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So it is not true (. . . ) that we each should ‘cultivate our own valley, and not attempt to
build roads over the mountain ranges (. . . ) between the sciences.’ Rather, we should

recognize that such roads, while often the quickest shortcut to another part of our own
science, are not visible from the viewpoint of one science alone.

Philip Warren Anderson, 1972
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Nederlandse Samenvatting

Het jaar 2020 zal de geschiedenis ingaan als het jaar van de coronacrisis. Nadat in het
voorgaande jaar een nieuw coronavirus werd aangetroffen in Wuhan, China, duurde het
niet lang voordat in Europa nationale lockdowns werden afgeroepen. Tot verbluffing van
vele wetenschappers en beleidsmakers werd de ziekte in een paar maanden tijd over de
hele aarde uitgespreid. Toch vindt besmetting plaats tussen individuele mensen, lokaal
en zelfs tijdelijk — ver van de globale schaal waarop verspreiding zichtbaar was. De para-
doxale relatie tussen individuele interacties van componenten (de microscopie) en feno-
menen in het grotere geheel (het collectief, of de macroscopie) zijn zichtbaar in systemen
uit allerlei wetenschapsvelden. Klassieke voorbeelden zijn te vinden in de biologie, zoals
spreeuwen die prachtige zwermformaties laten zien en eenvoudige mieren die samen-
werken voor nestbouw en voedsel vergaring. In ons brein zien we een dergelijke relatie
terug in grote hoeveelheden zenuwcellen die als collectief leiden tot fenomenen als be-
wustzijn, herkenning en herinnering. Ook op een veel grotere schaal komt deze paradox
terug: naast het genoemde voorbeeld van epidemieën, zijn filevorming en verstoringen
in de transportsector of de bankencrisis in de financiële sector noemenswaardige voor-
beelden.

In de laatste eeuw is er in de wetenschap de verschuiving gaande vanuit het reducti-
onistisch denken, waarin onderdelen van dergelijke systemen apart worden bestudeerd,
naar het systeemdenken, waarin het collectief het hoofdonderwerp wordt. Dit is met
name relevant voor de genoemde paradox — bijvoorbeeld, voedselvergaring van mieren
is lastig te deduceren vanuit het gedrag en functioneren van een individuele mier, en is
pas zichtbaar als men duizenden mieren bij elkaar zet. Een interdisciplinaire toolbox van
dergelijke methodiek is te vinden in zogenaamde complexiteitstheorie, waarin dit soort
systemen worden beschreven als complexe systemen, gekarakteriseerd door grote hoe-
veelheden componenten, en wiskundige eigenschappen als zelforganisatie, systeemge-
heugen, niet-lineariteit en netwerkstructuren. Complexiteitstheorie maakt het mogelijk
om met een (vaak) natuurwetenschappelijke blik een grote variëteit aan systemen op een
abstracter niveau te beschrijven en nieuwe verbanden tussen deze velden te leggen.

Dit proefschrift borduurt verder op deze stroming. Het heeft als hoofdonderwerp
‘collectieve verandering in complexe systemen’ — hoe dynamiek in deze systemen op
de macroscopische schaal ontstaat uit de interactie van veel kleinere onderdelen. Dit is
intentioneel een breed onderwerp dat niet met een enkel onderzoek beantwoord wordt.

8

Nederlandse Samenvatting

157823 Dekker BNW.indd   8157823 Dekker BNW.indd   8 18-03-2022   10:2118-03-2022   10:21



Door in elk hoofdstuk in te gaan op een andere toepassing, krijgt elk hoofdstuk een ei-
gen perspectief op deze vraag. Dit leidt tot een grote verscheidenheid aan toepassingen:
verstoringen in transportsystemen (hoofdstukken 1, 4, 5, 6), kantelpunten in het klimaat
(hoofdstuk 3), gedragstoestanden in het brein (hoofdstuk 2), interacties tussen mensen
(hoofdstukken 7 en 8) en de verspreiding van infectieziekten (hoofdstuk 9). Het proef-
schrift heeft daarin een tweeledige focus. Vooropgesteld is de methodologische kant: de
hoofdstukken bevatten nieuwe methodiek en modellen die gebruikt kunnen worden in
vervolgonderzoek. Voorbeelden zijn dimensie-reductie technieken (hoofdstukken 1 en
2), nieuwe metrieken om systeem-kwetsbaarheden te herkennen (hoofdstukken 7 en 8)
en niet-traditionele manieren om recht te doen aan heterogeniteit (hoofdstukken 4 en
9). Naast de methodologische kant van dit proefschrift, bevat elk hoofdstuk ook lessen
voor de respectievelijke toepassingen. Dat is de tweede focus van dit proefschrift.

In elk complex systeem, hebben interacties op lokaal en ook op collectief niveau
een karakteristieke tijdschaal: een ziekte als COVID-19 verspreidt zich doorgaans in het
tempo van dagen en weken, terwijl een gerucht of nieuwsbericht zich op social media
binnen enkele uren verspreidt. In dit proefschrift wordt een onderscheid gemaakt tussen
de (collectieve) dynamica in een complex systeem, en de interactiestructuren of netwer-
ken die onderliggend zijn aan deze dynamica — contactnetwerken van mensen en vol-
gersnetwerken in de genoemde voorbeelden. Ook deze netwerken kunnen veranderen
en hebben een bijbehorende tijdschaal. De genoemde relatie tussen dynamica en het
onderliggende netwerk is een leidraad in dit proefschrift. Er zijn verschillende methoden
om recht te doen aan deze interactie en daarom is dit proefschrift opgedeeld in drie de-
len. Deel I bevat methoden waarin de interactiestructuur impliciet of statistisch wordt
meegenomen door dimensiereductie van alle dynamica en interactiestructuren. Deel II
beschouwt systemen met een ruwweg constant onderliggend netwerk, zodat slechts de
tijdschaal van de dynamica relevant is. Deel III bevat methoden om macroscopische dy-
namica van complexe systemen te simuleren wanneer de interactiestructuren ook (in
hoog tempo) veranderen. Hieronder ga ik wat dieper in op deze drie delen.

Het eerste deel van dit proefschrift betreft het beschrijven van complexe systemen op
macroscopisch niveau. Zonder expliciet de netwerken in het systeem te beschrijven, pro-
beer ik de dynamica te vatten in een kleine hoeveelheid variabelen. Met andere woorden,
de dimensie van het systeem wordt gereduceerd tot een laag-dimensionale toestandsva-
riabele. Vervolgens wordt het gedrag van die variabelen geanalyseerd door het definiëren
van toestanden (of states) waarin het systeem zich kan begeven, op basis van statistiek
of de fysica achter het systeem. De drie hoofdstukken in dit deel betreffen drie casus-
sen: verstoringen in treinsystemen (hoofdstuk 1), gedragstoestanden in muizenbreinen
(hoofdstuk 2) en kantelpunten in het klimaat (hoofdstuk 3). In hoofdstuk 1 wordt op ba-
sis van data van treinvertragingen een hoofdcomponentenanalyse uitgevoerd om covari-
ante vertragingspatronen te herleiden. De dynamiek binnen de faseruimte met als assen
de twee dominante hoofdcomponenten gebruiken we vervolgens om de data te cluste-
ren — resulterende in clusters waarin het treinsysteem efficiënt verloopt, en in clusters
waarin er grote verstoringen zijn. Vervolgens bespreekt het hoofdstuk een early warning
systeem waarin we transities tussen de clusters voorspellen waarin we aantonen mid-
dels de Peirce Skill Score hier voorspellingskracht te hebben. De methodiek in hoofdstuk
2 is geïnspireerd op hoofdstuk 1, waar het is toegepast op EEG data van muizenbreinen,
met als doel neurologische toestanden met een betekenis voor gedrag te identificeren.

9

Nederlandse Samenvatting

157823 Dekker BNW.indd   9157823 Dekker BNW.indd   9 18-03-2022   10:2118-03-2022   10:21



De data is afkomstig uit een experiment over objectherkenning en is opdeelbaar in drie
fysiologische delen van het muizenbrein. Het hoofdstuk laat zien dat de hoofdcompo-
nenten in drie delen van het brein, berekend op een covariantie matrix van tijdseries die
de relatieve kracht van oscillaties in verschillende frequenties laten zien, ruwweg uni-
verseel zijn tussen een elftal muizen. De resulterende clusters in een zesdimensionale
faseruimte van twee dominante hoofdcomponenten per deel van het brein worden gere-
lateerd aan het gedrag van de muizen tijdens het experiment. Hoofdstuk 3 reduceert de
macroscopische dynamiek niet op basis van statistische methoden (zoals in hoofdstuk
1 en 2), maar vanuit de fysica: middels laag-dimensionale wiskundige en natuurkundige
modellen wordt het concept van kettingreacties tussen kantelpunten voorgesteld. Hierin
wordt onderscheid gemaakt tussen een viertal mogelijke kettingreacties op basis van fold
en Hopf bifurcaties. Met een eenvoudig natuurkundig model gebaseerd op een Stommel
box model voor de Atlantische oceaan en het Timmermann-model voor de El-Niño Sou-
thern Oscillation illustreren we de potentie voor dit soort macroscopische fenomenen.

Het tweede deel stapt af van de puur macroscopische blik in deel I, en neemt de
invloed van de precieze structuur van de interacties tussen de systeemcomponenten
mee in de vorm van netwerken. Terwijl onderliggende netwerken constant blijven (of
een grote tijdschaal hebben), kunnen dynamische fenomenen die gebonden zijn aan
deze interacties wel sterk worden beïnvloed door de precieze netwerkstructuren. De drie
hoofdstukken in deel II beschouwen hoe analyse van de netwerkstructuur gebruikt kan
worden om de macroscopische dynamica beter te begrijpen. Alle drie de hoofdstukken
gebruiken het voorbeeld van vertragingsproblematiek in treinsystemen, elk vanuit een
ander perspectief. In hoofdstuk 4 definieer ik clusters (regio’s) in enkele Europese trein-
netwerken door middel van een spectrale clusteringmethode. Deze clusters worden ver-
volgens geherinterpreteerd in termen van hun rol in de totale vertraging en hoe sterk
hun connectie is met de andere clusters, wat gebruikt kan worden om de regio’s in trein-
netwerken geografisch te kunnen karakteriseren. Hoofdstuk 5 beschouwt het Belgische
treinsysteem, en bevat een modelstudie met een diffusie-achtig model dat volledig af-
hankelijk is van de netwerkstructuur. De hoofdvraag in dit hoofdstuk is in hoeverre we
vanuit een dergelijk netwerk-georiënteerd perspectief de vertraging kunnen voorspellen.
Daarbij variëren we de netwerkresolutie om de nauwkeurigheid te bepalen. Met name bij
grotere vertragingen, waarbij de vertragingspropagatie minder ruisgevoelig is en ook in
meerdere richtingen ontwikkelt (i.e., meer isotroop is), neemt de nauwkeurigheid van
voorspellingen toe. In hoofdstuk 6 beschouwen we een specifiek mechanisme wat zich
voor kan doen in zeer verstoorde treinsituaties in het Nederlandse treinsysteem: vertra-
gingspropagatie in de vorm van kettingreacties doordat vertraagd personeel en mate-
rieel hun overstappen en herkoppelingen niet meer halen. Door data van tijdschema’s
van drie logistieke lagen (treinlijnen, personeel en materieel) te verbinden, simuleren we
deze situaties. Middels een vergelijking van modelresultaten met observaties, deduceren
we waar dergelijke kettingreacties hebben plaatsgevonden, en ook waar verkeersleiders
mogelijke vertraging succesvol hebben gemitigeerd.

In het derde en laatste deel van dit proefschrift wordt er gekeken naar systemen waarin
het netwerk ook verandert. Dit is in het bijzonder van belang in de interactie van men-
sen: infectieziekten en informatie verspreiden zich via korte connecties die constant ver-
anderen en herstructureren. In deel III is in het bijzonder aandacht besteed aan de rol
van volgorden van interacties. In de epidemiologie is het uiteraard bepalend of een con-
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tact plaatsvindt nadat je in contact bent gekomen met een ziek persoon, of ervoor. De
hoofdvraag in dit derde deel van het proefschrift is hoe de structuurverandering en de
bijbehorende kettingen van opeenvolgende interacties meegenomen kunnen worden
om de kwetsbaarheid van het systeem te bepalen tegenover verspreidingsfenomenen.
Hoofdstuk 7 beantwoordt dit door het definiëren van entropy of temporal entanglement
dat, puur gezien vanuit de netwerkstructuur, weergeeft hoe sterk systeemcomponen-
ten en hun interacties met elkaar zijn verweven. Als ze minder verweven zijn (i.e., lage
waarden van de entropie), zal het systeem doorgaans minder kwetsbaar zijn voor ver-
spreidingsfenomenen als ziektes, en vice versa. Hoofdstuk 8 is hieraan gerelateerd. In
dit hoofdstuk gebruiken we empirische data van de interactie van mensen uit draagbare
sensoren op een kunsttentoonstelling om te meten wie er de belangrijkste rol spelen in
de verspreidingsdynamica. De resultaten, uitgedrukt in een nieuwe metriek contact se-
quence centrality, suggereren dat zogenaamde ‘superspreaders’ anders gedefinieerd kun-
nen worden dan puur degene die de meeste contacten heeft. In het laatste hoofdstuk
van dit proefschrift modelleren we de eerder genoemde interactie-kettingen specifiek
voor de casus van de COVID-19 verspreiding in Nederland in de eerste golf. We doen dit
met een demografisch-gestratificeerd individueel-gebaseerd model dat de bewegingen
van 170.000 modelagenten simuleert met behulp van mobiele telefoon data. Doordat
het model demografisch en geografisch expliciet is, kan het verschillende (geïmplemen-
teerde en hypothetische) interventies testen, waarin we kwantificeren hoe een lokale (in
plaats van nationale) strategie op gemeentelijk niveau potentiële voordelen zou hebben
opgeleverd. Op een methodologisch vlak laat de analyse zien wat er voor nodig is om de
kennis uit hoofdstukken 7 en 8 tot uiting te brengen op een nationale schaal.

Samenvattend biedt dit proefschrift enerzijds nieuwe interdisciplinaire methodiek
om collectieve verandering in een tal van systemen te analyseren, en anderzijds geeft het
inzicht in systeem-specifieke vragen over deze dynamica. De algemene introductie (p. 4)
bevat een achtergrond over de genoemde interactie tussen microscopie en macroscopie,
en motiveert dit onderzoek op een interdisciplinair vlak. In de gelaagdheid van drie de-
len op basis van de typen netwerkstructuren werkt het proefschrift toe naar de vraag hoe
microscopische interacties kunnen leiden tot collectieve systeemverandering, in een va-
riëteit aan toepassingen. Aan het einde van dit proefschrift beschrijf ik enkele lessen en
toekomstrichtingen voor dit type onderzoek in een algemene discussie (p. 194).
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In 1910, the American entomologist William Morton Wheeler published his book
Ants, Their Structure, Development and Behavior, where he proposed the novel concept
of ant colonies operating as ‘superorganisms’. He observed that the collective of many
ants demonstrates unexpected behaviour that is not easily explained from what is known
about individual ants (Wheeler, 1910). As biologist Nigel Franks puts it, almost a century
later:

“The solitary army ant is behaviorally one of the least sophisticated animals
imaginable (...) If 100 army ants are placed on a flat surface, they will walk
around and around in never decreasing circles until they die of exhaustion.”
(Franks, 1989)

But, as Franks also observed, if you increase the amount of ants up to half a million,
they will form a ‘superorganism’ with a sophisticated ‘collective intelligence’ (Mitchell,
2009), with the abilities to form living bridges and night shelters, to construct nests and
to collaborate on transporting food over large distances. Ants belong to the so-called
eusocial type of insects (Batra, 1968): by means of a set of simple behavioural interac-
tions expressed in chemical signals, they achieve a high biological level of social organ-
isation, vital to their survival. Another example of extraordinary collective intelligence
is the immune system in the human body: the complex interactions of B cells, T cells,
and macrophages, among many other components, does not only lead to recognition
and direct response to invaders, but also has a remarkable learning capacity to induce
longer-term immunity — exemplified in the recent discovery of immunological mem-
ory to SARS-CoV-2 (Dan et al., 2021; Netea and Li, 2021). Describing and understanding
the human adaptive immune response requires analysis beyond individual cells and in-
volves tracking interactions of large quantities of components.

