. Next, we characterised the noise propagation in such optimised cells to verify the
predictions of equations 3.5 and 3.8.

The model cell consists of a linear metabolic pathway consisting of five reactions that
import an external metabolite (m1) and convert it to biomass (Fig. 3.2A). Each reaction
is catalysed by a single enzyme species and inhibited by its own product. Additionally,
a sixth protein species is expressed that is not metabolically active, representing the H-
sector. Given the abundances ~X of all proteins, the instantaneous growth rate µ is defined
as the steady state flux through the pathway divided by the total number of expressed
proteins, including the H-sector. Note that the growth rate depends non-linearly on all
protein abundances. (For more details, see SI, section S3.3.)

The abundances ~X themselves are stochastic: each Xi is distributed in the population
according to a Gamma distribution [47, 173] characterised by mean E [Xi] and a Fano
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Figure 3.1: Cumulative noise contribution as a function of cumulative mass fraction, both calculated
from protein abundances and noise levels measured in E. coli [173]. Protein species were
ordered by their mass fraction φi, and the cumulative mass fractions and noise contri-
butions subsequently calculated as

∑i
j=1φj and

∑i
j=1 κj, respectively. GCCs are either

set by equation 3.5 (red dots), all equal (purple dots), or a random permutation of the
optimal GCCs (black dots).

factor F. The Fano factor is chosen the same for all proteins, consistent with equation 3.7,
and sets the overall noise amplitude in the cell.

It is useful to distinguish three levels of description of the model cells: their kinotype,
genotype, and phenotype. We introduce the ‘kinotype’ as the set of reaction parameters
that fully characterise the enzymes in a cell’s metabolic network: kinetic rates, Michaelis–
Menten constants and inhibition parameters of the five reactions. We define a cell’s ‘geno-
type’ as the mean abundances of all protein species. Lastly, a cell’s ‘phenotype’ is given by
the vector of the current protein abundances and the corresponding growth rate. The phe-
notype is therefore a multi-dimensional stochastic variable whose probability distribution
depends on the genotype.

During an evolutionary trajectory, the genotype is repeatedly subjected to mutations
that are subsequently either rejected or accepted. Mutations increase or decrease the mean
abundance of one particular protein species, after which the mean expression of all other
metabolic proteins is adjusted such that the total (mean) protein abundance remains fixed
(
∑
iE [Xi] = Ω = 104 in all simulations, for more details see SI, section S3.3). Mutations

thus affect the protein copy number distributions across the population and therewith also
the probability distribution of the growth rate. A mutated genotype is accepted only if
it increases the population mean growth rate, which is determined by sampling many
phenotypes generated by that genotype. The evolutionary algorithm is halted when 100

consecutive mutations around a particular genotype are rejected. The resulting genotype
is expected to be close to a local optimum, although it is not guaranteed to be exactly the
mathematical optimum due to sampling error.
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C

Figure 3.2: (A) Representation of the stochastic toy model. A cell expresses five metabolic protein
species, each catalysing a single reaction in a linear reaction chain that imports and
converts a fixed external metabolite, m1, into biomass. The growth rate is defined as
the steady state flux through the network, divided by the total number of expressed
proteins, including the H-sector protein. (B) Example trajectory of the GCCs of metabolic
proteins during the optimisation of a single kinotype (grey dotted lines). Grey dots are
GCCs at an early stage of this process and the arrow indicates the rate-limiting protein
species. Red point are the values of the GCCs in the optimal genotype, matching the
predicted scaling for metabolic proteins (positive dashed line, negative dashed line is
the prediction for H-proteins). See SI, table S3.1 for parameters.
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Using a method adopted from [18] the noise contribution of each protein species is
then measured by again sampling and analysing many phenotypes. These measured noise
contributions were compared with our prediction, κP (equation 3.8). Lastly, the whole
process above was repeated for many kinotypes (randomly generated; see SI, section S3.3),
resulting in different optimal genotypes.

Low-Noise Regime

Before analysing the more realistic regime of high noise levels (large variance of the protein
copy numbers), we first study the model in a low-noise regime (using F = 1, Ω = 104,
resulting in small copy-number variance), where our results (equation 3.2 and 3.8) are
expected to hold well. When noise levels are this low, the mean growth rate E [µ] is well
approximated by the growth rate in the vector of mean abundances, µ(E

[
~X
]
). Instead of

using the undirected, slow stochastic evolutionary algorithm described above, the growth
rate was therefore optimised using a deterministic gradient-based hill climb algorithm (for
details see SI, section S3.3).

During each step of the optimisation process, we measured the GCCs of the metabolic
proteins to observe how they adjust during optimisation. A representative example of such
a trajectory is shown in Fig. 3.2B (dotted grey lines). Early in the optimisation process,
when genotypes are still far from optimal (grey dots), often one particular protein species
(shown in the figure with an arrow) is strongly limiting growth (Cµi ≈ 1, indicating that the
growth rate could be improved by increasing this protein’s expression level). In contrast,
the expression of other metabolic proteins is too high; those proteins have a negative GCC
similar to H-sector proteins, indicating that almost all of their expression is a burden to
the cell. Eventually, as fitter genotypes are found, growth control becomes shared among
all proteins (Fig. 3.2B, dotted grey lines). When the optimisation algorithm simulation has
found the optimal genotype, the predicted positive scaling between a protein’s GCC and
its mean abundance is obtained (Fig. 3.2B, red points, and equation 3.5).

Repeating the same process for multiple kinotypes (n = 10) confirms the generality of
the positive scaling between Cµ and φ after optimisation (Fig. 3.3A, red points). Again, note
that in an early stage of the optimisation process the distribution of the GCCs is markedly
different: Although only metabolic proteins are shown in the figure, some of them have
negative GCCs that resemble the GCCs of H-sector proteins (Fig. 3.3A, grey dots).

Next, we measured for each kinotype the noise contributions of each protein in the
optimal genotype, and, for comparison, in a non-optimal genotype. For all kinotypes, the
noise contributions in the optimal genotypes neatly follow our prediction (Fig. 3.3B, red
points). In contrast, for non-optimal genotypes, noise contributions are dominated by only
a few lowly expressed proteins (Fig. 3.3B, grey dots). The mean abundance of these proteins
is below the optimal value, causing both their GCC and their CV to be large, resulting in a
large noise contribution.

This analysis clearly highlights the fundamental role of evolution in shaping noise prop-
agation properties: only in evolved cells that grow at an (almost) optimal rate a positive
scaling exist between κ and φ.



66 the effect of natural selection on noise propagation

A B

Figure 3.3: Perfect prediction in the case of linear noise for 10 different kinotypes. (A) Grey dots are
GCCs of metabolic proteins in genotypes after 150 optimisation steps, which are not yet
optimal. Red points are the GCCs in the optimal genotypes. Dashed lines are predictions
for the values of GCCs for metabolic (positive) or H-proteins (negative) (B) Measured
noise contributions compared to predicted noise contributions (dashed line). Red points
are measured in the optimal genotype, grey points in the non-optimal genotypes.

High-Noise Regime

Next we study the toy model in a high-noise regime, where copy number variation matches
observed variation in living bacteria more closely (F = 10, Ω = 104, resulting in CVs
up to 0.2, Fig. S3.5C). In this regime, the non-linear dependence of the growth rate on
the protein abundances becomes important and might influence the mean growth rate.
That is, a genotype that was optimal in the low-noise regime, does not necessarily yield
the highest mean growth rate in the high-noise regime. Below, we therefore distinguish
two genotypes for each kinotype: the ‘Low-Noise’ (LN) genotype, which is optimal in the
low-noise regime, and the ’High-Noise’ (HN) genotype’, which evolved in the high-noise
regime by random mutations. To efficiently find the HN genotype of each kinotype, we
employed the evolutionary algorithm described above, starting with the LN genotypes.

For some kinotypes, the resulting HN genotypes indeed differed significantly from the
LN ones. This can be understood as follows. In the LN genotype, when noise levels are
low, control over the growth rate is shared between the proteins. In the same LN genotype,
higher noise levels can increase the probability that in some sampled phenotypes a single
protein species becomes the sole rate-limiting step. Indeed, some genotypes that were opti-
mal in the low-noise regime generated many slow-growing phenotypes when noise levels
were high (Fig. S3.2B). The low growth rates were often caused by a single protein species
whose phenotypic expression was too low (Fig. S3.2A) and therefore became a bottle-neck.

From an allocation point of view, increasing the mean expression of lowly abundant,
rate-limiting proteins is cheap: little additional resources are needed to cause a relatively
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Figure 3.4: For 100 kinotypes, Low-noise genotypes (grey dots) compared with high-noise geno-
types (red dots). Dashed lines are theoretical predictions for metabolic proteins. (A)
Growth Control Coefficients. (B) Measured noise contributions.

large change in the protein’s expression level. Indeed, the mean expression of potential
bottlenecks increased during evolution, but mainly for lowly expressed protein species
(Fig. S3.2B and Fig. S3.3).

The distribution of the GCCs is also different in the evolved HN genotypes compared
to the LN genotypes (Fig. 3.4A, red points). GCCs are by definition linear measures and
because in the high-noise regime the non-linearity of the growth rate become relevant,
equation 3.5 is not expected to hold exactly anymore. Interestingly, however, the positive
scaling between φ and Cµ remains, and becomes, if anything, even steeper. Again, this
makes sense: when noise levels increase, lowly expressed proteins are, due to their larger
CV, more likely to fluctuate down to levels that strongly limit growth (Fig. S3.3A). In-
creasing the mean expression of these proteins will reduce their GCC (Fig. S3.3B-C), while
increasing the GCC of the other proteins via the sum rule (equation 3.3). The net result is
an increase in the slope in Figure 3.4A.

Importantly, the positive scaling between κ and a protein’s mean expression was again
observed in the high-noise regime (Fig. 3.4B, red points). This is remarkable, since the
mathematical prediction (equation 3.8) was derived under the assumption of small noise
amplitudes. To understand why the positive scaling nonetheless persists in the high-noise
regime, the same reasoning as for the GCCs can be followed. At the start of the evolution-
ary trajectory, when the genotype is still the LN genotype, some lowly abundant protein
species are dominant noise contributors (Fig 3.4B, grey points top-left corner). During evo-
lution those proteins obtained a slightly higher expression, reducing both their GCC and
their noise contribution κ (Fig. 3.4B, red points and Fig. S3.3B-C), and at the same time
increasing the contributions of the other proteins species.
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3.3 discussion

In this article we argued that highly expressed proteins play an important role in system-
level noise properties despite their low noise levels. In summary, our argument is that,
in cells optimised for growth, abundant protein species have large Growth Control Coef-
ficients (GCCs). The product of a protein’s CV and GCC –an indicator for the protein’s
noise contribution– is then predicted to be proportional to the protein’s mean abundance.
A crude estimate from an E. coli data set suggests that the 50% least abundant protein
species contribute only ∼ 2% of the noise in the growth rate, instead of up to 90% as might
have been expected a priori if the scaling of the GCCs is ignored. In contrast, the top 5%
most abundant species are estimated to contribute well over 80% in optimised cells. In a
simplistic toy model of cellular growth, we then showed that the positive scaling between
a protein’s mean abundance and its noise contributions persist even when noise levels are
considerable and the growth rate is a non-linear function of protein abundances.

Of course, these results rely on the assumption of a perfect optimum. Experiments sug-
gest, however, that bacteria are not always in such an optimum [181]. In certain fixed envi-
ronments, adaptive mutants arise with higher growth rates, indicating that the wild-type
growth rate is not optimal yet [69]. Assuming those adaptive mutations did not take place
in the H-sector, it remains a question whether in wild-type cells abundant proteins also
contribute most to noise in the growth rate. However, in our simulations the positive scal-
ing between φ and κ persists even in the high noise regime, where genotypes were evolved
by random mutations–and therefore are not necessarily perfectly optimal. Moreover, some
mutants generated around the evolved genotype still displayed the positive scaling even
when growing, on average, significantly slower (Fig. S3.6). Other generated mutants, how-
ever, did lose their positive scaling. It would therefore be interesting to further investigate
why some non-optimal mutants still display the predicted scaling, but others do not.

While the toy model assumed particular enzyme dynamics, all mathematical predictions
were derived without any assumptions concerning the underlying biochemistry. This im-
plies that the strong contribution of highly expressed proteins to the noise in the growth
rate is a general property of evolved biological systems as long as protein expression is in
some way constrained.

The presence of such cellular constraints is crucial for our results. In this study, a tight
constraint was imposed by assuming that the H-sector is completely static. However, a
small relaxation of this constraint -e.g., assuming that the allocation towards the H-sector
has to be within a certain range- should yield similar results. Also other allocation con-
straints, e.g. a fixed total protein abundance allocated to a particular metabolic pathway, or
a maximum density of membrane proteins [169], will result in a similar positive scaling
between φ and κ in all constrained proteins.

We point out that, besides the growth rate, other cellular traits, such as stress response
or antibiotic resistance, are important for bacterial fitness as well. Interestingly, noise in
these traits can be analysed in the same way as noise in the cellular growth rate. Therefore,
the argument suggests that noise in any intensive trait that has been optimised during the
bacteria’s evolutionary history should be dominated by highly expressed proteins.

Throughout this paper, we ignored all correlations between protein species [29, 127],
because in the presence of such correlations, the contribution of noise in a particular pro-
tein to the noise in cellular growth rate becomes ill defined. One way to circumvent this
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problem is to use a fine-grained model description, e.g. at the level of individual chemical
reactions, in which the noise sources are inherently uncorrelated [97, 176], or to adopt a
meta-modelling approach [107] where highly correlated protein species (e.g., those coded
in the same operon) are modelled as single, noise contributing units. That said, the method
presented here allows for a more intuitive interpretation of noise contributions, because it
directly relates noise contributions to observed protein abundances.

The results discussed above add to the realisation that global cellular constraints have in-
tricate consequences for the overall physiology of evolved cells, from noisy gene expression
[87], to metabolism [56, 169] and growth [198]. Our work highlights the holistic nature of
noise propagation via the sum rule for the GCCs (equation 3.3). The sum rule specifically
could have important consequences for biotechnology: tinkering with a specific part of the
cell affects noise propagation properties of the entire system. For example, most synthetic
proteins or pathways do not contribute to growth, but instead create by-products. Such
pathways will thus have a negative GCC and hence increase the GCC -and therewith the
propagation- of all metabolic proteins.

The stochastic toy model moreover revealed a trade-off between efficient resource allo-
cation and the robustness of metabolism to expression noise [37]. Genotypes that are op-
timal in the low-noise regime allocate resources efficiently, but lack metabolic robustness
at higher noise levels. Cells with different levels of expression noise therefore required dif-
ferent genotypes to grow, on average, the fastest (Fig. 3.4). Similar observations were also
made in recent experiments in yeast [156]. Together, these observations can have conse-
quences for Flux Balance Analysis-like techniques [131], where optimal growth states have
so far been calculated mostly deterministically, i.e., optimising the growth rate in the mean
expression levels.

We conclude that noise in gene expression –and its propagation towards the growth rate–
needs to be considered when discussing optimal growth, but also vice versa: when enzyme
expression is optimised, this affects noise propagation in such a way that abundant protein
species become most relevant for noise on a system level.

Author Contribution. Conceptualization: LHJK, RH. Formal analysis: LHJK, RH. Supervi-
sion: RH. Visualization: LHJK. Writing – original draft: LHJK. Writing – review & editing:
LHJK, RH.





S3
S U P P L E M E N TA RY I N F O R M AT I O N C H A P T E R 3

s3.1 derivation of equations 3 .2-3 .8

Here we derive equations 3.2 and (therewith) 3.8.

s3.1.1 Growth rate as an intensive function of protein copy numbers

We assume that the growth rate µ is a deterministic, intensive function of the stochastic pro-
tein copy numbers ~X. The intensivity of the growth rate implies that if all the copy numbers
are multiplied by the same factor α, the growth rate does not change (i.e., µ(α~X) = µ(~X)).
Describing the growth rate as a function protein copy numbers is therefore equivalent to
considering proteome mass fractions or concentrations. In our derivation, we start with a
description based on copy numbers, but our final results will be in terms of proteome mass
fractions.

We do not model the underlying causes of protein stochasticity, and instead assume the
distribution of each protein species across a population is known. Protein copy numbers
of individual cells thus differ, and because the growth rate of each individual cell is de-
termined by protein copy numbers, also the growth rate differs between individuals cells.
Writing the growth rate as a function of protein copy numbers moreover implicitly assumes
that intrinsic fluctuations of all other cellular components (e.g., nucleic acids, lipids, and
metabolites) relax on timescales much faster than growth (seconds rather than minutes or
hours), and their concentrations are thus determined by the protein copy numbers. Note
that throughout the derivation, we do not consider any temporal dynamics of ~X.

s3.1.2 Linearisation of µ

Assuming that ~X is always close to some linearisation point ~̃X, we can write to first order:

µ(~X) ≈ µ(~̃X)

(
1+
∑
i

(
Xi
µ

∂µ

∂Xi

)∣∣∣∣
~̃X

(
Xi − X̃i

X̃i

))
. (S3.1)

In a snapshot of a population of cells, this linearisation then approximates the growth rate
of individual cells given their stochastic vector ~X.

s3.1.3 Decomposition of CV

When the noise in the copy numbers of different proteins is uncorrelated, it is straight-
forward to calculate CVµ. First, using the definition of the Growth Control Coefficients

71
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(equation 3.1) we can simplify equation S3.1 by setting ~̃X equal to the mean expression
levels across the population of cells, E

[
~X
]
:

µ(~X) ≈ µ(E
[
~X
]
)

(
1+
∑
i

C
µ
i

(
Xi − E [Xi]

E [Xi]

))
. (S3.2)

Then, we use the basic properties of the variance, i.e., for any two uncorrelated stochastic
variables Y1 and Y2, and scalars a,b, Var {aY1 + b+ Y2} = a2Var {Y1}+ Var {Y2}, to write:

Var {µ} ≈ µ(E [X])2

(∑
i

(
C
µ
i

)2 Var {Xi}

E [Xi]
2

)
. (S3.3)

In the regime where equation S3.1 holds, we can also read from equation S3.2 that E [µ] ≈
µ(E

[
~X
]
). This allows us to further simplify equation S3.3:

Var {µ}

E [µ]2
=: CV2µ ≈

∑
i

(
C
µ
i

)2CV2i , (S3.4)

which is equation 3.2. This is also a special case of the variance decomposition in [176].
As mentioned, all expectation values are based on population distributions (as opposed

to the distribution of a cell lineage over time). This means that the mean growth rate also
equals the population growth rate.

s3.1.4 Optimisation

Next, we optimise the mean expression levels of the metabolic proteins to achieve the max-
imal mean growth rate. We assume that a fixed number of proteins has to be allocated for
other things than growth (the H-sector proteins), and constrain the average total protein
abundance

∑
iE [Xi] to a fixed value Ω. The optimisation can then be written as maximis-

ing E [µ] over E
[
~X/∈H

]
, with the constraint

∑
iE [Xi] = Ω:

Max
E[~X/∈H]

 E [µ]

∣∣∣∣ ∑
i/∈H

E [Xi] = Ω− E [XH]

 .

To find the optimal genotype, we use the Lagrange Multiplier method, which in this case
takes the form

L = E [µ] − λ

∑
i/∈H

E [Xi] − (Ω− E [XH])

 ,

where we need to solve ∇L = 0. This gives:

∂E [µ]

∂E [Xi]

∣∣∣∣
E[~X]

∗
= λ, for all i /∈ H, (S3.5)∑

i/∈H

E [Xi]
∗ = Ω− E [XH] . (S3.6)
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Here the asterisks indicate the optimal value of that variable. Using equation S3.1 we can
calculate E [µ] explicitly:

E [µ] ≈ µ(~̃X)

(
1+
∑
i

(
Xi
µ

∂µ

∂Xi

)∣∣∣∣
~̃X

E [Xi] − X̃i

X̃i

)
,

which allows us to calculate the partial derivatives of equation S3.5:

∂E [µ]

∂E [Xi]
= µ(~̃X)

(
Xi
µ

∂µ

∂Xi

)∣∣∣∣
~̃X

/X̃i, for all i /∈ H.

Next, we make a particular choice for the point of linearisation ~̃X by setting it equal to

optimal genotype, E
[
~X
]∗

. In this vector, the partial derivatives equal λ (equation S3.5):

λ =
∂E [µ]

∂E [Xi]

∣∣∣∣
E[~X]

∗
=
µ∗Cµ

∗

i

E [Xi]
∗ . (S3.7)

Here, the asterisk denotes that the equation is only valid at the vector with optimal mean
expression levels. (Similar arguments were exploited in [10] and [38], although without the
inclusion of the H-sector and stochastic gene expression.) Lastly, we can use equation S3.6,
together with the sum rule for the GCCs (equation 3.3), to calculate λ explicitly:

0 =
∑
i

C
µ∗

i =
∑
i/∈H

λ

µ∗
E [Xi]

∗ +
∑
i∈H

C
µ∗

i

=
λ

µ∗
(Ω− E [XH]) −

E [XH]

Ω
,

and thus

λ =
µ∗E [XH]

Ω(Ω− E [XH])
=

φH
Ω(1−φH)

, (S3.8)

using to the definition of φi := E [Xi] /Ω. Finally, by combining equation S3.7 and S3.8 we
find the Growth Control Coefficient for all proteins that do not belong to the H-sector in
the optimal growth state:

C
µ∗

i =
φH

(1−φH)
φ∗i . (S3.9)
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s3.2 application to experimental data sets

In chapter 3 we argue that, in optimised cells, proteins with a larger mass fraction obtain
a larger GCC and noise contribution. To study what this entails in the context of realistic
distributions of protein abundances, we applied this theory to two experimental data sets:
Taniguchi et al (reference [173]) and Schmidt et al (reference [155]). The results are shown
in Fig. 3.1 and S3.1. We here provide details of these calculations.

s3.2.1 The data set of Taniguchi et al

The data set from Taniguchi et al [173] contains a library essay of protein abundances
(copy numbers) and copy number variances of over 1000 protein species of E. coli. We
estimated protein mass fractions from this data set by assuming that they are similar to
the relative copy numbers in the data set (i.e., φi is estimated as the measured mean copy
number of protein species i, divided by the sum of the mean copy numbers of all measured
protein species, thus ignoring differences in molecular mass). Moreover, we assume that the
measured expression noise in the different proteins is uncorrelated, even though extrinsic
noise sources, which are responsible for the noise floor, are likely to add correlated noise
to abundant protein species.

After estimating mass fractions, GCCs were set as follows. First, a fraction of φH of the
proteome was randomly selected and assigned to the H-sector; their GCCs were set equal
to minus their mass fractions (equation 3.4). The other protein species were not part of
the H-sector and thus assumed to be “metabolic” proteins. For those we compared three
cases. Firstly, the proteins were assigned the GCCs calculated for optimal cells (Cµi ∝
φi, equation 3.5). Secondly, we considered the case in which all GCCs are equal. Thirdly,
we took the GCCs of the optimal cells, but permuted them randomly, resulting in a cell
in which the distribution of the GCCs is the same as in the optimal cell, but in which
there is no relation between mass fraction and growth control. Next, for all three cases the
noise contributions were calculated according to equation 3.6. Results of the analysis are
displayed in Fig. S3.1.

We moreover analysed the effect of ignoring the noise floor by setting protein variances
to CV2 = F/E [X] (F = 2). As expected, a noise floor causes abundant protein species to
relatively contribute more strongly (compare Fig. 3.1, with a noise floor, to Fig. S3.1A, with-
out). Indeed, the noise floor mostly affects the CV of abundant protein species. However,
the noise floor also strongly decreases the (relative) noise contribution of low-copy-number
proteins (Fig. S3.1B).

s3.2.2 The data set of Schmidt et al

The extensive data set from Schmidt et al [155] contains measured protein abundances
(copy numbers) of over 2000 E. coli protein species, under various growth conditions. Since
also the molecular mass of each protein species was given, we included these in our cal-
culation of mass fractions. We further analysed abundances measured during growth on
glucose, a growth medium for which the overall expression level of catabolic proteins is
experimentally shown to be optimal [181]. Since variance in expression levels was not
measured, we set the CV for each protein species according to equation 3.7, but added
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a noise floor to each protein species to mimic observed variances in Taniguchi et al, i.e.,
CV2i = F/E [Xi] + nf, with F = 2,nf = 0.15. Lastly, the same calculations were performed
as described above for the data set of Taniguchi et al. The results are displayed in Fig. S3.1C.

Note that due to the many assumptions, the noise contributions are only rough estimates,
and should not be considered quantitative predictions.

s3.3 details of the stochastic simulation

s3.3.1 Kinotype, genotype, phenotype and growth rate

In our toy model, we simulated a linear chain of 5 proteins, where the flux through each
of the first 4 steps is given by:

vi =
kcat,i Xi mi

km +mi +mi+1/ki+1
. (S3.10)

Here, kcat is the reaction rate, km is the Michaelis-Menten constant, and k is the inhibition
constant, together called a kinotype. To define a kinotype, we sample kcat and km uniformly
from the interval [0.1, 6.1] and k from [1, 7]. The external metabolite,m1 is set to 10 and kept
constant, simulating a fixed environment. The fifth protein in the reaction chain creates
biomass and is not inhibited.

In a snapshot of a population of cells, the values of ~X are distributed according to some
probability distribution P(~X), here assumed to be six independent Gamma distributions.
Because the variance in the expression of each protein species is tied to its mean (equa-
tion 3.7), the Gamma distribution for each protein species is completely specified by its
mean copy number. Together, the mean copy numbers are called a genotype and fully de-
fine the probability distribution P(~X). According to P(~X), we can sample for each individual
in a population a vector ~X. This vector is referred to as the individual’s phenotype. Corre-
sponding with the phenotype, an individual’s growth rate can be calculated by integrating
the system of ODEs for all metabolites (for i ∈ {2, 3, 4, 5}, ṁi = vi−1 − vi = 0 with each vi
specified in equation S3.10) until steady state (106 time steps in Matlab 2019b). The dynam-
ics of the metabolites are assumed fast, such that they are always in steady state relative
to the sampled protein copy numbers. Moreover, stochasticity in the metabolic reactions is
ignored for the same reason: metabolic fluctuations relax on timescales much faster than
growth (seconds rather than minutes or hours).

