
Algorithmic and Experimental
Results on Trajectory Data

Processing

The cover image was generated by plotting trajectory data from OpenStreetMap.
© OpenStreetMap contributors. The data is made available under the Open Data
Commons Open Database License. For more information, see:
https://www.openstreetmap.org
https://opendatacommons.org

This thesis has been typeset using the LATEX typesetting system with the fonts
Linux Biolinum and Linux Libertine.

Printing: Ridderprint, https://www.ridderprint.nl

© 2022 Mees van de Kerkhof. All rights reserved. Reproduction in whole or in
part is prohibited without the written consent of the copyright owner.

ISBN: 978-90-393-7450-4

Algorithmic and Experimental Results on
Trajectory Data Processing

Algoritmische en Experimentele Resultaten over het Verwerken van

Trajectory-data

 (met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit Utrecht

op gezag van de
rector magnificus, prof.dr. H.R.B.M. Kummeling,

 ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen op

woensdag 30 maart 2022 des middags te 2.15 uur

door

Mees Anton van de Kerkhof

geboren op 29 juli 1993
te Beuningen

Promotor:
Prof. dr. M.J. van Kreveld

Copromotoren:
Dr. M. Löffler

Dr. I. Kostitsyna

Dit proefschrift werd (mede) mogelijk gemaakt met financiële steun van HERE Technologies en de
NWO onder projectnummer 628.011.005

Contents

1 Introduction 9
1.1 Trajectory tasks . 10
1.2 De�nitions and notation . 16

1.2.1 Hausdor� distance . 16
1.2.2 Fréchet distance and the free space diagram 17

1.3 Contribution . 18
1.4 Structure of this thesis . 19

2 Outlier Detection 27
2.1 Introduction . 27
2.2 Concatenable consistency model . 30
2.3 The speed-bounded model in 2D . 32

2.3.1 A consistency data structure 32
2.3.2 Supporting insertions . 35
2.3.3 Maximum subsequence queries 36
2.3.4 Maximum consistent subtrajectories 38

2.4 The acceleration-bounded model . 39
2.4.1 Computing the maximum length of a physically consistent

subtrajectory . 40
2.4.2 Propagating a speed interval in O(1) time 41
2.4.3 Additional details on the dynamic program 49
2.4.4 Retrieving the physically consistent subtrajectory 50
2.4.5 Bounding the maximum fragmentation 50
2.4.6 Extending to higher dimensions 54

5

Contents

2.5 Experiments . 55
2.5.1 Algorithms . 55
2.5.2 Data sets . 56
2.5.3 Comparing algorithms and models 57
2.5.4 Sensitivity of model parameters 63

2.6 Discussion . 72

3 Simpli�cation 75
3.1 Introduction . 75

3.1.1 Existing work on global curve simpli�cation 77
3.2 Classi�cation of global curve simpli�cation 78

3.2.1 Distance measures . 78
3.2.2 Vertex restrictions . 79
3.2.3 Global curve simpli�cation overview 79
3.2.4 New results . 81
3.2.5 Discussion . 83

3.3 Vertex-restricted simpli�cation under Fréchet distance 84
3.3.1 Shortcut DAG and free space diagram 84
3.3.2 Free space based algorithm for weak Fréchet simpli�cation 85
3.3.3 Extended algorithm for Fréchet distance simpli�cation . . . 86

3.4 Computing −→H (P , �) . 94
3.5 NP-hardness template for curve-restricted simpli�cation 95

3.5.1 Overview . 95
3.5.2 Exact construction . 96
3.5.3 Proof of the construction . 99
3.5.4 NP-hardness of computing F (P , �),

←−

H  (P , �) 101
3.5.5 Extending the template . 104

3.6 Computing dF (P , �) . 106
3.7 Computing F (P , �) in ℝ

1 . 108
3.8 Approximation algorithm for F (P , �) 110

3.8.1 The approximation algorithm 111
3.8.2 Proof of correctness and bounds 112

3.9 Strong NP-hardness for computing H (P , �) 116
3.10 Strong NP-hardness for computing ←−

H (P , �) 118
3.10.1 Hamiltonian cycle on ray intersection graphs 120
3.10.2 Connected segment polyline cover 123
3.10.3 Reducing to global curve simpli�cation 126

6

Contents

3.10.4 Non-zero � . 126
3.11 Conclusion . 130

4 Representative Trajectories 131
4.1 Introduction . 131

4.1.1 Related work . 132
4.2 Preliminaries and notation . 135

4.2.1 Trajectory clusters . 135
4.2.2 Trajectoids . 135
4.2.3 Central trajectories . 136

4.3 Experimental setup . 136
4.3.1 Implementation choices . 137
4.3.2 Data sets . 137
4.3.3 Final data sets . 138
4.3.4 Additional details on the implementation of central trajectories 139
4.3.5 Experiment 1: output complexity of real data 140
4.3.6 Experiment 2: e�ect of simpli�cation 140

4.4 Results and discussion . 140
4.4.1 Results of experiment 1 . 140
4.4.2 Results of experiment 2 . 147

4.5 Conclusion . 148

5 Road Network Generalization 151
5.1 Introduction . 151

5.1.1 Results . 153
5.1.2 Related work . 154

5.2 Theoretical results . 156
5.2.1 When G is a path . 157
5.2.2 When G is a tree with bounded ply 159
5.2.3 When G is a tree with unbounded ply 160
5.2.4 When G is a planar graph with bounded ply 161
5.2.5 When G is a planar graph, ply is bounded, and routes must

be shortest paths . 162
5.3 Experiments . 165

5.3.1 Data . 165
5.3.2 Heuristics . 165

7

Contents

5.3.3 Experimental set-up . 168
5.3.4 Results . 169
5.3.5 Discussion . 169

5.4 Conclusion . 178

6 Conclusion 181

A Data Sets 187

B Preprocessing for Chapter 4 195
B.1 Preprocessing steps before clustering 195
B.2 Clustering algorithm . 196
B.3 Additional preprocessing . 197
B.4 Final data sets . 198

C Preprocessing for Chapter 5 201

Acknowledgements 203

Curriculum vitae 205

Samenvatting 207

Bibliography 209

8

Chapter 1

Introduction

In the years since the launch of the Global Positioning System (GPS) and other
Global Navigation Satellite Systems (GNSS), and their subsequent opening up to
non-military use, satellite navigation technology has proven to be incredibly in�u-
ential. It has transformed the way we perform everyday tasks such as ordering food
or navigating our cars. GPS technology is everywhere. Many so-called location-based
services, such as Uber, Tinder, Pokémon Go, etc., have been successfully launched
using satellite navigation technology and many more possible services and appli-
cations are on the horizon. Besides the location-based services, which are mostly
online, there is also an increasing amount of GPS data being collected for o�ine
analysis. GPS trackers are used to collect movement data of animals such as pigeons,
elk, and deer. Commercial ships have their movements logged by GPS to collect
data usable for ocean tra�c planning, and users of services like Google Maps can
opt to share their data so it can be analyzed to improve the map and the navigation
software.

This proliferation of GPS use has resulted in previously unprecedented amounts
of GPS data being generated. In turn, this has caused great interest in algorithms for
preprocessing and analyzing all of this data. Such algorithms are the subject of this
thesis.

Besides GPS itself, other navigation satellite networks have also been launched,
such as the European Union’s Galileo, or Russia’s GLONASS. Other ways of tracking
movement, such as Radio-Frequency Identi�cation (RFID) or Wi-Fi tracking are now
also on the rise [75]. These do not work in the same way as GPS, being based on
local scanning infrastructure rather than far-away satellites, but they generate data

9

1 Introduction

that can be analyzed similarly to GPS data. In this thesis, we will focus on navigation
satellite data for tracking movement. We use the terms GPS, GNSS, and navigation
satellites interchangeably.

GPS data is generated by attaching a GPS tracker to some entity whose move-
ment we are interested in. At certain times, the GPS tracker will deduce its position
by measuring the distances between itself and the GPS satellites it has a clear line
of sight to. The atomic unit of GPS data is the probe. This is one measured loca-
tion for one entity at one point in time. Depending on the setup, additional data,
such as the speed or heading of the entity at the time of measurement, may also be
recorded. Multiple probes tracking the movement of the same entity are collected in
a trajectory. A trajectory consists of a set of probes tracking the same entity, sorted
chronologically. For times in between probes, where there is no measured position
available, the position can be estimated by interpolation. There has been some re-
search done into di�erent interpolation schemes [102], but in general, if only having
data at the measured times is insu�cient, linear interpolation between the probes
is used. Likewise, if the heading or speed were not measured for each probe, they
can be estimated by assuming a constant speed and direction in between probes.
This does mean that the speed and heading do not change continuously but change
abruptly at discrete times. For most trajectory applications, this is an acceptable
approximation. When using linear interpolation like this, we can envision a trajec-
tory as a polygonal curve, where each vertex is annotated with a timestamp and
additional data depending on the use case. See Figure 1.1. For some use cases, the
timestamps may be ignored. The trajectories are then treated purely as polygonal
curves without annotations. Although this causes some loss of information, for
some use cases this does not matter. For example, for map construction the shape
and location of the trajectories is important, but the time the trajectory was cap-
tured or the speed of the entity do not matter as much. Ignoring the timestamps
may allow for more straightforward algorithm design, and it also opens up the use
of existing research on algorithms that operate on polygonal curves. For example,
curve simpli�cation methods can be used to simplify trajectories.

Nearly all GPS algorithms focus on trajectories, rather than individual probes.
The input for these algorithms is thus a trajectory data set.

▶ 1.1 Trajectory tasks
The computational geometry and GIS communities have formulated many interest-
ing questions and problems involving trajectories. To better understand how these
problems and the algorithms that solve them interplay we can loosely categorize the

10

1.1 Trajectory tasks

13:12:01

13:12:1013:12:06

13:12:16

13:12:19 13:12:22

13:12:28

13:12:35

13:12:40

Figure 1.1: A set of probes (positions annotated by a timestamp) together form a
trajectory. For times where no probe exists we can �nd one by interpolation, like
the virtual probe at time 13:12:08 shown in red.

problems into preprocessing tasks, tools and application tasks. Preprocessing tasks are
tasks that can be applied to many di�erent trajectory data sets as a precursor to being
analysed, to remove common errors and reduce storage and subsequent computation
times. Tools are more speci�c, being used only when the use case speci�cally calls
for it, but in most cases they are not the last task to be performed on the data. They
can also form a subroutine for a larger task. Application tasks are where the already
preprocessed data is used to extract useful information or perform some task for the
end user, such as �nding movement patterns or constructing a road network. It is
helpful to split up tasks like this, rather than designing application algorithms to
handle unpreprocessed data. By splitting the tasks up, a preprocessing algorithm can
be reused for di�erent use cases. The data can be stored in a preprocessed manner,
which may require less storage, and the application algorithms can make stronger
assumptions on the input, giving more options for designing algorithms. A non-
exhaustive overview of trajectory tasks is given below. A categorization of the tasks
is given in Table 1.1.

Trajectory distance / similarity One elementary task that comes up during sev-
eral other trajectory tasks, is being able to compute a measure of distance between

11

1 Introduction

Table 1.1: Categorization of trajectory tasks.

Preprocessing tasks Tools Application tasks

Simpli�cation Similarity Finding regions of interest

Outlier detection Segmentation Map construction

Stay point detection Clustering Map generalization

Anonymization Map matching

two trajectories. Here we mean distance as in how much one trajectory must be
changed before it is identical to another trajectory, i.e. the inverse of the similar-
ity between trajectories. The high dimensionality of trajectory data makes this
less straightforward than �nding the distance between simpler objects, such as two
points. Well-known measures are the Hausdor� distance [89], Fréchet distance [16],
and Dynamic Time Warping [55]. New measures and variations on existing mea-
sures are still regularly introduced, such as versions of the Fréchet distance that
take context into account [38], versions that allow the trajectory to be split up and
recombined before computing the distance [13], or versions that consider the un-
certainty inherent to trajectory data [35]. Most of the proposed distance measures
do not take the time information of trajectories into account, only considering the
shape of the trajectory. This also allows the measures to be used more generally as
distance measures for polygonal curves, rather than speci�cally focusing on trajec-
tories. There do exist distance measures speci�cally for trajectories, including the
time stamps. One example is the Time-Synchronized Euclidean distance [106]. A
recent comparison between several trajectory distance measures was made in [124].

Trajectory simplification Some trajectory data sets contain more probes than
are needed to capture the movement information, especially since probes can be ap-
proximated by linear interpolation of the adjacent probes. Trajectory simpli�cation
is the reduction of the number of probes in a trajectory to reduce memory require-
ments and speed up further algorithms. It is important that the simpli�ed trajectory
still resembles the original. For this, trajectory distance measures can be used. The
goal is then to reduce the number of probes as much as possible while having a bound
on the curve distance between the original and the simpli�cation. This is known

12

1.1 Trajectory tasks

as min-link simpli�cation. Alternatively, we could set a bound on the number of
probes of the simpli�ed trajectory and try to �nd a simpli�cation with minimum
distance, known as a min-�-simpli�cation. Of course, one can also simplify without
necessarily optimizing one or the other. The widely used Douglas-Peucker [49]
algorithm, for example, guarantees the simpli�cation is within a pre-speci�ed dis-
tance � , but provides no guarantee of optimality in probe-reduction. A comparison
of Douglas-Peucker and other simpli�cation algorithms with no optimality guaran-
tee is given in [105]. There are many di�erent algorithms for di�erent approaches,
such as online simpli�cation [98], di�erent restrictions on where the simpli�cation’s
probes can be placed, etc. [6, 9, 21, 25, 36, 39, 42, 63, 72].

Outlier detection One issue arising when working with trajectories is the falli-
bility of GPS. In order to get a good measurement of the location, the GPS needs
a clear line of sight to as many satellites as possible, requiring at least four. Lack
of satellites, or miscalculation of the distance to a satellite as a result of the signal
being re�ected or distorted means that there is always a degree of uncertainty in
the location of the entity. Even in prime conditions we can still expect a deviation
of a few meters to the actual location when using a standard GPS receiver, with
larger errors occasionally also occurring [1]. A small error is generally acceptable
(and unavoidable), but these larger errors can cause bigger problems as they are
likely to distort the result. For example, one single outlier can dramatically increase
the computed value for the Fréchet distance. Therefore it is important to deal with
these measurements. Outlier detection is of course an issue when dealing with a
data set of any type, so general methods exist [69, 68], but a signi�cant amount of
research has also been done in considering the case for trajectories speci�cally. One
possibility is to apply smoothing to the trajectory, where the location measurements
for the probes are shifted to bring them closer together using techniques such as
a Kalman �lter or a particle �lter [94]. Alternatively, the outlying probes can be
detected and removed from the trajectory either heuristically [139], or by compari-
son to other data. For example, we can look at multiple similar trajectories at once
to identify probes lying far away from the other trajectories [92]. Many methods
consider the whole trajectory to be the “outlier" in this case, rather than a single
probe [62, 92, 96, 133]. If a road network is available, this can help identify outlying
probes as they may lie outside of the road network or have a large graph distance
to adjacent probes. In these cases, outlier detection does not have to be a separate
step from map-matching if the errors are small enough. In the cases where single
probes are seen as outliers rather than entire trajectories, detecting and removing
outliers has some resemblance to trajectory simpli�cation. However, simpli�cation

13

1 Introduction

generally aims to minimize the number of probes while still accurately describing
the trajectory: this typically retains outliers as these are “salient”.

Trajectory segmentation Some trajectory data sets contain large trajectories
that can be better analyzed by dividing them into smaller pieces to be studied sep-
arately. Trajectory segmentation is the process of splitting up a trajectory into
contiguous disjoint segments based on some criterion. For example, we may want
the probes in each segment to have a speed that is at most twice as large as any
other probe in the segment [19]. Or if the trajectory is of a person travelling using
di�erent modes of transport, we may want to segment the trajectory so each leg of
the trip gets its own segment [141].

Trajectory clustering While trajectories in the same data set generally share
some characteristics, such as being collected during the same timespan, or depicting
vehicles of the same type, they can still be very diverse in physical location and
shape. If the task we want to perform on the trajectories requires the trajectories
to be similar, we may want to divide the data set into clusters, where trajectories in
the same cluster are closer to each other in space and time than they are to trajec-
tories not in the cluster. Data clustering is used in many domains, but algorithms
used in other domains mainly operate on point data, making it so they cannot be
straightforwardly applied to trajectories [93]. Some trajectory clustering methods
assign the full trajectories to clusters [117, 56], but we may also want to cluster
subtrajectories [30, 12, 93] instead, as longer trajectories might be dissimilar even if
they have many subsections that are similar. Once the trajectories are clustered, a
representative trajectory can be chosen or constructed to represent the general shape
of the trajectories in the cluster [33].

Stay point detection / finding regions of interest For many entities it is nat-
ural that at some time, they will rest and stop moving. Elk and deer we might be
tracking will go to sleep, cars we are tracking are parked and not used for some time.
If the GPS tracker keeps generating new probes during this time, due to the error
inherent in GPS technology, they may not all be measuring the same location even
as the entity remains motionless. These stay points can cause trouble for follow-up
algorithms. So some algorithms focus on detecting these stay points so that they
can be removed. Stay points can also be detected as a method for �nding regions of
interest to be added to an annotated map, such as popular tourist spots [128]. Since
the movement characteristics of the entity are di�erent during a stay point as com-
pared to when the entity is going somewhere, they can be found using trajectory

14

1.1 Trajectory tasks

segmentation methods, although there also exist algorithms speci�cally for �nding
them [95, 66, 65].

Map matching If we are given a set of trajectories as well as an embedded graph
of the underlying road network, we can match the trajectories to the road network .
This means we edit the trajectories’ probes such that the trajectory now lies on the
road network [15, 112]. This can be done to bring the trajectories closer to expected
reality, as we expect cars to keep on the road. It can also be done to convert the
trajectory to a path in the graph, for example, to count how many trajectories cover
a certain road segment (graph edge). For an overview of map-matching techniques,
see [139].

Anonymization Digital privacy has been a topic of increasing interest. To protect
privacy, trajectory information cannot always be published as-is. It is important
that when published trajectory data was generated by tracking people, it is not
possible for attackers to deduce which person was tracked for any speci�c trajectory.
This is a di�cult task, as removing or modifying data that could be identifying
also has an impact on the usability of the data set, so a good trade-o� must be
made. One step that is often done in data sets is removal of some of the probes
at the start and end of the trajectory. These are likely to contain the departing
point and destination of the tracked person, and so this identifying information
is removed. Further anonymization can be done by applying the principle of k-
anonymity, i.e. generalizing and removing trajectories such that each remaining
trajectory is identical to at least k − 1 other trajectories [120]. Machine learning
approaches to trajectory privacy have also been proposed [100]. Stay point removal
or generalization of stay points [71] can also be an important step in preserving
privacy when publishing trajectory data, as stay points may help malicious actors
deduce where important locations are. For example, the location of a warehouse
could be discovered by looking for the stay points of delivery trucks.

Map construction Internally, most applications that deal with a road network
store it as a graph, but it is di�cult to �gure out what this graph should be and
to also keep it up to date. One possible application task for a trajectory data set
is thus constructing a graph of the underlying road network, if no previous graph
is available, or to identify changes to the road network and update the graph if
one is available [31]. A comparison between di�erent map construction algorithms
utilizing GPS data can be found in [10].

15

1 Introduction

Map generalization Besides serving to construct a graph, we can also use trajec-
tories as a means of annotating a graph with speci�c data. Encoding the tra�c �ow
into weights on the edges and vertices of the graph. This can then be used to gen-
eralize the graph, by taking only the subgraph annotated with the most important
data. Previous approaches have relied on graph properties [126, 43, 143], but GPS
data is now widely available it can be used as well [132].

▶ 1.2 Definitions and notation
A trajectory can be seen as a sorted list of probes, where a probe is a tuple of a
location in ℝ

2 and a timestamp ti ∈ ℝ:

T = ⟨(x1, y1, t1), (x2, y2, t2), ⋯ , (xn , yn , tn)⟩ (ti < ti+1, i ∈ {1, ⋯ , n − 1}) (1.1)

We can denote the �rst probe (x1, y1, t1) as p1, the second as p2, up till the last probe
pn . However, in many cases we are also interested in the position and speed of the
object in between the measured probes. We can get a workable approximation by
using linear interpolation between adjacent probes. We can de�ne a function that
returns a probe for the trajectory for any real value in the interval [1, n]. Given a
real value r we split it up into an integer part i and a fractional part �. This allows us
to use the following function to either return one of the given probes, or construct
an interpolated probe:

T (i + �) = (1 − �)pi + �pi+1 (1.2)

We can also envision the set of all constructed probes in between two probes that
were part of the input as forming one line segment connecting the two input probes,
turning the entire trajectory into a polygonal curve, see Figure 1.1. A subtrajectory
of a trajectory T , also referred to as a subsequence, is an ordered subset of T ’s given
probes, with the subtrajectory’s probes having the same relative order as in T . The
probes do not need to have been consecutive in T . Algorithmically, a subtrajectory
can be treated as a trajectory in its own right.

Below we will give more de�nitions that are important to know.

▶ 1.2.1 Hausdor� distance
One simple similarity measure for trajectories is the Hausdor� distance. It is a very
general similarity measure that can be used for any two point sets. If we have two
sets of points P and Q, such as two trajectories if we treat them as polygonal curves
and disregard the timestamps, the directed Hausdor� distance from P to Q is equal

16

1.2 De�nitions and notation

to the Euclidean distance between the point in P that is furthest from any point in
Q, and the point in Q that is closest to that point. Written formally, we get:

−→

H (P , Q) = max
p∈P

min

q∈Q

‖p − q‖

The undirected Hausdor� distance, also just called the Hausdor� distance, is then
the maximum of the directed distances in both directions.

H(P , Q) = max{
−→

H (P , Q),
−→

H (Q, P)}

▶ 1.2.2 Fréchet distance and the free space diagram

Another trajectory similarity measure that we use often is the Fréchet distance. It
is based on the principle that similar polygonal curves should not just be close in
space, but there should also exist some parametrization of the curves such that if
we traverse both simultaneously we should remain close at all times. Closeness
here is de�ned as having small Euclidean distance. The trajectories are treated as
polygonal curves and the timestamps are not taken into account. For polygonal
curves/trajectories P and Q, with n and m probes respectively, the Fréchet distance
is de�ned as:

F(P , Q) = inf

(� ,�)

max

j∶[0,1]

‖P(�(j)) − Q(�(j))‖ (1.3)

where � and � are continuous non-decreasing functions from [0, 1] to the real inter-
vals [1, n] and [1, m], respectively.

This is often explained with the following analogy: Suppose someone is walking
their dog. P is the path the owner takes, and Q is the path of the dog. The owner
and dog can change their speed at will, but they cannot go backwards on the path.
The Fréchet distance is then the shortest possible length the dog’s leash can have
for this walk to be possible.

The weak Fréchet distance is similar, but the constraint is dropped that � and �
are non-decreasing. Going back to the man-walking-dog analogy this means the
man and dog can freely move backwards and forwards over their path if this results
in a shorter leash being needed. The weak Fréchet distance between curves thus
gives a lower bound for the (strong) Fréchet distance.

The discrete Fréchet distance is a variant where � and � are discrete functions
from {0, … , k} to {1, … , n} and {1, … ,m}with the property that 0 ≤ �(i+1)−�(i) ≤ 1
and 0 ≤ �(i + 1) − �(i) ≤ 1. This has been explained as someone walking a pet frog,

17

1 Introduction

where instead of walking along edges of the polygonal curve, the owner and frog can
only hop from vertex to vertex. The discrete Fréchet distance between two curves
gives an upper bound on their (continuous) Fréchet distance.

As you might expect, computing the exact Fréchet distance between two curves
is not completely straightforward. Alt and Godau [16] described an approach for
computing this distance. They de�ne an algorithm for solving a decision variant of
the problem of computing the distance. This algorithm can answer if the Fréchet
distance between two curves is at most some value � . Then they use a technique
called parametric search to �nd the minimum value of � .

Their decision algorithm works by constructing what is called a free space dia-
gram for a value for � .

It consists of a grid of (n − 1) × (m − 1) cells, where each cell corresponds to a pair
of line segments, one from P and one fromQ. Each column of cells corresponds to an
edge of P and each row corresponds to an edge of Q. For example, the point (2.6, 3.5)
in a free space diagram corresponds to the probe gotten by linearly interpolating
between P ’s second and third probes with a � of 0.6, and the probe gotten by linearly
interpolating betweenQ’s third and fourth probes with a � of 0.5. Each cell is divided
into free space and forbidden space. If the Euclidean distance between the curves at a
point is less than or equal to � , the point is in the free space. If the distance is greater
than � , the point lies in the forbidden space. See Figure 1.2.

Now, an x- and y-monotone path from the point (1, 1) to (n, m) entirely through
the free space corresponds to parametrizations of P and Q such that the distance
between the two is at most � at any time, i.e. the Fréchet distance is at most � .

For additional details we refer to the paper by Alt and Godau [16].

▶ 1.3 Contribution

In this thesis, we study a variety of problems that have trajectory data as input. Two
of the chapters cover problems relating to preprocessing tasks. We cover outlier de-
tection, giving new algorithms that can be used to remove outliers from trajectories
without the need for additional data such as a road network or other trajectories. We
study trajectory simpli�cation, going over many variants of this problem and giving
either polynomial time algorithms or NP-hardness proofs. One chapter considers a
tool: We examine the problem of computing representative trajectories, creating the
�rst known implementation for the algorithm introduced in [90] and testing it on
real data. Finally, there is one chapter on an application task. We introduce a novel
approach for road network generalization and compare it to existing approaches.

18

1.4 Structure of this thesis

p1

p2

p3

p4

p5
p6p7

p8p9

p10

q1

q2

q3
q4q5

q6q7

q8

δ
1

2

3

4

5

6

7
8

1 2 3 4 5 6 7 8 9 10

Q(t)

P (s)

s

t

P

Q

P

Q

4× [1, 8]

Figure 1.2: Two polygonal curves P (in blue) and Q (in red), and their free space
diagram for the chosen value of � . The free space is shown in white and the forbidden
space is shown in gray. Each cell of the FSD corresponds to the combination of
one edge of P and one edge of Q. (s, t) is a free point in the diagram, lying on a
reachable path in the free space. One green spot is marked in both the FSD and on
the associated spots on P and Q. A x- and y- monotone path contained in the free
space from (1, 1) to (8, 10), shown in green, corresponds to parametrizations of P and
Q realizing a Fréchet distance of at most � .

▶ 1.4 Structure of this thesis
Now we will discuss how the rest of this thesis is set up. After this introductory
chapter, there are four chapters, each covering a di�erent trajectory task. After that
is a concluding chapter. There are also appendices going over the di�erent data sets
that were used and how they were preprocessed. We will now give summaries of
the remaining chapters.

Chapter 2: Outlier Detection One of the most fundamental preprocessing steps
used for processing trajectories of any type is the detection and correction/removal
of outlying probes. Normally, a GPS probe can be expected to lie within a few
meters of the actual location of the tracked entity at the time the probe was taken,
but a variety of circumstances can create probes that lie much further away. For
example, many inner-city environments form what are known as urban canyons,
where high-rise buildings block the line of sight to the GPS satellites, making it
di�cult to accurately compute the position of the entity. Outliers can have strong

19

1 Introduction

Figure 1.3: A moving entity has its location probed periodically to construct a tra-
jectory (dotted) that accurately approximates the actual path of the entity (blue).
The red probes lie very far away from the actual path and can thus be considered
outliers.

e�ects on further processing of the trajectory data, so it is important that they are
removed. See Figure 1.3. Determining which probes are outliers and which are not
relies on having some sort of context for telling the two apart. For example, if we
have a set of trajectories covering a similar route, but one of the trajectories has one
probe clearly not on the route, it is likely to be an outlier. Or if we are working with
car trajectories and have access to the underlying road network, we can assume that
probes not lying on any road are likely to be outliers. Sometimes, however, these
more comprehensive contexts are not available.

In this chapter, we aim to create an outlier detection approach that works for
when only minimal context is available. We consider the scenario where only one
trajectory is considered at a time, and the only available context is some idea of the
physical properties, such as the maximum speed, of the entity being tracked. We give
three optimal algorithms for �nding the maximum subsequence of probes that are
consistent according to the chosen physics model. I.e. we wish to �nd the largest set
of probes such that the entity could have started at the earliest included probe, and
then visited each of the measured locations at the measured times without violating

20

1.4 Structure of this thesis

the physics model. Our results are output sensitive in the number of found outliers.
We give an O(n log n log2 k)-time algorithm, where n is the number of probes in

the trajectory and k the number of outliers, fora bound on the maximum velocity. For
models where consistency is concatenable, meaning we can concatenate consistent
subsequences where one ends where the other begins and always get a consistent
subsequence, we give an O(nk)-time algorithm. For a non-concatenable model with
a bound on velocity and acceleration, we give a O(nk2 log k) time algorithm, under
appropriate realism conditions.

To test our algorithms we run experiments on several real-world trajectory data
sets. We compare our algorithms to previously existing algorithms and some greedy
benchmark algorithms. We show that our approach is able to retain more of the
probes of an input trajectory than the benchmarks. We observe that the change
between a speed-bounded model and an acceleration-bounded model is not so big in
practice. Finally, with a sensitivity analysis we show that the choice for the physics
model parameters is very important for the performance of the algorithms.

This chapter presents work that was published in the paper Maximum Physically
Consistent Trajectories [46].

Chapter 3: Simplification Curve simpli�cation is a long-studied problem with
many di�erent applications. Since the rapid increase in GPS data, there has also been
an increase in research into simplifying trajectories speci�cally, but since trajectories
can also be seen as annotated polygonal curves, general curve simpli�cation methods
also work.

The aim of simplifying a curve is to reduce the complexity while still maintaining
similarity to the original curve. To measure the similarity, a curve distance measure
is used. In this chapter, we consider variations of this problem using six di�erent
curve distance measures. The most often studied cases of curve simpli�cation look
into selecting a subset of the vertices of the original curve. Since the simpli�ed curve
consists of the remaining vertices connected by straight line segments, when vertices
get left out we can say that the simpli�ed curve takes a shortcut past that vertex.
The simpli�ed curve can also shortcut past several vertices at once. In this case,
the distance measure can be applied locally, only looking at the shortcutted section
rather than the entire curve. This is the approach used in most curve simpli�cation
literature.

Van Kreveld et al. [89] have shown that when applying the curve distance mea-
sure globally, i.e. we only care about the distance between the full original and
simpli�ed curves, rather than caring about the distance between each individual
shortcut and its corresponding original section, the complexity of the simpli�ed

21

1 Introduction

p3 = p5

p2

p6

p7 p8
p1

p4

δ

p1

p2

p3
p4

p5

p6

p7 p8

p9

p10

Fréchet Hausdorff

Input curve

Figure 1.4: Di�erent variants of global curve simpli�cation. Red is the optimal vertex-
restricted simpli�cation, blue is the optimal curve-restricted simpli�cation and green
is the optimal non-restricted simpli�cation.

curve can be lower than with the measure applied locally. Likewise, we can also let
go of the restriction that the vertices of the simpli�ed curve are vertices of the origi-
nal curve. We can choose to only require that the simpli�ed vertices lie somewhere
on the curve, or we can only ask that the simpli�ed curve starts and ends at the same
points, but otherwise is just a polygonal curve. We refer to these restrictions on the
problem as vertex-restricted, curve-restricted and non-restricted simpli�cations, re-
spectively. See Figure 1.4. Curve- and non-restricted simpli�cation, and especially
the global application of the distance measure have received much less attention
than local, vertex-restricted simpli�cation has thus far. This has left several open
questions on whether polynomial time algorithms exist for di�erent cases, which
we address in this chapter.

We give polynomial time algorithms for various variants and prove the NP-
hardness of others. Systematically covering all of these variants shows a surprising
pattern in that curve-restricted simpli�cation seems to generally be harder than both
vertex- and non-restricted versions of the problem.

This chapter presents work that was published in the papers Global Curve Sim-

22

1.4 Structure of this thesis

Figure 1.5: Top: A trajectory cluster, where no trajectory that can be picked is a good
representative for the cluster. Bottom: A trajectoid constructed to be representative
of the cluster. The dashed sections represent discontinuities where the trajectoid
switches which trajectory is followed. This can only occur when the old and new
entity are closer than a distance threshold at the time of the switch.

pli�cation [86] and Embedding Ray Intersection Graphs and Global Curve Simpli�ca-
tion [85].

Chapter 4: Representative Trajectories For large data sets, a clustering algo-
rithm can be used to bring more structure, by dividing the data up into clusters. The
aim is that data points will have more in common with the other data points in their
cluster, than with data points outside of their cluster. For trajectory data, clustering
can be very useful. The movement patterns sought after in trajectory data mining

23

1 Introduction

are often restricted to a small area or timespan, so instead of looking at an entire
data set at once it makes more sense to look at clusters of trajectories that are similar
in location, time, and shape. To visualise a cluster, a representative trajectory can be
chosen. This is a trajectory that captures the essence of the trajectories in the cluster
somehow. A representative trajectory can either be chosen from the trajectories in
the cluster, or one can be constructed.

One approach for constructing a representative trajectory is given in the paper
Central Trajectories, by Van Kreveld et al. [90], which we have studied for this chap-
ter. For a trajectory cluster whose probes fall within a common time interval, this
approach constructs a trajectoid, a function that maps the time interval to di�erent
trajectories in the cluster. This can be thought of as a new trajectory constructed out
of pieces of the trajectories of the cluster being summarized. See Figure 1.5. At the
times where the trajectoid switches between pieces of di�erent trajectories, there
are discontinuities, where the endpoints of the di�erent pieces do not overlap but
have some distance between them. The maximum allowed distance " is a parameter
of the algorithm. The speci�c trajectoid that is constructed, the central trajectory, is
the trajectoid that minimizes the distance between it and the center of the cluster.

To get a better picture of what the actual output complexity is when this algo-
rithm is used in practice, we have created (to the best of our knowledge) the �rst
implementation of this algorithm and applied it to several real-world data sets. We
compare the output complexity to the theoretical worst-case complexity. Given that
the output complexity could be much higher than the input complexity, we also
study the e�ect of trajectory simpli�cation as a pre- or post-processing step for the
algorithm. We examine whether simpli�cation is an e�ective way to keep the output
complexity comparable to the input complexity, and if it is better to simplify before
or after applying the algorithm.

We �nd the ratio of input to output complexity generally stays close to 1. We
also �nd that simplifying the output is more impactful than simplifying the input
in terms of reduced output complexity. Simplifying both reduces complexity even
further in some cases, but the di�erence with simplifying only the central trajectory
is small.

This chapter is based on an unpublished manuscript written in collaboration
with Maarten Lö�er and Roald Melssen.

Chapter 5: Road Network Generalization Many di�erent applications require
knowledge of a road network. The network is stored internally as an annotated
graph. Depending on the context, we may want the full graph for a region, but for
many cases the full graph contains too much detail. For example when visualizing

24

1.4 Structure of this thesis

Figure 1.6: Top: Road network of the city of Leiden. Bottom: Heuristic generalization
restricted to 30% of the total road length.

the road network of an entire country, drawing each small inner-city road for each
city will make for a visualisation that is too cluttered. For those, and other cases, we
want to use a generalized version of the graph. Like trajectory simpli�cation, we
want to preserve the important information while removing extraneous information.
Here, we are looking to �nd a subgraph of the original road network that includes
the most relevant edges (corresponding to the most important roads) and excludes
less relevant edges. Approaches to estimate which areas of the graph should be
kept already exist [137, 126, 123]. Since the rate of GPS data gathering has rapidly
increased in recent years, this now also opens up the possibility of determining road
importance by analyzing a data set of trajectory data that lies on the road network.
For this to work, the trajectories are converted into paths on the graph �rst. For
clarity, we will refer to these paths on the graph as routes. Edges in the road network
will have a certain number of these routes traversing them. We will refer the number
of di�erent routes traversing a speci�c edge as the ply of that edge.

We introduce the Route-preserving road network generalization problem. We hy-

25

1 Introduction

pothesize that solving this problem will give a good road network generalization
that is data-driven. In this problem, we are given a graph G, a set of routes R and a
budget B. We want to select a subset of the edges of G where the sum of edge lengths
of the subset is at most B and the number of routes in R that are fully captured, i.e.
all of their path edges are included in the subset, is maximized. The introduced
problem focuses on fully capturing routes, instead of trying to maximize the total
ply of the edges that are selected. This approach ensures commonly used routes
are preserved in full in the generalization, and it helps prevent artifacts where only
some segments of a longer road may be selected, leaving gaps in the road in the
generalization. We conduct a theoretical study of this problem and show that it is
unfortunately NP-hard for realistic cases.

While we show the problem cannot be solved exactly in a reasonable amount of
time, we also investigate the quality of the solutions an approximation algorithm or a
heuristical algorithm might produce, to see if good solutions to the route-preserving
road network generalization problem are actually good generalizations. To do this,
we de�ne a score function that assigns a score to each route that we use for three
di�erent heuristical algorithms. For an example of a heuristical output, see Figure 1.6.

We compare these heuristical algorithms with a benchmark algorithm, that iter-
atively includes the edge with the highest ply into the subgraph until the budget is
exhausted. We show that this benchmark approach indeed creates artifacts as we
expected, that are not present using our heuristics.

This chapter presents work that was published in the paper Route-preserving
Road Network Generalization [87].

Chapter 6: Conclusion In this chapter, we conclude by reviewing our contribu-
tions and giving an outlook of possible broad future directions of study.

Appendixes In Appendix A we describe the data sets that were used in our ex-
periments. In Appendices B and C we go over the preprocessing steps that were
applied to the data sets to prepare them for use in Chapters 4 and 5 respectively.

26

Chapter 2

Outlier Detection

▶ 2.1 Introduction

Before trajectory data can be used for anything, the data must �rst be collected.
However, many ways to collect trajectories involve physical sensors which are prone
to errors. For example, GPS readings notoriously stray far from their real location
in urban canyons, resulting in trajectories with multiple signi�cant outliers. These
outliers pose problems for many analysis techniques such as clustering or grouping,
and they skew the results of statistical methods. Hence, it is common practice to try
to eliminate outliers as a preprocessing task before further data processing is done.

There are a variety of methods to remove outliers. Some techniques, such as
smoothing or averaging the data, have a possibly negative impact on the complete
trajectory. Others, such as map matching, are applicable only to trajectories that
can be expected to coincide with a road network. This chapter focusses on outlier
detection, that is, algorithms that identify outliers which are subsequently removed
from the trajectory.

Speci�cally, we aim to identify outliers via the physical properties of the moving
(real-world) entity. We consider two probes within a trajectory to be consistent for
a particular physics model, if the corresponding entity could have traveled between
the two measured locations in the time between the two probes. We present optimal
algorithms to compute maximal consistent subtrajectories according to di�erent
(simpli�ed) physics models. Before describing our results in more detail, we �rst
introduce the necessary notation and formally state the problem.

27

2 Outlier Detection

Notation A trajectory T is obtained by tracking some entity. Let v− be the min-
imum speed, or velocity, that the entity can achieve, and let v+ be the maximum
speed that the entity can achieve. Similarly, let a− and a+ be the minimum and max-
imum possible acceleration. These speed and acceleration bounds represent phys-
ical bounds, and thus the entity cannot exceed them at any time, even in between
consecutive time stamps ti and ti+1. The actual continuous motion of an entity is
assumed to be a continuous path � ∶ [t1, tn] → ℝ

d over time interval [t1, tn] through
d-dimensional space (typically, d = 2). We say that a path � adheres to the physics
model if it never exceeds the bounds. For example, the speed is always in [v−, v+]
and the acceleration is always in [a−, a+]. A sequence of probes T = ⟨p1, … , pn⟩ is
consistent with the physics model, denoted C(T), if and only if there exists at least
one witness: a path � ∶ [t1, tn] → ℝ

d such that (i) for all i ∈ {1, … , n}, �(ti) coin-
cides with location pi , and (ii) � adheres to the physics model. We sometimes write
C(pi , pj) instead of C(⟨pi , pj⟩).

Formal problem statement Given a trajectory T and a physics model, compute
a maximum-size subsequence S of T such that S is consistent with the given model.
When S has size � , we consider the k = n − � probes that were not included to
be outliers.

Concatenability Regardless of the physics model, if a sequence T is consistent,
then so is any subsequence S of T . But we cannot necessarily construct a consistent
subsequence from smaller ones: the concatenation ⟨p1, … , pn = q1, … , qm⟩ of two
consistent subsequences T = ⟨p1, … , pn⟩ and U = ⟨q1, … , qm⟩ with pn = q1 is not
necessarily consistent. We call a physics model concatenable if such concatenations
are always consistent under the model. An example of a concatenable model is one
whose only limit is a maximum and minimum speed for the entity. Concatenable
models generally allow more e�cient algorithms.

Not all physics models are concatenable: for example, a model limiting both the
speed and the acceleration is not concatenable. See Fig. 2.1 (left): both T = ⟨p1, p2⟩

and U = ⟨p2, p3⟩ are consistent, but ⟨p1, p2, p3⟩ is not. The main problem is that
sequences U and T essentially require the entity to have two di�erent speeds at
p2. The two subtrajectories U and T are concatenable in the acceleration-bounded
model, under the condition that they have the same speed at their common probe. To
capture this, we de�ne a notion of conditional consistency, denoted C(T |
), in which
a trajectory T is consistent, provided that it has a witness satisfying condition
 . In
case C(T |
) and C(U |

′
) imply that the concatenation of T and U is consistent,

we say that the physics model is conditionally concatenable. Hence, the model with

28

2.1 Introduction

Figure 2.1: (Left) In an acceleration-bounded model ⟨p1, p2, p3⟩ is not consistent,
even though ⟨p1, p2⟩ and ⟨p2, p3⟩ (and even ⟨p1, p3⟩) are. Going from p1 to p2 re-
quires the entity to have such high speed that it can’t slow down quickly enough
to reach p3. (Right) A consistent subtrajectory through p2 may require a di�erent
speed at p4 than a subtrajectory that includes p3.

bounded acceleration is conditionally concatenable, using the condition that the
speed at the common probe is the same. The speeds attainable at a certain probe
may depend on the subtrajectory so far, as illustrated in Fig. 2.1 (right).

Results and organization We present three algorithms and the results of com-
putational experiments investigating the e�cacy of our methods. Speci�cally, in
Section 2.2 we describe a simple, optimal algorithm that runs in O(nk) time for any
concatenable physics model allowing constant time consistency checks between two
probes. We then describe a more e�cient algorithm which runs in O(n log n log2 k)
time for the speed-bounded model in Section 2.3. Our �nal algorithm, described
in Section 2.4, uses an acceleration-bounded model that can optionally also bound
the speed. This algorithm runs in O(nk

2
log k) time under mild assumptions that

are validated by our experiments. We also present a variant of this algorithm that
introduces slack in the physics model to obtain an e�cient approximate algorithm
that achieves the given worst-case running time without assumptions.

In Section 2.5, we discuss the results of a series of computational experiments
on real-world data using our open-source implementation. Speci�cally, we compare
the quality of our algorithms to simple greedy approaches and conclude that our al-
gorithms are more reliable, especially for trajectories with more than minor levels of
noise. We also observe that the speed-bounded model approximates the acceleration-
bounded model, though there is some dependency on the data set. Finally, we also
brie�y investigate how sensitive our results are to the model parameters: though

29

2 Outlier Detection

the speed bound is quite sensitive, the acceleration bounds have comparatively little
in�uence on the number of outliers detected. We conclude with a discussion of our
results in Section 2.6.

Related work For an overview of related work on outlier detection, see Sec-
tion 1.1.

Physics models are often used in trajectory processing. Kalman �ltering [94], for
example, is based on a linear model for physical motion; its extensions handle more
complex, nonlinear models. Note however, that Kalman �ltering changes the probe
positions rather than selecting a consistent subset. In a similar vein, physics models
are used to reconstruct trajectories from data, replacing subtrajectories that cannot
be physically realized with ones that can [109, 119]. Here, unrealistic subtrajectories
are detected using a local time window, sliding over the trajectory.

Given a trajectory and physics model, we aim to determine the maximum num-
ber of probes that can be explained through a path adhering to the model. As such,
our problem bears some resemblance to two other problems: computing a longest
common subsequence (LCSS) and map matching. The former asks to compute the
maximum subsequence of two strings [26] and has also been used to compute trajec-
tory similarity [130]. Contrasting our approach, LCSS requires that both trajectories
are known. For related work on map matching we refer to Section 1.1. Dealing
with noise naturally arises in this application. Though we do not investigate this
here, explicit outlier removal before map matching may improve results of simple
and faster algorithms; postprocessing map matching results using our methodology
may give rise to more realistic results. However, the primary di�erence is that our
method does not rely on knowledge of the street network: the space of potential
paths is de�ned implicitly and as such our methodology is more broadly applicable to
movement that does not follow a prede�ned network (pedestrians, ships, airplanes).
Map matching also does not tend to take physics into account, relying only on the
positions of the probes.

▶ 2.2 Concatenable consistency model
We assume an arbitrary concatenable physics model that allows consistency checks
between two probes in O(f (n)) time for some function f ; typically, f (n) = O(1).
We follow the methodology of the Imai-Iri line-simpli�cation algorithm [73]. Let
G = (V , A) be a directed acyclic graph with a vertex vi for each probe pi of T and
an edge from vi to vj if and only if C(pi , pj). This graph has O(n2) edges; each can
be tested in O(f (n)) time. By concatenability, a path in G describes a consistent

30

2.2 Concatenable consistency model

subsequence. Since G is directed and acyclic, we compute a longest path in G, and
thus a maximum consistent subsequence of T , in O((|V | + |A|)f (n)) = O(n

2
f (n)) time.

We now develop an output-sensitive variant of this algorithm. Rather than con-
structing the full graph, we build a subgraph G′ in which each vertex v has at most
one incoming edge (uv , v). In particular, uv and v’s associated probes are the last
probes of a longest consistent subsequence Tv ending in v’s probe. Let �v denote
the length of Tv .

Lemma 2.2.1. Let T be a trajectory, M be a physics model that is concatenable, and
G
′
= (V , A) be a DAG consisting of one vertex vi for each probe pi of T and an edge

from vertex uv to vertex v if and only if v does not already have an incoming edge and
the associated probes are consistent in M and are the last probes of a longest consistent
subsequence Tv ending in v’s probe. The probes associated with a longest path in G′

are then a maximum physically consistent subsequence of T .

Proof. Since M is concatenable, we know that if there is an edge from uv to v, the
probe associated with v must be consistent with each probe that is associated with
an ancestor of uv . Let v∗ be the vertex associated with the last probe of a maximum
physically consistent subsequence of T . By de�nition, v∗ has a parent uv∗ such
that their probes end a longest subsequence ending in v

∗ of length �v∗ . Since v∗
is part of a maximum physically consistent subsequence, �v∗ has maximum length
over all possible consistent subsequences of T . We now also know that there must
be a consistent subsequence of length �v∗ − 1 ending in the probe associated with
uv∗ . And so, uv∗ must also have a parent vertex whose probe is the endpoint of a
consistent subsequence of length 1 less which also has a parent, and so on until we
reach a vertex with no parent whose probe has no earlier consistent probes. All of
the vertices of this backwards traversal of the graph form a longest path, and their
associated vertices form a physically consistent subsequence of length �v∗ , making
it a maximum physically consistent subsequence of T .