The paradox of how unintelligent beings such as ants and cells have complex col-
lective behaviour when put together remains an active research topic today. In fact, the
apparent mismatch between the functioning of individual components and the phe-
nomenology of the whole is present in many real-world systems, far beyond entomology
and immunology. Both the ant colony and the immune system are examples of complex
systems, which are loosely defined as systems with many interacting components that,
without any central control, show distinct behaviour on the macroscopic level. The lat-
ter is referred to as emergence. Complex systems and emergence can be found in a wide
variety of real-world systems — from disruptions in transportation systems to the evolu-
tion of global pandemics such as COVID-19 and from the development of hurricanes
to the polarisation on social media. This dissertation explores new avenues of study-
ing dynamical phenomena in complex systems by proposing cross-disciplinary meth-
ods linking microscopic interactions of the system’s components to emerging macro-
scopic behaviour of the collective. At the same time, each individual chapter involves
specific applications of these methods to describe example complex systems, also bring-
ing contributions in their respective fields. The chapters are classified into three parts.
Below, a motivation for the need of methodology at the macroscopic scale is provided
from a philosophical and historical viewpoint, followed by an introduction of complex
networks. This introduction ends with listing the contents of this dissertation.
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Motivation for complex systems methodology

The examples of entomology and immunology reflect that macroscopic behaviour is
not always easily deducible from interactions of components at the microscopic level.
Approaches to filling this gap varied throughout history and reflect how collective or
macroscopic behaviour is perceived in a scientific-philosophical sense. It is valuable to
be aware of this history because it motivates the principles on which many of the ap-
proaches in this dissertation are built.

Perspectives on emergence

The study of complex systems is sometimes referred to as ‘complex systems science’,
which is a hypernym referring to a framework and toolbox of methodologies that can
be applied to many fields of science. Historically, one may not regard complex systems
science as a separate scientific field in itself, but mainly as a change in perspective as a re-
sponse to traditional approaches that lacked the ability to describe emergent behaviour.
In fact, the paradigm change in myrmecology (i.e., the study of ants) brought by Wheeler
is exemplary to illustrate different scientific views of analysing emergent behaviour. Be-
fore Wheeler, ants were studied following a reductionist approach (Nagel, 1998), which
assumes that all system information can eventually be reduced to a small set of funda-
mental laws exerted on the level of individual components. Constructionism, arguably
regarded as a corollary of reductionism, says that, using these fundamental laws, one
can reconstruct and predict the system as a whole, and, subsequently, fully deduce the
macroscopic emergent behaviour: e.g., a full understanding of the ant colony is obtained
from understanding individual ants themselves. In contrast, holism says that systems
should be treated as wholes to be able study their behaviour properly (Smuts, 1926): the
ant colony contains new phenomenology and associated laws and concepts. In popular
words, reductionism argues that the whole merely consists of the ‘sum of its parts’, while
holism argues that the whole is ‘greater than the sum of its parts’. Whether this phrase is
entirely true is up for debate.

Setting aside the semantic discussion on what exactly the ‘whole’ comprises and what
the ‘sum’, an important discussion lies in the phenomenological domain: how does the
behaviour of the system as a whole relate to that of individual components? In fact, Aris-
totle already came to the conclusion that when ‘defining’ an object — which is something
he struggled with in his famous work Metaphysics — purely listing the object’s compo-
nents is not the same as the whole itself (Aristotle, 350 BC). Centuries later, in 1926,
the South African statesman and philosopher Jan Smuts, seen as one of the founders
of holism, described the concept of ‘wholes’ as (meta-)physical structures surpassing
their components (Smuts, 1926). Their holistic character has varying degrees, and Smuts
sketches six grades of wholes, from material structures, via animals and personalities, to
states and absolute values like truth, beauty and goodness. Since Smuts, many modern
variations of holism have been proposed.

Involving the ideas of Aristotle and Smuts in the discussion of reductionism and holism
reveals an almost philosophical aspect on the connection between the components and
the whole, which has implications for the analysis of many systems, among which those
discussed in this dissertation. For example: can we ultimately reduce the emergence of
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human consciousness in our brain to fundamental chemistry and physics? If so, human
behaviour as a phenomenology on its own (e.g., as studied in chapters 7, 8 and 9 of this
dissertation) may be redundant and, instead, regarded as applied chemistry, should be
expressed in fundamental laws on a more microscopic level. These different types of
research are sometimes referred to as ‘intensive’ and ‘extensive’ research, respectively
(Anderson, 1972). In contrast, by emphasising emergence — qualitatively different phe-
nomenology as a consequence of differences in scale — complex system science aims
to identify new laws and concepts that emerge only at larger scales. This dissertation
follows this line, and studies how macroscopic dynamical phenomena may result from
microscopic interactions.

There are two main perspectives on the existence and origin of emergence. The first is
the idea that systems at larger scales work physically different from what can be reasoned
from their mere collection of components. For example, one may argue that an increased
quantity of ants changes the collective behaviour such that it becomes literally impossi-
ble to predict it from the behaviour of individual or small groups of ants alone. Systems
as wholes are then argued to require different laws because the ones applying to their
components do not apply to the whole. This argument on the (meta)physical existence
of such new laws is referred to as the ontological explanation for emergence (Ladyman
et al., 2013), and argues directly against constructionism.

The second perspective is an epistemological explanation for emergence, indicating
that, although the same set of fundamental laws may apply to all scales of a complex sys-
tem, it becomes practically impossible to predict the system’s behaviour from individual
or small groups of components alone (Ladyman et al., 2013). Such practical limitations
may be due to the existence of non-linearity, scaling laws, memory, critical transitions
and other features typically emerging at larger scales in complex systems. Such reason-
ing is largely present in the natural sciences, e.g., in how science deals with molecular
dynamics in statistical physics or the ideal gas law and turbulence in hydrodynamics.
There are no ‘new’ or ‘extra’ physical laws beyond those that are already exerted on the
system’s individual components, but the system as a whole has different phenomenol-
ogy, functions or behaviour that are too difficult to derive from individual component
behaviour — these aspects only become apparent when considering the system at large.

Neither of the two perspectives argue against new phenomenology on macroscopic
scales, meaning they both support the idea that complex systems require additional un-
derstanding and descriptions at that system-wide level — forming the motivation of this
dissertation. In this dissertation, I limit complex systems to structures in the (non-meta)
physical domain, which are in terms of composition by definition equal to the sum of
their parts, but may require methods to analyse the macroscopic properties, with partic-
ular emphasis on dynamical phenomena emerging at these scales. Hence, the title of this
dissertation: Macroscopic Dynamics in Complex Systems.

The dominance of reductionism

Although contradictory to the aforementioned motivation of understanding emergence
from a holistic viewpoint, the reductionist viewpoint has been dominant throughout a
large part of scientific history. In fact, from the 16th century until the early 20th century,
the ultimate goal of science was to produce a reductionist explanation of everything in
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terms of a finite set of fundamental laws of physics. This viewpoint had implications on
how the different fields of science were perceived: chemistry could be viewed as an ap-
plied form of these physical laws, and, in turn, biology or even psychology as applied
chemistry. In fact, this hierarchical order of sciences was quite the debate in the 19th and
20th century and is referred to as Comte’s Theory of Science, after the French philoso-
pher Auguste Comte who reasoned about the impact this hierarchy would have on con-
sensus and advancement rates in science. In line with the reductionist’s approach, René
Descartes, one of the founders of modern science, described his own scientific method-
ology as follows:

“... to divide all the difficulties under examination into as many parts as pos-
sible, and as many as were required to solve them in the best way” and “...to
conduct my thoughts in a given order, beginning with the simplest and most
easily understood objects, and gradually ascending, as it were step by step, to
the knowledge of the most complex” (Descartes, 1637)

This is a natural way to start research: to divide larger complex problems into smaller
pieces to study one by one. It also works in most fields of science, as many scientific
concepts contain reductionist elements. An example is the superposition principle in
classical mechanics, that states that for linear systems, the net response of two stimuli
can be deduced by adding the two stimuli individually: e.g., one can determine a net
force on a body of mass by determining and superposing individual forces exerted on
the body.

Up to the 19th century, the dominance of the reductionist approach and hypothe-
sised reducibility of scientific principles to a small set of fundamental laws led, via the
concept of constructionism, to the idea of causal determinism. This idea was embod-
ied by the thought experiment called “Laplace’s demon”, named after the French scholar
Pierre-Simon de Laplace (Laplace, 1814): if an intelligent being (the ‘demon’) would know
the precise momenta and locations of all items in nature at a specified moment, and if
this being would have infinite computational power, it would be able to predict the past
and future of everything. This idea was debunked in the 19th century by the second law
of thermodynamics: entropy in closed systems never decreases and processes are only
reversible when entropy remains equal. In other words, most natural processes are irre-
versible and time is asymmetric in those cases. Hence, the demon could not predict the
past from the present. Various different types of reasoning are used to also reject future
deterministic predictions from the demon, reasoned from, e.g., both quantum mechani-
cal to information theoretical grounds. (A practical problem for Laplace’s demon is found
in the concept of chaos, which I address below.)

Opposing constructionism

Throughout the 20th century, the idea of a constructionist ‘theory of everything’ received
more criticism, not only in the philosophical argument, but also through field-specific
advances, such as that of the aforementioned ‘superorganism’ ant colony. A systematic
problem of constructionism was proposed in 1972 by the American physicist Philip W.
Anderson in his famous essay More is different, who acknowledged the reductionist idea
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that emphasised the importance of understanding fundamental laws underlying every
system, but challenged the constructionist hypothesis at the same time:

“The ability to reduce everything to simple fundamental laws does not imply
the ability to start from those laws and reconstruct the universe.” (Anderson,
1972)

He uses the theory of symmetry breaking in statistical physics to illustrate how quan-
titative changes can lead to qualitative differentiation1 — much like when putting half a
million ants together, a superorganism will emerge, behaving qualitatively different from
a group of merely one hundred ants. Symmetry breaking refers to the idea that infinites-
imally small fluctuations can lead to the crossing of a critical point, determining which
branch of a bifurcation is taken. This resulting state is asymmetric: going back to the
previous (disorderly, undetermined) symmetric state and crossing the bifurcation again
might not yield the same results. He reasoned that “the internal structure of a piece of
matter need not be symmetrical even if the total state of it is” and “the state of a really big
system does not at all have to have the symmetry of the laws which govern it; in fact, it usu-
ally has less symmetry.”, implying a disconnection between the system-wide symmetry
and laws and those of the system’s components. Anderson believed that scale and com-
plexity of systems yield entirely new properties, suggesting that the research of which
may be as fundamental as any other.

A relevant development in this context is the discovery of chaos in deterministic dy-
namical systems, which refers to apparent random behaviour resulting from the interac-
tion of elements. It is commonly illustrated by the butterfly effect, a phenomenon that
is consequential to chaos: small changes in initial conditions result in radically different
outcomes when trying to predict the state over a period of time. Or, as a quote that is
attributed to the American mathematician and meteorologist Edward Lorenz, describes
chaos:

“When the present determines the future, but the approximate present does
not approximately determine the future.” (Lorenz)

Lorenz was a pioneer in chaos theory. He identified chaotic behaviour when search-
ing for ways to forecast the weather, resulting in his famous paper Deterministic nonpe-
riodic flow in the mid-20th century (Lorenz, 1963). Still, chaotic behaviour was actually
found earlier already by Poincaré, at the end of the 19th century when studying the Three
Body Problem. The concept of chaos leads to a practical problem for the aforementioned
Laplace’s demon: because we can never know the precise (i.e., up to infinitely many deci-
mals) location and momentum of every particle in the universe, we can never accurately
predict the past and future. Some scholars also argue that this is a principal argument
against the potential of Laplace’s demon (Mitchell, 2009).

1He ends the paper with a dialogue that illustrates this principle. It concerns the American writers F. Scott
Fitzgerald and Ernest Hemingway in the 1920s in Paris. Fitzgerald: “The rich are different from us”. Hemingway:
“Yes, they have more money”.
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Complex systems science

Contemporary to the growing criticism on constructionism and determinism in the 20th
century, the need for interdisciplinary approaches to both scientific and societal prob-
lems was recognised. American physical chemist George Cowan brought together a num-
ber of brilliant minds from a variety of fields, many of which were acquainted from the
Manhattan project during World War II. They founded the Santa Fe Institute in 1984,
aimed at disseminating the concept of a new research area, referred to as ‘complexity
theory’ or ‘complex systems science’, aimed at using the potential of natural sciences to
address interdisciplinary problems.

Despite the growing success of complex systems science, today, there is still no con-
sensus on a sharp definition of a complex system. Part of this is because of the many
different elements that may or may not make a system complex (Ladyman et al., 2013).
Several aspects are already mentioned: emergence, lack of control and a large number of
interactive components. Other aspects include non-linearity, self-organisation and even
memory. Chaos is commonly confused with complexity. However, chaotic behaviour can
often be directly deduced from precise (even simple) mathematical principles, which can
result in a form of complicatedness (Rickles et al., 2007). The link between micro princi-
ples and macro properties can be sharply formulated for many chaotic systems, which is
one of the problems in complex systems. In this dissertation, I use the following qualita-
tive definition of a complex system by Mitchell (2009), which emphasises the generality
of the concept, and how macroscopic behaviour may arise without central control:

“A system in which large networks of components with no central control and
simple rules of operation give rise to complex collective behavior, sophisticated
information processing, and adaptation via learning or evolution.”

Reading this definition, one realises that many systems — both in natural sciences
as well as in social sciences — can be regarded as complex systems, e.g., animal brains
(see chapter 2), systems involving human interaction (see chapter 8), logistic systems
(see chapter 6) and parts of our climate system (see chapter 3). In a sense, it does not
matter whether a system is fully ‘complex’ or not. What matters is whether one observes
the paradoxal disconnection between the macro-behaviour and the fundamental laws
governing the system’s individual components — i.e., the (epistemological) breaking of
constructionism. If this is the case, applying complex systems methods can be a valuable
asset, especially when realising that many mathematical and phenomenological princi-
ples found in complex systems turn out to be cross-applicable between disciplines.

This cross-disciplinarity is exemplified in the detection of network structures in a
wide variety of these systems, which is an important aspect of this dissertation and greatly
influenced complex systems methods in the past few decades. A network is a mathemati-
cal structure consisting of nodes, being the components or agents in the complex system,
and links, reflecting the interactions between nodes. (A more elaborate introduction to
networks is given in Part II.) Finding its basis in graph theory, the history of networks can
be traced back to the mid-18th century, when the great Swiss mathematician Leonhard
Euler proved the first theorem of graph theory: the solution to the Königsberg bridge
problem. There were seven bridges in the Prussian city of Königsberg (now Kaliningrad
in Russia) crossing the Pregel River, some leading to islands inside the river. The problem
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was to find a route that crossed all of them once and only once. Euler abstracted the is-
lands and both sides of the main land to ‘nodes’ as the routes within each land mass was
irrelevant. Linking these nodes resulted in a mathematical graph, and using this structure
he proved that no such route was possible. Although this initial problem did not involve
any complex multi-component interaction, the mathematical field of graph theory it es-
tablished formed the basis to analyse exactly that.

Until the late-20th century, the study of networks was mainly confined to the math-
ematical field of graph theory. With the discovery of important network models such as
random networks (Erdos et al., 1960), small-world networks (Watts and Strogatz, 1998)
and scale-free networks (Barabási and Albert, 1999), ‘network science’ started to become
more wide-spread. In particular because of the increasing computational power and data
availability, it became increasingly possible to study large networks in the real world,
such as social networks (Kossinets and Watts, 2006; Cattuto et al., 2010), mobility struc-
tures (Wesolowski et al., 2012), protein interaction (Rual et al., 2005), and many more.
One notable finding was the discovery of the scale-free nature of real networks across
many disciplines, which implies that there is no characteristic scale in the network: the
distribution of the node degree — i.e., the amount of links the node has — follows a
power law. Today, network science is becoming a field of science in itself, involving own
journals, conferences and even educational programmes.