The specific kinetics chosen (equation S3.10) then enforce that for all possible phenotypes
a steady state flux exists. In the steady state, where all fluxes are equal, we define vi =

vi−1 = J, and:

µ := J/

(∑
i

Xi

)
.

s3.3.2 Evolution

To simulate evolution, we start with an initial genotype and measure its mean growth rate
(by sampling many phenotypes and calculating the corresponding growth rates), and sub-
sequently mutate the genotype to search for genotypes that result in higher mean growth
rates.
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The initial genotype is constructed by sampling 5 uniform numbers, ~x ∈ [0, 1]5 and
setting E

[
~X
]

initial
= ~xφH/

∑
j xjΩ, with φH = 0.4 (the proteomic fraction allocated to the

H-sector) and Ω = 104, the (mean) total protein abundance, here assumed to be equal to
cell size.

Genotypes were mutated in two different ways, depending on the noise amplitude cho-
sen (value of F) in the simulation. In the low noise regime (F = 1), the next genotype was
determined with a gradient-based hill climbing algorithm that uses the current GCCs:

~Xt+1 = ~Xt + ε ~δXt/
∣∣∣ ~δXt∣∣∣2 , ~δXt =

Ω

5

 ~Cµt/~φt −
∑
j/∈H

C
µ
j,t/φj,t

 ,

where ε is small (0.0002). This algorithm changes the genotype in the direction of the
steepest growth rate increase.

In the high-noise regime (F = 10), changes in the genotype are due to random muta-
tions, where one of the metabolic proteins is chosen at random and its mean abundance is
changed according to a percentage drawn from a normal distribution (mean zero, variance
5%), after which the entire genotype is renormalised to enforce a fixed mean cell size of Ω.
A mutant genotype is accepted only if it yields a higher mean growth rate (calculated over
2 · 104 sampled phenotypes). The evolutionary process is terminated when 100 mutants
have been rejected. The full evolutionary process is repeated 15 times; from these 15 evo-
lutionary trajectories, the genotype with the highest mean growth rate is chosen to be the
HN genotype. (The number 15 is arbitrary, but deemed enough to ensure the simulation
did not get stuck in a local optimum, while still being computationally feasible.)

s3.3.3 Calculating noise contributions

For a specific genotype, we measured noise contributions as follows. First, we sampled
2 · 104 phenotypes and calculated the corresponding growth rates. Then, we divided the
distribution for each protein in 100 bins, and calculated the mean growth rate in each
bin (sampling extra if less than 100 phenotypes fell in a particular bin). Afterwards, we
calculated the weighted variance between these growth rates. This is an approximation of
a conceptual decomposition method from Bowsher and Swain [18]:

κi =
Var {E [µ|Xi]}

Var {µ}
. (S3.11)

This method is a first order approximation of a full Global Sensitivity Analysis [107]. The
approximation is only valid if the sum of all contributions is close to unity. This is indeed
the case (see Fig. S3.5A). Moreover, sampling errors in κ are small (Fig. S3.5B). All Matlab
and Mathematica codes are available upon request.

s3.4 supplementary figures
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Figure S3.1: Examination of the effect of the noise floor and application of the theory of noise con-
tribution to the data set from Schmidt et al. (A) Data from Taniguchi et al, but variances
were now assumed to solely scale with mean protein abundance (CV2 = 1/E [X]), ig-
noring the noise floor (nf = 0, see section S3.2, black dots in the figure). (B) Effect of
adding the noise floor on predicted noise contributions in an optimally growing E. coli
cell. Adding a noise floor (in this case using measured variances) increases the noise
contribution of a few very abundant protein species (their noise levels increase), but
also causes many low copy number protein species to contribute relatively less. (C) Cu-
mulative noise contributions (

∑
κ) against cumulative mass fractions (

∑
φ) estimated

from the Schmidt et al data set. GCCs were again set according to optimal growth (red
dots), equal (purple dots), or shuffled (black dots). Shaded areas indicate the 50% least
abundant protein species (left) and the top 5% most abundant species (right).
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Figure S3.2: Example of highly skewed distributions in an optimised kinotype. (We picked this
kinotype because it most clearly showed the effect of evolution on the distributions.)
(A) Distribution of the efficiency of the fifth protein (ηi :=

kcat,i
µ

Xi∑
jXj

). (B) Distribution
of growth rates for the optimal Low-Noise genotype in the high noise regime. Red
areas in (A) and (B) correspond to the same phenotypes. (C) The same as (A), but for
the evolved High-Noise genotype. (D) the same as (B), but for the evolved, High-Noise
genotype. Grey distribution is the distribution in the LN-genotype for comparison.

A B C

Figure S3.3: (A) Probability a protein’s efficiency is very close to unity, calculated over 2 · 104 phe-
notypes. Although a higher efficiency on first glance seems good, an efficiency close
to unity indicates that this protein might be limiting growth. All proteins for with
p(η > 0.99) > 0 are marked with a red cross. Two outliers (triangle) protein species
from the same kinotype. (B) Changes in genotype when noise levels increase, as a func-
tion of the mean φ in the optimal genotype. Red crosses are those proteins that had a
non-zero probability of getting an efficiency close to one in the optimal genotype with
high noise. Note that the highly expressed proteins with p(η > 0.99) > 0 are not in-
creased, probably because this required the allocation of too much additional resource.
(C) Changes in mean genotype coincide with a change in Cµ.
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A B

C D

Figure S3.4: Example of the optimisation algorithm (gradient-based hill climb algorithm). (A)
Growth rate increases each step. (B) Correlation coefficient increases and switches sign
during optimisations. (C) Variance decreases during most parts of the optimisation
process. (D) CV2µ decreases. Parameters of this example kinotype are equal to those in
Fig. 3.1B.

i i

A B C

Figure S3.5: Examination of the noise decomposition method and noise levels. (A) The sum of all
first order noise contributions is close to unity, indicating that a first order Global
Sensitivity Analysis captures the variance contributions well. (B) Noise contributions
for the example kinotype in the LN genotype in the high noise regime. Error bars
indicate 2 sd over 125 repeated sampling of 2 · 104 phenotypes. Sampling errors in κ are
within reasonable bounds. (C) Distribution of CVs as encountered in HN genotypes.
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Figure S3.6: Examination of the sensitivity of the positive scaling between φ and κ for kinotype 2

around the evolved genotype (black circle) in the high noise regime (α = 10). Grey
dots denote mutant genotypes, for which their mean growth rate (relative to the mean
growth rate of the evolved genotype) is plotted against the correlation coefficients of φ
and κ for that particular genotype.
Mutants are created by three different methods: (1) mutation in a single protein with
a normally distributed step size with standard deviation 15% (40 genotypes, plus-sign
markers), (2) with 5% (30 genotypes, diamond-sign markers), and (3) mutations in
all protein species with standard deviation 5% (30 genotypes, square-sign markers).
After the mutations, genotypes were re-normalized to make sure total cell size, and φH
remained constant.



S3.4 supplementary figures 81

Table S3.1: Kinetic parameters, kcat and inhibition constant (kinhi) for the five metabolic protein
species in the kinotype used to create figure Figs. 3.2 and S3.4. Additionally, the initially
sampled (relative) protein abundances are given.

Protein kcat kinhi φinitial

1 3.4048 0.2153 0.19177

2 4.3489 4.3831 0.0080544

3 1.8454 3.6435 0.18137

4 3.1650 6.5335 0.084103

5 5.4577 1.8425 0.1347
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abstract

Bacteria sense changes in their external environment and regulate genes accordingly. But
even in a constant environment the concentrations of proteins and environmental sen-
sors such as metabolites, fluctuate, because gene expression is intrinsically stochastic. It is
known that stochastic fluctuations can transmit between nodes in a (regulatory) network.
However, to what extent regulatory networks respond to and in turn shape these fluctua-
tions is unknown. To address this question, we studied the cAMP-CRP regulatory network
during steady state growth. We studied the interplay between gene expression and growth
in wild type Escherichia coli and compared it to a mutant whose cAMP concentration is
experimentally held fixed and therefore does not react to intracellular fluctuations. Specifi-
cally, we simultaneously measured the singe-cell growth rate and the expression of two flu-
orescent reporters: one under cAMP-CRP control and one constitutive. These observations
show that cAMP-CRP regulation affects the dynamics of gene expression and growth even
at sub-cell-cycle timescales and in a fixed environment. The measured (cross-)correlations
between reporter concentrations and the growth rate were analysed with a mathemati-
cal model of stochastic gene expression, metabolism and growth. The model explains the
main differences between the wild type and the non-regulating mutant, and between the
two reporters, by changing only a single parameter that represents cAMP-CRP regulation.
To benchmark the model, we designed additional experiments, the results of which were
qualitatively predicted by adjusting specific model parameters.

The contents of this chapter will be submitted to Nature Communications.
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4.1 introduction

Bacteria display striking regulatory abilities to adjust to different environments. When
supplied with different carbon sources, bacteria make vast changes to their proteome com-
position to adjust metabolic resource allocation and growth rate [68, 89, 155, 158]. Often,
this regulation is tuned such that the amount of catabolic enzymes expressed is neither
wasteful nor limiting [17, 128, 157, 181]. Such an apparently fine-tuned relation between
gene expression and the population growth rate stands in sharp contrast to the hetero-
geneity observed at the single cell level. Under constant conditions, isogenic populations
of bacteria show large heterogeneity in protein expression and even growth rate [41, 42,
144, 173]. Between one individual and the next, growth rates can readily differ by more
than a factor of two [86, 170]. With these observations in mind, we speculated that the
regulatory mechanisms that adjust metabolism upon changes in external conditions might
also respond to internal fluctuations that arise stochastically.

The origins of noise in gene expression -and its interaction with regulatory networks-
have been investigated extensively. Heterogeneity can originate from the inherent chemical
stochasticity of gene transcription [52] and bursty translation [25, 47]. Expression noise
can subsequently propagate through gene regulatory networks [40, 64, 139] and affect
the expression of downstream genes. In turn, specific network motifs influence noise am-
plitudes and timescales [39, 148]. Correlations between fluctuations of constitutively ex-
pressed genes have been observed, which is classically defined as extrinsic noise [42, 168].
Suggested contributions to extrinsic noise include fluctuations in the abundances of com-
ponents involved in central cellular functions, such as ribosomes and transcription factors
[42] and processes such as the cell cycle [188] and metabolism [86].

It was found that noise transfers not only through gene regulatory networks but also
through the metabolic network [86]. Temporal fluctuations in limiting metabolic enzymes
were shown to produce correlated fluctuations in the growth rate. Metabolic fluctuations
may, however, propagate even more widely since metabolite pools and fluxes influence
the expression of many other genes through regulatory interactions. This way, metabolic
fluctuations might confer stochastic fluctuations to regulatory proteins, which in turn con-
tribute to extrinsic and global cellular noise dynamics. In this paper, we set out to investi-
gate whether the interaction between metabolism and regulation contributes to the global
stochastic dynamics of the cell.

To address this question experimentally, we focused on the transcriptional regulation
by the cAMP receptor protein (CRP) in Escherichia coli (E. coli). CRP regulates over 180

genes, and is thought to be a main regulator of genes related to catabolism (the C-sector)
[49, 95, 155, 198]. CRP is activated by the second messenger cyclic AMP (cAMP). In turn,
the synthesis of cAMP is inhibited by catabolic metabolites, such that C-sector expression
decreases when the concentration of intermediate metabolites increases, for example due
to changes in the external nutrients. The result is a regulatory feedback loop. At the pop-
ulation level, this feedback underlies a negative relationship between the proteome mass
fraction involved in catabolism (φC) and the growth rate (λ) under variation of the carbon
source; called the ‘C-line’ [68, 198]. Moreover, for many carbon sources the cAMP-CRP
regulatory feedback is shown to result in optimal C-sector expression [181].

To investigate the dynamics of stochastic fluctuations, we used time lapse microscopy to
obtain time series data of C-sector expression and instantaneous growth rate at the single
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cell level. Central to our work is the comparison of wild-type E. coli cells to mutated E.
coli cells that show the same population-averaged growth rate and C-sector expression but
whose cAMP-CRP regulatory network cannot respond to internal metabolite fluctuations.
Disrupting the propagation of internal fluctuations through a regulatory connection while
maintaining a proper response to the fixed external conditions is non-trivial. We achieved
this by using an E. coli cyaA cpdA null mutant [181]. This strain is unable to degrade or syn-
thesise cAMP, so that the cAMP-CRP regulatory feedback is broken. Importantly, cAMP
was provided externally at a constant concentration, resulting in what we call cAMP-fixed
cells (Fig. 4.1A). Although these cells can no longer respond to internal metabolite concen-
trations, we can artificially set C-sector expression to match external nutrient conditions by
providing a well-chosen cAMP concentration (cAMP-fixed*). Comparison of cAMP-fixed*
cells with their wild type counterparts allowed us to study the interaction between stochas-
tic metabolite fluctuations, the cAMP-CRP regulatory network, and the growth rate.

We found that the relationship between fluctuations in φC and λ differs between cAMP-
fixed* cells and the wild type. This indicated that fluctuations in gene expression and
growth rate are influenced by the stochastic, metabolic input received by regulatory net-
works, even in a fixed environment.

To better understand the observed dynamics, we created a coarse-grained, mathematical
model that captures the stochastic dynamics of gene expression, metabolism and growth.
This model was able to reproduce temporal relationships between gene expression and
growth from a mechanistic perspective and could explain the main difference between the
wild type and the cAMP-fixed* cells as a change in a single parameter related to cAMP-
CRP regulation. We subsequently validated this model against a second set of experiments;
model predictions qualitatively matched experimentally observed dynamics. Together, the
experiments and the model show that E. coli reacts to internal stochastic metabolic fluctu-
ations in a fixed environment as if these fluctuations were caused by a changing environ-
ment.

4.2 results

4.2.1 Establishing cAMP-fixed* cells

To obtain cAMP-fixed* E. coli cells, we first determined the cAMP concentration required to
match WT population-averaged C-sector expression and growth rate. We measured growth
rate at bulk level for various cAMP concentrations (Fig. S4.3). This showed that cAMP-
fixed cells supplied with 800 µM cAMP displayed WT growth rates (Figs. S4.3 and S4.5A).
We later confirmed in single cell experiments that at this cAMP concentration C-sector
expression also matches that of the WT (Fig. S4.5C). We thus refer to cAMP-fixed cells
supplied with 800 µM cAMP as cAMP-fixed* cells.

4.2.2 Probing single-cell stochastic dynamics under constant conditions

To probe stochastic fluctuations at sub-cell-cycle resolution, we used time-lapse microscopy
at high image acquisition rate to measure the instantaneous growth rate λ and C-sector ex-
pression of individual cells growing on minimal medium within micro-colonies. To deter-
mine C-sector expression we introduced two previously designed promoters [181] fused to
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Figure 4.1: Removing cAMP feedback alters dynamics of a regulated reporter only. (A) Cartoon
of a bacterial cell and the difference between wild type and mutant. Shown are the pro-
cesses of metabolism, protein expression, cAMP-CRP regulation, and growth (λ). Here
φC represents the expression level of the C-sector; the total concentration of all catabolic
proteins that are regulated by cAMP-CRP and that import nutrients and convert them
into internal metabolites (including cAMP itself). In the cAMP-fixed strain, cAMP is
neither synthesised nor degraded, and instead supplied externally to experimentally
tune φC. (B) The two reporters and their promoters that were used in this study: a
C-sector reporter whose transcription was regulated by cAMP-CRP (CRPr), and a con-
stitutive reporter, nCRPr. Crossed red block is the scrambled lacI site. (C-F) Scatter plot
of instantaneous growth rate (λ) against single-cell relative expression of the reporters
(φCRPr or φnCRPr). Dashed lines are linear regressions, black dots indicate binned aver-
ages. Data points are from a single growing colony (other colonies showed the same
trends, Fig. S4.5).



4.2 results 87

fluorescent reporter genes into the bacterial genome of both WT and cAMP-fixed cells. In
previous studies, lac expression has been used as a readout for the C-sector [198]. Here we
use a lac promoter with a scrambled lacI site, such that it is always sensitive to cAMP-CRP,
and fused it to mVenus (here called the CRP-regulated reporter: CRPr). Additionally, to
control for changes in dynamics between WT and cAMP-fixed cells not related to CRP, we
fused a constitutive promoter to mCerulean (the non-CRP regulated reporter: nCRPr). To
create this constitutive promoter, we further modified the CRPr promoter by replacing the
CRP-binding site by a σ70 consensus site, so that translation initiation occurs constitutively
instead of requiring CRP to recruit σ70. See also Figs. 4.1B and S4.11, and Table S4.2.

4.2.3 Behaviour of cAMP-fixed* cells suggests CRP responds to stochastic metabolite fluctuations

Removal of the cAMP-CRP metabolic feedback had a clear influence on the joint fluctua-
tions of C-sector expression and the growth rate in single cells (Fig. 4.1C-D). In WT cells,
fluctuations in the CRPr reporter concentration (φCRPr) are negatively correlated with fluc-
tuations in λ, as apparent from the negative regression slope in Fig. 4.1C. In cAMP-fixed*
cells, a positive correlation is found instead (Figs. 4.1D and S4.5A). The difference is statisti-
cally significant (p = 0.0031, two sample t-test, S4.5). The negative φCRPr −λ slope observed
in WT cells might reflect the population-level negative relationship between C-sector ex-
pression and growth rate due to cAMP-CRP regulation under carbon source variation (the
aforementioned C-line). In line with this hypothesis, the negative slope seems to be re-
moved when the cAMP-CRP feedback is removed (Fig. 4.1C to D). To verify that changes
in the slope between φCRPr and λ were due to the disruption of CRP regulation specifically,
rather than due to global changes of the dynamics in cAMP-fixed cells, we looked at the
relationship between the concentration of the constitutive reporter (φnCRPr) and λ. In WT
and cAMP-fixed* cells, the φnCRPr − λ relationship was similar, and negative (Figs. 4.1E-F
and S4.5A). This similarity (p = 0.93, Welch’s t-test) was expected, because for the nCRPr
reporter there is no difference between WT and cAMP-fixed* cells: the nCRPr reporter is
not regulated by cAMP-CRP in either strain. In conclusion, because the stochastic dynam-
ics of the CRPr reporter, but not the nCRPr reporter, differ between WT and cAMP-fixed*
cells, it seems that the cAMP-CRP regulatory network reacts to internal fluctuations, even
in a fixed environment.

4.2.4 A mathematical model can be used to mechanistically understand temporal dynamics

Though these observations on WT and cAMP-fixed* cells are indicative of interesting un-
derlying CRP dynamics, a mechanistic understanding of the φCRPr − λ relationships was
lacking. Why do WT cells show a negative φCRPr − λ relation and cAMP-fixed* cells a
positive φCRPr − λ relation? And what is the origin of the negative relations of the nCRPr
reporter? The dynamics of these reporters could be shaped by multiple cellular processes
[16, 40, 86, 87], such that multiple (extrinsic) noise sources contribute to each slope while
only some of these sources might be affected by removing the cell’s ability to respond to in-
ternal metabolite concentrations. Therefore, we next sought to dissect the multiple cellular
processes that shape the dynamics of the two reporters and the growth rate in both strains.
To this end, we compared temporal data on gene expression and growth with a stochastic
mathematical model.
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We extended the stochastic cell model presented by Kiviet et al [86]. This model does not
attempt to capture every biological detail, but instead describes the dynamics of coarse-
grained biological variables phenomenologically. Our extended model uses linear stochas-
tic differential equations (SDEs) to describe the temporal dynamics of protein production
rates (π), protein concentrations (φ), metabolism (M), and growth rate (λ). We explicitly
modelled π and φ of the C-sector (πC and φC), the C-sector reporter (πCRPr and φCRPr),
and the constitutive reporter (πnCRPr and φnCRPr). Concentrations φ depend on the growth
rate λ (since volume growth involves the dilution of cellular components) and production π.
To simulate the stochasticity of bacteria cells, we include independent phenomenological
noise sources (Ornstein-Uhlenbeck processes) directly affecting λ, π, and M, and coeffi-
cients that describe transfer of noise between variables. We model cAMP-CRP regulation
specifically as a negative feedback from metabolism towards πC and πCRPr (see Fig. 4.2A
and SI section S4.1.1 for a full description). Transfer coefficients, time scales, and noise
amplitudes can be fit to experimental data, allowing us to mechanistically describe the
dynamics of cAMP-CRP regulation, metabolism and growth.

4.2.5 Cross-correlations reveal temporal dynamics of gene expression and growth

To obtain a more complete understanding of the temporal dynamics of π, φ and λ, and to
compare our experiments to our mathematical model, we calculated cross-correlation func-
tions. Cross-correlation functions quantify the correlation between two time series after one
is shifted with respect to the other by a delay time τ. This can help characterise temporal
dynamics and give insights into how noise is transmitted between biological quantities [40,
86, 88, 176]. For example, if noise that originates in signal A has a downstream and delayed
effect on signal B, the cross-correlation between A and B will peak at a positive delay time.
The cross-correlation at zero delay is the instantaneous correlation between A and B, which
can for instance arise when both are affected by a signal C.

We re-analysed our time-series data of WT and cAMP-fixed* cells (Fig. 4.1C-F) to cal-
culate cross-correlations between reporter concentrations (φCRPr and φnCRPr) and λ and
between reporter production rates (πCRPr and πnCRPr) and λ (Fig. 4.2B, material and meth-
ods). We observed that the WT φCRPr − λ correlation (R(φCRPr−λ)) is negative at τ = 0

(Fig. 4.2B), reflecting the negative slope between φCRPr and λ also observed in Fig. 4.1C.
For cAMP-fixed* cells, R(φCRPr−λ) was positive at τ = 0 (Fig. 4.2B), similar to the positive
slope observed in Fig. 4.1D. In addition, more features of the stochastic dynamics became
clear. For example, both R(φCRPr−λ) and R(φnCRPr−λ) had a negative peak at negative de-
lay (τ < 0) in WT cells. And, not only R(φCRPr−λ) but also R(πCRPr−λ) was significantly
higher in cAMP-fixed* cells compared to WT cells (Fig. 4.2B, top-right). Lastly, the consti-
tutive reporter nCRPr again showed similar behaviour between WT and cAMP-fixed* cells
(Fig. 4.2B).

4.2.6 Mathematical model explains dynamics and confirms role of cAMP-CRP regulation

To understand these cross-correlation functions further, we used our mathematical model
to predict expressions for them. These expressions contained free parameters for noise
transfer and noise amplitudes, which allowed us to fit the model’s analytical cross-correlations
to our experimental data.
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Figure 4.2: Mathematical model pinpoints dynamical role of regulation. (A) Cartoon of the math-
ematical model, which considers fluctuations in the growth rate (λ) and the produc-
tion rates (π) and concentrations (φ) of the C-sector (πC and φC), the C-sector reporter
CRPr, and the constitutive reporter nCRPr. Black arrows indicate noise transfer; only
fluctuations in φC affect metabolism. Metabolism affects growth and protein produc-
tions rates. Regulation reacts to metabolic fluctuations and transfers to πC and πCRPr. In
the mutant, regulation is removed (red cross). (B) Cross-correlation functions between
the protein production rate π(t) and λ(t) (dashed lines) and between concentrations
φ(t) and λ(t), in the wild type and the mutant. Coloured lines are model fits, black lines
are cross-correlations calculated from data and error bars indicate standard error (SI
section S4.4), shown for only some data points. (C) Interpretation, shape, and absence
(crosses)/presence (checks) pattern of the four underlying noise modes that together
shape the cross-correlations in (B). Only the regulation mode is completely removed
due to the mutation (red cross). Cartoons indicate the direction and route of noise trans-
fer for each specific mode.
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We fitted analytical cross-correlations to data from both reporters, both for the WT and
cAMP-fixed* cells (Fig. 4.2B). To confirm that the different dynamics in the WT and cAMP-
fixed* cells could be explained by the removal of cAMP feedback, we allowed only the
transfer parameter TR associated with cAMP-CRP regulation to differ between the wild
type and the cAMP-fixed* cells: it was constrained to negative values in WT to represent
negative feedback, but set to zero in cAMP-fixed* cells to represent the lack of feedback; see
crossed-out feedback arrow in Fig. 4.2A. All other parameters, including noise transfer pa-
rameters, noise amplitudes and timescales, were kept fixed (for a more detailed explanation
of the model fit and fitted parameters see SI, section S4.5). Despite these strict constraints,
the model quantitatively fits the data for both reporters and both strains; in particular, it
reproduces the drastic change between WT and cAMP-fixed* cells for the CRPr reporter
and the absence of change between WT and cAMP-fixed* in the nCRPr reporter (Fig. 4.2B).
In conclusion, the model confirms that changes in the temporal dynamics of gene expres-
sion and growth, as visualised by their cross-correlations, can be explained by changes in
cAMP-CRP regulation.

4.2.7 Model cross-correlations are composed of terms reflecting mechanistic phenomena

Next, we aimed to further understand how the shape of each cross-correlation is deter-
mined by underlying noise propagation mechanisms. We found that the cross-correlation
functions of the model can be written as a sum of four noise modes, which we termed
the catabolism, dilution, common, and regulation mode (Fig. 4.2C; see SI section S4.2 for
mathematical decomposition). Each of the four modes has a different shape and amplitude,
and hence together they determine the shape of the cross-correlations. Therewith, the noise
modes link the abstract shapes of the cross-correlations to biologically interpretable phe-
nomena.