Now we will show how we can construct G′, giving an output-sensitive algo-
rithm that runs inO(nkf (n)) time, where n is the number of probes and k the number
of outliers.

Theorem 2.2.2. Consider a concatenable physics model that allows checking the con-
sistency of a pair of probes in O(f (n)) time. A maximum consistent subsequence of a
trajectory T with n probes can be computed in O(nkf (n)) time, where k is the number
of outliers.

Proof. We handle the probes in chronological order, maintaining a linked list  that
stores, for each handled probe v, the value �v and the predecessor uv in Tv .  is

31

2 Outlier Detection

ordered by the lengths �v in descending order. For a new probe w , we traverse  to
�nd the �rst probe v consistent with w . Since  is ordered, we have thus found a
longest consistent subsequence of length �v+1 ending inw . We now walk backwards
in  and add w to the appropriate place in the list.

After we have handled all probes, the maximum consistent subsequence can be
retrieved in O(n − k) time, by starting at the head of the list and following the prede-
cessor pointers. For each of the n − k probes that end up in the longest subsequence,
we perform one successful check preceded by at most k failed checks, and for the k
outliers we perform at most n checks. This gives a total of O(nkf (n)) time perform-
ing the checks. The time for inserting a probe in  can be charged to the number of
checks it performs: this takes O(nk) time in total. Hence, the total running time for
the algorithm is O(nkf (n)).

As the speed-bounded model allows to check consistency between two probes
in constant time, we thus obtain the following running time for this model. We can,
however, improve upon this algorithm in case the trajectory has many outliers, as
discussed in the next section.

Corollary 2.2.3. For the speed-bounded model, a maximum consistent subsequence
of a trajectory T with n probes can be computed in O(nk) time, where k is the number
of outliers.

▶ 2.3 The speed-bounded model in 2D

We now consider the speed-bounded model, with maximum speed v+, and trajec-
tories in ℝ

2. We present an O(n log n log
2
k)-time algorithm to �nd a maximum

consistent subtrajectory in this model. To this end we develop an insertion-only
data structure that, given a probe q, can determine the length of a maximum consis-
tent subsequence ending at q in O(log3 n) time. Insertions are supported in O(log3 n)
time. By incrementally building the data structure in chronological order, we can de-
termine the maximum consistent trajectory in O(n log3 n) time. With a more careful
analysis this can be improved to O(n log n log2 k) time.

▶ 2.3.1 A consistency data structure

Let P be a subset of probes from T , and let t̂ be the time of the last probe in P . We
develop a data structure  that can e�ciently answer consistency queries on P . That
is, for a given new query probe q occurring at time t ≥ t̂ , we can test whether there
is a probe in P consistent with q. We view the probes in P as points in ℝ

3, with the

32

2.3 The speed-bounded model in 2D

third axis being time, that is, pi = (xi , yi , ti). probes pj , with j > i, that are consistent
with pi must lie inside a cone that starts at pi and has radius v+(t − ti) at time t ≥ ti ;
see Fig. 2.2. We call this cone the reachable region of pi ; testing whether pj is in the
reachable region of pi takes O(1) time.

𝑡 ′

Figure 2.2: Each probe de�nes a reachable region (a cone), that intersects the plane
at time t′ in a disk. These disks de�ne an AWVD. A probe pj is consistent with an
earlier probe p

ℎ
if (and only if) its cone (shown in red) is contained in the cone of p

ℎ
.

To determine if a probe q at time tq ≥ t̂ is consistent with any probe of P we
use an additively weighted Voronoi diagram (AWVD) [57, 52]. Given a set of disks
with centers {v1, … , v

l
} and radii {r1, … , r

l
}, this diagram partitions the plane into

cells {c1, … , c
l
} associated with the disks, such that for any point v ∈ ci it holds

that d(v, vi) − ri ≤ d(v, vj) − rj , for all vj ≠ vi . Here, d is a distance measure (in our
case the Euclidean distance), and equality holds only on boundaries between cells.
See Figure 2.3.

We construct an AWVD on the probes in P by using the locations as the centers
and picking ri = v+(t′ − ti) for every probe for some arbitrary t

′
> tn . Since the

disks all grow at the same rate as t′ increases the precise value of t′ does not matter
as it will not cause the containment relations between disks to change. Observe
that a probe pj is consistent with p

ℎ
if the reachable region of pj at t′ is inside

the reachable region of p
ℎ

at t′ (see Fig. 2.2). We preprocess the AWVD for point
location queries. Let  denote the resulting data structure, which we refer to as a
consistency data structure. We can now query  with a new probe q = pq , giving us

33

2 Outlier Detection

Figure 2.3: Left: a set of disks. Right: AWVD de�ned on the disks. If one disk is fully
eclipsed by another, it does not have its own cell in the AWVD.

a previous probe pc and a distance sc between the disks (pq , rq) and (pc , rc), given by
sc = d(pq , pc) − rq − rc , where d measures the Euclidean distance between the points
in the plane, that is, ignoring the temporal component. The following lemma then
gives us that  can be used to answer consistency queries.

Lemma 2.3.1. Let be a consistency data structure on a set P of probes and let q = pq
be a query probe, resulting in probe pc on . If sc ≤ −2rq for the resulting distance sc
of pc with pq , then pc is consistent with q. Otherwise, no probe in P is consistent with q.

Proof. We denote wj = (xj , yj) for compactness. Let pq = (xq , yq , tq) be the q-th
probe in a trajectory and let  be the consistency data structure on a subset P ⊆

{p1, … , pq−1}. Let pc be the probe associated with the found cell in  containing
(xq , yq) and let sc = d(wq , wc) − rq − rc .

Since sc = d(pq , pc)−rq −rc , we can rewrite the inequality sc ≤ −2rq to d(pq , pc) ≤
rc − rq , Applying the de�nition of rc and rq , the right-hand side can be rewritten to
v+(t′−tc)−v+(t′−tq) = v+(tq −tc). In other words, we have that the distance between
the probes is at most the maximum distance that the object can travel in the given
time span. Hence, pq is consistent with pc . In this case, pq could also be consistent
with other probes, but this does not matter for the purposes of the algorithm.

Analogously, if the given inequality does not hold, the distance between the two
probes is larger than what the object can cover when traveling at maximum speed:
they are not consistent.

To show that no other probe in P can be consistent in this case, observe that the

34

2.3 The speed-bounded model in 2D

20 21 22 · · ·

20 21 22 · · ·

20 21 22 · · ·

20 21 22 · · ·

Figure 2.4: Inserting elements using Bentley-Saxe. The colored probes in the trajec-
tory are the elements in the insertion-only consistency data structure, being inserted
in the order blue,red,green,purple.

de�nition of the AWVD gives us that d(pq , pc)−rc ≤ d(pq , pk)−rk for all p
k
∈ P ⧵{pc}.

Subtracting rq from both sides, we get that d(pq , pc) − rc − rq = sc ≤ d(pq , pk) − rk − rq .
Thus, if sc > −2rq , we must also have that d(p

k
, pc) > rk − rq . Thus, all probes p

k
are

not consistent with probe pq .

We can construct the AWVD for a set ofm probes and preprocess this AWVD for
point-location queries in O(m logm) time [57, 52]. The resulting data structure uses
O(m) space, and can answer point-location queries in O(logm) time. Since a single
consistency check takes constant time, we can also answer consistency queries in
O(logm) time.

▶ 2.3.2 Supporting insertions

Next, we describe how to extend our consistency data structure to support insertions.
Testing whether a probe is consistent with any previous probe of a subsequence of
T is a decomposable search problem. Thus, we use the approach by Bentley and
Saxe [22] to turn our consistency data structure into an e�cient insertion-only data
structure.

For a set ofm probes, we maintain O(logm) instances of our static data structure
1, … ,

O(logm)
(see Fig. 2.4). Every probe is in one of theseO(logm) data structures.

Data structure i has size 2i−1. On insertion, we create a new 1 with the inserted
probe. When we get two data structures of the same size 2i , we remove both and
replace them by a single data structure of size 2i+1. We repeat this process until all
data structures have a unique size. To answer a query we simply query all O(logm)

35

2 Outlier Detection

data structures.
The above construction together with the consistency query structure gives

O(log
2
m) time for a query and O(log

2
m) amortized time for an insertion. These

bounds can be made worst case as well [116]. We summarize our results in the
following lemma.

Lemma 2.3.2. There is a consistency data structure  that can store a subset P of m
probes from T and can answer consistency queries for query points q at time t ≥ t̂ , in
O(log

2
m) time, and supports insertions in O(log2m) time. Here, t̂ denotes the time of

the last probe currently in P . The data structure uses O(m) space.

▶ 2.3.3 Maximum subsequence queries
We now use the data structure from Lemma 2.3.2 to build a dynamic data structure
that, for a new query probe q = pq can determine the length �q of a longest consistent
subsequence Tq ⊆ P ending at q. We store the probes in p ∈ P in the leaves of a bal-
anced binary tree  , ordered by the length �p of the longest consistent subsequence
ending in p. So the leftmost leaf has a probe that is not consistent with any earlier
probe, and the rightmost leaf is associated with the probe that ends the longest con-
sistent subsequence possible with the probes inserted thus far. Since multiple probes
can end a subsequence of the same length this is a partial ordering. Each internal
node v with right child r corresponds to a subset Pr ⊆ P , i.e. the probes stored in
leaves in its right subtree. v stores the minimum �p , with p ∈ Pr , occurring in its
right subtree, and a consistency data structure v built on the set Pr (see Fig. 2.5).

Given a query probe q, we �nd a probe u ∈ P consistent with q with maximum
length �u . It then follows that a maximum-length consistent subsequence Tq ending
in q has length �u + 1, and that u is the predecessor of q in Tq . To �nd u we start at
the root v and query v to test whether any probe in the right subtree is consistent
with q. If so, we repeat the process in the right child. If not, we move to the left child.
This way we get the longest-path probe that is consistent with our query probe q.

To insert a new probe q, we �nd the leaf corresponding to length �q and insert q in
the appropriate associated data structures of all ancestors along this root to leaf path.
To keep the tree  balanced, we implement it using a BB[�] tree [27, 113]. When
a subtree rooted at a node v becomes unbalanced, we rebuild it and its associated
data structures from scratch.

With the lemma below, we prove that this data structure can be implemented
e�ciently.

Lemma 2.3.3. There is a data structure  that can store a subset P of m probes from
T and that can �nd, given a query probe q at time tq ≥ t̂ , (the length �q of) a longest

36

2.3 The speed-bounded model in 2D

short path long path

Figure 2.5: Data structure for maximum subsequence queries.

consistent subtrajectory Tq ending in q in O(log
3
m) time. The data structure uses

O(m logm) space and supports insertions in O(log3m) amortized time. Here, t̂ denotes
the time of the last probe currently in P .

Proof. To answer a query we follow a path from the root down to a leaf, and query
the associated data structure at each node. Each such query takes O(log2m) time
(Lemma 2.3.2), and thus the total query time is O(log3m). Since each probe is stored
in the associated data structure of O(logm) nodes, the total space use is O(m logm),
and the total direct cost of an insertion is O(log3m). To prove the lemma, we need
to bound the costs due to rebalancing operations.

Assume an insertion of a node triggers a rebalance operation for a subtree v of
mv elements, and let C(mv) be the total construction time: the time that it takes
to acquire all elements in the subtree and construct a perfectly balanced tree (with
its associated data structures). By the BB[�] de�nition, (1 − 2�)mv − 2 insertions
must have occurred in v to trigger the rebalance operation. This implies that the
amortized rebalance time per insertion is C(mv)

(1−2�)mv−2
.

Consider the tree after rebalancing. At height ℎ > 0 we have intermediate
nodes, each requiring a data structure  constructed on O(2

ℎ
) elements. There

are O(mv/2
ℎ
) nodes at height ℎ. To construct nodes with height ℎ, we require a

total time complexity of O((mv/2
ℎ
)2
ℎ
log

2
(2
ℎ
)) = O(mvℎ

2
). Let H = O(logmv) be

the height of the entire subtree; summing up the construction time of all heights in
the subtree gives the total construction time C(mv) = ∑

H

ℎ=1
O(mvℎ

2
) = O(mvH

3
) =

O(mv log
3
mv). Amortized, this construction cost and hence the entire insertion

time is O(log3m).1

1Note that in our improved bound in Theorem 2.3.5 the total reconstruction time C(mv) is simply
O(mv logmv log

2
k), as rebuilding the associated data structure of a node takes O(mv log

2
k) time rather

than O(mv log
2
mv) time.

37

2 Outlier Detection

▶ 2.3.4 Maximum consistent subtrajectories
To compute a maximum-length consistent subtrajectory of T , we process all probes
in chronological order. For each we simply query the data structure described in
Lemma 2.3.3, and then insert it. This results in an O(n log3 n)-time algorithm. Next,
we show that we can improve this to O(n log n log

2
k), where k is the number of

outliers.

Lemma 2.3.4. For two consistent probes pi and pj with i < j, the reachable region for
pj for all t > tj is contained in the reachable region of pi .

Proof. In the 3-dimensional space (with the third dimension being time), the reach-
able region of each probe is an upward cone starting at the probe, with slope v+. As
pj is consistent with pi , the former lies inside the latter’s cone. As their direction
and slope are the same, the cone for pj is thus contained in the cone for pi .

We can equally see this in 2-dimensional space. Consider an arbitrary time
t > tj . A hypothetical probe p∗ at time t consistent with pj must be within distance
v+(t − tj). Since pi and pj are consistent, we know that their distance is at most
v+(tj − ti). Through triangle inequality, we thus know that the distance between pi

and p
∗ is at most v+(t − tj) + v+(tj − ti) = v+(t − ti). This readily implies that p∗ is

consistent with pi as well.

From the de�nition of the AWVD, we know that if a disk c1 is strictly inside
another disk c2, then c1 will have an empty associated cell in the diagram. Combining
this with Lemma 2.3.4 shows that any subset of m ≥ 1 probes thus produces a
diagram with at mostmin(m, k) cells. Hence, a static consistency data structure uses
only O(min(m, k)) space, and querying it requires O(log(min(m, k))) time. When we
insert a new probe pj into our insertion-only data structure, we �rst query the data
structure to decide whether pj is consistent with some earlier measure pi . If so, we
simply discard pj rather than inserting it; even when inserting additional points, the
cell of pi will contain that of pj so the presence of pj in the diagram can never change
the path a query probe takes when descending through  . The query and insertion
time therefore both become O(log2min(m, k)).

It now follows that the associated data structure v of every node in v ∈

 has size only O(min(nv , k)), thus querying it requires only O(log
2
k) time, and

thus O(log n log2 k) time in total. Similarly, inserting a new probe takes amortized
O(log n log

2
k) time.

Theorem 2.3.5. Given a 2D trajectory T with n probes, of which k are outliers, we
can compute a maximum consistent subsequence of T for the speed-bounded model in
O(n log n log

2
k) time.

38

2.4 The acceleration-bounded model

▶ 2.4 The acceleration-bounded model

We now consider 1D trajectories where each probe is of the form pi = (xi , ti). We
assume a physics model where both velocity and acceleration are restricted. The
velocity must lie in the range [v−, v+] for constants v−, v+. Since the trajectory is one-
dimensional, the velocity and acceleration are as well. In addition, the acceleration
must lie in the range [a−, a+] for constants a−, a+. For simplicity, we assume a+ ≥ 0
and a− ≤ 0 and refer to deceleration as acceleration with a negative value.

For this acceleration-bounded model, we can still test in constant time if two
probes pi and pj are consistent: we can check if the distance between the two probes
can be traveled using velocities that lie in the range [v−, v+]. If there exists a velocity
at pi such that the required velocity at pj can be reached by accelerating, then the
pair ⟨pi , pj⟩ is consistent. Recall, however, that a physics model that limits accelera-
tion is not concatenable: there may be a triplet of probes ⟨p1, p2, p3⟩ for which the
probes are pairwise consistent, but the entire sequence is not (see Fig. 2.1 (left) for
an example). Hence, we cannot use the algorithm described in Section 2.3.

In Section 2.4.1 we describe a dynamic programming algorithm which explicitly
computes the velocities achievable at every probe and, using these velocities, �nds
the length of a maximum-length consistent subtrajectory. In Sections 2.4.2 and 2.4.3
we give additional details on the algorithm: In Section 2.4.2 we show how velocity
intervals can be propagated between cells in the dynamic program. In Section 2.4.3
we de�ne the order in which we compute our dynamic program cells which saves
us from computing cells we can infer will be empty. In Section 2.4.4 we show how to
retrieve the actual consistent trajectory. The running time of the dynamic program
and of the retrieval procedure depends on the maximal fragmentation of the velocity
intervals which can arise during the DP. In Section 2.4.5 we �rst argue that this
number can be as large as Ω(n) for a linear number of sets of velocities. It is easy
to see that the maximal fragmentation is at most O(2n), however, it is unlikely that
this bound would ever be reached in practice. In the following we consider an
acceleration-bounded model with some slack in the acceleration bounds, modeling
real-world imprecision. This slack allows us to prove a linear upper bound for the
fragmentation of any set of velocities. Finally, in Section 2.4.6 we explain how we
extend the acceleration-bounded model to dimensions greater than one.

39

2 Outlier Detection

▶ 2.4.1 Computing the maximum length of a physically consis-
tent subtrajectory

A subtrajectory T is generally not concatenable with another subtrajectory T ′ under
the acceleration-bounded model, but is conditionally concatenable with T

′ when
the velocities at probes that they have in common are the same (see Section 2.1).
Intuitively, this follows from the fact that a bound on the acceleration prevents
(discontinuous) jumps in velocity. Based on this, we observe the following:

Observation 1. A (sub)trajectory S = ⟨p1, … , pm⟩ is consistent in the acceleration-
bounded model if and only if there are velocities ⟨v1, … , vm⟩ such that for all i ∈
{1, … ,m − 1} we have that C(pi , pi+1 | vi = vi , vi+1 = vi+1).

Observation 1 implies that our problem has an optimal substructure. Suppose
we have found all subtrajectories of some length � that are consistent. If we now
want to know whether a subtrajectory of length � + 1 exists, we have to determine
only whether there is a probe p

′ such that the observation holds for one of the
subtrajectories when we add p′ at the end. That is, there should be witness paths for
both the subtrajectory and the trajectory between the last probe of the subtrajectory
and p′, that have a common velocity at the last probe of the subtrajectory. Hence,
we can apply the dynamic programming paradigm to �nd the optimal length for
which a subtrajectory is physically consistent.

More formally, for each probe pi and each possible length � ∈ {1, … , n}, we
maintain the set of velocities (� , i) such that for every velocity v ∈ (� , i), a subse-
quence S = ⟨… , pi⟩ ending at pi of length � exists that is physically consistent and
has velocity v at pi , so that C(S | vi = v). Let � ∗ be the maximum value, such that a
probe pi exists for which the set (� ∗, i) is non-empty. It follows that the maximum
consistent subtrajectory of T has length �

∗.
Given the set of possible velocities (� , ℎ) at p

ℎ
, we can then determine whether

a consistent subsequence of length � + 1 exists that ends at a later probe pi by using
the conditional concatenability property: if we �nd velocities v

ℎ
∈ (� , ℎ) and v ∈

[v−, v+] such that C(p
ℎ
, pi ∣ v

ℎ
= v

ℎ
∧ vi = v), then a consistent subsequence

⟨… , p
ℎ
, pi⟩ of length � + 1 exists. Hence, we obtain the following recurrence for

(� , i).

(� , i) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

∅, i < �

{v ∣ ∃ℎ ∶ C(p
ℎ
, pi ∣ vi = v)}, � = 2

{v ∣ ∃ℎ∃v
ℎ
∶ C (p

ℎ
, pi ∣ v

ℎ
∈ (� − 1, ℎ), vi = v)} , � > 2

Moreover, we prove in Lemma 2.4.1 below, that when the entity directly travels

40

2.4 The acceleration-bounded model

from pi to pj , and leaves pi with velocity vi , the possible velocities with which it can
arrive at pj form a connected interval. It follows that the sets (� , i) are actually sets
of intervals.

Lemma 2.4.1. Let pi and pj be probes with ti < tj , and let v1 ≤ v ≤ v2 be velocities.
If C(pi , pj | vj = v1) and C(pi , pj | vj = v2), then we also have C(pi , pj | vj = v).

Proof. C(pi , pj | vj = v1) and C(pi , pj | vj = v2) imply that there are two witnesses:
paths �1(t) and �2(t) between pi and pj that travel Δx = xj − xi distance, obey the
physics model and have velocity v1 respectively v2 at pj . Let a1(t) and a2(t) denote
the acceleration functions describing these paths.

The traveled distance Δx between ti and tj using any acceleration function â(t)

and velocity v′ at pj is given by

Δx = (tj − ti)
(
v
′
−
∫

tj

ti

â(t)dt
)
+
∫

tj

ti

∫

t

ti

â(t
′
)dt′dt (2.1)

Any new path �
∗ which we create using convex combinations v = �v1 + (1 − �)v2

and a(t) = �a1(t) + (1 − �)a2(t) for � ∈ [0, 1], travels exactly the same distance by
linearity of the integrals. Since � ∗ was created via convex combinations, we also
know that it satis�es the velocity and acceleration constraints, since its velocity and
acceleration always lie between the original velocities and accelerations at any time
t in [ti , tj]. Hence, � ∗ is a witness that implies C(pi , pj | vj = v1 + (1 − �)v2) for any
� ∈ [0, 1].

Lemma 2.4.2 below shows how to propagate a single speed interval from pi to pj
in constant time. The problem is clearly computable, and has O(1) input complexity:
two probes and a single interval of velocities. As such, the lemma readily follows.
The precise propagation function we will derive in the next subsection.

Lemma 2.4.2. Let pi and pj be two probes with i < j, and let I be an interval of
velocities at pi . The interval I ′ = {v ∣ C(pi , pj | vi ∈ I ∧vj = v)} of achievable velocities
can be computed in O(1) time.

▶ 2.4.2 Propagating a speed interval in O(1) time
We need to determine the minimum and maximum speed for which the moving
entity can arrive at a probe pj , when starting at a probe pi with some given velocity.
We will show how to precisely compute this interval, providing the exact formula
for propagation and thus proving that this is indeed computable. We do so for the
minimum velocity; computing the maximum velocity is symmetrical. This minimum

41

2 Outlier Detection

velocity vmin ∈ ℝ is the smallest value such that C(pi , pj | vi = v, vj = vmin) for two
probes pi , pj and some initial v ∈ ℝ. Note that these velocities may be negative,
indicating the direction of movement in the 1D space.

We need particular behaviors of the moving entity to accomplish this minimum
velocity. These behaviors are determined by the travel time Δt = tj − ti and distance
Δx = ‖pj − pi‖ between pi and pj as well as the initial velocity v: we want to travel
the distance between pi and pj within the given time, while minimizing the velocity
at pj .

Checking consistency First, we determine whether any velocity can be obtained,
that is, whether it is physically possible to travel distance Δx in Δt time, starting
with velocity v. That is, we must test whether C(pi , pj | vi = v) holds. The maximum
distance Δx+ that can be traveled, is obtained by accelerating until reaching the
maximum velocity v+ and then maintaining that speed. Accelerating to maximum
speed takes t+ = v+−v

a
+ time. If t+ < Δt , the maximum velocity is achieved and we

can express Δx+ as (v + v+)t+/2 + (Δt − t+)v+. Otherwise, this behavior accelerates
maximally for the entire duration, in which caseΔx+ = (2v+a+Δt)Δt/2. Analogously,
we �nd an expression for the minimum distance Δx− that can be traveled. As we
can use a convex combination to achieve any traveled distance between these two
extremes, we know that C(pi , pj | vi = v) if and only if Δx− ≤ Δx ≤ Δx

+.
Note that if the above test indicates consistency, then we can look for a minimal

(and maximal) velocity. If this consistency does not hold, we know that no velocity
can be reached at all. For the remainder, we assume that C(pi , pj | vi = v) is indeed
true.

Finding the minimum velocity We now strive to �nd the necessary behavior
that results in the minimum velocity, vmin , assuming we have already con�rmed
the basic consistency described above. To visualize this behavior, we look at the
velocity-time diagrams for the moving entity; see the examples in Fig. 2.6. The
curve in this diagram represents the velocity as a function of time. In this diagram,
we need that the total area under the curve is exactly the traveled distance Δx . The
speed bounds v−, v+ are now represented as allowed minimum and maximum values
for the curve. The bounds on the acceleration, a−, a+ translate to the minimum and
maximum slope the curve can have at any time.

We can distinguish a number of situations where we need di�erent behavior to
get to the minimum velocity, depending on whether we travel at maximal velocity
intermediately. If we can reach pj by �rst maximally accelerating for some time tacc
and then maximally decelerating the rest of the time, this gives us the lowest possible

42

2.4 The acceleration-bounded model

ve
lo
ci
ty

time

v+

v

vmin

t+

v−

tmax

ti tj

A B C

ve
lo
ci
ty

time

v+

v

vmin

tacc

v−
ti tj

Figure 2.6: (Left) Velocity-time diagram for the behavior where one maximally accel-
erates for a time tacc and then maximally decelerates to obtain the lowest possible
speed vmin . (Right) Velocity-time diagram for the behavior of accelerating to the
maximum velocity v+ in time t+, then maintaining this velocity for tmax time, and
�nally maximally decelerating to get the minimum velocity. Since v− is assumed to
be negative it is drawn below the time axis.

velocity (left diagram in Fig. 2.6). We can, however, encounter the case where the
maximum velocity we reach with this behavior exceeds v+. In this case, we can
accomplish the minimum velocity by accelerating to v+ in time t+, retaining this
speed for some time tmax and then maximally decelerating (right diagram in Fig. 2.6)
for the remaining time. However, if the result of the appropriate situation above
violates the minimum velocity bound v−, then we can conclude that vmin = v−. Now
we will give lemmas to show that the �rst two behaviors indeed give the minimum
velocity.

Lemma 2.4.3. For consistent probes pi and pj , with a �xed vi , the behavior of the
entity moving from pi to pj , covering exactly Δx distance in Δt time that minimizes vj ,
provided this does not exceed the velocity bounds of the physics model, is �rst maximally
accelerating and then maximally decelerating. The length of time spent accelerating
before switching to deceleration is chosen based on what is needed to cover exactly Δx .

Proof. We now show that the behavior of maximally accelerating, followed by max-
imally decelerating indeed gives the minimum velocity, provided that the velocity
bounds v−, v+ are never exceeded during this behavior. Without loss of generality,
we further assume that ti = 0 to simplify the exposition, and thus tj = Δt .

The equation of 1D motion (Equation 2.12) must satis�ed for a(t), with additional
constraints that a(t) ∈ [a−, a+] for any t ∈ [0, Δt]. We then want to minimize the
velocity at pj , as given by Equation 2.13.

43

2 Outlier Detection

We represent the function a(t) as follows:

a(�, t) = a
−
+ (a

+
− a

−
)�(t) = a

−
+ Δa (t) (2.2)

where �∶ [0, Δt] → [0, 1]. This way, the acceleration bounds are trivially satis�ed
by the function.

Let a(, t) be the function representing maximal acceleration up to some time
tacc ∈ [0, Δt] and then maximum deceleration until tj . In addition, assume that the
traveled distance is satis�ed by this function. We can represent (t) by

 (t) =

{

1 t ≤ tacc

0 t > tacc

(2.3)

Let ′(t) be a function given by (t) + � (t) where � (t) is a perturbation on
the function, such that a(′, t) still travels the required distance, but di�ers in at
least one value t from a(, t). We now show that the velocity at pj for this perturbed
function is always greater than the velocity produced by (t).

By assumption, both travel the same Δx distance in Δt time. Thus, �lling in
Equation 2.12 for both gives us the following equality and its simpli�cation:

vΔt+
∫

Δt

0

∫

t

0

(a
−
+Δa (t

′
))dt′dt = vΔt+

∫

Δt

0

∫

t

0

(a
−
+Δa((t

′
)+� (t

′
))dt′dt (2.4)

∫

Δt

0

∫

t

0

� (t
′
)dt′dt = 0 (2.5)

We know that the velocity at pj is given by Equation 2.13. We can now look
at the di�erence Δv between this velocity for ′(t) and for (t). This di�erence is
given by

Δv = Δa
∫

Δt

0

� (t)dt (2.6)

Now, if the minimum velocity at pj for a(′, t) is smaller than the minimum velocity
for a(, t), this would imply that Δv is negative for the corresponding � function.

By de�nition, the value of � (t) is non-positive for t < tacc and non-negative for
t > tacc , as otherwise the acceleration bounds would be violated. Equation 2.5 implies
that ∫ tacc

0
� (t)dt < 0 and ∫

Δt

tacc
� (t)dt > 0. Equivalently, the integral ∫ t

0
� (t)dt is

non-increasing for the interval [0, tacc] and non-decreasing for the interval [tacc , Δt].
Assume for a contradiction thatΔv is negative for some � , that is, ∫ Δt

0
� (t)dt <

0. This automatically implies that ∫ t
0
� (t

′
)dt′ ≤ 0 for any t in the interval, due to

44

2.4 The acceleration-bounded model

the non-decreasing and non-increasing properties of the integration interval. But
then the integral of Equation 2.5 is by de�nition negative, which means that a(′, t)
does not travel Δx distance. Hence, we must have that Δv ≥ 0. Observe that Δv = 0
only if � (t) is zero.

To prove that maximally decelerating and then accelerating results in the maxi-
mum velocity follows a similar argumentation.

Lemma 2.4.4. For consistent probes pi and pj , with a �xed vi , the behavior of the
entity moving from pi to pj , covering exactly Δx distance in Δt time that minimizes
vj , provided the behavior from Lemma 2.4.3 exceeds the velocity bounds of the physics
model, is �rst maximally accelerating to v+, maintaining this speed for some time,
and then maximally decelerating. The length of time spent at v+ before switching to
deceleration is chosen based on what is needed to cover exactly Δx .

Proof. We now prove that, if we maximally accelerate to the velocity bound v+ in
time t+, retain this speed for time tmax , and then maximally decelerate, this indeed
gives us the lowest possible velocity, if the previous situation does not apply – that is,
t
+
≤ tacc , and we never reach the velocity lower bound v−. Without loss of generality,

we assume that ti = 0 and tj = Δt .
We follow the argumentation as described in the previous proof. We again de-

scribe the acceleration behavior using a(, t) for a to be de�ned function (t). We
assume that a(, t) travels the required distance given the initial velocity. But now,
the behavior of this case yields a slightly di�erent function for , do describe a(, t):

 (t) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1, t ≤ t
+

�, t
+
< t ≤ t

+
+ tmax

0, t > t
+
+ tmax

(2.7)

Here, � = − a−
Δa

indicates an acceleration of zero. For brevity, we call the three time
regions with the di�erent behaviors A, B and C , see Fig. 2.6.

We again perturb (t) to get a function
′
(t) = (t) + � (t). Here, we again

assume that � (t) is not the zero function. To obey the acceleration bounds, we
observe that � (t) is non-positive in region A and non-negative in region C , which
implies that ∫ t

0
� (t)dt is non-increasing in regionA and non-decreasing in regionC .

For region B, we observe that (t) describes the behavior that results in the
highest possible velocity in that region. So, the velocity at a time t in region B that
results from

′
(t) can be at most the velocity obtained via (t). The velocity at any

45

2 Outlier Detection

time t is given by

v(�, t) = v + ta− + Δa
∫

t

0

�(t)dt (2.8)

for acceleration function a(�, t). Thus, we can now formalize the above observation
as v(′, t) ≤ v(, t) for all t ∈ B. Using the de�nition of v(�, t) and simplifying, we
obtain that

∫

t

0

� (t) ≤ 0 (2.9)

should hold for all t ∈ B. Since we want that and ′ travel the same distance Δx
in Δt time, we again get the identity

∫

tj

ti

∫

t

ti

� (t)dt′dt = 0 (2.10)

as was shown in the proof for Lemma 2.4.3. Similar to the argumentation in the
proof for Lemma 2.4.3, we look at the di�erence in minimum speed Δv at tj :

Δv = Δa
∫

tj

ti

� (t)dt (2.11)

Again, ′(t) has a lower minimum velocity if Δv is negative. For this to happen,
∫
tj

ti
� (t)dt has to be negative.
Now, assume for a contradiction that for some � , Δv is less than zero, such that

the minimum velocity using a(′, t) is less than that from a(, t). From Equation 2.9,
we see that ∫ t

0
� (t)dt is non-positive for all t in regions A and B. In particular, at

the end of region B, the integral is non-positive. We distinguish two cases.

The integral is zero Suppose the integral ∫ t
0
� (t)dt is zero at the end of region B.

Then, since the integral is non-decreasing in region C as established before,
we cannot have that ∫ Δt

0
� (t)dt is less than zero: Δv is non-negative, which

gives a contradiction.

The integral is negative Suppose now that ∫
t

0
� (t)dt is negative at the end of

region B. If we want Δv to be negative, this requires that the ∫
Δt

0
� (t)dt is

negative. Since the integral is non-decreasing in region C , we must have that
the integral is negative everywhere in region C to accomplish this. But then
the traveled distance for (t) and ′(t) is not the same, since Equation 2.10 is
less than zero. This again gives a contradiction.

From the previous argumentation, we can conclude that for any choice of ′(t)

46

2.4 The acceleration-bounded model

that satis�es the traveled distance requirement, the minimum velocity at pj is at
least the minimum velocity obtained by using (t).

Now that we have shown that these two cases are optimal (unless the minimum
velocity is v−), we can compute what the minimum velocity actually is. To compute
the minimum velocity for the �rst and second case, we will use the equation of
motion in 1D, given by

Δx = vΔt +
∫

tj

ti

∫

t

ti

a(t
′
)dt′dt (2.12)

This describes the aforementioned requirement that the area under the curve in the
velocity-time diagram is the distance Δx between pi and pj . To �nd the minimum
velocity for the �rst two described situations, we �ll in the shape for the acceleration
a(t) and determine the minimum velocity, given by

vmin = v +
∫

tj

ti

a(t)dt (2.13)

Maximally accelerate, then maximally decelerate We �rst consider the situ-
ation where we do not reach the velocity bound when maximally accelerating. In
this �rst situation, our acceleration function is equal to

a(t) =

{

a
+
, ti ≤ t ≤ ti + tacc

a
−
, ti + tacc < t ≤ tj

(2.14)

What remains is to determine tacc . We do this by solving the 1D equation of motion
(Equation 2.12) for the distance Δx between the probes. We �ll in the acceleration
function and integrate to get

Δx = vΔt + 1
2

a
+
t
2

acc
+ (v + a+tacc)(Δt − tacc) +

1

2

a
−
(Δt − tacc)

2 (2.15)

We can now solve this quadratic equation for tacc . To simplify notation, we use
Δa = a

+
− a

− and v̄ = Δx/Δt , that is, the average required velocity to travel the
distance in the given amount of time. We pick the root of the solution such that the
resulting tacc is in [ti , tj] and get

tacc = Δt −

√

Δt

Δa

√

a
+
Δt + 2(v − v̄) (2.16)

47

2 Outlier Detection

With this value, we can now determine the minimum velocity. We �ll in Equa-
tion 2.13 and get

vmin =v(ti + Δt) = v + tacca+ + (Δt − tacc)a−

=v + Δta+ −
√

ΔaΔt

√

a
+
Δt + 2(v − v̄)

(2.17)

Note that this situation applies only if we do not exceed the velocity bounds when
accelerating and decelerating. So we require that

v + a+tacc ≤ v+, vmin = v + tacca+ + (Δt − tacc)a− ≥ v− (2.18)

Accelerating to maximum velocity We now consider the situation where we
reach the speed bound v+. We accelerate for some t+ time, until we are moving
with velocity v+, then we retain that velocity for some time tmax , and �nally we
maximally decelerate to get the minimum velocity. We can describe this behavior
with the following acceleration function:

a(t) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

a
+
, ti ≤ t ≤ ti + t

+

0, ti + t
+
< t ≤ ti + t

+
+ tmax

a
−
, ti + t

+
+ tmax < t ≤ tj

(2.19)

We now need to determine t+ and tmax . As before, t+ =
v+−v
a
+ indicates the time

needed to accelerate from v to v+.
With the equation for t+, we can now determine tmax by again solving the 1D

equation of motion in Equation 2.12 with our new acceleration function. This gives
us the following equation of motion, and solution for tmax :

Δx = vt+ + 1
2

a
+
(t
+
)
2
+ v+(Δt − t+) + 1

2

a
−
(Δt − tmax − t

+
)
2 (2.20)

tmax = Δt − t
+
−

√

3a
+

a
−
(t
+
)
2
+

2Δt(v̄ − v+)
a
−

(2.21)

Using the above, we now �nd the minimum velocity, by �lling in Equation 2.13:

vmin = v+ + (Δt − t+ − tmax)a− = v+ +
√

3a
+

a
−
(t
+
)
2
+

2Δt(v̄ − v+)
a
−

a
− (2.22)

This case is applicable only if tmax > 0 and the resulting vmin ≥ v−.

48

2.4 The acceleration-bounded model

ℓ

𝑖

Figure 2.7: The order for computing (� , i).

Achieving v− The extreme behavior of the previous two cases achieve the lowest
possible speed, without violating v+, a+ or a−. We can readily choose between the
two cases, by comparing tacc with t+: if the former is at most the latter, the �rst case
applies, and otherwise the second. However, the result may still violate the physics
model, but only v−. That is, if the computed vmin is below v−. Our claim is that,
in such a case, vmin is actually equal to v−. Intuitively, the previous cases in fact
achieve a velocity that is too low: we thus have slack to use less extreme behavior
intermittently, such as standing still (v = 0) for a certain time.

Consider the behavior of the previous cases. If we follow the behavior but main-
tain the minimal velocity bound, we have too much area under the curve: we over-
shoot our traveled distance. We can compensate for this by accelerating less ex-
tremely or maintaining a velocity below v+. Since some velocity is obtainable, we
know that there is su�cient slack and can indeed achieve v−, if the previous cases
would violate the velocity bound of v−.

▶ 2.4.3 Additional details on the dynamic program

Let now �(� , i) denote the number of intervals in (� , i). We refer to �(� , i) as the
fragmentation of (� , i). Let �max be the maximum fragmentation over all � and i.
Using the recurrence for  de�ned earlier, we can compute all values (� , i) using
dynamic programming. We compute the (� , i) values by increasing distance k′ from
the diagonal, and stop once there are no more reachable speeds. That is, we start
by computing all (i, i), for increasing i. Observe that these values correspond to
having k′ = 0 outliers. Once we have all sets (i−k′, i) for some k′, we continue with
the (i − (k′ + 1), i) sets (see Fig. 2.7). Let k be the number of outliers in a maximum-
length consistent subtrajectory, then all sets of speed intervals (i − (k + 1), i) will
be empty. Hence, the algorithm �nishes after at most k + 1 “rounds”. To compute

49

2 Outlier Detection

a single entry (i − k′, i) we have to propagate the speed intervals from at most
k other entries (since all sets (� , i) with � > i are also empty). It follows that in
total, this procedure takes O(nk2 ⋅ P) time, where P is the time required to propagate
all speed intervals in some set (� ′, i) to (� , j). Every set (� , i) contains at most
�max intervals, which we keep in sorted order. Propagating a single interval takes
constant time (see Lemma 2.4.2), and merging it with the intervals already in (� , i)
then takes O(log �max) time.

Theorem 2.4.5. Let T be a 1D trajectory with n probes. Under the acceleration-
bounded model, the maximum length of a physically consistent subtrajectory of T
can be computed in O(nk2�max log �max) time using O(nk�max) space, where k denotes
the number of outliers and �max the maximum fragmentation.

▶ 2.4.4 Retrieving the physically consistent subtrajectory

The dynamic program computes the length � ∗ of a maximum consistent subsequence.
Generally, keeping track of the choices made in a dynamic program allows easy re-
covery of the actual answer, that is, the actual subsequence. However, we need
slightly more, as we join overlapping intervals and thus no longer store which previ-
ous probes led to parts of that interval – generally there may not be only one probe
for an interval.

We could opt for storing a minimum cover of the interval in a cell instead, which
we can easily obtain while computing the union. However, this increases mem-
ory requirements. Alternatively, we can also use “backpropagation”. That is, we
extract S itself using the speed intervals in the sets (� ∗, i). We take an interval
I ∈ (� ∗, i) and use an inverse propagation to �nd a probe p

ℎ
such that (� ∗ − 1, ℎ)

has a nonempty interval of speeds at which the interval of (� ∗, i) is reachable. We
repeat this backpropagation, until the start of the subsequence is reached.

To do this e�ciently, we leverage that the intervals in (� ∗ − 1, ℎ) are sorted
by the dynamic program already. Thus, we use backpropagation in O(1) time by
Lemma 2.4.2 to �nd the velocity interval I ′ at p

ℎ
. We then �nd whether one of the

intervals in (� ∗ − 1, ℎ) intersects I ′ using binary search in O(log �max) time. Thus,
computing the subtrajectory after the dynamic program takes O((n − k) log �max)
time.

▶ 2.4.5 Bounding the maximum fragmentation

The running time of the dynamic program described in Section 2.4.1 depends on
the maximum fragmentation �max, that is, the maximum number of intervals in

50

2.4 The acceleration-bounded model

any set of velocities (� , i). Recall that (� , i) may contain more than one velocity
interval if depending on which probe is contained earlier in the subsequence di�erent
restrictions on the speed at i, such as in the case of Fig. 2.1 (right). We argue in the
following lemma that the fragmentation of a linear number of sets (� , i) may even
be Θ(n).

Lemma 2.4.6. There is a 1D trajectory T with n probes such thatΩ(n) sets of velocities
(� , i) have fragmentation Θ(n).

Proof. We construct a trajectory T = ⟨p1, … , pn/2, q1, … , qn/2⟩ such that for param-
eters v− = 0 and a = a

+
= −a

−
= 1, we get Ω(n) speed intervals at each probe pj ,

j > n/2.

qn/2

p2

pn/2

∆

p1

q = q1

4∆2

..
.

t

x

Figure 2.8: Instance with Θ(n) disjoint speed intervals at c.

Let Δ > 0 be some real number. We place the probe locations at pi = (−4i ⋅ Δ2, 0),
for i ∈ {1, … , n/2}, and qj = (0, Δ), for j ∈ {1, … , n/2} (see Fig. 2.8). We can ensure that
all probes have unique time stamps by o�setting them by some arbitrarily small time.
This construction ensures that a consistent subtrajectory cannot use two probes pi
and pj simultaneously. We now claim that every probe pi together with probe q = q1
generates a consistent subtrajectory ⟨pi , q⟩ for which the possible speeds at q are

51

2 Outlier Detection

given by the interval Ii = [vi − Δ, vi + Δ] with vi = 4iΔ. Observe that these intervals
are all pairwise disjoint. Since the other probes qj are arbitrarily close to q, the same
argument shows that we get Ω(n) speed intervals at those probes.

Since a = 1 and the time between pi and q is short, the velocity that the entity
has at pi must be similar to its velocity at q. If the speed at pi di�ers too much from
the velocity at q, then the entity cannot actually reach q: it will either travel too
little or too far. Next, we formalize this argument.

To derive a contradiction, assume that there is a consistent subtrajectory in
which an entity travels from pj , with j ≠ i, to q and arrives at q with speed v ∈ Ii .
Since v− = 0, the distance that any entity can and has to travel to go from pj to q is
exactly 4jΔ2. The entity covers this in Δ time, and hence its average speed must be
4jΔ. Since a = 1, it then follows that at any time in the time interval [0, Δ] its speed
lies in the range [4jΔ − Δ, 4jΔ + Δ].

The entity achieves speed v ∈ Ii = [vi − Δ, vi + Δ] at q. So, we have 4jΔ − Δ ≤

v ≤ vi + Δ. Using that vi = 4iΔ we get j ≤ i + 1

2
. As i and j are natural numbers, we

get j ≤ i. Symmetrically, we have vi − Δ ≤ v ≤ 4jΔ + Δ, and get i ≤ j. Combining
these results gives i = j: a contradiction.

Note that in this construction all consistent subtrajectories have length two.
We can easily achieve length � > 2 by pre�xing the construction with a common
trajectory of length � − 2; this pre�x provides su�cient time between its last probe
and the probes pi , to allow the entity to achieve all speeds vi at pi .

It is relatively easy to see that the fragmentation �(� , i) is at most O(2i), since
any �xed subsequence of ⟨… , pi⟩ yields only a single interval (refer to Lemma 2.4.1).
To realize such a large number of intervals, they have to be packed ever more closely
to the minimum or maximum allowed speed threshold. It seems unlikely that this
behavior will appear in realistic settings, and hence we expect that the fragmentation
is much smaller in practice. Below, we hence describe an acceleration-bounded
model which introduces some slack in the parameters a− and a

+, which models
real-world imprecision.

An acceleration model with slack In a real-world setting we can assume that
there is some error in the parameters a− and a+ which bound the acceleration. To
model this error we introduce a slack parameter " > 0 for the acceleration bounds.
Speci�cally, let Δa = a+ −a− denote the di�erence between minimum and maximum
acceleration. For our slacked bounds we add "

2
Δa to a+ and − "

2
Δa to a−. During the

dynamic program, we �rst propagate intervals as usual, using the actual bounds a−
and a+. Then we also propagate using the slacked bounds a++ "

2
Δa and a−− "

2
Δa. This

is illustrated in Fig. 2.9: the green intervals are the result of standard propagation

52

2.4 The acceleration-bounded model

and the red intervals are the result of slacked propagation. If two slacked intervals
intersect, then we merge the corresponding standard intervals and use the merged
interval for future propagation (in Fig. 2.9 the blue interval is the result of the merge).

I(`, i) I(` + 1, j)

⇒

Figure 2.9: Propagation using the slacked model, from pi to pj . Green indicates stan-
dard propagation and red slacked propagation. The result of merging the intervals
is indicated in blue.

In the following we give an upper bound on the size of any set of intervals
(� , i) as a function of ". To do so, we estimate the number of disjoint intervals that
can occur after propagation. First of all, note that at both the minimum and the
maximum velocity, standard intervals can degenerate to a point. Slacked intervals,
however, always have non-zero size. Consider now an interval [v,w] which slack-
propagates to a slacked interval [vs ,ws] of minimum size. This implies that in fact
v = w, that is, the input interval degenerates to a point. We want to determine
the minimum separation between v and any other input interval whose slacked
propagation touches [vs ,ws]. To this end, we compute the largest input velocity v

ℎi

which slack-propagates to vs . The separation is now given by |v − v
ℎi
|. We can now

compute a coarse upper bound for the number of intervals by dividing the complete
input range ΔaΔt (see Section 2.4.2) by the separation:

�prop =
ΔaΔt

|v − v
ℎi
|

53

2 Outlier Detection

Solving for �prop results in

�prop =

⎢

⎢

⎢

⎢

⎢

⎣

√

2

2"

√

1

"
+ 1

(

√

2

√

2

√

1

"
+ 1 − 1 − 1

)

⎥

⎥

⎥

⎥

⎥

⎦

= O("
−1/4

),

which proves Theorem 2.4.7 below.