Dynamical phenomena and networks

Central to this dissertation is the relation between the structure and interactions of a
complex system and how observed phenomena are dependent on this structure. This
section introduces concepts relevant to this relation. Many phenomena in complex sys-
tems concern dynamics. In fact, many concepts in complex systems science involve dy-
namical systems theory. In the context of the aforementioned relation, a distinction can
be made between two types of dynamics. The first is concerned with dynamics of net-
works (see Fig. ia), which, quite literally, refers to variations of the network itself: the
changing, disappearing and reappearing of nodes and links. In statistical physics, such
analyses have been well-established for quite some time already in the form percolation
theory, for example. The analysis of dynamics of networks leads to the concepts of re-
silience, robustness and vulnerability of the connectivity in network structures.

The second branch of dynamical analysis of networked systems is concerned with
dynamics on networks (see Fig. ib), which treats the network as pathways that allow any
dynamics in the system to evolve upon. However, the exact relation between dynamics
on networks, and the underlying network itself is not always trivial and depends on the
application. In fact, this is one of the main topics in this dissertation. Two considerations
can be mentioned to illustrate potential discrepancies between dynamics on networks,
and the network itself. The first consideration is potential topological anisotropy of the
dynamics that is not aligned with network weights. This is the case when looking at train
delay dynamics in railways (e.g. in chapter 6): delays are advected by discrete trains trav-
elling between stations. So when a delayed train enters a station (node), and it re-departs
in a particular direction (edge), the delay moves along with it. In many cases, this means
that potential other edges are unaffected by this particular delay, even though they are
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Figure i: Illustration of (a) dynamics of networks, which involves changes in the structure of the network itself,
such as the addition and removal of links or nodes, and (b) dynamics on networks, where the interaction struc-
ture of the nodes remains the same, but a dynamical process evolves on top.

connected in the network (from a diffusion-like perspective which is in fact discussed
in chapter 5). Another consideration when linking dynamical phenomena to underly-
ing network architecture is concerned with time scales and probabilistic aspects of the
dynamics. Crucial connections in the topology might be probabilistically unused by the
dynamics, and when the contacts in the network are much shorter than the dynamics
evolves, many contacts might be meaningless, illustrating the importance of time scales.
(I will come back to this in part III of this dissertation.)

Even though network architecture may not have a one-to-one relationship with dy-
namics on top, a crucial advantage of network approaches with respect to non-network
approaches is that they explicitly account for heterogeneity in the agent connection struc-
ture on the level of individual agents, which, in many systems, is of high relevance to the
dynamics. A network structure can reveal which agents and communities easily affect
each other, and which do not. For illustration purposes, four distinct network structures
are shown in Fig. ii: (a) an early version of the World-Wide-Web, as measured by Google
in 2002 (Dasgupta et al., 2009), (b) the interaction of children in a primary school (an ag-
gregation of two hours) (Gemmetto et al., 2014; Stehlé et al., 2011), (c) roads in California
(Li et al., 2005), and (d) the citations network of high-energy physics papers on preprint
server arXiv from 1992-2002 (Gehrke et al., 2003). Clearly, these networks are very differ-
ent. The WWW graph (panel [a]) seems to have a layered, core-periphery structure, while
the primary school (panel [b]) has a clustered structure (in fact, due to the division in
classrooms). The road network in California (panel [c]) has a planar structure, because
of its geographic nature, while papers in the citation network (panel [d]) seem to have al-
most random connections. Traditional network approaches investigate the distributions
of node characteristics such as degree and centrality measures. More sophisticated is the
question of clustering: can we divide these graphs up into well-separated communities?
At first glance, this seems possible and useful in the primary school and the Californian
road network, but less so for the WWW and the citation graph.

In this figure, the distinction between dynamics of networks (Fig. ia) and dynamics
on networks (Fig. ib) can be made clear: an example of dynamics of networks is the vul-
nerability of the road network in panel (c): does the connectivity in the network remain
in tact, even if multiple large accidents fully remove certain nodes or links from the net-
work? Or, were particular papers crucial in the connectivity of the information flow that
we see in high-energy physics papers in panel (d)? An example of dynamics on networks
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is modelling the dynamics of cars and traffic congestion on the Californian roads in panel
(c), which evolve on top of the network architecture (i.e., the roads), but keep it in tact.

More recently, partly due to developments in high-resolution and high-frequency
sampled data in a wide variety of complex systems, a sort of ‘combined version’ of the
two aforementioned network dynamics approaches has emerged: the analysis of dynam-
ics on temporal networks. Temporal networks are networks of which the nodes and links
change over time. Analysing the dynamics on top of temporal networks is usually more
complicated and computationally demanding, but has major advantages — the obvi-
ous advantage being able to track sequences of interactions which may be crucial to the
dynamics. When simulating the evolution of a disease or rumour spreading, for exam-
ple, across the children in a primary school, the (non-temporal) static network shown in
Fig. iib does not have all necessary information. Assuming no incubation time, if child
A spreads the disease to child B at 9:00AM, and B is in contact with another child C
at 11:00AM, the disease may spread to C . But if the contact between B and C is before
9:00AM, it will not, exemplifying the importance of sequences. Such temporal informa-
tion on the ordering of links is not contained in a static network. Of course, sequential
information is not always relevant to the dynamics: on social media, the spreading of a
popular video on social media goes much faster than the changes in its pathways — i.e.,
the followers and friend networks — which may be assumed to be time invariant on the
scale of days.
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Figure ii: Examples of complex networks in real-world systems. Panel (a): the world-wide-web in 2002 (Das-
gupta et al., 2009). Panel (b): children in a primary school (Gemmetto et al., 2014; Stehlé et al., 2011). Panel
(c): California road network (Li et al., 2005). Panel (d): citations in high-energy physics (Gehrke et al., 2003).
Node colour and size reflect the node degree. Only giant components are shown. In panels (a) and (d), due to
computational limits, only 7% and 21% of the nodes are shown, respectively, which is for the purpose of this
illustration not a relevant problem.
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Dissertation content

The goal of this dissertation is to contribute to the complex systems methodology liter-
ature by proposing and applying new methods to analyse how macroscopic dynamics
emerges from microscopic interactions. In each chapter, methods are applied to real-
world problems and a large part of the contribution of this dissertation lies in explaining
emergent behaviour in the respective example systems themselves, which involve a va-
riety of systems: behavioural states in animal brains (chapter 2), disruptions in railway
systems (chapters 1, 4, 5, 6), human behaviour (chapters 7, 8), climate subsystems be-
ing coupled via geophysical principles (chapter 3) and epidemic spreading of diseases
(chapter 9). The nine chapters in this dissertation are subdivided into three parts, based
on the nature of the methods used. The parts all contain their own (small) introduction,
accompanied by an example, to guide the narrative in this dissertation. I conclude with
a general discussion at the very end.

Part I: Macroscopic approaches [chapters 1-3]

The first part concerns three chapters with macroscopic approaches, referring to method-
ology based on system-wide variables rather than agent- or component-specific ones.
In particular, these chapters concern the effort to define system-wide or macroscopic
states by trying to reduce the dimension of the system to only a few variables — defining
a so-called low-dimensional state variable — and analysing how these variables evolve
with respect to each other. In chapter 1, we capture the evolution of railway delays in
the Dutch railway system into only a few system-wide variables and construct an early
warning scheme for the evolution of disruptive delay state. In chapter 2, a similar effort
is presented in electroencephalography data from animal brains, aiming to specify pat-
terns in the brain belonging to behavioural states. In chapter 3, we analyse macroscopic
states in climate subsystems, and research critical behaviour and interactions between
them. How such low-dimensional state variables should be defined, and whether they
show the relevant dynamical behaviour such as states and transitions, is not a trivial task.
This leads us to the topic of part I:

Research question Part I: (a) How can we identify macroscopic states in high-
dimensional complex systems? (b) Given macroscopic states, how can we de-
scribe transitions between them?

Part II: Static network approaches [chapters 4-6]

In contrast to part I, where the aim was to search for (low-dimensional) system-wide
variables, in part II the system’s component structure is explicitly accounted for. The
methods in this part focus on the role of the system’s underlying network architecture
in determining the evolution of dynamical phenomena. The main question addressed in
these chapters is:

Research question Part II: How can we investigate the interdependence of a
system’s dynamics and its underlying static network architecture?
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Intentionally, I use the example of railway dynamics in all three chapters in part II.
Here, the role of the network architecture is far from trivial due to the discrete nature of
evolution of delays and congestions. However, the three chapters involve three different
angles to this research question. A geographic characterisation of the dynamics is given
in chapter 4: can we use a network topology clustering to obtain insights in the dynamics
on top? Chapter 5 focuses on prediction by using a network-based model of the dynam-
ics, quite explicitly linking the two. It also investigates how the spatial resolution affects
the predictability of the dynamics from this model. Chapter 6 focuses on mechanisms
driving a rare but remarkable dynamical phenomenon in railways — that of large-scale
disruptions — and aims to use that information to predict which areas of the network are
at risk during such disruptions. In particular, we assess how initially local delays are able
to amplify and spread towards all corners of the country-wide railway system, exemplify-
ing the fundamental question of how microscopic interactions can lead to macroscopic
behaviour of the system.

Part III: Temporal network approaches [chapters 7-9]

The final part in this dissertation concerns the architecture of temporal networks and its
relation to dynamical phenomena. By taking into account change of the system’s network
over time, we can explicitly address the role of sequences in affecting the dynamics. All
three chapters in this part are focused on spreading phenomena on temporal networks.
In particular, the following question is addressed:

Research question Part III: How can we quantify and influence spreading
vulnerability in temporal networks?

The first two chapters (7 and 8) in part III address this from a theoretical point of
view by proposing two metrics, entropy of temporal entanglement and contact sequence
centrality, which reflect the system-wide spreading vulnerability and the impact of in-
dividual agents on this, respectively. In these chapters, a variety of empirical datasets is
used to illustrate the metrics, with most attention to social and human interaction net-
works. Chapter 9 concludes this part with a model in which the first wave of COVID-19
in the Netherlands is simulated using an advanced model involving datasets on mobil-
ity, mixing and demography, with the ultimate aim of testing the effectiveness of var-
ious governmental interventions. Also this chapter relates to the concept of spreading
vulnerability by proposing techniques to limit spreading using both demography- and
geography-affecting measures.

These three parts together form a narrative of a step-wise growing level of hetero-
geneity accounted for: while in part I, the aim was to fuse as much information as possi-
ble into a low-dimensional macroscopic view, parts II and III explicitly add information
on the system’s components and their (temporal) interactions. Even though the three
parts contain different methodologies, they all focus on the general question of how
macroscopic dynamical phenomena arise from microscopic interactions.

25

General Introduction

157823 Dekker BNW.indd   25157823 Dekker BNW.indd   25 18-03-2022   10:2118-03-2022   10:21



PART I

MACROSCOPIC APPROACHES

On the identification of macroscopic states and 
transitions between them
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“Science has explored the microcosmos and the
macrocosmos; we have a good sense of the lay
of the land. The great unexplored frontier is
complexity.”

HEINZ R. PAGELS, 1989

PART I:

MACROSCOPIC APPROACHES

On the identification of macroscopic states and transitions between them

“Science has explored the microcosmos and the 
macrocosmos; we have a good sense of the lay of the 
land. The great unexplored frontier is complexity.”

HEINZ R. PAGELS, 1989
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Introduction to Part I

In daily life, we often express dynamical phenomena in terms of a small set of system-
wide variables. For example, country economic performance is expressed in Gross Do-
mestic Product (GDP), epidemic spreading capability using the reproduction number
(R0), and a person’s physical health using, e.g., blood pressure and heart rate, all of which
are in fact emerging from complex interactions. From a methodological point-of-view,
when analysing phenomena at the system-wide, or macroscopic, scale, using a highly
reduced number of variables can have important advantages in terms of understand-
ing, applicability of analytical approaches and computational feasibility. The reduction
of high-dimensional complex interactions to a small set of system-wide variables and
the subsequent analysis of these variables is referred to as a macroscopic approach to the
phenomenology of the system.

In generalised terms, macroscopic approaches focus on the description of the dy-
namics of a system consisting of N interactive components, referred to as agents denoted
by ai , where i ∈ {1, ..., N }. While many variables may define the exact interactions and be-
haviour of the agents, the macroscopic approach involves defining a low-dimensional
state variable S (t ) ∈Rn that evolves over time t :

S (t ) =
{

x0(t ), x1(t ), ..., xn(t )
}

, (1)

where xi (t ) are continuous 1D time series for all i ∈ {1, ...,n} and, typically, n � N . The
most important distinction between macroscopic approaches (Part I) and network ap-
proaches (Part II and III) lies in the absence of explicitly accounting for heterogeneity
among the agents in terms of their interactions: the variables xi are continuous time
series, and do not explicitly account for the discrete network embedding of individual
agents. The challenge of macroscopic approaches lies in finding such relevant time se-
ries xi , especially when dealing with high-dimensional systems. The subsequent analy-
sis of the state variable varies per system at hand, but an important branch of complex
systems methods deal with the definition of macroscopic states of the system: configu-
rations of the state variable that have a dynamical and phenomenological meaning. The
stability of and transitions between such states are important aspects of emergence in
complex systems, dealing with concepts such as system-level bifurcations and tipping
points. In fact, the identification of macroscopic states and the transitions between them
is the domain within this broad branch of methods where the contribution of this part of
the dissertation lies, in the form of the chapters 1, 2 and 3.

To illustrate a generic macroscopic approach and how associated states are derived,
let me present a typical example of a macroscopic approach to emerging behaviour – an
example from epidemiology. A macroscopic description of the evolution of the epidemic
is to describe the population-wide evolution of how many people are infected based on
how many are already infected, and how many are not (yet) infected. One of the first
macroscopic approaches to epidemiology is by Kermack et al. (1927), arguably even ear-
lier by the British Ross and Hudson (1917) and made more explicit in Kendall (1956).
These papers explored the concept of compartmentalised models, where the popula-
tion is divided into ‘compartments’ in which each agent can reside and transfer from to
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another, usually associated with the various stadia in an infectious disease. The inter-
actions and nature of these agents are fully homogeneous. Numerous versions of com-
partmentalised models exist in epidemiology, for example by distinguishing more com-
partments, stratifying the population or even distinguishing topological heterogeneity
among agents – which is discussed in Parts II and III. One of the simplest versions of
compartmentalised models is the SIR model. The characters S, I and R refer to the pos-
sible disease stages an agent can have: Susceptible (S), Infectious (I) and Recovered (R).
Mathematically, the symbols S(t ), I (t ) and R(t ) are used for the fractions of the popu-
lation that belong to these respective disease stages, such that S(t )+ I (t )+R(t ) = 1. In
other words, this system is normalised with respect to the number of agents N . In line of
Eq. (1), this model approaches the complex problem of epidemic spreading by reducing
its description to a mere three-dimensional state variable:

S (t ) =
{

S(t ), I (t ),R(t )
}

.

In this SIR model, the evolution of this state variable can be quantified using a set of
three differential equations, with two predefined parameters: β, which is the infection
rate of the disease (factoring the contact rate and the probability of contacts resulting in
infection), and γ, which is the recovery rate (mortality is not explicitly included in this
model). The differential equations are as follows:





dS
dt =−βI S
dI
dt =βI S −γI
dR
dt = γI .