First, the catabolism mode originates from fluctuations the production rate of catabolic
proteins that are to some extent rate limiting. Such fluctuations will result in a higher con-
centration, and likewise a higher growth rate. Therefore, this mode contributes a positive
peak at positive delay time to the π− λ cross-correlation, and a symmetrical peak to the
φ− λ cross-correlation. Second, the dilution mode results from fluctuations in the growth
rate that dilute all protein concentrations, resulting in a negative correlation with negative
delay. Third, the common mode is the result of fluctuations that affect all protein produc-
tion rates simultaneously, as well as the growth rate. In result, this mode is symmetrical
for the π − λ cross-correlation, and has a negative delay for the φ − λ cross-correlation.
Lastly, the regulation mode represents all noise that transfers via the cAMP-CRP regulatory
network, pinpointing the exact contribution of the cAMP-CRP regulatory network to the
cross-correlations. In cells with faster metabolism and growth, cAMP-CRP regulation sup-
presses the production of C-sector proteins, resulting in a symmetrical but negative π− λ

cross-correlation and, with a delay, also a negative φ− λ cross-correlation.
Importantly, due to the biological wiring of the system not all modes are present in

all cross-correlations. The absence and presence of the noise modes can already help to
qualitatively understand the shape of the cross-correlation functions for a specific reporter
and strain (Fig. 4.2C, lower table). First, the CRPr reporter cross-correlation contains a
catabolism mode, whereas the nCRPr reporter does not. Note that, although neither re-
porter directly influences the growth rate, the C-sector reporter CRPr can be seen as a
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proxy for expression of the C-sector, which does influence the growth rate. Therefore, a
part of the catabolism mode of the C-sector can be observed in the CRPr cross-correlations,
but not in the cross-correlations for the constitutive reporter. Second, the regulation mode
is only present in the cross-correlations for the C-sector reporter CRPr in the wild type,
because only this reporter is regulated via the cAMP-CRP regulatory network.

We noted that the (cross-)correlations between φCRPr and λ (Fig. 4.1C and Fig. 4.2B)
and between φnCRPr and λ (Figs. 4.1E and 4.2B) looked similar in WT cells. The model
fit, however, indicates that they are composed of different modes. For the constitutive re-
porter nCRPr, in both WT and cAMP-fixed* cells, catabolism and regulation modes are
absent and the main contribution comes from the dilution mode. Cross-correlations of the
C-sector reporter CRPr, on the other hand, additionally contain the catabolism and regula-
tion modes, which largely cancel out, resulting in WT correlations with a shape similar to
those of the nCRPr reporter. In the cAMP-fixed* cells, the negative regulation mode is ab-
sent in CRPr correlations and the catabolism mode becomes visible, resulting in a positive
(cross-)correlation. Taken together, these observations show that temporal dynamics can be
modelled as a linear combination of modes, consistent with the idea that multiple cellular
processes, including metabolism and regulation, shape cellular heterogeneity.

4.2.8 Cross-correlations under non-optimal C-sector expression corroborate multi-modal noise
model

To further test whether the mathematical model and the noise modes properly describe the
stochastic dynamics of cAMP-CRP signalling, we sought ways to experimentally change
the amplitudes of certain modes. In the cAMP-fixed cells, we therefore examined cells for
which we fixed the cAMP concentration to levels such that the average C-sector expres-
sion was below (cAMP − fixedlow ) or above (cAMP − fixedhigh ) wild type expression. As
expected, cAMP − fixedlow showed lower, and cAMP − fixedhigh showed higher mean C-
sector reporter expression (Fig. 4.3A, black dots). Strikingly, the constitutive nCRPr reporter
showed the opposite: it showed higher expression in cAMP − fixedlow cells, and lower ex-
pression in cAMP − fixedhigh (Fig. 4.3B, positions of the orange and red clouds). These ob-
servations may be understood in terms of resource limitations: when the C-sector takes up
a larger fraction of the proteome, other protein expression must necessarily decrease [158]
(Figs. S4.10 and 4.3C). Changes in C-sector expression moreover greatly influenced the av-
erage growth rate. The average growth rate was highest for cAMP-fixed* cells (Fig. 4.3B,
middle black dot, and Fig. S4.10C). An under-expressed C-sector (Fig. 4.3A, left black dot)
resulted in lower mean growth rate, consistent with a growth-limiting catabolism -the cell
does not express enough catabolic enzymes to support a higher growth rate [32, 86, 181].
On the other hand, C-sector over-expression also resulted in slow population-averaged
growth rate (Fig. 4.3A, right black dot), possibly because expressing catabolic proteins su-
perfluously is costly and consumes resources better spent on other cellular components,
such as ribosomes.

Interestingly, the stochastic trend at the single cell level for a given external cAMP level
typically differed from the mean trend, i.e., the regression lines through each of the data
clouds (dashed lines in Figs. 4.3A, B) were not tangent to the curve that best fits the means
(solid lines in Fig. 4.3A and B, and Fig. S4.10). For the constitutive reporter, the stochastic
trend and the mean trend even had a different sign in the high CAMP condition (Fig. 4.3B,
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Figure 4.3: Too low or high cAMP dampens growth and changes noise-mode amplitudes. (A)
Scatter plot of the C-sector reporter against the growth rate, under three conditions:
low external cAMP (red cloud), optimal cAMP (green cloud, same condition as in
Figs. 4.1D, 4.2B), high external cAMP (orange cloud). Black dots indicate averages,
dashed lines are linear regressions (extending 2 std to each side), black curve is a 2nd
order polynomial fit to the means. (B) Same as in B, but then for the constitutive reporter.
Grey parabola is calculated from a sum constraint of both reporters (SI section S4.6). (C)
Cartoon showing how increasing the external cAMP concentration increases the size of
the C-sector in the mutant strain, but represses other proteins. (D-E) Measured cross-
correlations (grey lines with error bars indicate se) for both reporters for low cAMP (80

µM) and high cAMP (5000 µM), together with model predictions (coloured lines) re-
sulting from minimal parametric changes compared to the wild type fit. Model cartoons
(bottom panels) indicate changes in transfer parameters (green: increase, red: decrease)
with respect to cAMP-fixed* cells (SI section S4.5).
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orange cloud). This highlights a fundamental difference between cells that transiently have
a larger C-sector due to stochasticity, and cells that have a larger C-sector in response to
external cues.

Next, we again used cross-correlation analysis and our mathematical model to study
noise propagation in the cAMP − fixedlow and cAMP − fixedhigh cells. Notably, we found
that the most dramatic change in the cross-correlation function occurs when over-expressing
the C-sector (high cAMP), for the C-sector reporter. At optimal cAMP, it showed positive
correlations with no delay (Fig. 4.2B, top-right), while at high cAMP, the C-sector reporter
showed a strongly negative correlation with a slightly negative delay (Fig. 4.3E, top panel).
The other condition, low cAMP, also showed changes to the cross-correlation functions
compared to the optimal cAMP concentration (Fig. 4.2B, right), but mostly in terms of
amplitudes (Fig. 4.3D, top and middle panel).

These changes can again be explained by the noise propagation modes, only three of
which are now active because the regulation mode is disabled in cAMP-fixed cells. Specifi-
cally, the catabolism mode was expected to increase in amplitude in cAMP − fixedlow cells
because in these cells the C-sector metabolic enzymes are rate limiting. This should in-
crease the coupling from φC to metabolism, but also from metabolism to the growth rate
and protein production rates (Fig. 4.3D, model cartoon). For instance, temporary upward
fluctuations in C-sector proteins might alleviate the metabolic bottleneck caused by their
insufficient mean expression, thus yielding larger increases in the growth rate than at op-
timal cAMP. As a result, positive correlations increase in magnitude and become symmet-
rical (Fig. 4.3D, top panel) or negative correlations become less negative (Fig. 4.3D, middle
panel) compared to the optimal cAMP condition (Fig. 4.2D, left panels). Increasing the
corresponding parameters in the model (Fig. 4.3D, model cartoon, SI section S4.5) read-
ily reproduced the experimentally observed cross-correlations qualitatively (Fig. S4.6A),
although the absolute value of cross-correlation was over-estimated. A more quantitative
fit (Fig. 4.3D) can be obtained by increasing the noise amplitudes of the reporters to decor-
relate the signals (see SI section S4.5). Possibly, such differences in noise amplitudes are
caused by differences in average expression levels and in the mean growth rate, as noise
amplitudes are generally proportional to the mean [4, 173, 195].

Conversely, in cAMP − fixedhigh cells the C-sector is over-expressed and takes up valu-
able cellular resources superfluously. We hypothesised that stochastic fluctuations that re-
sult in higher C-sector expression would take up even more superfluous resources, and
further dampen the growth rate and protein production rates. Such negative control over
the growth rate -a higher concentration leading to slower growth- is often seen in bulk ex-
periments [22, 181] and has been suggested to play a role in noise propagation as well [87,
99]. The strongly negative φCRPr − λ cross-correlation observed (Fig. 4.3E, top panel) is in-
deed consistent with a negative catabolism mode, and setting the model’s corresponding
transfer parameters (Fig. 4.3E, bottom panel, SI section S4.5) to a negative value again read-
ily reproduced important features observed in cross-correlations of the cAMP − fixedhigh

(Fig. S4.6B). However, the observed high-cAMP cross-correlations seem to have shorter
timescales relative to the mean growth rate, compared to the other conditions (Fig. S4.6B).
A quantitative fit was possible (Fig. 4.3E), but again required additional tuning of noise am-
plitudes and timescales (SI section S4.5). Taken together, these experiments show that our
coarse-grained mechanistical model, together with the noise propagation modes, is able
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to capture and explain many important features of the stochastic dynamics of metabolism
and growth.

4.3 discussion

Many metabolites are known to play a role in the cell’s regulatory response to external
variation. Recently, it has become increasingly clear that metabolic networks are noisy [48,
86, 134, 184], raising the question of whether metabolic regulatory networks also react
to stochastic internal variation. By experimentally disrupting the ability of the cAMP-CRP
regulation system to respond to internal metabolite fluctuations, whilst maintaining proper
CRP activity with regard to external conditions, we were able to probe this question. Ex-
perimental single cell measurements and mathematical modelling allowed us to observe
and interpret the temporal dynamics of cAMP-CRP regulation responding to fluctuating
metabolite concentrations, C-sector expression, and cell growth. We found that these dy-
namics can be understood in terms of several noise propagation modes, and are consistent
with noise propagation from internal metabolite concentrations to cAMP-CRP activity, and
from thereon to the C-sector and to the whole of the cell.

Whilst CRP is an important master regulator, other regulatory and metabolic proteins
also respond to concentrations of cellular metabolites and small other molecules. For in-
stance, (p)ppGpp is a global modulator of proteins related to translation and metabolism
including ribosomal expression, which also directly influences the cellular growth rate
[166, 204]. Our results may also apply to such other regulators, as these could also respond
to internal fluctuations of small molecules and propagate them through the cell. Since
stochastic fluctuations could occur in all metabolites that exert allosteric control, noise
likely propagates through the cell via many complex routes, potentially involving metabo-
lites, metabolic pathways, expression of groups of functionally related genes, and growth.

To understand such stochastic dynamics and pinpoint the effect of various noise propaga-
tion mechanisms, we constructed a mathematical model that was able to dissect observed
noisy dynamics of the cAMP-CRP system in terms of four underlying noise modes. These
noise modes were then further validated in a second set of experiments that under-, or over-
expressed the C-sector, which changed the dynamics in ways that could be explained by the
model and are consistent with biological expectations. Noise in metabolism has a central
role in this model, suggesting that noise in metabolic pathways and proteins could strongly
affect cellular heterogeneity. Our phenomenological model treats the underlying intricate
biological processes as a black box, but it is interesting to speculate about the mechanisms
producing metabolic noise. Despite regulation of the C-sector, each C-sector protein species
is subject to intrinsic noise. This likely contributes to heterogeneity in metabolite concen-
trations and metabolic fluxes [48, 179, 192]. The metabolic noise in our model therefore
could be viewed as the compound result of the fluctuations of multiple catabolic proteins
and their effect on metabolic fluxes. In our model, the cAMP-CRP feedback receives di-
rect input from this internal metabolic noise source and transmits this noise to the entire
C-sector. In that sense, noise reverberates through the cell; even if the provenance of noise
may be in transcriptional and translational processes, other cellular processes can transmit,
modify and amplify this noise, and start to act as noise sources themselves, such that it
becomes difficult to disentangle source from intermediary. Thus, fluctuations in metabo-
lite concentrations may emerge as a result of noise in catabolic protein expression, and
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in turn contribute to fluctuations in the cAMP-CRP sensory-regulatory network and its
downstream regulatory effects.

We estimated noise transfer parameters in our model by fitting them to single-cell ex-
perimental data obtained in steady state. However, this work suggests that regulatory
interactions respond both to changes in external conditions and to stochastic metabolite
fluctuations within the cell. Given this dual role of regulatory interactions, future models
that describe stochastic dynamics could be further sophisticated by taking into account
information determined from bulk experiments that probe the proteome’s dynamical re-
sponse to a change in the environment. After all, the behaviour of the regulatory network
is shaped by its physical parameters that should remain identical independent of whether
it is responding to stochastic fluctuations or changes in external conditions. Bulk experi-
ments could provide robustly parameterized non-linear functions that describe how reg-
ulatory networks respond to changes in their molecular input -which might for example
be metabolite concentrations- or how they respond to changes in other cellular parameters
such as growth or C-sector expression [43, 98, 181]. Linearization of such functions should
yield parameters that can describe the amount of noise that would be transferred by these
interactions. These transfer parameters can then be used to construct single cell models
as presented here. Such an approach would validate the link between stochastic responses
and responses to external cues of regulatory networks, and further strengthen the validity
of stochastic models, as their parameters are not fit to the data they describe, but inferred
from independent experiments.

This work adds to the growing literature that studies noise in gene expression in the
context of metabolism and growth [31, 86, 87, 108, 118, 160, 162, 167]. This contrasts with
earlier, theoretical work that mainly focused on particular regulatory networks [64, 85, 164]
and their influence on expression noise. There, a common finding is that negative feedback
reduces noise amplitudes [23, 66, 115]. Consistently, our model hints at a reduction of noise
levels due to the negative feedback by cAMP-CRP (see SI section S4.5). However, in our
experiments coefficients of variation of both reporters, as well as the growth rate, were
slightly smaller in wild type cells compared to cAMP-fixed* cells, but the differences were
too small to be conclusive (Fig. S4.4).

Our work is a new step towards understanding the counter-intuitive differences between
the population-averaged bacterium, and the noisy, individual bacterium. By studying not
only different steady states, but also the dynamics of individuals around these steady
states, we shed light on how the behaviour of a population of cells is shaped by the regula-
tory wiring and sensory metabolites inside each individual cell that continuously reacts to
intricate internal stochastic processes.

Material and Methods
Strains. All strains used were based on wild type strain MG1655 (CGSC 8003, bBT12). The CRPr

and nCRPr promoters were based on the lac operon promoter, with respectively the lacI binding
site or both lacI and CRP binding site scrambled [181]. To obtain the C-sector reporter (CRPr)
and constitutive reporter (nCRPr), we fused these promoters to mCerulean and mVenus sequences
respectively. The reporters where then inserted into the chromosomes of the bBT12 strain and a
cyaA cpda null mutant strain constructed earlier (bBT80), using a lambda red protocol [181]. See SI,
Table S4.2 for strain details and Fig. S4.11 for promoter sequences.
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Single cell experiments. Micro-colonies of cells were grown on gel pads, imaged under a mi-
croscope, and analyzed by computer as described earlier[86, 192]. Briefly, polyacrylamide gel pads
(approx. 5 mm x 5 mm x 1 mm in size) were pre-soaked in M9 minimal medium supplemented
with lactose (0.01 % g/mL), uracil (0.2 mM), Tween20 (0.001%) and the desired concentration of
cAMP (Sigma Aldrich) if applicable. Pads were placed in a sealed glass chamber created by a mi-
croscope slide and a 2nd glass cavity slide, covered by a glass cover slip. Cells were pre-grown
overnight in the same medium, and 1 µl of exponentially growing culture (OD 0.005) was then
inoculated on the gel pad at the start of the experiment. Everything was done at 37 °C, and the
glass chamber with pad and cells was then placed in a customised scaffold, and imaged under a
microscope with a customised incubation chamber at 37 °C. For the WT, cAMP − fixedlow , cAMP-
fixed* and cAMP − fixedhigh conditions, we respectively processed time series data from 6, 2, 4 and
2 micro-colonies.

Microscopy. We used a Nikon, TE2000 microscope, equipped with 100X oil immersion objective
(Nikon, Plan Fluor NA 1.3), cooled CMOS camera (Hamamatsu, Orca Flash4.0), xenon lamp with
liquid light guide (Sutter, Lambda LS), GFP, mCherry, CFP and YFP filter set (Chroma, 41017,
49008, 49001 and 49003), computer controlled shutters (Sutter, Lambda 10-3 with SmartShutter),
automated stage (Märzhäuser, SCAN IM 120 x 100) and an incubation chamber (Solent) allowing
precise 37 °C temperature control. An additional 1.5X lens was used, resulting in images with pixel
size of 0.0438µm. The microscope was controlled by MetaMorph software, which allowed us to
automatically take pictures at set intervals. Image acquisition intervals were adjusted to doubling
times to obtain multiple fluorescent images per cell cycle; phase contrast images were taken every
60-90 seconds, CFP and YFP fluorescent images (150-200 ms exposure time) were taken at intervals
ranging from 13.5-26 minutes.

Image analysis. Series of phase contrast images were analysed with a custom Matlab (Math-
works) program originally derived from Schnitzcells software [199]. Cells were segmented and
tracked to follow cells and lineages through time. For each frame, cell lengths were determined by
fitting a 3rd order polynomial to the curved segmentation regions. Cells were assumed to have a
constant width. Growth rates (dbl/hr) were determined by fitting an exponential function to the
cell lengths over multiple frames (5 to 9). To determine the production rate per volume, first the
sum of the fluorescence signal (a.u.) over all pixels that make up a cell was calculated. If on frame
n also a fluorescence image was taken, we then calculated the slope of a linear fit through three
points n− l, n, and n+ l (where l is the frame interval at which fluorescence pictures are taken),
the resulting number is divided by the total number of pixels of the cell in frame n to obtain the
production rate. Concentrations were determined by dividing the sum of the fluorescence signal by
the total number of pixels in a cell. To determine scatter plots and correlations, only frames where
fluorescence images were taken are considered.

Cross-correlation analysis. We define the cross-correlation between signals f and g as Rf,g(τ) =

Sf,g(τ)/
√
σ2fσ

2
g, with Sf,g(τ) = 1/(N− |τ|)

∑N−|τ|−1
n=0 f(n)g(n+ τ), where n equals discrete units of

time as frame numbers, τ is a delay in number of frames, N the total number of time points in the
data series and σ2f the variance of f (equal to Sf,f(0)). See SI section S4.4 for more details about data
weights and statistics.

Mathematical model As mentioned, our model consists of stochastic differential equations, and
includes parameters for the protein production rates (π), protein concentrations (φ), metabolism
(M), and growth rate (λ), Ornstein-Uhlenbeck noise sources N and noise transfer coefficients T
that couple equations for ∂π/∂t, ∂M/∂t, and ∂λ/∂t; concentrations are determined by ∂φ/∂t =

π−φλ. This model is solved analytically to predict cross-correlations between the quantities. See the
supplement for an extensive description of the model, procedures to fit the model to experimental
data, a statistical null model for the cross-correlations, and a toy model that describes the mean
behaviour of π, φ, and λ for CRPr and nCRPr in different conditions as observed in 4.3.

Script and data availability. Matlab scripts and mathematica notebooks used to create all the
figures can be requested by the authors, and can be found at:
https://github.com/Jintram/DynamicalRegulationBacterialCells.
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Author contributions. MW and SJ designed the experiments. BDT created strains. MW per-
formed experiments and performed data analysis. LHJK and RH made the mathematical model
and performed statistics (except ‘the mean behaviour toy model’, made by MW). LHJK and MW
wrote initial draft. SJ and RH supervised.
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S U P P L E M E N TA RY I N F O R M AT I O N C H A P T E R 4

s4.1 mathematical analysis of the noise model

Note on notation: Where the main text talks about the C-sector reporter (CRPr) and the
not CRP-regulated constitutive reporter (nCRPr), this document uses the notation ‘Y’ for
the C-sector reporter and ‘H’ for the constitutive reporter.

s4.1.1 Model definition and parameter interpretation

Similar to Kiviet et al [86] a linear noise propagation model can be constructed using the
diagram of Fig. S4.1. The model captures the interplay between the production rate (π) of
certain proteins, the concentrations (φ) of these proteins, metabolism (M), and the growth
rate (λ).

We model the total C-sector in a coarse-grained manner as a single protein, C, whose
fluctuations directly influence (the rate of) metabolism. Additionally, we model the dynam-
ics of the two fluorescent reporters (for ease of notation here called Y and H) that are not
metabolically active and hence do not control metabolism.

We assume that the variables fluctuate around a particular average state {λ0,M0, ~π0, ~φ0};
the model then describes the dynamics of small, relative deviations of each variable from
its respective average, δX(t)X0

:=
X(t)−X0
X0

. (Below, the explicit time dependence will often be
omitted.) These deviations, referred to as “noise”, propagate through the system according
to the arrows in Fig. S4.1. For example, fluctuations in the production rate πC affect φC,
whose fluctuations affect M. Via M the noise then further transfers to the production rates
and to the growth rate. Noise in the growth rate in turn affects the dilution of all proteins
(dashed line). The logarithmic gains/transfer coefficients TAB describe the strength of noise
propagation from A to B.

The role for metabolism is crucial in our model because many noise routes pass through
metabolism, but also because the cAMP-CRP regulatory network reacts to metabolic fluc-
tuations. The interpretation of M is therefore not straightforward. M could be interpret
as the rate of metabolism. Additionally, we assume that with a higher rate of metabolism,
the concentrations of certain internal metabolites (in particular keto-acids such as OAA)
also increase. The metabolite OAA is known to inhibit the production of cAMP in wild
type cells [198] (see Fig. 4.1A), therewith triggering the cAMP-CRP regulatory feedback
when M increases (represented by the regulatory parameter TR in the model, Fig. S4.1).
Although we model metabolism with a single variable M, it thus represents both the rate
of metabolism and the saturation level of metabolic precursors such as OAA.

Certain variables are directly influenced by phenomenological, independent coloured
noise sources, notated as Ni: Ornstein–Uhlenbeck Noise sources that each have a specific
timescale. These noise sources offer a way to model the combined effect of many stochastic
processes that together influence the stochastic dynamics of certain variables. For example,
NπY summarises processes that intrinsically influence the production rate of the Y reporter,

99
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Figure S4.1: Diagram of the Noise Routes, including C reporter (Y) and constitutive reporter (H). An
additional shared noise source is added between πC and πY , here called Ns, that rep-
resents noise in the sensory mechanism (for example CRP-concentration fluctuations).
The transfer of noise from Metabolism (M) to production exist of general transfer (TMπ)
and, for C and Y, regulatory transfer (TR).
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such as transcription and translation. NM, the noise source acting on metabolism, is pri-
marily the result of fluctuations in the concentration of individual protein species that are
part of the C-sector. The fluctuations of all these proteins together are expected to cause
the metabolic flux to fluctuate, even if the total size of the C-sector would remain constant.
Fluctuations in the concentrations of individual proteins are diluted via growth, so that
the NM noise source has a timescale close to λ0. Nλ has a similar interpretation. Ns is a
shared noise source between the C-sector and the C-sector reporter Y, mainly interpreted
as fluctuations in the production of CRP-regulated proteins due to fluctuations in the con-
centration of CRP itself. Even when the cAMP concentration is experimentally kept fixed
in the mutant strain, fluctuations in the CRP concentration are expected to influence the
cAMP-CRP concentration and therewith the production rate of both the C-sector and its
reporter Y.

Based on the considerations above, we arrive at the following set of equations:

δλ

λ0
= Nλ + TMλ

δM

M0
, (S4.1)

δM

M0
= NM + TCM

δφC
φC,0

, (S4.2)

δπC
π0,C

= NπC +Ns + (TMπ + TR)
δM

M0
, (S4.3)

δπY
π0,Y

= NπY +Ns + (TMπ + TR)
δM

M0
, (S4.4)

δπH
π0,H

= NπH + TMπ
δM

M0
, (S4.5)

˙(
δφC
λ0φ0,C

)
=
δπC
π0,C

−
δφC
φ0,C

−
δλ

λ0
, (S4.6)

˙(
δφY
λ0φ0,Y

)
=
δπY
π0,Y

−
δφY
φ0,Y

−
δλ

λ0
, (S4.7)

˙(
δφH
λ0φ0,H

)
=
δπH
π0,H

−
δφH
φ0,H

−
δλ

λ0
. (S4.8)

The last three equations are linearisations of the time derivative of the protein concentra-
tions (φ̇i = πi − λφi), see also [86]. The dynamics of each noise source Nx is given by its
stochastic differential equation,

dNx = −βxNxdt + θxdWt, (S4.9)

where βx is the noise source’s timescale, θx its amplitude, and W(t) a Wiener Process.

s4.1.2 Metabolic timescale, solution in Fourier space

The system of equations S4.1-S4.8 above can be solved in Fourier space. For each variable
A(t) we denote the Fourier Transform of δA(t) as Ã(ω). Next, we introduce a metabolic
timescale that scales with the mean growth rate: λE = λ0(1 − TCMTMC), where TMC =

TR + TMπ − TMλ. This timescale can be interpret as the time it takes before the protein con-
centration equilibrates with its protein production rate (note that producing proteins takes
time, such that a higher production rate now, only results in a higher concentration some
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time later). During exponential growth, proteins are generally produced at a (mean) rate
proportional to λ0, such that production and dilution are balanced. In effect, fluctuations
in protein concentrations generally decay on a timescale of λ0. However, in the case of C-
sector proteins, synthesised proteins directly influence the rate of metabolism (TCM 6= 0),
and (depending on the parameters TR, TMπ and TMλ) metabolism in turn influences the
production rate and protein concentration. This changes the timescale of C-sector fluctua-
tions from λ0 to λE. Using this notation, we solve the linear system on the previous page
in Fourier Space and arrive at:

δ̃λ
λ0

= Nλ + TMλNM + λ0
λE+iω

(TCMTMλ)

[
NπC +Ns + TMCNM −Nλ

]
,

δ̃φC
φC0

= λ0
λE+iω

[
NπC +Ns + TMCNM −Nλ

]
,

δ̃πC
πC0

= NπC +Ns + (TR + TMπ)NM + λ0
λE+iω

TCM(TR + TMπ)

[
NπC +Ns + TMCNM −Nλ

]
.