Theorem2.4.7. Let T be a 1D trajectory with n probes. Under the slacked acceleration-
bounded model, the maximum fragmentation �max for any set of velocities (� , i) is
O("

−1/4
).

▶ 2.4.6 Extending to higher dimensions

The algorithm described above works for one-dimensional data. This may be realistic
in some scenarios: for example, if we track contestants in a race along a prede�ned
route, the known route de�nes an approximately one-dimensional space. However,
in most cases, movement is in two or even three dimensions. There are various ways
of generalizing the acceleration-bounded model.

There are two standard 2D “interpretations” of our algorithm: either we use the
Euclidean distance between the probes, or we consider the Euclidean length of the
path through all intermediate probes. In our view, the former is more suitable as we
aim to remove outliers which could greatly a�ect distances in the latter.

Yet, assuming a linear motion between two probes is unrealistic as well. Thus,
we use the Euclidean distance between probes only as a lower bound; the upper
bound is the Euclidean distance multiplied by a constant �. Note that an upper
bound can also be derived from the current speed and acceleration bounds, but we
use our simpler model in the experiments below. To propagate a velocity interval,
we use the distance lower bound to determine the minimum velocity at the next
probe, and the upper bound for the maximum velocity.

Of course, the models above assume that the tracked object may turn arbitrarily
fast. E�ectively, this means that positive or negative velocity becomes meaningless
as we can instantaneously rotate from one to the other. We thus set the minimal
velocity to zero. However, the direction of movement cannot be changed arbitrarily
fast in reality, especially at higher speeds. Though we can easily de�ne various
physics models to address this issue, this would require more complex algorithms:
we need to know more than just speed for the propagation and thus must generalize
from intervals to higher-dimensional regions.

54

2.5 Experiments

▶ 2.5 Experiments
We introduced various algorithms for computing maximum consistent subsequences
of a trajectory, according to di�erent physics models, speci�cally a speed-bounded
and an acceleration-bounded model. The algorithms for the former are simpler and
faster than for the latter. However, the acceleration-bounded model is more accurate.
Through a series of experiments, we investigate the quality of our algorithms and
the trade-o� between them.

▶ 2.5.1 Algorithms
We use the following seven algorithms in our experiments. The �rst two refer to our
optimal output-senstive algorithms described above, their running time depending
on the number of outliers. Additionally, we use three comparison algorithms to
investigate the quality of our methods with respect to simpler algorithms. These
algorithms are two variants of an incremental greedy algorithm (under both physics
models) and a local greedy method (under the speed-bounded model). We imple-
mented all algorithms in C++; these implementations are open source and available
as part of the MoveTK library.

[OSB] Optimal Speed-Bounded This algorithm implements the method of Sec-
tion 2.2, under the speed-bounded model.

[OAB] Optimal Acceleration-Bounded This algorithm implements the method
of Section 2.4. We use the 2D generalization, using � = 1.5: the upper bound on
the traveled distance is 1.5 times the Euclidean distance between two probes.

[GSB/GAB] Greedy Speed/Acceleration-Bounded We greedily build a consis-
tent subsequence by testing whether the next considered probe is consistent
with the last probe in the current subsequence under the speed-bounded model
(GSB) or acceleration-bounded model (GAB). For GAB, we use the propaga-
tion technique of OAB to maintain an interval of speeds – the next probe is
consistent if the interval after propagation is nonempty. These methods run
in O(n) time.

[SGSB/SGAB] Smart Greedy Speed/Acceleration-Bounded We keep track of
multiple subsequences simultaneously. We append the next probe to each
subsequence ending in a consistent probe ; if no such subsequence exists, the
probe starts a new subsequence. The longest subsequence is returned. These
methods run in O(n2) time.

55

2 Outlier Detection

Table 2.1: Summary of the complexities and speeds of trajectories per data set. The
�nal columns list the default model parameters used throughout the experiment. v+
is given in km/h, a− and a+ in m/s2.

trajectories complexity speed (km/h) model parameters

mean maximum stddev mean stddev v+ a
−

a
+

MB 1 214 3 377.1 22 426 2 643.4 18.8 10.9 35.0 −3.24 1.62

HR 5 000 424.9 8 925 545.6 62.3 43.0 125.0 −10.00 10.00

LA 78 658 304.4 38 719 1 082.0 55.8 1 557.7 129.6 −10.00 10.00

[LGSB] Local Greedy Speed-Bounded Zheng [139] points us to another method
that uses a speed bound for outlier detection. To the best of our knowledge this
is the only other such method described in the literature. However, neither
Zheng’s survey nor the references therein give a detailed description of this
heuristic method. We hence compare against our interpretation of the sketch
provided by Zheng [139]. We construct a graph with a vertex per probe . Two
vertices are connected if their probes are successive in the original trajectory
and they are consistent according to the speed bound. A probe is added to the
output, if and only if its vertex is in a connected component of a user-speci�ed
size; we set this value to 3 in our experiments. Note that this local heuristic
does not guarantee that the complete output is consistent according to the
speed bound. This method runs in O(n) time.

▶ 2.5.2 Data sets

We use the data sets MB, HR, and LA. See Appendix A for details of these data sets.

All trajectories in the data sets are �ltered to have at least 10 probes. General
statistics of these data sets are provided in Table 2.1, along with our parameter
settings per data set, which are based on the nature and location of the general data
set; note that v− is always set to 0 to allow the tracked object to remain stationary.

56

2.5 Experiments

▶ 2.5.3 Comparing algorithms and models
In our analysis of the results, we look primarily at relative lengths, that is, the ratio
of the number of probes with respect to the input size. Thus, a result that �lters k
outliers and keeps n −k probes has a relative length of n−k

n
∈ [0, 1]. In the remainder,

we simply use length to refer to relative length. We start, however, with a brief
consideration of e�ciency.

E�iciency Table 2.2 provides performance statistics per algorithm and data set
in terms of running time, as performed on a HP Elitedesk 800 g2 TWR (Intel Core
i5-6500 CPU at 3.20GHz; 16 GB of RAM; 64-bit Windows 10 Enterprise). Overall, the
trend between the algorithms per data set is roughly the same. We see di�erences
between data sets – speci�cally MB with respect to LA and HR – which are simply
a result of the increased trajectory complexity within the MB data set. We see that
our OSB is competitive with GSB and even considerably faster than SGSB. As we
may expect from the theoretical analysis, OAB is very slow in comparison to the
other algorithms, yet the greedy alternatives are comparatively fast.

The main questions to investigate are thus two-fold: (1) is the speed-bounded
model able to achieve reasonable results, compared to the acceleration-bounded
model? (2) how do the faster greedy approaches compare in terms of quality with
respect to the optimal algorithms. We �rst investigate the latter question before
turning to the former.

Speed-bounded model We have three algorithms that strictly adhere to the
speed-bounded model: OSB, GSB and SGSB (see left two columns of Fig. 2.10). As
OSB computes optimal results, GSB and SGSB cannot result in longer subsequences.
For the MB data set, we observe that GSB and SGSB perform very similarly in terms
of the number of outliers detected. For the HR and LA data sets we see larger dif-
ferences, especially for GSB. Table 2.3 shows the ratio between OSB and GSB/SGSB
according to di�erent brackets of OSB. These numbers indicate that a vast majority
of trajectories has less than 10% outliers, and that in such cases the results are on
average not much di�erent. The more outliers are present, the more pronounced
the di�erence between our optimal result and the greedy results becomes.

OSB is thus more reliable, as it gives optimal results. When there are few outliers,
this algorithm is close to linear and thus we may expect less of a performance loss
compared to the simpler methods. Indeed, we see that in terms of running time, OSB
(0.48 ms on average per trajectory) performs similarly as the GSB (0.24 ms) and is
actually faster than SGSB (5.35 ms). When there are many outliers, the extra time
spent may be well worth the e�ort to obtain the maximum consistent subsequence.

57

2 Outlier Detection

Table
2.2:M

ean,99
percentile,and

m
axim

um
running

tim
e

in
m

illiseconds(m
s),unlessindicated

otherw
ise.Running

tim
esare

show
n

perdata
set,and

overalldata
sets.N

ote
thatthe

im
balance

in
data

setsize
skew

sthe
m

ean
overall

data
setsstrongly

to
the

m
ean

ofthe
LA

data
set.

M
B

H
R

LA
A

lldata
sets

m
ean

99%
m

ax
m

ean
99%

m
ax

m
ean

99%
m

ax
m

ean
99%

m
ax

O
SB

5.32
31.25

203.12
1.01

15.62
62.50

0.37
15.62

359.38
0.48

15.62
359.38

G
SB

2.37
15.62

15.62
0.32

15.62
15.62

0.20
15.62

31.25
0.24

15.62
31.25

SG
SB

210.26
1812.50

7750.00
4.15

78.12
468.75

2.27
15.62

8593.75
5.35

78.12
8593.75

LG
SB

2.59
15.62

31.25
0.30

15.62
15.62

0.21
15.62

31.25
0.25

15.62
31.25

O
A
B

7194.19
89.1s

1074.6s
71.03

1640.62
14.7s

127.04
171.88

1754.6s
224.83

1156.25
1754.6s

G
A
B

4.22
15.62

31.25
0.45

15.62
15.62

0.35
15.62

46.88
0.41

15.62
46.88

SG
A
B

95.37
921.88

2656.25
2.35

31.25
234.38

1.47
15.62

4843.75
2.86

46.88
4843.75

58

2.5 Experiments
G
SB

0.0

0.5

1.0

MB

SG
SB

LG
SB

G
A
B

SG
A
B

G
SB

0.0

0.5

1.0

HR

SG
SB

LG
SB

G
A
B

SG
A
B

G
SB

0.0
0.5

1.0
O
SB

0.0

0.5

1.0

LA

SG
SB

0.0
0.5

1.0
O
SB

LG
SB

0.0
0.5

1.0
O
SB

G
A
B

0.0
0.5

1.0
O
A
B

SG
A
B

0.0
0.5

1.0
O
A
B

Figure2.10:Com
paring

thevariousalgorithm
s.Each

axisrepresentsthe(relative)length.Top
row

:M
B

data;m
iddlerow

:
H

R
data;bottom

row
:LA

data.Firstthree
colum

ns:com
parison

ofO
SB

w
ith

G
SB,SG

SB
and

LG
SB;lasttw

o
colum

ns:
com

parison
ofOA

B
w

ith
GA

B
and

SGA
B.

59

2 Outlier Detection

Table 2.3: Mean and standard deviation of the ratio between greedy strategies and
optimal strategies, split by bins of the optimal length (“length” row). The “size” row
indicates the percentage of trajectories in the corresponding length bin. in GSB,
SGSB and LGSB are compared to OSB; GAB and SGAB to OAB. Table is continued
on the next page.

MB

Length 0.0 - 0.6 0.6 - 0.8 0.8 - 0.9 0.9 - 1.0

Size 0.07% 0.20% 0.57% 99.17%

GSB 0.87 ± 0.14 0.97 ± 0.01 0.98 ± 0.01 1.00 ± 0.01

SGSB 0.95 ± 0.06 0.97 ± 0.01 0.98 ± 0.01 1.00 ± 0.01

LGSB 1.10 ± 0.20 1.08 ± 0.02 1.05 ± 0.01 1.01 ± 0.01

Size 0.07% 0.21% 0.70% 99.02%

GAB 0.98 ± 0.06 0.97 ± 0.01 0.98 ± 0.01 1.00 ± 0.01

SGAB 1.10 ± 0.27 0.97 ± 0.01 0.98 ± 0.01 1.00 ± 0.01

HR

Length 0.0 - 0.6 0.6 - 0.8 0.8 - 0.9 0.9 - 1.0

Size 3.14% 4.58% 5.96% 86.32%

GSB 0.83 ± 0.20 0.95 ± 0.07 0.98 ± 0.03 1.00 ± 0.01

SGSB 0.93 ± 0.07 0.97 ± 0.04 0.99 ± 0.02 1.00 ± 0.01

LGSB 1.22 ± 0.28 1.11 ± 0.07 1.05 ± 0.03 1.00 ± 0.01

Size 3.14% 4.64% 5.94% 86.32%

GAB 0.83 ± 0.21 0.95 ± 0.07 0.98 ± 0.03 1.00 ± 0.01

SGAB 0.93 ± 0.08 0.97 ± 0.04 0.98 ± 0.02 1.00 ± 0.01

60

2.5 Experiments

Table 2.3: Mean and standard deviation of the ratio between greedy strategies and
optimal strategies, split by bins of the optimal length (“length” row). The “size” row
indicates the percentage of trajectories in the corresponding length bin. in GSB,
SGSB and LGSB are compared to OSB; GAB and SGAB to OAB.

LA

Length 0.0 - 0.6 0.6 - 0.8 0.8 - 0.9 0.9 - 1.0

Size 0.33% 2.06% 7.00% 90.61%

GSB 0.87 ± 0.17 0.93 ± 0.11 0.97 ± 0.05 1.00 ± 0.01

SGSB 0.94 ± 0.08 0.96 ± 0.05 0.98 ± 0.03 1.00 ± 0.01

LGSB 1.05 ± 0.48 1.04 ± 0.16 1.05 ± 0.05 1.00 ± 0.01

Size 0.33% 2.06% 7.33% 90.28%

GAB 0.87 ± 0.17 0.93 ± 0.11 0.97 ± 0.04 1.00 ± 0.01

SGAB 0.93 ± 0.09 0.96 ± 0.06 0.98 ± 0.03 1.00 ± 0.01

61

2 Outlier Detection

0.0 0.5 1.0
OSB

0.0

0.5

1.0

LG
SB

→
O
SB

/L
G
SB MB

0.0 0.5 1.0
OAB

0.0

0.5

1.0

O
SB

→
O
A
B/
O
SB

MB

0.0 0.5 1.0
OSB

HR

0.0 0.5 1.0
OAB

HR

0.0 0.5 1.0
OSB

LA

0.0 0.5 1.0
OAB

LA

Figure 2.11: Postprocessing to ensure a stricter physics model. Left column: MB
data; middle column: HR data; right column: LA data. Top row: comparison of
LGSB→OSB with OSB; bottom row: comparison of OSB→OAB with OAB.

Acceleration-bounded model Referring to Fig. 2.10 and Table 2.3, we observe
the same patterns between OAB and GAB/SGAB as above for the speed-bounded
variants, but the di�erences are more pronounced. However, it must be noted that
the computation times behave much di�erently. Although the number of intervals
in a single cell never exceeds 2 for almost all trajectories (with a maximum of 4),
the computation time of OAB (224.8 ms on average per trajectory) is signi�cantly
higher than GAB (0.41 ms) and SGSB (2.86 ms). Thus, OAB seems practical mostly
for cases where processing speed is not a primary concern: for example, because
much longer o�ine computations are expected afterwards, or because the trajectory
lengths are limited.

Local strategy The LGSB method can also be compared to OSB. However, because
this method does not ensure that the entire subsequence adheres to the physics
model, it may be the case that LGSB yields a longer sequence than OSB. This is quite
structurally the case (see third column in Fig. 2.10), with more pronounced e�ects
for a large number of outliers (see Table 2.3, LGSB rows). This indicates that the
local strategy for determining outliers is not quite suitable for capturing the actual
constraints of the physics model.

62

2.5 Experiments

We further investigate the local method by postprocessing the results of LGSB by
OSB (LGSB→OSB). That is, we �nd the longest consistent subsequence of the LGSB
result. If LGSB would work perfectly, no outliers are �ltered in this postprocessing
step. The more outliers are found in the LGSB result, the more violations of the
physics model the LGSB result exhibits. The top row of Fig. 2.11 shows the results;
note that the vertical axis shows (relative) length of the �nal result with respect to the
length without postprocessing rather than (relative) length with respect to the input.
We see again that the results depend on the number of outliers in the trajectory, but
overall the di�erence may be quite pronounced: LGSB→OSB on average has 8.75%
less probes than LGSB for cases with OSB length less than 0.9. The data set also has
an e�ect: MB has less variance than the other two data sets.

Comparing models Since any acceleration-bounded path in our setting is also
a speed-bounded path, OSB cannot detect more outliers than OAB. That is, OSB
results can be interpreted in the acceleration-bounded model and we can investigate
how well the model inherently meets the acceleration bound. We follow the same
approach in comparing LGSB to OSB above, postprocessing OSB results by OAB
(OSB→OAB) to determine how many outliers the OSB result still includes according
to the stricter model.

The bottom row of Fig. 2.11 shows the results. We clearly see that that only
few probes are �ltered in the OAB postprocessing step for all three data sets. This
pattern is strongest in MB (0.09% classi�ed as outliers on average) and HR (0.04% on
average), even for more noisy trajectories. For the LA data set, slightly more probes
are �ltered (1.74% on average), but interestingly, this seems mostly the case for the
less noisy trajectories. These averages are based on the cases with OAB length less
than 0.9.

We may conclude that generally the speed-bounded model is capable of getting
quite realistic results even for the acceleration-bounded case, while avoiding the
computational complexity. It is interesting that there seems to be slightly di�erent
behaviors between the two vehicle data sets: this raises the question whether di�er-
ences in tra�c and driving behavior make acceleration more important in certain
environments than in others.

▶ 2.5.4 Sensitivity of model parameters

The physics models have a few parameters to capture what is considered feasible
movement through space and time. Here, we look at how sensitive the results are
to changing the parameter values. Following our observations from the previous

63

2 Outlier Detection

MB

0 20 40 6070
v+

0.0

0.5

1.0
Re

la
tiv

e
le
ng

th

100 tr

HR

0 40 80 120 160
v+

100 tr

LA

0 40 80 120 160
v+

100 tr

Figure 2.12: Pro�le of the speed bound: length of OSB as a function of v+, for 100
random trajectories for each data set.

Table 2.4: Sensitivity � of the speed bound v+.

data set mean stddev min 99% max

MB 0.093 ± 0.049 0.013 0.243 0.368

HR 0.059 ± 0.042 0 0.244 0.418

LA 0.047 ± 0.033 0 0.180 0.458

Sensitivity in v+

LA

HR

MB

0.0 0.1 0.2 0.3 0.4 0.5
σ

Figure 2.13: Sensitivity � of the speed bound v+ per data set.

64

2.5 Experiments

section, we focus on the speed-bounded model which e�ectively has one parameter:
the maximum speed v+, but we also brie�y investigate the e�ect of the detour factor
as well as the acceleration bound in OAB.

Procedure Our analysis for each parameter follows the same procedure: we vary
the parameter systematically from very restrictive values to very generous values,
running the optimal algorithm for the model under consideration on all data. We
then consider how the length of the result varies with this parameter.

To allow for summarizing the results, we operationalize the sensitivity � for a
single trajectory as the maximum of the di�erence between relative length and the
di�erence between two parameter values, over all (consecutive) pairs of parameter
values. We refer to the the two parameters that result in the maximum the sensitive
range � of that trajectory; we use the mean value of the range to compute summary
statistics. The unit of � is thus the inverse of the unit of the parameter, but we
generally omit this indication. Intuitively, the sensitivity is the “slope” when plotting
the relative length as a function of the parameter, which we refer to as a pro�le. We
illustrate these functions for each case using a selection of the trajectories for each
data set, consider summary statistics over all trajectories, and investigate the relation
between the sensitivity and the sensitivity range.

Note that our choice of step size in varying the parameter inherently limits the
maximum sensitivity that can be obtained to the reciprocal of the step size. For
example, steps of 2 km/h in varying the speed bound v+, limits the sensitivity to
0.5, which would indicate jumping from length 0 to 1 between two values of v+. In
degenerate, constructed inputs this can indeed be realized – in fact, any arbitrarily
large sensitivity can achieved in theory. Consider a hypothetical trajectory of n
probes along a straight line, sampled every second, with a distance between consec-
utive probes a distance c. The length of the optimal result for any v+ < c is then 1/n,
as no pair is consistent. However, the length for v+ ≥ c is 1. Thus, for v+ = c and
v+ = c − " we obtain a sensitivity of (1 − 1/n)/". For " approaching zero, this thus
tends to in�nity. Thus, we focus on the practical slope of these curves, using some
reasonable sampling of the domain of the parameter.

Speed bound We run our OSB algorithm, using a speed bound v+ from 2 km/h
to 70 km/h (MB), from 2 km/h to 160 km/h (HR and LA), in steps of 2 km/h. Fig. 2.12
provides a random sample of the resulting pro�les. As we can see, many trajecto-
ries follow the roughly the same pattern of a few steep increases at di�erent speed
bounds. We attribute this to di�erent behavior of the moving entity. For MB, this
behavior is fairly consistent, with a high sensitivity around 21.5 km/h (average sen-

65

2 Outlier Detection

MB

0 20 40 6070
ρ

0.0

0.1

0.2

0.3

0.4

0.5
σ

HR

0 40 80 120 160
ρ

LA

0 40 80 120 160
ρ

Figure 2.14: Scatterplot relating the sensitivity � of v+ to (the mean of) the sensitivity
range �. Each circle represents a single trajectory.

sitivity range). For the other data sets, this is less clear, likely re�ecting di�erent
driving behavior due to local speed limits, which varies between trajectories but also
within a single trajectory.

Table 2.4 and Fig. 2.13 show summary statistics of the sensitivity for the three
data sets. We see that the sensitivity can be quite high in extreme cases: changing
the parameter by 1 km/h may change the relative length by almost 0.46. On average,
the sensitivity is considerably lower. However, these results still show that careful
selection of the model parameters is important: too low values result in probes
being identi�ed as outliers unjustly, but setting them too high might leave too many
outliers undetected.

With Fig. 2.14, we look at the relation between the sensitivity and the sensitiv-
ity range. We roughly see the same pattern for each of the data sets: a number of
trajectories have their relatively large sensitivity at low speeds, followed by another
peak at higher speeds. Potentially, this separates the trajectories into di�erent cases
of actual behavior: for example, cars drive at di�erent speeds in residential areas,
provincial roads and highways – if a trajectory falls mostly within one of the cate-
gories, it is reasonable to expect the largest sensitivity to occur at that speed. Under
this hypothesis, we see that we used quite a reasonable bounds on the maximum
speed, that is, values slightly higher than the sensitivity range for majority of the
trajectories.

Acceleration bound The acceleration-bounded model has, as the name suggests,
parameters controlling the allowed acceleration and deceleration, a+ and a− respec-
tively. Due to the high computational cost of OAB, we restrict our attention to only
six values combinations of a+ and a− per data set. The parameters we selected for

66

2.5 Experiments

defaults re�ect fairly extreme capabilities: limits of racing cars (HR and LA) and
estimates of well-trained cyclists (MB). To investigate the e�ect of these parameters,
we thus reduce these parameter values, to re�ect settings of “normal” and “slow” be-
havior in terms of acceleration and deceleration. Speci�cally, we test the following
six combinations for each data set: a+ ∈ {2, 4, 10} and a− ∈ {−2, −10} (HR and LA);
a
+
∈ {0.8, 1.2, 1.62} and a

−
∈ {−2, −3.24} (MB). Each of these values is expressed

in m/s2.
We can now study sensitivity of the one parameter by �xing the other parameter

to each of its values. A sample of the resulting pro�les are shown in Fig. 2.15 and
Fig. 2.16. We immediately see that there is very little e�ect of the acceleration or
deceleration bound. As these are not a random sample, but actually the pro�les with
highest sensitivity, this tells us that these parameters are of little in�uence.

The summary statistics over all trajectories further con�rm this, as shown in
Fig. 2.17. Considering our chosen set of parameters, the sensitivity in a

+ can be at
most 0.5 (HR and LA) or 1.67 (MB); for a− these maxima are 0.125 (HR and LA) and
0.81 (MB). What we observe, however, is that the actual sensitivity is signi�cantly
lower – also foregoing the need for further re�ne the tested parameter values. The
strongest sensitivity observed is 0.066 for a+ and 0.01 for a−. This is, however, an
“extreme” with medians and averages laying much closer to zero.

One observation to be made is that the sensitivity for the maximum acceleration
in the MB seems to be slightly higher, though still much lower. This is possibly
caused by the nature of the data: a mountain biker may accelerate and decelerate
more strongly, compared to regular tra�c.

In Fig. 2.18 and Fig. 2.19, we show histograms for the sensitivity, split by the
sensitivity range. In these charts, we omit all trajectories which have sensitivity
zero – the number of remaining trajectories is indicated per data set. Notably, we
see that MB has relatively few trajectories with zero sensitivity, whereas for the
other data sets this is the majority of trajectories. Again, we attribute this to the
di�erent nature of mountain biking.

In light of the little dependence on the acceleration bounds, we assume that the
speed bounds used by the acceleration model, in terms of sensitivity, behave similarly
as for the speed-bounded model. More importantly, these results further support our
conclusion from Section 2.5.3: the speed-bounded model provides realistic results
even for the acceleration-bounded model.

Detour factor The OAB algorithm uses a detour factor �, to determine how much
distance can at most be traveled between two probes, which is � times the Euclidean
distance. In other experiments, this is �xed to 1.5, but here we investigate how much

67

2 Outlier Detection

a− = −2
100 tr

0.8 1.2 1.62
a+

0.0

0.5

1.0

Re
la
tiv

e
le
ng

th

MB

a− = −3.24
100 tr0.0

0.5

1.0

Re
la
tiv

e
le
ng

th

a− = −2
100 tr

2.0 4.0 10.0
a+

HR

a− = −10
100 tr

a− = −2
100 tr

2.0 4.0 10.0
a+

LA

a− = −10
100 tr

Figure 2.15: Pro�les of the acceleration bound: length of OAB as a function of a+,
for the 100 most sensitive trajectories for each data set.

a+ = 0.8
100 tr

-2.0-3.24
a−

0.0

0.5

1.0

Re
la
tiv

e
le
ng

th

a+ = 1.2
100 tr0.0

0.5

1.0

Re
la
tiv

e
le
ng

th

MB

a+ = 1.62
92 tr0.0

0.5

1.0

Re
la
tiv

e
le
ng

th

a+ = 2
100 tr

-2.0-10.0
a−

a+ = 4
100 tr

HR

a+ = 10
20 tr

a+ = 2
100 tr

-2.0-10.0
a−

a+ = 4
100 tr

LA

a+ = 10
100 tr

Figure 2.16: Pro�les of the deceleration bound: length of OAB as a function of a−,
for the 100 most sensitive trajectories for each data set.

68

2.5 Experiments

Sensitivity in a+

0.0 0.05 0.1
σ

LA

HR

MB

a− = −2

a− = −10

a− = −2

a− = −10

a− = −2

a− = −3.24

Sensitivity in a−

0.0 0.05 0.1
σ

a+ = 2

a+ = 4

a+ = 10

a+ = 2

a+ = 4

a+ = 10

a+ = 0.8

a+ = 1.2

a+ = 1.62

Figure 2.17: Sensitivity of a+ (left) and a− (right) per data set and value of the other pa-
rameter. Note that the technical maximum sensitivity would be signi�cantly higher,
but this does not occur – the horizontal scale has been adjusted.

this parameter may in�uence the results. We run the OAB algorithm using � from 1
to 2, with increments of 0.1.

Refer to Figures 2.20 and 2.21. We observe that detour factor � has very little
in�uence in general, with most trajectories not being in�uenced by � at all: 52 out
of 1 214 for MB, 4 049 out of 5 000 for HR and 74 500 out of 78 658 for LA. The detour
factor is likely to help in cases where turns are made at relatively high speed: the
Euclidean distance might be too short to slow down and reach the next probe at
the right time – but adding some slack gives enough space to travel between two
somewhat close points at high speed. Thus, this factor can be expected to be of
less in�uence for trajectories with high sampling frequency or without turns are
relatively high speed. This may explain why the mountain-bike data set exhibits
more sensitivity than the other two vehicle data sets.

Fig. 2.22 relates the sensitivity to the sensitivity range. We observe that the
highest sensitivity is found in the sensitivity range [1, 1.1], and generally a trend of
higher sensitivity at lower values of �. This supports our suggestion above as to the

69

2 Outlier Detection

a− = −2
1 067 tr

[0.8,1.2] [1.2,1.62]
ρ

0.0

0.05

0.1

σ

MB
a− = −3.24
1 071 tr

0.0

0.05

0.1

σ

a− = −2
1 187 tr

[2.0,4.0] [4.0,10.0]
ρ

HR
a− = −10
1 269 tr

a− = −2
12 958 tr

[2.0,4.0] [4.0,10.0]
ρ

LA
a− = −10
13 169 tr

Figure 2.18: Histogram relating sensitivity of a+ and the sensitivity range. Tra-
jectories with sensitivity 0 have been omitted. Note that the technical maximum
sensitivity would be signi�cantly higher, but this does not occur – the horizontal
scale has been adjusted.

a+ = 0.8
118 tr

[-3.24,-2.0]
ρ

0.0

0.05

0.1

σ

a+ = 1.2
108 tr

0.0

0.05

0.1

σ

MB
a+ = 1.62
92 tr

0.0

0.05

0.1

σ

a+ = 2
106 tr

[-10.0,-2.0]
ρ

a+ = 4
101 tr

HR
a+ = 10
20 tr

a+ = 2
303 tr

[-10.0,-2.0]
ρ

a+ = 4
276 tr

LA
a+ = 10
258 tr

Figure 2.19: Histogram of sensitivity of a−, of the single sensitivity range tested.
Trajectories with sensitivity 0 have been omitted. Note that the technical maximum
sensitivity would be signi�cantly higher, but this does not occur – the horizontal
scale has been adjusted. 70

2.5 Experiments

MB

1.0 1.5 2.0
λ

0.0

0.5

1.0

Re
la
tiv

e
le
ng

th

100 tr

HR

1.0 1.5 2.0
λ

100 tr

LA

1.0 1.5 2.0
λ

100 tr

Figure 2.20: Pro�les of the detour factor: length of OAB as a function of �, for the
100 most sensitive trajectories for each data set.

Sensitivity in λ

LA

HR

MB

0.0 1.0 2.0 3.0
σ

Figure 2.21: Sensitivity of � per data set. Note that the technical maximum sensitivity
would be 10, but this does not occur – the horizontal scale has been adjusted.

MB

1.0 1.5 2.0
ρ

0.0

1.0

2.0

3.0

σ

1 162 tr
HR

1.0 1.5 2.0
ρ

951 tr
LA

1.0 1.5 2.0
ρ

3 836 tr

Figure 2.22: Scatterplot relating the sensitivity � of � to (the mean of) the sensitivity
range �. Each circle represents a single trajectory. Trajectories with sensitivity 0
have been omitted. Note that the technical maximum sensitivity would be 10, but
this does not occur – the vertical scale has been adjusted.

71

2 Outlier Detection

cause of the low sensitivity.
Most of our trajectories have relatively high sampling frequency and as such

the sensitivity is low. The question is how these observations generalize to low
sampling frequencies. This will likely depend strongly on the object being tracked.
If it travels frequently at nearly maximum speed, sensitivity may be high. However,
if the general speed is signi�cantly lower, the admitted variation in the reconstructed
speed may already be su�cient to avoid sensitivity in the detour factor.

▶ 2.6 Discussion

Results Our results indicate that our optimal algorithms outperform simple greedy
strategies, either in quality of the results, running time, or both. Noise levels and
other characteristics do in�uence these results, and our methods are particularly
e�ective for dealing with large amounts of noise. The example in Fig. 2.23 (top) il-
lustrates a case where the OAB algorithm computes a longer sequence, compared to
SGAB: the cause is that a few erroneous probes lead this greedy algorithm to make
a sequence that prevents it from selecting many probes later.

Furthermore, the results suggest that the quality di�erence between models with
only a speed bound and acceleration-bounded models is small. This must be con-
sidered carefully though, as there is an e�ect of social or geographic environment.
Fig. 2.23 (bottom) shows a case where the OSB algorithm detects fewer outliers,
though the di�erence is only minor. Contrasting the previous comparison, this im-
plies that OAB performed better than OSB: OSB fails to capture the outlier that
is not physically realizable in the stronger acceleration-bounded model. That is,
there is not enough time to realistically decelerate and accelerate to capture the full
near-stationary probes.

The selection of parameters in�uences the results, but this is mostly the case
for the maximum speed. Acceleration and detour factor for our OAB algorithm
tend to have minimal e�ect on the number of outliers detected, though we observed
variation between the types of moving entities. Fig. 2.24 shows a sequence of results
for di�erent speed bounds, for a trajectory from each data set. Increasing the speed
bound leads to fewer outliers – but possibly less realistic behavior, if the bound is
set too high. The e�ect of lowering the speed bound is that corners tend to be cut
by marking outliers, to lower the traveled distance to one that is achievable within
the speed bound.

Context By design, we do not consider the use of other data, such as a road net-
work that a vehicle is driving on. However, such data opens up various potential

72

2.6 Discussion

OAB OSB

SGABOAB

Figure 2.23: Example trajectory where OAB di�ers from SGAB (top) and OSB (bot-
tom). Arrows indicate the direction of travel, blue markers are probes that are part of
the consistent subsequence computed, and red markers indicate the corresponding
outliers. Both trajectories are from the LA data set. Base maps ©OpenStreetMap.

avenues for further research. For example, given a road network, we may be able
to more accurately assess the travel distance or limit it to a few likely candidates,
rather than using the Euclidean distance. For OSB and OAB, this is straightforwardly
included into the algorithm. For our faster algorithm under the speed-bound model,
however, this is not quite the case, as the AWVD is no longer directly applicable, but
there may be potential to generalize the approach.

Beyond assessing distances more accurately, additional data could also be used
to de�ne more accurate physics models. Our current models are fairly simple, and
use only few parameters to de�ne global thresholds on the maximum speed and
acceleration. However, such thresholds may actually depend on the environment.
For example, expected maximum speed for driving in a car is di�erent on the high-
way than it is in an urban environment. Similarly, cycling uphill or downhill a�ects
maximum speed. Ideally, physics models and, by extension, outlier-detection algo-
rithms should accommodate for such variations, as this allows for more e�cacious
processing of heterogeneous trajectories that travel through di�erent environments.

Including contextual factors will make the models more accurate and realistic,
but a crisp decision boundary (movement is or is not physically possible) may no
longer exist. Instead, we may want to de�ne that a car can violate speed limits,
but the severity and duration a�ect how likely the behavior is. Future work could

73

https://www.openstreetmap.org/

2 Outlier Detection

MB

HR

LA

v+ = 20 v+ = 30 v+ = 50

v+ = 40 v+ = 80 v+ = 100

v+ = 20 v+ = 100 v+ = 140

Figure 2.24: Example results, using di�erent speed bounds v+. One trajectory for
each data set is shown. Blue line represents the resulting trajectory, with red dots
marking the outliers. Base maps © OpenStreetMap.

explore “behavioral models” that describe expected movement more closely, includ-
ing context, and are more robust by allowing deviations from the model, thereby
reducing parameter sensitivity.

Enhancing other techniques There are many other forms of trajectory process-
ing and analysis techniques, such as clustering, map matching, and segmentation.
Such techniques may be complemented or enhanced by applying physics models to
de�ne possible or realistic behavior. For example, a map-matching algorithm could
include considerations of whether its result is physically realizable, or clustering
may be done based on what physical behavior would be necessary to realize cer-
tain trajectories. We leave exploring such complementarity of techniques to future
work, but our results presented here provide a framework and methods that may be
integrated into such enhanced techniques.

74

https://www.openstreetmap.org/

Chapter 3

Simplification

▶ 3.1 Introduction

To reduce storage and computation times, trajectories can be simpli�ed as a prepro-
cessing task. As discussed in Chapter 1, we can treat a trajectory as a polygonal curve
if we ignore its timestamps. This allows the use of the large body of research already
done in simpli�cation of polygonal curves. The algorithmic questions we address
in this chapter are all based on this abstraction of trajectories. As such, throughout
this chapter we will be using the term “curve", as it is more general than “trajectory".
To further generalize the terminology, in this chapter we will not refer to the probes
that make up a trajectory as such, but we will only refer to them as vertices of a
curve.

Curve simpli�cation is a long-studied problem in computational geometry, ge-
ographical information science (GIS), and automated cartography. It also has ap-
plications in related disciplines such as graphics. Given a polygonal curve P with
n vertices, the goal is to �nd another polygonal curve P ′ with a smaller number
of vertices such that P ′ is su�ciently similar to P . Unless speci�ed otherwise, in
this chapter we will assume P is two-dimensional. Well-known methods proposed
for this problem include a simple heuristic scheme by Douglas and Peucker [49],
and a more involved classical algorithm by Imai and Iri [73]; both are frequently
implemented and cited. Since then, numerous further results on curve simpli�-
cation, often in speci�c settings or under additional constraints, have been ob-
tained [6, 9, 21, 25, 36, 39, 42, 63, 72].

Despite its popularity, the Douglas-Peucker algorithm comes with no provable

75

3 Simpli�cation

quality guarantees. The method by Imai and Iri, though slower, was introduced as an
alternative which does supply guarantees: it �nds an optimal shortest path in a graph
in which potential shortcuts are marked as either valid or invalid, based on their
distance to the corresponding sections of the input curve. However, Agarwal et al. [9]
note that the Imai-Iri algorithm does not actually globally optimize any distance
measure between the original curve P and the simpli�cation P ′. This work initiated
a more formal study of curve simpli�cation; Van Kreveld et al. [89] systematically
show that both Douglas-Peucker and Imai-Iri may indeed produce far-from-optimal
results.

This raises a question of what it means for a simpli�cation to be optimal. It
can be seen as optimal to reduce the number of vertices as much as possible while
having a bound on the curve distance between the original and the simpli�cation.
This is known as min-link simpli�cation. Alternatively, we could set a bound on
the number of vertices of the simpli�ed curve and try to �nd a simpli�cation with
minimum distance, known as a min-� simpli�cation. Imai-Iri is a min-link algorithm,
and this chapter also focusses on min-link simpli�cation. For both min-link and min-
� simpli�cation, which simpli�ed curve is optimal depends on the distance measure
that is used.

However, the di�erence in interpretation between Agarwal et al. and Imai and
Iri lies not so much in the choice of distance measure, but rather what exactly the
measure is applied to. In fact, the Imai-Iri algorithm is optimal in a local sense: it
outputs a subsequence of the vertices of P such that the Hausdor� distance between
each shortcut and its corresponding section of the input is bounded: each shortcut
approximates the section of P between the vertices of the shortcut.

We underline this di�erence by using the term global simpli�cation when a
bound on a distance measure must be satis�ed between P and P ′ (formal de�nition
in Section 3.2.3), and local simpli�cation when a bound on a distance measure must
be satis�ed between each edge of P ′ and its corresponding section of P . Clearly, a
local simpli�cation is also a global simpli�cation, but the reverse is not necessarily
true, see Figure 3.1.

Both local and global simpli�cations have their merits: one can imagine situa-
tions where it is important that each segment of a simpli�ed curve is a good rep-
resentation of the curve section it replaces (e.g. if the curve is a trajectory where
we plan to later make use of the timestamps associated with the vertices), but in
other applications (e.g., visualization) it is really the similarity of the overall result
to the original that matters. Most existing work on curve simpli�cation falls in the
local category. We focus on curve simpli�cation where the considered similarity
constraint is a global distance measure.

76

3.1 Introduction

δInput curve

Figure 3.1: For a target distance � , the red curve (middle) is a global simpli�cation of
the input curve (left), but it is not a local simpli�cation, since the �rst shortcut does
not closely represent its corresponding curve section (right). The example applies
to both Hausdor� and Fréchet distance.

Our contribution is a systematic overview of di�erent variants of the global curve
simpli�cation problem. We consider six di�erent curve distance measures and three
di�erent restrictions on vertex placement, giving eighteen di�erent variants in total.
We have collected results in the literature for these variants, and supplemented these
results with our own theoretical �ndings. See Table 3.1 for an overview of old and
new results.

▶ 3.1.1 Existing work on global curve simplification

Surprisingly, only a few results on simpli�cation under global distance measures are
known [9, 24, 29, 89]; consequently, what makes the problem di�cult is not well
understood.

Agarwal et al. [9] �rst consider the idea of global simpli�cation. They introduce
what they call a weak simpli�cation: a model in which the vertices of the simpli�ca-
tion are not restricted to be a subset of the input vertices, but can lie anywhere in
the ambient space.1 Interestingly, they compare this to a local simpli�cation where
vertices are restricted to be a subset of the input. We may interpret a combination of
two of their results (Theorem 1.2 and Theorem 4.1) as an approximation algorithm
for global curve simpli�cation with unrestricted vertices under the Fréchet distance:
for a given curve P and threshold � one can compute, in O(n log n) time, a simpli�ca-
tion P ′ which has at most the number of vertices of an optimal global simpli�cation
with threshold �/8.

Bereg et al. [24] �rst explicitly consider global simpli�cation in the setting where
vertices are restricted to be a subsequence of input vertices, but using the discrete
Fréchet distance: a variant of the Fréchet distance which only measures distances
between vertices (refer to Section 1.2.2). They show how to compute an optimal

1We choose not to adopt the terms weak and strong in this context because we will also distinguish
an intermediate model, and to avoid confusion with the weak Fréchet distance; refer to Section 3.2.2.

77

3 Simpli�cation

simpli�cation where vertices are restricted to be a subsequence of the vertices in
P in O(n

2
) time, and they give an O(n log n) time algorithm for the setting where

vertices may be placed freely in ℝ
2.

Van Kreveld et al. [89] consider the same (global distance, but vertices should be a
subsequence) setting, but for the continuous Fréchet and Hausdor� distances. They
give polynomial-time algorithms for the Fréchet distance and directed Hausdor�
distance (from simpli�cation curve to input curve), but they show the problem is
NP-hard for the directed Hausdor� distance in the opposite direction and for the
undirected Hausdor� distance. Bringmann and Chaudhury [29] improve their result
for the Fréchet distance when the vertices in P

′ are a subsequence of to O(n3), and
also give a conditional cubic lower bound for curves in high dimensions.

Finally, we mention there is earlier work which does not explicitly study simpli-
�cation under global distance measures, but contains results that may be interpreted
as such. Guibas et al. [67] provide algorithms for computing minimum-link paths
that stab a sequence of regions in order. One of the variants, presented in Theorems
10 and 14 of [67], computes what may be seen as an optimal simpli�cation under the
Fréchet distance with no vertex restrictions, i.e., the same setting that was studied
by Agarwal et al. [9], in O(n2 log2 n) time in in ℝ

2.
In Section 3.2, we present a formal classi�cation of global curve simpli�cation

problems. Table 3.1 gives an overview of known results, as well as several new
results to complement these (in some cases straightforward adaptations of known
results). In the remainder of this chapter we give the main ideas behind our new
results shown in this table.

▶ 3.2 Classification of global curve simplification
We aim to provide a systematic overview of curve simpli�cation problems under
global distance measures. To this end, we have collected known results and arranged
them in a table (Table 3.1), and provided several new results to complement these
(refer to Section 3.2.4). This allows us to observe some surprising patterns, and it
suggests directions for future research in this important area. We �rst discuss the
dimensions of the table.

▶ 3.2.1 Distance measures

For our study, we consider six di�erent curve distance measures: three variants of
the Hausdor� distance and three variants of the Fréchet distance. These are among
the most popular curve distance measures in the algorithms literature. The Haus-

78

3.2 Classi�cation of global curve simpli�cation

dor� distance captures the distance between the point on one curve that is furthest
away to the other curve, and the point on the other curve that is closest to the �rst
point. The variants of the Hausdor� distance we consider are the directed Haus-
dor� distance from the input to the output, the directed Hausdor� distance from the
output to the input, and the undirected (or bidirectional) Hausdor� distance. The
Fréchet distance captures the maximum distance between a pair of points traveling
along the two curves simultaneously without moving backward. We also consider
the weak and discrete Fréchet distance. We have de�ned these distance measures in
Section 1.2.2. We will introduce the rest of the notation for this chapter below.

Let P = ⟨p1, p2, ⋯ , pn⟩ be the input polygonal curve. Let #P denote the number
of vertices in P . We write P[s, t] for the subcurve between P(s) and P(t) and denote
the shortcut, i.e., the straight line connecting them, by ⟨P(s)P(t)⟩.

▶ 3.2.2 Vertex restrictions
Once we have �xed the distance measure and chosen to apply it globally, one im-
portant design decision still remains to be made. Traditional curve simpli�cation
algorithms consider the (polygonal) input curve P to be a sequence of points, and
produce as output P ′ a subsequence of this sequence. However, if we measure the
distance globally, there may be no strong reason to restrict the family of acceptable
output curves so much: the distance measure already ensures the similarity between
input and output curves, so we may allow a more free choice of vertex placement.
Indeed, several results under this more relaxed viewpoint exist, as discussed in Sec-
tion 3.1.1. Here, we choose to investigate three increasing levels of freedom: (1)
vertex-restricted (), where vertices of P ′ have to be a subsequence of vertices of
P ; (2) curve-restricted (), where vertices of P ′ can lie anywhere on P but have to
respect the order along P ; and (3) non-restricted (), where vertices of P ′ can be
anywhere in the ambient space. Figure 3.2 illustrates the di�erence between the
three models. The third category does not make sense for local curve simpli�cation,
but is natural for global curve simpli�cation. Observe that when the vertices of a
simpli�ed curve have more freedom, the optimal simpli�ed curve never has more,
but may have fewer vertices.

▶ 3.2.3 Global curve simplification overview
We are now ready to formally de�ne a class of global curve simpli�cation prob-
lems. When D(⋅, ⋅) denotes a distance measure between curves (e.g., the Hausdor�
or Fréchet distance), the global curve simpli�cation (GCS) problem asks for the small-
est number k such that there exists a curve P ′ with at most k vertices, chosen either

79

3 Simpli�cation

p3 = p5

p2

p6

p7 p8
p1

p4

δ

p1

p2

p3
p4

p5

p6

p7 p8

p9

p10

Fréchet Hausdorff

Vertex-restricted (V)

Curve-restricted (C)

Input curve

Non-restricted (N)

p′1

p′2 p′3

p′4 p′5

p′1

p′1
p′3

p′2

p′4

p′2

p′3

p′1

p′2

p′3

p′4

p′5

p′6

p′7

p′8

p′1
p′6

p′2 p′3

p′4

p′5

p′1
p′5

p′2

p′3

p′4

Figure 3.2: The GCS simpli�ed curve in di�erent restrictions under Fréchet (left) and
Hausdor� (right) distances. Due to the freedom of choice of placing the vertices of
the simpli�ed curve, the number of links monotonically decreases for a �xed input
and distance measure.

80

3.2 Classi�cation of global curve simpli�cation

as a subsequence of the vertices of P (variant ), as a sequence of points on the edges
of P in the correct order along P (variant ), or chosen anywhere in ℝ

d (variant  ,
unless speci�ed otherwise, d is assumed to be 2), such that D(P, P ′) ≤ � , for a given
threshold � . In all cases, we require that P and P ′ start at the same point and end at
the same point.