Analytical analysis or numerical simulation of a model like this already provides in-
sights in the macroscopic evolution in general. Using an Euler-forward numerical inte-
gration scheme with ∆t = 0.1, an initial condition of (S, I ,R) = (0.99,0.01,0), β = 0.1 and
γ= 0.02, an evolution is obtained like shown in Fig. iiia. As can be seen, the model ends
up in a stationary state where R is close to 1, and I and S are approximately 0 – this is an
example of the aforementioned macroscopic states: for these parameter values of β and
γ, the initial conditions of high-S and nonzero-I are unstable and drawn to stable state
with low-I , low-S and high-R. For other parameter values, this is different. In particular,
they are commonly combined into to the reproduction number R0 = β/γ, reflecting the
average number of new infections a single infected agent causes at the start of the epi-
demic (a meaning that is later less true due to the effect of a decreased S, also known
as ‘herd immunity’). In panel (b), one can see how, given the same initial conditions as
in (a), R0 modulates whether the epidemic will directly diminish, or evolve. This is ex-
pressed in Imax − I0, i.e. the peak value in I (red in panel (a)) minus its starting value: it
is near-zero for values R0 < 1 and grows when R0 > 1. In other words, here, two main
outcome states of the epidemic are now identified, but in fact, as seen in panel (c), there
are many in-between outcomes in the configuration of S, I and R possible, based on the
parameter values.
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Figure iii: Illustration of the SIR model. Panel (a): Evolution of S(t ) (blue), I (t ) (red) and R(t ) (green) over
time, with β= 0.1 and γ= 0.02. Panel (b): Peak height Imax minus initial cases I0, which reflects the maximum
growth in I (t ), with R0 =β/γ on the horizontal (R0 = 1 is marked by the vertical dashed line).

While within the bounds of the assumptions, describing epidemic spreading in a ho-
mogeneous population can be done using the variables S, I and R and their interac-
tions, the identification of these variables that form S is not trivial in general. In fact,
many complex systems comprise of many heterogeneous interactions that cannot easily
be collapsed into a few variables. Identifying S in a high-dimensional complex system,
analysing patterns in the evolution of S to define macroscopic states, and describing
transitions across such states, is the focus on the following chapters 1, 2 and 3. Note that
throughout these chapters, I use transitions in the broader sense as the ‘alteration of a
state or condition to another’, rather than the more formal definition in physics relating
to the transfer between two low-energy states.

In particular, in the following chapters, methods are proposed to identify macro-
scopic states and dynamics across them in three different real-world applications and
in each case lessons are drawn from these approaches for complex systems in general. In
chapter 1, the evolution of railway delays is analysed, using the example of the Nether-
lands. Involving numerous trains per day on a fixed and highly utilised railway network,
this system is prone to the development of nation-wide disruptions, acting like macro-
scopic pseudo-states. The description and anticipation of such disrupted states is the
aim of this chapter. The railways are a typical example of high heterogeneity and an
associated high dimensionality of relevant components. The Dutch railway infrastruc-
ture contains approximately 800 nodes and 1400 railway links between them, and on top
about 6000 unique train lines travel each day. We compress all delay information into
two system-wide variables using a principal component analysis (PCA) approach. The
resulting low-dimensional phase-space is further analysed to identify various stages of
the system with respect to how severe the delays are and how close it is to disruption. In
other words, S comprises of the two aforementioned national principal components P1

and P2:

SCh. 1 - Dutch railways(t ) =
{

P1(t ),P2(t )
}

.

In chapter 2, we deal with the dynamics of the brain (of mice), infamously known
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for its complexity and the difficulties to find structure in the data. The aim is to iden-
tify states of the brain that have a behavioural meaning. Also here, we approximate the
system’s state by reducing data into a smaller set of macroscopic variables, and find that
the eigenvectors representing the state variable are unexpectedly similar across different
mice. The state variable S in this chapter reduces to:

SCh. 2 - Mice brains(t ) =
{

P1,HIP(t ),P2,HIP(t ),P1,PFC(t ),P2,PFC(t ),P1,PAR(t ),P2,PAR(t )
}

,

where Pi for all i are also principal components, reflecting dominant covariant patterns
in the residual power spectra of EEG signals. The abbreviations HIP, PFC and PAR refer
to the brain regions from which the principal components are derived: hippocampus,
prefrontal cortex, and parietal cortex, respectively. Analysing the reduced phase-space
spun by the resulting state variable results in a set of clusters that we analyse in terms of
their behavioural meaning. It turns out that from this procedure, we can identify parts of
the EEG time series in which the mice are behaviourally different that in other parts of
the time series.

In chapter 3, we devise a procedure of identifying stability and instability between
macroscopic states when two systems are coupled together, with the application of sys-
tems in the Earth’s climate. We start from a mathematical point-of-view for an analyti-
cal basis for such coupled instabilities, discussing various sorts of coupled bifurcations
in low-dimensional sets of differential equations. We proceed by constructing a low-
dimensional model that couples dynamics of an important ocean current in the North-
Atlantic (the meridional overturning circulation, or MOC) to El-Niño-Southern Oscilla-
tion and identify stable and unstable states, both stationary and oscillatory. In this chap-
ter, using characters T and S for temperature and salinity, respectively:

SCh. 3 - Coupled MOC-ENSO model(t ) =
{
∆TAtlantic,∆SAtlantic,T1,Pacific,T2,Pacific

}
.

Summarised, the chapters 1, 2 and 3 are not meant to be a comprehensive overview
of macroscopic complex system modelling, but rather focus on the following questions
in this branch of research:

Research question Part I: (a) How can we identify macroscopic states in high-
dimensional complex systems? (b) Given macroscopic states, how can we de-
scribe transitions between them?
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PREDICTING TRANSITIONS 
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FOR RAILWAY SYSTEMS
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ABSTRACTABSTRACT

Railways are classic instances of complex socio-technical systems, whose 
defining characteristic is that they exist and function by integrating (contin-
uous-time) interactions among technical components and human elements. 
Typically, unlike physical systems, there are no governing laws for describ-
ing their dynamics. Based purely on micro-unit data, here we present a data-
driven framework to analyse macro-dynamics in such systems, leading us to 
the identification of specific states and prediction of transitions across them. 
It consists of three steps, which we elucidate using data from the Dutch rail-
ways. First, we form a dimensionally reduced phase-space by extracting a few 
relevant components, wherein relevance is proxied by dominance in terms 
of explained variance, as well as by persistence in time. Secondly, we apply 
a clustering algorithm to the reduced phasespace, resulting in the revelation 
of states of the system. Specifically, we identify ‘rest’ and ‘disrupted’ states, 
for which the system operations deviates respectively little and strongly from 
the planned timetable. Third, we define an early-warning metric based on the 
probability of transitions across states, predict whether the system is likely 
to transit from one state to another within a given time-frame and evaluate 
the performance of this metric using the Peirce skill score. Interestingly, using 
case studies, we demonstrate that the framework is able to predict large-scale 
disruptions up to 90 minutes beforehand with significant skill, demonstrat-
ing, for the railway companies, its potential to better track the evolution of 
large-scale disruptions in their networks. We discuss that the applicability of 
the three-step framework stretches to other systems as well — i.e., not only 
socio-technical ones — wherein real-time monitoring can help to prevent mac-
ro-scale state transitions, albeit the methods chosen to execute each step may 
depend on specific system-details.
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1.1 Introduction

Railways are classic examples of complex socio-technical (ST) systems. Their defining
characteristic is that they integrate (continuous-time) interactions among technical com-
ponents and human elements/influence in their existence and functionality. In this chap-
ter, we think of ST systems as dynamical systems, although, typically there are no laws
that govern their time evolution. There exists a substantial amount of literature to model
the behaviour of ST systems; e.g., on innovation (Geels, 2004; Hekkert et al., 2007), the
performance of medical services (Righi et al., 2012), spread of diseases (Scarpino and
Petri, 2019), agri-food systems (Dermody et al., 2018) and infrastructure (Monechi et al.,
2018) or social media networks (Sobkowicz et al., 2012). Ranging from agent-based mod-
els (Dermody et al., 2018) to more analytical network-diffusion ones (Vespignani, 2012),
various model frameworks have been proposed for describing their time evolution. How-
ever, to the best of our knowledge, less attention has been paid to developing data-driven
frameworks to analyse their dynamical properties.

One common denominating factor for ST systems is the ubiquity of the accumulated
heterogeneous spatio-temporal data: numerous points in (network-)space own a time
series of measurements, constituting a ‘signal’. For railways, the subject of this chapter,
this signal is the accumulated delay of trains that (should) pass by a part of the network.
In epidemiology, the signal is the number of infections in a city or a region. In social net-
works, the signal can refer to, for instance, a video, an opinion or a Twitter hash tag. The
aspects of heterogeneity, absence of physical laws and the ubiquity of spatio-temporal
data can also be attributed to many other (non-ST) systems, notably in neuroscience.
The natural questions that are central to all of these systems are: how do the signals
evolve (e.g., development of a communicable disease to a pandemic, or large-scale dis-
ruptions in railway systems)? In particular, can one define specific macro-states for these
systems, and describe transitions across such states? In this chapter we focus on these
questions.

In physical systems, transitions are widely discussed topics. Therein, transitions are
often associated with bifurcation points, inducing multiple equilibria or limit cycles (Stro-
gatz, 1994; Ashwin et al., 2012; Kuehn, 2011). For the analysis of such bifurcation points,
the underlying equations should (at least partly) be known, which is generally not the
case for ST systems. In contrast, working with observations of such a system usually in-
volves dealing with noise and filtering long-range correlations from time series that at
first sight do not show any trend or approximation of a transition regime. The behaviour
of such a system close to (standard) transitions is referred to as ‘critical slowing-down’,
and can often be traced to an increased variance and autocorrelation in time (Schef-
fer et al., 2009; Dakos et al., 2008). More advanced techniques, especially when dealing
with different time scales in the data, are degenerate fingerprinting and detrended fluc-
tuation analysis (Kantelhardt et al., 2001; Held and Kleinen, 2004). Applications of these
techniques can be found in, for example, vegetation systems (Bathiany et al., 2012) and
climate variability (Thompson and Sieber, 2011).

In physical systems too, the underlying dynamics or equilibrium structure may not
always be known; modelling of such systems calls for the development of data-driven
frameworks. An example of such a data-driven analysis of a physical system is (Tantet
et al., 2015), where two different regimes in atmospheric northern hemisphere flow were
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analysed. Using a reduced phase-space obtained through principal component analysis,
the dynamics of the system was therein analysed using the properties of transition ma-
trices, which are determined using Ulam’s method (Ulam, 1964). Transition matrices as
part of forward integration simulation models have also been used by (van Sebille et al.,
2012), approximating ocean surface circulation using buoy data to simulate the move-
ment of marine plastics in time. In this chapter we generalise and combine some of these
data-driven approaches for ST systems.

Our framework is showcased by data made available by the Dutch railways. Physical
properties of a railway system are, for example, the velocity of trains, (dynamic) network
capacity and the locations of switches and connections. Human elements in the system
range from local dispatching and driving of trains and passengers to macro-scale de-
cision making on the cancellation or rerouting of trains. Like in many ST systems, the
interplay between the two causes prediction difficulties, with questions like: ‘In what cir-
cumstances will people cancel a train?’ or ‘How does delay of a certain train affect others
if it gets rerouted?’.

For railways, it is highly relevant to be able to understand and predict the propa-
gation of delay. If prediction were to be accurate, many disruption management tech-
niques have been proposed in literature, involving research on the timetable adjustment
(Corman et al., 2014), and rolling stock and crew rescheduling (Ghaemi, 2018; Jespersen-
Groth et al., 2009).

While any day contains numerous small fluctuations, specific combinations of de-
layed trains and external factors can build up to severe, nation-wide disrupted situations,
as described for several instances of the Dutch railways in (Dekker et al., 2021f). The win-
ter of 2012 contained several of these nation-wide disrupted days for the Dutch railways.
One of them is shown in Fig. 1.1, where a clear propagating signal of high accumulated-
delay is visible. An investigation conducted by the Dutch ministry of infrastructure con-
cluded that a series of unfortunate coincidences were the cause for the disruption on
that day, with 2-3 times higher-than-usual infrastructure disruptions and delay caused
by missing personnel (Nederlandse Spoorwegen, ProRail, Ministerie van Infrastructuur
en Milieu, 2013). This is a classic example of the emergence of a (disrupted) macro-state,
built up by micro-interactions (e.g., one train affecting the next, and so on). To the knowl-
edge of the authors, there is no evidence for critical slowing down prior large disruptions
in the railway systems, probably due to the heterogeneous and discrete nature of the
variables.

Although many disturbances (caused by, e.g., accidents or ill personnel) are by def-
inition unpredictable, the subsequent evolution of a primary delay source may be. Ap-
proaches in transportation science to investigate this can roughly be split into (a) mod-
elling studies (for the testing of time-tables, and first-order robustness of the railway
system, modelling studies are vital), and (b) data-driven studies on micro-interactions.
Modelling of delay propagation is done at various levels, although they typically leave
out human influence on the system, like decision making by the dispatchers. Micro-
simulation modelling tools are often used to test time-tables, and simulate first-order
delay propagation, involving tools like FRISO (Middelkoop and Loeve, 2006) and Open-
Track (Nash and Huerlimann, 2004). More abstract modelling studies involve analyti-
cal approaches to system equilibria (Ball et al., 2016) and first-order delay propagation
(Goverde, 2010; Schöbel, 2012). Agent-based models, too, are used to simulate railway
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Figure 1.1: Dutch railway network in coloured lines (thin black lines depict the coastal and country borders
of the Netherlands). Colouring indicates delay per segment on the Dutch railway network, at four instances on
February 3, 2012. Figure similar as in Dekker et al. (2021f), which discusses this day in more detail.

systems (Gambardella et al., 2002), or gaming studies to back up the behaviour of agents
(Middelkoop et al., 2012).

The key advantage of data-driven studies, in contrast to the above, is that all inter-
actions and human influence are fully captured by the data. The main disadvantages
is, of course, that it is difficult — if not impossible — to disentangle physical processes
from human or case-dependent influence, specifically those processes that are robust
(in many cases the same), rather than incidental (unique per case). Examples of data-
driven studies in railways literature have mostly been performed at the micro-scale, e.g.,
the statistical estimation of specific train activities like running and dwell times (Kecman
and Goverde, 2015a,b; Li et al., 2016; Şahin, 2017). Machine learning techniques like sup-
port vector machines are use to predict train arrival times from data in Serbia (Marković
et al., 2015) and Italy (Oneto et al., 2017). Instances of combining data-driven and mod-
elling approaches for railways systems exist too, helping to extract processes (like phys-
ical ‘laws’) from data (Monechi et al., 2018), which has led to the identification of delay
propagation patterns for the Italian and German railways, and eventually to the mod-
elling of the dynamics like backward propagation of delays. A recent study to predict
delay propagation uses hybrid Bayesian network models, focusing on one high-speed
train line in China (Lessan et al., 2019), while another combines Bayesian networks with
stochastic prediction by updating the probability distribution from which future train
delays are drawn (Corman and Kecman, 2018).

What is currently still missing in railways literature is a data-driven framework to
analyse and predict evolutions in delay at the meso- (regional) as well as the macro- (en-
tire system) scale (as in Fig. 1.1). With reference to the focus of this chapter, we note that
most data-driven studies, being mainly focused on the micro-scale, fail to reproduce (or
are made for another scope) emergent phenomena like transitions across macro-states.
Given that the means to predict these major events is of high societal relevance, the
framework we present in this chapter demonstrates the potential to successfully address
this issue.

Our framework consists of three steps and is described in Sec. 1.2. We start with di-
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mension reduction by applying principal component analysis to the data, where a small
set of components is chosen based on variance and persistence in time to define a re-
duced phase-space. This is followed by clustering on this phase-space, resulting in a
(near-automatic) identification of the ‘rest’ and ‘disrupted’ states. The third step con-
sists of applying an early warning procedure that allows for real-time forecasting of the
system, specified to predict the evolution towards the disrupted state. In the subsequent
sections, we couple the framework to data made accessible by the Dutch railways: we
introduce the data and the general results of the framework in Sec. 1.3, and present the
results of two case studies in Sec. 1.4. We end the chapter with a summary and conclud-
ing remarks in Sec. 1.5.

1.2 The three-step framework

As mentioned above, many ST systems concern spatio-temporal data: numerous points
in (network-)space that own a time series, constituting a ‘signal’. For the railways (as we
will discuss in Sec. 1.3), this signal is the accumulated delay of trains that (should) pass
by a part of the network.