(S4.10)
δ̃φY
φy,0

= λ0
λ0+iω

[
NπY +Ns + TMCNM −Nλ

]
+

λ20TCMTMC
(λE+iω)(λ0+iω)

[
NπC +Ns + TMCNM −Nλ

]
,

δ̃πY
πy,0

= NπY +Ns + (TR + TMπ)NM + λ0
λE+iω

TCM (TR + TMπ)

[
NπC +Ns + TMCNM −Nλ

]
.

(S4.11)
δ̃φH
φH,0

= λ0
λ0+iω

[
NπH + (TMπ − TMλ)NM −Nλ

]
+
λ20TCM(TMπ−TMλ)
(λE+iω)(λ0+iω)

[
NπC +Ns + TMCNM −Nλ

]
,

δ̃πH
πH,0

= NπH + TMπNM + λ0
λE+iω

TCMTMπ

[
NπC +Ns + TMCNM −Nλ

]
.

(S4.12)

s4.1.3 Calculated variances and cross-covariances

Definition of cross-covariance

The solution in Fourier Space (equations S4.10 - S4.12) can be used to calculate variances
and cross-covariances of the variables. Recall that the cross-covariance of variables A/A0
and B/B0 is given by:

X(A,B)(τ) =
1

2π
F−1

(
Ã(t− τ)

∗

A0

B̃(t)

B0

)
, (S4.13)

where F−1(.) denotes the Inverse Fourier Transform. In the product Ã
∗

A0
B̃
B0

we can safely
ignore terms ofNiN∗j when i 6= j, for they will not contribute to the cross-correlation due to
independence of the noise sources (* here denotes complex conjugation). Consequently, the
expansion of the product is always linear in the absolute values of the noise sources |Ni|

2.
This feature is important, because it assures that the cross-covariance can be written as
χ(A,B)(τ) =

1
2πF

−1
(∑

i fi(ω)|Ni|
2
)
, where fi(ω) are complex functions to be determined

and the summation runs over all noise sources. Because the Inverse Fourier Transform
is a linear operator, we only need to calculate the Inverse Fourier Transform of each term,
fi(ω)|Ni|

2, separately. The Inverse Fourier Transform of each term is given in section S4.1.3.
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Analytical expressions for the coefficients of variation

From the above equations (S4.10 - S4.13) one can also derive the coefficient of variation
of all variables. Concretely, the coefficient of variation of variable A is related to its auto-
covariance at zero delay:

η2A := σ2A/A
2
0 = X(A,A)(0). (S4.14)

For example, the coefficients of variation for φC and λ can be calculated using the Inverse
Fourier transform as follows:

η2φC := F−1
(τ=0)

[
δ̃φC

∗

φ0,C

δ̃φC
φ0,C

]
= F−1

(0)

[
λ20

λ2E +ω
2

(
|NπC |

2 + |Ns|
2 + T2MC|NM|2 + |Nλ|

2
) ]

.

(S4.15)

η2λ = F−1
(τ=0)

[
|Nλ|

2 + T2Mλ|NM|2 +
2λ0λE

λ2E +ω
2
TCMTMλ

(
TMλTMC|NM|2 − |Nλ|

2
) ]

(S4.16)

+ (TCMTMλ)
2η2φC . (S4.17)

(Here we have used the identity λ0
λE+iω

+ λ0
λE−iω

= 2λ0λE
λ2E+ω

2 .) To calculate these (Inverse)
Fourier Transforms we use a set of identities that can be found later in this document
(section S4.1.3, equations S4.28-S4.38). Here we present the results (using the notation βiX :=

βX + λi, with i = 0,E):

η2φC =
λ20
2λE

(
θ2πC

βπCβ
E
πC

+ θ2s
βsβEs

+ T2MC
θ2M

βMβ
E
M

+
θ2λ
βλβ

E
λ

)
,

η2λ =
θ2λ
2βλ

(
1− 2λ0

βEλ
TCMTMλ

)
+
θ2M
2βM

T2Mλ

(
1+ 2λ0

βEM
TCMTMC

)
+ (TCMTMλ)

2η2φC ,

η2πC =
θ2πC
2βπC

(
1+ 2λ0

βEπC
TCM(TR + TMπ)

)
+ θ2s
2βs

(
1+ 2λ0

βEs
TCM(TR + TMπ)

)
+
θ2M
2βM

(TR + TMπ)
2
(
1+ 2λ0

βEM
TMCTCM

)
+ T2CM(TR + TMπ)

2η2φC .

(S4.18)



η2φY =
θ2πYλ0

2βπYβ
0
πY

+ θ2sλ0
2βsβ0s

(
1+ TCMTMC

λ0(βs+λ0+λE)
λEβEs

)
+

θ2Mλ0
2βMβ

0
M

T2MC

(
1+ TCMTMC

λ0(βM+λ0+λE)

λEβ
E
M

)
+
θ2λλ0
2βλβ

0
λ

(
1+ TCMTMC

λ0(βλ+λ0+λE)

λEβ
E
λ

)
+

θ2πC
λ20

2βπCβ
0
πC

T2CMT
2
MC

λ0(βπC+λ0+λE)

βEπC
λE(λ0+λE)

,

η2πY =
θ2πY
2βπY

+ θ2s
2βs

(
1+ 2 λ0

βEs
TCM(TR + TMπ)

)
+
θ2M
2βM

(TR + TMπ)
2
(
1+ 2 λ0

βEM
TCMTMC

)
+T2CM(TR + TMπ)

2η2φC .
(S4.19)



η2φH =
θ2πH

λ0

2βπHβ
0
πH

+
λ30T

2
CM(TMπ−TMλ)

2

2λE(λ0+λE)

(
θ2πC

(βπc+λ0+λE)

βπcβ
0
πcβ

E
πc

+
θ2s(βs+λ0+λE)

βsβ0sβ
E
s

)
+
θ2Mλ0(TMπ−TMλ)

2

2βMβ
0
M

(
1+ TCMTMC

λ0(βM+λ0+λE)

λEβ
E
M

)
+
θ2λλ0
2βλβ

0
λ

(
1+ TCM(TMπ − TMλ)

λ0(βλ+λ0+λE)

βEλ(λ0+λE)

(
TCM(TMπ − TMλ)

λ0
λE

+ 2
))

η2πH =
θ2πH
2βπH

+
θ2M
2βM

T2Mπ

(
1+ 2 λ0

βEM
TCMTMC

)
+ T2CMT

2
Mπη

2
φC

.

(S4.20)
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Analytical expressions for the cross-covariances

Now we are in the position to present explicit expressions for the cross-covariances, which,

normalised by the above variances, will result in cross-correlations: R(A,B)(τ) = χ(A,B)(τ)/
√
σ2Aσ

2
B.

The cross-covariances use functional forms A,B,S,D1,D2,D3, which are described on the
next page, and the relation A(t) +A(−t) = 2λEλ0 S(t)):

χ(φC,λ)(t) = TCMTMλ

[
SπC(t) + Ss(t) + T

2
MCSM(t) + Sλ(t)

]
+ TMCTMλAM(t) −Aλ(t).

(S4.21)

χ(πC,λ)(t) = T
2
CMTMλ(TR + TMπ)

[
Sπc(t) + Ss(t) + T

2
MCSM(t) + Sλ(t)

]
+ (TR + TMπ)TMλBM(t)

+ TCMTMλ

[
AπC(−t) +As(−t)

]
+
2λE
λ0
TCMTMλTMC(TR + TMπ)SM(t)

− TCM(TR + TMπ)Aλ(t). (S4.22)

χ(φY ,λ)(t) = TMCTMλA
0
M(t) −A0λ(t)

+ TCMTMλ

[
D1s(t) + T

2
MCD

1
M(t) +D1λ(t)

]
+ TCMTMC

[
TMCTMλD

2
M(t) −D2λ(t)

]
+ T2CMTMCTMλ

[
D3πC(t) +D

3
s(t) + T

2
MCD

3
M(t) +D3λ(t)

]
. (S4.23)

χ(πY ,λ)(t) = TMλ(TR + TMπ)BM(t) +
2λE
λ0
TCMTMCTMλ(TR + TMπ)SM(t)

+ TCM

[
TMλA

E
s (−t) − (TR + TMπ)A

E
λ(t)

]
+ T2CM(TR + TMπ)TMλ

[
SπC(t) + Ss(t) + T

2
MCSM(t) + Sλ(t)

]
. (S4.24)

χ(φH,λ) = (TMπ − TMλ)TMλA
0
M(t) −A0λ(t) + TCMTMλ

[
(TMπ − TMλ)TMCD

1
M(t) +D1λ(t)

]
+ TCM(TMπ − TMλ)

[
TMCTMλD

2
M(t) −D2λ(t)

]
+ T2CM(TMπ − TMλ)TMλ

[
D3πC(t) +D

3
s(t) + T

2
MCD

3
M(t) +D3λ(t)

]
. (S4.25)

χ(πH,λ) = TMπTMλBM(t) +
2λE
λ0
TMπ(TMCTCMTMλ)SM(t) − TCMTMπAλ(−t)

+ T2CMTMπTMλ

[
SπC(t) + Ss(t) + T

2
MCSM(t) + Sλ

]
. (S4.26)

The variances and cross-covariances presented here can be further studied and checked
with the Mathematica notebook/supplementary file ‘VarianceChecker.nb’, which is avail-
able online: https://github.com/Jintram/DynamicalRegulationBacterialCells.

https://github.com/Jintram/DynamicalRegulationBacterialCells
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Functional forms of the building blocks

In the above equations, A, S, B, and D1, D2 and D3 are functional forms that will be
described below. The functional forms are found by complex integration using Cauchy’s
Residue theorem and are given by:

Aj(t) =

∫
eiωt

2π

λ0
λj − iω

θ2

β2 +ω2
dω, for j ∈ {0,E}, but superscript “E” is implicit (S4.27)

=
θ2λ0
2β


2βeλjt

β2 − λ2j
− d eβt

β(β−λj)
, for t < 0,

e−βt

βx + λj
, for t > 0.

(S4.28)

S(t) =

∫
eiωt

2π

λ20
λ2E +ω

2

θ2

β2 +ω2
dω (S4.29)

=
θ2λ20

2(β2 − λ2E)

(
e−λE|t|

λE
−
e−β|t|

β

)
(S4.30)

D1(t) =

∫
eiωt

2π

λ20
(λE + iω)(λ0 − iω)

θ2

β2 +ω2
dω (S4.31)

= θ2λ20


eλ0t

(β2 − λ20)(λ0 + λE)
−

eβt

2ββEx(β− λ0)
, for t < 0,

e−λEt

(β2 − λ2E)(λ0 + λE)
−

e−βt

2ββ0(β− λE)
, for t > 0

(S4.32)

D2(t) =

∫
eiωt

2π

λ20
(λE − iω)(λ0 − iω)

θ2

β2 +ω2
dω (S4.33)

= θ2λ20


eβt

2β(β− λ0)(β− λE)
+

1

λ0 − λE

(
eλEt

β2 − λ2E
−

eλ0t

β2 − λ20

)
, for t < 0,

e−βt

2ββEβ0
, for t > 0

(S4.34)

D3(t) =

∫
eiωt

2π

λ30
(λ2E +ω

2)(λ0 − iω)

θ2

β2 +ω2
dω (S4.35)

=
θ2λ30
2


(

eβt

β(β− λ0)(β2 − λ
2
E)

−
2eλ0t

(β2 − λ20)(λ
2
0 − λ

2
E)

+
e−λEt

λE(β2 − λ
2
E)(λ0 − λE)

)
, if t < 0,

e−λEt

λE(λ0 + λE)(β2 − λ
2
E)

−
e−βt

ββ0(β2 − λ2E)
, if t > 0

(S4.36)

B(t) =

∫
eiωt

2π

θ2

β2 +ω2
dω (S4.37)

=
θ2

2β
e−β|t|. (S4.38)

Note that the functions D1 and S are very similar: the only difference is a single timescale
change from λ0 to λE. Functions D2 and D3 appear only in terms representing contribu-
tions of noise that propagates a full circle, reverberating through the entire cell, starting in
φC, passing through metabolism and growth, and eventually reaching the reporters.



106 supplementary information chapter 4

s4.2 analysing the cross-correlations

The cross-correlation between two signals A and B (covariances of A and B divided by
their standard deviations) contains temporal information about the dynamical interplay
of the two signals. For example, if noise first reaches signal A and only later arrives at
B, their cross-correlation will peak at a positive delay time. Generally, the complicated ex-
pressions for the cross-correlations between A and B indeed consists of several terms that
each correspond to a different mechanism by which noise can travel from some source to
A and B. Insight into these different mechanisms can be gained by splitting the mathemat-
ical description of the cross-correlation into different ‘modes’ that can each be interpreted
as a different way in which noise can propagate through the cell. However, such a de-
composition is not unique and hence subject to convention. Therefore, we first discuss a
decomposition from Kiviet et al [86] using the φC-λ cross-covariance, χφC,λ as an example.
Next, we propose a new decomposition that is better suited to the system investigated in
this work.

s4.2.1 The φC-λ cross-correlation: Old Decomposition

First, we split up the φC-λ cross-covariance (see equation S4.21) in the same way as in
Kiviet et al, using three modes:

• Catabolic mode. This mode contains the contributions of all paths that transfer via
catabolism (i.e. from φC to M and from M to λ), where one route ends at the growth
rate, and the other at protein concentration:

TCMTMλ
(
SπC + Ss + T

2
MCSM + (−1)2Sλ

)
.

• Common mode. This mode originates from phenomenological noise source that di-
rectly influences the growth rate, and the production rates (which in turn influences
the concentrations):

TMCTMλAM.

• Dilution mode. This mode represents direct transfer from growth to protein concen-
tration:

−Aλ.

s4.2.2 The C-λ cross-correlations: New decomposition

In the current work, we argue to define the modes slightly different. The major difference is
in the interpretation of the common mode, which is now not defined as contributions to the
cross-correlations originating from a particular noise source, but rather as all contributions
that are sensed commonly by all proteins in the cell. Specifically, noise in the production
of particular proteins can contribute to fluctuations of M, from where it will transfer to
all proteins commonly. In other words, noise that originates in a particular part of the cell
can propagate through the cell and partly become common noise, transferring further to
all proteins equally. Additionally we introduce the regulation mode, which contains all



S4.2 analysing the cross-correlations 107

contributions to the cross-correlations that rely on the regulation and hence scale linearly
with TR.

With these conventions, the decomposition of the cross-correlation between φC and λ
becomes as follows. For some terms we have added red brackets that divide the transfer
parameters into specific groups of transfer parameters that are associated with a particular
noise route through the cell (Figs. S4.1 and S4.2). From every noise source one can indeed
follow two distinct paths, one to each of the variables for which the cross-correlation is
calculated. However, sometimes noise routes are merged for clarity of reading. Then, the
red brackets are omitted.

• χ(φC,λ):

1. Control: (TCMTMλ) (SπC + Ss) .

2. Dilution: −Aλ.

3. Common: (TMπ − TMλ)TMλAM + (TCMTMλ)

[
T2MCSM + (−1)2Sλ

]
.

4. Regulation: TRTMλAM.

• χ(πC,λ):

1. Control: (TCMTMλ) (AπC(−t) +As(−t)) .

2. Dilution: 0.

3. Common: TMπTMλBM+(TCMTMπ) (TCMTMλ)

[
(SπC +Ss+T

2
MCSM+(−1)2Sλ

]
+

2λEλ0 TMCTCMTMπTMλSM − (TCMTMπ)Aλ.

4. Regulation: TRTMλBM+(TCMTR) (TCMTMλ)

[
SπC +Ss+T

2
MCSM+Sλ

]
+2λEλ0 TMCTCMTRTMλSM−

(TCMTR)Aλ.

The above equations for χ(φC,λ) and χ(πC,λ) apply to both wild type E. coli cells and the
cAMP-fixed cyaA cpdA null mutant studied in the main text. This allows us to pinpoint
the role of regulation in shaping the cross-correlation. The parameter TR that represents
the cAMP-CRP regulation feedback is expected to be negative in the wild type (TR < 0

due to cAMP-CRP regulation). In the cAMP-fixed strain however, the negative feedback
is abolished and TR = 0. Such a parametric switch will qualitatively change the cross-
correlations R(φC,λ) and R(πC,λ). For example, a negative contribution with functional form
of AM (asymmetrically, left-skewed function with timescale λ0) is effectively removed from
R(φC,λ).

Note that setting TR = 0 not only influences the presence of the regulation mode. Ad-
ditionally, TR also influences the coefficients of variation (equations S4.18 - S4.20), and
amplitudes and timescales of the other modes via λE := λ0(1− (TR + TMπ − TMλ)). Most
modes are therefore expected to show slight, quantitative differences between wild type
and cAMP-fixed cells, but only the regulation mode will show a strong qualitative differ-
ence: it is completely absent in cAMP-fixed cells.
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s4.2.3 Summary of the new decomposition for the reporters

C-sector reporter concentration: χ(φY , λ)

1. Control: (TCMTMλ)D1s .

2. Dilution: −A0λ.

3. Common: (TMπ − TMλ)TMλA0M + TCMTMC
(
TMCTMλD

2
M −D2λ

)
+ (TCM(TMπ − TMλ)) (TCMTMλ)

[
D3πC +D3s + T

2
MCD

3
M +D3λ

]
+ (TMCTCM(TMπ − TMλ)) TMλD

1
M + (TCMTMλ)D

1
λ.

4. Regulation: TRTMλA0M + (TCMTR) (TCMTMλ)

[
D3πC +D3s + T

2
MCD

3
M +D3λ

]
+ (TMCTCMTR) TMλD

1
M.

C-sector reporter production rate: χ(πY , λ)

1. Control: (TCMTMλ)As(−t).

2. Dilution: 0.

3. Common: TMπTMλBM + (TCMTMπ) (TCMTMλ)

[
SπC + Ss + T

2
MCSM + Sλ

]
+ 2λEλ0 TMπ (TMCTCMTMλ)SM − (TCMTMπ)Aλ.

4. Regulation: TRTMλBM + (TCMTR) (TCMTMλ)

[
SπC + Ss + T

2
MCSM + Sλ

]
+ 2λEλ0 TR (TMCTCMTMλ)SM − (TCMTR)Aλ.

Constitutive reporter concentration: χ(φH, λ)

1. Control: 0.

2. Dilution: −A0λ.

3. Common: (TMπ − TMλ)TMλA0M + TCMTMC
(
TMCTMλD

2
M −D2λ

)
+ (TCM(TMπ − TMλ)) (TCMTMλ)

[
D3πC +D3s

+ T2MCD
3
M +D3λ

]
+ (TMCTCM(TMπ − TMλ)) TMλD

1
M + (TCMTMλ)D

1
λ.

4. Regulation: 0.

Constitutive reporter production rate: χ(πH, λ)

1. Control: 0.

2. Dilution: 0.

3. Common: TMπTMλBM + (TCMTMπ) (TCMTMλ)

[
SπC + Ss + T

2
MCSM + Sλ

]
+ 2λEλ0 TMπ (TMCTCMTMλ)SM − (TCMTMπ)Aλ.
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4. Regulation: 0.

s4.2.4 Example: interpretation of the decomposition of the φY– λ cross-correlations

To clarify the interpretation of the expressions above, we now discuss the decomposition
of the Y–λ cross-correlation function in detail.

1. Catabolism mode. This mode is a consequence of fluctuations in the expression level
of the catabolic sector (C-sector) that directly influence the rate of metabolism and
the growth rate. Even though the reporter Y is itself not metabolically active, it does
share a noise source (Ns) with the C-sector. As a result, the (cross-)correlation R(φY ,λ)
also contains the catabolism mode, reflecting that φY correlates with φC (due to the
shared noise sourceNs), and φC with λ (due to the effect that fluctuations in φC have
on the growth rate).

TCMTMλD
1
s .

Note that indeed only the shared noise source Ns transfers directly to growth from
πY , instead of reverberating through metabolism (and therewith becoming ‘common’
noise). The function D1 appears (instead of the function S as found in [86]) because
noise transferring from metabolism, via production to the reporters (Y or H) has a
delay timescale of λ0, whereas noise transferring to φC has timescale λE. The logic
behind the functions D1, D2, and D3 is that: (D1) noise transfers once via φC and
once directly to φY , obtaining timescales λE and λ0 respectively; (D2) one route is
instantaneous, but the other makes a ‘double’ loop, affecting first φC and picking up
timescale λE and then transferring to φY , picking up timescale λ0; (D3) one route has
timescale λE and the other route is ‘double’, picking up both λE and λ0 timescales.
For example, compare the two terms that originate at noise source NM in the second
line of equation S4.21. The first one can be written as (TMC) (TMCTCMTMλ)D

1
M and

has time scales λE for the route that transfers via metabolism and λ0 for the route that
goes from metabolism to φY with parameter TMC (Fig. S4.2A). The other term can be
written as (TMCTCMTMC) (TMλ)D

2
M, and here one path is instantaneous (TMλ) and

the other transfers first from M to φC with timescale λE and afterwards to φY with
timescale λ0 (Fig. S4.2B).

2. Dilution mode. This represents direct transfer from growth to protein concentration.

−A0λ.

3. Common mode.

(TMπ − TMλ)TMλA
0
M + TCMTMC

(
TMCTMλD

2
M −D2λ

)
+ (TCM(TMπ − TMλ)) (TCMTMλ)

[
D3πC +D3s + T

2
MCD

3
M +D3λ

]
+ (TMCTCM(TMπ − TMλ)) TMλD

1
M + (TCMTMλ)D

1
λ.

Common noise now also includes noise in the C-sector, and particularly its effect
on the reporters after it reverberated through the cell. Here, one can for example
examine the term (−TCMTMλ) (−TCM(TMπ − TMλ))D

3
λ, where both the path that
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Figure S4.2: Example analysis of the noise routes (shown here is a part of the network.) (A) Example
of aM-noise route that appears in the φY −λ cross-correlation. Transfer coefficients can
be split up to represent the paths to φC and to λ separately as: (TMC) (TMCTCMTMλ).
(B) Another example of a M-noise route: (TMCTCMTMC) (TMλ).

ends up in λ, (−TCMTMλ), and the path that ends up in φY , (−TCM(TMπ − TMλ)),
make a route passing φC, picking up a timescale of λE and after that one route
transfers to φY , picking up a timescale λ0. Another interesting example is the second
term: −TCM(TMπ− TMλ)D

2
λ. This represents noise in the growth rate that diluted φC,

which has affected metabolism, but from there transfers equally to all other proteins
(with coefficient TMπ − TMλ). Therefore, this term is now also regarded as common
noise.

4. Regulation

TRTMλA
0
M + (TCMTR) (TCMTMλ)

[
D3πC +D3s + T

2
MCD

3
M +D3λ

]
+ (TMCTCMTR) TMλD

1
M.

In the decompositions we often have the term TMπ−TMλ. This represents the net transfer
from M to φ via π and from M to φ via λ. Red brackets can help to identify the noise route.

s4.3 parameter reduction

In this section, we show that two parameters can be effectively scaled away from the system,
resulting in fewer parameters to be fitted. First, since cross-correlations are dimensionless
measures, we can set one noise amplitude to 1. We pick θs, since this noise source has to
be present to find any difference between the two reporters in cAMP-fixed cells. Second,
note that we do not measure M, so that we can scale away TCM, and consider fluctuations
in δM/(TCMM0) with scaled noise source N

′
M = NM/TCM.
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Now, to do the parameter reductions formally, we start with the original system (equa-
tions S4.1-S4.8):

δλ

λ0
= Nλ + TMλ

δM

M0
, (S4.39)

δM

M0
= NM + TCM

δφC
φC,0

= TCM

(
NM
TCM

+
δφC
φC,0

)
, (S4.40)

δπC
π0,C

= NπC +Ns + (TMπ + TR)
δM

M0
, (S4.41)

δπy

π0,y
= NπY +Ns + (TMπ + TR)

δM

M0
, (S4.42)

δπH
π0,H

= NπH + TMπ
δM

M0
. (S4.43)

Defining ˆδM = δM
TCMM0

, ˆNM = NM/TCM, ˆTMλ = TCMTMλ, ˆTMπ = TCMTMπ and T̂R = TCMTR
This system can then be transformed to:

δλ

λ0
= Nλ + TMλ

(
TCM ˆδM

)
= Nλ + ˆTMλ ˆδM, (S4.44)

ˆδM = N̂M +
δφC
φC,0

, (S4.45)

δπC
π0,C

= NπC +Ns + (TMπ + TR)
(
TCM ˆδM

)
= NπC +Ns + ( ˆTMπ + T̂R) ˆδM, (S4.46)

δπy

π0,y
= NπY +Ns + (TMπ + TR)

(
TCM ˆδM

)
= NπY +Ns + ( ˆTMπ + T̂R) ˆδM, (S4.47)

δπH
π0,H

= NπH + TMπ
(
TCM ˆδM

)
= NπH + ˆTMπ ˆδM. (S4.48)

Next, we divide all noise sources by θs, since all cross-covariances and all variances are
linear in terms of θ2i (the noise amplitude of each independent noise source i). Thus, if we
scale all noise sources with θs, the resulting cross-correlations (cross-covariances divided
by variance) do not change. How the parameter reduction, and the scaling by θs affects the
functional form of the cross-correlation between signals A and B is shown below, where
we split the cross-covariance and the variances in contributions of each noise source. We
explicitly write the contribution of noise source NM, associated with noise amplitude θM
and only later replace its parameters with ˆθM := θM/TCM. The contribution of each noise
source i to the cross-covariance is written as fi (time dependence is omitted for readability)
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and we write gA and hB for the noise source’s contribution to the variance of A and B
respectively. Then:

R(A,B)(τ) =

(
θM
TCM

)2
fM +

∑
i 6=M θ2i fi(τ)√(

θM
TCM

)2
gA,M(τ) +

∑
i 6=M θ2igA,i

√(
θM
TCM

)2
hB,M +

∑
i 6=M θ2ihB,i

=

(
θM/θs
TCM

)2
fM + fs +

∑
i 6=s,M(θi/θs)

2fi√(
θM/θs
TCM

)2
gA,M + gA,s +

∑
i 6=s,M(θi/θs)2gA,i

√
...