Table 3.1 summarizes results for the di�erent variants of the GCS problem ob-
tained by instantiating D with the Hausdor� or Fréchet distance measures and by
applying a vertex restriction R. Here R ∈ { ,, }, and D is either the undirected
Hausdor� distance H, the directed Hausdor� distance ←−H from P to P ′, the directed
Hausdor� distance −→H from P

′ to P , the Fréchet distance F, the discrete Fréchet dis-
tance dF, or the weak Fréchet distance wF. Throughout the chapter we use DR(P , �)
to denote a curve P ′ that is the optimal R-restricted global simpli�cation of P with
D(P, P

′
) ≤ � .

Although this chapter focuses on min-link simpli�cation, for approximation
algorithms it can be interesting to have a simpli�cation that approximates optimal
values for both the number of links and the distance � at the same time. We call an
algorithm an (�, �)-approximation if it computes a solution with distance at most ��
and uses at most � times more links than the optimal solution for � .

▶ 3.2.4 New results

In order to provide a thorough understanding of the di�erent variants of the GCS
problem we provide several new results. In some cases these are straightforward
adaptations of known results, in other cases they require deeper ideas. In Sec-
tion 3.3.3, we give polynomial time algorithms for the vertex-restricted GCS prob-
lem under the strong Fréchet (Theorem 3.3.8) and weak Fréchet (Theorem 3.3.2)
distances.2 In Section 3.4 we show that the vertex-restricted problem under the di-
rected Hausdor� distance from P

′ to P considered by Van Kreveld et al. [89] can be
improved to O(n3 log n) time (Theorem 3.4.2).

In Section 3.5 we prove that solving the curve-restricted GCS problem is NP-
hard for almost all measures considered in this chapter except for the discrete
Fréchet distance (Theorem 3.6.3) and Fréchet distance in ℝ

1 (Theorem 3.7.1) for
which we present polynomial time algorithms. Surprisingly the Fréchet distance
computation is slower than the GCS problem under the Fréchet distance in 1D un-

2An algorithm with a running time of O(n4) for the vertex-restricted variant under the strong Fréchet
distance is presented in Theorem 3.3.5. Bringmann and Chaudhury [29] independently developed an
O(n

3
) algorithm for the same problem. Our current algorithm in Section 3.3.3 uses a vital insight from [29]

to improve our O(n4) algorithm to O(n3) as well. The resulting algorithm uses less space than the algo-
rithm in [29].

81

3 Simpli�cation

Table
3.1:Know

n
and

new
resultsforthe

GCS
problem

underglobaldistance
m

easures.

D
istance

Vertex-restricted
(
)

Curve-restricted
(
)

N
on-restricted

(
)

←
−H

strongly
N

P-hard
[89]

w
eakly

N
P-hard

(Thm
3.5.10)

strongly
N

P-hard
(Thm

3.10.8)
−→H

O
(
n
4
)[89]

O
(
n
3
l
o
g
n)(Thm

3.4.2)
w

eakly
N

P-hard
(Thm

3.5.8)
p
o
l
y
(
n
)[88]

H
strongly

N
P-hard

[89]
strongly

N
P-hard

(Cor3.9.2)
strongly

N
P-hard

(Thm
3.9.1)

F
O
(
m
n
5
)[89]

O
(
n
3
)(Thm

3.3.8)
O
(
n
3
)[29]

O
(
n
)in

ℝ
1(Thm

3.7.1)
w

eakly
N

P-hard
in

ℝ
2

(Thm
3.5.6)

O
(
n
2
l
o
g
2
n
)in

ℝ
2[67]

O
(
n
l
o
g
n
)

(
1
,
8
)-approx

[9]
O
∗
(
n
2
l
o
g
n
l
o
g
l
o
g
n
)

(
2
,
1
+
"
)-approx

(Thm
3.8.8)

dF
O
(
n
2
)[24]

O
(
n
3
)(Thm

3.6.3)
O
(
n
l
o
g
n
)[24]

w
F

O
(
n
3
)(Thm

3.3.2)
w

eakly
N

P-hard
(Thm

3.5.10)
O
∗
(
n
2
l
o
g
n
l
o
g
l
o
g
n
)

(
2
,
1
+
"
)-approx

(Cor3.8.9)

82

3.2 Classi�cation of global curve simpli�cation

like the Hausdor� distance under which the simpli�cation becomes harder than
the distance computation. To the best of our knowledge, these are the �rst re-
sults in the curve-restricted setting under global distance measures. In Section 3.8,
we give (2, 1 + ")-approximation algorithm for computing F (P , �) which runs in
O
∗
(n
2
log n log log n) time whereO∗ hides factors polynomial in 1/", for any 0 < " ≤ 1

(Theorem 3.8.8). We also argue that the same result holds for computing wF (P , �)

(Corollary 3.8.9). In Section 3.9 we show that this problem becomes NP-hard when
we consider the Hausdor� distance, i.e., H (P , �) (Theorem 3.9.1). Finally, in Sec-
tion 3.10 we show NP-hardness for computing ←−

H (P , �).

▶ 3.2.5 Discussion

With both the existing work and our new results in place, we now have a good
overview of the complexity of the di�erent variants of the GCS problem, see Table 3.1.
Observe that the curve-restricted variants appear to often be harder than both the
vertex-restricted and the non-restricted variants. That means that, on the one hand,
broadening the search space from the vertex-restricted to the curve-restricted case
makes the problem harder. But on the other hand it does not give unrestricted
freedom of choice, which in turn enables the development of e�cient algorithms for
the unrestricted case.

Another interesting pattern can be observed for the Hausdor� distance measures.
The direction of the Hausdor� distance makes a signi�cant di�erence in whether
the corresponding GCS problem is NP-hard or polynomially solvable. The GCS
problem for the undirected Hausdor� distance is at least as hard as for the directed
Hausdor� distance from the input curve to the simpli�cation. Drawing upon the
above observations we make the following conjecture:

Conjecture 1. The curve-restricted GCS problem for
←−

H is strongly NP-hard.

Also, note that we only prove several problem variants to be NP-hard. The
question of whether these problems are also in NP remains open. It is interesting
to note that for the problem of computing a minimum-link path inside a simple
polygon, it has been shown that coordinates with exponential bit complexity are
sometimes required [88]. This suggests the problems we discuss may have a similar
structure.

83

3 Simpli�cation

▶ 3.3 Vertex-restricted simplification under Fréchet
distance

We use the free space diagram between P and its shortcut graphG to solve the vertex-
restricted GCS problem under the weak and strong Fréchet distances in O(n

3
) time

and space. This is related to map-matching [15], however in our case we need to
compute shortest paths in the free space that correspond to simple paths in G. While
map-matching for closed simple paths is NP-complete [107], we exploit the DAG
property of G to develop e�cient algorithms.

▶ 3.3.1 Shortcut DAG and free space diagram

For a given polygonal curve P , we de�ne its shortcut DAG G = G(P) = (V , E), where
V = {1, … , n} and E = {(u, v) | 1 ≤ u < v ≤ n}. We consider each v ∈ V to be
embedded at pv and each edge e = (u, v) ∈ E to be embedded as a straight line
shortcut linearly parameterized as e(t) = (1 − t)pu + tpv for t ∈ [0, 1]. We consider
the parameter space of G to be E × [0, 1].

We described the free space diagram for computing the Fréchet distance between
polygonal curves in Section 1.2.2. In this chapter, we also make use of a generalized
version that is de�ned between a polygonal curve and a graph, speci�cally, the
shortcut DAG.

Let � > 0, and consider the joint parameter space [1, n] × E × [0, 1] of P and G.
Any (s, e, t) ∈ [1, n] × E × [0, 1] is free in the diagram if ‖P(s) − e(t)‖ ≤ � . For brevity,
we write (s, e(t)) instead of (s, e, t), and if e(t) = v ∈ V we write (s, v). The free
space diagram FSD

�
(P , G) consists of all points in [1, n] × E × [0, 1] together with an

annotation for each point whether it is free or not. See Figure 1.2 for an example
of a free space diagram between two curves. The free space diagram FSD

�
(P , G)

consists of one cell for each edge in P and each edge in G. The free space in such
a cell is convex. The boundary of a cell consists of four line segments which each
contain at most a single free space interval. We consider the free space diagram to
be composed of spines and strips; see Figure 3.3. For any v ∈ V and e ∈ E we call
SP(v) = [1, n] × v a spine and ST(e) = [1, n] × e × [0, 1] a strip. We denote the free
space within spines and strips as SP

�
(v) = {(s, v) | 1 ≤ s ≤ n, ||P(s) − pv || ≤ �} and

ST
�
(e) = {(s, e(t)) | 1 ≤ s ≤ n, 0 ≤ t ≤ 1, ||P(s) − e(t)|| ≤ �}, respectively. For any

edge (u, v) ∈ E, both spines centered at the vertices of the edge are subsets of the
strip: SP(u), SP(v) ⊆ ST(u, v), and SP(u) is a subset of all strips with respect to edges
incident on u.

84

3.3 Vertex-restricted simpli�cation under Fréchet distance

▶ 3.3.2 Free space based algorithm for weak Fréchet simplifica-
tion

In this section we provide an algorithm to solve the vertex-restricted GCS problem
under the weak Fréchet distance in O(n

3
) time and space. We will see that the

optimal simpli�cation P
′ is a shortest simple path in G that corresponds to a path

 from (1, 1) to (n, n) in FSD
�
(P , G) that is contained in free space.

Let P ′ = wF (P , �) be an optimal vertex-restricted simpli�cation of P and let
n
′
= #P

′. Then P ′ is a path inG, and P ′ visits an increasing subsequence of vertices in
P (orV). From the fact thatwF(P , P ′) ≤ � we know that there is a path = (�, �) from
(1, 1) to (n, n′) in FSD

�
(P , P

′
) that lies entirely within free space. Since FSD

�
(P , P

′
)

is a subsequence of FSD
�
(P , G), the path  = (�, �) is also a path in FSD

�
(P , G).

Here, � is a reparameterization of P , and � is a reparameterization of a simple path
P
′
= ⟨pi1

, pi2
, … , pi

k
⟩ in G with i1 = 1 and i

k
= n. We call (s, d) in FSD

�
(P , G) weakly

reachable if there exists a path  = (�, �) from (1, 1) to (s, d) in FSD
�
(P , G) that lies in

free space such that � is a reparameterization of a simple path from p1 to some point
on an edge in G. We denote the number of spines hit by this simple path  by # ,
and we call  weakly reachable. We de�ne the cost function � ∶ [1, n]×V → ℕ∪{0}

as �(z, v) = min # , where the minimum ranges over all weakly reachable paths
to (z, v) in the free space diagram. If no such path exists then �(z, v) = ∞. Note
that all points in a free space interval (on the boundary of a free space cell) have the
same �-value.

Observation 3.3.1. There is a weakly reachable path  in FSD
�
(P , G) from (1, 1) to

(n, n) with # = #wF (P , �) if and only if �(n, n) = #wF (P , �).

Since �(n, n) = #wF (P , �) is the length of a shortest simple path P
′ in G

′ that

Figure 3.3: Spines and strips in a free space surface.

85

3 Simpli�cation

corresponds to a weakly reachable path  = (�, �) in FSD
�
(P , G), we can compute

�(n, n) by propagating �-values across free space intervals in a breadth-�rst manner.
However, we need to construct both P

′ and  during our algorithm. As opposed
to generic map-matching algorithms for the weak Fréchet distance [28], we need to
ensure that P ′ is simple.

Since � is the length of a shortest path, it seems as if one could compute it by
simply using a breadth-�rst propagation. However, one has to be careful because a
weakly reachable path  is only allowed to backtrack along the path in G that it has
already traversed. We therefore carefully combine two breadth-�rst propagations to
compute the � values for all I ∈ , where  is the set of all (non-empty) free space
intervals on all spines SP(v) for all v ∈ V . For the primary breadth-�rst propagation,
we initialize a queue Q by enqueuing the interval I ⊆ SP

�
(1) that contains (1, 1).

Once an interval has been enqueued it is considered visited, and it can never become
unvisited again. Then we repeatedly extract the next interval I from Q. Assume I ⊆
SP

�
(u). For each v from u+1 to n we consider ST(u, v) and we compute all unvisited

intervals J ⊆ SP
�
(u) ∪ SP

�
(v) that are reachable from I with a path in ST

�
(u, v).

These J can be reached using one more vertex, therefore we set �(J) = �(I) + 1,
we insert J into Q, and we store the predecessor �(J) = I . For each J ∈ SP

�
(u) we

then launch a secondary breadth-�rst traversal to propagate �(J) to all unvisited
intervals J ′ ∈  that are reachable from J within the free space of FSD

�
(P , G(�(J))).

Here, G(�(J)) denotes the projection of the predecessor DAG rooted at �(J) onto
G, i.e., each interval I in the predecessor DAG is projected to u if I ⊆ SP

�
(u). This

allows  to backtrack along the path in G that it has already traversed, without
increasing �. This secondary breadth-�rst traversal uses a separate queue Q′, and
sets �(J ′) = �(J) and �(J

′
) = J . When this secondary traversal is �nished, Q′ is

prepended to Q, and then the primary breadth-�rst propagation continues. Once Q
is empty, i.e., all intervals have been visited, �(I) = #wF (P , �), where I ⊆ SP

�
(n) is

the interval that contains (n, n). Backtracking a path from n to 1 in the predecessor
DAG �(I) yields the simpli�ed curve P ′. This algorithm visits each interval in 
once using nested breadth-�rst traversals. Since there are O(n3) free space intervals
this takes O(n3) time and space.

Theorem 3.3.2. Let P be polygonal curve in ℝ
d with n vertices and � > 0 be a real.

One can compute wF (P , �) in O(n3) time and space.

▶ 3.3.3 Extended algorithm for Fréchet distance simplification

In this section we provide an algorithm to solve the vertex-restricted GCS problem
under the Fréchet distance.

86

3.3 Vertex-restricted simpli�cation under Fréchet distance

2 3

4
5

6 7

I = [1, 9]

8
91

Figure 3.4: Elementary intervals on each spine are created by subdividing free space
intervals with all endpoints of free space intervals on all other spines.

Elementary intervals and cost functionΦ Let S ⊆ [1, n] be the set of all interval
endpoints of all free space intervals of SP

�
(v) ⊆ SP(v) = [1, n] × v for all v ∈ V ,

projected onto [1, n]. The set S induces a partition of [1, n] into intervals; these
are half-open [a, b), except for the last interval [a, b] which is closed. For each
v ∈ V , let L

�
(v) be the ordered list of elementary intervals obtained by subdividing

the intervals of SP
�
(v) according to this partition; see Figure 3.4. We assume that

elementary intervals in L
�
(v) are ordered in increasing order of their starting point.

Projecting all L
�
(v) to [1, n] induces a total order on all elementary intervals; we use

< and = to compare intervals.
We de�ne the cost function � ∶ [1, n]×V → ℕ∪{0} as �(z, v) = min # , where

the minimum ranges over all reachable paths from (1, 1) to (z, v) in the free space
diagram. Here,  is called reachable if it starts in (1, 1), lies entirely in free space,
and is monotone in P and on each edge in E. If no such path exists then �(z, v) = ∞.
The function � is de�ned on all spines SP

�
(v) for all v ∈ V , and it captures min-link

reachability in the free space diagram. We will propagate � across the free space
diagram using dynamic programming.

Lemma 3.3.3 (Properties of elementary intervals). Let v ∈ V . Then:

1. |L
�
(v)| ≤ 2n

2
+ 1.

2. �(a, v) = �(b, v) for all a, b ∈ e ∈ L
�
(v).

Proof. 1. There are at most n free space intervals on each spine, and there are n
spines, therefore there are |S| = 2n

2 interval endpoints. These subdivide [1, n] into
2n

2
+ 1 intervals.

87

3 Simpli�cation

SPδ(v)

b

a

(a)

SPδ(v)

a

b

(b)

SPδ(u)

sp

SPδ(v)

a

b

(c)

SPδ(u)

s

SPδ(w)

p

Figure 3.5: Illustration of the proof of property 2. a and b belong to the same ele-
mentary interval e that is highlighted in gray. (a) b > a (b) if a > b.

2. For the sake of contradiction, assume there exist a, b ∈ e, with a ≠ b such
that �(a, v) ≠ �(b, v). Assume without loss of generality that �(a, v) < �(b, v). Let
(a, v) be a reachable path to (a, v) with #(a, v) = �(a, v).

2a. If b > a, then extending (a, v) to continue vertically from a to b along e

yields a reachable path (b, v) to (b, v) with #(b, v) = #(a, v); see Figure 3.5(a).
Therefore �(b, v) ≤ �(a, v) which is a contradiction.

2b. Now, assume that a > b. Let s be the start point of e, and let p be the last
point on (a, v) such that p = (s, j) for some u ≤ j < v with u ∈ V . Then p lies
in some strip ST

�
(u, v). Since p, (a, v), (b, v) all lie in free space and e is a subset

of a free space interval of a single cell, p, (a, v), (b, v) all lie in a single free space
cell. Hence we p with a line segment to (b, v), which yields a reachable path (b, v)
with #(b, v) = #(a, v); see Figure 3.5(b). Therefore �(b, v) ≤ �(a, v) which is a
contradiction.

By Lemma 3.3.3, � is constant on each elementary interval e ∈ L
�
(v). For brevity

we write �(e, v) and we write (e, v) for a reachable path to e. Lemma 3.3.4 below
shows the recursive formula for � which we will use in our dynamic programming
algorithm.

88

3.3 Vertex-restricted simpli�cation under Fréchet distance

Lemma 3.3.4 (Recursive formula).
1. For all e ∈ L

�
(1): If e is reachable then �(e, 1) = 0, otherwise �(e, 1) = ∞.

2. For all v ∈ {2, … , n} and e ∈ L
�
(v): �(e, v) = min

1≤u<v

min

e
′
∈L

�
(u)

e
′
≤e

�(e
′
, u) + 1 ,

where the second minimum is taken over all e′ such that there exists a reachable
path from e

′ to e within ST
�
(u, v).

Proof. 1. If e is reachable, then we know that �(e, 1) = #(e, 1) = 0 because e belongs
to the �rst spine L

�
(1). If e there is no reachable path to e then �(e, 1) = ∞.

2. By de�nition and Lemma 3.3.3, �(e, v) = min(e,v) #(e, v), where the mini-
mum ranges over all reachable paths to (e, v) in the free space diagram, and reachable
paths are monotone in P and on each edge in E.

Let  ∗
(e, v) be a reachable path to (e, v) such that # ∗

(e, v) = �(e, v). Now
consider the last spine SP(u) that  ∗

(e, v) visits before visiting SP(v), and let e′ ∈
L
�
(u) be the last elementary interval it visits. Let 1 be the sub-path of  ∗

(e, v)

that ends in e
′ on SP(u), and let 2 be the remaining portion of  ∗

(e, v) that starts
in e

′ on SP(u) and ends in e on SP(v). Then 2 is a reachable path from (e
′
, u) to

(e, v), and due to monotonicity in E, 2 has to lie in ST(u, v). Therefore #2 = 1 and
# ∗

(v, e) = #1 + #2 = #1 + 1 by construction. We know that #1 has to be the
minimum number of links to reach (e′, u), because otherwise #(e, v) would not be
optimal. Hence, �(e′, u) = #1 and we have �(e, v) = �(e′, u) + 1.

Since edges in E are directed, any reachable path to (e, v) can only visit spines
SP(u) for u ∈ {1, … , v}. Any such path has to be monotone in P and therefore can
only visit elementary intervals e′ < e. Thus, �(e, v) = min

1≤u<v

min

e
′
∈L

�
(u)

e
′
≤e

�(e
′
, u) + 1,

where only those e′ are considered for which there is a reachable path from e
′ to e

in ST(u, v).

DP algorithm First we compute the shortcut DAG G and the free space diagram
FSD

�
(P , G). This can be done by computing free space diagrams for all strips (and

spines) and connecting them together with respect to the adjacency information in
G. For every v ∈ V we then compute the list L

�
(v) of all elementary intervals in

SP(v), and we initialize �(v, e) according to Lemma 3.3.4. Algorithm 1 processes the
free space diagram spine by spine for v ∈ {2, … , n}.

For �xed v we compute �(e, v) for all v ∈ L
�
(v) by propagating reachability

according to the recursive formula in Lemma 3.3.4 using the following batching
approach; refer to Figure 3.6 for an illustration. For all u < v and all elementary
intervals e′ ∈ L

�
(u) we compute the reachable interval Iv(e′) ⊆ SP(v) which is the

89

3 Simpli�cation

1

2

3

4

5

6

7

φ(e6, u) = 2

φ(e5, u) = 4

φ(e4, u) = 1

φ(e3, u) = 3

φ(e2, u) = 5

φ(e1, u) = 6

Iv(e6)

Iv(e5)

Iv(e1)

Iv(e2)

Iv(e3)

Iv(e4)

3

5

2

4

67

1234567∞

∞

∞
7

6

4

2

5

3

∞

Lower Envelope

u v SPδ(v)

3

7

6

4

4

4

2

2

2

φ− values

(a) (b) (c)

Figure 3.6: Propagating � within ST
�
(u, v). (a) shows reachable intervals on SP(v)

computed for elementary intervals in L
�
(u). (b) shows the computation of the lower

envelope u of all reachable intervals Iv(e′) for all e′ ∈ L
�
(u). (c) shows the resulting

�-values.

90

3.3 Vertex-restricted simpli�cation under Fréchet distance

smallest (continuous) interval in SP(v) that includes all points z ∈ SP
�
(v) that are

reachable from e
′ within ST

�
(u, v). Note that Iv(e′) generally includes points from

multiple elementary intervals as well as non-reachable points. For all points z ∈
Iv(e

′
) that can be reached with a path that visits e′ and traverses ST

�
(u, v), we know

that �(z, v) ≥ �(e′, u)+1. We therefore associate the cost (Iv(e′)) = �(e′, u)+1with
the reachable interval Iv(e′). Thus, (Iv(e′)) is a partially de�ned constant function
on SP(v), the graph of which is a line segment Iv(e′) × (Iv(e′)). For each u < v, we
compute the lower envelope u ∶ SP(v) → ℝ of all line segments Iv(e′) × (Iv(e′))
for all e′ ∈ L

�
(u), which is the pointwise minimum of all these partially de�ned

constant functions. For each elementary interval e ∈ L
�
(v), we have that u is

constant by construction, and we compute �(e, v) = min1≤u<v u(e), which follows
from the recursive formula in Lemma 3.3.4. After having processed all v ∈ {2, … , n},
all �(e, v) have been computed. We then construct a reachable path((1, 1), (n, n)) by
backtracking the �-values from �(n, n). The sequence of traversed strips corresponds
to the desired path P ′ in G.

There are a total of O(n3) elementary intervals. For �xed u < v, using Lemma
3 of [15] we can compute all reachable intervals within a single strip ST(u, v) in
O(|L

�
(u)|) = O(n

2
) time. Each lower envelope u can be computed in time linear in

the number of intervals, hence O(n2) time. Computing �(e, v) = min1≤u<v u(e) for
all e ∈ L

�
(v) takes O(n3) time, thus the total runtime is O(n4) using O(n3) space.

Theorem 3.3.5. Given a polygonal curve P with n vertices and � > 0, an optimal
solution to the vertex-restricted GCS problem under Fréchet distance can be computed
in O(n4) time and O(n3) space.

Proof. The main task is to compute �(n, n). The shortcut DAG can be computed
straight-forwardly in O(n

2
) time and space, and the free space diagram requires

computing all spines and strips. There are O(n2) strips and it takes O(n) time and
space to compute the free space diagram for each strip, for a total of O(n3) time and
O(n

2
) space. By Lemma 3.3.3 there areO(n2) elementary intervals per spine and thus

O(n
3
) elementary intervals total, and thus all the L

�
(v) can be computed in O(n

3
)

time. The �-value of each of the O(n3) elementary intervals is initialized in lines 5
and 6 in overall O(n3) time.

Lines 7-14 compute all �(e, v) for all e ∈ L
�
(v) by batching the reachability

propagations according to the recursive formula in Lemma 3.3.4. Lemma 3 of [15]
shows that within a single strip ST(u, v), all reachable intervals for allO(n) free space
intervals can be computed in O(n) time. In our case, for �xed u < v, we have O(n2)
elementary intervals in L

�
(u) (which are subdivisions of the free space intervals),

and we can apply this lemma to compute all their reachable intervals in O(n2) time.

91

3 Simpli�cation

Algorithm 1: Algorithm for computing F (P , �).
Input :Polygonal curve P = ⟨p1, p2, ⋯ , pn⟩, and � > 0
Output :Optimal vertex-restricted simpli�cation P ′ of P such that

F(P , P ′) ≤ �
1 Compute shortcut DAG G = (V = {1, … , n}, E)

2 Compute FSD
�
(P , G)

3 for all v ∈ V :
4 Compute the list of elementary intervals L

�
(V)

5 for all e ∈ L
�
(v) : �(v, e) = ∞ // Initialize �

6 for all e ∈ L
�
(1) that is reachable from (1, 1) : �(1, e) = 0 // Initialize �

7 for v = 2 to n :
8 for all u ∈ {1, ⋯ , v − 1} :
9 S = ∅

10 for all e′ ∈ L
�
(u) :

11 Compute the reachable interval Iv(e′) and set
 (Iv(e

′
)) = �(e

′
, u) + 1

12 S = S ∪ {Iv(e
′
)}

13 Compute the lower envelope u of all I × (I) for all I ∈ S
14 for all e ∈ L

�
(v) : �(e, v) = min1≤u<v u(e)

15 Return vertices of P ′ by tracing back the � values.

We assign to each reachable interval Iv(e) the cost that it takes to reach e with a
min-link path through e′. For �xed v and u, lines 10-12 take O(n2) time. Processing
elementary intervals e ∈ L

�
(u) in increasing order, yields reachable intervals in

increasing order of their start points. This allows us to compute the lower envelope
u ∶ SP

�
(v) → ℝ in linear time in the number of intervals (see Section 5 of [20]),

hence in O(n
2
) time. By construction, u is constant on each e ∈ L

�
(v) . From the

recursive formula in Lemma 3.3.4, follows that �(e, v) = min1≤u<v u(e), which is
computed in O(n3) time in line 14. Therefore the entire runtime is O(n2 ⋅n2+n ⋅n3) =
O(n

4
), and the overall space needed is O(n3). A min-link reachable path in the free

space diagram can be traced back from �(n, n) in O(n
3
) time, and the sequences of

spines visited corresponds to the simpli�cation P ′.

Improved DP algorithm We now describe an improvement of the algorithm to
O(n

3
) time. The runtime bottleneck of the algorithm is that, for �xed v ∈ V , the

propagation step which computes all �(e, v) for all e ∈ L
�
(v), takes O(n3) time, even

92

3.3 Vertex-restricted simpli�cation under Fréchet distance

though there are only |L
�
(v)| = O(n

2
) elementary intervals. It turns out that the

 -values of the reachable intervals have a special structure that we can exploit to
speed up this propagation to take only O(n2) time.

For this we need to consider portions of strips and spines: Let u < v. We de�ne
ST[i,j](u, v) = [u, v]×[i, j] and SP[i,j](u) = u×[i, j]. Let L[i,j]

�
(u) = L

�
(u)∩SP[i,j](u). For

each elementary interval e ∈ L
[i,j]

�
(u), we break the reachable interval Iv(e) ⊆ SP(v)

into the upper reachable interval I⊤
v
(e) = Iv(e) ∩ SP

[i+1,n]
(v) and the lower reachable

interval I⊥
v
(e) = Iv(e) ∩ SP

[i,i+1]
(v).

Observation 3.3.6. Let e, e′ ∈ L
[i,i+1]

�
(u). Then:

• I⊤
v
(e) and I⊤

v
(e
′
) are identical.

• I⊥
v
(e) = [a, i], where a is the maximum of the bottom endpoints of e and the free

space interval on SP
[i,i+1]

�
(u), or ∞ if the free space interval is empty.

This means that all elementary intervals in L
[i,i+1]

�
(u) generate the same upper

reachable interval, and lower reachable intervals depend on bottom endpoints only.

Lemma 3.3.7 (Monotonicity of Φ). Let e1 < ⋯ < em be all elementary intervals in
L
[i,i+1]

�
(u). Then �(em , u) ≤ … ≤ �(e2, u) ≤ �(e1, u).

Proof. We use proof by contradiction. Let j and k be two integers such that 1 ≤

j < k ≤ m, ej < e
k

and �(e
k
, v) > �(ej , v). Then a reachable path (ej , 1) of length

#(ej , 1) = �(j, v) is also reaching e
k

since all e1, ⋯ , em are within free space interval
of [i, i + 1] ∩SP

�
(v). Therefore, #(e

k
, 1) = #(ej , 1) = �(ej , v) and we have �(e

k
, v) ≤

�(ej , v) which is a contradiction.

Now let �[i,i+1](v) be the minimum �-value in L
[i,i+1]

�
(v). For each e ∈ L

[i,i+1]

�
(v)

let
̄
�(e, v) = min

1≤u<v

min

e
′
∈L

[i,i+1]

�
(u)

e
′
≤e

�(e
′
, u) + 1 = min

e
′
∈L

[i,i+1]

�
(v−1)

e
′
≤e

̄
�(e

′
, v − 1) + 1 ,

where only those e′ are considered for which there exists a reachable path from e
′

to e within ST
[i,i+1]

�
(u, v). The function ̄

� propagates horizontal reachability within
[i, i + 1] only.

The propagation now proceeds in two steps, for �xed v:

1. For all u < v and all 1 ≤ i < n we compute the upper interval I⊤
v
(e
′
) for

any �xed e′ ∈ L
[i,j]

�
(u) using Lemma 3 of [15], and we know that (I⊤

v
(e
′
)) =

93

3 Simpli�cation

�
[i,i+1]

(u) + 1. This generates O(n2) upper reachable intervals. We compute
their lower envelope 1.

2. We propagate lower reachable intervals only from u = v − 1 using ̄
�: For all

e
′
∈ L

�
(v − 1) we compute the lower interval I⊥

v
(e
′
). This can be done in

constant time per interval, and it takes O(|L
�
(v − 1)|) = O(n

2
) time. We set

 (I
⊤

v
(e
′
)) =

̄
�(e

′
) +1. We compute their lower envelope 2. Finally we need to

update � using the lower envelope of 1 and 2 and we also update ̄
� using

2 only.

Thus the runtime for an update step is O(n2) and the total runtime is O(n3).

Theorem 3.3.8. Let P be a polygonal curve with n vertices and let � > 0 be a real
value. One can compute F (P , �) in O(n3) time and O(n3) space.

▶ 3.4 Computing
−→

H  (P , �)

In this section we revisit the problem of computing −→H (P , �) considered by Van
Kreveld et al. [89]. We improve on the running time of their O(n4) time algorithm.
First we thicken the input curve P by width � . This induces a circular arc polygon c ,
i.e. a polygon-like shape where vertices can be connected either through a straight
line segment or a circular arc. c has ℎ = O(n2) holes. We can transform this to a
normal polygon  by replacing each circular arc with a straight line segment.

We have the following lemma:

Lemma 3.4.1. Let ⟨pipj⟩ be a shortcut between two vertices of P . ⟨pipj⟩ lies fully
within c if and only if it lies fully in  .

Proof. Let c be a circular arc of c , where v is the center of the circle supporting c.
Then v is a vertex of P . Let q, q′ be the endpoints of c, so qq′ is the line segment that
is part of the boundary of  that replaces c. We observe that the region R bounded
by c and ⟨qq

′
⟩ is convex. If R were to contain some vertex of P , then c would not be

the boundary of c . Furthermore, shortcuts ⟨pipj⟩ of P have their endpoints in c
and also inside of  , so such a shortcut must intersect R zero times or twice. Since
⟨pipj⟩ and ⟨qq

′
⟩ are both line segments, they can intersect at most once. Hence, if

⟨pipj⟩ intersects ⟨qq
′
⟩, it must also intersect c. Hence R cannot be intersected by

any shortcut ⟨pipj⟩, which means there can be no shortcuts lying in c but not  .

94

3.5 NP-hardness template for curve-restricted simpli�cation

Now all we need is to decide whether each shortcut ⟨pipj⟩ for all 1 ≤ i < j ≤ n
lies entirely within  or not. To this end, we preprocess  into a data structure
such that for any straight line query ray � originated from some point inside the
 , compute the �rst point on the boundary of  hit by �. In other words we have
a collection of ℎ simple polygons of total complexity of N = O(n

2
). We use the

data structure proposed by [40] of size O(N) which can be constructed in time
O(N

√

ℎ + ℎ
3/2
log ℎ + N logN) and which answers queries in O(

√

ℎ logN) time. We
have Θ(n2) shortcuts ⟨pipj⟩ to process and need to examine whether each shortcut
lies inside  or not i.e., whether there is a simple polygon (hole in ) that is hit
by �. If a shortcut lies inside  then we store it into the edge set of the shortcut
graph proposed by Imai-Iri [72]. Otherwise we eliminate the shortcut. We originate
a ray at pi and compute the �rst point x on the boundary of  hit by the ray in
O(

√

ℎ logN) query time. All we need is to compare the length of the ray to the
length of the shortcut. If ‖pi −x‖ ≥ ‖pi −pj ‖ then the shortcut lies inside  , otherwise
it does not. Once the edge set of the shortcut graph is constructed, we compute the
shortest path in it. As a result we have the following theorem:

Theorem 3.4.2. Let P be polygonal curve in ℝ
d with n vertices and � > 0 be a real.

One can compute
−→

H (P , �) in O(n3 log n) time and O(n2) space.

▶ 3.5 NP-hardness template for curve-restricted sim-
plification

In this section we construct a template that we use to prove NP-hardness of the curve-
restricted GCS problems for most of the distance measures discussed in this chapter.
The template takes inspiration from the NP-hardness proofs of minimum-link path
problems [88]. We believe that this template can be adapted to show hardness of
other similar problems.

The template reduces from the subset sum problem. Given a set of m positive
integer numbers A = {a1, a2, … , am} and an integerM , we will construct an instance
of the curve-restricted GCS problem such that there exists a subset B ⊂ A with the
total sum of its integers equal to M if and only if there exists a simpli�ed polygonal
curve with at most 2m + 1 vertices.

▶ 3.5.1 Overview
The input curve P we construct has a zig-zag pattern. It has m split gadgets at every
other bend of the pattern, m + 1 enumeration gadgets at the other bends, and 2m

95

3 Simpli�cation

pinhole gadgets halfway through each zig-zag segment (refer to Figure 3.7). The
split and the enumeration gadgets are the same for all the distance measures, and
only the pinhole gadgets vary. The construction forces any optimal simpli�cation
P
′ to follow a zig-zag pattern. The pinhole gadget is named as such because any

segment of P ′ that goes through it is forced to pass through a speci�c point, called
the pinhole. This limits the placements of the vertices of P ′. The choice of where
to place the vertex on each split gadget corresponds to the choice of including or
excluding a given integer in the subset B. The x-coordinate of the vertex of P ′ on
each enumeration gadget encodes the sum of integers in B up to that point. We will
ensure that the last point of P is reachable using at most 2m + 1 vertices only if B
sums to exactly M . Di�erent distance measures require di�erent pinhole gadgets
to make this construction work. For the reduction to be successful the following
properties must hold for the construction:

1. Any segment of P ′ starting before a pinhole gadget and ending after the pin-
hole gadget must pass through the pinhole gadget’s pinhole.

2. It must be impossible to have a segment of P ′ traverse multiple pinhole gadgets
at once.

3. Any segment of P ′ where the starting vertex u is on a split or enumeration
gadget, the segment goes through a pinhole, and the ending vertex v is on the
next enumeration or split gadget, must have distance ≤ � to P[u, v].

4. P must be polynomial in size. Speci�cally, only a polynomial number of poly-
line segments can be used and all vertices must have rational coordinates.

In Section 3.5.3 we will show that a construction with these properties implies NP-
hardness.

▶ 3.5.2 Exact construction

Exact coordinates for the construction are based on two constants � and
 . The value
� is the bound on the allowed distance between a simpli�cation and the original
curve, and
 is a constant that is signi�cantly larger than � . For our construction,
we set � = 4∑ai , and
 = �2.

Split gadget The split gadgets, denoted by � i (for 1 ≤ i ≤ m), consist of a chain
of �ve segments (refer to Figure 3.8). Their vertex coordinates are as follows (with

96

3.5 NP-hardness template for curve-restricted simpli�cation

split gadget

pinhole gadget

enumeration gadget

δ
}

}
δ

γ

Figure 3.7: Sketch of our template curve.

vertex index denoted by subscript):

�
i

1
, �

i

5
=
(

3(2i − 1)

4

 ,

)
,

�
i

2
, �

i

6
=
(

3(2i − 1)

4

 + w,

)
,

�
i

3
=
(

3(2i − 1)

4

 + w,
 + ℎi
)
,

�
i

4
=
(

3(2i − 1)

4

 ,
 + ℎi
)
,

where ℎi = 2
ai

3
−4ai
for i ∈ {1, … ,m}, and w = �/2 is the width of the split gadgets.

The segments P[� i
1
, �

i

2
] and P[� i

3
, �

i

4
] are called � is lower- and upper-mirror segments

respectively.

97

3 Simpli�cation

w

hi

σi
1, σ

i
5 σi

2, σ
i
6

σi
3

σi
4

Figure 3.8: Split gadget shown in black, with a simpli�cation in red. The vertex
of the simpli�cation can be placed on either the top or bottom horizontal (mirror)
segment. The diagonal distance (in gray) is less than �/

√

2, thus all the points of the
split gadget are within distance � to either placement of the simpli�cation vertex.

Enumeration gadget The enumeration gadgets, denoted by �i (for 1 ≤ i ≤ m−1),
consist of just one horizontal segment, with the following vertices:

�
i

1
=
(

3i

2

 − w, 0
)
,

�
i

2
=
(

3i

2

 , 0
)
.

There are two special enumeration gadgets: the �rst enumeration gadget �0 consists
of one point with coordinates (0, 0) (the starting point of the curve P), and the last
enumeration gadget �m , also called the budget segment, consists of two vertices with
the following coordinates:

�
m

1
=
(

3m

2

 − w, 0
)
,

�
m

2
=
(

3m

2

 − M, 0
)
.

Pinhole gadget The exact structure of the pinhole gadgets depends on the curve
distance measure. It is important for us however to specify the coordinates of its
pinhole, that is, the �xed point that every simpli�cation segment must pass through.

98

3.5 NP-hardness template for curve-restricted simpli�cation

We denote these pinholes as ci for 0 ≤ i ≤ 2m − 1. Their coordinates are:

c
i
=
(

3

8

 +

3i

4

 ,

1

2

)
.

Each segment of a simpli�ed polygonal curve directed from an enumeration to a
split gadget has to pass through a pinhole with an even index, and each segment
from a split to an enumeration gadget has to pass through a pinhole with an odd
index.

▶ 3.5.3 Proof of the construction

As stated in the overview, there are several properties that must be satis�ed for the
construction to work. We will begin by showing that as long as a particular pinhole
gadget inserted in the template does not signi�cantly alter the structure of the curve,
the last three properties are already satis�ed by our construction regardless of the
shape of the pinhole gadget. Property 2 holds because all of the pinholes have the
same y-coordinate. So any segment traversing two pinholes must be a horizontal
one with y-coordinate
/2, which makes the distance between the segment and
the enumeration or split gadget between the pinholes greater than � . Property 4
obviously holds as our curve has a polynomial number of vertices with rational
coordinates. For Property 3 we have the following lemma:

Lemma 3.5.1. The split and enumeration gadgets can be covered by a vertex of a
simpli�cation on the gadget under distances

−→

H ,
←−

H , H, F, wF.

Proof. The width of an enumeration segment is �/2. Trivially, under all the distance
measures, a point on it will cover the whole segment.

The width of a split gadget � i is �/2 as well, and the height is less than ai which
in turn is less than �/2. Then, the diagonal of the rectangle forming the gadget is less
than �/

√

2 (refer for an example to Figure 3.8). Thus, any point on the split gadget is
within distance � of all the points of the gadget under any of the considered distance
measures.

Since split and enumeration gadgets are completely covered by any points we
place on them, property 3 of our construction holds as long as our pinhole gadget
has distance at most � to any line segment between a split and enumeration gadget
that passes through the pinhole.

99

3 Simpli�cation

Now that we have shown our properties to hold (given a correct pinhole gadget),
we will show how the construction enforces that any optimal simpli�cation of P
with at most 2m + 1 vertices encodes a subset of A that sums to exactly M .

Lemma 3.5.2. If the input curve P is constructed with pinhole gadgets satisfying the
four template properties, any optimal simpli�cation P ′ of P must have a vertex on all
split and enumeration gadgets in the corresponding order, passing through the pinhole
of each pinhole gadget.

Proof. Note that we count the split gadgets starting from 1, and the enumeration
segments starting from 0. We will prove that every segment of a valid simpli�cation
of size at most 2i of the pre�x of P up to enumeration segment �i passes through a
pinhole, and that each segment connects a split and an enumeration gadget. There
are 2i pinhole gadgets between �0 and �i . Since P , by assumption, satis�es Property
2 (no simpli�cation segment can traverse multiple pinholes at once), and Property
1 (any segment of a simpli�cation starting before and ending after a pinhole gadget
must pass through the pinhole), at least 2i + 1 vertices are needed to reach �i from
�0. Property 3 implies that a simpli�cation with a vertex on each enumeration and
split gadget is valid and since it has 2i + 1 vertices it is optimal. Finding a valid
simpli�cation that does not have a vertex on each split and enumeration gadget
requires additional vertices so that the simpli�cation is still within distance � of
each gadget. This would imply that such a simpli�cation is not optimal.

Lemma 3.5.3. The set of points on the ith enumeration gadget that a valid simpli-
�cation curve with at most 2i + 1 vertices can reach encodes all possible subsets of
{a1, … , ai} in their x-coordinates: For a given subset B′, the horizontal distance from
the corresponding point to the right end of the enumeration segment is ∑

a∈B
′

a.

Proof. From Lemma 3.5.2 we know that a simpli�cation that reaches �i using at most
2i +1 vertices has each segment pass through a pinhole. Knowing this, we can prove
the lemma by induction.

Consider the base case i = 1. If we draw a line from �
0 through pinhole c0 there

are two intersection points with �1 which are thus the possible locations of the �rst
vertex of an optimal simpli�cation. The coordinates of these reachable points are
(
3

4

 ,
) on the lower mirror segment and (3

4

 +

3

4
ℎ1,
 + ℎ1) on the upper mirror

segment. Drawing lines from these points through the next pinhole c1 gives two
possible intersection points with �1: (3

2

 , 0), for the line from the point on the lower

mirror segment, and (3
2

 − a1, 0), for the line from the point on the upper mirror

segment. The x-coordinates of these points are of the form 3

2

 − S, where S is the

100

3.5 NP-hardness template for curve-restricted simpli�cation

sum of the elements in any possible subset of {a1}, namely the empty set and the
set {a1} itself.

Now for the general case, assume that any valid simpli�cation with 2(i−1)+1 ver-
tices can reach a set of points on �i−1 that encodes all of the subsets of {a1, … , ai−1}.
That is, the x-coordinate of a reachable point is of the form 3(i−1)

2

 − S, where S

is the sum of the elements in some subset of the �rst i − 1 integers in A. We will
now show that going from any one of these reachable points through the next two
pinholes will allow us to reach precisely the points (3i

2

 −S, 0) and (3i

2

 −S −ai , 0) on

�
i , corresponding to the two subsets created by either including ai into that subset

or not.
The line from (

3(i−1)

2

 − S, 0) through c

2(i−1) (the pinhole between �
i−1 and � i),

intersects � i in the point (S − 3

4

 +

3

2

 i,
) on the lower mirror line and the point

(S +
2Sℎi

+
3

4
(ℎi +
(−1 + 2i)),
 + ℎi) on the upper mirror line. The lines through

these points and the next pinhole c2i−1 intersect �i in the points (3i
2

 − S, 0) and

(
3i

2

 − S − ai , 0), respectively.
Thus, the set of points on the ith enumeration gadget that a valid simpli�cation

with 2i + 1 vertices can reach encodes all possible subsets of {a1, … , ai}.

From these lemmas it follows that any point that can be reached on the last
enumeration gadget using at most 2m + 1 vertices encodes a sum of the integers
in a subset of A. We speci�cally constructed the �nal enumeration gadget to have
its rightmost point (i.e. the endpoint of P) to be the point that encodes the value
M . Thus there is a simpli�cation curve with 2m + 1 vertices if and only if there is
a subset B ⊂ A with the total sum of its integers being M . We conclude with the
following theorem.

Theorem 3.5.4. Given a curve distance measure, if there exists a pinhole gadget that
can be inserted into the described template such that the above properties hold, the
curve-restricted GCS problem for that distance measure is NP-hard.

▶ 3.5.4 NP-hardness of computing F(P , �),
←−

H (P , �)

Now, we will prove two versions of the GCS problem to be NP-hard using our tem-
plate by constructing suitable pinhole gadgets.

NP-hardness of computing F (P , �) We construct the pinhole gadget for F (P , �)
in the following way: It consists of a chain of �ve line segments that starts and ends

101

3 Simpli�cation

π1, π6

π2, π4

π3, π5
δ

Figure 3.9: A pinhole gadget for the Fréchet distance (with even index). An invalid
simpli�cation segment is shown as a dashed line. Any valid simpli�cation segment
must allow a parametrization that visits both disks twice in alternating order. This
is only possible by having the segment intersect the pinhole, the point where the
disks intersect.

in the pinhole point c. The vertices of pinhole gadget � have the following coordi-
nates, relative to c (refer to Figure 3.9):

�1, �6 = (0, 0) ,

�2, �4 =
(

−4�

5

,

3�

5)
,

�3, �5 =
(

4�

5

,

−3�

5)
.

These coordinates are for pinhole gadgets with an even index. For pinhole gadgets
with an odd index, the sign of the y-coordinates is inverted.

Lemma 3.5.5. A segment traversing a pinhole gadget � , where � is constructed as
described in this subsection, can only be within Fréchet distance � of � if it intersects
� ’s origin (the pinhole).

Proof. The distance between the outer vertices of the pinhole gadget and the pinhole
is exactly � . This means there is a segment that passes through the origin that is
within Fréchet distance � of the pinhole gadget � . Consider a pair of parametriza-
tions of the original and simpli�cation, for ease of description we will use the man-
dog terminology associated with the Fréchet distance. Let the man traverse P and
the dog traverse P ′. If we center a disk with radius � on every vertex of P , for the

102

3.5 NP-hardness template for curve-restricted simpli�cation

πi
1

πi
2

πi
3

πi
4

πi
5

πi
6 δ

δ

4δ

Figure 3.10: Pinhole gadget for the directed Hausdor� distance from the simpli�ca-
tion to the original curve. The pinhole point is shown in red. The points of the area
shaded in light-red have distance greater than � to the curve. Thus no simpli�cation
segments can pass through it.

parametrizations to realize a Fréchet distance of � the dog must pass through each
disk in the order of the associated vertices. For the pinhole gadget, since the disks
for �2 and �4 fully overlap, and the disks for �3 and �5 do as well, the dog must
alternate between visiting these disks. Since the dog cannot walk backwards, this
is only possible if the segment of P ′ intersects both circles in a single point. Due to
how the gadget is constructed, the only point lying on both circles is the pinhole
and so the simpli�cation segment must intersect the pinhole.