1.2.1 Step 1 - Dimension reduction

Given the spatio-temporal data, the first step concerns capturing the dynamics of the
system in a few relevant system descriptors that define a reduced phase-space (while
simultaneously saving computational efforts and time). Given the spatial dimension N
(i.e., the number of nodes/grid-points where system variables are measured), and tem-
poral dimension M , the matrix D containing all data for the system has dimension N×M .
For many dimension reduction schemes, the averages of each time series is subtracted
before D is computed.

An example of such a dimension reduction scheme is principal component analysis
(PCA), which is the method we use for the railways. PCA finds orthogonal vectors, ex-
pressed as linear sums of the N time series, optimised for the portion of variance they
explain. In mathematical terms, when the full time-series is involved, this entails the
diagonalisation of the correlation matrix DT D (N × N matrix, superscript T denoting
the transpose): i.e., expressing DT D = UΣV T (note that U = V , since DT D is real and
symmetric). The columns of V are the eigenvectors of DT D , commonly referred to as
the principal components (PCs). The elements of the columns of V represent co-varying
parts of the system (in space) that are known as empirical orthogonal functions (EOFs),
while Σ is a diagonal matrix containing the eigenvalues of DT D or the variances of the
PCs. By construction, every snapshot of the full system, i.e., the system-wide values of the
time-series data at any instant of time, can be expressed as a sum of the PCs with ampli-
tudes. In other words, the PCs define the phase-space for the system, and the dynamics
of the system is then described by the time evolution of the amplitude of the PCs.

One important disadvantage of PCA is that it is built to retrieve patterns that op-
timise the explained variance, while in practice these patterns might not be the most
relevant ones. For some systems, such as in neuroscience, high-variance patterns may
simply concern uninteresting features. Further, the most interesting signals may not be
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orthogonal to each other, which PCA enforces. For such systems generalised eigenvalue
analysis may be more suitable (Chen and Ruan, 2009).

PCA does work for the railway system, but it is important to find those PCs that are
the most suitable to capture the development of large-scale disruptions. For this reason,
first of all, PCs gained from the full dataset D are not the best ones. Instead, (as we will
see in Sec. 1.3) a subset of the time series that hold the data on ‘disrupted days’ is more
suitable, resulting in a matrix D ′ with dimensions N × M ′, with M ′ < M . Secondly, in
order to describe the system’s dynamics in a reduced phase-space, the right PCs need
to be retained (and the rest discarded). We find that in choosing the right PCs for the
railways, we need to consider (a) the amount of variance explained by these PCs, and (b)
the persistence of their amplitudes in time. We will take these up in Sec. 1.3.

1.2.2 Step 2 - Identification of macro-states

The goal of the second step is to identify macro-states within the reduced phase-space.
The macro-states are system-dependent. In case of infectious disease spreading, they
may include a state with no infectious and a state involving a large-scale epidemic or
pandemic. For railways, we can distinguish two types of states: ‘rest’ states, where the
system largely adheres to the timetable, and ‘disrupted’ states. Depending on where in
the network the delay is concentrated, the latter can take many different forms.

These macro-states can in general be approximated by identifying quasi-stationary
areas in the phase-space: areas where the system is likely to remain confined up to a
certain time scale. We call these areas clusters.

In order to identify the clusters, the reduced phase-space is split into grid cells, de-
noted by G . The (conditional) transition probabilities are required to group the cells into
the sought-for clusters. We capture these probabilities in a transition matrix T , whose
elements Ti j are defined as the likelihood of going from one grid cell to another within a
timelag τ, i.e.,

(Tτ)i j =
#{(xt ∈Gi )∧ (xt+τ ∈G j )}

#{xt ∈Gi }
(1.1)

Given the phase-space probability density vector �ρt0 (discretised over the grid) at
time t0, one can then calculate the probability density at time t0 +τ by simply operat-
ing Tτ on �ρt0 :

�ρt0+τ = Tτ ·�ρt0 (1.2)

For small τ, realisations would typically move towards a neighbouring grid cell or stay
within the same one, which results in a sparse matrix with most nonzero elements on the
diagonal or slightly off the diagonal, but for longer τ realisations would travel further in
phase-space. For a given value of τ, the matrix elements (Tτ)i j can then define a ‘transi-
tion probability network’ with grid cells as nodes, with the strengths of the corresponding
links being determined by the transition probabilities among the grid cells. Clusters can
then be identified on this network by searching for groups of nodes (i.e., grid cells) that
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are strongly intralinked (by transition probabilities), but weakly interlinked.

In graph theory, there are many clustering methods to achieve this. Here we use
the Louvain method (Blondel et al., 2008), which optimises modularity, defined as the
fraction of the edges that fall within the given groups minus the expected fraction if
edges were distributed at random (for more details, see (Newman, 2006)). This algorithm
merely optimises the clusters in terms of semi-invariance for a given value of τ, but does
not guarantee it — e.g., it does not guarantee that if the system enters a certain resulting
cluster, it will not leave the cluster at a time τ′ < τ, only to return to it precisely at time τ.
We will return to this issue in Sec. 1.5.2.

The resulting clusters, therefore, can be used as good approximations of semi-invariant
macro-states of the system, with the caveat that they need to be interpreted in terms of
which states of the system they are referring to.

1.2.3 Step 3 - Early warnings

Step 3 concerns predicting transitions towards and across macro-states (throughout the
rest of this section we will interchangeably refer to them as clusters).

The probability of transitioning from any grid cell i to grid cell j in time τ is given in
Eq. (1.1). This can be aggregated by summing over j belonging to a given macro-state k
as

Pt0+τ(to cluster k) =
∑

j∈{cluster k}

�ρt0+τ( j )

=
∑

j∈{cluster k}
(Tτ ·�ρt0 )( j ) (1.3)

The result is a first (real-time) indicator of whether we expect a transition towards a clus-
ter. However, being far away from the macro-state hardly ever results in a high (‘alarm-
ing’) probability when looking only small time lags τ, but it might for a longer time lag.
This illustrates that for the construction of an early warning metric, one needs to incor-
porate a variable time lag.

In practice, it is important to know what the minimal lag is, given that one wants to
be sure by a certain percentage that the system is remaining in a certain cluster. For ex-
ample, given that one wants to be sure by a probability of 0.95 that the system remains in
cluster A, an alarm needs to be given whenever the system enters a cell that allows transi-
tioning towards another cluster B with probability ≥ 0.05, and find out what the minimal
lag is of doing so. We call this (latter) percentage the critical probability pc and the related
minimal lags τalarm(pc ) (different per grid cell). For the purpose of accurate prediction, a
maximum time horizon tmax is also set depending on the estimated memory of system
at hand; meaning that in our calculations, events of entering a cluster at time lags larger
than tmax are not considered in the statistics.

Summarised, a ‘warning’ or alarm is given at any time if the system is likely to enter
the cluster at a probability ≥ pc . Attached to this alarm is a time lag τalarm at which this is
expected to happen.

1
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A A A Ā
τ0 < τalarm −ε |τ0 −τalarm| < ε τ0 > τalarm +ε

O FA2 H MA2 MA1
Ō FA1 FA1 FA1 CR

Table 1.1: Various outcomes concerning the correctness of an early warning metric, based on whether an
alarms is given (A) or not (Ā), and whether within the time horizon the macro-state transitions (O) or not
(Ō). Precision in time is assessed by the predicted time lag τalarm, the actual time of transitioning τ0 and a
bandwidth ε. Outcomes are as in the text: various types of false alarms (FA), missed alarms (MA), hits (H) and
correct rejections (CR).

1.2.4 Evaluation of predictions

In practice, as well as for the estimation of the parameters pc and tmax, it is imperative to
assess the forecasting skill of the early warning metric. The skill should increase for cor-
rect predictions, and reduce in case of false positives (‘false alarms’) and false negatives
(‘missed alarms’).

A commonly used metric to assess the accuracy of a forecast is the Brier score (Brier,
1950), defined as:

SBrier = 1

N

N∑
i=1

(p f ,i −Oi )2 (1.4)

where N is the total number of predictions made, p f ,i the forecast probability of
entering the cluster at instance i and Oi is 1 if the system enters the cluster (within tmax),
and 0 if not. The Brier score acts like mean squared error of the forecast.

However, the disadvantage of the Brier score is that no variable time lag can be incor-
porated in it, while the skill should also be penalised by predicting the time lag at which
the transition happens wrongly. Therefore, following (Tantet et al., 2015), we use another
metric in this study called the Peirce Skill score (PSS), also known as the true skill statistic
or as the Hanssen and Kuipers discriminant (Peirce, 1884; Allouche et al., 2006).

To introduce this metric, we first explain different types of correct and incorrect pre-
dictions. At every time step t , the system is either alarmed (A) or not alarmed (Ā), based
on the critical probability pc and the prediction time τalarm (see Sec. 1.2.3). We check
whether the system indeed entered the specified cluster between now and a specified
time from now. If not, we call this a non-occurrence (Ō); but if it does, we call it an oc-
currence (O) and the time lag at which this happens τ0 (0 < τ0 < τalarm). The different
outcomes are schematically shown in Tab. 1.1.

Let us start with the upper row (O), when in reality the system indeed enters the spec-
ified cluster. When no alarm is given (Ā), we call this bad prediction a missed alarm type
1 (MA1). Similarly, when an alarm is given, it is only correct if τalarm is close enough to
τ0. We allow for a bandwidth ε around τ0; if |τalarm −τ0| < ε, the prediction is correct. We
call this a hit (H). If the metric predicts it too early (τ0 < τalarm−ε), we call it a false alarm
type 2 (FA2), and if it is predicted too late (τ0 > τalarm + ε), we call it a missed alarm type
2 (MA2).

Next, we consider the lower row (Ō) of Tab. 1.1, where the system does not reach the
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specific cluster within the time horizon (tmax). If an alarm is given (at any τalarm), we have
a false alarm type 1 (FA1). Similarly, if no alarm is given, then we call it a correct rejection
(CR). Later in this chapter, we will refer to FA2, MA2 and MA1 as ‘Missed Alarms’ (MA),
and to FA1 as ‘False Alarms’ (FA).

With the above, the PSS for a given critical probability pc is then calculated as follows:

SPeirce(pc ) = #H(pc )

#O(pc )
− #FA1(pc )

#Ō(pc )
. (1.5)

One sees that the score is rewarded for correct alarms, but penalised for incorrect alarms
(including rewarding the score for instances where the early warning metric correctly did
not give an alarm).

If SPeirce(pc ) > 0, there is more skill in the prediction than random prediction. Note
also that by construction −1 ≤ SPeirce(pc ) ≤ 1; the closer it is to 1, the more skill the pre-
diction has.

1.3 Coupling the framework to data from the Dutch rail-
ways

1.3.1 Data description

The data for this study has been provided by the manager of the main railway network
in the Netherlands (ProRail), logged at so-called service control points (SCPs). With a
total of 801 SCPs spread over the entire network (of which passenger stations are a sub-
set), they divide the Dutch tracks into 1438 smaller segments. Only passenger trains data
have been considered, for a number of reasons (as follows). Freight trains are (econom-
ically) privacy-sensitive and it is therefore difficult to get a complete dataset. Further, it
is only a small fraction of the total railway traffic in the Netherlands: about 5.7% of all
Dutch train kilometres in 2017 was by freight trains (numbers courtesy of ProRail). Also,
while passenger trains are bound to time schedules and routes, freight trains schedules
differ every day. This means that the interaction of freight trains are non-systematic and
therefore not really predictable. Moreover, some of the tracks of freight trains are partly
separated from passenger trains (like the Dutch ‘Betuweroute’ from Rotterdam to Ger-
many) dedicated to freight trains. This reduces their effect on the dynamics of the whole
system even more. We therefore decide to focus only on passenger trains.

We work with the data of one year, from July 1, 2017 to June 30, 2018. The data in-
cludes the logging of passing trains, including characteristics of the train, but also the
planned time and subsequent delay of the train at 1-second resolution. This data is ag-
gregated to continuous time series on segments at 1-minute resolution. In short, we de-

fine delay d j
i (t ) of train j on segment i at time t as:

d j
i (t ) =





0 if t < tp (before the planned time)

t − tp if tp < t < tr (activity is not yet realised, while it should have been)

0 if t > tr (after the activity was realised)

(1.6)
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where tp and tr are the planned and realised time of an activity of train j at segment
i , respectively. The above definition involves the buildup of delay when a train should be
at the segment while it is late, and disappears from that segment when the train exits it,
giving rise to a sawtooth pattern of the delay. (Note also that once the delay disappears
from a given segment, unless it happens to be the last segment of service for that train,
the delay simply continues on the next segment.) We then compute the total delay di (t )

on segment i at time t , by summing d j
i over all trains j (both directions) as:

di (t ) =
∑

j
d j

i (t ) (1.7)

For more details, the reader is referred to SI A.1.1 and A.1.2. The aggregation of de-
lay results in 1438 time series spread over the spatial Dutch railway network. Using the
notation as in Sec. 1.2, this means that M = 365 · 1440 = 525600 minutes and N = 1438
segments.

1.3.2 Results principal component analysis (Step 1)

The first step concerns the extraction of the most relevant principal components from
the data, with ‘relevance’ referring to their suitability to best describe the evolution to-
wards large-scale disruptions.

A commonly used metric for the severeness of delay on the network, is a day-to-day
classification defined by ProRail. All days are labelled with one of four (severity) cate-
gories: green, neutral, red or black. These classes are based on the punctuality and can-
cellations of trains on important train tracks. ‘Green’ (46 out of 365 days) days refer to
‘quiet days’: few cancelled and delayed trains, while ‘red’ (21) and ‘black’ (6) days refer
to ‘disrupted days’, that contain a lot of delays and cancellations. ‘Neutral’ (292) days are
those that are neither quiet, nor disrupted days. We term the green and neutral days to-
gether as ‘regular days’. For more details, the reader is referred to SI A.1.3.

To get the relevant PCs, we choose to perform PCA only on the delay data from the
disrupted days (‘red’ or ‘black’), as by definition they explain the most variance for dis-
rupted situations (a robustness check on the PCA results is performed in SI A.2). To as-
certain the relevance of these PCs, we have assessed the performance of the PCs on the
entire dataset (i.e., including delay data from the regular days): for example, if the PCs
calculated from the delay data on disrupted days barely explain any variance on regular
days, they may not be useful for analysing the evolution of the system towards disrupted
states (in that case, they would essentially only explain persistent patterns on the dis-
rupted days).

Subsequently, the question arises regarding which and how many PCs we need to re-
tain to construct the reduced phase-space. The metrics we use to answer these questions
are the explained variance by, and persistence in time of, the PCs. The latter we define as
the timescale τ0 at which the autocorrelation function decays, which we extract by fit-
ting a function e−τ/τ0 to the autocorrelation function of the PC amplitudes, scaled to its
value at zero time-lag. From the combined delay data, it turns out that the first two PCs
distinguish themselves from the rest (more details in SI A.1.4). This motivates our choice
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Figure 1.2: The first two relevant EOFs for the Dutch railway system, explaining respectively 13% and 16% of
the variance over a full year. A running spatial average-smoothening is applied for visualisation reasons. Ab-
breviations refer to important passenger stations: Amsterdam Central (Asd), Rotterdam Central (Rtd), Utrecht
Central (Ut), Arnhem (Ah), Groningen (Gn), ’s-Hertogenbosch (Ht), Amersfoort (Amf) and Almelo (Aml).

to retain only PC1 and PC2 to define the reduced (two-dimensional) phase-space for de-
scribing the dynamics of the Dutch railway system.

Putting all the above ingredients together, our results for step 1 are as follows. The
variance explained on the disrupted days by the first two PCs are 16.0% and 9.5%, respec-
tively, while these numbers change to 13.0% and 16.0%, respectively when the variance
is calculated on the full dataset, i.e., including regular days. Sorting the PCs by variance
explained makes sure that we use those components that show more-or-less robust co-
variant patterns, rather than the effect of (incidental) individual cases.

The corresponding EOFs, i.e., the spatial plots of the individual PC elements are shown
in Fig. 1.2. Segments that have high equally-signed amplitudes in these plots are parts of
the network at which delay often co-occurs. Three dominating train lines can be distin-
guished in Fig. 1.2 (see Fig. 1.3):

L1: The line from Amsterdam southward through Rotterdam. It is connected to Bel-
gium by trains ultimately reaching Antwerp and Brussels.