=

(
ˆ̂θM
)2
fM + fs +

∑
i 6=s,M θ̂i

2
fi√(

ˆ̂θM
)2
gA,M + gA,s +

∑
i 6=s,M θ̂i

2
gA,i

√(
ˆ̂θM
)2
hB,M + hB,s +

∑
i 6=s,M θ̂i

2
hB,i

.

(S4.49)

Here, θ̂i = θi/θs, and ˆ̂θM =
θM/θs
TCM

. By considering only .̂ - parameters, we effectively
removed two parameters from the model.

s4.4 data analysis

s4.4.1 Calculating cross-correlations from data

Segmentation was done using the software Schnitzcells, developed by the Elowitz lab [199],
with custom scripts written by Daan Kiviet, Philippe Nghe and Noreen Walker. Tracking
was done in line with Kiviet et al [86]. Cell length is used by fitting a 3rd (or, in some cases
5th) order polynomial through the cell area. Cross-covariance S and cross-correlation, R,
between two signals in discrete time is then defined as:

Sf,g(τ) =
1

N− 1

N−|τ|−1∑
n=0

f̂(n)ĝ(n+ τ), (S4.50)

Rf,g(τ) =
Sf,g(τ)√

Sf,f(0)Sg,g(0)
. (S4.51)

Here, hats indicate mean-subtracted signals.
Cells that are born earlier in the experiments appear in more lineages. When calculating

cross-correlations along lineages, we must thus be careful to not count such cells repeat-
edly. Therefore, we introduce for each data point a weight, representing in how many
branches the point occurs. The resulting cross-correlation is a composite cross-correlation
with contributions of points from multiple branches i. Lastly, we also introduce time-
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average-subtracted variables, since averages can change slightly during experiments. We
therefore define a composite cross-covariance and cross-correlation:

Sf,g(τ) :=
1

Wtotal,τ

∑
i

1

Ni − |τ|

Ni−|τ|∑
n=0

wn,i,τf̂i(n)ĝi(n+ τ), (S4.52)

Rf,g(τ) =
Sf,g(τ)√

Sf,f(0)Sg,g(0)
, (S4.53)

f̂i(n) = fi(n) − 〈fi〉n, (S4.54)

wn,i,τ = 1/Kn,i,τ, (S4.55)

Wtotal,τ =
∑
n,i

wn,i,τ. (S4.56)

Here, the summations run are over all branches i and time points n. Weights are indicated
with w, where Kn,i,τ is the total number a specific point pair f̂i(n)ĝi(n + τ) was used.
Throughout the manuscript we refer to the composite cross-correlation R as the cross-
correlation R. The mean-subtracted signal f̂i(n) is now recalculated in each branch, for
each time point to compensate for a changing overall average during the experiment.

s4.4.2 Averaging multiple experiments and estimating error bars

The cross-correlations calculated per microcolony are averaged to create Figs. 4.2B and 4.3D-
E, see also Fig. S4.7. Here, we explain how we averaged the multiple (independent) experi-
ments (each microcolony being an experiment) and how we calculated error bars. We use a
Mixed Model Estimate, assuming that each individual measurement yi,j from experiment
i is determined by the average of interest, 〈y〉, plus two noise sources: within experimental
noise ξj(i), and between-experiments noise ξi:

yi,j = 〈y〉+ ξi + ξj(i).

Here, ξi is the noise that determines the off-set of the mean from experiment i, and ξj(i)
the noise on individual measurement j in group i. Assume: E [ξi] = E

[
ξj
]
= 0 and

Var
{
ξj
}
= s2i , the variance within experiment i, which might differ between experiments,

and Var {ξi} = s2µ, the variance between the means of each experiment. The within ex-
periment variance is estimated by dividing each microcolony into four lineages (from the
moment there were four cells in the microcolony, we followed each of their lineages sepa-
rately), and calculate and compare statistics along each lineage. With these notions for ξi
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and ξj(i), we write n for the number of experiments and ni for the number of subgroups
within experiment i. Then:

E
[
yi,j
]
= 〈y〉, (S4.57)

Var
{

E
[
yi,j
]}

=
Var
{∑

i

∑
j〈y〉+ ξi + ξj(i)

}
(
∑
i ni)

2)
(S4.58)

=
1

(
∑
i ni)

2
Var

∑
i

niξi +
∑
i

∑
j

ξj

 (S4.59)

=
1

(
∑
i ni)

2

(∑
i

n2iVar {ξi}+
∑
i

niVar
{
ξj
})

(S4.60)

=
s2µ
∑
i n
2
i +
∑
i nis

2
i

(
∑
i ni)

2
. (S4.61)

To calculate 〈y〉, we again use knowledge of within-experiment variances to calculate the
weight factor of each microcolony: let yi(t) be the measured mean value in experiment i
at time t, with within-experiments error si(t). Then:

〈y(t)〉 =
∑n
i s

−2
i (t)yi(t)∑n
j s

−2
j (t)

=:

∑
iwi(t)yi(t)

W(t)
.

Here, wi(t) = 1/s2i (t) and W(t) =
∑n
j=1wi(t). That is, more precise measurements (those

with smaller within-experiment error si) obtain a higher weight.

s4.4.3 Null-expectation for the cross-correlations

To confirm that the measured cross-correlations correspond to real biological signals in-
side the cells, we performed a permutation analysis on the time-series data. We kept the
temporal information of the data, but randomised at each time point the growth rate and
expression data for all the cells in the colony. Any biological correlations between vari-
ables should therewith be removed. Repeating this randomisation 50 times, and each time
re-calculating cross-correlations, indeed gives a band of cross-correlations around zero, al-
lowing us to infer what kind of signals could still be explained purely by technical noise
(see for example Fig. S4.9). Any part of the originally measured cross-correlations that fall
outside this band can then be concluded to stem from a real biological signal.

s4.5 fitting procedure

s4.5.1 Wild type and cAMP-fixed* cells

The full mathematical model, with the reduced number of parameters, was fitted to the
cross-correlations with their error bars using a weighted least-square fitting procure in
Mathematica. We fitted R(φ,λ) and R(π,λ) for both reporters and for wild type and cAMP-
fixed* cells simultaneously.

In all fits, we set θπC = 0, for three reasons. First, the variable φC represents the entire
C-sector, so that random, intrinsic fluctuations in the total size of this sector are expected
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Parameter Confined to Best Fit 95% Confidence Interval

θπC 0 - -

θs 1 - -

TCM 1 - -

TR [−2, 2]; 0 -1.67 [-2.28,-1.25]
ˆTMλ [−1, 1] 0.05 [0.045, 0.54]
ˆTMπ [−1, 1] -0.179 [-0.22, -0.14]

θ̂πY [0, 5] 0.0 [0,0.74]

θ̂πh [0, 5] 1.14 [1.06,1.24]
ˆ̂θM [0, 10] 0.90 [0.83,0.97]

θ̂λ [0, 5] 0.13 [0.125,0.143]

βπ > 2 2 [1.8, 2.16]

βµ > 0.5 0.78 [0.75,0.82]

Table S4.1: Best fit parameters of the wild type and optimal mutant, including predefined param-
eter constraints and best-fit confidence ranges based on statistical analysis. Parameter
TR was set to 0 for cAMP-fixed (MUT) cells. All other parameters were fitted using a
minimisation of the squared distance of 8 analytical curves (cross-correlations φ− λ and
π− λ for both reporters. and for WT and cAMP-fixed* cells) to the cross-correlation data
(Fig. 4.2B from the main text). For the precise interpretation of .̂-parameters, see section
‘Parameter Reduction’.

to be small. Second, any noise source that directly influences the total size of the C-sector
should also affect the CRP-reporter Y, because C and Y are regulated and expressed simi-
larly. Such noise sources are therefore also captured by the phenomenological noise source
Ns that summarises shared noise sources between the C-sector and Y. Third, fluctuations
in the concentrations of each of the individual proteins of the C-sector likely transfer dif-
ferently to metabolism than joined fluctuations of the entire C-sector. The effect of the
intrinsic fluctuations of individual C-sector protein species on the metabolic flux is instead
captured by the noise source NM. Fluctuation in any individual C-sector protein could
indeed potentially influence the flux catalysed by the entire C-sector, causing fluctuations
in metabolism.

For cAMP-fixed* cells we predefined that TR = 0, and for wild type cells −2 < TR < 2.
All other parameters were not allowed to differ between WT and cAMP-fixed* cells. We
thus fitted 9 free parameters: {T̂R (only for WT cells), ˆTMλ, ˆTMπ, ˆθπY , ˆθπh , ˆ̂θM, θ̂λ, βπλ0 , βµλ0 }.
(The hat-parameters are defined in the section ‘Parameter Reduction’, section S4.3; TCM

and θs, are set to unity and removed from the model by scaling.) The timescale βπ is the
time-scale of the production noise rates, and βµ is the timescale of growth/dilution-related
noise sources (θs, θM, θλ), their value given is relative to the mean growth rate, λ0.

In table S4.1 we present best-fit parameters, with their 95% confidence interval. The 95%
confidence ranges of the parameters were estimated by changing that parameter until the
increase in (weighted) sum of squared residuals was statistically significant (as determined
by using F-statistics).
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Although the model is able to reproduce the experimentally observed cross-correlations,
we are hesitant to over-interpret the exact numerical values of the fitted parameters. For
example, the wild type and optimal mutant’s best-fit-parameter for the transfer from M to
π, ˆTMπ, is small, but negative (Table S4.1). Such a negative parameter is counter-intuitive,
for it results in a negative common mode (fluctuations in metabolism increase the growth
rate, but lower the production rates). Presence of this negative common mode is only re-
flected in the mutant’s negative πH-λ cross-correlation, and, importantly, it is also this
negative cross-correlation that causes the best-fit parameter to become negative; i.e. not in-
cluding R(πH,λ) in the fitting procedure causes the best-fit value for ˆTMπ to become slightly
positive (data not shown). Extensions of the model with alternative mechanistic explana-
tions that could explain the negative correlation between πH and λ, such as competition
for ribosomes at the single-cell level, or a negative control from the reporters, did also
not fit the negative cross-correlation well (data not shown; Mathematica notebooks avail-
able on: https://github.com/Jintram/DynamicalRegulationBacterialCells). Possibly, this
specific negative cross-correlation could be caused by an experimental artefact that heavily
influences the fitted parameters. Indeed, similar constitutive reporters measured in earlier
work [86, 167] show a positive correlation between πH and λ.

The model can predict preliminary coefficients of variation for the wild type and mutant
cells, gaining some preliminary insight in whether cAMP-CRP feedback potentially plays
the role of quenching noise. Filling the parameters from Table S4.1 into Equations S4.15

and S4.16, we find:

η2φC,WT/η
2
φC,cAMP−fixed∗ = 0.85, (S4.62)

η2λ,WT/η
2
λ,cAMP−fixed∗ = 0.92. (S4.63)

However, for the reported noise amplitudes in table S4.1 the absolute values for the CVs
do not both seem realistic, i.e., η2φC,WT ≈ 0.3 and η2λ,WT = 0.014. Still, this analysis might
suggest a role for the cAMP-CRP mechanism to quench noise.

From the best-fit parameters above (Table S4.1), we qualitatively reproduced the Low
cAMP cross-correlations by changing the transfer parameters to {TR = 0, ˆTMλ = 0.6, ˆTMπ =

0.45}. The timescales of each noise source relative to the growth rate (which is lower under
this condition than under optimal cAMP levels) were kept constant. Although the resulting
cross-correlations reproduce many qualitative features of the measurements, the mathemat-
ical model over-estimates the overall amplitude of the cross-correlation (Fig. S4.6A). This
could perhaps be explained by experimental error: Independent measurement noise in any
two variables reduces their correlation. In the model, such decorrelation can be mimicked
by increasing the noise levels of θπY and θπH to {5, 3.5} respectively. An increase in those
noise parameters does not affect the shape of the cross-correlation, but only decreases the
overall amplitude of the cross-correlation (decorrelation).

The cross-correlation between φC and λ in the high-cAMP regime is hypothesised in the
main text to posses a negative catabolism mode. When φC is over-expressed, the metabolic
flux might still increase very slightly with an upward fluctuation of φC. However, the flux
per invested protein will decrease. Since π and λ are relative quantities (both scaled with
total protein mass), the negative control of φC effectively results in negative transfer from
M to λ and from M to π.

Setting {TR = 0, ˆTMλ = −0.8, ˆTMπ = −0.47} while keeping all other parameters as in Ta-
ble S4.1) indeed qualitatively explained many featured of the measured cross-correlations
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(Fig. S4.6B). However, relative to the mean growth rate, the experimentally measured cross-
correlations decay faster than in the other conditions. Additionally, the high-cAMP cross-
correlations are again over-estimated by the model. Another clear mismatch is that, for
these parameters, the model predicts a strong common mode (which can be seen most
clearly in the πH-λ cross-correlation) that does not seem to be present in the data (although
one microcolony did show a clear positive πH-λ cross-correlation, see bottom right panel
in Fig. S4.7). Interestingly, just as in the wild type, the cross-correlations of both reporters
look similar in cAMP-fixed cells under the high-cAMP condition. Possibly, the noise am-
plitude of the CRP protein (Ns) is lower under this condition, such that the C-sector re-
porter is less correlated with the C-sector and behaves more similar to the constitutive re-
porter. A semi-quantitative fit can made (see also Fig. 4.3) by tuning the parameters further:{

ˆTMλ = −0.6, ˆTMπ = −0.25, θ̂πY = 2.5, θ̂πh = 4, ˆ̂θM = 1.8, θ̂λ = 0.8,βπ = 2λ0,βµ = 1.2λ0
}

. This
corresponds with a decrease in θs of roughly a factor 2, and with a slight increase in θλ,
also roughly a factor 2.

s4.6 toy model of the means of the two reporters

From the observation that the sum of the concentration of both reporters is, on average
(Fig. S4.10A), approximately constant, we were inspired to also write equations for the
population-level average behaviour. We here derive a phenomenological toy model that
describes how the average concentrations, production rates and growth rates of cAMP-
fixed cells change under changing external cAMP concentration.

Generally, we can write for the (average) total concentration of the catabolic sector φC
and for the constitutive reporter H:

∂φC
∂t

= πC −φCλ = (fC(x) −φC)λ, (S4.64)

∂φH
∂t

= πH −φHλ = (fH −φH)λ. (S4.65)

Here fC(x) is a regulation function that determines the fraction of all metabolic flux al-
located towards production of φC as a function of some internal metabolite (in this case,
x reflect the internal cAMP concentration). However, fH is also not necessarily a constant
and can depend on resource allocation. We will show below that fH is indeed not constant.

From the experiments we observe that φY +φH is approximately a constant. Assuming
that Y is a good reporter of the C sector, this is equivalent to:

φC +φH = T .

(Note that this ignores proteomic shifts that result from a changes in the ribosomal sector,
or any other sector that is not modelled here.) In the steady state, φH = fH, and therefore
also πH = φHλ = (T − fC(x))λ = fHλ. We can thus rewrite the differential equation for H
as:

∂φH
∂t

= (T − fC(x))λ−φHλ.

In steady state, this suggest that the production rates (as directly quantified from the ex-
periments), divided by the growth rates should be equal to the concentration for both the
reporters (Fig. S4.10A).
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In the mutant, the growth rate declines when φC is either over, or under-expressed, such
that the mean growth rates fit a 2nd order polynomial nicely:

λ(φC) := gλ(φY) = aφ
2
Y + bφY + c,

for best-fit parameters {a = −3.94 · 10−5,b = 2.12 · 10−2, c = −2.02}. Here we consider φC,
the metabolic sector, well-reported by the metabolic reporter φY . Using this polynomial, the
relationships between mean protein production rates/mean protein concentrations, and the
mean growth rate can be related (Figs. S4.3 and S4.10):

{φY , λ} = {φY ,gλ(φY)} , (S4.66)

{πY , λ} = {φYgλ(φY),gλ(φY)} , (S4.67)

{φH, λ} = {φH,gλ(T −φH)} , (S4.68)

{πH, λ} = {φHgλ(T −φH),gλ(1−φH)} , (S4.69)

{πY ,πH} = {φYgλ(T −φH),φHgλ(T −φH)} . (S4.70)

These relationships match the experiments strikingly well (Fig. S4.10).
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s4.7 supplementary figures

Figure S4.3: Growth rates in minimal medium supplemented with lactose and various cAMP con-
centrations. Measured exponential phase growth rates of the cyaA cpdA null mutant
(cAMP-fixed cells) at different concentrations of cAMP as measured in a plate reader.
Black triangles refer to the low, optimal and high cAMP concentrations respectively.
Method 1 refers to a procedure where the growth rate was determined as an exponen-
tial fit over a manually selected part of the bacterial density curve, whereas in method
2 we fitted an exponential to the part of the bacterial density curve that fell between
two threshold values. Additionally, this figure shows data from a similar experiments
performed by Towbin et al [181].

Figure S4.4: Coefficients of variation of the growth rate (left panel) and the concentrations of the C-
sector reporter (middle panel) and the constitutive reporter (right panel) for the differ-
ent conditions. Shown in the figure are only the experiments performed with a similar
microscope such that their absolute values were comparable.
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Figure S4.5: Average experimental values measured in different colonies. (A) Regression slope be-
tween φ and λ for the wild type and cAMP-fixed* cells (MUT on the figure axis). Slopes
for the Y reporter differ significantly between wild type and mutant cAMP-fixed* cells
(p = 0.0031, two-sample t-test), but not for the H reporter (p = 0.93, Welch’s t-test).
Note that to calculate these regression slopes only relative fluctuations are relevant, so
that only relative fluorescence signals are relevant. (B) Average growth rate per colony,
showing a large variance in growth-rate measurements. Difference between the mean
growth rates of WT and cAMP-fixed* cells is not significant (p = 0.063, Welch’s t-test).
(C) Average fluorescence per colony. Filled circles are values measured with a stan-
dardised microscope setting (and thus only those absolute values can be compared). Y:
C-sector reporter, H: constitutive reporter.
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Figure S4.6: Qualitative model prediction for the cross-correlations as measured in the cAMP-fixed
cells using low-cAMP (80 µM, panel A) and high-cAMP (5000 µM, panel B) conditions,
together with the measured cross-correlations. (A) Only the transfer parameters from
M to λ ( ˆTMλ = 0.6) and from M to π ( ˆTMπ = 0.45) differ compared to the best-fit
values from the wild type/cAMP-fixed* condition. (B) Same, but now ˆTMλ = −0.83,
and ˆTMπ = −0.47.

Identifier Manuscript
shorthand

Description

ASC838 Wild type MG1655, also known as strain bBT12 and CGSC
number 8003. Known mutations: λ−, ∆fnr-267, rph-1. (No re-
sistance modules.)

ASC839 cyaA, cpda null mutant. Also known as strain bBT80. Based on
ASC838. (No resistance modules.)

ASC990 wild type
(WT)

Wild type strain, except for ∆(galk)::nCRPr-mCerulean-kanR
and ∆(intc)::CRPr-mVenus-cmR. (Kanamycin and chloram-
phenicol resistant.)

ASC1004 cAMP-
fixed

Strain based on ASC839 (∆cyaA ∆cpda), introduced
∆(galk)::s70-mCerulean-kanR and ∆(intc)::rcrp-Venus-cmR.
(Kanamycin and chloramphenicol resistant.)

Table S4.2: Additional details on the strains that were used; ASC990 and ASC1004 were used in the
manuscript, and are based on ASC838 and ASC839 respectively.
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Figure S4.7: All measured cross-correlations (thin blue lines) in independent replicates (indepen-
dent colonies), together with their weighted averages (thick black lines), for all condi-
tions. Y: C-sector reporter, H: constitutive reporter.
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Figure S4.8: Growth rates during the experiments. Each panel plots growth-rate data for a single
colony; panels are grouped by growth condition. The grey lines show single lineage
traces, the black lines the population average. Coloured lines highlight example single
lineage traces to illustrate single cell behaviour. Dashed and dotted lines indicate 4σ
and 5σ boundaries from the overall mean respectively. As before, the displayed con-
ditions are (A) wild type cells, (B) cAMP-fixed* cells growing on 80 µM cAMP, (C)
cAMP-fixed cells growing on 800 µM cAMP and (D) mutant cells growing on 5000 µM
cAMP.
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Figure S4.9: Cross-correlations between the C-sector reporter, φY , and λ, together with their null
expectation (gray areas around 0, see section S4.4.3 for details of the calculation). The
black lines in this figures are the light-blue lines in top panels of Figure S4.7. Error bars
are calculated by dividing each microcolony into four parts and comparing statistics in
each part. As before, the displayed plots are from independent microcolonies growing
under the following conditions: (A) wild type cells, (B) cAMP-fixed cells growing on
80 µM cAMP, (C) cAMP-fixed cells growing on 800 µM cAMP and (D) cAMP-fixed
cells growing on 5000 µM cAMP.
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Figure S4.10: Toy model fits the mean behaviour of the reporters and the growth rate (see section
S4.6 for details). (A) The sum of reporter concentrations is approximately constant
in all conditions. (B) Steady state relationship φY = πY/λ (black straight line) holds
closely for all conditions. The best fit (dashed line), however, has a slight offset. (C)
Fitted parabolic relationship of φC between the growth conditions. See also S4.3). (D)
Relationship between πY and λ as calculated from the toy model (S4.6). (E) Steady
state relationship for the C-sector reporter. (F-G) The C-sector reporter concentrations
and production rates for each condition fall on the curve calculated from the toy
model (not fitted). Colour coding is as in other figures (blue: wild type, red: low
cAMP mutant, green: medium cAMP mutant, orange: high cAMP mutant). Y: C-sector
reporter, H: constitutive reporter.
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Figure S4.11: Overview of promoter sequences used in this manuscript. The top row indicates the
original LacZ upstream region including start codon ATG (NCBI; gene ID 945006,
NC_000913.3), whilst the 2nd and 3rd row give the sequence of the engineered CRPr
and nCRPr promoters. Colour indicates CRP binding sites according to [67] (yellow),
[102] (green) or both (purple), and the LacI binding site (blue) according to [67]. In
grey, changes in the engineered promoters are indicated.
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Laurens H.J. Krah, Rutger Hermsen

abstract

With a surprisingly small number of regulatory molecules, the bacterium Escherichia coli
regulates large groups of proteins in cohort (so-called ‘protein sectors’) to adjust to chang-
ing external carbon conditions. Numerous studies have illuminated how E. coli popula-
tions distribute their resources between the various protein sectors, and what the resultant
growth rates are. However, the regulation of the protein sectors at the population level does
not provide the full picture. At the single-cell level, stochasticity is present in the expres-
sion levels of all protein species, even in a fixed environment. Such noise in gene expression
propagates, via metabolism, through the cell and to the instantaneous cellular growth rate.
Noise is therewith also likely to arrive at those molecules that regulate the expression of
protein sectors. This reveals a fundamental link between regulation and noise propagation:
the cell’s (internal regulatory) networks that govern the dynamical changes in response to
a changing external condition, also shape noise propagation properties. In this chapter, we
derive a course-grained stochastic model of a growing cell that uses a single internal vari-
able to regulate its catabolic (C) and ribosomal (R) protein sectors. The model can simulate
the cell’s dynamic response to both external and internal fluctuations. Under the assump-
tion that regulation optimises protein allocation for fast growth, all regulatory network
parameters are fixed by fitting the model’s deterministic behaviour to population-level
data. Then, we show that many features of the resultant stochastic dynamics qualitatively
match observation in single-cell data.

The contents of this chapter reflect the current state of this research.

127
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5.1 introduction

In the previous chapter, we established that the stochastic dynamics of metabolism, gene
expression and growth are affected by regulation. Noise in metabolite concentrations was
shown to propagate, via the cAMP-CRP regulatory network, to the expression level of
catabolic proteins and therewith eventually affect the growth rate. Using a stochastic math-
ematical model, we studied the dynamical interplay between regulation, gene expression
and growth under four conditions: wild type Escherichia coli cells, and E. coli cyaA cpdA
null mutant cells (“cAMP-fixed”) with, on average, a too low, a too high, or an optimal
C-sector expression. For each condition, the linear model required different noise transfer
parameters to explain the observed dynamics.