To assemble the hardness construction we translate the pinhole gadget to the
middle of each of the zig-zag segments of the template curve, and combining Theo-
rem 3.5.4 with the lemma above we obtain the following result:

Theorem 3.5.6. Computing F (P , �) is NP-hard.

NP-hardness of computing
←−

H  (P , �) Proving NP-hardness for computing←−H  (P , �)
requires another type of pinhole gadget. Our new gadget is shown in Figure 3.10.
Its vertices are as follows, relative to c:

103

3 Simpli�cation

For pinhole gadgets with an even index:

�1 =
(

−3�

5

,

−4�

5)
, �2 =

(

−6�

5

,

−8�

5)
, �3 = (2�, −4�) ,

�4 =
(

22�

5

, −

−4�

5)
, �5 =

(

6�

5

,

8�

5)
, �6 =

(

3�

5

,

4�

5)
.

For the odd-indexed pinhole gadgets this construction must be mirrored around a
horizontal line through the pinhole, so the line segment P[�1, �2] runs parallel with
the line segment from the preceding split gadget to �1.

Lemma 3.5.7. A segment traversing a pinhole gadget � , where � is constructed as
described in this subsection, can only be within directed Hausdor� distance (directed
from the segment to �) � if it intersects � ’s origin (the pinhole).

Proof. � i
1

and � i
6

both have distance exactly � to the origin so a segment that passes
through it has distance � to the gadget. Trying to pass to the right of the origin
doesn’t work as there is a gap of size 4� between the gadget’s segments on opposite
sides of the origin. On the left side of the origin there are no segments at all that
could have distance less than � .

To assemble the hardness construction we translate the pinhole gadget to the
middle of each of the zig-zag segments of the template curve (rotating the gadget as
needed as stated above). Combining Theorem 3.5.4 with the lemma above we obtain
the following result:

Theorem 3.5.8. Computing
−→

H  (P , �) is NP-hard.

▶ 3.5.5 Extending the template

With our template construction, it is also possible to prove NP-hardness for the
curve restricted GCS problem under the weak Fréchet, directed Hausdor� (directed
from curve to simpli�cation), and (undirected) Hausdor� distance measures. This
requires new types of pinhole gadgets, but these can be di�cult to design. We will
therefore use an alternative approach and show how we can combine our template
with the gadget introduced for Fréchet distance in Section 3.5.4 to prove NP-hardness
for these distance measures, by expanding one of the properties of our construction.
To see why the template and this gadget do not trivially imply NP-hardness for
these measures by the steps shown earlier in this section, refer to Figure 3.11: Under
distance measures like weak Fréchet, segments of P ′ do not have to pass exactly

104

3.5 NP-hardness template for curve-restricted simpli�cation

through the pinhole but can also pass within a small (Euclidean) distance of the pin-
hole. This implies that from a single vertex on a split gadget, instead of just one point
being reachable on the next enumeration gadget, there is now an interval of reach-
able points. For each of the points in this interval there is an interval of reachable
points on the next split gadget. The union of these intervals gives a bigger interval
and so the size of the intervals is increasing as they are propagated throughout the
construction.

Each interval on an enumeration segment still contains the point that precisely
encodes a subset sum, along with other points whose x-coordinates are within some
small amount of this subset sum. If the intervals encoding the sums of di�erent sub-
sets stay small enough so that they never overlap with each other, the NP-hardness
construction still holds. In this case the endpoint of P is contained in the interval
corresponding to a subset of A with the sum of elements equal to exactly M . There-
fore we can replace the �rst property required for our construction (Any segment
of P ′ starting before a pinhole gadget and ending after the pinhole gadget must pass
through the pinhole gadget’s pinhole) with a slightly relaxed property below and
still have proof of NP-hardness:

1. The endpoint of any segment of P ′ starting before a pinhole gadget and ending
after the pinhole gadget must have distance less than 0.5

2m
to the endpoint of the

segment with the same starting point that passes exactly through the pinhole
and ends on the same segment of P .

Since an interval can be propagated at most 2m times (once for each pinhole),
the width of the interval on the �nal enumeration gadget is always less than 0.5 on
either side of the point reached by only going through pinholes. This means the
intervals will not overlap, since the points reached by only going through pinholes
have distance 1 to each other. This means the construction still implies NP-hardness.

We will now show that this property holds for weak Fréchet distance, directed
Hausdor� distance from curve to simpli�cation, and undirected Hausdor� distance
for the pinhole gadget depicted in Figure 3.9.

Lemma 3.5.9. The expanded pinhole property holds for weak Fréchet distance, directed
Hausdor� distance from curve to simpli�cation, and undirected Hausdor� distance.

Proof. For these distance measures, simpli�cation segments from an enumeration
gadget to a split gadget (and vice versa) are valid i� the segment has distance less
than � to all of the vertices of the pinhole gadget in between. As shown in the
proof for Lemma 3.5.3, a segment that starts on enumeration gadget �i−1 at the point
v
�
i−1 = (

3(i−1)

2

 − S, 0) that goes through the pinhole will intersect the split gadget

105

3 Simpli�cation

�
i in the point (S + 3i

2

 −

3

4

 ,
). So, if our intervals are to remain small enough it

is impossible to have a segment from v
�
i−1 to the point v

�
i = (S +

3i

2

 −

3

4

 +

0.5

2m
,
)

with distance ≤ � to the pinhole gadget. The distance from the segment between
these points to the point �2(i−1)

2
(the leftmost vertex of the pinhole gadget) can be

given by the equation

‖⟨P(v
�
i−1), P(v

�
i)⟩ − �

2(i−1)

2
‖ =

|
5
+�(6+50
m+48mS)

m
|

10

√

25

2
m
2
+6
m(1+8mS)+(1+8mS)

2

m
2

,

Given the values we chose for � and
 in our construction (� = 4∑
a∈A

a,
 = �
2),

this distance is greater than � . The distance between the line segment starting on
v
�
i−1 and ending in (S + 3i

2

 −

3

4

 −

0.5

2m
,
) to �2(i−1)

3
is also greater than � . This same

argument also applies to line segments ending in the upper mirror segment, and to
segments from a split gadget to an enumeration gadget.

Combining Lemma 3.5.9 and Theorem 3.5.4 gives the following result:

Theorem 3.5.10. Computing wF (P , �),
←−

H  (P , �),H (P , �) is NP-hard.

In Section 3.9 (Corollary 3.9.2) we also prove strong NP-hardness for curve-
restricted GCS under undirected Hausdor� distance.

▶ 3.6 Computing dF(P , �)

In this section we present an O(n
3
) time algorithm for computing dF (P , �). Let

P = ⟨p1, … , pn⟩ be a polygonal curve. We �rst argue that there is only a discrete set
of candidate points we need to consider for vertices of the output curve.

Let  be the arrangement of n disks of radius � centered on the points in P , and
let C = ⟨c1, … , cm⟩ be the sequence of intersections between the polyline P and , in
order of P . Since under discrete Fréchet distancethe parametrizations of the curves
move in a discrete manner from vertex to vertex, the vertices of a simpli�cation must
each lie within � of a vertex of P . No matter where in this disk a simpli�cation vertex
lies, it covers the vertex. This means that only at the points where A intersects P
there is a change between which vertices of P are reached by placing a vertex of a
simpli�cation there. This leads to the following observation:

Observation 3.6.1. Under the discrete Fréchet distance, if there exists an optimal
curve-restricted simpli�cation P ′ = ⟨q1, … , q

k
⟩ of P , then there exists a subsequence of

C of length k which is a simpli�cation of P .

106

3.6 Computing dF (P , �)

π1, π6

π2, π4

π3, π5
δ

Figure 3.11: The pinhole gadget previously used for the (strong) Fréchet distance.
Since weak Fréchet distance allows for non-monotonic mapping, this implies that
the segments of valid simpli�cation (example sketched in red) are not forced to pass
through the pinhole. As long as a simpli�cation segment intersects both circles, it
covers the pinhole gadget.

Clearly, C consists of at most m ∈ O(n
2
) points. Bereg et al. [24] show how to

compute the minimal vertex-restricted simpli�cation of . We cannot apply their
result directly by treating all points in C as vertices, since we do not require the
simpli�cation to be mapped to all such points, only those in P . However, we can
design an algorithm in similar fashion.

De�ne K(i, j) to be the minimum value k such that there exists a subsequence
c1, … , cj of length k that has discrete Fréchet distance at most � to the sequence
p1, … , pi . If no such sequence exists at all, we set K(i, j) = ∞ (note that this happens
if and only if the distance between pi and cj is larger than �). We will design a
dynamic program to calculate all nm values K(i, j).

First, we observe that we only need to match every point in P once. In principle,
the discrete Fréchet distance is de�ned by a sequence of pairs of points, one from each
sequence, subsequent pairs can advance in either of the two sequences. However,
we never need to consider the case where a subsequent pair advances P ′ but does
not advance P .

Observation 3.6.2. For the optimal solution P
′ of length k, there exists a Fréchet

matching consisting of exactly n pairs of points, each matching a unique point in P to
a point in P ′.

Proof. Suppose there would be two consecutive pairs (pi , qj) and (pi , qj+1) matching

107

3 Simpli�cation

the same point pi in P to di�erent consecutive points qj and qj+1 in P
′. Since P ′

is a minimum-length subsequence of C , both qj and qj+1 must also match to other
points: there must be a pair (pi−1, qj) (otherwise we could eliminate the point qj),
and there must be a pair (pi+1, qj+1) (otherwise we could eliminate the point qj+1.
But then, one of the pairs (pi , qj) and (pi , qj+1) is super�uous: we can remove either
one and still have a valid Fréchet matching between P and P ′.

This observation implies that when calculating the value of K(i, j), we only have
to consider values of the form K(i − 1, j

′
), where 1 ≤ j′ ≤ j. Speci�cally, if pi−1 and

cj are within distance � , then:

K(i, j) = min
(
K(i − 1, j), min

1≤j
′
<j

(K(i − 1, j
′
) + 1)

)
if distance < �, otherwise ∞.

This de�nition immediately gives an O(n
4
) time algorithm to compute K(n,m).

We can improve on this by maintaining a second table with pre�x minima. Let
M(i, j) = min

1≤j
′
≤j
K(i, j). Then we have the recursive system

K(i, j) = min (K(i − 1, j), M(i − 1, j − 1) + 1) and M(i, j) = min (M(i, j − 1), K(i, j)) ,

which can clearly be calculated in constant time per table entry, and overall saves a
linear factor.

Theorem 3.6.3. Given a polygonal curve P with n vertices and � > 0, dF (P , �) can
be computed in O(n3) time and O(n2) space.

It is an interesting question whether this time bound can be improved. A more
greedy approach fails because of the requirement that P ′ is a subsequence of C , and
not just a subset: a local choice to advance might have implications later.

▶ 3.7 Computing F(P , �) in ℝ
1

In this section we provide a greedy algorithm for the curve-restricted GCS problem
inℝ

1 under the Fréchet distance. In this version of the problem, P is one-dimensional,
so all of its vertices have just a single coordinate and all fall within a single interval.
For the Hausdor� distance this means P can always be simpli�ed with at most three
links: One link from the start vertex to the vertex with the smallest coordinate, one
link to the vertex with the largest coordinate, and one link to the end vertex. For the
Fréchet distance, however, me must still construct a curve that has a parametrization
that is always close to a parametrization of P . The best way to visualize this is in

108

3.7 Computing F (P , �) in ℝ
1

two dimensions, where we treat the time parameter of the parametrizations as the
second dimension. See Figure 3.12.

We describe our algorithm using the man-dog metaphor for the Fréchet distance:
Initially a man and his dog start at p1. The dog marks it’s initial position. The man
walks along P . The dog only moves when it’s distance to the man is exactly � or the
man has reached the end, otherwise it stays put. If the distance between the man
and dog reaches � , the dog’s behavior depends on whether the man is moving in
the same direction as he was the last time the dog marked its position. If the man
is walking in the same direction, the dog simply follows at a distance of � . If the
man has changed direction, the dog �rst marks its current position before following.
Once they both end the walk at pn the dog marks its position a �nal time. Then we
report the positions marked by the dog as P ′. See Figure 3.12 and Algorithm 2. Here
we present the pseudocode of the algorithm that we described. x(.) indicates the
x-coordinate of points.

Algorithm 2: Algorithm for curve-restricted GCS for F in ℝ
1.

1 i, j ← 1, s ← pi , p′j ← s, j ← j + 1, i ← i + 1

2 if x(pi) > x(s) then Dir ← ‘right’
3 else Dir ← ‘left’
4 for i = 2 to n do
5 if i ≥ n then p

′

j
← pn

6 else
7 if x(pi) ≥ x(s) then
8 if ‖pi − s‖ ≤ � then Continue
9 else
10 if Dir = ‘left’ then p

′

j
← s, s ← pi − � , j ← j + 1

11 else s ← pi − �

12 Dir ← ‘right’
13 else
14 if ‖pi − s‖ ≤ � then Continue
15 else
16 if Dir = ‘right’ then p

′

j
← s, s ← pi + � , j ← j + 1

17 else s ← pi + �

18 Dir ← ‘left’

19 return ⟨p
′

1
, ⋯ , p

′

j
⟩

109

3 Simpli�cation

p′1

p′2

p′3

p′4

δ

Figure 3.12: The traversal of the man of a one-dimensional curve, with the time
parameter being shown as the vertical axis. The dog’s movement is shown in red.
The marked spots form the vertices of the simpli�cation.

We have the following theorem:

Theorem 3.7.1. Given a polygonal curve P inℝ1 with n vertices and � > 0, an optimal
solution to the curve-restricted GCS problem under Fréchet distance can be computed
in linear time.

Proof. Let Q = ⟨q1, ⋯ , q
k
⟩ be the optimal simpli�ed curve and let P ′ = ⟨p

′

1
, ⋯ , p

′

m
⟩

be the curve returned by the algorithm. For the sake of a contradiction, we assume
that k < m. Observe that every time Dir changes (some turn occurs) and ‖pi − s‖ > � ,
one vertex in P

′ will be added. Both curves have p1 and pn as their �rst and last
vertices, respectively, in common. The remaining argument is that Q has fewer
internal vertices than P

′ made by the two conditional loops above. The algorithm
incrementally updates P ′ in a way that when Dir changes always a vertex will be
added to P

′ that has the distance exactly � to the turn vertex in P . Observe that
if Q has fewer vertices it must skip one of these critical vertices which results in
having distance greater than � to turn vertices in P . Therefore F(P , Q) > � and a
contradiction occurs.

▶ 3.8 Approximation algorithm for F (P , �)

In this section we present an approximation algorithm for the non-restricted GCS
problem under the Fréchet distance that simply discretizes the feasible space for the
vertices’ placement of the simpli�ed curve. The idea is to compute a polynomial
number of shortcuts in the discretized space, and (approximately) validate for each
shortcut whether it is within Fréchet distance � to a subcurve of P . For every sub-

110

3.8 Approximation algorithm for F (P , �)

l

r

p

Figure 3.13: Gp as the collection of cells in Prt(ℝd , l) that intersect B(p, r), and the
set of corners highlighted in red.

curve of P we incrementally add the valid shortcuts to the edge set of a graph G

until all the shortcuts have been processed. Once G is built, we compute the shortest
path in G and return P ′. To speed up the validation for each shortcut, we use a data
structure to decide whether the Fréchet distance between a shortcut and a subcurve
of P is at most � .

▶ 3.8.1 The approximation algorithm

For a better understanding of our algorithm, we introduce some notation. Consider
a ball B(p, r) of radius r > 0 centered at p ∈ ℝ

d . Let Prt(ℝd , l) be a partitioning of
ℝ
d into a set of disjoint cells (hypercubes) of side length l that is induced by axis

parallel hyperplanes placed consecutively at distance l. For any 1 ≤ i ≤ n we call
i = i(r , l) = {c ∈ Prt(ℝd , l) | c ∩ B(pi , r) ≠ ∅} a discretization of B(pi , r). Let i be
the set of corners of all cells in i .

As we can see Algorithm 3 is a straightforward computation of valid shortcuts
and a shortest path in the shortcut graph G. The Validate procedure takes a short-
cut ⟨c1c2⟩ and a subcurve P[i, j] as arguments and its task is to (approximately)
decide whether F(⟨c1c2⟩, P[i, j]) ≤ � or not. We e�ciently implement the Validate
procedure (line 5) by means of the data structure in [50]. Let D be the value returned
by the data structure in [50] that approximates F(⟨c1c2⟩, P[i, j]). If D ≤ (1 + "/2)� ,
then the Validate returns true and if D > (1 + "/2)� then it returns false.

111

3 Simpli�cation

Algorithm 3: Algorithm for non-restricted GCS for Fréchet distance.

1 forall i ∈ {1, ⋯ , n} do Compute i(�, "�/(8
√

d)) and i ;
2 E ← ∅, V ← ∅, 1 ← p1 ∪ 1, n ← pn ∪ n;
3 forall i and j , with 1 ≤ i ≤ j ≤ n do
4 forall c1 ∈ i and c2 ∈ j do
5 if Validate(⟨c1c2⟩, P[i, j]) = true then

E ← E ∪ ⟨c1c2⟩, V ← V ∪ {c1, c2};

6 return the shortest path between p1 and pn in G = (V , E).

▶ 3.8.2 Proof of correctness and bounds

Here we slightly rephrase the theorem that refers to the data structure in [50] ac-
cording to our terminology:

Lemma 3.8.1 (Theorem 5.9 in [50]). Let P be a polygonal curve in ℝ
d with n ver-

tices and let 0 < " ≤ 1/8 be a real value. One can construct a data structure of size
O(("

−d
log

2
(1/"))n) and construction time of O(("

−d
log

2
(1/"))n log

2
n), such that for

any query segment ⟨ab⟩ in ℝ
d and two vertices pi and pj in P with 1 ≤ i ≤ j ≤ n, one

can compute a (1 + ")-approximation of F(⟨ab⟩, P[i, j]) in O("−2 log n log log n) query
time.

Lemma 3.8.2. Let 0 < " ≤ 1 and let ⟨ab⟩ be a segment in ℝ
d such that a and b are

con�ned within some two cells ℎ′ ∈ i and ℎ′′ ∈ j , respectively, with 1 ≤ i ≤ j ≤ n. If
F(⟨ab⟩, P[i, j]) ≤ � , then for all corners c′ ∈ ℎ′ and c′′ ∈ ℎ′′ Validate(⟨c′c′′⟩, P[i, j])
returns true.

Proof. Let c′ be an arbitrary corner of ℎ′ and c
′′ an arbitrary corner of ℎ′′. Note

that Diam(ℎ′) = Diam(ℎ′′) =
√

d ⋅ ("�/8

√

d) = "�/8, where Diam(ℎ′) and Diam(ℎ′′)

are the diameters of cells ℎ′ and ℎ′′, respectively. Hence �1 = ‖a − c
′
‖ ≤ ("/8)� and

�2 = ‖b − c
′′
‖ ≤ ("/8)� . Given the two segments ⟨ab⟩ and ⟨c

′
c
′′
⟩ the Fréchet distance

between them is F(⟨c′c′′⟩, ⟨ab⟩) = max{�1, �2} ≤ ("/8)� by [16]. We build the data
structure of Lemma 3.8.1 for Validate with respect to parameter "/8 and the whole
curve P that leads to a (1+"/8)-approximation of the Fréchet distance between ⟨c

′
c
′′
⟩

and P[i, j] returned by Validate(⟨c′c′′⟩, P[i, j]). Since D ≤ (1 + "/8) ⋅ F(⟨cc′⟩, P[i, j])

by applying a triangle inequality between the segments and path P[i, j] we have:

D

(1 + "/8)

≤ F(⟨c′c′′⟩, P[i, j]) ≤ F(⟨ab⟩, P[i, j])+F(⟨c′c′′⟩, ⟨ab⟩) ≤ � +"�/8 = (1+"/8)�.

112

3.8 Approximation algorithm for F (P , �)

Therefore D ≤ (1 + "/8)
2
� = 1 + "/4 + "

2
/64 < (1 + "/2)� , for any 0 < " < 1, and

Validate(⟨c′c′′⟩, P[i, j]) returns true.

Lemma 3.8.3. There exists a P ′ = F (P , �) such that every link ⟨ab⟩ in P ′ does not
match to a proper subsegment of P[i, i + 1], i.e., P(i, i + 1) for all 1 < i < n.

Proof. We use proof by contradiction. Assume that such a P ′ ful�lling the condition
above does not exist, hence there is a link ⟨ab⟩ whose endpoints match to neither pi
nor pi+1, for some 1 < i < n. Let (� , �) be a Fréchet matching realizing F(P , P ′) ≤ �

and let ti and ti+1 be two real values with 0 ≤ ti < ti+1 ≤ 1 such that �(ti) = i, �(ti+1) =
i + 1 and �(ti) = x , �(ti+1) = y, for some 1 < x < y < #P

′. Note that ⟨ab⟩ matches
to neither pi nor pi+1, thus x < a < b < y. Now let P ′′ = P

′
[1, x]◦⟨xy⟩◦P

′
[y, n]

where P◦Q denotes the concatenation of two curves P and Q where the ending point
of P is the starting point of Q. Clearly, F(P , P ′′) ≤ � due to F(P[i, i + 1], ⟨xy⟩) ≤ �

and also P ′′ has the same number of vertices as P ′ has (see Figure 3.14). Therefore,
P
′′
= F (P , �) exists and this is a contradiction.

a

b

pi+1
pi

x

y

Figure 3.14: The shortcut ⟨xy⟩ has Fréchet distance at most � to P[i, i + 1].

Lemma 3.8.4. Let ⟨ab⟩ be an arbitrary link in P ′ = F (P , �) ful�lling the condition
in Lemma 3.8.3. The following statements hold:

1. There exist a sublink ⟨a
′
b
′
⟩ ⊆ ⟨ab⟩ and an integer pair (i, j) with 1 ≤ i ≤ j ≤ n

such that F(⟨a′b′⟩, P[i, j]) ≤ � .

2. There exist an integer pair of cells (ℎ′, ℎ′′) and an integer pair (i, j) with 1 ≤ i ≤
j ≤ n and ℎ′ ∈ i , ℎ′′ ∈ j , such that a′ and b′ are con�ned within ℎ′ and ℎ′′,
respectively and Validate(⟨c′c′′⟩, P[i, j]) returns true for all corners c′ ∈ ℎ

′

and c′′ ∈ ℎ′′.

Proof. (1) Let P ′ be a solution to F (P , �) satisfying Lemma 3.8.3. Then ⟨ab⟩ as an
arbitrary link in P ′ cannot match to a proper subsegment in P[i, i +1] for all 1 < i < n.
Now let (� , �) be a Fréchet matching realizing F(P , P ′) ≤ � and let ta and t

b
be two

113

3 Simpli�cation

real values with 0 ≤ ta < tb ≤ 1 such that �(ta) = p, �(t
b
) = q and �(ta) = a, �(t

b
) = b.

We then have two cases:

• ⟨ab⟩ only intersects B(pi , �). Now let 0 ≤ ti < 1 be a value such that �(ti) = i.
Then clearly, �(ta) ≤ �(ti) ≤ �(t

b
) and correspondingly, �(ta) ≤ �(ti) = i ≤

�(t
b
). Hence, it holds that 1 ≤ p ≤ i ≤ q ≤ n for some 1 < i < n. Therefore

there exists a sublink ⟨a
′
b
′
⟩ = B(pi , �) ∩ ⟨ab⟩ and an integer pair (i, j) with

i = j such that F(⟨a′b′⟩, P[i, j]) ≤ � (see Figure 3.15 (a)).

• ⟨ab⟩ intersects all the balls B(pi , �), ⋯ , B(pj , �) for some 1 ≤ i < j ≤ n in
order from i to j. Now let 0 ≤ ti < tj ≤ 1 be a value such that �(ti) = i

and �(tj) = j. Then clearly, �(ta) ≤ �(ti) < �(tj) ≤ �(t
b
) and correspondingly,

�(ta) ≤ �(ti) < �(tj) ≤ �(t
b
). Hence, it holds that 1 ≤ p ≤ i < j ≤ q ≤ n for

some 1 ≤ i < j ≤ n. Now let ⟨a′b′⟩ = P
′
[�(ti), �(tj)]. Following the Fréchet

matching (� , �), we have F(⟨a′b′⟩, P[i, j]) ≤ � (see Figure 3.15 (b)).

Therefore such ⟨a
′
b
′
⟩ ⊆ ⟨ab⟩ and pair (i, j) with 1 ≤ i ≤ j ≤ n exist.

(2) By Property 1, we know that ⟨a′b′⟩ and an integer pair (pi , pj) with 1 ≤ i ≤
j ≤ n exist such that F(⟨a′b′⟩, P[i, j]) ≤ � . Plugging this into Lemma 3.8.2 completes
the proof.

The following lemmas allow us to conclude Theorem 3.8.8.

Lemma 3.8.5. The shortest path P ′alg returned by Algorithm 3 exists and F(P , P ′alg) ≤

(1 + ")� .

Proof. Let P ′ = F (P , �), and ⟨ab⟩ and ⟨bc⟩ be two consecutive links in P
′. By

Lemma 3.8.4 (Property 2) there exist an integer pair (i, j) with 1 ≤ i ≤ j ≤ n, and
two corners ci ∈ ℎ ∈ i and cj ∈ ℎ′ ∈ j close to a sublink ⟨xw⟩ of ⟨ab⟩ such that
Validate(⟨cicj⟩, P[i, j]) returns true. We have two following cases:

• b ∈ B(pj , �): Then there exists an integer k with 1 ≤ j ≤ k ≤ n, and two corners
c
′

j
and c

k
close to a sublink ⟨yz⟩ of ⟨bc⟩ such that Validate(⟨c′

j
c
k
⟩, P[j, k])

returns true.
Since P ′[x, y] has only one intermediate vertex i.e., b that lies within B(pj , �),
it is easy to see that F(⟨xy⟩, pj) ≤ � and therefore, Validate(⟨cjc′j ⟩, pj) returns
true as well.

• b ∉ B(pj , �): Then there must exist an integer k such that 1 ≤ j + 1 ≤ k ≤ n, and
two corners cj+1 and c

k
close to a sublink ⟨yz⟩ of ⟨bc⟩ such that the procedure

Validate(⟨cj+1ck⟩, P[j + 1, k]) returns true. Now again P
′
[x, y] has only one

114

3.8 Approximation algorithm for F (P , �)

a = a′

b

pi+1
pi

P (p)

P (q)

(a)

b′

a

pi
pi+1

pj

bP (p)

P (q)

a′

b′

(b)

Figure 3.15: (a) Any point on the subsegment ⟨a
′
b
′
⟩ can be matched to pi ,

thus F(⟨a′b′⟩, P[i, j]) ≤ � with i = j. (b) Following the optimal matching,
F(⟨a′b′⟩, P[i, j]) ≤ � with i < j.

intermediate vertex, b, that lies within C(⟨pjpj+1⟩, �), where C(Q, r) denotes
the cylinder of width r around the segment Q. Thus F(⟨xy⟩, P[j, j + 1]) ≤ �

and therefore, Validate(⟨cjcj+1⟩, P[j, j + 1]) returns true.

This indicates that for any two adjacent links in P ′ we have three links in the shortcut
graph. Since P ′ is connected the graph has a connected path P ′alg. Note that if such a
path, P ′alg, is found by the algorithm is not the shortest path in G, then there must be
another path which leads to the existence of a shortest path either way. The proof
for a single link in P ′ is trivial. To prove F(P , P ′alg) ≤ (1+ ")� , let e be a link in P ′alg and
Pe be the corresponding subcurve in P such that Validate(e, Pe) has returned true.
This implies that D ≤ (1 + "/2)� < (1 + ")� as well thus F(e, Pe) ≤ (1 + ")� , therefore
F(P , P ′alg) = maxe∈P ′alg

F(e, Pe) ≤ (1 + ")� .

Lemma 3.8.6. Let P ′ = F (P , �) and let P ′alg be the curve returned by Algorithm 3.
Then #P ′alg ≤ 2(#P

′
− 1).

115

3 Simpli�cation

Proof. Let m = #P
′ where P ′ = F (P , �). Now for all m − 2 (m > 2) intermediate

links in P
′ i.e., P[2,m], the number of links in P

′

alg[c2, cm] where c1 ∈ B(p2, �) and
cm ∈ B(qm , �) is at most 2(m−2)+1 in the worst case. This together with the two �rst
and last links ⟨c1c2⟩ and ⟨cmcm+1⟩ in P ′alg, respectively, results in #P ′alg ≤ 2m−1.

Lemma 3.8.7. Algorithm 3 uses O
(
"
−d
n log n(log

2
(1/") log n + "

−(d+2)
n log log n))

time and O(("
−d
log

2
(1/"))n) space.

Proof. The number of cells in each ball is bounded by O((�/("�/8

√

d))
d

) = O("
−d
).

There are O(n2) pairs of balls, hence, we have O("−2dn2) pairs of corners c′ and c′′
to pass to the Validate procedure in order to determine whether F(⟨c′c′′⟩, P[i, j]) ≤
(1 + ")� or not for all c′ ∈ i and c

′′
∈ j with 1 ≤ i ≤ j ≤ n. On the other

hand by Lemma 3.8.1 we speed up the Validate procedure. The construction
time is O(("

−d
log

2
(1/"))n log

2
n) and its query takes O("−2 log log log n) time per

⟨c
′
c
′′
⟩. Because we have O("−2dn2) calls on the Validate procedure, the whole

validation process takes O(("−2d+2n2 log n log log n)) time. To get the total runtime
we must add the construction time of the data structure in Lemma 3.8.1 so we get
O
(
"
−d
n log n(log

2
(1/") log n + "

−(d+2)
n log log n))

total time as claimed. The space
follows from Lemma 3.8.1.

Theorem 3.8.8. Let P be a polygonal curve with n vertices in ℝ
d , � > 0, and let

P
′
= F (P , �). For any 0 < " ≤ 1, one can compute in O∗(n2 log n log log n) time and

O
∗
(n) space a non-restricted simpli�cation P

∗ of P such that #P ∗ ≤ 2(#P
′
− 1) and

F(P , P ∗) ≤ (1 + ")� . Here, O∗ hides factors polynomial in 1/".

Corollary 3.8.9. Theorem 3.8.8 also holds for wF (P , �).

Proof. One can modify the data structure in Lemma 3.8.1 to support queries under
the weak Fréchet distance by regarding the weak Fréchet distance instead of the
strong Fréchet distance in preprocessing stage (see [50] for more details on their data
structure). Also following the fact that the triangle inequality holds for the weak
Fréchet distance, Lemma 3.8.2, Lemma 3.8.3 and Lemma 3.8.4 work when applying
the weak Fréchet distance between a link and a subcurve. Therefore, Corollary 3.8.9
follows from the aforementioned lemmas.

▶ 3.9 Strong NP-hardness for computing H (P , �)

We show that all versions of the GCS problem under the undirected Hausdor� Dis-
tance are strongly NP-hard. This was shown for the vertex-restricted case by Van

116

3.9 Strong NP-hardness for computing H (P , �)

Kreveld et al. [89] by a reduction from Hamiltonian cycle in segment intersection
graphs. Their proof mostly extends straightforwardly to the curve-restricted and
unrestricted case; however, because of the increased freedom in vertex placement
we must take some care in the exact embedding of the segment graph: for instance,
segments that intersect at arbitrarily small angles could potentially cause the reduc-
tion to produce coordinates with unbounded bit complexity. For this reason, we
here reduce from a more restricted class of graphs: orthogonal segment intersection
graphs. For completeness, we present the full adapted proof.

Czyzowicz et al. [47] show that Hamiltonian cycle remains NP-complete in 2-
connected cubic bipartite planar graphs, and Akiyama et al. [14] prove that every
bipartite planar graph has a representation as an intersection graph of orthogonal
line segments. Hence, Hamiltonian cycle in orthogonal segment intersection graphs
is NP-complete.

Let S be a set of n horizontal or vertical line segments in the plane. We may
assume the segment endpoints have integer coordinates that are linear in n and that
all intersections are proper intersections. We further assume that the intersection
graph of S is connected (if not, it will not have a Hamiltonian cycle). Set � = 1

8
, and

let D ⊂ 2 be the Minkowski sum of S and a closed ball of radius � ; that is, D is the
set of all points at distance at most � from S.

Let P be an initial polyline that stays on the union of S, and covers all segments
of S many times. For instance, we may begin with a spanning tree of the intersection
graph of S, traverse the tree using a depth-�rst search, and whenever we encounter
a new segment we visit both endpoints before leaving through the intersection
point with the next segment. Such a path has linear complexity. Then, we make a
linear number of copies of this path and concatenate them, creating a path P ofO(n2)
complexity. Now, P has every ordered permutation of the segments as a subsequence
of its vertices, allowing us to freely walk over the arrangement of S when creating
an output polyline. We also add some additional links to P so that it starts and ends
at the same point.

An output polyline P ′ with Hausdor� distance at most � to P must in particular
visit the �-disks around all endpoints of S, while staying inside D. Since no two
such disks are visible to each other within D unless they are endpoints of the same
segment (see Figure 3.16), we will need at least one more vertex in P

′ for each
segment, in order to switch to the next. Any output trajectory P ′ will need to have
at least 3n + 1 vertices (the last vertex is the same as the starting vertex).

Clearly, if the intersection graph of S has a Hamiltonian cycle, following this
cycle will yield a solution using 3n + 1 vertices by simply placing a vertex at each
segment intersection and two intermediate vertices at each segment endpoint (see

117

3 Simpli�cation

(a) (b) (c)

Figure 3.16: The construction: (a) the segments S, (b) the region D, (c) a partial
simpli�cation.

Figure 3.16). On the other hand, any solution that uses only 3n + 1 vertices must be
of this form: if we visit any segment more than once (and place a vertex there) we
must place at least four vertices on (close to) such a segment. Theorem 3.9.1 now
follows.

Theorem 3.9.1. The non-restricted GCS problem under undirected Hausdor� distance
is strongly NP-hard.

Since a solution to the reduction never bene�ts from placing vertices not on P ,
we also immediately obtain an improvement for the special case H (P , �).

Corollary 3.9.2. The curve-restricted GCS problem under undirected Hausdor� dis-
tance is strongly NP-hard.

▶ 3.10 Strong NP-hardness for computing
←−

H (P , �)

We will prove that the non-restricted GCS problem using directed Hausdor� distance
in the direction P → P

′ is NP-hard. We use several steps. The key di�culty in
solving GCS for this distance measure lies in a problem we dub Segment Polyline
Cover: Given a set L of line segments in the plane and integer k, �nd a polyline P
such that every segment in L is covered by P (all points on the segment are contained
in least one segment of P), and P has at most k links.

Our approach is to show that the Segment Polyline Cover problem is hard by a
reduction from the Hamiltonian Path problem on ray intersection graphs, and then
reduce this problem to GCS. The �rst reduction is based on the following idea.

Lemma 3.10.1. Let G be a ray intersection graph with n vertices. There exists a set L
of 2n segments such that G has a Hamiltonian cycle if and only if there is a polygon
covering L with 2n vertices.

118

3.10 Strong NP-hardness for computing
←−

H (P , �)

(d) (e) (f)

(c)(b)(a)

C

R

S L

L L

Figure 3.17: The idea for a small example (which does not admit a Hamiltonian cycle).
(a) A set of rays R (blue) whose intersection graph is G, and the complement C (red,
dashed). (b) Zooming out until we can draw a circle that contains all intersections
among rays in C . (c) Replacing each ray in C by a needle. (d) Zooming back in. (e)
The extensions of the needles (blue, dotted) correspond to the original rays. (f) A
polygon covering all needles must correspond to a Hamiltonian cycle in G (here,
there is no solution).

We sketch the proof of Lemma 3.10.1 �rst. The high level proof idea is illustrated
in Figure 3.17. Let R be a set of rays in ℝ

2, and G its intersection graph. The com-
plement of a ray r is the ray with the same origin and the same supporting line as
r which points in the opposite direction. Let C be the complement of R. We cut the
rays in C to a set of segments S in such a way that C and S have the same intersection
graph. Then we replace each segment s ∈ S by a needle: a pair of segments both very
close to s that share one endpoint (di�erent from the corresponding ray’s origin).
Let L be the resulting set of 2n segments. Now, any polygon with 2n segments cov-
ering L must use the two edges of one needle consecutively (since, by construction,
the extension of these segments does not intersect the supporting line of any other
segment), and it can connect an edge from one needle to an edge of another needle

119

3 Simpli�cation

exactly when the corresponding original rays in R intersect.
Though the idea is conceptually simple, there are several di�culties in turning

Lemma 3.10.1 into a proof that GCS is NP-hard.

• The simple idea above is phrased in terms of a Hamiltonian cycle and covering
segments by a polygon; for our proof we need to use a polyline. We need to
be careful in how to handle the endpoints.

• We need to establish that the Hamiltonian Path problem is indeed NP-hard on
ray intersection graphs.

• We need to specify how to embed a ray intersection graph as an actual set of
rays with limited bit complexity.

• We need to model the input to GCS as an instance of the Segment Polyline
Cover problem. Speci�cally, the complement of a set of rays is not necessarily
connected; but the input to GCS must be connected.

• The Segment Polyline Cover problem closely resembles GCS for � = 0; to
extend it to the case � > 0we (again) need to carefully consider the complexity
of the embedding.

Most of these challenges can be overcome, as we show in the remainder of this
section. However, since the problem of recognizing if a graph can be embedded as
a set of intersecting rays is complete for the existential theory of the reals [37], we
know that there are ray intersection graphs that cannot be embedded by a set of rays
with subexponential bit complexity, unless NP = ∃ℝ. We work around this problem
by considering a smaller class of graphs, and allowing a superpolynomial grid for
our embeddings, which we show is su�cient to prove the given variant of GCS is
NP-hard .

▶ 3.10.1 Hamiltonian cycle on ray intersection graphs

We will show that each circle graph can be embedded as a ray intersection graph
with polynomial bit complexity. To show this, we construct a set of n points that lie
on a convex, increasing curve such that all chords connecting a pair of points can be
extended to a ray to the right, and none of these rays will intersect below the curve.
This requires the curve to grow very fast. We use the points (x, x!) for x ∈ [1..n],
where x! = Πx

i=1
i is the factorial function. Indeed, these points have the following

property.

120

3.10 Strong NP-hardness for computing
←−

H (P , �)

c < b < d b < c d < b

Figure 3.18: The three cases for two rays. a and b are the x-coordinates of the points
where the �rst ray intersects with the curve y = x!, and c and d are those values for
the second ray. Regardless of the case, the rays will not intersect below the curve.

Lemma 3.10.2. Let a, b, c, d ∈ [1..n] be four numbers such that a < b and c < d . Let
A be the ray starting at (a, a!) and containing (b, b!), and let B be the ray starting at
(b, b!) such that B ⊂ A. Similarly, let C be the ray starting at (c, c!) and containing
(d, d!), and let D be the ray starting at (d, d!) such that D ⊂ C . Then B and D do not
intersect; hence, A and C intersect if and only if A ⧵ B and C ⧵ D intersect.

Proof. Since every ray is drawn between two points on the curve of the function
x!, we know that it intersects this curve only at these points. The distance between
y-coordinates of successive points keeps rapidly increasing as x increases, but the
distance between x-coordinates of successive points is constant. Thus the slope of a
ray r1 whose intersection points with the curve lie to the right of those of ray r2 will
be greater than the slope of r2. Without loss of generality we assume a < c. There
are three possible cases, see Figure 3.18:

• c < b < d : Here it is clear that A and C will intersect at an x-coordinate
somewhere between c and b, and so B and D will not intersect.

• b < c: Here we can easily see that B and D do not intersect, as B starts below
D and has a lower slope.

121

3 Simpli�cation

• d < b: Whereas the �rst two cases only require the curve to be convex and
increasing, this case also requires the function to grow quick enough: Since
D starts to the left of B it could possibly intersect B if its slope was higher. We
will now show, however, that the factorial function grows quick enough so
that this cannot happen. For a �xed b, the lowest slope that B can have is when
a = 1. The highest slope that D can have occurs when c = b − 2 and d = b − 1.
The slope of B is equal to the slope ofA, which would be b!−1!

b−1
= b⋅(b−2)!−

1

b−1
.

The slope of D (and C) in this scenario would be (b−1)!−(b−2)!

1
= (b − 2) ⋅ (b − 2)!.

We can see that the slope of B is higher than D if 2 ⋅ (b − 2)! ≥ 1

b−1
which

obviously holds for all b > 2. So since B starts above D and has higher slope,
B and D will not intersect.

Once we have constructed these points we can “unroll” any circle graph by
picking one chord endpoint on the circle to be the �rst point and then traversing
the circle in clockwise order and assigning each chord endpoint we encounter the
next point of our set. See Figure 3.19 for a sketch. Because the y-coordinate for a
point will not grow bigger than O(nn) we can represent the points using polynomial
bit complexity. At this point, we have shown that circle graphs are contained in ray
intersection graphs. In fact, our construction gives a bit more:

Theorem 3.10.3. The class of circle graphs is contained in the class of ray intersection
graphs. Furthermore, every circle graph can be embedded as the intersection graph of
a set of rays such that:

• every ray is grounded on a common curve (grounded ray intersection graph [37]);

• every ray points towards the upper right quadrant (downward ray intersection
graph [37]);

• every ray is described by a point and a vector with polynomial bit complexity.

Next, we show that the Hamiltonian path problem is NP-hard on ray intersection
graphs, and in particular, on ray intersection graphs with polynomial bit complexity.

We reduce from the Hamiltonian path problem on circle graphs. We make use of
the proof from Damaschke [48]. He shows that the Hamiltonian cycle problem is NP-
hard on circle graphs, by reducing from Hamiltonian cycle in cubic bipartite graphs.
He also claims that there is an easy adaptation that shows the Hamiltonian path
problem is also NP-hard for circle graphs. We will start by making this adaptation
explicit: We construct an instance of the circle graph problem as described in [48],

122

3.10 Strong NP-hardness for computing
←−

H (P , �)

(a) (b)

Figure 3.19: (a) A circle graph with colors assigned to the chords. The chosen starting
point is marked with a red dot. (b) Unrolled version of (a), by assigning chord
endpoints in counterclockwise order to points on the convex curve they can be
extended into rays without intersecting.

but then we replace one of the X -chords with two parallel chords close to where
the X -chord was, so that they both intersect the same chords that were intersected
by the X -chord. For both of the new chords we then add one new chord that only
intersects that chord and no others. Now we know that the circle graph will have a
Hamiltonian path if and only if the bipartite graph has a Hamiltonian cycle. From
Theorem 3.10.3 we now immediately have:

Corollary 3.10.4. The Hamiltonian path problem is NP-hard on intersection graphs
of rays that have a polynomial bit complexity.

▶ 3.10.2 Connected segment polyline cover

Next, we introduce the connected segment polyline cover problem, and show that
it is NP-hard by a reduction from the Hamiltonian path problem on circle graphs
through the construction outlined above.

Connected segment polyline cover is a problem where we are given a set L of n

123

3 Simpli�cation

line segments whose union is connected, and an integer k. We must decide if there
exists a polyline of k links that fully covers all segments in L.

We start by embedding the circle graph as a ray intersection graph in the manner
outlined above. Then, we compute all intersection points between supporting lines
of the rays. One of these intersection points will have the lowest y-coordinate. We
will then choose a value that is lower than this lowest y-coordinate, which we will
denote as y� . For each ray r , let pr be its starting point. Let r̄ be r ’s complement: the
part of the supporting line that is not covered by r . Let r̃ be the part of r̄ that has
y ≥ y� . Now we construct a needle for each ray’s complement: Two line segments
that share one endpoint at the point where r̄ has y-coordinate y� . The other endpoint
for both segments lies very close to pr . The endpoints are on opposite sides of the ray
starting point so we get a wedge-like shape that runs nearly parallel to r̃ . In addition
to these 2n segments, which we will refer to as needle segments, we create three more
segments which we will refer to as the leading segments: We create one horizontal
segment we call s

ℎ
with y-coordinate between y� and the lowest intersection point

between ray supporting lines, that starts far to the right of the needle segments and
ends to the left of them, intersecting all of the needles. Attached to s

ℎ
is a large

vertical segment we call sv , running up to a point above the highest starting point
of a ray. Attached to that is another horizontal segment we call st , this one being
short and ending to the left of any ray starting point. See Figure 3.20 for a sketch.

Now we have 2n + 3 segments in total, where n is the number of chords in the
original graph.

Lemma 3.10.5. We can cover all segments using a polyline of 2n + 3 links if and only
if the circle graph has a Hamiltonian path.

Proof. Consider that since none of the segments are collinear and no three segments
intersect in the same point, a suitable polyline must fully cover one segment with
each link. For a polyline to be able to bend from fully covering one segment to
fully covering another, either the segments must have a shared endpoint, or the
supporting lines of the segments must intersect in a point not contained in either
segment. Segment s

ℎ
intersects all needle segments in their interior and is parallel to

st , so we know that a suitable polyline must start3 by covering s
ℎ
, and it must bend at

the common endpoint with sv and then fully cover sv . All of the intersection points
between sv and the supporting lines of needle segments lie below the endpoint it
shares with s

ℎ
, so to be able to cover sv with the second link the polyline must next

connect to st , meaning it bends at the shared endpoint of sv and st . The third link is
3A suitable polyline could also end with sℎ, but we will de�ne the polyline to be in this direction for

ease of notation

124

3.10 Strong NP-hardness for computing
←−

H (P , �)

(a) (b)

Figure 3.20: (a) Sketch of a reduction of a circle graph with three chords. Segments
shown in black. (b) Polyline of 2n + 3 links covering the constructed segments,
corresponding to a Hamiltonian path traversing the rays, starting with the ray with
the largest slope and ending with the ray with the smallest slope.

horizontal, covering st . Since the supporting line of st intersects all of the rays, the
polyline can bend to any needle segment for its next link.

Since we have covered our additional segments s
ℎ
, sv , and st , the rest of the 2n

links must cover one needle segment each. Observe that the needle segments all
extend downward to below the lowest intersection point between supporting lines.
This means that when a link covers a needle segment when travelling downward, the
next link must then travel upward on the other half of the needle, as all intersection
points with supporting lines of other segments lie in the segment’s interior. When
the next link then covers a needle segment when travelling upward, the only places
the polyline can viably bend next are near places where the ray associated with the
previous needle intersects another ray. So we can cover the 2n needle segments
using a polyline of 2n links if and only if there is a Hamiltonian path in the ray
intersection graph and thus a Hamiltonian path in the original circle graph.

125

3 Simpli�cation

Since the transformation is polynomial, we know the problem is NP-hard. We
can also see that the problem is in NP, since for any instance we can expect that if
a polyline of k links exists covering a set L, one must also exist where each vertex
has coordinates of polynomial complexity, since the vertices could all lie on the
intersection points of the supporting lines of the segments, or otherwise on points
with rational coordinates on those supporting lines. This polyline could serve as a
certi�cate for the veri�cation algorithm. This gives the following theorem:

Theorem 3.10.6. The connected segment polyline cover problem is NP-complete.