L2: The line from Amsterdam southeastward towards the cities of Utrecht and Arn-
hem. It continues towards the German cities of Düsseldorf, Köln and Frankfurt.

L3: The line from Amsterdam eastward towards the cities of Amersfoort and Almelo.
This line is connected to major German cities like Münster, Dortmund and Berlin.

These lines do not only incorporate the effect of long-distance (international) trains

1
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Figure 1.3: Three important lines L1, L2 and L3. Abbreviations as in Fig. 1.2.

that are prone to building up delay, but they also include busy tracks and major cities in
the Netherlands, explaining the large amount of variance on these lines.

We can interpret the PCs in terms of the delay spread across these three lines, us-
ing the EOFs in Fig. 1.3. It is important to stress that delay is almost always a positive
variable on any segment. A negative value anywhere at any time means that the sum of
the delay of all planned trains at that time and track is negative. Trains may be early, but
such occurrences are infrequent and not by a large amount of time. Note that this state-
ment does not contradict the plots in Fig. 1.4, since the actual delay on the network at
any given time linearly relates to the amplitudes of these PCs, which can be both positive
and negative. However, as is visible in Fig. 1.2a, almost all coefficients of PC1 are positive,
resulting in only positive PC1 amplitudes. Looking at the coefficients of PC2 in Fig. 1.2b,
we see (large) negative coefficients on L2 and positive coefficients on L1 and L3.

1.3.3 Results identification of macro-states (Step 2)

Within the PC1-PC2 reduced phase-space (we henceforth refer to it simply as ‘phase-
space’ for brevity) we now identify states, a process that we describe in this section. First,
we compute the region of the phase-space covered by the entire year’s delay data, ob-
tained simply as the amplitudes of the two PCs (M data points all together). This region
exclusively corresponds to PC1 ≥ 0. We then discretise this region into 123×123 grid cells
on a logarithmic scale, on which we compute the transition matrix Tτ with τ = 30 min-
utes. We follow this up by performing Louvain clustering on the transition matrix data,
leading to the identification of four clusters that are shown in Fig. 1.4a in thick black
boundaries. (Robustness of the Louvain clustering against the choice of grid resolution
and τ has been checked in SI A.2.2). We find that each cluster in Fig. 1.4a, being so large,
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contains multiple delay configurations of the full system. In order to differentiate among
these, we perform Louvain clustering a second time within each cluster. This action leads
to the identification of further clusters within each cluster; we call these subclusters. Our
calculation reveals the existence of ten subclusters all together, numbered 1 through 10;
these are shown in different colours and thin black boundaries in Fig. 1.4a.

Figure 1.4: Phase-spaces showing (a) clusters in colours, and subclusters in various shades of the same colour,
and (b) how we interpret various parts of the phase-space: rest states (subclusters 6 and 8), transition regions
(4, 5, 7, 9 and 10) and disrupted states (2 and 3). Colours have been used only for those areas, where there are
realisations. The choice of colours is arbitrary and has no relation to the classes defined in SI A.1.3.

We next interpret the subclusters in terms of macro-states they may represent. Obvi-
ously, the area around (PC1,PC2) = (0,0) — i.e., the origin — must represent the so-called
rest states, since in this area the delays are small. (Indeed, every day at the beginning
and at the end of service the system respectively starts from and returns to the origin.)
The interpretation of the subclusters as macro-states is more subtle, and can only be as-
certained by evaluating all instances of the system within each subcluster. To this end,
we analyse each instance in terms of two variables: (a) amount of delay, and (b) in what
respect various day-classes (as in SI A.1.3) are represented, by defining a ‘bias factor’ B as

B(i , j ) = P (i | j )

P (i )
(1.8)

where P (i ) is the probability of a realisation to have day-label i (i.e., green, neutral, red
or black), while P (i | j ) is the probability of a realisation to have the same label within
subcluster j . We add the day-labels in this analysis since delay alone does not signify the
severeness of disruption — e.g., a sharp spike in delay is not necessarily a severe event if
it is resolved quickly. Also (as noted above), every day the system starts from (PC1,PC2)
= (0,0); for this reason, even the black days have some realisations in the subclusters
around (0,0). The bias factor reflects the prevalence of a certain day-label within each
subcluster in comparison to its overall prevalence. For example, if BG (3) is less than 1, it
means that green days are less frequent in subcluster 3 (of all subclusters considered).
The results are shown in Tab. 1.2.

Using the numbers shown in Tab. 1.2, we provide an interpretation to the subclusters
shown in Fig. 1.4b. The interpretation of the phase-space is in thee parts:

1
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(Sub)cluster BG BN BR BB Delay

1 0 0.33 1.45 39.5 95.6
2-4 0.40 0.98 2.16 2.42 20.2
2 0.56 0.91 2.57 3.31 23.3
3 0.34 0.98 1.69 4.22 33.2
4 0.36 1.01 2.20 1.32 13.4
5-7 1.21 0.99 0.84 0.65 3.9
5 1.01 1.01 1.04 0.46 8.0
6 1.44 0.96 0.62 0.68 2.2
7 0.77 1.02 1.29 0.6 6.6
8-10 1.03 1.02 0.72 0.68 3.8
8 1.25 0.99 0.68 0.76 1.4
9 0.73 1.06 0.88 0.46 6.3
10 0.74 1.07 0.54 0.80 8.9

Table 1.2: Biases of realisations of all labels per (sub)cluster. Lower-script characters of B refer to the bias factor
on ‘green’ (G), ‘neutral’ (N ), ‘red’ (R) and ‘black’ (B) labelled days, as defined in SI A.1.3. The delay in the last
column depicts the summed delay (in hours) over the whole network (i.e., summed over all segments) averaged
over the realisations that are inside the respective (sub)clusters.

• Subclusters 6 and 8 have the highest BG scores, indicating a strong bias on green
days to be in these subclusters. Moreover, they have relatively low bias scores on
other days, and by far the lowest total delays. These are characteristics of the sys-
tem being ‘at rest’ and therefore we use these subclusters as an approximation of
the rest state. This choice is also supported by the fact that these subclusters are
closest to the origin: obviously PC1 and PC2 are low in magnitude when delays are
small.

• The largest BR and BB scores and the largest total delays are found in subclusters
1 to 4. Only 0.14% of all realisations are inside subcluster 1, which accounts for
only about 12 hours in the entire year. (Because of this data sparsity, we will not
consider subcluster 1 separately). While subclusters 2 and 3 separate themselves
from subclusters 5 to 10, subcluster 4 seems to be somewhat in between: it has a
BN score of above 1, meaning that neutral days are above averagely represented in
this subcluster. Moreover, its total delay (13.4 h) is on average only slightly higher
than the total delay in some of the lower subclusters [e.g., 5 (8.0 h) and 10 (8.9 h)].
We therefore choose to denote subclusters 2 and 3 as disrupted states. (However,
when presenting the early warning results in following sections, we will include
subcluster 4 for completeness.)

• The rest of the subclusters (4, 5, 7, 9 and 10) then automatically form a transition
region between the rest and the disrupted states. Computation of conditional prob-
abilities (not shown) of reaching one subcluster from another reveals that subclus-
ters 5 and 10 act as transition regions for the system to move towards subclusters 2
and 3, while subclusters 7 and 9 have a lot of dynamical exchanges with subcluster
4, which in turn acts as a conduit for the system to enter subclusters 2 and 3.

From these, we conclude that the subclusters 2 and 3 are the ones of interest for
studying evolution towards disrupted states. In order to get an intuition on which de-
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Figure 1.5: The colour of each segment shows the average delay of all realisations in subclusters (a) 2, (b) 3 and
(c) 4 on the particular segment. Abbreviations as in Fig. 1.2. The lines L1, L2 and L3 are highlighted.

lay configurations of the full system they represent, the average delay per segment per
subcluster is shown in Fig. 1.5 (for the sake of completeness, we also add subcluster 4).
The delays seem small (∼ 2-20 minutes on important trajectories), but note that the pre-
sented results are averages over all realisations per subcluster: there are many types of
delay combinations on these important trajectories, which make the signal per subclus-
ter appear diffuse. The delay patterns in Fig. 1.5 are quite distinct from each other, and
indeed allow for intuitive interpretations of the three subclusters: an upper-left region
with delays as L2 and L3 (subcluster 2), an upper-right region with delays on L1 (subclus-
ter 3), and a middle region containing less severe and more spread out delays (subcluster
4).

As the subclusters are distinctively positioned in the phase-space, we could have
qualitatively anticipated the above results already from Fig. 1.2. The fact that Fig. 1.5 con-
firms these patterns reflects that the delay signals in the reduced phase-space indeed cor-
responds well to the delay signals in the actual realisations. Moreover, we see in Fig. 1.5
that the magnitude of the average delay patterns differ (note the colour bars). The fact
that the maximum average delay in subcluster 3 is much higher than in subcluster 2 and
4 does not necessarily mean that the delays in general are longer (although that it is the
case on average can be seen in Tab. 1.2); it could also mean that the delays are more
consistent with where on the network they occur. In particular, one could conclude that
delays in subcluster 3 are longer and more concentrated on the network.

1.3.4 Results early warning and skill score (Step 3)

Using subclusters 2 and 3 as approximations of two different types of disrupted macro-
states, the prediction towards them amounts to predicting a transition towards large-
scale disruptions. That is the aim of the third step.

As described in Sec. 1.2.3, the final strength of our prediction is dependent on the

1
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Figure 1.6: Phase-space showing (in black) (a) subcluster 2, (b) subcluster 3 and (c) subcluster 4, and the pre-
dicted time lag τalarm (in colours) for entering these subclusters for pc = 0.08; τalarm values are discretized to
5 minute intervals. No colour (white) means no alarm is given from these grid cells, reflecting a time horizon
tmax of 90 minutes.

choice of parameters pc , ε and tmax. First, there is an optimum in the skill with varying
critical probability pc : a pc that is too low increases the amount of FA1, but a pc that is
too high increases the amount of MA1 (or decreases H). Second, the skill is dependent
on the bandwidth ε. The skill grows for larger ε, but that also means loss of accuracy in
the timing of the predicted event. It is therefore a trade-off between accuracy in the time-
bandwidth and accuracy in being right in predicting. The third parameter that influences
the skill is the time horizon tmax. If tmax is small, the overall skill will generally increase,
simply because it is easier to predict events that are imminent. Here too there is a trade-
off: a small time horizon means only short-term predictions, which reduces the value of
giving a warning, as there would then be little time left to prepare for taking intervening
measures.

Considering the trade-off for all the involved parameters, the ideal situation would
be a high skill, at a small ε (at least ε� τ̄alarm, where τ̄alarm is the average alarm lag for
correct alarms), a large tmax and a large pc . Nevertheless, a good choice of the parameters
ε, pc and tmax is important, because it modulates the skill greatly. The right choice will
depend on the system and what type of accuracy the user deems important. See SI A.2.4
for the parameter sensitivities of predicting evolution towards various subclusters.

For pc = 0.08 and tmax = 90 minutes, the time lags at which an alarm is given are
shown in Fig. 1.6 (i.e., for every grid cell, we determine whether there is a probability of
at least 0.1 to reach the specific subcluster at a time lag ≤ 90 minutes). In Fig. 1.6a we see
that alarms are mostly given in the upper part of the phase-space: a total of 60% of the
grid cells representing actual realisations is covered. Most alarms are given at low time
lags (i.e., close to the subcluster). More long-range predictions can be made mostly in
the upper-right corner and in subclusters 5 and 7 (cf. Fig. 1.4a), even up to 90 minutes.
The large coloured ‘tail’ in the upper right of the figure reflects the possibility of tran-
sition between an L1-dominated delay signal (Fig. 1.5b) towards an L2/L3-dominated
delay signal (Fig. 1.5a), possibly through propagation of delay via Amsterdam, the city
that connects the three lines.
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Subcluster Variable G N R B Overall

2 I 0.4 0.7 2.1 2.8 0.8
H 0.4 0.8 2.3 3.0 0.6
O 0.9 1.5 3.5 4.0 1.6
PSS 0.15 0.19 0.38 0.39 0.2

3 I 0.3 0.9 1.5 3.5 0.9
H 0.3 0.6 1.3 2.6 0.6
O 0.6 1.3 2.6 4.0 1.3
PSS 0.08 0.17 0.21 0.36 0.16

4 I 0.8 2.3 5.1 3.0 2.3
H 2.0 3.6 5.3 4.2 3.5
O 2.5 4.0 5.8 4.7 4.0
PSS 0.25 0.32 0.38 0.47 0.32

Table 1.3: Average number of hours per day that the prediction system records a Hit (H), occurrence (O) or that
the system is inside the subcluster (I) for variable severity label (for example: a value of 0.4 at row I, subcluster
2 and column G means that on average, 0.4 hours of green days are inside subcluster 2). We also present the
Peirce Skill score (PSS) for each subcluster and days. Capital characters in header refer to green (G), neutral (N),
red (R) and black (B) days. Parameter settings: pc = 0.08, ε= 30 minutes and tmax = 90 minutes.

The time lags for subcluster 3 are shown in Fig. 1.6b. The number of coloured grid
cells is about the same as those in Fig. 1.4a: 58% of the grid cells representing actual re-
alisations is covered, reflecting alarms at time lags ∼30 minute of prediction in subclus-
ters 10 and 3. Further, alarms are given only in the upper part of the phase-space. From
Figs. 1.6a and b we also see that there are a lot of system evolutions from subcluster 2
towards subcluster 3 (and vice versa).

For completeness, we also calculate the time-lag results for subcluster 4 (although
this does not belong to the disrupted state defined in the previous subsection). The re-
sults are shown in Fig. 1.6c. As expected, it has a much more spread-out pattern of τalarm

as 79% of the grid cells representing actual realisations is covered. This confirms our
choice to interpret it as a transition region (cf. Fig. 1.4b): this subcluster shares bound-
aries with many others, and therefore easily visited by the system. The predicted times
are also not mainly restricted to short lags (a more pronounced signal is visible for val-
ues between 60 and 90 minutes). Revisiting Fig. 1.4, one sees that almost no alarms are
given from subclusters 6 and 8, which points to the fact that subclusters 7 and 9 (5 and 10
in a different manner) act as ‘buffer regions’, from which the system can quickly recover
(refraining from transitioning towards the disrupted region).

The corresponding early warning skills, for pc = 0.08, tmax = 90 and ε = 30 minutes,
are shown in Tab. 1.3. A first observation is the difference between subcluster 4 and (each
of) subclusters 2 and 3: the system is inside subcluster 4 more often in general (2.3 h
per day), as well as more often on relatively ‘quiet’ days (green and neutral). This may
refer to the fact the combined lines L1, L2 and L3 are often delayed together (such that
PC2 amplitude is neither strongly positive nor strongly negative, and PC1 amplitude is
relatively large, cf. Fig. 1.2). Further, subclusters 2 and 3 are most often reached on red
and black days, coinciding with higher values for H and O.

Concerning the PSS in Tab. 1.3, we see that the system evolution towards subclusters
2-4 are the most difficult to predict on green days, while it is far easier to do so on red
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and black days. On green days, these subclusters are visited intermittently and in a less
structural manner, which makes predictions more difficult. The PSS scores for subclus-
ters 2 and 3 are on average roughly equal, but with a strong difference on red days (0.38 to
subcluster 2 versus 0.21 to subcluster 3). The average PSS for subcluster 4 is much higher
than those for subclusters 2 and 3. In general, for these parameter settings the skill scores
are roughly around 0.1-0.3. These values are larger than 0, indicating (a) that there is skill
in our predictions, and further (b) that our framework could potentially anticipate ap-
proaches towards disrupted macro-states.

1.4 Implications for day-to-day operations: two case stud-
ies

To showcase the potential strength (and limits) of our framework for anticipating ap-
proaches towards disrupted macro-states, we analyse its performance on two specific
days as case studies (Wednesday January 3, 2018 and Thursday April 19, 2018). The case
studies are chosen based on the fact that these are ‘red days’ on which the system indeed
evolved towards the disrupted state (cf. Fig. 1.4). Note that if the system would not enter
the disrupted state, the performance would be calculated only on an empty-occurrence
(O) set, resulting in SPeirce ≤ 0 by definition. Indeed, if we are interested in the perfor-
mance of the predictions on sets with no occurrences, some other skill score could be a
better choice. See SI A.3 for a discussion on a regular day, on which the system does not
enter the disrupted state.