However, the noise transfer parameters in each condition are themselves a consequence
of the (regulatory and metabolic) networks embedded in the cells. The same networks
do not only shape the stochastic dynamics of regulation and growth that we aimed to
describe, but also ensure a proper steady state (average expression and mean growth rate)
is obtained to match the external nutrient conditions. In other words, regulatory properties,
steady-state properties, and noise propagation properties are all different aspects of the
same dynamical system. In this chapter, we therefore set out to derive a single simple
model that can explain these three aspects simultaneously.

Luckily, gene regulation and growth rates of E. coli are well studied at the population
level. In reaction to the external nutrients encountered, bacteria regulate large parts of their
proteome in order to promote growth. As discussed in the Introduction, E. coli adjust many
protein species with a similar function in cohort. These cohorts are often referred to as pro-
teome sectors. For steady state growth, an incredible wealth of data is available concerning
the expression levels of catabolic proteins (C-sector, φC, Fig. 5.1A) as well as ribosome-
associated proteins and RNA (R-sector, φR, Fig. 5.1B). Additionally, the regulatory mech-
anisms that control C- and R-sector expression are well studied. Expression of catabolic
proteins is governed by the allosteric binding of the metabolite cAMP to the transcription
factor CRP [198] (see Introduction and Chapter 4). Ribosomal expression is inhibited by
the secondary messenger (p)ppGpp, which in turn is synthesised under amino-acid star-
vation [204]. Vice versa, high amino-acid concentrations send a positive expression signal
to ribosomal expression. Therewith, regulation of the ribosomes via (p)ppGpp is the likely
mechanistic origin of the R-line; the observed positive relationship between ribosomal pro-
teins and growth rate under variation of the nutrient condition (Fig.5.1B).

In summary, both the C- and the R-sector receive input from internal metabolite concen-
trations that are in turn affected by the ‘metabolic state’. Although the sectors are controlled
by distinct molecules (cAMP or (p)ppGpp), both sectors correlate strongly with a single
variable, the growth rate. In fact, both the C- and R-sector change whenever the growth
rate changes, either by varying the nutrient supplied in the medium, or for example by
inhibiting the translation rate through antibiotics [158]. Yet, the growth rate itself is not the
regulatory agent, itself being a result of the internal wiring on the cell. Taken together, a
likely hypothesis is that the internal signals which determine C-sector expression, R-sector
expression, and the growth rate, are strongly correlated. Possibly, the regulation of both sec-
tors can thus be modelled with a single, abstract variable that signals the metabolic state.
Using experiments and models, two recent papers (Towbin et al, 2017 [181], and Erickson
et al, 2017 [43]) underlined this idea.
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Figure 5.1: Growth laws as experimentally observed. (A) Concentration of a sector protein (LacZ)
declines with the growth rate. Thick line is a linear fit. Extrapolation of the fitted line
(dashed line) reaches a growth rate of µC ≈ 1.1 when φC = 0. Data from Hermsen et al,
2015 [65]. (B) Ribosome-associated proteins and RNA increase with nutrient conditions.
Data from Scott et al, 2010 [158]. (C) The expression level of useless proteins (P) decreases
with nutrient condition. Dashed line is a fit by eye, extrapolating to µP ≈ 2.1. Data from
Scott et al, 2010 [158].

Towbin et al used the same E. coli cAMP-fixed mutant strain as discussed in the pre-
vious chapter [181]. They measured, for both the wild type and the cAMP-fixed mutant
strain, steady-state exponential growth rates on various nutrient sources. Additionally, on
each carbon source they measured the steady-state growth rates of the mutant strain for
different C-sector expression levels (experimentally controlled via the concentration of ex-
ternally applied cyclic AMP). The authors show that for many carbon sources growth rates
decline if the wild type ratio between C- and R-sector expression is disrupted, indicating
that for many environments E. coli’s proteome allocation is optimal for growth [181]. Their
experimental results were very neatly matched with their mathematical model which pre-
dicts steady state C-sector expression and the corresponding growth rate. In their model, a
single variable gave regulatory input to determine the expression level of both the C- and
the R-sector. This variable was, on an abstract level, associated with biomass precursors,
and hence positively influenced by C-sector proteins (carbon import and catabolism), but
consumed by the ribosomes to create biomass and cell growth.

Erickson et al instead focused on the temporal dynamics of gene expression and growth
of E. coli cultures after an environmental change. In “upshift” experiments, cells were first
grown on a single carbon substrate to which after some time a second, richer carbon
source was added. Alternatively, in “downshift” experiments cells grew on two carbon
sources, one of which was depleted during the exponential growth phase, resulting in
slower growth on only a single carbon source. During these nutrient transitions, optical
density (OD) and the expression levels of the C- and R-sector were measured. In the up-
shift experiments, the population’s growth rate increased sharply when a richer carbon
source was added, and afterwards slowly converged to a new steady growth rate [43, 98].
At the same time, cells shifted their proteome allocation towards more investment in ri-
bosomes, and less in catabolic proteins. Again, the authors present a mathematical model
that neatly describes the measured dynamics. In their model, a single regulatory variable,
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Figure 5.2: Schematic representation of the Erickson-Towbin dynamical regulation model. The red
cross denotes the effect of the mutation as discussed in Chapter 4.

here representing the saturation level of the ribosomes, regulates both C- and R-sector
expression. The functional form of these regulatory functions was directly derived from
steady-state relations between growth rate and expression (i.e., the growth laws, Fig. 5.1),
using the critical assumption that at any moment the cell responds to the internal variable
and distributes its resources as if it is currently in steady state. This regulatory strategy has
recently independently been shown to be an optimal strategy, called ‘qORAC’ (for ‘Specific
Flux (q) Optimisation by Robust Adaptive Control’ [141]). The model by Erickson et al re-
produced, without requiring any fitting, the observed temporal dynamics during nutrient
upshifts and downshifts for co-utilised substrates.

In this chapter, we first aim to derive an elegant unifying model that explains the data
from Towbin et al, and, without additional fitting, also the data from Erickson et al. Next,
we will investigate whether the same model can also explain the noise-transfer properties
and the stochastic dynamics in each condition as discussed in the previous chapter. To
do so, we must first combine all previous ideas: consider a single internal variable that
regulates the C- and R-sector according to the qORAC principle, taking the proteome al-
location constraints into account. However, our model should include considerably more.
To explain the dynamics of both the C-sector reporter and the constitutive reporter (see
previous chapter), we need to include the expression of a constitutively expressed protein.
Furthermore, to model the dynamics of the mutant strain (cAMP-fixed cells, see previous
chapter), we need to derive additional regulation functions for the mutant. Lastly, we need
to include noise sources in line with the noise models seen in earlier chapters.

In the following, we will first formulate a deterministic model that merges the ideas
discussed above. We will show that this model can indeed explain the steady-state growth
rate and expression data for both the wild type and mutant data as obtained by Towbin et
al, and also the dynamical data of the upshift experiments performed by Erickson et al on
the wild type. Next, we extend the model such that it can also describe the dynamics of the
cAMP-fixed mutant (which does not actively regulate its C-sector but can still regulate its
R-sector). Lastly, we further extend the model to include stochasticity, which allows us to
study the system’s stochastic dynamics. We compare the resulting cross-correlations with
the data presented in the previous chapter, and additionally compare simulated time traces
of (stochastic) dynamics of the cAMP-fixed mutant strain to experimental data.



5.2 results 131

5.2 results

5.2.1 A minimal three-sector model of gene-regulation and growth

For simplicity, we start with a cell with only three proteome sectors: ribosomes (φR),
catabolic proteins (φC) and a constant fraction φQ that consists out of maintenance pro-
teins. Together, these three fractions make up an entire cell and we assume that the pro-
teome sectors are subject to a strong allocation constraint, such that at any moment

1 = φC +φR +φQ. (5.1)

Like Towbin et al and Erickson et al, we consider a single internal variable x that repre-
sents biomass precursors. The C-sector consists of metabolic proteins that import nutrients
and convert these to this biomass precursor. The R-sector contains ribosomes that further
convert x into biomass and cell volume. We assume that ribosomal activity saturates as a
function of x and that, for high concentrations of x, import and conversion of external nu-
trients slows down due to product inhibition. Then, the time evolution of x can be written
as:

∂x

∂t
=
kkiφC
ki + x

−
γxφR
km + x

. (5.2)

Here, the parameter k tunes the external nutrient quality, γ is the maximal translation rate
of the ribosomes, km is the saturation constant of the ribosomes and ki is the inhibition
constant of the C-sector. The parameters ki, km and γ are assumed to be invariant under
variation of the environment, allowing us to adopt units such that ki = 1. In equation 5.2
we identify the population’s growth rate, µ, as the total (mass-normalised) rate of biomass
formation:

µ :=
γxφR
km + x

. (5.3)

The internal variable x is additionally assumed to give direct regulatory input to the pro-
duction rates of φC and φR (Fig. 5.2). We introduce regulation functions χC(x) and χR(x)
that take on positive values between 0 and 1−φQ and determine the fraction of the flux
(µ) allocated towards the production of C and R sector proteins respectively. Additionally,
their sum is constrained to 1−φQ at any time. Then, the expression levels of the C and
R-sectors are a balance between protein production and dilution due to growth:

∂φC
∂t

= (χC(x) −φC)µ, (5.4)

∂φR
∂t

= (χR(x) −φR)µ. (5.5)

Similar to Towbin et al, we assume that the regulation functions for the C- and R-sectors
optimise the steady-state exponential growth rate for different carbon sources, i.e., max-
imise µ for all values of the parameter k. Towbin et al choose an ad hoc, fixed functional
form of the regulatory functions. Instead, we here derive the optimal regulatory functions
analytically (see SI, section S5.1). The result is surprisingly elegant:

χC(x) = (1−φQ)
km(1+ x)

km + 2kmx+ x2
, (5.6)

χR(x) = (1−φQ)
x(km + x)

km + 2kmx+ x2
. (5.7)
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Figure 5.3: Fit to the data from Towbin et al. All three panels use the same parameters values of
km, γ and φQ. (A) The relationship between wild type φC and µ for different nutrient
conditions. Solid line is the model fit, constrained to have a y-axis intercept at µC ≈
1.1 h−1. Fitted parameter values are shown in the panel. (B) For growth on glucose,
the relationship between φC and µ in the mutant strain, under variation of external
cAMP. (C) Same as in (B), but now for growth on lactose, and for growth on lactose
plus various concentrations TDG (a lactose import inhibiter). For each condition, the
wild type’s growth rate is used to determine the parameter k. See section S5.2 for more
details of the fitting procedure.

Given these regulatory functions, the system is fully determined by only four independent
parameters: k, km, γ and φQ. Only the first, k, depends on the nutrient condition.

5.2.2 The minimal model can fit both steady-state and dynamical data

Expression and growth rate of WT and cAMP-fixed cells

The model can be fit to the data by Towbin et al (see Figs. 5.3 and S5.1). In a population of
wild-type E. coli cells, Towbin et al measured C-sector expression (using a CRP-regulated
reporter protein) and growth rate on various carbon sources (Fig. 5.3A). For the mutant
strain, they measured the effect of C-sector expression on the growth rate, again for growth
on various substrates (Fig. 5.3B-C) and Fig. S5.1).

The three parameters of the model, φQ, km and γ were simultaneously fited to all these
data. Additionally, we incorporated constraints to the fit values based on previous knowl-
edge. First, Q-sector expression level has been estimated to be between 0.3 and 0.5 [68,
135]. Second, for a specific value of φQ, the parameter γ is constrained by the highest
carbon-sustained growth rate (µC ≈ 1.1h−1, the intercept of the C-line, see Fig. 5.1A).
Namely, in our model this highest possible growth rate would be achieved in a hypo-
thetical situation where the ribosomes make up a fraction of 1 − φQ of the cell and are
translating at their maximum rate, γ. We therefore constrain γ using the relationship:
γ(1 − φQ) = µC ≈ 1.1h−1. Third, given values for φQ, γ, and km the value of the pa-
rameter k for a particular nutrient condition follows directly from the average wild-type
growth rate on that nutrient.

The resulting fits are shown as the solid lines in Figs. 5.3 and S5.1 and show an excellent
agreement with the data.
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Nutrient upshift and downshift experiments

Next, we tested whether the regulation functions derived earlier in this document can
also predict expression levels and growth rates for cells that are not currently in a steady
state exponential growth state. Erickson et al measured the optical density of a population
of wild-type E. coli cells during nutrient up and downshifts. Additionally, they measured
C- and R-sector expression levels over time. When during growth on a certain carbon
source a second, richer, nutrient is suddenly added to the medium, growth rates first in-
crease sharply, and, with a slower timescale, gradually increase towards a final, steady state,
growth rate (Fig. 5.4B, see also [98]). During the process, the cells produce more ribosomal
proteins, and less catabolic proteins (Fig. 5.4A) until eventually a steady state is reached
in accordance with the growth laws (Fig. 5.1A and B). An example of this behaviour is
shown in Fig. 5.4, where the cells initially grow on succinate, until gluconate is added to
the medium.

As an example of the dynamics of our model, we show that it can reproduce the
succinate-gluconate nutrient upshift, Fig. 5.4. After fitting the model’s parameters to the
data from Towbin et al (Fig. 5.3), all parameters are fixed except for k. The value of k before
the nutrient upshift can be derived from the steady-state growth rate on succinate only,
µsuccinate = 0.45 h−1. Likewise, the k value for gluconate can be derived from the steady
state growth rate on gluconate alone (µgluconate = 0.91 h−1). Then, the system (equations 5.3
- 5.5) can be numerically integrated using a quasi-steady state assumption on x. All other
timescales, i.e the timescales of regulation and adjustment of the growth rate, are fixed by
the assumption that at any time, the cell regulates its proteome as if x is currently in an
optimal steady state (i.e. the qORAC assumption). See section S5.2 for more details.

The resulting curves are shown as dashed curves in Fig. 5.4, and are in perfect agreement
with the data from Erickson et al, increasing our trust in the validity of the model.

5.2.3 Model extensions: dynamics of cAMP-fixed cells and stochasticity

Dynamics in cAMP-fixed cells: including constitutive expression

In Chapter 4 we discussed the E. coli cyaA and cpdA null mutant that is unable to synthesise
or degrade cAMP. Instead, its C-sector expression can be controlled experimentally by
applying cAMP externally. In this mutant strain, which was also studied by Towbin et al,
it is clear that C-sector regulation no longer directly responds to x. However, given the
constraint χC + χR = 1−φQ it seems unavoidable that, by disrupting C-sector regulation,
R-sector regulation is affected as well. Moreover, the effect of x on χR likely still indirectly
affects χC. As it is, the model cannot make a prediction on the dynamics of the cAMP-fixed
cells.

We therefore extended the model in order to understand how the expression of the
C- and R-sector responds to the disruption of C-sector regulation. We assume that the
functions χC(x) and χR(x) are the result of a competition between C-sector mRNA and
R-sector mRNA for translation by ribosomes. (Another option would be to assume that
competition exists for binding to transcriptases [95], in which case similar mathematics can
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Figure 5.4: Without any free parameters, the model reproduces data from Erickson et al. (A) Optical
cell density (OD600), φR and φC during an nutrient up-shift experiment. Values are
relative to time t = 0, when gluconate was added to the medium. (B) Growth rate
increases after gluconate is added. Horizontal solid line is the assumed final, steady state
growth rate (slightly lower than reported by Erickson et al, who reported µf = 0.98). The
growth rates on each of the two substrates were used to find the parameter k for that
particular carbon source. The final growth rate µf was then predicted according to the
growth rate formula for co-utilised carbon sources [65], see section S5.2 for more details
of the matching procedure.

be derived.) That is, we assume that the regulation functions χi(x) (i = C, R) can be written
as:

χi = (1−φQ)
mi(x)

T(x)
, (5.8)

where mi(x) is the mRNA level of sector i and T(x) is the total size of the (C- and R-
sector) mRNA pool. The mutations discussed in Chapter 4, i.e., deletion of cyaA and cpdA,
coding for the proteins that synthesise and degrade cAMP, disrupt how the level of C-sector
mRNA reacts to x. We therefore assume that the C-sector mRNA level, mC(x), obtains a
constant value eC in cAMP-fixed cells.

Unfortunately, the wild-type functions mi(x) are underdetermined given the functions
χi(x): if all mi(x) are multiplied by some function f(x), all χi(x) functions remain unal-
tered. However, we next show that this issue can be solved by extending our model with
a constitutively expressed protein P. Inclusion of such a protein will allow us to integrate
more experimental data and resolve the function T(x). (And, later on we will conveniently
identify this protein with the constitutive reporter construct used in the experiments of
Chapter 4.)

We assume that the mRNA level of protein P, mP is constant and competes with C- and
R-sector mRNA for ribosomal binding. The dynamics of φP are then analogous to those of
φC and φR:

∂φP
∂t

=

(
(1−φQ)

mP
mP + T(x)

−φP

)
µ. (5.9)
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The steady state protein expression level of P, φP, becomes:

φP = χP(x) = (1−φQ)
mP

mP + T(x)
= (1−φQ)

1

1+ T(x)/mP
, (5.10)

where bars indicate quantities that are in steady state. At the same time, expression of P
has its effect on the expression levels of φC and φR, due to the increased competition for
translation. Importantly, the expression of φR is slightly decreased, which has an effect on
the steady state growth rate in a particular environment k:

φR = (1−φQ)
mR(x)

mP + T(x)
≡ χR(x)

1+mP/T(x|k)
, (5.11)

µ(x) =
γx

km + x
φR =

γx

km + x

(
χR(x)

1+mP/T(x)

)
. (5.12)

In wild-type cells, the concentration of a constitutive protein φP is known to decrease
with the growth rate under variation of the nutrient condition k; a linear empirical relation-
ship known as the P-line [158] (Fig. 5.1C):

φP = φP0

(
1−

µ(x)

µP

)
. (5.13)

Here, φP0 is the P protein’s mass fraction in the limit of zero growth (k = 0). Even though
the expression of constitutively expressed genes is by definition not regulated directly,
the P-line demonstrates that it is nevertheless reduced upon improvement of the nutrient
conditions, possibly due to changes in the total amount of C- and R-sector mRNA.

Using equation 5.12, we can equate equations 5.10 and 5.13, and solve for T(x), the
total mRNA of the C and R-sector in an optimally regulated cell that possesses a small
constitutive mRNA expression mP. Again, in line with Erickson et al [43], we assume that
the cell reacts to any value of x as if the system is currently fully in steady state. Together,
this results in:

T(x) =
µP(km + 2kmx+ x

2)

kmµP(1+ 2x) + x2(µP − γ(1−φQ))
. (5.14)

Here, we arbitrarily scaled T(x) (and therewith all mRNA levels) so that T(0) = 1. The
value of the parameter µP (intercept of the P-line, equation 5.13, Fig. 5.1C) can be directly
taken from literature: µP ≈ 2.1 h−1.

Now that we have discovered the functional form of T(x), the mutant’s regulation func-
tions follow straightforwardly:

mR(x) = χR(x)T(x)/(1−φQ),

χMC (x|eC) = (1−φQ)
eC

eC +mP +mR(x)
, (5.15)

χMR (x|eC) = (1−φQ)
mR(x)

eC +mP +mR(x)
, (5.16)

χMP (x|eC) = (1−φQ)
mP

eC +mP +mR(x)
. (5.17)

The parameter eC determines the expression level of C-sector mRNA in the mutant strain
and reflects the experimentally controllable external cAMP concentration (see Chapter 4).
The higher the external cAMP concentration, the higher also eC and φC. In the following,
we assume a small value of mP = 0.0101 as to not disrupt the rest of the cell significantly.
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Including stochasticity by adding noise sources

In line with the previous chapters we assume that noise originates from the stochastic
production of proteins. However, we here make the explicit distinction between noise that
originates from transcription and translation. Noise on the mRNA level only disturbs the
allocation of resources, where translational noise also affects the total rate of protein pro-
duction (and hence, the growth rate). We write the following stochastic equation for the
production rate πi of protein sector i 6= Q:

πi = (1−φQ)

(
mi(x) +NAi∑
kmk(x) +NAk

)
µd(x,φR) +Nπi . (5.18)

In this equation, NAj and Nπj are Ornstein–Uhlenbeck noise sources, each obeying its own
independent stochastic differential equation:

dNt = −βNtdt+ θdWt, (5.19)

with β setting the timescale and θ the noise amplitude. The noise sources NAi represent
noise in the production rate of mRNA for protein i and result in noise in the allocation
of flux; Nπj represent additional noise in the production of protein j. The variable µd is
defined below.

The growth rate, µ, is a crucial variable that appears at multiple positions in the equa-
tions, with subtly different interpretations. For example, µ can represent the average total
metabolic flux, the total rate of biomass formation, and also the rate of the system’s dilu-
tion. At the population level, during exponential growth, these quantities must be equal.
However, when considering the stochastic dynamics inside a single cell, equivalence is not
guaranteed. For example, the rate of volume increase (dilution) and the rate of metabolism
might differ due to stochasticity. Therefore, we introduce more explicit variables:

µd :=
γx

km + x
φR, (5.20)

µM :=
∑
i

πi = (φQµd +NπQ) +
∑
i 6=Q

[
(1−φQ)

(
mi(x) +NAi∑
kmk(x) +NAk

)
µd +Nπi

]
= µd +

∑
i

Nπi , (5.21)

µV := µM +Nv. (5.22)

We thus distinguish (i) the deterministic flux, µd, determined by the internal metabolite x
and the (current) ribosomal fraction, φR, (ii) the mass-growth rate, µM, defined as the total
rate of mass increase per mass, and (iii) µV the rate of volume increase that sets the rate
of dilution. For simplicity, we assume a constant cellular density, i.e NV = 0 such that any
moment, the rate of biomass increase equals the rate of volume increase. However, the total
translation rate of the ribosomes, µM, is only equal to the deterministic flux µd on average.
Additionally, µM includes noise, both in the allocation of flux (transcriptional noise), as
well as in the total protein production rate (translational noise).

Lastly we introduce a noise source Nx that acts on the internal metabolite x. A possible
origin of this noise is variation in the flux through the C- and R-sector for given values
of φC and φR. Since φC and φR represent coarse-grained proteome sectors composed of
many proteins, for particular values of φC and φR the composition of each sector can still
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vary. Such fluctuations in the composition of the proteome sectors are likely to affect the
carried flux and hence the concentration of the internal metabolite x.

Constraining the parameters of noise sources

By adding noise we inevitably introduce many new parameters: each Ornstein–Uhlenbeck
process is characterised by a noise amplitude and a timescale. To constrain the number of
parameters, we assume the following. First, we assume that the variances of transcription
and translation scale with their respective means –a typical scaling for Poisson processes.
Such a scaling is achieved by scaling the noise amplitudes of the corresponding noise
sources, i.e. θ2πi ∝ φi and θ2Ai ∝ mi(x). (See Appendix B for a proof that a scaling of θ2πi
with φi indeed results in a variance of φi in accordance with a Poisson process.) Although
x is not the result of a single Poisson process, we still assume a similar scaling for the noise
source Nx, namely θ2x ∝ x. Second, we assume that the timescales of Nπi and NAi are fast
for all i (βπi = βAi = 3 µd). Noise on x, however, has an assumed timescale close to the
(mean) growth rate (βx = 0.8 µd). In the following, we keep these timescales fixed.

Even if the scaling of the noise sources is fixed, we still need to set their absolute levels.
For this, we introduce the parameters αx,αA, and απ, that set the absolute noise levels of
x, allocation, and production rates respectively. For example, the noise amplitude for the
production rate of C-sector proteins then becomes: θ2πC = α2πφC.

5.2.4 The extended model largely reproduces cross-correlation data

We are now finally in the position to test our model by comparing its stochastic dynamics
to the measured cross-correlations presented in Chapter 4.

Since the model’s dynamics are determined from the cell’s population-level behaviour,
we have only three parameters left that influence the cell’s stochastic properties: αx, αA,
and απ. When calculating cross-correlations in a small noise regime, only the relative am-
plitudes of the noise sources matter. Therefore, we set αx = 1x10−2, leaving only αA and
απ as free parameters.

We tried to recreate all the cross-correlations seen in the previous chapter for particular
values for αA and απ. As before, the model parameter k could be inferred from the mean
growth rate of the wild type cells (µWT ≈ 0.75 dbl/hr). Then, values for the parameter eC
(representing externally applied cAMP) for the low, optimal and high cAMP concentra-
tions were calculated from the mean growth rates in these conditions (µlow ≈ 0.35 (dbl/hr),
µhigh ≈ 0.45 (dbl/hr, and µoptimal = µWT). For each condition, cross-correlations were calcu-
lated over a long simulated time trace of a single cell.

The parameters and cross-correlations resulting from a fit-by-eye are shown in Fig. 5.5
and reproduce many important features. First, the cross-correlations of the C-sector re-
porter (both φ-µ and π-µ) increase in value from wild type to cAMP-fixed* cells. Impor-
tantly, the φ-µ cross-correlation changes sign in accordance with the data. Second, cross-
correlations of the C-sector reporter further increase in magnitude when the C-sector be-
comes rate limiting at low cAMP, as is also observed in the data. Third, the φ-µ cross-
correlation of the C-sector reporter again changes sign and becomes negative (yet more
symmetrical) when going from optimal cAMP levels to high cAMP levels, while the π-µ
cross-correlation stays positive. Again, the same qualitative differences be seen in the data.
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Figure 5.5: (A) Overview of the three mutant conditions with low, optimal and high cAMP
concentrations. (B) Overview of all measured cross-correlations and simulated cross-
correlations from the model. ‘Fitted’ values for αx, αA, and απ are shown in the figure.

Fourth, cross-correlations for the constitutive reporter stay negative when going WT to
cAMP-fixed* and cAMP-fixed cells supplied with low cAMP.