▶ 3.10.3 Reducing to global curve simplification
Finally, we reduce the connected segment polyline cover problem to non-restricted
GCS using the Hausdor� distance from P to P ′.

As a problem instance, we are given a set L of n non-collinear line segments in
the plane whose union is connected. We construct an input polyline of polynomial
size that completely covers the set of segments and no other points. We could do this,
for example, by treating the segment endpoints and intersection points as vertices
of a graph connected by edges, and have our polyline be the path of a breadth-�rst
search through the graph visiting all vertices. We set � to 0. Now we know that,
since a simpli�cation must cover the union of L, any simpli�cation of our input
polyline that has n links must cover each segment in L completely with one link.
This means such a simpli�cation would be a solution to our instance of connected
segment polyline cover. Since the reduction is polynomial in size, we know that this
variant of the GCS problem is NP-hard, and using a similar argument to the one for
the connected segment polyline cover problem it is easy to see that it is in NP as
well.

Theorem 3.10.7. Non-restricted global curve simpli�cation under the Hausdor� dis-
tance directed from the original curve to the simpli�cation, restricted to instances where
� = 0, is NP-complete.

▶ 3.10.4 Non-zero �

We can also extend this reduction to non-zero � by picking � > 0 but still small
enough such that it would not change the combinatorial structure of the space the
polyline can lie in, so each link of the polyline must still correspond to exactly one
segment in L. In the remainder of this section, we will treat � as an unknown and
aim to determine a value where we can guarantee any � smaller than that value will
not change the combinatorial structure.

126

3.10 Strong NP-hardness for computing
←−

H (P , �)

First, consider that we have constructed 2n + 3 segments. For � = 0, the space
the polyline can lie in is exactly these segments, but for non-zero � , this space is
the result of replacing each segment by the Minkowski sum of the original segment
and a disk of radius � . This means that the polyline does not have to exactly cover
the original segment, meaning additional angles of approaching a segment open
up. If we center two circles with radius � on the endpoints of a segment, the two
inner tangents of these circles will form the bounding lines of a cone that covers
all possible polyline links that are able to “cover” a segment. We will call the part
of the cone that is within � of the segment the tip of the cone, and the rest of the
cone the tail of the cone. For � = 0, the supporting line for the segment forms a
degenerate cone of width 0. To preserve the combinatorial structure, fattening the
cones cannot introduce intersections between cone tails, as these correspond to two
segments’ supporting lines intersecting in the exterior of the segments. We do not
have to consider the cones associated with the leading segments, since they already
intersect all of the needles’ cones in the tip. So we will focus on the cones associated
with needle segments.

Instead of taking the actual cones and the half-lines that bound them, we will
consider a larger cone that is easier to calculate with. As bounding lines, we will use
endpoints created by going 2� to the left and right of the original endpoints of the
needle segments. For a ray starting at point (a, a!), the original endpoints for one
of its needle segments are (xa

�
, y�) and a point very close to (a, a!), where xa

�
is the

x-coordinate of the supporting line of the ray at y = y� . This gives the segment a
slope of a!−y�

a−x
a

�

. The slope of the left bounding line of the cone is then a!−y�

a−x
a

�
−4�

. So,
departing from the intersection point of the bounding line and the needle segment,
for every (a! − y�) we move upwards, the bounding line lies 4� further to the left as
compared to the needle segment and/or the ray associated with the needle.

To see how small � needs to be, we consider any two rays where one ray connects
the points (a, a!), (b, b!) and one ray connects the points (c, c!), (d, d!). We will refer
to the cones induced by their needle segments as the (a, b)-cone and (c, d)-cone
respectively. We assume a < c. Now there are three cases again analogous to those
in the proof for Lemma 3.10.2, see Figure 3.21:

• The case where c < b < d . Here, the tails of the cones already intersect, so no
� is going to introduce a new intersection.

• The case where b < c. Here, there is already an intersection between the
tail of the (a, b)-cone and the tip of the (c, d)-cone. It is important that after
fattening the cones there is no intersection that lies in both tails. At y = c!

we know that the right bounding line of the (c, d)-cone has shifted 2� to the

127

3 Simpli�cation

c < b < d b < c d < b

Figure 3.21: The three cases for two needle segments’ cones. The segments are
shown in black. The tips of the cones are shown in gray. The tail of the (a, b)-cone is
shown in pink and the tail of the (c, d)-cone in green. For the second and third case,
the cone can be fattened (i.e. � increased) as long as this does not cause the tails to
intersect.

right of where it would be for � = 0. Likewise, the left bounding line of the
(a, b)-cone has shifted 4� ⋅ c!−a!

a!−y�
leftwards. If the total shift is less than the

original horizontal distance between the rays at this y-coordinate, we know
the intersection between the cones still lies in the tip of the (c, d)-cone. The
horizontal distance between the unshifted lines at this value for y, dist

ℎ
can

be written as
dist

ℎ
= a +

c! − a!

b! − a!

⋅ (b − a) − c

For a �xed b, we get a smaller value the higher a is, as this increases the slope
of the (a, b)-cone. The value is also smaller the smaller c is, as this decreases
the vertical distance and therefore the horizontal distance to the point (c, c!)
as well. Substituting a = b − 1, c = b + 1 into the equation gives dist

ℎ
=

b
2

b−1
− 1.

This is smallest when b is minimal, so the minimum distance of 3 is achieved
when b = 2. This means that a bound on � is

3 > 4� ⋅

c! − a!

a! − y�

128

3.10 Strong NP-hardness for computing
←−

H (P , �)

We can replace the right hand side of this inequality by an upper bound

3 > 4� ⋅ n!

This gives us an upper bound on the value for � of � < 3

4n!
.

• The case where d < b. Here there is an intersection of the cones in the tips.
We need to make sure not to introduce new intersections of the tails. For this,
the left bounding line of the (c, d)-cone needs to intersect the right bounding
line of the (a, b)-cone in the tip. We know that at y = a!, which is near where
the tip of the (a, b)-cone ends, the right bounding line has shifted exactly 2�
to the right compared to when � = 0. At y = c!, the left bounding line of the
(c, d)-cone will have shifted 2� to the left, so at y = a! we know that the total
shift is less than 4� . The horizontal distance dist

ℎ
between the supporting

lines of the two rays at y = a! is equal to

dist
ℎ
= c −

c! − a!

d! − c!

⋅ (d − c) − a

For a �xed c, the smallest distance is obtained when a = c − 1 (as increasing
the value of a decreases the vertical distance between c and a meaning they
are also closer horizontally at y = a!), and d = c + 1 (as decreasing d decreases
the slope of the (c, d)-cone, and so the supporting line will be further left at
y = a!). Plugging these values into the equation for dist

ℎ
lets us rewrite it to

dist
ℎ
= 1 −

c − 1

c
2

Since c ≥ 2 in this case, we know the smallest possible distance is 3

4
. Therefore,

we know this case will pose no problems if 4� < 3

4
→ � <

3

16
, as the shift is

smaller than the original distance so the intersection of the cones still lies in
the tips.

Over all three cases, the bound � < 3

4n!
is smallest and so it is the one that should

be used. This upper bound is not necessarily tight, but we do now know that we can
�nd non-zero values for � that can be represented in a polynomial number of bits
that do not change the combinatorial structure of the input for the simpli�cation
problem. So a simpli�ed polyline of 2n + 3 links with 0 < � < 3

4n!
will only exist if

and only if it also exists for � = 0. Since we can have a small enough � of polynomial
bit complexity, this means this variant of GCS is hard in general, as for larger values
of � the construction could be scaled up.

129

3 Simpli�cation

If the general problem is in NP is hard to say, since our approach for showing
this for the � = 0 case does not extend, and it might be possible that inputs exist
where the only possible simpli�ed polylines of k links have vertex coordinates of
exponential bit complexity. We leave this as an open problem.

Theorem 3.10.8. Non-restricted global curve simpli�cation under the Hausdor� dis-
tance directed from the original curve to the simpli�cation, is NP-hard.

▶ 3.11 Conclusion
In this chapter, we systematically studied the global curve simpli�cation problem
under di�erent (global) distance measures and constraints in which vertices can be
placed. We improved some of the existing results in the vertex-restricted case and we
obtained the �rst NP-hardness results for the curve-restricted version. In the future,
providing approximation algorithms, particularly for the curve-restricted case, can
be of interest.

Algorithms for the vertex- and curve-restricted variants of the problem can
straightforwardly be applied to trajectories. The vertices of the simpli�cation ei-
ther correspond to probes of the original trajectory, or in the curve-restricted case
they correspond to constructed probes that can be obtained by linear interpolation.
Global methods are less applicable to the trajectory case than local methods, how-
ever, since the global methods take only the �nal shape into account and can simplify
away sections where the trajectory doubles back on itself. When timestamps are
then assigned to the vertices of the simpli�cation the speeds indicated by the simpli-
�ed trajectory may be very di�erent to those actually occurring for the entity. For
the non-restricted case there is no straightforward way of assigning timestamps to
the vertices of the simpli�cation, so these methods are probably better left to the
non-trajectory case where only the shape aspects of the curve matter.

130

Chapter 4

Representative Trajectories

▶ 4.1 Introduction

One tool that can be used to bring order to a large trajectory database is trajectory
clustering: Trajectories that are spatially and/or temporally close are grouped to-
gether. This can help focus application task algorithms that are applied later, as they
do not have to consider the whole set of trajectories when searching for patterns,
but only the trajectories within each cluster where there is a guarantee that they
lie close together. Looking at a visualization of the biggest clusters in a data set is
also a good way of getting an initial idea of which movements are most common in
the data set. Another tool that can be used to gain insight into the characteristics of
clusters, is to assign each cluster a trajectory to be its representative. These repre-
sentative trajectories should give a good indication of the contents of the clusters.
Representative trajectories can either be picked from the trajectories in the cluster,
or speci�cally constructed to be a good representative for the cluster, especially if
there are no good candidates to choose in the cluster. See Figure 4.1.

One method for generating a representative trajectory is the central trajectories
algorithm (CTA), introduced by Van Kreveld et al. [90]. To the best of our knowledge,
this method has only been studied theoretically until now and has never been imple-
mented. In this chapter, we present the �rst implementation of this algorithm and
experimentally study it to see how real world results compare to theoretical ones,
particularly when it comes to output complexity. The CTA requires each trajectory
in the cluster to have the same complexity. The CTA has a theoretical worst-case
output complexity of O(�n5/2), where � is the number of links per trajectory and n

131

4 Representative Trajectories

is the number of trajectories in a cluster. So it is theoretically possible that the gen-
erated representative trajectory has a complexity that is many times greater than
the complexity of the input trajctories, which is unwanted. However, the upper
bound on output complexity is reached when the generated representative trajec-
tory follows a pathological zigzagging pattern, which seems unlikely to occur in
practice, see Figure 4.2. With this research, we aim to �nd out what kind of output
complexity we can actually expect when applying the CTA to real-world trajectory
clusters. We also look at the in�uence of adding trajectory simpli�cation when com-
puting representative trajectories, as trajectory simpli�cation is one possible way
of reducing the complexity of the representative trajectory. We examine the e�ects
on the complexity of the representative trajectory of simplifying either the input
trajectories and/or the representative trajectory itself.

This chapter is organized as follows: In Section 4.1.1 we discuss the relevant liter-
ature. In Section 4.2 we explain the algorithms we use in more detail. In Section 4.3
we discuss the setup for our experiments. In Section 4.4 we present our results, and
we conclude in Section 4.5.

▶ 4.1.1 Related work

Trajectory clustering Data clustering is a technique commonly used in data min-
ing, where data is split up among clusters such that each data item has more in
common with data of its cluster than with data in other clusters. For trajectory data,
clustering can be of vital importance, as the movement patterns to be found in tra-
jectory data mining often occur on a local scale, within a limited area or timespan.
So it does not make sense to examine an entire database at once, where trajectories
may lie far apart in space and time. Traditional data clustering techniques such
as k-means clustering and DBSCAN [17, 18] have been adapted for use on trajec-
tories. But there have also been techniques introduced speci�cally for clustering
trajectories.

Lee et al. [93] partition trajectories into line segments, and then apply clustering
on these line segments. Gariel et al. [61] cluster aviation trajectories by simpli-
fying them and then applying a Longest Common Subsequence (LCSS) algorithm.
Ga�ney et al. [59] use a probabilistic clustering method known as a �nite mixture
model, where each cluster gets a probability density function (PDF) that is learned
with an expectation-maximization algorithm. Clusters can then be assigned based
on which PDF gives the highest probability for a trajectory. Fu et al. [58] introduce
spectral clustering for car trajectories extracted from video footage: They construct
a similarity matrix between the trajectories and then cluster by �nding a partition

132

4.1 Introduction

Figure 4.1: Top: A trajectory cluster where no trajectory is a good representative
for the cluster. Bottom: A trajectoid constructed to be representative of the cluster.
The dashed sections represent discontinuities where the trajectoid switches between
trajectories. This can only occur when the points on both trajectories corresponding
to the time of the switch are closer than the distance threshold ".

of the graph induced by the matrix. Zhang et al. [138] compare di�erent clustering
algorithms and also introduce a metric for measuring the similarity in a cluster and
disparity between clusters.

The clustering algorithm used for extracting clusters from the used data sets
in this chapter is the Subtrajectory Clustering algorithm introduced by Buchin et al.
[32]. For details on this algorithm and how we have adapted it for use in this chapter,
see Appendix B.

Cluster summarization Once clusters have been formed, it is bene�cial to sum-
marize the clusters so they can be visualized and compared more easily. In this
chapter we study the algorithm of Van Kreveld et al. [90], but other methods also
exist. Some methods are based on computing which trajectory in a cluster best
represents the cluster [114], but this leaves open the possibility that none of the

133

4 Representative Trajectories

Figure 4.2: Pathologic case for 1-dimensional trajectories. Time is visualized as
the horizontal axis. Within a time interval in between probe sampling times, n
trajectories (blue) can be arranged to make the ideal representative trajectory (green)
zig-zag, giving the central trajectory (red) a complexity of O(n2). This construction
can be copied in between each pair of probes giving the central trajectory a total
complexity O(�n2). For 2-dimensional trajectories the complexity in between a pair
of probes can become O(n5/2). Figure adapted from [90].

trajectories represent the total cluster well enough. So most methods create wholly
new trajectories that are not part of the cluster, but do represent it.

Buchin et al. [33], only consider the spatial aspects of the trajectories and discard
the time component. They then use the median trajectory as a representative. This is
a trajectoid (see Section 4.2 for the de�nition) that is optimized to be the median of the
cluster at all times, i.e. from a point on the median trajectory, for the point to reach
the unbounded face it must cross at least half of the trajectories. They also introduce
a version where the median trajectory must preserve homotopy with the cluster
respective to a set of obstacles. Lee et al. [93] compute a representative trajectory
based on the averaged position of the cluster. Johard and Ru�aldi [80] compute a
mean trajectory for analyzing human body movements using a generalization of
Dynamic Time Warping barycenter averaging.

Trajectory simplification In this chapter, for our experiments where we test the
e�ects of trajectory simpli�cation, we use the widely-used Douglas-Peucker [49]

134

4.2 Preliminaries and notation

algorithm for simpli�cation. It uses a divide-and-conquer algorithm for simplifying
polylines. The algorithm ensures the Hausdor� distance between original and sim-
pli�cation is at most a parameter �simp but it o�ers no guarantee of optimal data
reduction. For more related work on trajectory simpli�cation we refer to Chapter 3.

▶ 4.2 Preliminaries and notation

▶ 4.2.1 Trajectory clusters

A trajectory cluster C is a set of (sub)trajectories close in space and time. For the
purposes of this chapter, we de�ne it as a set of at least m subtrajectories, such
that each subtrajectory has distance of at most 2� to any other subtrajectory in the
cluster, where m and � can be chosen based on the use case. How large the distance
between trajectories is will depend on the distance measure that is used. Many
di�erent measures exist, and we de�ne several in Section 1.2. For our clustering
in this chapter, we use the algorithm by Buchin et al. [32] which can use either
the Fréchet distance or discrete Fréchet distance. (See Section 1.2.2.) We use the
version based on discrete Fréchet distance so we can make use of the implementation
present in the library MoveTK [2]. We assume that the trajectories in a cluster are all
sampled at the same times and thus also have an equal number of edges. We notate
this number of edges as � .

▶ 4.2.2 Trajectoids

A trajectoid is a function on a cluster of trajectories that maps time to these trajec-
tories. It can be thought of as a pseudo-trajectory consisting of a concatenation of
pieces of the input trajectories. A trajectoid is said to be "-connected if, at each time
where the trajectoid switches which trajectory piece is followed, the Euclidean dis-
tance between the old and new pieces at that time is at most ". The places where the
trajectoid switches trajectory pieces are called discontinuities. See Figure 4.1. Note
that trajectoids take the time component of the input trajectories into account. So
even if two trajectories lie close to each other, the trajectoid can only switch which
trajectory it follows if the entities were close enough to each other at some speci�c
time.

135

4 Representative Trajectories

▶ 4.2.3 Central trajectories

Let D( , t) be the radius of the smallest disk centered on trajectoid  at time t that
encloses all entities in the cluster. The central trajectory is then the "-connected
trajectoid that minimizes the function

() =
∫

t�

0

D( , t)dt (4.1)

Informally, it is the trajectoid that is as close to the center of the cluster as possible
while respecting "-connectedness. The central trajectories algorithm (CTA) as posed
by Van Kreveld et al. [90] takes a parameter ". It works by constructing a Reeb graph.
A Reeb graph is a graph that captures the sequential merging and splitting of sets.
Each edge (called a Reeb edge) corresponds to a set, and a vertex corresponds to a
change. If a vertex has two incoming edges and one outgoing edge, it represents the
merging of two sets. Inversely, if one edge comes in and two go out, the set is split in
two. The Reeb graph constructed by the CTA is one where each edge corresponds to
a maximal "-connected subset of the cluster, and each vertex corresponds to an event
where these sets change. So these are times where two entities are at a distance of
exactly " and the set containing one of the entities splits from or merges with the set
containing the other entity. There can be a quadratic number of these vertices. The
edges are assigned a weight based on the centrality of the trajectories associated
with the edge. The central trajectory is then found by taking a minimum weight
path through the Reeb graph. See Figure 4.3 for a 1-dimensional example of a Reeb
graph constructed like this, and Figure 4.4 for such a Reeb graph annotated with the
centrality functions that will be the basis for its edge weights. For the full details of
the central trajectories algorithm, we refer to the paper by Van Kreveld et al. [90].

▶ 4.3 Experimental setup

In order to verify the output complexity and e�ects of simpli�cation when using real
data, we design two experiments. In the �rst experiment we vary the " parameter for
the CTA and run it on several real data sets and study how the output complexity
changes as " increases. In the second experiment we �x " and run the CTA four
times on the data sets, testing di�erent combinations of applying a simpli�cation
algorithm before or after running the CTA. We repeat this for three di�erent levels
of simpli�cation. To perform the experiments, we need:

• An implementation of the central trajectories algorithm.

136

4.3 Experimental setup

Figure 4.3: (left) A set of �ve 1-dimensional trajectories of four vertices each (blue).
The x-axis corresponds to time. The ideal trajectory which minimizes the sum of
distances is shown in green; breakpoints of the ideal trajectory are indicated by
vertical black lines. (right) An equivalent transformed version of the trajectories in
which the ideal trajectory is a straight line. Times at which two or more trajectories
are within distance " are indicted in pink. The resulting topological structure is
captured by the Reeb graph, drawn at the top. Figure taken from [90].

• An implementation of a simpli�cation algorithm.

• Suitable real-world data sets.

• Preprocessing and clustering of the data sets.

▶ 4.3.1 Implementation choices
We have implemented the CTA using C++ and making use of the libraries CGAL [3],
Boost [4], and MoveTK [2]. As a simpli�cation algorithm we use the implementation
of Douglas-Peucker from MoveTK and for the clustering algorithm we have adapted
the implementation of Subtrajectory Clustering that is included in MoveTK.

▶ 4.3.2 Data sets
The input for the central trajectories algorithm should be a clustered set of trajecto-
ries. We obtain such clusters from several data sets coming from di�erent domains.
We use the HR, MC, TD, GL, and PF data sets. See Appendix A for details on the
data sets. For the CTA, input data needs to be in a clustered form, so we have done
a number of preprocessing steps to extract trajectory clusters. See Appendix B for
details.

137

4 Representative Trajectories

Figure 4.4: A Reeb graph for �ve entities annotated with the functions for each entity
giving the distance to the centerpoint of the smallest enclosing disk. The weight of
each Reeb graph edge is based on the lower envelope of the functions on that edge.
Figure taken from [90].

▶ 4.3.3 Final data sets

After the preprocessing we obtained �ve data sets, each containing 94–160 clusters
of between 3 and 31 trajectories with 9–1226 probes. This will be the input for
the CTA. However, a sizable amount of these probes are colinear, introduced by
the elementary resample done during preprocessing (see Appendix B), as well as
incidentally colinear probes. For comparing the input and output complexity these
colinear probes are considered to be noise, so when reporting the results we give the
input complexity for the trajectories after they have been simpli�ed using Douglas-
Peucker with a very small distance threshold �simp of 1 cm to remove the colinear
probes. Using this approach, the complexity of the trajectories in the input comes to
lie between 2–463 probes, so this removal of probes does mean the input complexity
can become lower than |T |min , i.e. the minimum complexity parameter used during
preprocessing (see Appendix B).

Examples of clusters found in the data sets can be seen in Figure 4.5. Although
we have taken steps to exclude stay points from our clusters, some are still present
in our preprocessed data. This is particularly true for the TD and PF data sets.
Whereas most of the data sets contain many clusters where the trajectories follow
along the same road (or shipping channel), TD mostly lacks these clusters. This is
likely because of TD’s relatively low sample rate. Most of its clusters are simply
subtrajectories lying close to some point, without necessarily going the same way.

Important metrics about the clusters are given in Table B.2.

138

4.3 Experimental setup

Figure 4.5: Example clusters of the data sets, from left to right: Top row: HR, TD.
Bottom row: GL, PF, MC. The approximate size of the bounding boxes for these
clusters are, respectively: 4.2km × 2.9km, 1.6km × 1.5km, 1.3km × 2.1km, 6.3km ×

14.2km, 29km × 29km.

▶ 4.3.4 Additional details on the implementation of central tra-
jectories

The edge weights for the Reeb graph used by the central trajectories algorithm are
based on solving an integral. For ease of implementation we approximated the inter-
grals using a Riemann sum. The number of rectangles used for the approximation
is equal to � (Ie)B

t�
, where � (Ie) is the length of the time interval during which edge

e is active, t� is the total time the cluster is active, and B is a parameter setting
the maximum number of rectangles. The B sample times are also the times where
we evaluate if the central trajectory should switch which trajectory in the edge is
used. This means that the central trajectory can switch mid-edge at most B times.
Of course the trajectory can also switch at the end of edges. In our experiments,
B = 1000. Since we will show in our experiments that the number of discontinu-
ities is comparatively small, we are con�dent that this is a large enough value for

139

4 Representative Trajectories

this parameter.

▶ 4.3.5 Experiment 1: output complexity of real data
We applied the central trajectories algorithm to the data sets while varying the
values for " from 0 to 100 meters in increments of 5. We measured the number
of output vertices and the number of discontinuities (i.e. the number of times the
central trajectory changes which trajectory it follows). For the data sets where the
average value of these measurements had not yet converged at an " of 100 meters
(TD and MC) we repeated the experiment but now varying " from 0 to 1000 meters
in increments of 50.

▶ 4.3.6 Experiment 2: e�ect of simplification
We also experimented to investigate the e�ect of trajectory simpli�cation on the
results. To do this, we applied the CTA with a �xed " of 100 meters. For each data
set, we apply the CTA for four di�erent combinations of applying the simpli�cation
algorithm:

• No simpli�cation.

• Simplifying the input.

• Simplifying the output.

• Simplifying both input and output.

We run this experiment for three values of the simpli�cation parameter �simp , namely
1, 10, and 100 meters. We measure the complexity of the central trajectory we get
after all of the combination’s simpli�cation steps are applied.

▶ 4.4 Results and discussion

The output data for our experiments that we have plotted below can be found in [5].

▶ 4.4.1 Results of experiment 1
Visualization of results First we will consider the results of the �rst experiment,
as seen in Figure 4.6. We have plotted one curve for each cluster, showing how the

140

4.4 Results and discussion

0 10 20 30

0
25

50
75

100
E

psilon

Number of discontinuities

C
luster size

A
verage

34567891012131722

H
agueR

otterdam

0 10 20 30

0
25

50
75

100
E

psilon

Ratio out/in complexity

C
luster size

A
verage

34567891012131722

H
agueR

otterdam

0.0

2.5

5.0

7.5

10.0

0
250

500
750

1000
E

psilon

Number of discontinuities

C
luster size

A
verage

34567810111314151624

T
D

rive

0.0

2.5

5.0

7.5

10.0

0
250

500
750

1000
E

psilon

Ratio out/in complexity

C
luster size

A
verage

34567810111314151624

T
D

rive

Figure
4.6:ResultsofExperim

ent1.Each
curve

representsone
ofthe

clustersofthe
data

set(continued
on

the
next

page).

141

4 Representative Trajectories

0 10 20

0
25

50
75

100
E

psilon

Number of discontinuities

C
luster size

A
verage

345678910121317222431

G
eoLife

0 5 10 15 20

0
25

50
75

100
E

psilon

Ratio out/in complexity

C
luster size

A
verage

345678910121317222431

G
eoLife

0 5 10 15

0
25

50
75

100
E

psilon

Number of discontinuities

C
luster size

A
verage

34567811

O
penP

F
low

0 5 10

0
25

50
75

100
E

psilon

Ratio out/in complexity

C
luster size

A
verage

34567811

O
penP

F
low

Figure
4.6:ResultsofExperim

ent1.Each
curve

representsone
ofthe

clustersofthe
data

set(continued
on

the
next

page).

142

4.4 Results and discussion

0 5 10 15

0
250

500
750

1000
E

psilon

Number of discontinuities

C
luster size

A
verage

3456789

M
arineC

adastre

0 10 20 30

0
250

500
750

1000
E

psilon

Ratio out/in complexity

C
luster size

A
verage

3456789

M
arineC

adastre

Figure
4.6:ResultsofExperim

ent1.Each
curve

representsone
ofthe

clustersofthe
data

set.

143

4 Representative Trajectories

0 50

100

150

200

0
50

100
150

200
Input C

om
plexity

Output Complexity

H
agueR

otterdam
, delta =

 1 m

0 50

100

150

200

0
50

100
150

200
Input C

om
plexity

Output Complexity

H
agueR

otterdam
, delta =

 10 m

0 50

100

150

200

0
50

100
150

200
Input C

om
plexity

Output Complexity

H
agueR

otterdam
, delta =

 100 m

5 10 15 20

4
8

12
16

Input C
om

plexity

Output Complexity

T
D

rive, delta =
 1 m

5 10 15 20

4
8

12
16

Input C
om

plexity

Output Complexity

T
D

rive, delta =
 10 m

5 10 15 20

4
8

12
16

Input C
om

plexity

Output Complexity

T
D

rive, delta =
 100 m

Figure
4.7:ResultsofExperim

ent2.Red
squaresrepresentno

sim
pli�cation

applied.Pink
diam

ondsw
ere

sim
pli�ed

beforetheCTA
w

asapplied.Bluetrianglesw
eresim

pli�ed
afterw

ardsand
green

circlesw
eresim

pli�ed
both

beforeand
afterthe

CTA
(continued

on
the

nextpage).

144

4.4 Results and discussion

0

100

200

300

400

0
100

200
Input C

om
plexity

Output Complexity

G
eoLife, delta =

 1 m

0

100

200

300

400

0
100

200
Input C

om
plexity

Output Complexity

G
eoLife, delta =

 10 m

0

100

200

300

400

0
100

200
Input C

om
plexity

Output Complexity

G
eoLife, delta =

 100 m

0 10 20 30 40 50

10
20

30
40

Input C
om

plexity

Output Complexity

O
penP

F
low

, delta =
 1 m

0 10 20 30 40 50

10
20

30
40

Input C
om

plexity

Output Complexity

O
penP

F
low

, delta =
 10 m

0 50

100

10
20

30
40

Input C
om

plexity

Output Complexity

O
penP

F
low

, delta =
 100 m

Figure
4.7:ResultsofExperim

ent2.Red
squaresrepresentno

sim
pli�cation

applied.Pink
diam

ondsw
ere

sim
pli�ed

beforetheCTA
w

asapplied.Bluetrianglesw
eresim

pli�ed
afterw

ardsand
green

circlesw
eresim

pli�ed
both

beforeand
afterthe

CTA
(continued

on
the

nextpage).

145

4 Representative Trajectories

0 50

100

150

50
100

150
Input C

om
plexity

Output Complexity

M
arineC

adastre, delta =
 1 m

0 50

100

150

50
100

150
Input C

om
plexity

Output Complexity

M
arineC

adastre, delta =
 10 m

0 50

100

150

50
100

150
Input C

om
plexity

Output Complexity

M
arineC

adastre, delta =
 100 m

Figure
4.7:ResultsofExperim

ent2.Red
squaresrepresentno

sim
pli�cation

applied.Pink
diam

ondsw
ere

sim
pli�ed

beforetheCTA
w

asapplied.Bluetrianglesw
eresim

pli�ed
afterw

ardsand
green

circlesw
eresim

pli�ed
both

beforeand
afterthe

CTA
.

146

4.4 Results and discussion

number of discontinuities and the ratio of output to input complexity changes as
we increase ". Each curve is colored according to the number of trajectories in the
cluster. Since the input complexity for the trajectories in the cluster may vary a bit
due to the removing of colinear probes the ratio of output to input complexity is
averaged over all trajectories in the cluster. We also show the mean average over all
clusters for each value of " as a black curve.

Interpretation of results. We can see that up to a certain point, as " increases so
does the number of times the central trajectory switches which input trajectory it
follows and so does the ratio between output and input complexity. However, once
" is big enough the curves level out. Since the CTA optimizes for centrality and
not for reducing the number of discontinuities, a larger epsilon can also result in a
reduction of discontinuities. Because of this, some clusters’ curves tend to oscillate
around a certain value as " increases.

By looking at the cluster size of the trajectories, we can see that the ratio of
output to input complexity does not seem to be closely related to the cluster size,
depending considerably more on the individual trajectories. The ratio generally lies
close to 1, even for most of the larger clusters, not becoming larger than 4. The
theoretical worst case output complexity is O(�n5/2), which would mean a possible
ratio of n5/2, so for large clusters we could expect ratios orders of magnitude greater
than what we see in practice. Thus, we have shown that this theoretical worst case
is not representative of the output complexity in practice.

▶ 4.4.2 Results of experiment 2

Visualization of results. Now we will look at the results of the second experi-
ment, shown in Figure 4.7. The scatterplots show four points for each cluster in
di�erent shapes and colors: A red square indicating the input and output complexity
when no simpli�cation is applied, a pink diamond for when trajectory simpli�cation
is applied to the input trajectories but not to the output, a blue triangle for when the
output is simpli�ed but not the input, and a green circle for when both input and
output are simpli�ed.

Since the input complexity for the trajectories in a cluster may vary a bit due to
the removing of colinear probes the input complexity is averaged over all trajectories
in the cluster.

Interpretation of results We can see that the impact of simpli�cation for a given
value of �simp depends on the data set. For a �simp of 100 meters we do see a signi�-

147

4 Representative Trajectories

cant impact for all data sets. We can see that the red points, corresponding to when
no simpli�cation is applied, generally stay close to the line x = y, which con�rms
our �ndings of the previous experiment that the ratio between output and input
complexity tends to stay close to 1 even for large clusters. Looking at the di�erence
between the purple, blue and green points we can see that simplifying the output
rather than the input gives a slightly lower output complexity. The extent to which
they di�er depends on the data set and the choice for �simp . The di�erence between
only simplifying the output, and simplifying both the output and input is very small,
as the green and blue points lie very closely together. So for reducing the total out-
put complexity simplifying the output su�ces. Simplifying the input complexity is
more useful for reducing the memory required to store the input clusters. Of course,
simplifying either the input or the output changes the properties of the trajectories,
so the central trajectory may not be optimal anymore for the original cluster.

Artifacts Upon close inspection, we can see that the PF data set has one inter-
esting outlier when the input is simpli�ed with �simp = 100. There is one cluster
with output complexity of 141, placing it far above the other points in the graph.
Investigating this outlier reveals that after simpli�cation, the three trajectories in
the outlying cluster have one segment each that lie nearly equally close to their
center. The output central trajectory rapidly jumps between the segments creating
very high complexity for this one set of segments. See Figure 4.8.

This seems to be a rare occurrence. In particular, this is not an example of the
pathologic zig-zagging described by Van Kreveld et al.; in fact, the output complexity
is actually larger than the worst-case bound from [90]. We believe this is an artifact
caused by rounding errors in our Riemann approximation (refer to Section 4.3.4).
We veri�ed this by varying the value for the number of rectangles B, and indeed
the output complexity of this instance changes accordingly. We expect that using
exact computation for the Reeb graph edge, rather than the Riemann approximation,
would resolve this issue.

▶ 4.5 Conclusion
In conclusion, we have conducted the �rst experimental study into the central trajec-
tories algorithm. We show that, on most clusters in practice, the output complexity
does not reach the theoretical worst case of O(�n5/2), (where n is the number of
trajectories in the cluster and � is the complexity of each input trajectory). Instead,
the output complexity is closer to the number of vertices of an input trajectory in
most cases, meaning that the degenerate patterns responsible for this bound do not

148

4.5 Conclusion

Figure 4.8: The outlier found in OpenPFlow. Central trajectory shown in pink. The
amount of discontinuities is dependent on the number of rectangles in the Riemann
approximation B. In this image, B = 10,000.

occur in practice. This pattern holds for all values of ". This removes one possible
obstacle for the usability of the CTA, as we now have a clear indication the output
complexity will likely be a managable size.

Applying simpli�cation does a lot to reduce the output complexity for a high
enough � . Simplifying the central trajectory gives a smaller output than simplifying
the input trajectories and then applying the CTA. However, the di�erence is small,
so storing the simpli�ed input trajectories to save on memory can be a good option.
Of course, simpli�cation also destroys some of the data, so a good trade-o� between
memory footprint and data utility must be made based on the use case. Since we
have shown that the output complexity does not become that large in the �rst place,
simpli�cation may not be needed.

Future work can be done in testing the algorithm in situations where n or � are
very large. This does pose some challenges, as it is hard to �nd publicly available
data sets that contain many di�erent very large clusters that are easily extracted and
easily separable from noise such as stay points. Anonymization methods that have
been applied to data sets may also make it harder to �nd very large clusters.

149

150

Chapter 5

Road Network Generalization

▶ 5.1 Introduction

Road network generalization is an application task that reduces a road network in
size by selecting only the most relevant roads. There are many reasons for road
network generalization: (i) visualization at a smaller scale than the data provided;
(ii) e�ciency of road network analysis; (iii) suitability for road network analysis.
Research on this topic started in the 1990s by Thomson and Richardson [126] and
Mackaness and Beard [104]. These early approaches assumed that a road network
and a target map scale or detail level were given, and the objective was to select
a suitable subset of the roads used for mapping. Later research went further and
included road pattern preservation, generalization in the context of other map fea-
tures, continuous generalization to support on-line zooming or scale-less databases,
and inclusion of road usage data. The last aspect characterizes data-driven methods.

Data-driven methods rely on other data than just the road network. The most
obvious other data source is car trajectories. In the last ten years the size of collec-
tions of vehicle trajectory data has grown tremendously, allowing a host of route
planning and tra�c analyses to be performed. Trajectories can �rst be preprocessed
by map-matching so they can be treated as routes on the road network rather than
paths through the plane. The measured times and locations are discarded and in-
stead the route is stored as a list of used network edges. Since route planning and
tra�c analysis often use a road map as an interface, visualization and analysis of
road networks are linked. Imagine a user selecting a start and a destination on a road
map, along with speci�cations on the desired route. Then a route will be computed

151

5 Road Network Generalization

and shown on the map. Ideally, the base map is not too cluttered due to showing all
roads, but also, ideally the computed route uses roads which are already visible on
the map. If we want these two features simultaneously, we can use route-preserving
road network generalization.

We formalize route-preserving road network generalization as follows: Given
a road network, represented by an embedded graph G, a collection R of routes on
this network, and a length budget B, compute a subgraph of G whose summed edge
length is at most B and which contains the maximum number of routes of R in full.
Alternatively, we wish to compute the subgraph that has the maximum total length
of routes fully contained.

We call these two versions (full) route containment by number and (full) route
containment by length.

Let us examine this problem statement more closely and motivate it.

Simplicity First, we observe that the problem statement is simple and well-de�ned.
Simplicity is an important feature. While a practical, useable implementation
of road network generalization may need to take multiple, con�icting criteria
into account by combining them, from the academic perspective it is important
to understand to what extent a simple method can already solve the problem.
Simple solutions that perform well have more predictable behavior and can
be adapted to a truly well-functioning method more easily.

Parameters Second, we observe that the budget represents the degree of general-
ization. For example, our budget could be half the length of the original road
network, leading to less road density and a better overview. The budget is an
intuitive, useful input parameter.

Optimization criteria Third, we notice that the optimization to contain as many
routes as possible corresponds directly to letting the subgraph represent as
many driven routes as possible, with preference for routes that are driven
more often. This is precisely what we aim to achieve. Optimizing the number
of routes contained in the subgraph will give preference to including short
routes, which is undesirable, and hence we expect that optimizing the total
length of all completely contained routes gives better results.

Input assumptions Fourth, our problem of interest is the computation of the sub-
graph. We assume that road matching the input trajectory data has already
been done. We assume that all routes lie on the full road network G. We also
assume that all routes are single drives between an origin and a destination.
We do not discuss the associated problem of route segmentation.

152

5.1 Introduction

Figure 5.1: Left, a road network with six routes drawn. Middle, generalization ac-
cording to most used roads with a budget of 11: all roads covered twice or more are
chosen. Right, two equivalent outcomes of route-preserving generalization with a
budget of 10: there are two ways to contain two routes with a budget of 10. A budget
of 11 does not help to contain more routes.

Limitations Fifth, the solution to the problem is not necessarily a connected sub-
graph of G. Also, it does not lead to continuous generalization of the road
network. These two desirable features can be incorporated without much
e�ort, however, in a heuristic implementation.

Finally, we want to emphasize the subtle di�erence between maximizing the
total number of routes (or their lengths) that are fully contained, and maximizing
the total road usage of the roads chosen in the generalized network. In the latter
problem, we can convert the routes into counts on the edges of the graph G, and
otherwise forget about these routes. We believe that our version of preserving full
routes gives rise to fewer artifacts. Figure 5.1 illustrates the di�erence and potential
for artifacts on a small example. Maximal road usage leads to three “dead ends” in
the generalized network that are not at destinations, and not a single route is fully
preserved. Route-preserving generalization does not have dead ends, and two full
routes are preserved. The example is not dependent on the chosen budget; other
budgets give similar output.

▶ 5.1.1 Results
We �rst study the theory of route-preserving road network generalization (RPRNG).
Like many interesting optimization problems, RPRNG is NP-hard. We show that
this is already the case for very simple graphs, namely those without any cycles.

153

5 Road Network Generalization

We also show NP-hardness for planar graphs if the routes hardly overlap: even if
for every feature of the graph, at most two routes of R cover it, the problem is still
NP-hard. On the other hand, the problem can be solved in polynomial time when
two assumptions are made simultaneously: the graph has no cycles, and every graph
feature is covered by at most a constant number of routes in R. See Table 5.1.

Since the problem is NP-hard for realistic input assumptions, a di�erent approach
is needed. To assess the idea of optimizing route covering, we developed and im-
plemented heuristics to solve the problem. We incrementally choose the next route
from the collection, based on a score function. When a route overlaps considerably
with many other routes, it will receive a low score. We incrementally keep choosing
the lowest scoring routes until the budget is used up. There are two options: either
we compute scores from the start and keep on using these scores, or we adapt the
scores after every incremental choice. We can expect that the former method is more
e�cient and the latter method gives better optimization.

Both of these incremental methods yield a continuous method for road network
generalization; that is, they can be used in maps that support interactive zooming.
In fact, the NP-hardness of the �xed target-scale problem is closely related to the fact
the optimal solution to the problem is not continuous as the budget is increased or
decreased, and pieces of the input graph may appear and disappear during zooming
in one direction.

We study the outcome of four data-driven road network generalization methods.
The �rst method performs generalization based on road usage, without attempting
to include full routes (chosen as a baseline). The other three are route-preserving.

Our analysis is both quantitative and qualitative. Quantitatively, we report the
number of full routes preserved and their summed length, the average coverage
(ply) of chosen edges, the number of connected components, and the number of
road network leaves that are not at origins or destinations of routes. Qualitatively,
we inspect the resulting networks to see where they are di�erent and where they
are the same, and make observations. For example, we observe that the baseline has
many more leaves not at origins or destinations, but RPRNG still has some, when a
U-turn was made.

▶ 5.1.2 Related work

Many papers have been written on road network generalization; this chapter gives
an overview of a selection only.

Among the criteria used to select roads, many are cartography-focused, in the
sense that the generalized road network should “look good”. These criteria include

154

5.1 Introduction

avoiding small faces between the roads, avoiding coalescence, and controlling den-
sity [43, 51, 78, 99, 103, 91, 136, 143]. Other methods give preference to sequences
of roads that are smooth continuations of each other (strokes) [23, 101, 127, 125]. A
global criterion that is often used is connectivity of the generalized network [44, 104],
which is one of several structural graph-based criteria [76, 77, 131].

The most important criterion for continuous generalization is avoiding sudden
changes, and avoiding that when zooming in one direction, a road segment dis-
appears and then reappears [44, 123]. This type of behavior is to be avoided for
all continuous generalization operations. One of the existing methods to road net-
work generalization is coined “selective omission”, where road segments, extended
by good continuation to strokes, are scored based on geometric, topological, and
attribute factors [43, 143]. As mentioned, our method can be adapted to support
such continuous zooming, since it can be seen as a new way to perform selective
omission.

One of the �rst road network generalization methods can be called a precursor
to data-driven generalization. Thomson and Richardson [126] let a subset of the
vertices of a road network be sources and destinations, and they compute shortest
paths between each pair. This gives arti�cial road usage, and they select the most
used roads according to this computation. Similarly, road usage can be estimated
based on an agent-based simulation [110]. While data-driven geography [108] has
been around for longer, data-driven road network generalization has —to the best
of our knowledge— not been studied until very recently. Fekete et al. [54] focus
on �nding the optimal placement for k points on a road network to maximize the
length of real-data subtrajectories captured between each pair of points, which could
also be applied for road network generalization. Yu et al. [132] re�ne road network
generalization based on selecting strokes in the network by including tra�c �ows
mined from trajectory data.

Besides the few other data-driven road network generalization papers, many
methods use a scoring of roads, and clearly the road score can be based on actual
road usage, which would be data driven (in both meanings of the word “driven”).
Note that our route-preserving approach uses data in a di�erent way: it is driven-
route driven.

Our research is related to road network construction from trajectories, a topic
on which a lot of research exists (e.g., [11, 30, 81, 122]). The emphasis of that line
of research is di�erent, since the challenge is dealing with noise and deciding when
trajectories follow the same (unknown) road. Our research is also related to the
problem of hotspot computation on road networks based on trajectory data [34, 97],
which concerns another application with a data-driven solution, based on the same

155

5 Road Network Generalization

input data.
From the theoretical perspective, our research problem involves a weighted

graph with paths on that graph. Our problem does not use coordinates of the road
network explicitly (only to determine lengths of road segments), nor the coordi-
nates and times of the trajectories. Hence, the abstract view of our problem is a
graph problem and not a network problem. Since graph problems typically do not
come with a set of paths on that graph, there are no closely related graph prob-
lems. However, there are some connections which allow us to prove NP-hardness
of route-preserving road network generalization.

▶ 5.2 Theoretical results

Table 5.1: Algorithmic and hardness results for graph classes of G and bounds on
the ply.

path tree planar graph

ply 1 O(n log n) O(n log n) O(n log n)

ply 2 O(n|R|
2
) O(n|R|

2
) NP-hard

ply c O(n|R|
2
c) O(n|R|

2
2
2c
) NP-hard

ply ∞ O(n|R|
3
) NP-hard NP-hard

In this section we show that both versions of the RPRNG problem are NP-hard,
even for simple and sparsely covered road networks. We present polynomial-time
algorithms for two special cases of the number of routes RPRNG problem, when the
road network is a path (with arbitrarily heavy coverage), and when it is a tree (with
each segment of the network covered by at most c routes, for some �xed constant c).

Let G = (V , E) be the graph representing the road network, with vertices V and
edges E, and let R be the set of routes in G. For simplicity of presentation, we assume
that each route in R begins and ends at a vertex in V , and that the routes are simple
(i.e., non-self-intersecting). Note that it is straightforward to extend our algorithm
to the case of non-simple routes with minor changes to the dynamic programming
formulation. Furthermore, assume that each edge in G is traversed by at least one

156

5.2 Theoretical results

route, otherwise we remove such edges in a preprocessing step. De�ne the ply of an
edge e ∈ E to be the number of routes in R traversing e. Similarly, the ply of a vertex
v ∈ V is the number of routes in R traversing v.

The route length version of the RPRNG problem is NP-hard by a very easy reduc-
tion from the Subset Sum problem even for the case when the routes are pairwise
disjoint and G is a path.

Theorem 5.2.1. The RPRNG problem with the objective to optimize the total length
of covered routes is NP-hard even if the maximum ply is 1 and the graph is a path.

The number of routes version of the RPRNG problem is the easier version, and
allows for polynomial-time solutions for some special cases. Our theoretical re-
sults for this version of the problem are summarized in Table 5.1. We present two
polynomial-time algorithms for a dual formulation of the RPRNG problem for the
cases when G is a path with edges and vertices of unbounded ply, and when G is a
tree with maximum ply bounded by some constant c. In this dual formulation we are
given a number of routes to be covered, and the goal is to minimize the total length
of the resulting subgraph. Having a polynomial-time algorithm for this formulation,
we can solve the original RPRNG problem by performing a binary search on the
number of routes to be covered, resulting in an algorithm with an extra logarithmic
factor in its running time.

We then present two NP-hardness proofs for the RPRNG problem in the cases
when G is a tree with unbounded ply, and when G is a planar graph with max ply
at most 2. We also show that this last version is still NP-hard even if we add the
additional restriction that all routes are required to be shortest paths on the graph.
Note that the case when G is a graph with max ply 1 is trivial. Indeed, in that case G
reduces to a set of disconnected paths, and a simple greedy strategy can be applied
to solve the problem.