We first provide an overview of the statistics for these days in Tab. 1.4. Therein, we
see — upon comparing to the total delay and number of cancellations (per minute) over
the entire year — that both January 3 and April 19 have strikingly different characteristics
than the system has on average. The average total delay of 5.5 hours on average days can
be interpreted as 13.8 seconds delay on every segment at every instance of the day. Both
days contain 2-3 times more average total delay, and the maximum total delay on January
3 is even about 4 times as high as on average. The number of cancelled train activities per
minute is also larger, with slightly higher numbers on April 19 than on January 3.

The overall score might give an indication of the predictability for individual sub-
clusters, suggesting that the movement towards subcluster 4 is easier to predict. This is
however not the case per se. As explained above, an issue with the Peirce Skill Score is
that for specific subclusters the score is purely negative on days when the subcluster is
not reached. This leaves a bias in the skill score: independent of their predictability, sub-
clusters that are more often reached generally have a higher PSS (we have seen earlier
that subcluster 4 is more often visited).

Another important observation in Tab. 1.4 is the number of false alarms. Although
the metric does penalise false alarms, a small number of correctly predicted occurrences
can result in a high PSS, even when the number of false alarms is also large. Considering
that for railway companies, false alarms can in practice be more destructive than missed
alarms, it is important to keep track of the false alarm rate as well. Note that the false
alarm rate involving subcluster 4 is quite high, which indeed points to the fact that it is
easily visited and not per se related to large disruptions. In comparison, the false alarm
rates towards subcluster 2 and 3 are much less.
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Variable Metric All 03/01 19/04

Delay Average 5.5 h 17.3 h 13.5 h
Maximum 23.4 h 101.4 h 35.6 h

Cancellations Average 2.1 6.2 6.6
Maximum 7.7 17.0 22.2

Predictions to 2 PSS 0.20 0.37 0.31
Max talarm 90 min 87 min 50 min
FA% 8.9% 12.8% 21.0%

Predictions to 3 PSS 0.16 0.34 0.14
Max talarm 89 min 65 min 86 min
FA% 7.0% 5.2% 17.7%

Predictions to 4 PSS 0.32 0.34 0.45
Max talarm 90 min 82 min 75 min
FA% 35.6% 39.7% 35.6%

Table 1.4: Two case studies in comparison to the statistics over the entire year. Here, we use pc = 0.08, tmax = 90
minutes and ε = 30 minutes for the calculation of the predictability (Peirce Skill score, or PSS). Cancellations
mean cancelled train activities per minute. A running mean of 30 minutes has been applied. See text for details.
The alarm lag time talarm values are shown only for successful alarms (‘Hits’). Statistics for all days are given in
median values.

1.4.1 Wednesday January 3, 2018

Fig. 1.7 shows the system’s trajectory in the phase-space on this day along with all pre-
diction outcomes in the colors of the dots, and the corresponding evolution of total delay
and cancellations per minute (see panels on the right).

Since, by construction, the system is at (0,0) in the phase-space at the start and at
the end of each service day, the system is seen to be around (0,0) at early morning and
late night. This coincides with a lot of correct rejections. However, already around 6:00
hrs, a strong increase in delay forces the system into subcluster 2, and it is predicted only
shortly before (visible in the first blue shaded area in the upper-right panels of Fig. 1.7a).
This event moves the system’s position in the phase-space to the upper-left, correspond-
ing to delays in the west of the Netherlands (lines L1 and L3). During this period, some
false alarms towards subcluster 3 are also given. After this event, the system returns to
‘safer areas’ in the phase-space, resulting in correct rejections for both figures around
10:00 hrs. After this, delay builds up strongly towards the upper-right of the phase-space,
relating to delay in the centre of the Netherlands, on line L2. This corresponds to the long
period (large part of the afternoon and evening) that the system remains within subclus-
ter 3, keeping the total delay to also remain high for a long time. During this period, some
small entrances of subcluster 2 are recorded, but this is due to the existence of discon-
nected subcluster 2 cells scattered within subcluster 3. The system leaves subcluster 3 to
return to subcluster 2 again for another hour, after which the system slowly moves back
towards the origin.

Correct predictions towards subcluster 2 are made up to 87 min beforehand. We can
see in the right panels that not all occurrences are predicted equally well — the entrance
of the subcluster in the early morning, for example, is not predicted far ahead. Consid-
ering the prediction towards subcluster 3, there was only one time the system entered
the subcluster (before it remained there for quite some time), which is predicted roughly
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half-an-hour before, and on one instance there was a correct prediction at 65 min before.
The right panels of Fig. 1.7 also show the evolution of the total delay and cancella-

tions. For cancellations we use the number of train activities (departure, arrival, short
stops etc.) that were scheduled, but cancelled, per minute. This is a measure of the re-
duction of ‘stress’ on the system by human decision. Note that all large delay spikes are
situated in either of the two subclusters, reflecting that these subclusters do indeed re-
fer to a disrupted state. The first cancelled activities started in the early morning already,
reflecting the early start of the problems on the network.

1.4.2 Thursday April 19, 2018

Similarly, Fig. 1.8 shows the system’s dynamics in the phase-space for April 19, 2018. On
this day, the system mostly remains in the positive-PC2 part of the phase-space. Subclus-
ter 2 is only reached on a few short instances, and the system never reaches the core of
the subcluster (merely visiting the disconnected scattered cells belonging to it). We focus
our analysis below on the instances that it reaches subcluster 3: three instances in total.

The first instance (around 9:00-10:00 hrs) seems difficult to predict (correct predic-
tions are made only up to 35 minutes in advance), resulting in several missed alarms.
This event coincides with a small but clear peak in the total delay and cancellations. The
second instance (around 14:00 hrs) is better predicted, but there are still some missed
alarms visible. Correspondingly, we see that this coincides with a strong increase in to-
tal delay, concentrated on L1 and L3. The system remains rather delayed after this. The
third instance is in the late evening (around 23:00 hrs) and does coincide again with a
strong peak in total delay, but prior to that there is another peak. This peak actually does
not correspond to an entry to subcluster 3, but to (deep inside) subcluster 4. The third
instance is however better predicted, up to 82 minutes in advance. The ‘quality of predic-
tion’ is remarkable, as this event happens to be one of the strongest amplification events
in the data, tripling the amount of total delay within about an hour.

Overall, the correct predictions are mainly confined to a certain part of the phase-
space as most of the ‘Hits’ are found when the system is in subcluster 10. A lot of false
alarms are given when the system is in subcluster 4. Missed alarms can be found far
away from the subcluster of interest (mostly in the lower-left part of the phase-space),
which makes sense as it is rare that the system moves so quickly from that part of the
phase-space all the way towards subcluster 3. We can distinguish five delay peaks in the
panels on the right in Fig. 1.8; these are indeed the instances in which the system is inside
subcluster 2 or 3.

1.5 Discussion and Conclusions

1.5.1 Summary

For systems whose dynamics are poorly known or strongly heterogeneous (like in many
socio-technical systems) we have developed a framework to identify macro-states, and
further analyse and predict transitions across them. We have coupled the framework to
a year’s data from the Dutch railways, and predict large-scale disruptions.
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Figure 1.7: Evolution of the system in the phase space on January 3, 2018 in dots (V-shaped arrows show the
direction). Dot colouring shows the predictions to (a) subcluster 2 and (b) subcluster 3, as shown by the colour
bar at the bottom: ‘Hit’ indicates a correct prediction to enter subcluster, ‘Correct rejection’ means the scheme
was correct not to give an alarm, ‘False alarm’ indicates an incorrect alarm due to no entrance of the disrupted
subcluster and ‘Missed alarm’ means false negative (alarm should have been given). Subclusters 2 and 3 are
marked in light blue (other clusters in various gray shades). On the right, for each cluster the different out-
comes in time are stated including percentages and overall score (top) and the total delay (black) and cancelled
activities per minute (Gray) is shown (bottom). The vertical blue-coloured columns indicate periods of time
inside the subcluster. Parameters used: pc = 0.08, tmax = 90 min and ε= 30 min.

The framework consists of three steps. The first step consists of a dimensional reduc-
tion, based on identifying the relevant patterns to define a reduced phase-space, which,
for the railways, has been achieved by a principal component analysis. This choice to
determine the relevant patterns is based on both the amount of variance explained, as
well as the persistence of the patterns in time, defined by the time-scale for the autocor-
relation functions of the principal components. For the Dutch railways, we have found
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Figure 1.8: Same as in Fig. 1.7, but for the case of April 19, 2018.

that the first two principal components are the most relevant. These components reflect
a combined signal of three important international railway lines.

The second step consists of defining macro-states as the (quasi-invariant sub)clusters
in the reduced phase-space. We have achieved this by splitting the phase-space into grid
cells, calculating the transition matrix with elements consisting of conditional probabil-
ities of transitions between cells, and further applying a clustering algorithm. For the
Dutch railways we have found 10 subclusters, which we have divided among ‘rest states’,
‘transition regions’ and ‘disrupted states’ upon analysing the realisations of the system
within these subclusters. The average delay patterns per subcluster has led us to distin-
guish various types of disruptions — one focused on the line from Amsterdam southward
via Rotterdam to Belgium, another on the lines from Amsterdam to Germany, and a third
showing a combination of other patterns.
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The third and final step consists of the prediction of entering specific subclusters.
For the Dutch railways, the subclusters of interest correspond to disrupted states. Using
conditional probabilities obtained from the transition matrix, we have devised an early
warning procedure that, given a certain threshold probability, gives an alarm at a cer-
tain time lag. The skill of the alarm procedure has been analysed using the Peirce Skill
score. Applying this to the Dutch railway system, we have found reasonable Peirce Skill
score towards disrupted states. This reflects the potential of this framework to anticipate
macro-state transitions towards disrupted states.

1.5.2 Discussion

Several aspects of our framework need to be discussed. First and foremost, for railways
the delays are a combined result of (among other factors) (a) the physical interactions of
trains and infrastructure (e.g. a broken train blocking a piece of track), (b) accidents and
sheer coincidences (e.g. illness of crew, broken switches or trees falling on tracks), and (c)
human influence on the system (passengers, crew, traffic controllers and dispatchers). All
these factors cause non-systematic noise in the system. For example, the specific nature
and duration of a problem involving a switch in the tracks largely determines its effect
on delay, and although there are protocols bordering human decision making (at various
levels) in certain circumstances, in practice every situation, person’s reaction and their
combined effect on the evolution of delay is unique in every situation. In a data-driven
framework, all these factors (both systematic and non-systematic) are intertwined, and
there is no way to disentangle them. Although this increases the uncertainty, it can be
considered a strength of this analysis to not ignore the human impact on the system —
after all, human influence is an integral part of the dynamics of the system. Many studies
only focus on element (a), micro-simulating only train interactions, which results in an
uncertainty in itself when it comes to prediction of macro-scale delay.

Related to the above is the fact that in many ST systems like railways and disease
spreading, human control elements (interventions) play a role specifically in the case of
macro-state transitions, both to prevent such events or to recover from such events. Es-
pecially in railways, it is difficult to distinguish whether control measures have a damp-
ing effect on the disruption’s spread, or (although necessary in case of disruption) play
an amplification role in spreading the disruption. In part, these control elements are
correctly incorporated in the transition matrix and clustering: areas in the phase-space
where the system is often stabilised (preventing amplification) can be seen as areas that
are relatively safe from transitioning. However, it remains difficult to disentangle the
cause versus the effect of control measures. They are inseparable from the data used
in this study, exert changes on a spatial micro scale rather the macro scale used in this
study, and contain discrete and sparse data that is hard to couple to the definition of the
dynamic delay variable. More research is needed to develop methods that find the ‘laws’
underlying the system’s evolution in the phase-space (e.g. during the January 3 and April
19, 2018 we have discussed above), distinguishing physical dynamics and human con-
trol.

A limiting factor for our framework is the long-term background changes that limits
the usage of longer-time datasets. For example, changes in the timetable in railways, or
governmental policies in economic markets, may significantly impact the dynamics in
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the phase-space, and would be difficult to filter out of longer-time data. This is also the
reason we only use one year of railway data in our study.

Also, it is important to note that it is difficult to distinguish development and causal-
ity only from the dynamics of two co-varying patterns (the EOFs in Fig. 1.2). Our frame-
work merely describes how their amplitudes evolve in time with respect to each other.
It may also be the case that when applying this to other systems, the dynamics cannot
be captured well by only two principal components, requiring the usage of higher di-
mensional phase-space. More local and sequential interactions may be recognised be-
fore large-scale disruptions occur. Note, for example, that line L1 and L2 dominate the
variance (returning in both EOF1 and EOF2), while in practice, L1 is known to be a rela-
tively disconnected line with a large number of local (technical) problems. Incorporating
more local effects might give more insight in the dynamics of the system. Using only two
principal components, however, does trade precision for more significance in our statis-
tical analysis, as the (more) local features may be quite case-dependent.

Another limitation of our framework is that the (sub)clusters found by the Louvain
method are only an approximation of sets that the system is likely to remain within, but
not well-defined semi-invariant sets (e.g., see (Tantet et al., 2015)). The problem with rail-
way data is that disruptions are relatively short-lived and the probability density function
across the phase-space does not show clearly defined states beforehand, but merely fo-
cuses on the area around (0,0). This forces us to divide the phase-space into subclusters
as we did, while the system can move repeatedly in and out of them. This is visible in
Fig. 1.7 and Fig. 1.8, where in both cases the system leaves the subclusters again in 1-2
hours (and not remaining there longer). Moreover, the transition matrix in the first place
is used as a Markovian diffusion model on the phase spaces and calculated without tak-
ing into account potential memory of the system. Involving memory in the scheme may
give more precise clustering and predictions, for example in the case of the depletion of
a buffer in rolling stock or crew because of earlier disruption events happening on the
same day.

1.5.3 Implications

Although realising the effects of non-systematic elements and limitations of the frame-
work as described above, it can have strong implications for ST systems in practice.

In general, the framework can be used for any ST system (even for specific non-ST
systems where the dynamics are a priori not well-known), with the important restric-
tion is that there is enough data of some important dynamic variable. In particular, the
framework is useful for heterogeneous spatio-temporal data (e.g., on a network), because
it focuses on the dynamics among dominant patterns in space. For example, if one would
want to use this to predict the spread of infectious diseases in a particular part of Africa
(e.g. related to Liljeros et al. (2003)), one would need enough data of spreadings in the
past in that area to find out the most important areas (e.g. cities) that played a role in the
spreading, and to build a transition matrix within the phase-space. One could also imag-
ine the evolution of physical systems that are prone to human interaction, for example
the evolution certain populations of hunted species, which (if there is enough data) may
allow the use of this framework.

Our focus on railway systems brings us to more specific implications for railway com-
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panies. The framework can be used for real-time monitoring, in which the current posi-
tion in the phase-space is tracked and the prediction scheme is used to assess the like-
lihood of entering the disrupted region. If practitioners would use this to anticipate a
large-scale disruption, they may act to prevent it. One would start by deriving the dom-
inant principal components. These patterns are an interesting result in themselves, de-
picting (anti-)co-occurrence of delay in parts of the network as parts with high coeffi-
cients (cf. Fig. 1.2). Apparently these patterns are persistent delay configurations and play
an important role in the amplification of delay. There may very well be an operational or
infrastructural reason behind this.

Specifically, railway traffic controllers can take into account the alarms that are given
by the framework (upon construction of the reduced phase-space, followed by the iden-
tification of the states). To make the best use of it, an appropriate parameter estimation
should be given, which is summarised in answering three questions:

• What time-accuracy should the prediction have? This gives the parameter ε: how
far off is the prediction allowed to be?

• How far ahead of time should it predict, traded for accuracy? (This yields the pa-
rameter tmax.)

• What risk does one want to take? In other words, up to what probability does one
want to be sure that the system is not (starting to) amplifying towards a disrupted
state? (The parameter pc is 1 minus that probability.)