However, the model also produces some obvious mismatches with the data. Most strik-
ing is the lack of any signal for the constitutive reporter at high cAMP, where the data
shows a clearly negative cross-correlation between φ and µ. Possibly, the lack of signal in
our model is due to the low abundance of the constitutive reporter, and, consecutively, a
relatively high intrinsic noise level under this condition. Additionally, our model does not
correctly match the amplitudes of the cross-correlations, sometimes over- and sometimes
under-estimating them compared to the data. Still, the fact that the model reproduces so
many qualitative features with only two parameters for all the 16 curves is impressive.

5.2.5 Reproducing cAMP pulse-experiments

Lastly, we further tested the model against preliminary time series experiments performed
by M. Wehrens at AMOLF [191]. Here, mutant cells were grown in micro-colonies on
minimal medium with lactose, but with a pulsating external cAMP concentration that
alternated between a too low (45 µM) or too high (2100 µM) cAMP concentration compared
to the optimal (800 µM) (for more details see SI). The first five cAMP cycles were fast,
pulsating with 1 hour intervals. Afterwards, three cycles with 5-hour intervals followed
(Fig. 5.6). Cells were thus continuously pushed out of steady state and had to rearrange
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their proteome to follow the external cue given by cAMP. The expression of the C-sector
reporter, as well as the instantaneous growth rates, were measured over time (Fig. 5.6).

Such an experiment can be simulated by our model via numerical integration. The re-
sulting model simulations are shown in Fig. 5.6. Here, the parameters αx,αA, and απ were
scaled such that the resulting CVµ = 0.2, closely resembling the measured CV of optimal
WT cells, see Chapter 4, Fig. S4.4).

Again, many qualitative features are readily explained. First, the C-sector concentration
has a smaller coefficient of variation than the growth rate (Fig. 5.6A,B), which seems to
become smaller for smaller C-sector expression and increase with increasing C-sector ex-
pression. Second, during the fast cycling, shortly after cAMP switches from low to high
the growth rate generally decreases; conversely, the growth rate increases when cAMP con-
centration is switched from high to low (Fig. 5.6, 0 < t < 6). Our model shows that this is
because, during the 1 hour pulses, cells consistently sit on the higher half of the optimum
curve (high φC and low µ, Fig. 5.5A). Third, after a long period of low cAMP, an upshift in
the cAMP concentration quickly results in much faster growth rates (Fig. 5.6, t = 11), after
which the growth slowly decreases again. Fourth, the rise in growth rate is much slower
when cAMP is lowered again (Fig. 5.6, t > 16).

The extremely fast rise of the growth rate, and seemingly much slower rise of φC, when
the cells change from low to high cAMP has long been a puzzle (Fig. 5.7A). However,
our model is now able to give an hypothesis for this observation. Namely, when cAMP
is low and C-sector expression is low, cells are extremely sensitive to changes in C-sector
expression (C-sector proteins have a high Growth Control Coefficient, Chapter 2). A very
short delay between C-sector expression and the fluorescence signal of the C-sector reporter
will then already allow cells to seemingly grow faster than possible with too little C-sector
expression. Such a small delay could be due to the finite maturation time of fluorescent
proteins, on a timescale of 5 to 18 minutes for mVenus (5 to 15 minutes [187]). Our model
suggests that a delay time of 10 minutes could already explain the observed behaviour of
a rapid increase in the growth rate at constant φC (Fig. 5.7B, C), giving a possible answer
to the puzzle.

5.3 discussion

In this chapter, we derived a deterministic model that explained the population-level be-
haviour (steady states as well as dynamics) of E. coli cells under the assumption of optimal
regulation. With a minimal number of parameters, a stochastic expansion of this model
qualitatively matched multiple features of single cell stochastic dynamics. Therewith, the
model suggests that the cell’s steady state, dynamical response, and noise propagation
properties are three sides of the same coin. In other words, the networks that shape the
steady state response to changes in the external environment also determine the dynami-
cal response, and the system’s noise propagation properties.

The model is firmly based on experimental observations, integrating experimental data
from four studies from three different labs [43, 158, 181, 191]. Importantly, the model there-
with shows that the ideas upon which the models of these studies are based can be unified
within a single framework of a growing stochastic cell.

At the same time, data integration poses challenges and problems. For example, in the
different studies different E. coli strains were used, and growth rates and the expression
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Figure 5.6: Data from the cAMP-pulse experiments and the corresponding model simulation. C-
sector reporter (A) and growth rate (B) over time. Blue dots are single cell observations,
and the black line is the population average. Time between data points is 20 minutes.
Data courtesy of M. Wehrens and S. Tans (AMOLF), data-figures reproduced with per-
mission from [191]. Below, the model simulations are shown: black dashed lines are
deterministic curves (all noise amplitudes zero), grey lines are 11 individual stochas-
tic cell traces. Here, k = 50, eClow = 0.2, eChigh = 159, αx = 1x0.02, αA = 3.2x0.02,
απ = 0.15x0.02 and mP = 0.01.
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Figure 5.7: (A) Growth rate of individual cells against the concentration of the C-sector reporter
during high cAMP (same data as in Fig. 5.6 for 10.7 < t < 15.7). Colour indicates time.
Thick, blocked curve is the average over time during the high cAMP cycle, thick grey line
is the average during the preceding low cAMP cycle. The black arrow indicates where
cells seemingly instantaneously jump from low growth rate and low C-sector expression,
to high growth rates and low C-sector expression. Data courtesy of M. Wehrens and S.
Tans (AMOLF), data panels reproduced with permission from [191]. (B) Model simula-
tion of the same up shift from low to high cAMP, where cell traces (grey lines) follow the
deterministic trend (red line). Thick black line is an example single cell trace (C) same as
in (B), but C-sector signal is plotted with a 10 minutes delay. Now, a similar jump from
low µ and low φC, to high µ and low φC can be observed.
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levels of proteome sectors were measured differently in each study. We choose to scale ex-
perimental data such that measured values under the same growth conditions overlapped
as much as possible. Alternatively, a different set of parameters could be fitted for each E.
coli strain and condition. This may improve the quality of the fits, but also increases the
number of parameters.

Generally, we have tried to keep the number of parameters as low as possible. For ex-
ample, we assumed that the parameters ki (inhibition constant of C-sector flux) and km
(saturation constant of the ribosomes) have a fixed value in all nutrient conditions. Since
different carbon sources enter the cell via different pathways, this assumption is not nec-
essarily valid. Additionally, product inhibition modelled with the parameter ki sometimes
causes a mismatch when comparing the model’s predicted growth rate on co-utilised car-
bon sources with the ‘growth rate composition formula’ [65] (data not shown), since during
the derivation of that formula production inhibition is assumed to be negligible. A better
match between our model and the composition formula might be obtained by tuning ki in
each environment independently, again at the cost of an increased number of parameters.

The stochastic extension of the model leaves a lot of room for exploration. Inspired by
previous chapters, we considered noise sources acting on the production rates (similar to
chapter 2) and on the internal biomass precursor x (similar to the metabolic noise source
in Chapter 4). In chapter 4 we additionally assumed independent noise in the growth rate,
resulting in an independent dilution mode (chapter 4, Fig. 4.2C). Especially for the consti-
tutive reporter, the dilution mode had an important contribution to the cross-correlations.
In our current model, the amplitude of the dilution mode is fixed because we model the
growth/dilution rate explicitly instead of phenomenologically. Noise in the rate of dilution
originates from noise in the production rate of other proteins (same as in chapter 2). Possi-
bly this underestimates the dilution mode when only a small number of different protein
species is modelled. We tried to add a specific noise source to µV (equation 5.22) to simu-
late noise in the rate of dilution. However, this did not yield realistic cross-correlations (see
SI sec S5.3 and Fig. S5.3). Still, the effect of other noise sources could be studied within the
context of this model. For example, it would be interesting to study the effect of partition-
ing noise during division on the cross-correlations [176], or, more generally, the effect of
noise that is shared between x and µ, similar to common noise (chapter 4, [86]).

The potential of this model is not yet fully realised. The model should be able to repro-
duce more population-level observations, such as the R-line, the P-line (Fig. 5.1B, C) and
the P-line under increased expression of φP (reference [158], figure 4C). Additionally, the
model should reproduce the perturbed C- and R-lines when translational inhibitors are
added to the growth medium (reference [159], figure 2A). The framework could further-
more be extended with more protein species, or with more protein sectors such as the
anabolic sector ‘A’ [68, 95, 198]. In a specific environment, the model could be linearised
in order to calculate noise transfer parameters and compare these values to those found in
chapter 4 or reference [86].

Taken together, the model presented here is a useful tool that summarises our current
understanding of the stochastic dynamics and regulatory wiring of E. coli. The model can
be used to test different hypotheses, study the interplay between regulation and stochas-
ticity, and to gain a more intuitive understanding of the complex behaviour of bacterial
cells.
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S U P P L E M E N TA RY I N F O R M AT I O N C H A P T E R 5

s5.1 derivation of optimal regulation functions

To derive the functional forms shown in equation 5.6, we first analyse the steady state of
the system. In steady state, x is a function of φC and φR (see equation 5.2), but φC and φR
are related due to the proteome constraint (equation 5.1), thus (bars indicate steady state):

x(φC,φR) = x(φC, 1−φQ −φC) = x(φC). (S5.1)

We can therefore further write the steady-state growth rate as a function of φC alone:

µ(φC) =
γx(φC)(1−φQ −φC)

km + x(φC)
. (S5.2)

Next, we ask which proteome fraction φC (and consequently φR) gives the optimal growth
rate, µ∗. We thus solve for φ∗C:

∂µ(φC)

∂φC

∣∣∣∣
φ∗C

= 0. (S5.3)

Because the solution depends on the nutrient quality k, we can express the optimal pro-
teome allocation as a function of k, φ∗C(k):

φC
∗(k) = (1−φQ)

γ(k− 2kkm + γ) +
√
kkmγ(k− γ)

k2 + 2k(1− 2km)γ+ γ2
. (S5.4)

Filling in equation S5.4 into equation S5.1 results in the steady state value of x, given
optimal proteome allocation, as a function of the external environment:

x∗(k) := x(φ∗C(k)) (S5.5)

=

√
k5kmγ+

√
k3kmγ3 − 2

√
k3k3mγ

4 − kkmγ(k− γ)

γ
(√

kkmγ3 + k(k+ γ− 2kmγ−
√
kkmγ

) . (S5.6)

Inverting this relation, we can find the ‘observed’ environment by the cell, k(x∗), i.e., the
inferred nutrient quality that should be present if x is in steady state and the proteome is
optimally allocated for this environment:

k(x∗) = [x∗(k)]−1 =
x∗2γ

km
. (S5.7)

In our model, the expression levels of proteome sectors are determined via x. The internal
variable x is not only a sensor of the external environment k, but also sets the expression
level of the C sector, such that the cell can adequately adjust to its surroundings. We are
therefore interested in finding, given a particular environment k, the relationship between
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the steady state optimal proteome fraction of the C-sector (φ∗C) and the corresponding
steady state of x, i.e. inserting equation S5.7 in equation S5.4:

φ∗C(k(x
∗)) = (1−φQ)

km(1+ x∗)

km + 2kmx
∗ + x∗2

. (S5.8)

The next step is to find the regulatory function χC(x) that decides, given the current value
of x not necessarily in steady state, what part of the cell’s resources should go to the
production of C-sector proteins. Like Erickson et al, we here employ the qORAC principle
[141], which states that resources should always be distributed as if the current value of x
is in its optimal steady state. For any value of x > 0 this result in the following regulatory
function:

χC(x) = φ
∗
C(k(x)) = (1−φQ)

km(1+ x)

km + 2kmx+ x2
. (S5.9)

s5.2 fitting procedure

s5.2.1 Towbin data

Before we can fit our model to the data from Towbin et al, these data need to be transformed
in two ways.

First, the expression level of the C-sector is measured via a fluorescent reporter under
CRP control. We assume a constant scaling factor between fluorescence and the total size
of the C-sector, φC. This scaling factor, αφ adds one more fit parameter.

Second, growth rates in the study from Towbin et al [181] are consistently lower than
those reported by the Hwa lab [43, 65]. A reasonable explanation for this discrepancy is
the use of different measurement techniques and experimental conditions. Towbin et al
measure the growth rate in small wells (using a 96-well plate reader), while Erickson et
al measure growth rates in batch cultures with a much larger volume. Since our model is
supposed to reproduce both the growth curves from Erickson et al and the steady-state
growth rates of Towbin et al, we scaled all growth rates measured by Towbin et al to match
those of Erickson et al. Luckily there are two substrates, glucose and maltose, for which both
labs have measured growth rates. For a single scaling factor, αµ = 1.27, the growth rates
in these two environments as measured by Towbin et al match the growth rates measured
in the Hwa lab (see Table 1 in reference [65]). Therefore, we scale all the growth rates
measured by Towbin et al with this factor before fitting the remaining parameters φQ, γ,
km, and αφ.

s5.2.2 Erickson data

The data from Erickson et al mainly consists of temporal data of nutrient up and down-
shifts and requires numerical integration of the system’s ODEs. Additionally, the model
must be altered to allow for multiple carbon sources. Analogous to Erickson et al, we write
for the flux through the C-sector, relative to the total cell mass:

jc(x) =
k1φC,1 + k2φC,2

1+ x
. (S5.10)
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Figure S5.1: All data from Towbin et al, for which the wild-type growth rate, µ0, equals the op-
timum of the mutant growth rates. In each panel is denoted: the nutrient condition,
and the wild-type growth rate (scaled by αµ = 1.27 to quantitatively match growth
rates from the Hwa lab). Panels labelled with an asterisk were not included in the fit,
but instead followed from the fitted parameters and the wild type growth rate. The
parameter αφ, that scales between CRP-reporter fluorescence and φC, was fitted to be
αφ = 0.502.
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The proteome fractions φC,1 and φC,2 are only produced when their respective carbon
sources are present. The particular carbon sources discussed (succinate and gluconate) are
co-utilised [65]. We therefore introduce the following binary functions, h1 and h2 that track
which nutrient is available:

χC,1(x) = h1χC(x), (S5.11)

χC,2(x) = h2χC(x), (S5.12)

with
h1 = 1, (S5.13)

h2 =

0, for t < 0,

1, for t > 0.
(S5.14)

At t = 0, the cell suddenly starts to create more φC than possible (total production rate of
C-sector proteins is now 2χC(x)µ(x), such that the total production rate of proteins exceeds
µ(x)). We therefore assume that φC,2 does not add to the cellular mass, such that the total
rate of cell-mass increase is still confined to µ(x) at any time point. Instead, φC,2 is interpret
as an importer protein that carries catabolic flux, but whose expression level is negligibly
low compared to the whole C-sector.

Below, we list the growth rates according to Erickson et al on the two substrates shown
in Fig. 5.4, succinate and gluconate, separately. The final growth rate, µf, achieved during
steady state growth when both carbon sources are co-utilised, can then be calculated using
the growth rate composition formula derived in [65].

µ1 = µsuccinate = 0.45 h−1, (S5.15)

µ2 = µgluconate = 0.91 h−1, (S5.16)

µC = 1.1 h−1, (S5.17)

µf =
µ1 + µ2 − 2µ1µ2/µC

1− µ1µ2/µ
2
C

= 0.93 h−1. (S5.18)

The resulting composite growth rate is slightly lower than the final growth rate reported
in Erickson et al, who found µ12 = 0.98 h−1 (although they state µ12 = 0.95 h−1 in their
supplementary text). However, the value of µf = 0.93 h−1 found here seems to be in better
correspondence with their data (see horizontal solid line in Fig. 5.4B).

s5.2.3 Stochastic simulations

Stochastic simulations were done in Matlab by numerical integration. At each time point,
OU-values were calculated according to the Euler-Maruyama method (first order). Given
the current value for these stochastic noise sources, the next value of φ can be determinis-
tically calculated using the Euler integration method: φi(t+ dt) = φi(t) (1− dt µM(t)) +

dt πi(t), with dt = 10−3. The variable x(t) was assumed to be in quasi steady state and
hence a direct function of φC(t), φR(t), albeit with addition of the noise source Nx(t).
The growth rate and production rates then followed according to equations 5.20 and 5.18

respectively.
For a particular condition (low, optimal, and high cAMP for the cAMP-fixed cells, and

the wild type) we calculated cross-correlations (Fig. 5.5) as follows. We first let the system
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Figure S5.2: (A) Example of the mutant growth rate as a function φC for different values of k.
Dashed lines are the wild type growth rates for those values of k. The black line repre-
sents the optimal growth rate under variation of k (i.e., the C-line). (B) The relationship
between the model parameter eC (representing the external cAMP concentration) and
φC and µ (equation 5.15). Here, k = 70, resulting in µWT = 0.753 h−1, a value that
closely resembles the wild type growth rate in chapter 4. The grey dashed curve is the
mutant’s growth rate without any P protein. The small mismatch between the points
and the curve is due to the very low expression of P sector proteins (φP,0 = 0.01).

run without noise until the steady state associated with the current condition was reached.
The mean values in this steady state were then used to calculate the scaling of the noise
amplitudes. Next, we turned on the noise, simulated a single long time trace (10000 hours)
and calculated cross-correlations along this single lineage using Fast Fourier Transforms.
We made sure that absolute noise levels were small such that the system at any times
remained within physically reasonable limits.

For the cAMP pulse traces we first let the system run until steady state in the low and
high eC values without noise, to infer the noise amplitudes in those two regions. Then,
we start with a medium value for eC and pulsate the variable eC from low to high at the
same time switching times as in the experiments (t ∈ {0.7, 1.7, 2.7, 3.7, 4.7, 5.7, 10.7, 15.7}, see
Fig. 5.6).

s5.2.4 Experimental methods

Experimental methods for the stochastic experiments discussed in this chapter can be
found either in the previous chapter (for the cross-correlations), or in reference [191] (for
the pulsed cAMP data).

s5.3 an independent dilution mode

In the current version of our model, we cannot tune the dilution mode freely. We here show
why including the noise source NV (that injects independent noise in the rate of volume
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Figure S5.3: Cross-correlations for the wild type C-sector reporter with only noise source NV non-
zero (θV = 0.001). Cross-correlations for all conditions and for both reporters were
similar to this one.

increase, and therewith also in the rate of dilution, see equation 5.22) does not yield a
dilution mode.

When only the noise source NV is present the resulting cross-correlations do not reflect
the Dilution mode as found in Chapter 2 [87]. Instead, the observed cross-correlations are
perfectly anti-symmetrical, i.e., R(t) = −R(−t) (Fig. S5.3). Here, we explain why.

• Cross-correlations between the concentration of any protein species i and the growth
rate µ as a result of NV consist out of two functional forms that we do have seen
before:

1. Dilution: Fluctuations in the rate of dilution causes the growth rate to increase
instantaneously, but protein concentrations decline after a certain delay. The
functional form of this mode is −A(t) (see Chapter 2, equation S2.48).

2. Control/Catabolic: Fluctuations in the concentrations of proteins (due to noise
in NV earlier) have an effect on the growth rate. In the current framework, the
growth rate is a function of x and φR. Since x is only determined by the ratio be-
tween φC and φR, the noise term NV does not influence x. However, φR directly
and linearly influences the growth rate, resulting in the mode S(t) (Chapter 2,
equation S2.49). In other protein species this mode is present because of their
perfect correlation with φR as NV affects all proteins species equally.

• The amplitudes of both modes are equal, because both effects have a linear influence
on the system. Both modes also have equal timescales, because they originate from
the same noise source and reverberate through the same system.

• In Chapter 2 the relation between A and S is calculated: A(t) +A(−t) = 2S(t); see
equation S2.50.

• The cross-correlation for any protein species and the growth rate thus is: Rφi−µ(t) =
S(t) −A(t) =

A(t)+A(−t)
2 −A(t) =

A(−t)−A(t)
2 , which is clearly an anti-symmetrical

function.

Since traces of such an anti-symmetrical mode have not been seen in experiments, we set
µV = 0 in all simulations. This is identical to the assumption that the total rate of mass
increase µM equals the rate of volume increase, i.e. a strong density constraint.
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D I S C U S S I O N A N D O U T L O O K

6.1 summary of the chapters

This thesis focuses on the interplay between noise in the expression of proteins, and noise
in the cellular growth rate. A biological cell is a highly constrained growing and evolving
system with countless feedbacks. To further sharpen our intuition about how biochemical
noise could reverberate through such a system, we have extensively used mathematical
modelling, backed up, whenever possible, with experiments.

Chapter 2 describes a conceptual framework of gene expression, metabolism and growth.
Using this framework, we were able to analyse how the noise in all protein species together
influences the noise in the growth rate. We investigated a model cell where stochasticity
originates in the gene expression of every protein species, but nowhere else. We calculated
how the noise in all these protein species could then propagate through the cell to not only
impact the growth rate, but also the temporal dynamics of a particular fluorescent reporter
protein which is measured experimentally. Useful for our calculations were the Growth
Control Coefficients; parameters that capture the extent to which the growth rate is sensitive
to changes in a particular protein species’ concentration. Therewith, GCCs quantify to
which extent a protein species is growth-limiting and also summarise how strongly noise
in that protein species propagates to the growth rate. From our calculations it became clear
that the stochastic dynamics of any protein species are, mainly via the GCCs, influenced by
the fluctuations of all protein species.

If all proteins together cause fluctuations in the cell’s growth rate, a natural question is:
how much is a protein species a priori expected to contribute to the noise in the growth rate?
In Chapter 3 we investigated this question. We showed that the GCCs are not only useful to
describe noise propagation, but are moreover an indication of how optimal gene expression
is. A protein with a (too) high GCC indicates that the growth rate would improve if the
protein’s (mean) expression increases. Whenever, in the organism’s evolutionary history,
natural selection favoured a high growth rate and average gene expression was adjusted
to accommodate this, the GCCs were coincidentally altered as well. If gene expression
is optimal for growth, the GCCs are distributed non-random, resulting in a scaling of
the GCCS with the protein’s mean abundance. Counter-intuitively, this results in a strong
contribution of abundant protein species, despite their often low noise levels.

Chapter 4 added gene regulation to the discussion of noise propagation. If the cell has
evolved regulatory networks that adjust the (mean) expression of proteins in reaction to a
change in the external environment, those regulatory networks might also react to internal,
stochastic fluctuations in a fixed environment. In this chapter we combined experiments
and theory to confirm that the cAMP-CRP regulatory network indeed reacts to noise in
metabolism. Again, the mathematical model pointed towards the importance of the noise
originating from ‘hidden variables’: noise in the expression of all those proteins whose con-
centrations are not explicitly measured. The stochastic expression of the many (metabolic)
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proteins that together generate a fluctuating metabolic flux was key to explaining the ob-
served stochastic dynamics.

Chapter 5 integrates data from population-level experiments on proteome allocation
to derive the dynamical regulatory wiring of the catabolic and the ribosomal proteome
sectors. Since the regulatory networks that govern a population’s response to a changing
environment are embedded in every single cell, we hypothesised that also the single-cell
stochastic dynamics are shaped by these networks. Therefore, we tried to explain all data
from Chapter 4 with this regulatory model, with only a single free parameter. Qualitatively,
many observed features were readily reproduced.

6.2 general reflections

The use of mathematics in biology is tricky. When after extensive analysis, extreme simpli-
fications, and bold assumptions, an analytically traceable formula is found, the mathemati-
cian’s pitfall is to treat that equation as the truth. Although a quantitative fit is rewarding
and insightful (for example Chapter 4), the search for quantitative fits might not be the
most useful quest yet. Instead, we would here like to focus on qualitative ideas and con-
cepts that reappear repeatedly in multiple models. We believe that together, Chapters 2–5

offer conceptual tools that go beyond the exact mathematical equations.
For example, the repeated appearance of noise modes with very comparable mathemati-

cal form, shape, and interpretation (Chapters 2, 3, and 4 of this thesis, but also Kiviet et al
[86], and references [40] and [16]) fortifies our trust that such modes are independent of the
exact biological wiring or fitted parameters. The noise modes moreover offer a way to rea-
son about noise propagation without the trouble of deriving exact mathematical equations.
The findings in Chapter 2, where the model framework was used that ignored regulation,
may seem in sharp contrast with the findings in Chapters 4 and 5, where we make explicit
that regulation does influence the cell’s stochastic dynamics. However, the noise modes
offer a way to explain these differences. In their original paper, Kiviet et al [86] include a
common noise term which directly influenced protein production and the growth rate. This
common noise resulted in a noise mode similar in shape to the autogenic mode in Chapter
2, and, notably, also similar to (minus) the regulation mode in Chapter 4. The fitted value
for the amplitude of the common noise may thus include a negative part associated with
regulation, which went unnoticed in the original study from Kiviet et al. In the framework
of Chapter 2, negative regulation would decrease the protein’s Growth Control Coefficient
(see Chapter S2), making it again impossible to disentangle the influence of regulation on
the stochastic dynamics.

Another returning concept that is not fundamentally embedded in the exact mathemati-
cal equations, but was merely pointed out by them, is the net effect of noise in the expres-
sion of ‘background’ proteins that together influence metabolism, the growth rate, and the
concentration of a specific protein of interest. These concepts are hard to pinpoint in exper-
iments, although similar ideas were investigated in experiments (and models) discussed in
references [31, 118], where solely the entropy of all metabolic reactions resulted in observed
distributions of the growth rate and metabolic fluxes. Additionally, recent work argues that
noise in the concentrations of metabolic proteins might be selected for throughout evolu-
tion, as such expression noise increases metabolic noise, and leads to diverse phenotypes
that are Pareto optimal [48].
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Lastly, the GCCs, derived in Chapter 2 and further analysed in Chapter 3, are useful
concepts even if their exact numerical value cannot easily be determined. The coefficients
summarise and combine intuitions about rate-limitation, noise propagation, and evolution-
ary optimisation. Possible relations between those three concepts are non-trivial and were
thus far often overlooked. An understanding of GCCs and their sum rule can moreover
be useful indirectly. For example, the realisations that (i) proteins can have a non-zero
GCC even in evolved, optimal systems and (ii) proteins can also have a negative control
over the growth rate, were fundamental in the parametrisation of the models discussed in
Chapter 4.