▶ 5.2.1 When G is a path

We start with a dynamic programming algorithm for the case when G = (V , E) is
a path; the maximum ply may be arbitrarily large. Let V = {v1, v2, … , vn} be n
vertices of G embedded on a line from left to right, and let edges E = {ei = (vi , vi+1) ∣
1 ≤ i < n} (refer to Figure 5.2). Let R be the set of routes in G, and let Ri be the set of
routes that each starts on or before vi and ends after vi . That is, for each r ∈ Ri we
have that r starts at some vertex vj with j ≤ i and ends at some vertex v

k
with k > i.

Let F (i, k, S), where i ≤ n, k ≤ m, and S ⊂ Ri , denote a subproblem in our dynamic
programming formulation on the �rst i vertices, with k routes to be covered, and

157

5 Road Network Generalization

v1

r1
r2
r3
r4

v2 v3 v4 v5 v6 v7

Figure 5.2: Example of the RPRNG problem on a path graph with seven vertices and
four routes. An optimal solution to cover two routes is a path between v3 and v7,
which covers routes r2 and r3.

such that the routes in S are all covered up to vertex vi . The goal is to minimize
the total length of an output subgraph in F (i, k, S). A naive dynamic programming
recursion is given by the following formula:

F (i, k, S) = min

S∩Ri91⊆S′⊆Ri91
[F (i − 1, k − |S

′
⧵ Ri |, S

′
) + cost(ei−1, S

′
)] (5.1)

With boundary conditions F (i, k, S) = 0 if i = 0 and k ≤ 0, and F (i, k, S) = ∞ if i = 0
and k > 0. The cost function cost(ei−1, S

′
) depends on the choice whether or not to

include the last edge ei−1 = (vi−1, vi) into the output graph G′. Note that this choice
is dictated by the subset S′. If there are any routes in the �nal solution that cover
ei−1, then they must be included in S

′. As all the routes in S
′ use the edge ei−1, it

must be included into the output graph if S′ is non-empty. Therefore, we de�ne the
cost function as follows:

cost(e, S
′
) =

{

0 , if S′ = ∅ ,
‖e‖ , otherwise .

(5.2)

Note that for a given i, the above recursion considers exponentially many subsets
S
′. To optimize this, we can instead restrict our dynamic programming to consider

only maximal subsets S′. That is, let r ∈ S′ be a route with the left-most starting
vertex vj . Then, we can without additional cost include in S′ all routes r ′ which start
between vertices vj and vi and end after vertex vi . Thus, as the size of S′ is bounded
by |R|, instead of considering O(2

|R|
) possible subsets, we can restrict ourselves to

only O(|R|) subsets. We obtain a dynamic programming table of size n × |R| × O(|R|),
where n is the number of vertices in G, and |R| is the number of routes. For each
subproblem we spend O(|R|) time, giving us a polynomial-time algorithm. Thus we
conclude with the following theorem.

Theorem 5.2.2. The RPRNG problem with the objective to maximize the number of
covered routes can be solved in O(n|R|3) time when G is a path, where n is the number

158

5.2 Theoretical results

v1

v2 v3

v4

v7

v5 v6

Figure 5.3: Example of the RPRNG problem on a tree graph with four routes. Vertices
of degree higher than three are split to form a binary tree, weight of edge (v4, v5)
is set to 0. There are multiple optimal solutions to cover two routes, for example, a
subtree rooted at vertex v5.

of vertices in G, and |R| is the number of routes.

▶ 5.2.2 When G is a tree with bounded ply
We now modify our dynamic programming algorithm from the previous section to
solve the RPRNG problem in the case when G is a tree, and the maximum ply of
edges and vertices is bounded by some constant c. The vertices of degree higher
than three can be split by inserting zero-weight edges to form a binary tree. Choose
an arbitrary root, and order the vertices according to the post-order traversal (refer
to Figure 5.3). Thus, the leaves have smaller indices than their parents. Let Ri be
the set of routes which begin at some vertices in the subtree rooted at vi , and end
at some vertices outside of the subtree. That is, Ri is the set of routes which start on
or below vi and traverse vi from bottom to top.

Consider a subproblem F (i, k, S) on a subtree rooted at the vertex vi , where at
least k routes must be covered, including the set S ⊂ Ri of routes traversing vi

from bottom to top. In our dynamic program, we will merge the solutions of the
subproblems de�ned on the subtrees rooted at the children of vi . Similarly to the
previous section, the dynamic programming recursion is given by the following
formula:

F (i, k, S) = min

S∩R�⊆S�⊆R�

S∩Rr⊆Sr⊆Rr

k�+kr=k−|S� ∩Sr |

⎡

⎢

⎢

⎢

⎢

⎣

F (i� , k� , S�) + cost(ei�
, S�) +

F (ir , kr , Sr) + cost(eir
, Sr)

⎤

⎥

⎥

⎥

⎥

⎦

(5.3)

159

5 Road Network Generalization

Where i� and ir index the left and right child of the vertex vi respectively, and ei� and
eir

denote the edges (vi� , vi) and (vir , vi). The boundary conditions are F (i, k, S) = 0
if vi is a leaf and k ≤ 0, and F (i, k, S) = ∞ if vi is a leaf and k > 0. The values k�
and kr in the two subproblems depend on the value k and the number of routes
covered by the solutions of the two subproblems which are traversing vi from the
left subtree into the right subtree (for example, for the vertex v5 in the Figure 5.3, the
red route is such route). More speci�cally, let k′ be the number of routes in S� ∩ Sr ,
then k = k′ + k� + kr .

Unlike in the previous section, we no longer can consider only maximal subsets
S of the routes traversing vi , thus we need to consider all possible subsets. Since
the maximum ply is bounded by c, the number of subsets of routes traversing vi is
2
c . The size of the dynamic programming table becomes n × |R| × 2c = O(n|R|), and

we spend O(|R|2
c
) = O(|R|) time per subproblem. We conclude with the following

theorem.

Theorem 5.2.3. The RPRNG problem with the objective to maximize the number of
covered routes, when G is a tree and the maximum ply is bounded by some constant c,
can be solved in O(n|R|222c) time, where n is the number of vertices in G, and |R| is the
number of routes.

▶ 5.2.3 When G is a tree with unbounded ply

In this section we show that the RPRNG problem is NP-hard by a reduction from the
clique problem, which asks whether there exists a clique of a certain size in a given
graph. Given an instance of the clique problem on a graph G

′ with sought clique
of size k′, we construct an instance of the decision version of the RPRNG problem
consisting of a road network graph G, a set of routes R, an integer budget B on the
total length of the output network, and an integer k—the number of routes to be
covered. We show that there is a clique of size at least k′ in G′ if and only if there is
a subgraph of G of total length at most B which completely covers at least k routes
from R.

Speci�cally, let graph G
′ have n vertices {v1, v2, … , vn}. We construct G to be

a star graph with n + 1 vertices {u0, u1, … , un}, with edges (u0, ui) for all 1 ≤ i ≤ n

(refer to Figure 5.4), such that each edge has length 1. For all edges (vi , vj) in G′, we
add a route to R consisting of two edges (ui , u0) and (u0, uj). Finally, we set B = k′
and k = k′(k′ − 1)/2.

If there is a clique of size k′ in G′, then there is a set of B edges in G whose union
covers k routes in R. Indeed, let {vi1 , vi2 , … , vi

k
} be the vertices in a clique in G

′,
each edge connecting a pair of vertices in the clique has a corresponding route in R.

160

5.2 Theoretical results

u1

u2

u3

u5

u0

u4

v3

v1

v2v4

v5

Figure 5.4: Left: graph G′ from a clique problem instance. Right: graph G with �ve
routes corresponding to the edges of G′. Subgraph of G on vertices {u0, u1, u2, u4}
corresponds to the clique {v1, v2, v4} in G′.

Thus, the subgraph of G on vertices {u0, ui1 , ui2 , … , ui
k
} has B = k′ edges and covers

the k = k′(k′ − 1)/2 routes in R corresponding to the edges of the clique.
Conversely, if there is a subgraph of G consisting of B = k

′ edges that covers
k = k

′
(k
′
− 1)/2 routes in R, then there are k′ vertices in G

′, each pair of which is
connected by an edge corresponding to one of the covered routes in R.

Therefore, we conclude with the following theorem.

Theorem 5.2.4. The RPRNG problem with the objective to maximize the number of
covered routes is NP-hard when G is a tree and the maximum ply is unbounded.

▶ 5.2.4 When G is a planar graph with bounded ply
We will now show that the RPRNG problem is NP-hard when G is a planar graph
even if the ply on edges and vertices is bounded by 2. We again reduce from the
clique problem.

Consider an instance of the clique problem on a graph G
′
= (V

′
, E
′
), with an

integer k. We construct an instance of the RPRNG problem consisting of a graph G,
a set of routes R, a budget B, and an integer k, such that G′ has a clique of size k if
and only if there exists a subgraph of G of total weight at most B which covers at
least k routes.

To create this instance, we set G to be a |V
′
| × 2|E

′
| grid graph, where we assign

one row to each vertex of V ′. We assign two adjacent columns of vertices to each
edge of E′, and set the weight of the |V

′
| horizontal edges connecting these adjacent

columns to 1. All other edges have weight 0. We create a route for each vertex of
V
′ that lies on the row associated with its vertex, except for the edges in columns

161

5 Road Network Generalization

d

c
a

b

v2

v3

v1

v4

a b c d

v1

v2

v3

v4

Figure 5.5: Left: graph G
′ of a clique problem instance. Right: corresponding grid

graph G, and four routes corresponding to the vertices of G′. Edges in a column
associated with an edge of G′ have weight 1, all other edges have weight 0.

associated with edges where the associated vertex is the lower-indexed endpoint.
For those edges, the route travels vertically to the row associated with the higher-
indexed endpoint and uses that edge instead before vertically going back to its own
row. See Figure 5.5. We set B = k|E| − k(k − 1)/2. It becomes clear that this is a
correct reduction when we consider that if we pick k routes that do not overlap, we
need a budget of k|E|. If two selected routes overlap, the amount of budget needed
decreases by 1. If the savings sum to a total of k(k − 1)/2, this means we can select k
vertices that share k(k − 1)/2 edges between them in G

′, implying they are a clique
of size k. It is easy to see that in the grid graph, no edge or vertex is covered by more
than two routes.

Theorem 5.2.5. The RPRNG problem with the objective to maximize the number of
covered routes is NP-hard even if G is a planar graph and the maximum ply is bounded
by 2.

Note that in the above construction we can set the weight of the 0-weight edges
to be a small positive value " ≪ 1, and thus obtain the same result for a graph with
non-zero edge weights.

▶ 5.2.5 When G is a planar graph, ply is bounded, and routes
must be shortest paths

Another special case we will investigate is like the previous case, but we also require
that each route is a shortest path on G. This is a natural extension as real world
routes tend to be close to the shortest path as drivers want to reach their destination
as fast as possible. However, we will show that this additional restriction does not
prevent the problem from being NP-hard.

Our reduction is once again from the clique problem. Consider an instance of
the clique problem on a graph G

′
= (V

′
, E
′
), with an integer k′. We construct an

instance of the RPRNG problem consisting of a graph G, a set of routes R, a budget

162

5.2 Theoretical results

B, and an integer k, such that G′ has a clique of size k′ if and only if there exists a
subgraph of G of total weight at most B which covers at least k routes. Our instance
will be constructed such that G is a planar graph, and R will only consist of shortest
paths where the maximum ply of any edge is 2.

First we will construct the graph G for our instance. We will do this by �rst
creating an arrangement of shapes which we will then transform into a graph by
placing vertices on the shapes and connecting them with edges. The number of
vertices we will be placing on each shape will be a function of a �xed number n. Let
n = max{|V

′
|, k

2
}.

For each vertex of G′ we create a circle. If two vertices of G′ share an edge, their
circles are connected by a straight line segment, which we will call the edge’s arc. To
ensure that there are no intersections between arcs and circles that are not incident
to the arc, we place the circles on the corners of a regular |V ′|-gon.

Now we replace each arc with a chain of edges: At the places where two arcs
intersect a vertex is placed, and additional vertices are placed such that each arc
is divided into exactly n

2 edges. These additional vertices are placed only on the
parts of the arc between a circle and an arc intersection, not in between two arc
intersections. The endpoints of the edge chain lying on an arc are vertices which lie
on one of the circles corresponding to the vertices of G′ incident to the arc’s edge.
Additional vertices are placed on the circles such that each circle has 2n3 vertices
on it. Each vertex is connected by edges to its adjacent vertices on the circle, such
that a cycle of 2n3 edges is created lying on the circle. The weight of each edge is
set to 1. This �nishes our construction of G.

Now we will create the set of routes R. For each cycle, we will create a set of 2n
routes lying on it. We start by creating a route r1 covering n2 + n edges somewhere
on the cycle. Then, we create a second route r2 of n2 + n edges on the cycle, such
that the last n edges of r1 overlap with the �rst n edges of r2. We can keep creating
routes like this until we have covered the entire cycle. The last route we create, r2n ,
has its last n edges overlap with the �rst n edges of r1. The cycle then has 2n routes
on it of n2+n edges each, where the �rst and last n edges overlap. This results in 2n2
edges with ply 2 and ply 1 everywhere else on the cycle. We can always construct
the cycle and routes in such a way that each cycle vertex incident to an arc and the
next n edges on the cycle have ply 1.

Besides these 2n2 routes that lie fully on cycles, we also create one route for each
arc. These routes cover every edge of an arc, as well as n edges of each cycle the arc
is incident to. The addition of these routes completes our set R. See Figure 5.6 for a
sketch.

We let B = (2k′n + k′(k′ − 1)/2)n2 and k = 2k′n + k′(k′ − 1)/2. We will know G
′

163

5 Road Network Generalization

Figure 5.6: Reduction from the clique instance shown in Figure 5.5. The constructed
graph consists of cycles of 2n3 vertices on an n-gon connected by arcs. Points are
added to the arcs so that each arc consists of n2 edges. Purple routes cover n2 + n
edges, green routes cover n2+2n edges. Only by selecting the routes associated with
edges and vertices that form a clique can we get enough routes using our budget.

has a clique of size k′ if and only if we can capture k routes of R using at most B
budget. To see that this reduction works, consider that the routes that lie fully on
cycles have length n2 +n and the routes lying on arcs have length n2 +2n. Capturing
2k

′
n + k

′
(k
′
− 1)/2 routes with the budget results in an average budget per route

of n2. Since each route consists of more than n
2 edges, our captured routes must

have signi�cant overlap. If we pick all of the edges on a single cycle we capture 2n
routes, spending n2 budget per captured route. Doing this for k′ cycles gives us 2k′n
captured routes with n2k′(k′ − 1)/2 budget left over, which is not enough to pick all
of the edges on an additional cycle. However, if the edges of both cycles incident to a
single arc have already been chosen, we only need n2 additional budget to cover the
rest of the edges on that arc. Each arc we can cover like this captures an additional
route. So if there are k′(k′ − 1)/2 of such arcs, i.e. the k′ vertices associated with our
chosen cycles form a clique, we can capture enough routes without exceeding the

164

5.3 Experiments

budget. Any other way of capturing k routes will not be able to get enough overlap
between routes and so too much budget would be needed.

It is clear that the transformation is polynomial, and that the constructed graph
is planar, has a maximum ply of 2, and only has shortest paths as routes. This gives
us the following theorem.

Theorem 5.2.6. The RPRNG problem, with the objective to maximize the number of
covered routes is NP-hard even if G is a planar graph, the maximum ply is bounded by
2, and all routes are a shortest path.

▶ 5.3 Experiments
To assess and validate the concept of route-preserving road network generalization,
we implemented three simple heuristics and a baseline density-based method, and
compared their performance on GH and NSH, two sets of vehicle routes from the
South-West of the Netherlands. See Appendix A for details on the data sets.

▶ 5.3.1 Data
As input to our problem, we need two types of data: a road network, and a set of
routes on the network.

As our road network, we use the freely-available OpenStreetMap (OSM) [115]. To
prepare the map for our experiments, we clipped the map to two rectangular sections
around our areas of interest, and further restricted the road network to those sections
that are actually used by at least one of the routes. Finally, we retain only the largest
connected component of the remaining network in each area. Figure 5.7 shows a
small relevant section of the map. As our routes, we use NSH and GH. Since routes
are not provided as paths in the graph but raw GPS coordinates, we �rst run them
through a map-matching algorithm. We used the GraphHopper system [64], which
is based on the hidden-Markov method by Newson and Krum [112]. In addition, we
performed some data-preprocessing to make sure all routes are completely within
the area of interest, are of su�cient length, and start at vertices. A full description
of the data preparation pipeline can be found in Appendix C, speci�cations for the
�nal data sets can be found in Table C.1.

▶ 5.3.2 Heuristics
In order to obtain reasonable results with simple methods, we propose several heuris-
tics. Our heuristics are based on selecting sections of the road network that are

165

5 Road Network Generalization

Figure 5.7: Our data set from Leiden (NSH). Top: OSM network. Bottom: The net-
work restricted to roads used in the data set.

heavily used. Formally, if G is the road network and R is the set of routes, then
we de�ne the ply(e) of an edge e of G to be the total number of routes in R which
contain e.

The weight of an edge, w(e), in this section always refers to its Euclidean length.
We also de�ne the length of a route to be the total sum of the weights of edges that
appear in the route:

� (r) = ∑

e∈r

w(e) (5.4)

Note that, for the purpose of these heuristics, a route is simply a set of edges of
G; in particular, even if a route uses the same edge multiple times, it appears only
once in the set. This is justi�ed by our goal of extracting a portion of the network
that is used by many distinct routes.

All heuristics are greedy in some fashion and attempt to select edges with high

166

5.3 Experiments

ply, since these are used by many di�erent routes. Hence, the heuristics are not
tailored towards a speci�c goal, and their performance will be evaluated for both
versions of the problem (route containment by number or route containment by
length).

baseline First, we describe a baseline heuristic, which is data-driven but not
route-preserving, to compare the performance of our route-preserving heuristics
against.

We simply sort the edges of G by decreasing value of ply(e). Then, we greedily
select edges until we have selected a total length of B. We consider edges of G to
be atomic; that is, we do not choose edges partially. If the remaining budget is not
enough to pick the full length of the highest ply edge that is left, instead we pick the
next-highest ply edge that still �ts in the remaining budget.

score Our simplest route-preserving heuristic is based on the following simple
idea: routes that overlap with many other routes will, on average, consume less
budget.

For this heuristic, we assign to each route r ∈ R a score, s(r), which is de�ned
as follows: for each edge of r , we count how many routes use it (including r itself),
and inversely weigh the edge by this number:

s(r) =

1

� (r)

∑

e∈r

w(e)

ply(e)

(5.5)

In other words, for sections that are covered only once, the score is the nor-
malized length. For sections covered once more, we take the length /2, for sections
covered twice more, take the length /3, and so on, and add up these weighted lengths.

Then, we sort all routes by increasing score, and we simply greedily select routes
(when we select a route, we take all edges of the route that were not selected yet,
and include them in our output network), until we reach our budget. If we cannot
select the next route in the set because we do not have enough budget, we skip it,
and take the �rst (lowest-scoring) route for which we do still have enough budget.

rescore In our second route-preserving heuristic, we use the same score-based
approach as for score. However, we now only select the lowest-scoring route, and
recompute the scores of the remaining routes before selecting the next one. The
rationale is that for edges which have already been selected, it no longer matters
how many other routes use it, it is now “free”.

167

5 Road Network Generalization

Formally, when a subset E′ ⊆ E has been already selected, we de�ne the score
of a route r ∈ R as the weighted sum over only those edges that have not been
selected yet:

s(r) =

1

� (r)

∑

e∈r,e∉E
′

w(e)

ply(e)

(5.6)

The heuristic now evaluates the scores of all routes, selects the lowest-scoring
route, re-evaluates the scores, again selects the lowest-scoring route, and so on, until
we reach our budget.

alternate Finally, as our third route-preserving heuristic, we not only select the
lowest-scoring route at each step, but we also discard the highest-scoring route. As
with rescore, we re-evaluate the scores after each step. However, since we have now
discarded potential routes from being selected later, we not only have to recompute
the scores s(r), but also ply(e) for each edge.

Formally, when a subset E′ ⊆ E has been already selected and a subset R′ ⊆ R is
still available, we rede�ne ply(e) as the total number of routes in R

′ which contain
e, and then rede�ne s(r) as in Equation (5.6).

▶ 5.3.3 Experimental set-up
For our experiments, we prepared the data as described above and stored the re-
sulting preprocessed networks and route collections, and we implemented the four
heuristics in C++.

In our experiments, for each of the two data sets we run each of the four heuristics
for 9 di�erent budget values, corresponding to 10%, 15%, 20%, 25%, 30%, 35%, 40%,
45%, and 50% of the total length of the input network, for a total of 36 runs. For each
run, we collect the following information:

• The total number of routes fully covered.

• The total length of all routes fully covered.

• The total length of road network chosen.

• The average ply of the chosen portion of the network.

• The number of connected components in the output network.

• The number of degree 1 vertices (leaves) in the output network.

168

5.3 Experiments

In addition, for each run we store the resulting network in its entirety for visual
inspection.

▶ 5.3.4 Results

�antitative results Now we will report on our collected statistics. The quantita-
tive results for NSH are given in Figure 5.8, and those for GH are given in Figure 5.9.

We can see that for both data sets, the quantitative results are very similar. One
di�erence is that GH has signi�cantly more connected components and leaf vertices
than NSH when the baseline heuristic is used.

For some of the measured statistics, the results for each method are nearly identi-
cal. For the average ply and the length of the selected subgraph, all methods perform
the same, except for the alternate heuristic. For the number of connected com-
ponents, all of the score-based heuristics perform the same, and only the baseline
heuristic di�ers.

The total length of the output network is always very close to the target budget,
except for the alternate heuristic when the target budget is 40% or higher, in which
case the output network is signi�cantly lower than the budget.

�alitative results We show a selection of output road networks for visual com-
parison. To compare the di�erent heuristics, in Figure 5.10 the resulting networks
on the NSH data set, for a budget of 30% of the input length are shown.

To compare the e�ect of the budget, in Figure 5.11, we show the resulting network
of the rescore heuristic on the same section of the NSH data set, for budgets of
10%, 30%, 50% of the original network. We notice that the smaller networks are
always subnetworks of the larger ones, as desired for continuous zooming.

▶ 5.3.5 Discussion

As expected, our route-preserving heuristics appear to be better at preserving routes
than the baseline heuristic. This is true regardless of whether we count the number
of preserved routes or the total length. It is also apparent from the fact that the
baseline heuristic produces maps with many small isolated components. This is also
clear from visual inspection of Figure 5.10 (top left). The GH data set gives rise
to more of these connected components (also leading to more leaf vertices). This
is likely due the increased size of GH and its distribution of routes. Even so, the
baseline heuristic still preserves a sizable number of routes even though it does
not consider routes when making selections. The heuristic is helped by the fact that

169

5 Road Network Generalization

9000

9500

10000

10500

11000

11500

12000

12500

10 15 20 25 30 35 40 45 50

N
um

be
r o

f c
ov

er
ed

 ro
ut

es

Percent of map length retained

Number of covered routes (NSH)

Baseline Score Rescore Alternate

7.80E+07

8.30E+07

8.80E+07

9.30E+07

9.80E+07

1.03E+08

1.08E+08

10 15 20 25 30 35 40 45 50

Le
ng

th
 o

f c
ov

er
ed

 ro
ut

es
 (m

)

Percent of map length retained

Length of covered routes (NSH)

Baseline Score Rescore Alternate

Figure 5.8: Quantitative results for NSH. Continued on next page.

170

5.3 Experiments

290

490

690

890

1090

1290

10 15 20 25 30 35 40 45 50

Av
er

ag
e

pl
y

Percent of map length retained

Average ply (NSH)

Baseline Score Rescore Alternate

70

120

170

220

270

320

370

420

470

520

10 15 20 25 30 35 40 45 50

N
um

be
r o

f l
ea

f v
er

tic
es

Percent of map length retained

Number of leaf vertices (NSH)

Baseline Score Rescore Alternate

Figure 5.8: Quantitative results for NSH. Continued on next page.

171

5 Road Network Generalization

0

10

20

30

40

50

60

70

80

10 15 20 25 30 35 40 45 50

N
um

be
r o

f c
on

ne
ct

ed
 c

om
po

ne
nt

s

Percent of map length retained

Number of connected components (NSH)

Baseline Score Rescore Alternate

75000

125000

175000

225000

275000

325000

375000

10 15 20 25 30 35 40 45 50

Le
ng

th
 o

f s
el

ec
te

d
su

bg
ra

ph
 (m

)

Percent of map length retained

Length of selected subgraph (NSH)

Baseline Score Rescore Alternate

Figure 5.8: Quantitative results for NSH.

172

5.3 Experiments

19000

20000

21000

22000

23000

24000

25000

26000

27000

10 15 20 25 30 35 40 45 50

N
um

be
r o

f c
ov

er
ed

 ro
ut

es

Percent of map length retained

Number of covered routes (GH)

Baseline Score Rescore Alternate

1.50E+08

1.60E+08

1.70E+08

1.80E+08

1.90E+08

2.00E+08

2.10E+08

2.20E+08

10 15 20 25 30 35 40 45 50

Le
ng

th
 o

f c
ov

er
ed

 ro
ut

es
 (m

)

Percent of map length retained

Length of covered routes (GH)

Baseline Score Rescore Alternate

Figure 5.9: Quantitative results for GH. Continued on next page.

173

5 Road Network Generalization

350

550

750

950

1150

1350

1550

10 15 20 25 30 35 40 45 50

Av
er

ag
e

pl
y

Percent of map length retained

Average ply (GH)

Baseline Score Rescore Alternate

85

185

285

385

485

585

685

785

885

10 15 20 25 30 35 40 45 50

N
um

be
r o

f l
ea

f v
er

tic
es

Percent of map length retained

Number of leaf vertices (GH)

Baseline Score Rescore Alternate

Figure 5.9: Quantitative results for GH. Continued on next page.

174

5.3 Experiments

0

50

100

150

200

250

300

350

10 15 20 25 30 35 40 45 50

N
um

be
r o

f c
on

ne
ct

ed
 c

om
po

ne
nt

s

Percent of map length retained

Number of connected components (GH)

Baseline Score Rescore Alternate

120000

220000

320000

420000

520000

620000

10 15 20 25 30 35 40 45 50

Le
ng

th
 o

f s
el

ec
te

d
su

bg
ra

ph
 (m

)

Percent of map length retained

Length of selected subgraph (GH)

Baseline Score Rescore Alternate

Figure 5.9: Quantitative results for GH.

175

5 Road Network Generalization

Figure 5.10: The network restricted to 30% of the total road length under di�erent
heuristics. From the top down: baseline, score, rescore, alternate.

176

5.3 Experiments

Figure 5.11: NSH under after application of the rescore heuristic with di�erent
budgets. The top image is the input graph, from the top down, the images correspond
to a length budget of 50%, 30% and 10% of the input graph length, respectively.

177

5 Road Network Generalization

routes lying on an edge with high ply are likely to also have high ply on their other
edges, making it more likely that all the edges get selected.

It is less clear which of the route-preserving heuristics performs better. From
Figures 5.8 and 5.9, it appears that the alternate heuristic is slightly better for low
budgets, but the performance stabilizes once the target budget reaches about 35%.
This appears to indicate that discarding non-promising routes is bene�cial, but for
higher budgets, this heuristic discards routes too easily and too often and eventually
runs out of routes to include before the budget is used up. It would be interesting to
investigate the balance between the budget and the condition for discarding routes
from consideration.

Performance between the score and rescore heuristics is very similar. This
suggests the extra computational cost for the rescore heuristic may not be justi�ed.
On the other hand, rescoring is a necessary basis for more sophisticated heuristics,
such as alternate.

We observe that all four methods exhibit ‘good continuation’ to some extent: vi-
sually the maps are decomposable into long continuous strokes, rather than reading
as many individual smaller strokes.

We do not observe much di�erence in the performance of the heuristics, nor in
the general values of our statistics, between the two di�erent data sets. The main
notable di�erence between the four methods is the number of leaf vertices in the
output of the baseline heuristic.

Visually, the outputs for the heuristics are somewhat similar. The bigger roads
are present in the outputs of all the heuristics, but the results show more variance
when it comes to smaller inner-city roads. This makes sense since all heuristics
prioritize edges with high ply, which are more likely to lie on main roads.

▶ 5.4 Conclusion
We have introduced a new, data-driven approach to road network generalization.
In particular, we introduce route-preserving road network generalization, when a
road network and a collection of routes on the network is given. While the general
problem—maximizing the number or length of routes represented—is NP-hard, there
are good heuristics that preserve many routes, and also support continuous zooming.
Our study of this approach is pure, in the sense that optimizing the number or length
of routes fully covered is the only optimization criterion. It is surprising that we
automatically get just one or very few connected components, and relatively few
leaves. Although it would have been possible to de�ne a heuristic enforcing only
one connected component, by requiring every route picked after the �rst to have an

178

5.4 Conclusion

overlap of at least one vertex with the already picked subgraph, it seems that this is
not needed.

It would be interesting to test our methods on other data sets, for instance, from
di�erent countries. Also, at the moment we do not know how large a collection of
routes needs to be to let the approach perform well. We also do not know how much
our results are in�uenced by the anonymization of the route data.

More generally, it would be very interesting to start a large-scale comparative
study on the di�erent road network generalization methods, as there are many.
The methods can be compared on all relevant aspects, including quantitative ones,
support of continuous zooming, and ideally even an expert study on the cartographic
quality of the results for mapping purposes.

For further theoretical study of the problem, the next step is to look for approxi-
mation algorithms for the NP-hard problem cases, or proofs that these cannot exist.
Variant problem formulations are also a possible topic of study. Our current prob-
lem formulation focuses on preserving as many routes as the budget allows and by
varying the budget we can reduce the overall detail of the road network. This for-
mulation is good for ensuring no important routes are lost, but there is no guarantee
that the resulting road network is not visually cluttered on a local scale. Possible
variant problem formulations to be studied could include some sort of threshold on
local density of the selected subgraph.

179

180

Chapter 6

Conclusion

In this thesis, we have studied a variety of di�erent problems involving trajectories.
In Chapter 2, we covered the problem of outliers in trajectories, and proposed

new methods of removing outliers, even when minimal context for the trajecto-
ries is available. Experimental results show the proposed methods outperform the
benchmark algorithms they were compared to.

In Chapter 3, we covered trajectory simpli�cation, and showed for many variants
of the problem whether they are NP-hard or we can prove they can be solved in
polynomial time.

In Chapter 4, we looked at representative trajectories, and made the �rst im-
plementation of the central trajectories algorithm, experimentally showing it has
signi�cantly better performance in practice than in theory.

In Chapter 5, we looked at an application task: generalizing a road network based
on trajectory data. We formulated the route-preserving road network generalization
problem and analyzed its complexity. We then introduced heuristical approaches
for �nding a data-driven generalization and tested them out experimentally.

While the di�erent chapters each have their open problems remaining, leading
to opportunities for future research, included below are some more general thoughts
on where trajectory research could go in the future.

Integral approaches to preprocessing A common thread between the research
in the preceding chapters is a focus on trajectory preprocessing. Two of the chapters
directly involve preprocessing tasks and two of the chapters involve an intensive pre-
processing process to transform trajectory databases into a set of trajectory clusters

181

6 Conclusion

and a set of paths on a road network. Preprocessing trajectories is of vital impor-
tance in order to be able to get good results with subsequent trajectory application
tasks. The experiments for this thesis involved working with real trajectory data.
Working with this data exposed many data quality issues in raw trajectory data sets:
Missing data, identi�ers being reused, extremely sparse trajectories, extremely short
trajectories, and more. Besides the number of di�erent errors that need �xing in a
data set, there is also the question of the order in which to apply the preprocessing
steps. Consider the following scenario: We are given a sparse data set of trajectories
that involve cars driving between di�erent towns. In their trips, the cars �rst drive
on town roads with a low maximum speed, before turning onto a highway to travel
to their destination town. The highway has a much higher maximum speed than
the town roads, so if we want to use our outlier detection methods from Chapter 2,
it will be di�cult to choose a good value for the maximum speed parameter. If we
set a high value we will miss outliers among the probes measured on town roads,
but if we set a low value we will discard all probes measured on the highway. Ide-
ally we would want to segment the trajectory so that we can process the parts of
the trajectories captured on the highway separately when detecting outliers, with
a higher maximum speed. However, any segmentation algorithm we want to apply
will have to deal with the fact that the trajectory still has outliers in it, possibly
in�uencing the result. Both of the algorithms depend on each others output in order
to be able to run optimally. There are multiple of such chicken-and-egg scenarios
arising when dealing with preprocessing steps. For these reasons, a future topic for
theoretical study is in �nding a more integral approach to trajectory preprocessing,
where multiple tasks are handled either simultaneously, or sequenced in such a way
that the algorithms chosen for the tasks work well together.

Alternative methods for tracking movement and indoor trajectories Be-
sides GPS as a means of tracking movement, recently other methods have become
more common, such as RFID- or Wi�-tracking. These methods can be particularly
helpful for tracking movement of persons moving around indoors. After all, inside a
building there are no clear lines of sight to GPS satellites. These indoor trajectories
have an interesting context to their movement compared to well-studied trajectory
contexts. Hurricanes, and animals with GPS trackers, can generally move freely
in 2-dimensional space. Cars and outdoor pedestrians are usually bound to a road
network. Pedestrians moving indoors are not bound by a road network, but their
movement is highly constrained by the architecture of whatever building they are
in due to where the walls and doors are placed. This type of context could prompt
new problem formulations for well-studied trajectory tasks. When doing outlier

182

detection, a probe might be deemed an outlier even though it is spatially close to the
rest of the trajectory, if it is separated by a wall. Likewise, when clustering trajecto-
ries, we may require all trajectories to traverse the same sequence of rooms in order
to be part of the same cluster. Existing research on analysis of indoor trajectories
includes Jin et al. [79], who search for regions of interest, Prentow et al. [118], who
study indoor road network construction, and Jensen et al. [74], who look at trajec-
tory indexing. Still, for many trajectory tasks there is no research yet for the indoor
context. Algorithms speci�cally focused on handling trajectories captured indoors
can therefore be an interesting topic of future study, both for when the exact layout
of the building is known and for when it is unknown.

Dealing with anonymized data Nearly every recent paper on trajectory algo-
rithms opens with the observation that the amount of available trajectory data has
greatly increased over the past few years. This is true, and we can expect the amount
of data released to keep increasing. However, it is possible that the quality of the
data that will be made available for research will decrease over the coming years and
the types of released data will change. The reason for this is another development
that has taken place over the past years, namely an increasing concern in protecting
privacy. As techniques for inferring private information from trajectory data im-
prove, it will become harder to publish trajectory data generated by tracking people
without running into privacy issues. Techniques for anonymization of the data will
improve as well, but since there is always a trade-o� between privacy and usability
of the data [129] we can expect the usability of published data sets to decrease in
the long run. Digital technology can change rapidly and recently, legislative bodies
such as the European Union also see privacy as a topic of increasing concern, so
these adverse e�ects on data set usability may arrive sooner than expected. For re-
searchers, this may imply an increasing dependence on proprietary data sets, which
is not good for reproducability. It also means that future research should be done
into algorithms that take anonymized trajectories as input. Although anonymized
data has reduced usability for application tasks, the anonymization method might
allow us to make strong assumptions on the input, which can help with algorithm
design. For example, only small subsequences of trajectories could be published,
which would give increased importance on algorithms that assume a maximum tra-
jectory length. Trajectories might be published k-anonymously [111], which for our
method for road network generalization presented in Chapter 5 would mean the ply
for any edge would be at least k, or zero. For trajectory clustering, we might consider
each set of k-anonymous trajectories its own cluster, or we may still wish to cluster
di�erent sets together. We could compute the representative trajectory of such a

183

6 Conclusion

cluster with the same algorithm as used in Chapter 4, but we could also consider
some weight-based method, where each set of identical trajectories is treated as a
single trajectory with a weight proportional to the number of trajectories in the set.
Only publishing representative trajectories and the number of trajectories they are
based on could also be seen as another layer of anonymization.

Depending on which anonymization techniques become the most widely used
di�erent approaches will be needed, so collaboration between academia and industry
will be of great importance to set the research agenda.

Integration of heterogeneous data sources This thesis mainly focuses on tra-
jectory data. However, this is not the only type of data available for studying move-
ment. For example, to record car movements, many roads contain loop detectors
which count the number of vehicles using the road. Semi-autonomous cars collect
LIDAR data for navigation that can also be used for tracking their movement. Contex-
tual data, such as the underlying road network, can also deepen our understanding
of the movement data. Combining two heterogeneous data sources is challenging,
since data of di�erent forms require di�erent methods for handling them, and the
data sources may have their own errors and uncertainties to account for. The result
of a successful combination, however, can be very useful. For example, the outlier
detection method presented in Chapter 2 could bene�t from knowledge of internal
measurements a car being tracked. If a measured speed is available for each probe,
the physics model with both a speed and acceleration bound becomes concatenable,
which can greatly speed up detecting the outliers. As another example, map match-
ing combines GPS data with a road network and has turned out to be a very useful
way of removing errors from the trajectories, among other uses. The combination
of GPS and road network data has been the subject of much study already, e.g. in
Chapter 5 of this thesis. There has been some recent research into combining LIDAR
and GPS data for use in navigating [60, 41] as well as a study into combining GPS
and loop detector data [45]. However, here is still more work that can be done on
integrating GPS and non-GPS data.

Existential theory of the reals In Chapters 3 and 5 we give NP-hardness proofs
for many di�erent theoretical problems. For not all of these problems, however, are
we able to also say whether the problems are in NP. While solutions to instances
of these problems that have polynomial complexity can easily be veri�ed, there
can possibly be solutions requiring exponential bit complexity. Many problems in
computational geometry run in to this issue, such as packing [8], or the art gallery
problem [7]. For problems where it has been shown this exponential bit phenomenon

184

occurs, there exists the complexity class ∃ℝ. Problems which are ∃ℝ-hard are at least
as di�cult as the problem known as the existential theory of the reals [121]. Either
all ∃ℝ-complete problems fall within NP, or none of them do. There has been an
increasing amount of study into this complexity class, as determining if a single
problem with the exponential bit phenomenon is in NP is asking if NP= ∃ℝ. So
studying these problems together focuses on the core of the issue [121]. Recently,
Erickson et al. [53] have used smooth analysis to show that for many ∃ℝ-complete
problems, the exponential bit phenomenon only occurs for degenerate input. It
would be interesting future work to see if the problems in this thesis where we
were not able to show NP-membership are ∃ℝ-hard and to see if the result from [53]
applies. More generally, for future theoretical research into trajectory problems it
is good to not only consider if a problem is NP-hard but to consider ∃ℝ-hardness as
well.

185

186

Appendix A

Data Sets

Chapters 2, 4, and 5 contain experiments performed on real trajectory data sets. Be-
low we will describe the data sets used in the di�erent chapters. Appendices B and C
go over the preprocessing steps that were applied to these data sets to prepare them
for use in chapters 4 and 5 respectively.

South Holland This is a proprietary data set provided by HERE Technologies. It
consists of car and truck trips taken in the Dutch province of South Holland on a
single day in January 2019. This data set is very large, so for our experiments we
did not use the full data set. Instead, we have used di�erent subsets of the data set.
For Chapters 2 and 4 we have taken a random selection of 5000 trajectories from
the data set. We will refer to this subset as HR (for the Hague and Rotterdam, the
two biggest cities in South Holland). For Chapter 5 we have created two subsets
of the data based on selecting all of the trajectories falling within a bounding box.
One subset, which contains trajectories in a bounding box roughly corresponding
to the region known as the “Groene Hart" (“Green Heart"), we will refer to as GH.
The other subset contains the trajectories that lie north of GH. We will refer to this
subset as NSH (North- South Holland). For a visual sample of HR and the clusters
that are extracted from it for Chapter 4, see Figures A.2(a) and A.2(b). See Figure A.3
for visualizations of NSH and GH and the routes extracted for Chapter 5.

Los Angeles This is another proprietary data set provided by HERE Technologies.
It contains car and truck trips taken in Los Angeles, California, on a single day
in September 2018. We will refer to this data set as LA. See Figure A.1(a) for a

187

A Data Sets

(a) LA

(b) MB

Figure A.1: Samples of the data sets used in Chapter 2.

188

(a) HR (b) HR Clusters

(c) GL (d) GL Clusters

Figure A.2: Samples of the data sets used in Chapter 4. Figure continued on next
page.

189

A Data Sets

(e) TD (f) TD Clusters

(g) PF (h) PF Clusters

(i) MC (j) MC Clusters

Figure A.2: Samples of the data sets used in Chapter 4.

190

(a) GH

Figure A.3: The data sets used in Chapter 5. Figure continued on next page.

191

A Data Sets

(b) GH routes

(c) NSH

Figure A.3: The data sets used in Chapter 5. Figure continued on next page.

192

(d) NSH routes

Figure A.3: The data sets used in Chapter 5.

visualization.

Mountainbike trips This is a private data set of one cyclist’s mountain bike trips
in several European countries, collected between 2012 and 2019. We will refer to
this data set as MB. See Figure A.1(b) for a sample visualization.

T-drive This is a publicly available data set [135, 134] of taxi trajectories, collected
in Beijing in one week, from February 2 to February 8 in 2008. We will refer to this
data set as TD. For visual samples of the data set and the clusters that are extracted
from it for Chapter 4, see Figures A.2(e) and A.2(f).

GeoLife This is a publicly available data set [142, 140, 141], created by tracking
182 people over a longer period between April 2007 to August 2012. The trajectories
record many di�erent outdoor activities and also di�erent types of transport. We
will refer to this data set as GL. For visual samples of the data set and the clusters
that are extracted from it for Chapter 4, see Figures A.2(c) and A.2(d).

OpenPFlow OpenPFlow [82] is a method for generating a publicly publishable
data set by simulating agents based on input data. This avoids the privacy problems
and cost associated with gathering and publising real trajectory data. The authors
of the paper introducing it have used their method to generate a data set based on
data on the Tokyo metropolitan area, which we have also used. We refer to this
data of the Tokyo area as the OpenPFlow data set. We will refer to this data set as

193

A Data Sets

Table A.1: Statistics on the raw data sets.

Data set # trajectories Avg. # probes Avg. length Avg. duration

HR 5,000 425 20,810m 1,765s

GH 41,961 52 7,899m 495s

NSH 17,285 72 6,774m 722s

LA 124,234 194 56,907m 24,172s

MB 1,214 3,377 37,267m 7,623s

TD 10,336 1,708 7,316km 507,158s

GL 17,784 1,398 328,768m 9,492s

PF 83,333 1,195 21,391m 71,704s

MC 6,398 11,607 1,106km 1,644,180s

PF. For visual samples of the data set and the clusters that are extracted from it for
Chapter 4, see Figures A.2(g) and A.2(h).

MarineCadastre MarineCadastre.gov is a site by the American government
that provides, among other things, large amounts of GPS data obtained by tracking
ships near the US. We have used their data from April 2007, located in the 15th UTM
zone: This is the area of the earth between -96 and -90 degrees longitude. We will
refer to this data as the MarineCadastre data set. We will refer to this data set as
MC. For visual samples of the data set and the clusters that are extracted from it for
Chapter 4, see Figures A.2(i) and A.2(j).

194

MarineCadastre.gov

Appendix B

Preprocessing for Chapter 4

For this chapter, we use the data sets HR, TD, GL, PF and MC. For our experiments we
want to apply the Central Trajectories algorithm, which requires trajectory clusters
as input. So we will have to extract the clusters from these data sets. This also
requires some other preprocessing.

▶ B.1 Preprocessing steps before clustering

The full data sets are much larger than is practical for our experiment, so �rst a
random subset was taken from all of the data sets to reduce the amount of data to an
amount that would not take too long to process. Since the length of individual trajec-
tories is a large factor in the runtime of the clustering algorithm, for data sets with
very long trajectories the trajectories were split up into sections with a maximum
number of probes nmax , where the sections are treated as individual trajectories.
Then, the trajectories are �ltered so that only trajectories with a bounding box of at
least a given area Amin are included. We do this to �lter out trajectories that mostly
consist of stay points with little actual movement of the entity, as those trajectories
can’t be properly clustered with the used algorithm. Furthermore, the T-drive data
set was split up so that each trajectory covers the movement of the entity over a
single day. Because the clustering algorithm does not scale well we do not cluster
an entire data set at once, instead, we pick a point in the bounding box of the data
set and then �nd the k trajectories that are closest to that point, and cluster that set.
We keep picking new points and �nding new blocks of trajectories to cluster until
we have found enough clusters. We aimed to get around 100 clusters for each data

195

B Preprocessing for Chapter 4

set. Although we risk splitting up some clusters with this approach, it saves a lot
of time since the clustering algorithm no longer has to consider pairs of trajectories
that were not spatially close in the �rst place.

▶ B.2 Clustering algorithm
To cluster the data, we make use of the Subtrajectory Clustering algorithm by Buchin
et al. [32]. The method �nds a subtrajectory cluster occuring within one long tra-
jectory. This algorithm requires two parameters: a maximum bound on the Fréchet
distance in a cluster � and a minimum cluster size |C|min . It works by construct-
ing a free space diagram between the trajectory and itself for distance � . Then, an
interval on the x-axis of the free space diagram is maintained. The interval starts
at the leftmost point of the free space diagram with a width of 0. At any point we
only consider the section of the free space diagram where the x-coordinate lies in
the interval, called the interval’s vertical slab; As long as there are at least |C|min
paths connecting the left and right ends of the vertical slab that are disjoint when
projected on the y-axis, the interval is grown. If there are no longer enough paths,
the interval is shrunk down to minimum size and moved to the right. After the entire
free space diagram is traversed the longest interval that was found is returned. We
use the implementation in MoveTK [2] which uses the discrete Fréchet distance. To
use the algorithm for our purposes we have made some adaptations, which we will
now explain.

(i) The unadapted algorithm works for �nding the largest cluster of subtrajecto-
ries from a single trajectory. We want to �nd clusters in a data set of multiple
trajectories, so we extend the algorithm in a manner proposed by Buchin et al.
themselves for the case with multiple trajectories. This means we append all
of the trajectories together into one very large trajectory which we will call
the supertrajectory. To make sure the algorithm does not accidentally return
a cluster where one of the subtrajectories contains pieces of multiple input
trajectories, between the endpoints of trajectories we are appending we �rst
insert one dummy probe that is far removed from any of the trajectory probes.

(ii) The unadapted algorithm does not �nd all possible clusters, but it only �nds
the longest cluster. Additionally, creating a free space diagram between the
supertrajectory and itself requires an impractically large amount of memory.
To deal with these issues, what we do instead is create a free space diagram
between each individual input trajectory and the supertrajectory. For each
of these diagrams we will run the algorithm, and so for each input trajectory

196

B.3 Additional preprocessing

we will �nd the largest cluster that the trajectory is involved in. Then we
�lter this obtained set of clusters: we �rst sort the clusters by length and then
iteratively add the longest cluster to our �nal set of clusters. If we add a cluster,
we mark all of the probes as taken. Any cluster that comes after it will have
any subtrajectories that include already taken probes �ltered out, and only if
the cluster still meets the threshold for minimum size and length after this
�ltering it will be added to the �nal list of clusters.

(iii) The unadapted algorithm creates a free space diagram of the supertrajectory
with itself, it then �nds the largest interval on the x-axis of the free space
diagram where the vertical slab of the free space diagram on that interval
contains at least the minimum cluster size |C|min distinct routes in the free
space between the left and right ends of the slab. I.e., it optimizes clusters for
the length of the longest subtrajectory in the cluster. The other routes in the
free space are made as short as possible, since the algorithm only cares about
satisfying a minimum number of routes, and a shorter route gives a greater
probability of �nding another route since there is more of the diagram left
to cover. For data sets that require a large distance threshold, or data sets
with trajectories that contain stay points, this has an unfortunate e�ect of
producing clusters that have one long subtrajectory (based on the trajectory
whose diagram is being handled) and otherwise only contain subtrajectories
of just a single probe. To combat this, we have adapted the algorithm so
any routes we �nd in the free space are made as long as possible instead, by
appending more probes as long as the distance threshold is still respected.
Then, any routes that are shorter than a minimum probe threshold |T |min are
discarded and only clusters that contain a minimum number of subtrajectories
that are long enough are considered.

After all of these adaptations the algorithm no longer necessarily returns any optimal
clusters in the data set, but we do know that all of the returned clusters are actually
present in the data. Since our research in Chapter 4 focuses on central trajectories,
and not the clustering itself, we consider this acceptable as long as we are able to
extract enough usable clusters from the data. For each data set we set the minimum
cluster size |C|min to 3. The other preprocessing parameters are given in Table B.1.

▶ B.3 Additional preprocessing
The central trajectories algorithm requires input trajectories to have the same num-
ber of probes with the same timestamps. The clustering algorithm, however, doesn’t

197

B Preprocessing for Chapter 4

Table B.1: Parameters for the preprocessing applied to the data sets. The columns
give the maximum trajectory size after splitting long trajectories nmax , cluster algo-
rithm block size k, maximum discrete Fréchet distance � (in meters), the minimum
bounding box area for trajectories Amin (x10, 000, 000, in m

2), and the minimum
number of probes for any subtrajectory in a cluster |T |min .

Raw data set nmax k � Amin |T |min

HR - 100 300 0 20

TD - 100 1000 280 10

GL 2000 100 1000 10 20

PF 2000 100 1000 23 20

MC 2000 50 9000 1850 50

take time into account at all, so the subtrajectories in the found clusters are not
necessarily close in time, let alone sampled equally. To prepare the obtained clusters
for the central trajectories algorithm, we �rst shift the timestamps of the subtra-
jectories in the cluster so that they start at the same time. Then, we perform an
elementary resample, where we �rst truncate the trajectories to only include probes
in the time interval of the subtrajectory with the shortest time interval, and then
use linear interpolation to add a probe for any timestamp that is present in another
subtrajectory in the cluster. After this step, the clusters are ready to be used by the
central trajectories algorithm.

▶ B.4 Final data sets
After all of this preprocessing we obtained �ve data sets, each containing 94-160
clusters of between 3 and 31 trajectories with 9-1226 probes. Some statistics about
these data sets are given in Table B.2.

198

B.4 Final data sets

Table B.2: The trajectory type, trajectory count, average number of probes per trajec-
tory, average trajectory length in meters, number of clusters and average number of
trajectories per cluster for each preprocessed data set used in Chapter 4. The average
number of probes is based on the data after colinear probes have been removed.

Final data set HR TD GL PF MC

Trajectory type car taxi mixed pedestrian ship

Traj. count 719 580 688 299 390

Avg. #probes 41.98 5.29 18.02 17.25 60.84

Avg. length 3195m 729m 2851m 12686m 22190m

#Clusters 160 108 136 81 94

Avg. clus. size 4.49 5.37 5.06 3.69 4.15

199

200

Appendix C

Preprocessing for Chapter 5

For the experiments in this chapter, we need two types of data: a road network, and
a set of routes on the network.

As our road network, we use the freely-available OpenStreetMap (OSM) [115].
To prepare the map for our experiments, we clipped the map to rectangular sections
around our areas of interest where we have trajectory data, and further restricted
the road network to those sections that are actually used by at least one of the routes.
Finally, we retain only the largest connected component of the remaining network
in each area.

We use GH and NSH as a source for routes.
Since routes are not provided as paths in the graph but raw GPS coordinates, we

�rst run them through a map-matching algorithm. We used the GraphHopper sys-
tem [64], which is based on the hidden-Markov method by Newson and Krum [112].

After mapmatching, the trajectories still needed to be transformed into (combi-
natorial) paths in the graph. GraphHopper outputs GPS points that mostly lie on
graph vertices. To transform the trajectories into paths we matched each GPS point
to the closest graph vertex, and then took the shortest path from vertex to vertex.
Almost all points could be closely matched to a vertex this way, but the �rst and last
points of trajectories were not always close to vertices as the trajectory would end
before the tracked vehicle reached a vertex location. To avoid the risk of getting bad
matches, we opted to remove the �rst and last points of trajectories if they lay more
than 10 meters from the nearest vertex.

After this step, we removed duplicate edges from the trajectories, so that each
trajectory covers each edge at most once, as we do not want one trajectory covering

201

C Preprocessing for Chapter 5

Table C.1: Speci�cations for the data sets used in Chapter 5.

Data set GH NSH

Latitude range 51.9696–52.1389 52.1389–52.2038

Longitude range 4.42141–4.7177 4.37087–4.66767

Vertices 36,898 25,716

Leaf vertices 1054 1064

Edges 39,071 27,628

Total edge length 1.284 × 10
6 m 776,636 m

Routes 27,560 13,227

Avg. route length 8401 m 8712 m

Std. dev. route length 5340 m 3858 m

an edge many times being able to in�ate the importance of an edge. We removed
any trajectory that is less than 1000 meters in length, as we only want to count
signi�cant trips.

The speci�cations for the �nal data sets can be found in Table C.1.

202

Acknowledgements

I have been working on this PhD thesis for the past four years. During this time, I
have depended on the help of many people and have experienced the kindness of
many more. Here, I would like to express my gratitude to them. I have not spent as
much time with everyone as I would have wished, especially due to circumstances
forcing me to work from home during the last year and eight months; but the time
we did share I will cherish for a long time.

First of all my gratitude goes to my supervisors: Marc van Kreveld, Irina Kos-
tityna, and Maarten Lö�er. Thank you for the great opportunity that this PhD
journey has been. Thanks as well for the kind words and thoughtful approach when
supervising, and for all of the help with and feedback on my work.

My thanks go out to the members of my reading committee, Kevin Buchin, Anne
Driemel, Peter van Oosterom, Arno Siebes, and Remco Veltkamp, for taking the time
to read this thesis and give feedback.

I want to thank all of my colleagues from the Geometric Computing group at
Utrecht University. In particular I want to thank Ivor van der Hoog, Alex Lewis,
Jérôme Urhausen, and Jordi Vermeulen for the great games of 7 Wonders, and the
companionship we’ve had since starting our PhDs at around the same time. I also
want to thank Wouter van Toll, Arne Hillebrand and Tillman Miltzow who I was
o�cemates with -when that was still a thing- for their pleasant company and advice.

My thanks also go out to all of the people I have done research with. Of the
people not named already, this is Bram Custers, Bettina Speckmann, Wouter Meule-
mans, Frank Staals, Carola Wenk, Majid Mirzanezhad, Sampson Wong, Joachim
Gudmundsson, Lionov Wiratma, André van Renssen, and Roald Melssen. I had a
great time working with you all and I am proud of what we were able to achieve
together.

During my travels to workshops and conferences I have met many great people
whom have shown me kindness and have given me good conversations. There are

203

Acknowledgements

too many people to name individually but my thanks go out to you all.
I want to thank Aniket Mitra and Onur Derin for their help with the implemen-

tations of some of the algorithms.
Besides all of the people in academia named above I have of course also spent

time with and received support from friends and family. Thank you for your support
and your belief in my ability to complete this PhD journey. In particular I want to
thank my parents, for always being there for me and supporting me in all of my
pursuits. Last but de�nitely not least I give thanks to my girlfriend, Cath. Thank
you for all of your love and support, your belief in me, and for putting up with me
spending half of my PhD working from our living room. I love you.

204

Curriculum Vitae

Mees van de Kerkhof was born on 29 July 1993 in Beuningen, in the province of
Gelderland in the Netherlands. He �nished his secondary education in 2011 at the
Dominicus College in Nijmegen. In 2014 he received his Bachelor’s degree in Com-
puter Science from Utrecht University. After pausing his studies for one year to
serve on the board of his student society, he followed with a Master in Computer
Science, which he �nished in December of 2017. His Master’s thesis was on the
automatic generation of curved nonograms, a novel type of pen-and-paper puzzle.
It was supervised by prof. dr. Marc van Kreveld, dr. Maarten Lö�er, and dr. Amir
Vaxman. As of December 2017 he has been working as a PhD student in the Geo-
metric Computing group, as part of the Algorithms division at Utrecht University.
The results of his PhD are presented in this thesis.

Other publications In addition to the publications incorporated into this thesis,
Mees has published the following formally reviewed articles:

[83] V. Keikha, M. van de Kerkhof, M. van Kreveld, I. Kostitsyna, M. Lö�er, F. Staals,
J. Urhausen, J. L. Vermeulen, and L. Wiratma. Convex partial transversals of planar
regions. In 29th International Symposium on Algorithms and Computation, ISAAC
2018, pages 52:1–52:12. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.

[84] M. van de Kerkhof, T. de Jong, R. Parment, M. Lö�er, A. Vaxman, and M. van
Kreveld. Design and automated generation of Japanese picture puzzles. Computer
Graphics Forum, 38(2):343–353, 2019.

[65] J. Gudmundsson, M. van de Kerkhof, A. van Renssen, F. Staals, L. Wiratma,
and S. Wong. Covering a set of line segments with a few squares. In International
Conference on Algorithms and Complexity, pages 286–299. Springer, 2021.

205

Curriculum vitae

[70] I. van der Hoog, M. van de Kerkhof, M. van Kreveld, M. Lö�er, F. Staals, J.
Urhausen, and J. L. Vermeulen. Mapping multiple regions to the grid with bounded
Hausdor� distance. In Workshop on Algorithms and Data Structures, pages 627–640.
Springer, 2021.

206

Samenva�ing

Sinds het begin van deze eeuw is er sprake van een explosieve groei in het gebruik
van GPS. Het wordt onder andere gebruikt in navigatiesystemen van auto’s, en
ook door smartphones om de locatie van de telefoon vast te stellen. Als een GPS-
tracker gebruikt wordt om langere tijd de locatie van hetzelfde mens, dier, of object
te volgen is het resultaat een zogeheten trajectory. Dit is een verzameling tijd-en-
positiemetingen. Als we de gemeten posities met rechte lijnstukken met elkaar
verbinden krijgen we een benadering van de route die de tracker heeft afgelegd. Door
het grootschalige gebruik van GPS is er veel trajectory-data beschikbaar. Analyse
van trajectory’s kan helpen om meer te begrijpen van de bewegingen van hetgeen dat
gevolgd wordt. Trajectory-databases zijn in de regel echter zo groot dat handmatige
analyse niet werkbaar is. Het is beter om slimme algoritmes te ontwikkelen die
analyse kunnen automatiseren. Ook zijn er algoritmes voor de voorbehandeling
van de data, zoals het corrigeren van fouten of het aanbrengen van structuur in
de database, enz. Dit proefschrift gaat over vier verschillende vraagstukken die te
maken hebben met het verwerken van trajectory-data. Het bevat een combinatie
van theoretisch onderzoek naar algoritmes die de vraagstukken moeten oplossen, en
praktijkonderzoek waarbij algoritmes worden getest op echte trajectory-databases.
De vraagstukken waar we naar kijken zijn de volgende:

• In Hoofdstuk 2 kijken we naar het opsporen van zogeheten outliers. Dit zijn
metingen in de trajectory waarvan reden is aan te nemen dat ze het resultaat
zijn van een meetfout. Dit kan bijvoorbeeld gebeuren als de GPS-tracker in
een omgeving is met veel hoge gebouwen die de signalen van GPS-satellieten
blokkeren. We introduceren e�ciënte algoritmes voor dit probleem die out-
liers opsporen door te kijken naar de fysieke eigenschappen van het gevolgde
object. Als een trajectory van een gevolgde auto bijvoorbeeld twee opeen-
volgende metingen heeft die zo ver uit elkaar liggen dat de auto sneller dan
zijn maximumsnelheid zou hebben moeten rijden om de metingen te laten

207

Samenvatting

kloppen, dan is één van de twee metingen waarschijnlijk een outlier. We in-
troduceren drie verschillende algoritmes voor verschillende fysieke limieten
die een gevolgd object kan hebben. Vervolgens vergelijken we deze algorit-
mes experimenteel met simpelere alternatieven en laten zien dat onze aanpak
beter werkt.

• In Hoofdstuk 3 kijken we naar het versimpelen van trajectory’s, en algemener
gezien het versimpelen van iedere kromme die bestaat uit een verzameling
punten die met lijnstukken verbonden zijn. Met versimpelen wordt bedoeld
dat we een andere trajectory/kromme vinden die uit minder metingen/punten
bestaat maar er toch zo goed als hetzelfde uitziet. Zo hebben we minder ge-
heugen nodig om de data op te slaan, en kunnen ze ook sneller algoritmisch
verwerkt worden. Er zijn zeer veel verschillende versies van het versimpelings-
vraagstuk, afhankelijk van hoe je meet hoeveel twee verschillende krommen
op elkaar lijken, en van welke andere eisen je aan de nieuwe kromme stelt.
We behandelen meerdere van deze varianten en geven van iedere variant een
e�ciënt algoritme, of een bewijs dat er geen e�ciënt algoritme bestaat dat
voor die variant de beste oplossing kan vinden.

• In Hoofdstuk 4 kijken we naar het vinden van een representatief trajectory
voor een cluster trajectory’s. Een cluster is een groep trajectory’s die meer
gemeen hebben met elkaar dan met de andere trajectory’s in de database. Een
cluster zou bijvoorbeeld kunnen bestaan uit een groep trajectory’s van auto’s
die allemaal ongeveer dezelfde route hebben afgelegd. Om in een oogopslag te
kunnen zien hoe de trajectory’s in het cluster ongeveer lopen willen we graag
een enkel trajectory vinden dat representatief is voor het cluster. Dit kan een
trajectory uit het cluster zijn, maar we kunnen ook algoritmisch een nieuw
trajectory construeren dat zo representatief mogelijk is. In dit hoofdstuk kij-
ken we naar een bestaand algoritme voor het maken van zo’n representatief
trajectory. Door experimenten onderzoeken we hoe de resultaten van het
algoritme in de praktijk zijn ten opzichte van de theorie.

• In Hoofdstuk 5 kijken we naar het generaliseren van een wegennetwerk met
behulp van trajectory’s. Als we een wegennetwerk willen laten zien, willen
we vaak niet dat iedere weg, hoe klein ook, zichtbaar is. Als het plaatje ver
genoeg uitgezoomd is wordt dat immers erg druk en zijn de details overwel-
digend. Daarom willen we, naarmate de schaal van de visualisatie van het
wegennetwerk groter wordt, steeds meer wegen weglaten. Dit noemen we
het generaliseren van het netwerk. Wel willen we uiteraard dat de belang-
rijkste wegen nog steeds zichtbaar zijn, ook op grote schaal. Door gebruik te

208

Samenvatting

maken van trajectory-data kunnen we automatisch achterhalen welke wegen
belangrijk zijn. Deze wegen zullen immers door meer trajectory’s gevolgd
zijn. We introduceren hiervoor in dit hoofdstuk een speci�eke probleemstel-
ling: Gegeven het percentage van de totale lengte van het wegennetwerk dat
behouden mag blijven, kies welke wegen blijven zo, dat het aantal trajectory’s
dat volledig op behouden wegen ligt maximaal is. We doen eerst theoretisch
onderzoek naar deze probleemstelling en geven een bewijs dat deze formu-
lering van het probleem helaas niet optimaal opgelost kan worden op een
e�ciënte manier. In experimenteel onderzoek bekijken we oplossingen die
werken met een heuristiek, waardoor ze weliswaar niet optimaal zijn maar
wel e�ciënt berekend kunnen worden. We laten zien dat we heuristisch een
redelijke oplossing kunnen geven, en dat onze probleemstelling tot minder
onvolkomenheden leidt dan een andere mogelijke probleemstelling.

Samenvattend, dit proefschrift beschouwt een verscheidenheid aan taken op trajectory-
data die met algoritmes opgelost kunnen worden, en hoe e�ciënt die oplossingen
zijn. Er wordt daarbij gekeken naar de theoretische kant, maar door middel van
experimenten op echte data ook naar de toepassing van de algoritmes in de praktijk.
Daarmee draagt dit proefschrift bij aan een beter begrip van trajectory-data en hoe
deze gebruikt kan worden.

209

210

Bibliography

[1] https://www.gps.gov/systems/gps/performance/accuracy/.

[2] https://movetk.win.tue.nl/.

[3] https://www.cgal.org/.

[4] https://www.boost.org/.

[5] https://git.science.uu.nl/M.A.vandeKerkhof/centraltrajectoriesoutputdata.

[6] M. A. Abam, M. de Berg, P. Hachenberger, and A. Zarei. Streaming algorithms
for line simpli�cation. Discrete & Computational Geometry, 43(3):497–515,
2010.

[7] M. Abrahamsen, A. Adamaszek, and T. Miltzow. The art gallery problem is
∃ℝ-complete. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 65–73, 2018.

[8] M. Abrahamsen, T. Miltzow, and N. Seiferth. Framework for ∃ℝ-completeness
of two-dimensional packing problems. In 2020 IEEE 61st Annual Symposium
on Foundations of Computer Science (FOCS), pages 1014–1021. IEEE, 2020.

[9] P. K. Agarwal, S. Har-Peled, N. Mustafa, and Y. Wang. Near linear time approx-
imation algorithm for curve simpli�cation. Algorithmica, 42(3–4):203–219,
2005.

[10] M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk. A comparison and eval-
uation of map construction algorithms using vehicle tracking data. GeoInfor-
matica, 19(3):601–632, 2015.

[11] M. Ahmed and C. Wenk. Constructing street networks from GPS trajectories.
In European Symposium on Algorithms, pages 60–71. Springer, 2012.

211

Bibliography

[12] H. A. Akitaya, F. Brüning, E. Chambers, and A. Driemel. Covering a curve
with subtrajectories. arXiv preprint arXiv:2103.06040, 2021.

[13] H. A. Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen. The k-Fréchet distance:
How to walk your dog while teleporting. In 30th International Symposium on
Algorithms and Computation (ISAAC 2019). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2019.

[14] T. Akiyama, T. Nishizeki, and N. Saito. NP-completeness of the Hamiltonian
cycle problem for bipartite graphs. Journal of Information Processing, 3:73–76,
1980.

[15] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. Journal of
Algorithms, 49(2):262–283, 2003.

[16] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(1-
2):75–91, 1995.

[17] G. Andrienko, N. Andrienko, G. Fuchs, and J. M. C. Garcia. Clustering trajecto-
ries by relevant parts for air tra�c analysis. IEEE Transactions on Visualization
and Computer Graphics, 24(1):34–44, Jan 2018.

[18] N. Andrienko, G. Andrienko, J. M. C. Garcia, and D. Scarlatti. Analysis of
�ight variability: a systematic approach. IEEE Transactions on Visualization
and Computer Graphics, 25(1):54–64, Jan 2019.

[19] B. Aronov, A. Driemel, M. van Kreveld, M. Lö�er, and F. Staals. Segmentation
of trajectories on nonmonotone criteria. ACM Transactions on Algorithms
(TALG), 12(2):1–28, 2015.

[20] A. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai. Visibility of disjoint
polygons. Algorithmica, 1(1–4):49–63, 1985.

[21] G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich, and J. Snoeyink. E�ciently
approximating polygonal paths in three and higher dimensions. Algorithmica,
33(2):150–167, 2002.

[22] J. L. Bentley and J. B. Saxe. Decomposable searching problems I. static-to-
dynamic transformation. Journal of Algorithms, 1(4):301–358, 1980.

212

Bibliography

[23] S. A. Benz and R. Weibel. Road network selection for medium scales using an
extended stroke-mesh combination algorithm. Cartography and Geographic
Information Science, 41(4):323–339, 2014.

[24] S. Bereg, M. Jiang, W. Wang, B. Yang, and B. Zhu. Simplifying 3D polygonal
chains under the discrete Fréchet distance. In Proc. Latin American Symposium
on Theoretical Informatics (LATIN), Lecture Notes in Computer Science (LNCS,
volume 4957), pages 630–641, 2008.

[25] M. de Berg, M. van Kreveld, and S. Schirra. Topologically correct subdivision
simpli�cation using the bandwidth criterion. Cartography and Geographic
Information Systems, 25(4):243–257, 1998.

[26] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subse-
quence algorithms. In Proceedings of the 7th International Symposium on String
Processing and Information Retrieval, pages 39–48, 2000.

[27] N. Blum and K. Mehlhorn. On the average number of rebalancing operations
in weight-balanced trees. Theoretical Computer Science, 11:303–320, 1978.

[28] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle
tracking data. In Proc. 31st Conference on Very Large Data Bases (VLDB), pages
853–864, 2005.

[29] K. Bringmann and B. R. Chaudhury. Polyline simpli�cation has cubic com-
plexity. Journal of Computational Geometry, 11(2):94–130, 2021.

[30] K. Buchin, M. Buchin, D. Duran, B. T. Fasy, R. Jacobs, V. Sacristan, R. I. Silveira,
F. Staals, and C. Wenk. Clustering trajectories for map construction. In Pro-
ceedings of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 1–10, 2017.

[31] K. Buchin, M. Buchin, J. Gudmundsson, J. Hendriks, E. H. Sereshgi, V. Sac-
ristán, R. I. Silveira, J. Sleijster, F. Staals, and C. Wenk. Improved map con-
struction using subtrajectory clustering. In Proceedings of the 4th ACM SIGSPA-
TIAL Workshop on Location-Based Recommendations, Geosocial Networks, and
Geoadvertising, pages 1–4, 2020.

[32] K. Buchin, M. Buchin, J. Gudmundsson, M. Lö�er, and J. Luo. Detecting
commuting patterns by clustering subtrajectories. International Journal of
Computational Geometry & Applications, 21(03):253–282, 2011.

213

Bibliography

[33] K. Buchin, M. Buchin, M. van Kreveld, M. Lö�er, R. I. Silveira, C. Wenk, and
L. Wiratma. Median trajectories. Algorithmica, 66(3):595–614, 2013.

[34] K. Buchin, S. Cabello, J. Gudmundsson, M. Lö�er, J. Luo, G. Rote, R. I. Silveira,
B. Speckmann, and T. Wolle. Finding the most relevant fragments in networks.
Journal of Graph Algorithms and Applications, 14(2):307–336, 2010.

[35] K. Buchin, M. Lö�er, A. Popov, and M. Roelo�zen. Fréchet distance between
uncertain trajectories: Computing expected value and upper bound. In 36th
European Workshop on Computational Geometry (EuroCG 2020), 2020.

[36] L. Buzer. Optimal simpli�cation of polygonal chain for rendering. In Proc. 23rd
Annual ACM Symposium on Computational Geometry (SoCG), pages 168–174,
2007.

[37] J. Cardinal, S. Felsner, T. Miltzow, C. Tompkins, and B. Vogtenhuber. Intersec-
tion graphs of rays and grounded segments. Journal of Graph Algorithms and
Applications, 22(2):273–295, 2018.

[38] E. W. Chambers, E. C. De Verdiere, J. Erickson, S. Lazard, F. Lazarus, and
S. Thite. Homotopic Fréchet distance between curves or, walking your dog in
the woods in polynomial time. Computational Geometry, 43(3):295–311, 2010.

[39] S. Chan and F. Chin. Approximation of polygonal curves with minimum num-
ber of line segments or minimum error. International Journal of Computational
Geometry & Applications, 6(1):59–77, 1996.

[40] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir,
and J. Snoeyink. Ray shooting in polygons using geodesic triangulations.
Algorithmica, 12(1):54–68, 1994.

[41] D. Chen and G. X. Gao. Probabilistic graphical fusion of LiDAR, GPS, and 3D
building maps for urban UAV navigation. NAVIGATION, 66(1):151–168, 2019.

[42] D. Z. Chen, O. Daescu, J. Hershberger, P. M. Kogge, N. Mi, and J. Snoeyink.
Polygonal path simpli�cation with angle constraints. Computational Geome-
try, 32(3):173–187, 2005.

[43] J. Chen, Y. Hu, Z. Li, R. Zhao, and L. Meng. Selective omission of road features
based on mesh density for automatic map generalization. International Journal
of Geographical Information Science, 23(8):1013–1032, 2009.

214

Bibliography

[44] M. Chimani, T. C. van Dijk, and J.-H. Haunert. How to eat a graph: Comput-
ing selection sequences for the continuous generalization of road networks.
In Proc. 22nd ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, pages 243–252, 2014.

[45] B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek. Route recon-
struction from tra�c �ow via representative trajectories. arXiv preprint
arXiv:2012.05019, 2020.

[46] B. Custers, M. van de Kerkhof, W. Meulemans, B. Speckmann, and F. Staals.
Maximum physically consistent trajectories. ACM Transactions on Spatial
Algorithms and Systems, 7(4):1–33, 2021.

[47] J. Czyzowicz, E. Kranakis, and J. Urrutia. A simple proof of the representation
of bipartite planar graphs as the contact graphs of orthogonal straight line
segments. Information Processing Letters, 66(3):125–126, 1998.

[48] P. Damaschke. The Hamiltonian circuit problem for circle graphs is NP-
complete. Information Processing Letters, 32(1):1 – 2, 1989.

[49] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature. Cartographica,
10(2):112–122, 1973.

[50] A. Driemel and S. Har-Peled. Jaywalking your dog: computing the Fréchet
distance with shortcuts. SIAM Journal on Computing, 42:1830–1866, 2013.

[51] C. Duchêne, B. Baella, C. A. Brewer, D. Burghardt, B. P. Butten�eld, J. Ga�uri,
D. Käuferle, F. Lecordix, E. Maugeais, R. Nijhuis, M. Pla, M. Post, N. Reg-
nauld, L. V. Stanislawski, J. Stoter, K. Tóth, S. Urbanke, V. van Altenaand, and
A. Wiedemann. Generalisation in practice within national mapping agencies.
In D. Burghardt et al., editor, Abstracting Geographic Information in a Data
Rich World, pages 329–391. Springer, 2014.

[52] H. Edelsbrunner, L. J. Guibas, and J. Stol�. Optimal point location in a mono-
tone subdivision. SIAM Journal on Computing, 15(2):317–340, 1986.

[53] J. Erickson, I. Van der Hoog, and T. Miltzow. Smoothing the gap between
NP and ∃ℝ. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 1022–1033. IEEE, 2020.

215

Bibliography

[54] S. P. Fekete, A. Hill, D. Krupke, T. Mayer, J. S. B. Mitchell, O. Parekh, and C. A.
Phillips. Probing a set of trajectories to maximize captured information. In
18th International Symposium on Experimental Algorithms (SEA 2020), pages
5:1–5:14, 2020.

[55] M. Ferrante, C. Bongiorno, and N. Shoval. Similarity of GPS trajectories using
dynamic time warping: An application to cruise tourism. In Convegno della
Società Italiana di Statistica, pages 91–101. Springer, 2015.

[56] N. Ferreira, J. T. Klosowski, C. E. Scheidegger, and C. T. Silva. Vector �eld
k-means: Clustering trajectories by �tting multiple vector �elds. In Computer
Graphics Forum, volume 32, pages 201–210. Wiley Online Library, 2013.

[57] S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2(1-
4):153, 1987.

[58] Z. Fu, W. Hu, and T. Tan. Similarity based vehicle trajectory clustering and
anomaly detection. In IEEE International Conference on Image Processing 2005,
volume 2, pages 602–605. IEEE, 2005.

[59] S. J. Ga�ney, A. W. Robertson, P. Smyth, S. J. Camargo, and M. Ghil. Proba-
bilistic clustering of extratropical cyclones using regression mixture models.
Climate Dynamics, 29(4):423–440, 2007.

[60] Y. Gao, S. Liu, M. M. Atia, and A. Noureldin. INS/GPS/LiDAR integrated navi-
gation system for urban and indoor environments using hybrid scan matching
algorithm. Sensors, 15(9):23286–23302, 2015.

[61] M. Gariel, A. N. Srivastava, and E. Feron. Trajectory clustering and an appli-
cation to airspace monitoring. IEEE Transactions on Intelligent Transportation
Systems, 12(4):1511–1524, 2011.

[62] Y. Ge, H. Xiong, Z.-h. Zhou, H. Ozdemir, J. Yu, and K. C. Lee. Top-eye: Top-k
evolving trajectory outlier detection. In Proceedings of the 19th ACM Inter-
national Conference on Information and Knowledge Management, pages 1733–
1736, 2010.

[63] M. Godau. A natural metric for curves – computing the distance for polygonal
chains and approximation algorithms. In Proc. 8th Annual Symposium on
Theoretical Aspects of Computer Science (STACS), Lecture Notes in Computer
Science book series (LNCS, volume 480), pages 127–136, 1991.

216

Bibliography

[64] GraphHopper. https://www.graphhopper.com.

[65] J. Gudmundsson, M. van de Kerkhof, A. van Renssen, F. Staals, L. Wiratma, and
S. Wong. Covering a set of line segments with a few squares. In International
Conference on Algorithms and Complexity, pages 286–299. Springer, 2021.

[66] J. Gudmundsson, M. van Kreveld, and F. Staals. Algorithms for hotspot com-
putation on trajectory data. In Proceedings of the 21st ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems, pages
134–143, 2013.

[67] L. Guibas, J. Hershberger, J. Mitchell, and J. Snoeyink. Approximating poly-
gons and subdivisions with minimum-link paths. International Journal of
Computational Geometry & Applications, 3(4):383–415, 1993.

[68] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han. Outlier detection for tempo-
ral data: A survey. IEEE Transactions on Knowledge and Data Engineering,
26(9):2250–2267, 2014.

[69] V. Hodge and J. Austin. A survey of outlier detection methodologies. Arti�cial
Intelligence Review, 22(2):85–126, 2004.

[70] I. van der Hoog, M. van de Kerkhof, M. van Kreveld, M. Lö�er, F. Staals,
J. Urhausen, and J. L. Vermeulen. Mapping multiple regions to the grid with
bounded Hausdor� distance. In Workshop on Algorithms and Data Structures,
pages 627–640. Springer, 2021.

[71] Z. Huo, X. Meng, H. Hu, and Y. Huang. You can walk alone: trajectory privacy-
preserving through signi�cant stays protection. In International conference on
database systems for advanced applications, pages 351–366. Springer, 2012.

[72] H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear
function. Journal of Information Processing, 9(3):159–162, 1986.

[73] H. Imai and M. Iri. Polygonal approximations of a curve—formulations and
algorithms. Computational Morphology, pages 71–86, 1988.

[74] C. S. Jensen, H. Lu, and B. Yang. Indexing the trajectories of moving objects in
symbolic indoor space. In International Symposium on Spatial and Temporal
Databases, pages 208–227. Springer, 2009.

217

Bibliography

[75] H. Jeung, H. Lu, S. Sathe, and M. L. Yiu. Managing evolving uncertainty in
trajectory databases. IEEE Transactions on Knowledge and Data Engineering,
26(7):1692–1705, 2013.

[76] B. Jiang and C. Claramunt. A structural approach to the model generalization
of an urban street network. GeoInformatica, 8(2):157–171, 2004.

[77] B. Jiang and C. Claramunt. Topological analysis of urban street networks.
Environment and Planning B: Planning and design, 31(1):151–162, 2004.

[78] B. Jiang and L. Harrie. Selection of streets from a network using self-
organizing maps. Transactions in GIS, 8(3):335–350, 2004.

[79] P. Jin, J. Du, C. Huang, S. Wan, and L. Yue. Detecting hotspots from trajectory
data in indoor spaces. In International Conference on Database Systems for
Advanced Applications, pages 209–225. Springer, 2015.

[80] L. Johard and E. Ru�aldi. Self-organizing trajectories. Pattern Recognition
Letters, 84:177–184, 2016.

[81] S. Karagiorgou, D. Pfoser, and D. Skoutas. Segmentation-based road network
construction. In Proceedings of the 21st ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, pages 460–463, 2013.

[82] T. Kashiyama, Y. Pang, and Y. Sekimoto. Open PFLOW: Creation and eval-
uation of an open dataset for typical people mass movement in urban areas.
Transportation research part C: emerging technologies, 85:249–267, 2017.

[83] V. Keikha, M. van de Kerkhof, M. van Kreveld, I. Kostitsyna, M. Lö�er, F. Staals,
J. Urhausen, J. L. Vermeulen, and L. Wiratma. Convex partial transversals of
planar regions. In 29th International Symposium on Algorithms and Compu-
tation, ISAAC 2018, pages 52:1–52:12. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2018.

[84] M. van de Kerkhof, T. de Jong, R. Parment, M. Lö�er, A. Vaxman, and M. van
Kreveld. Design and automated generation of Japanese picture puzzles. Com-
puter Graphics Forum, 38(2):343–353, 2019.

[85] M. van de Kerkhof, I. Kostitsyna, and M. Lö�er. Embedding ray intersection
graphs and global curve simpli�cation. arXiv preprint arXiv:2109.00042, 2021.

218

Bibliography

[86] M. van de Kerkhof, I. Kostitsyna, M. Lö�er, M. Mirzanezhad, and C. Wenk.
Global curve simpli�cation. In 27th Annual European Symposium on Algo-
rithms (ESA 2019). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2019.

[87] M. van de Kerkhof, I. Kostitsyna, M. van Kreveld, M. Lö�er, and T. Ophelders.
Route-preserving road network generalization. In Proceedings of the 28th
International Conference on Advances in Geographic Information Systems, pages
381–384, 2020.

[88] I. Kostitsyna, M. Lö�er, V. Polishchuk, and F. Staals. On the complexity of
minimum-link path problems. Journal of Computational Geometry, 8(2):80–
108, 2017.

[89] M. van Kreveld, M. Lö�er, and L. Wiratma. On optimal polyline simpli�-
cation using the Hausdor� and Fréchet distance. In Proc. 34th International
Symposium on Computational Geometry (SoCG), volume 56, pages 1–14, 2018.

[90] M. van Kreveld, M. Lö�er, and F. Staals. Central trajectories. arXiv preprint
arXiv:1501.01822, 2015.

[91] M. van Kreveld and J. Peschier. On the automated generalization of road
network maps. In Proc. 3rd International Conference in GeoComputation, 1998.

[92] J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect
framework. In 2008 IEEE 24th International Conference on Data Engineering,
pages 140–149. IEEE, 2008.

[93] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a partition-and-
group framework. In Proceedings of the 2007 ACM SIGMOD international con-
ference on Management of data, pages 593–604. ACM, 2007.

[94] W.-C. Lee and J. Krumm. Trajectory preprocessing. In Computing with Spatial
Trajectories, pages 3–33. Springer, 2011.

[95] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma. Mining user similarity
based on location history. In Proceedings of the 16th ACM SIGSPATIAL interna-
tional conference on Advances in geographic information systems, pages 1–10,
2008.

[96] X. Li, J. Han, S. Kim, and H. Gonzalez. Roam: Rule-and motif-based anomaly
detection in massive moving object data sets. In Proceedings of the 2007 SIAM
International Conference on Data Mining, pages 273–284, 2007.

219

Bibliography

[97] X. Li, J. Han, J.-G. Lee, and H. Gonzalez. Tra�c density-based discovery of hot
routes in road networks. In International Symposium on Spatial and Temporal
Databases, pages 441–459. Springer, 2007.

[98] X. Lin, S. Ma, H. Zhang, T. Wo, and J. Huai. One-pass error bounded trajectory
simpli�cation. arXiv preprint arXiv:1702.05597, 2017.

[99] X. Liu, T. Ai, and Y. Liu. Road density analysis based on skeleton partitioning
for road generalization. Geo-spatial Information Science, 12(2):110–116, 2009.

[100] X. Liu, H. Chen, and C. Andris. TrajGANs: Using generative adversarial net-
works for geo-privacy protection of trajectory data (vision paper). In Location
Privacy and Security Workshop, pages 1–7, 2018.

[101] X. Liu, F. B. Zhan, and T. Ai. Road selection based on Voronoi diagrams
and “strokes” in map generalization. International Journal of Applied Earth
Observation and Geoinformation, 12:S194–S202, 2010.

[102] J. A. Long. Kinematic interpolation of movement data. International Journal
of Geographical Information Science, 30(5):854–868, 2016.

[103] W. Mackaness. Analysis of urban road networks to support cartographic
generalization. Cartography and Geographic Information Systems, 22(4):306–
316, 1995.

[104] W. A. Mackaness and K. M. Beard. Use of graph theory to support map gen-
eralization. Cartography and Geographic Information Systems, 20(4):210–221,
1993.

[105] A. Makris, C. L. da Silva, V. Bogorny, L. O. Alvares, J. A. Macedo, and K. Tserpes.
Evaluating the e�ect of compressing algorithms for trajectory similarity and
classi�cation problems. GeoInformatica, pages 1–33, 2021.

[106] N. Meratnia and A. Rolf. Spatiotemporal compression techniques for moving
point objects. In International Conference on Extending Database Technology,
pages 765–782. Springer, 2004.

[107] W. Meulemans. Map matching with simplicity constraints. arXiv preprint
arXiv:1306.2827, 2013.

[108] H. J. Miller and M. F. Goodchild. Data-driven geography. GeoJournal,
80(4):449–461, 2015.

220

Bibliography

[109] M. Montanino and V. Punzo. Trajectory data reconstruction and simulation-
based validation against macroscopic tra�c patterns. Transportation Research
Part B: Methodological, 80:82–106, 2015.

[110] B. Morisset and A. Ruas. Simulation and agent modelling for road selection in
generalisation. In Proc. ICA 18th International Cartographic Conference, pages
1376–1380, 1997.

[111] M. E. Nergiz, M. Atzori, and Y. Saygin. Towards trajectory anonymization:
a generalization-based approach. In Proceedings of the SIGSPATIAL ACM GIS
2008 International Workshop on Security and Privacy in GIS and LBS, pages
52–61. ACM, 2008.

[112] P. Newson and J. Krumm. Hidden Markov map matching through noise and
sparseness. In Proc. 17th ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, 2009.

[113] J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance.
SIAM Journal on Computing, 2(1):33–43, 1973.

[114] M. Notaro, F. Alkolibi, E. Fadda, and F. Bakhrjy. Trajectory analysis of
Saudi Arabian dust storms. Journal of Geophysical Research: Atmospheres,
118(12):6028–6043, 2013.

[115] OpenStreetMap (OSM). https://www.openstreetmap.org.

[116] M. H. Overmars and J. van Leeuwen. Worst-case optimal insertion and dele-
tion methods for decomposable searching problems. Information Processing
Letters, 12(4):168–173, 1981.

[117] N. Pelekis, I. Kopanakis, E. Kotsifakos, E. Frentzos, and Y. Theodoridis. Clus-
tering trajectories of moving objects in an uncertain world. In 2009 Ninth IEEE
International Conference on Data Mining, pages 417–427. IEEE, 2009.

[118] T. Prentow, A. Thom, H. Blunck, and J. Vahrenhold. Making sense of trajectory
data in indoor spaces. In 2015 16th IEEE International Conference on Mobile
Data Management, volume 1, pages 116–121. IEEE, 2015.

[119] V. Punzo, M. T. Borzacchiello, and B. Ciu�o. On the assessment of vehicle
trajectory data accuracy and application to the Next Generation SIMulation
(NGSIM) program data. Transportation Research Part C: Emerging Technologies,
19(6):1243–1262, 2011.

221

Bibliography

[120] P. Samarati and L. Sweeney. Protecting privacy when disclosing information:
k-anonymity and its enforcement through generalization and suppression.
Technical report, SRI International, 1998.

[121] M. Schaefer. Complexity of some geometric and topological problems. In
International Symposium on Graph Drawing, pages 334–344. Springer, 2009.

[122] W. Shi, S. Shen, and Y. Liu. Automatic generation of road network map from
massive GPS, vehicle trajectories. In 2009 12th International IEEE Conference
on Intelligent Transportation Systems, pages 1–6. IEEE, 2009.

[123] R. Šuba, M. Meijers, and P. V. Oosterom. Continuous road network general-
ization throughout all scales. ISPRS International Journal of Geo-Information,
5(8):145, 2016.

[124] Y. Tao, A. Both, R. I. Silveira, K. Buchin, S. Sijben, R. S. Purves, P. Laube,
D. Peng, K. Toohey, and M. Duckham. A comparative analysis of trajectory
similarity measures. GIScience & Remote Sensing, 0(0):1–27, 2021.

[125] R. C. Thomson and R. Brooks. Exploiting perceptual grouping for map anal-
ysis, understanding and generalization: The case of road and river networks.
In International Workshop on Graphics Recognition, pages 148–157, 2001.

[126] R. C. Thomson and D. E. Richardson. A graph theory approach to road network
generalisation. In Proc. 17th International Cartographic Conference, pages 1871–
1880, 1995.

[127] R. C. Thomson and D. E. Richardson. The ‘good continuation’ principle of per-
ceptual organization applied to the generalization of road networks. In Proc.
of the 19th International Cartographic Conference, pages 1215—-1223, 1999.

[128] M. R. Uddin, C. Ravishankar, and V. J. Tsotras. Finding regions of interest
from trajectory data. In 2011 IEEE 12th International Conference on Mobile
Data Management, volume 1, pages 39–48. IEEE, 2011.

[129] N. Venkataramanan and A. Shriram. Data privacy: principles and practice.
Chapman and Hall/CRC, 2016.

[130] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimen-
sional trajectories. In Proceddings of the 18th International Conference on Data
Engineering, pages 673–684, 2002.

222

Bibliography

[131] R. Weiss and R. Weibel. Road network selection for small-scale maps using an
improved centrality-based algorithm. Journal of Spatial Information Science,
2014(9):71–99, 2014.

[132] W. Yu, Y. Zhang, T. Ai, Q. Guan, Z. Chen, and H. Li. Road network general-
ization considering tra�c �ow patterns. International Journal of Geographical
Information Science, 34(1):119–149, 2020.

[133] G. Yuan, S. Xia, L. Zhang, Y. Zhou, and C. Ji. Trajectory outlier detection
algorithm based on structural features. Journal of Computational Information
Systems, 7(11):4137–4144, 2011.

[134] J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with knowledge from the phys-
ical world. In Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 316–324, 2011.

[135] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-drive:
driving directions based on taxi trajectories. In Proceedings of the 18th SIGSPA-
TIAL International conference on advances in geographic information systems,
pages 99–108, 2010.

[136] Q. Zhang. Modeling structure and patterns in road network generalization.
In ICA Workshop on Generalisation and Multiple Representation, 2004.

[137] Q. Zhang. Road network generalization based on connection analysis. In
Developments in Spatial Data Handling, pages 343–353. Springer, 2005.

[138] Z. Zhang, K. Huang, and T. Tan. Comparison of similarity measures for trajec-
tory clustering in outdoor surveillance scenes. In ICPR (3), pages 1135–1138.
Citeseer, 2006.

[139] Y. Zheng. Trajectory data mining: an overview. ACM Transactions on Intelli-
gent Systems and Technology, 6(3):29, 2015.

[140] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma. Understanding mobility based
on GPS data. In Proceedings of the 10th International Conference on Ubiquitous
Computing, pages 312–321, 2008.

[141] Y. Zheng, X. Xie, and W.-Y. Ma. GeoLife: A collaborative social networking
service among user, location and trajectory. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, 33(2):32–39, 2010.

223

Bibliography

[142] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and
travel sequences from GPS trajectories. In Proceedings of the 18th International
Conference on World Wide Web, pages 791–800, 2009.

[143] Q. Zhou and Z. Li. Evaluation of properties to determine the importance
of individual roads for map generalization. In Advances in Cartography and
GIScience, volume 1, pages 459–475. Springer, 2011.

224

	Introduction
	Trajectory tasks
	Definitions and notation
	Hausdorff distance
	Fréchet distance and the free space diagram

	Contribution
	Structure of this thesis

	Outlier Detection
	Introduction
	Concatenable consistency model
	The speed-bounded model in 2D
	A consistency data structure
	Supporting insertions
	Maximum subsequence queries
	Maximum consistent subtrajectories

	The acceleration-bounded model
	Computing the maximum length of a physically consistent subtrajectory
	Propagating a speed interval in O(1) time
	Additional details on the dynamic program
	Retrieving the physically consistent subtrajectory
	Bounding the maximum fragmentation
	Extending to higher dimensions

	Experiments
	Algorithms
	Data sets
	Comparing algorithms and models
	Sensitivity of model parameters

	Discussion

	Simplification
	Introduction
	Existing work on global curve simplification

	Classification of global curve simplification
	Distance measures
	Vertex restrictions
	Global curve simplification overview
	New results
	Discussion

	Vertex-restricted simplification under Fréchet distance
	Shortcut DAG and free space diagram
	Free space based algorithm for weak Fréchet simplification
	Extended algorithm for Fréchet distance simplification

	Computing Vertex Restricted Hausdoff Distance from Simplification to Original
	NP-hardness template for curve-restricted simplification
	Overview
	Exact construction
	Proof of the construction
	NP-hardness of computing Curve restricted Frechet and Curve Restricted Hausdoff distance
	Extending the template

	Computing Curve Restricted Discrete Frechet Distance
	Computing Curve Restricted Frechet Distance in R1
	Approximation algorithm for Non Restricted Frechet Distance
	The approximation algorithm
	Proof of correctness and bounds

	Strong NP-hardness for computing Non Restricted Hausdorff Distance
	 Strong NP-hardness for computing Non Restricted Directed Hausdorff Distance from Original to Simplification
	Hamiltonian cycle on ray intersection graphs
	Connected segment polyline cover
	Reducing to global curve simplification
	Non-zero delta

	Conclusion

	Representative Trajectories
	Introduction
	Related work

	Preliminaries and notation
	Trajectory clusters
	Trajectoids
	Central trajectories

	Experimental setup
	Implementation choices
	Data sets
	Final data sets
	Additional details on the implementation of central trajectories
	Experiment 1: output complexity of real data
	Experiment 2: effect of simplification

	Results and discussion
	Results of experiment 1
	Results of experiment 2

	Conclusion

	Road Network Generalization
	Introduction
	Results
	Related work

	Theoretical results
	When G is a path
	When G is a tree with bounded ply
	When G is a tree with unbounded ply
	When G is a planar graph with bounded ply
	When G is a planar graph, ply is bounded, and routes must be shortest paths

	Experiments
	Data
	Heuristics
	Experimental set-up
	Results
	Discussion

	Conclusion

	Conclusion
	Data Sets
	Preprocessing for Chapter 4
	Preprocessing steps before clustering
	Clustering algorithm
	Additional preprocessing
	Final data sets

	Preprocessing for Chapter 5
	Acknowledgements
	Curriculum vitae
	Samenvatting
	Bibliography