6.3 holistic cell models : roles of global cellular constraints

A recurring theme in almost all chapters has been the importance of (global) cellular con-
straints. On the population-level, the necessity to view any part of the cell in the context of
the whole cell has become increasingly clear. Such a view of a highly connected cell, where
due to the many constraints all parts are related, is sometimes referred to as a ‘holistic cell
principle’ [44, 120, 153]. A prime example is the tight connection between growth rate and
the expression of almost all genes according to the growth laws [68, 158, 198]. In the in-
terpretation of a classical knock-out experiment the distinction should be made between a
direct effect of the knocked-out gene, and any effects that co-occur with a change in growth
rate.

At the population level, the cellular constraints that underlie the cell’s connectedness are
well studied and adequately experimentally tested. However, our models suggest that, if
present at the single-cell level, the global constraints also shape single-cell noise propaga-
tion properties. In that sense, understanding cellular noise again asks for a holistic approach:
noise in the expression of all protein species, noise in any part of the cell, leaves traces in
the stochasticity of any other aspect of the cell.

6.3.1 Density constraints

At the population-level, cellular density is remarkably constraint. Bacterial cells strive for
homeostasis, since (the speed of) intracellular reactions are highly dependent on the cellu-
lar density [9, 90, 126, 142]. Again, homeostatic mechanisms that ensure a fixed, population-
level density are expected to be present at the single cell level. In mammalian cells, tiny
density fluctuations on very short timescales have been observed [119], indicating that in
principle, cellular density could be regulated on short timescales, at the single-cell level.

In our model of Chapter 2, the density constraint caused the autogenic mode: the produc-
tion of proteins leads to mass growth, and via the density constraint also to volume growth.
The question remains if, in bacterial cells, the density is constrained to the level that volume
increases any time a protein is produced, and, if so, on which timescale the volume lags
behind. In our model we assumed an extreme limit: the volume instantaneously follows
the production of every single protein that is translated. Still, we know that the cellular
volume does react to mass-growth, such that some trace of the autogenic mode is expected
to be present in real cells, even if in reality the density constraint is not as strict as in our
model.
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6.3.2 Resource allocation constraints

Mounting evidence suggests that resource allocation plays a fundamental role in many ob-
served phenomena, such as the appearance of the growth laws [128, 157, 198] and overflow
metabolism [5, 27, 57, 117]. Recently, resource allocation was even shown to play a regula-
tory role by passively suppressing anabolic protein expression upon carbon limitation [95].
At the population level, it is moreover known that steady state exponential growth rates
decline when the expression of burdensome, useless proteins is increased.

However, to our knowledge, such resource allocation constraints have not been shown to
be relevant for the dynamics of a single protein species. Nor is the presence of the resource
allocation constraint experimentally observed at the single cell level. In collaboration with
Andreas Milias-Argeitis and Floor Schukking from the Rijks Universiteit Groningen we
therefore examined whether fluctuations in the expression of a fluorescent reporter could
transfer to the growth rate, not due to toxicity effects, but due to the reporter’s increased
claim on limited resources. In the experiments, E. coli was grown in batch culture, and
gene expression noise was induced via an opto-genetic construct, meaning that the re-
porter’s expression was controlled by the strength of an external light source (Fig. 6.1A,
[6, 125, 151]). Preliminary results (Fig. 6.1B and C) indicated that a relation indeed exists
between the light flux, reporter concentration and the growth rate. Moreover, when the
light source is turned off again, cells seem to return to their normal growth rate. These
experiments might indicate that resource allocation can also dynamically affect the growth
rate of population of cells. So far, similar experiments at the single-cell level did not yield
conclusive results. Whether the resource-allocation constraint is present at the single cell
level, and whether this constraint is also felt by the stochastic fluctuations of individual
protein species, is therefore not yet established. Still, in the models of Chapters 2 and 3 it
is exactly this constraint that results in the negative GCCs (and therewith noise transfer!)
of non-growth-related proteins.

6.3.3 Growth Control Coefficients and Sum Rules

The GCCs from Chapters 2 and 3 bring additional constraints to light. Since the sum of all
the GCCs is shown to be 0, and the GCC of non-growth-related proteins (H-sector) is calcu-
lated to be negative, the GCC of at least one metabolic protein species is constrained to be
positive. This has massive, general implications for noise propagation from the level of gene
expression to growth. Fundamentally, noise propagation seems to be unavoidable; even in
evolutionarily optimised cells fluctuations in protein expression influences the instanta-
neous growth rate. Expression titration experiments, however, sometimes show a clear op-
timal expression level, where growth rates are maximal for the wild-type expression level
and either an increased or decreased expression level seems to negatively influence the
growth rate (similar to Chapters 3 and 4, see also [22, 141, 181]). Naively, the GCCs of pro-
tein species that lie at the top of such an optimum curve are expected to be zero. Still, such
an optimum does not necessarily imply that the protein under consideration does not prop-
agate noise to the growth rate: it is possible that in the titration-experiments, which only
measure steady-state growth rates, the cell keeps the H-sector, via (auto)regulation, con-
stant. Stochastic fluctuations around each steady state might still propagate to the growth
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Figure 6.1: (A) Cartoon of the opto-genetic construct used, where two sides of a spliced T7 RNA
Polymerase (foreign for E. coli ) were fused to light-inducible dimerization domains
via linkers at the split site [6, 7]. (B) Preliminary data of a population of cells with an
optogenetic construct growing fully in the dark (control) or growing under a switching
light source (open circle: light on, black dot: light off). A causal correlation between light
and fluorescence (B), as well as between fluorescence and growth rate (C) seems to be
observed. Growth rate is determined according to OD measurements, while at each time
point samples were taken whose fluorescence was analysed using a flow cytometer. Data
courtesy of Floor Schukking.
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rate, because then the fluctuations in expression level would be partly at the expense of the
H sector.

The sum rule constraint is particularly interesting in the field of synthetic biology. Ex-
pressing synthetic pathways that are, from the perspective of the cell, undesirable, increases
the size of the H-sector. In turn, this increases the amplitude of all GCCs via the sum rule,
resulting in a stronger noise propagation from the expression level to the growth rate. In
recent articles, interest has risen for potential (functional) roles of stochasticity in multiple
biotechnological applications [2, 3, 62, 79, 143].

Lastly, it is worth mentioning that Chapter 3 hinted at an extra trade-off between evo-
lutionary optimisation and the GCCs: the cell cannot escape a certain distribution of the
GCCs, if it wants to grow optimally fast.

6.3.4 Other constraints

Once started with the principle of a holistic cell, it is hard to imagine which constraints
would not affect the cell’s physiology and stochastic dynamics. Although we included nu-
merous constraints in this thesis, many more constraints were not considered. A constraint
discussed in recent literature is that of a maximum number of transporters that fit on the
cell membrane, without hindering its structural stability [169, 205]. This constraint has a
large potential impact on metabolism and the metabolic fluxes that proteins carry [56, 57].
To an extent, such a constraint might also influence noise propagation properties.

Throughout this work we ignored any toxic effects of high internal (metabolite) concen-
trations. Toxicity effects are widespread and constrain the total desirable concentration of
multiple metabolites. Moreover, toxicity possibly influences the GCCs of particular pro-
teins, having a direct effect on noise propagation properties.

Countless studies show (other) trade-offs or Pareto-optimality fronts [10, 13, 22, 48, 84, 96,
110, 118, 184, 193], which are all, in one way or another, effects from constraints. Therefore,
the holistic realisation that cellular constraints also shape the stochastic properties of cells,
is likely to become increasingly important.

6.4 evolution of cell models

While the work on this thesis was in progress, quantitative models concerning balanced
population growth, as well as on the single-cell level took a huge leap forward. First, the
growth laws offered tools to understand the behaviour of a population of cells during
steady state exponential growth [128, 158, 181, 198]. Soon after, focus was shifted to how a
population’s growth rate and expression patterns change during nutrient up or downshifts,
when the cells do not necessarily grow in steady state. During such a transition E. coli cells
actively (and passively) rearrange their proteome, which takes a considerable amount of
time. Interestingly, the coarse-grained view of the proteome established by the growth laws
again offered interesting insights. Examples of coarse-grained models that shed light on the
cell’s internal dynamics, as well as on how the proteome sectors are regulated are [43, 98].

At the same time, models have been developed to explain the stochasticity at the sin-
gle cell. First, research mainly focused on neatly describing all the stochastic processes
involved in gene expression, such transcription and translation, protein degradation, tran-
scription factor binding, etc [47, 138, 168]. Today, this is still an active (and heavily mathe-
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matical) research area [26, 60, 72, 73, 111, 190]. However, other models appeared that consid-
ered noise phenomenologically, i.e. they coarse-grained all processes underlying stochastic
gene expression into a single abstract noise source. Instead, these models focused on in-
cluding growth-related feedbacks. Examples are Chapters 2 and 4 in this thesis, but also ref-
erences [16, 40, 86, 163]. So far, these models describe stochastic fluctuations during steady
state exponential growth in a particular, pre-defined environment. The model’s noise prop-
agation parameters, which are likely to depend on the nutrient conditions, are fitted in
each environment independently, giving the modeller unwanted degrees of freedom.

A reasonable and feasible next step would be to combine the coarse-grained view of the
proteome sectors with the coarse-grained view of gene expression noise. Here, a fundamen-
tal realisation is that the same networks that manage the population’s response to changes
in the external environment, are embedded inside each individual cell. At the single-cell
level, those regulatory networks are therefore expected to also shape the cell’s response
to stochastic fluctuations in its internal environment. Preliminary steps in creating such a
model were made in Chapter 5. We created a model of a growing cells that matches recent
dynamical population-level data concerning nutrient up and downshifts [43]. Addition-
ally, the model reproduces not only the growth laws, but also population-level behaviour
when the growth laws are experimentally perturbed [181]. For any environment, noise
transfer parameters can then possibly be derived by making a local linearisation. Such an
approach thus fixes all the noise transfer parameters, leaving only the noise amplitudes and
timescales as free parameters. We see that after adding noise, the model indeed reproduces
most observations from Chapter 4, with only two parameters.

In contrast to coarse-grained models, full-cell models have also taken large steps for-
ward in the last years. Together with the frameworks described in this thesis, full-scale cell
models that include stochasticity might become feasible in the future.

6.4.1 Concluding remarks

The unavoidable stochastic nature of microbes makes it hard to fully understand the func-
tioning of a single cell. Since all creatures, from funghi to humans are build up from cells,
an increased understanding of these fundamental building blocks could have its conse-
quences for all life. Quantitative biology, together with applied mathematics, tries, with
small steps, to increase intuition and understanding from the bottom up, starting with
small molecules, protein building blocks, genes, etc.

However, by studying the cell as a highly stochastic, yet surprisingly robust, self-regulating
factory we can learn more than just the fundamentals of life. While trying to understand
those tiny bacterial cells, we are bound to learn ingenious general design principles, ro-
bust ways of regulating (even in noisy environments), and new ways to deal with, or even
utilise, errors.





A
A P P E N D I X : C O M PA R I S O N B E T W E E N O U A N D M E

two descriptions of gene expression

As discussed in the introduction, we make a distinction between two ways to model
stochastic processes. One option is to describe a stochastic process with rates that are fully
determined by the current state of the system (i). The other option is to model the process
according to a deterministic differential equation, but with a rate on which a stochastic
noise sources acts (ii).

Here, we compare the means and variances of both options for an example system: the
time evolution of the concentration of a protein φ that does not in any way influence
the growth rate itself. Instead, the growth rate µ is assumed constant. Assuming simple
protein production dynamics, where the protein’s production rate is either fixed, or has
a fixed mean, and the concentration dilutes with the cell’s growth rate µ. Such a system
might look like, with both the descriptions:

(i)

DNA k1−→ mRNA k2−→ protein (φ), mRNA
γ1−→ ∅, protein

γ2−→ ∅,
∂p(φ)
∂t =

∂[γ2φp(φ)]
∂x + k1

∫φ
0 w(φ,φ ′)p(φ ′)dφ ′.

(A2.1)

(ii)

dπt = −β (πt − E [π])dt+ θ dWt,
∂φ
∂t = π(t) − µφ.

(A2.2)

The first set of equations (i) form a continuous master equation that describes how the
probability of finding a certain protein concentration φ = n/V changes of time. These
equations are derived by Friedman et al [47] and further discussed in the Introduction. The
second set of equations, (ii), describe an Ornstein-Uhlenbeck (OU) process that acts on an
ODE. Here Wt is a Wiener process, with the dWt being independent Gaussian increments
with variance t, i.e., dWt = N

(
0,
√
t
)
. The parameter β can be interpret as the driving force

back towards E [π], the mean value of the production rate, either by regulation, or simply
by relaxation of the fluctuations. Note that the second equation of (ii) describes the change
in φ determinisitcally given the stochastic protein production rate π(t).

Method (ii) will thus yield sample paths of φ(t) for a particular stochastic path π(t),
whereas method (i) will describe how the probability density function p(φ) changes of
time. Here, we will test to what extent the two methods are comparable by calculating
their averages, variances and timescales of fluctuations.
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analysing method (ii): integrating the ornstein-uhlenbeck process

To calculate the mean and variance over time from method (ii), we must first get an expres-
sion for φ(t) by integrating the second equation and inserting π(t), the integral of the OU
process:

φ(t) = e−µt
(
φ(0) +

∫t
0

eµτπ(τ)dτ

)
(A2.3)

= e−µt
(
φ(0) +

∫t
0

eµτ
[

E [π] + θ

∫τ
0

e−β(τ−s)dWs

]
dτ

)
= e−µtφ(0) + e−µt

(∫t
0

eµτE [π]dτ+ θ

∫t
0

eµτ
[∫τ
0

e−β(τ−s)dWs

]
dτ

)
= e−µtφ(0) +

E [π]

µ
(1− e−µt) + θe−µt

∫t
0

e(µ−β)τ
[∫τ
0

eβsdWs

]
dτ (A2.4)

= e−µtφ(0) +
E [π]

µ
(1− e−µt) + θe−µtY(t). (A2.5)

In equation A2.4 we recognise a so-called a Double-Integral Process (DIP), described by
Touboul and Faugeras [180]: Y(t) =

∫t
0 e

(µ−β)τ
[∫τ
0 e
βsdWs

]
dτ. Note that the variance of

the DIP, Var {Y}t, is not bounded in itself, because it resembles a 1D-Brownian motion
diffusion process. The mean of Y, however, remains zero. Therefore, the variance of such a
DIP is given by its second moment, calculated in reference [180]:

Var {Y}t = E
[
Y2
]
t
= 2

∫t
0

e(µ−β)τ
[∫τ
0

e(µ−β)s
∫s
0

(
eβu

)2
du ds

]
dτ

=
e2µt(µ−β)2 − e2(µ−β)tµ(β+ µ) + 4e(µ−β)t −β(µ+β)

2β(µ−β)2µ(β+ µ)
. (A2.6)

As expected, the variance increases with time. However, in equation A2.4 the DIP is quenched
by the term θe−µt, such that the variance of φ becomes (for reasonably large t):

Var {φ}t = θ
2e−2µtVar {Y}t . (A2.7)

In the limit of t→∞, this results in:

Var {φ} =
θ2

2βµ(β+ µ)
. (A2.8)

This variance is notably smaller than the variance of the OU process itself, θ2/(2β). This
seems logical, because the dilution via growth also dilutes the fluctuations. We should
also note that, because we can relate φ to an (double) integrated normal Wiener process,
its distribution must be normal as well. This directly opposes measurements and other
theoretical work, where protein concentrations were found to be Gamma-distributed.

Interestingly, equation A2.8 does resemble equation S2.57 from Chapter 2 [87], while no
linearisation has been done here.

Predicted scaling of Var {φ} upon changes of µ

An interesting question would be, how the noise in protein concentrations changes for
different growth rates. The earlier model by Friedman et al [47] predicts an increase of
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the CV of φ with the growth rate under the assumption that with larger growth rates
the (relative) burst frequency decreases, while the mean and variance of the burst size
increases to maintain the same steady state. Note that the assumption that φ = E [π] /µ is
a constant, corresponds to the assumption that E [π] ∝ µ (as long as Cov[φ,µ] ≈ 0), which
does not seem unreasonable. Then, any increase in CVφ would solely be due to an increase
in Var {φ}. However, in our framework, (ii), Var {φ} decreases, rather than increases, with µ
(equation A2.8). In conclusion, for our framework to match the model predictions of [47],
either the parameter θ or β should change together with µ.

analysing method (i): deriving a sde from friedman et al

First, the steady state distribution derived by Friedman et al [47] allows us to link parame-
ters from method (ii) to method (i) using the mean and variance. Let a = k1/γ2, the mean
number of mRNA molecules produced per cell cycle, and let b = k2/γ1, the mean number
of protein molecules produced per burst.

〈φ〉(i) = ab =
k1
γ2

k2
γ1

=

(
k1k2
γ1

)
1

µ
= E [π] /µ, (setting γ2 = µ) (A2.9)

〈φ〉(ii) = E [π] /µ, (A2.10)

σ2(i) = ab
2 =

k1
µ

(
k2
γ1

)2
, (A2.11)

σ2(ii) =
θ2

2βµ(β+ µ)
. (A2.12)

However, the timescale of fluctuations (how quickly does a fluctuation dissipate) of both
methods are not easily compared, because the master equation from Friedman et al is only
solvable for the stationary distribution, yielding no information about relaxation times.
Therefore, we first transform their equation to a Fokker-Planck equation, and then to a
Stochastic Differential Equation, in order to try and find the corresponding timescales of
fluctuations.

Starting from the equations written by Friedman et al, we derive a SDE to be able to
calculate auto-correlation times of fluctuations. First, we use the Kramer-Moyer expansion
[78] to write the Fokker-Planck equation that is the corresponding approximation of the (i):

∂p(φ)

∂t
=
∂γ2φp(φ)

∂φ
+ k1

∫φ
0

w(φ−φ ′)p(φ ′)dφ ′ (A2.13)

≈ ∂γ2φp(φ)
∂φ

+ k1

(
∂

∂φ

[∫φ
0

(φ−φ ′)w(φ−φ ′)dφ ′p(φ)

]
−

∂2

2∂φ2

[∫φ
0

(φ−φ ′)2w(φ−φ ′)dφ ′p(φ)

])
(A2.14)

=
∂γ2φp(φ)

∂φ
− k1

∂

∂φ

[(
b− (x+ b)e−φ/b)

)
p(φ)

]
+
k1
2

∂2

∂φ2

[(
2b2 − (b2 + (φ+ b)2e−φ/b)

)
p(φ)

]
(A2.15)

=
∂ (γ2φ− k1b)p(φ)

∂φ
+
1

2

∂2
(
k1b

2
)
p(φ)

∂φ2
. (for φ >> b) (A2.16)

Here, w(φ − φ ′) = 1
be

−(φ−φ ′)/b − δ(φ − φ ′) is the exponentially distributed burst size
with mean b. The delta function appears in the function w to ensure normalisation of the
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probability (with a total rate of k1 probability leaks from state φ). The corresponding SDE
is then, again for φ >> b [78]:

dφt = −γ2

(
φ−

k1b

γ2

)
dt+

√
2k1b dWt = −γ2

(
φ− 〈φ〉(i)

)
dt+

√
2σ2(i) µ dWt. (A2.17)

The last equation now describes the dynamics of φ as an OU process that still has the same
mean 〈φ〉 = E[π]

µ and variance σ2(i) as framework (i), and shows that such a system has a
single timescale γ2 ≈ µ.

In conclusion, the two approaches are fundamentally different. First, when the OU pro-
cess is applied to the production rate, this introduces a new, independent timescale, β.
Second, only the approximation of method (i) is Guassian. (The stationairy distribution
found in Friedman et al is a Gamma-distribution). Third, the approximation of method (i)
with a SDE is in itself an OU process, while in method (ii) the OU process acts on the rate,
instead of φ directly.



L E K E N S A M E N V T T I N G

Deze thesis beschrijft de groei van bacteriën, en dan met name Escherichia coli (E. coli ). E.
coli is een eencellig organisme dat veel voorkomt in de darmen van zoogdieren, waaronder
ook mensen. Daar helpen de bacteriën ons met het verteren van het voedsel dat wij eten.
Bacteriën maken eiwitten aan waarmee ze voedsel uit hun omgeving opnemen en omzetten
tot biomassa. Op elk moment zijn er ongeveer 1000 verschillende soorten eiwitten in een
bacterie aanwezig, die elk hun specifieke taak verrichten. Daardoor kan een bacterie in
volume groeien, waarna hij bij een bepaalde grootte in tweeën deelt. De twee dochters
groeien vervolgens verder en delen zelf na een tijdje ook weer. Snel groeien heeft een
groot voordeel: bacteriën die sneller groeien verdringen diegene die langzamer groeien.
Het blijkt dat E. coli inderdaad goed kan groeien op veel verschillende voedselbronnen.
Dat doen ze door slim te reguleren welke eiwitten ze in welke concentratie produceren. Zo
kunnen bacteriën in allerlei verschillende omgevingen efficiënt en snel voedsel opnemen
en verwerken.

Toch kunnen bacteriën niet ontkomen aan een bepaalde willekeur. Ze zijn zo klein dat
van sommige moleculen maar tientallen door hun cytoplasma drijven. Een chemische reac-
tie, bijvoorbeeld om een nieuw eiwit te maken, vindt pas plaats als twee moleculen op de
juiste manier tegen elkaar botsen. Voor E. coli heeft deze onzekerheid in het aanmaken van
eiwitten grote gevolgen: de concentraties van alle verschillende eiwitten fluctueren door de
tijd heen. We noemen die willekeur vaak ‘stochasticiteit’ of ‘ruis’. Uit metingen blijkt dat
zelfs de snelheid waarmee het volume van bacteriën toeneemt, niet constant is en tot op
zekere hoogte stochastisch/willekeurig is. Zelfs in een sterk gecontroleerde laboratorium
omgeving fluctueert de groeisnelheid, terwijl bacteriën juist proberen om die groeisnelheid
zo hoog mogelijk te maken!

In hoofdstuk 2 rekenen we met behulp van een wiskundig model uit hoe de willekeur in
de timing van het aanmaken van alle eiwitten uiteindelijk ervoor zorgt dat ook de groeis-
nelheid gaat fluctueren. We moeten dan (o.a.) rekening houden met dat de groei van het
volume van de bacterie weer invloed heeft op de concentratie van alle eiwitten; concentratie
is immers het aantal deeltjes per volume! Om de berekening mogelijk te maken koppelen
we aan elke eiwit-soort een getal: de Growth Control Coefficient (groei-controle coëfficiënt).
Dit getal drukt uit hoe sterk een fluctuatie in de concentratie van die eiwit-soort effect heeft
op de groeisnelheid. We tonen aan dat de gemeten stochastische dynamica van E. coli verk-
laard kan worden door de gezamenlijke ruis in alle eiwitten. In hoofdstuk 3 onderzoeken
we de vraag: als de ruis in eiwitten ervoor zorgt dat de groeisnelheid gaat schommelen,
zijn er dan specifieke eiwit soorten die hierin een belangrijke rol spelen? Eerder onderzoek
toonde aan dat de concentratie van eiwit-soorten met een lage gemiddelde concentratie,
relatief sterk schommelt. De stochasticiteit van eiwit-soorten met gemiddeld een hoge con-
centratie leek daarentegen juist verwaarloosbaar. Daardoor wordt doorgaans aangenomen
dat fluctuaties in de groeisnelheid vooral veroorzaakt worden door de (sterke) schommelin-
gen van de eiwit-soorten met een lage gemiddelde concentratie. Echter, in dit hoofdstuk to-
nen we juist het tegenovergestelde aan: de eiwitten met een hoge gemiddelde concentratie
dragen veel bij aan de ruis in de groeisnelheid. Dat komt omdat niet alleen de amplitude
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van de fluctuaties belangrijk is, maar ook hoe gevoelig de groeisnelheid is voor de fluctu-
aties in die specifieke eiwit-soort. Oftewel: de Growth Control Coefficients van het vorige
hoofdstuk zijn ook hier belangrijk.

Tot nu toe hebben we genegeerd dat E. coli zijn best doet om zo goed mogelijk te groeien
in een bepaalde omgeving en daarvoor ‘actief’ de concentratie van eiwitten reguleert. In
hoofdstukken 4 en 5 onderzoeken we dit samenspel van regulatie en stochasticiteit. We
gebruiken daarvoor observaties van een experiment waarbij E. coli bacteriën groeien in een
constante omgeving. Het experiment vergelijkt ruis in gezonde bacteriën met ruis in bacter-
iën die door de onderzoekers genetisch aangepast zijn. Deze aangepaste bacteriën kunnen
niet goed meer hun eiwit concentraties reguleren, maar groeien gemiddeld genomen nog
wel steeds even snel. Er blijkt een verschil te zijn in de ruis-eigenschappen van de gezonde
en de ‘niet-regulerende’ bacteriën: het moet dus wel zo zijn dat de regulatie die een bac-
terie gebruikt om zich aan te passen aan veranderingen in de omgeving, tegelijkertijd óók
invloed heeft op de fluctuaties in eiwit concentraties en de groeisnelheid in een constante
omgeving. Met een wiskundig model kunnen we de data verklaren en bevestigen we dat
het verschil in ruis inderdaad veroorzaakt wordt doordat de aangepaste bacteriën niet goed
kunnen reguleren.
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[177] Sorin Tănase-Nicola, Patrick B. Warren, and Pieter Rein ten Wolde. “Signal De-
tection, Modularity, and the Correlation between Extrinsic and Intrinsic Noise in
Biochemical Networks.” In: Physical Review Letters 97.6 (Aug. 2006), p. 068102. doi:
10.1103/PhysRevLett.97.068102.
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