Upon having chosen these parameters, one can react accordingly to alarms that are
given. It is important to stress that the framework’s prediction time horizon is short-
term (about 1-2 hours) for the Dutch system. This is both a strength and weakness. The
strength is that the framework can be applied real-time, using information of the whole
network (rather than delay propagation methods at the micro-scale). The weakness of
the short-time horizon is of course related to the limited time left to take intervening
measures.

Having discussed the implementation of the framework, the predictions still involve
a significant number of false alarms. There is potential to reduce this by incorporat-
ing more operations-related quantities like details on personnel, positions of trains and
more local features (rather than purely the macro-sized PCs) into the prediction scheme.
Another direction of importance to railway practitioners is to make the prediction more
specific in space - information about on which train line or part of the network the de-
lay actually propagates can be valuable information to prevent the disruption’s spread.
Note that now, we only do predictions among the first two PCs, which combined only
give a rough estimation of where the delay is currently situated. Nevertheless, we believe
this chapter provides a first-order framework to analyse and predict macro-scale delay
evolution in an unconventional manner.
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ABSTRACTABSTRACT

Background  With the growing size and richness of neuroscience datasets 
in terms of dimension, volume, and resolution, identifying spatio-temporal 
patterns in those datasets is increasingly important. Multivariate dimension-
reduction methods are particularly adept at addressing these challenges. 

New Method  In this chapter, we propose a novel method, which we refer to 
as Principal Louvain Clustering (PLC), to identify clusters in a low-dimensional 
data subspace, based on time-varying trajectories of spectral dynamics across 
multisite local field potential (LFP) recordings in awake behaving mice. Data 
were recorded from prefrontal cortex, hippocampus, and parietal cortex in 
eleven mice while they explored novel and familiar environments. 

Results  PLC-identified subspaces and clusters showed high consistency 
across animals, and were modulated by the animals’ ongoing behaviour. 

Conclusions  PLC adds to an important growing literature on methods for char-
acterising dynamics in high-dimensional datasets, using a smaller number of 
parameters. The method is also applicable to other kinds of datasets, such as 
EEG or MEG.
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2.1 Introduction

The dimensionality of neuroscience measurements has increased drastically over the
past few decades (Stevenson and Kording, 2011; Bassett and Sporns, 2017), meaning that
neuroscientists are now capable of recording simultaneous activity of dozens, hundreds,
and even tens of thousands of neurons. Larger and richer datasets provide new opportu-
nities for hypothesis-testing and exploratory discovery, but also challenges in conceptu-
alising and characterising the multivariate signals.

Most traditional data analysis methods in neuroscience are univariate or mass-uni-
variate, such as spike counts (in single-unit studies) or spectral power (in LFP studies).
Univariate means that each manifest variable – each neuron or electrode – is treated as a
unique measurement point, and statistical analyses and neurophysiological interpreta-
tions are based on the functions performed by individual neurons.

Univariate methods have been and remain the backbone of neuroscience data analy-
sis; however, larger-scale datasets might benefit from multivariate analyses that are based
on identifying patterns embedded in population activity (Bartolo et al., 2020; Kriegesko-
rte and Kievit, 2013), which might only be weakly represented in a single neuron or elec-
trode. Multivariate dimension-reduction methods seek to identify a low-dimensional sub-
space in which the most relevant activity patterns exist (Luczak et al., 2009; Trautmann
et al., 2019; Le Van Quyen and Bragin, 2007). Such methods can identify task-related sig-
nals that are embedded in the patterns of correlations across the data, which might be
undetectable when considering the activity of individual neurons or LFP channels. This
is due to neural activity being spatio-temporally synchronised across neurons and cir-
cuits, and across multiple spatial scales (Buzsáki, 2010; Varela et al., 2001). The multivari-
ate approach is based on the assumption that neural computations are distributed across
ensembles (Buzsáki, 2010), and thus identifying spatio-temporally coherent structure in
populations may reveal mechanisms that are not apparent when investigating only indi-
vidual components of the ensemble.

Although univariate analyses are more common in neuroscience, there are several
multivariate analyses that are standard in the field, including principal or independent
components analysis, factor analysis, generalised eigendecomposition, and so on (Co-
hen, 2021a; Pang et al., 2016; Cunningham and Yu, 2014; Makeig et al., 2004). These
methods have proven useful at identifying a small number of dimensions in which be-
haviourally relevant neural dynamics occur.

However, neural data are not static inside those dimensions; they ebb and flow over
time with cognitive/behavioural operations, and internal brain states (Mishra et al., 2020a;
Venkatesh et al., 2019; Zhang et al., 2015; Linderman et al., 2019). Characterising the
time-varying trajectories inside these subspaces is often done visually, which is feasible
only in 2 or 3 dimensions.

Here, we introduce a new method for identifying clusters in a low-dimensional data
subspace based on spatio-temporal dynamics of continuous trajectories of neural dy-
namics. The method is based on a combination of principal components analysis (PCA)
and Louvain clustering (Dekker et al., 2019), and involves identifying discrete pockets
in the principal component (PC) space in which the neural trajectory remains roughly
stationary for some period of time. We therefore term this method PLC, for Principal
Louvain Clustering. Louvain clustering (Blondel et al., 2008) is a modularity optimisa-
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tion algorithm applicable to weighted graphs, and has been used to characterise spatio-
temporal dynamics of railway traffic (Dekker et al., 2019), clusters in air transport net-
works (Guo et al., 2019), diplomatic structures in formal alliance data (Walentek et al.,
2021) and atmospheric states (Tantet et al., 2015).

We modified the Louvain clustering method to multisite LFP data recorded simulta-
neously from the prefrontal cortex, parietal cortex, and hippocampus, of awake behaving
mice during novelty exploration. A spectral decomposition of the LFP via a 1/ f -removed
short-time Fourier transform was applied, and a six-dimensional (6D) PC space was con-
structed based on the largest two components from each region. Each time index during
the recording is a ‘brain state point’ in this space, and thus successive time points create
a trajectory over time. The Louvain clustering method identifies spatial clusters in which
these trajectories remain roughly stationary for a period of time τ. Finally, characteristics
of these clusters can be quantified and linked to the mice’ behaviour during the novelty
exploration task.

2.2 Materials and methods

2.2.1 Animals, electrodes, and behavioural task

Data are from 11 Black57 background male mice. Non-overlapping results from some of
these data have been published elsewhere (França et al., 2021; Cohen et al., 2021). The
mice had free access to food and water. All experiments were approved by the Centrale
Commissie Dierproeven (CCD), and the surgeries and experiments were conducted ac-
cording to approved indications of the local Radboud University Medical Centre animal
welfare body (Approval number 2016-0079).

Custom-designed and self-made electrode arrays (groups of 50 µm Tungsten wires
connected to a PCB) were constructed to target three different regions of the mouse
brain. There were 16 electrodes in mPFC (spread in the coordinates AP: 0.5 and 1.5; ML:
0.25 and 0.75; in three columns of electrodes in different depths -2.0, 1.5 and 1.0), eight
channels in PAR (AP: -2 and -2.25; ML: 1.0 and 1.75; DV: 0.5) and eight channels in HC
(AP -2.5 and -2.75; ML: 1.0 and 1.75; DV: 1.5). Inter-electrode distance was 250 µm and
impedances ranged between 0.1 and 0.9 MOhm. The online reference was a metal screw
placed on the skull (interparietal bone - AP: -5, ML: 1.0, DV: 0.5). Additional details of the
arrays and the manufacturing process are available in França et al. (2020). These elec-
trodes recorded data simultaneously.

For surgery, 10-16 week-old mice were anaesthetised with isoflurane (induction at 5%
isoflurane in 0.5L/min O2; maintenance at 1-2% in .5L/min O2). Mice were fixed in a Neu-
rostar Stereotaxic frame. After shaving, the skin was disinfected with ethanol (70%). Lo-
cal anaesthetic xylocaine (2%, adrenaline 1:200,000 [AstraZeneca]) was injected subcu-
taneously at the incision site before exposing the skull. Peroxide (10-20% H2O2; [Sigma])
was applied to the skull with a cotton swab for cleaning and visualisation of bregma and
lambda. Electrodes and screws were fixed onto the skull with dental cement (Super-Bond
C&B). Approximately 40 minutes prior to the end of the surgery, saline and analgesic
(carprofen injected subcutaneous 2.5 mg/Kg) were injected to facilitate recovery.

As illustrated in Fig. 2.1(a), the experiments involved two sets of 10 minutes, one
where the mice were presented with two objects, and another one where one object was
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Figure 2.1: Panel (a): the experimental setup. Each of 11 mice was held in a home cage for 5 minutes, and then
was placed in an arena with two unknown objects (green dots) for 10 minutes. We refer to this as the training
phase. After this, the mouse was returned to its home cage and was given a break for one hour (including 10
minutes in home cages). Then, the process was repeated except that one of the old objects was replaced with a
new one (orange circle). We refer to this as the test phase. During both the training and test phases, the mouse’s
LFP signals in the hippocampus, the prefrontal cortex and the parietal cortex were monitored by 32 electrodes.
Panel (b): The raw LFP signals were binned into a window surrounding each time step t0 (blue shaded area),
from which the Fourier transform was computed. A 1/ f function was fitted to the power spectrum, and re-
moved to obtain the residual power spectrum around t0. Then, the data were aggregated into 2-Hz bands and
normalised, to obtain a plot like in the upper-right, in which the value at each element is a residual power
value for in 2-Hz frequency bands at each time step. Panel (c): The covariance matrix of the frequency bands
was eigendecomposed using principal component analysis (PCA). Utilising the first two components per brain
region led to a six dimensional phase-space, which we discretised into equal-volume cells. The multichannel
spectra at each time point was localised to a cell in this space, and we computed the conditional probability of
travelling from one cell to another. The Louvain method applied to the network spanned by these conditional
probabilities produces clusters, defined as groups of cells where the system is likely to remain within for some
time.

exchanged. More details can be found in França et al. (2020). After the experiments, the
mice were euthanized for post-mortem histological confirmation of electrode location.
The electrodes in PFC were distributed across anterior cingulate and secondary motor
cortex. The PAR electrodes were placed among layers 2 to 5. HIP electrodes were located
in the CA1 region, spread in different mice between stratum pyramidale and stratum
lacunosum-moleculare.
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Note that although the anatomical targets were the same in all mice, we do not as-
sume that the electrodes have a one-to-one correspondence across mice (e.g., electrode
#x in mouse 1 may not be in the same functional location as electrode #x in mouse 2).

During the recordings, the mice performed a novelty-learning task as depicted in
Fig. 2.1a. For 10 minutes, they were placed in an arena with two objects that they could
explore. Objects were every-day items such as a coffee mug or bath toy. This phase is
called the ‘training phase’. After a 60-minute break, they were placed back in the arena
for another 10 minutes, and one of the objects was replaced by a new object (orange cir-
cle in Fig. 2.1a). In between these recording sessions, mice were placed in their home
cage; data from those periods are not reported here.

The mice’ real-time position was continuously monitored via a webcam sampled at
24 Hz and synchronised with the electrophysiological data. Video data were processed
in DeepLabCut (Mathis et al., 2018), a software package for markerless pose estimation
based on convolutional deep neural networks. 200 randomly selected frames were hand-
labelled for the left ear, right ear, nose, and the beginning of the tail. The corners of the
objects were also labelled. We used the ResNet-101 network with 200,000 iterations, and
visual inspection was used to confirm accuracy of the marker labels in test frames.

Each video frame was given one of three labels with a corresponding variable value ζ:
non-exploration when all of the mouse’s body markers were outside the boundaries of the
object (ζ= 1); exploration when any of the mouse’s head markers were inside the polygon
derived from the object corners of the objects (ζ= 2); novel exploration when any of the
head markers were inside the polygon of the novel object during the test phase (orange
dot in Fig. 2.1a) (ζ= 3). Exploring the familiar object in the test session was labelled ζ= 2.

2.2.2 Data processing and analysis

Electrophysiology data were acquired using Open Ephys hardware with a sampling rate
of 30 kHz. Offline, data were imported into MATLAB, down-sampled to 1000 Hz (by first
applying an anti-alias low-pass filter at 500 Hz and then sampling every 30 time points),
high-pass filtered at 0.5 Hz, and locally referenced to the average signal from each re-
gion. This re-referencing ensured that the signals were locally generated and not volume-
conducted from distal brain regions or from the online reference electrode in the skull on
top of the cerebellum. The EEGLAB toolbox (Delorme and Makeig, 2004) was used for vi-
sual inspection of data quality, and for removing non-neural artefacts (such as mechani-
cal artefacts or line noise) via independent component analysis using the jade algorithm
(Cardoso, 1999), as we and others have described previously (Cohen et al., 2021; Kho-
rasani et al., 2019). On average, 1.7 components (out of 32) were removed per recording.

2.2.3 The PLC method

The overall aim of PLC is to characterise how multivariate brain activity clusters over
time. This involves three steps that are detailed below: (1) Preparing the data via spectral
time series decomposition, (2) reducing the dimensionality via PCA, and (3) identifying
clusters from time-varying trajectories in the low-dimensional subspace via the Louvain
method.
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All analyses were implemented in Python 3.7.6 using custom-written code that relied
on standard Python libraries like numpy, scipy, pandas and matplotlib, and in particular
the python-louvain package, which is used for the clustering (https://github.com/
taynaud/python-louvain, based on Blondel et al. (2008)). Code will be made available
upon acceptance. Below, we continue with a more detailed step by step discussion of the
methods.

In the first step, we implemented a time-frequency decomposition via short-time
FFT. This is because the time-domain (broadband) signal comprises energy across a
range of frequencies, and therefore, a spectral decomposition facilitates identifying the
features of the signal.

For the second step, we reduced the dimensionality of these 50 series via PCA, retain-
ing two components per brain region. In total, this produced six principal component
time series. The third step involved clustering the 6D PCA space via Louvain method.
The clusters represent specific combinations of the activation of frequency bands in the
three brain regions that remain pseudo-invariant for some time, which may point to the
brain to be in a certain state. In light to the experiment, we will relate these clusters to
exploration behaviour of the mice.

Spectral time series decomposition

Data preparation involved obtaining a standardised time series of the relative powers of
2 Hz frequency bands from 0 to 100 Hz in 50 steps (Fig. 2.1b). We began by segmenting
the data into 1-second epochs and applied the following procedure:

• Extract the power spectrum via the Fast Fourier Transform (FFT) to the data in the
1-second segment.

• Fit the function ρ( f ) = a f b to the power spectrum of each 1-second segment,
and compute the residual power spectrum after removing this best-fit line. This
removes the ‘1/ f ’ component of the spectrum, and thus allows our method to
leverage the entire spectrum, rather than being biased by increased energy at low
frequencies.

• Crop the resulting ‘residual’ power spectrum of this window between the frequen-
cies of 2 and 100 Hz and average the values into bands of 2 Hz (resulting in 50
values over the entire frequency range).

The above procedure produced a matrix of time-by-frequency-by-electrodes (per mouse).
Next, we averaged the time-by-frequency values across all channels within each brain
region, and obtained an estimate of the dominant (‘1/ f -residualised’) spectral dynam-
ics within each brain region. To remove any biases of certain frequency bands having
systematically higher power or power-variance, we z-scored the time series for each fre-
quency.

Principal Component Analysis

We next applied PCA on the residual power spectra over time to obtain a reduced-dimen-
sional representation of the spectral dynamics. We performed the PCA on the time-by-
frequency matrices, separately per brain region. The resulting PCs (spectral modes) re-
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flect linear combinations of power across frequencies that maximise the variance of their
weighted combinations. In other words, the PC time series are wide-band signals, with
the contribution of each frequency determined by the PC weights. Also note that these
PC time series had a temporal resolution of 1 ms, because the sliding window for the
spectral analysis stepped forwards at the same temporal resolution of the LFP data (1
kHz).

In practice, PCA is obtained as the eigendecomposition of the data covariance matrix
(Fig. 2.1c). In order to get an aggregated result across the 11 mice, we computed the 50-
by-50 average covariance matrix of the time series derived above, per brain region. Since
the average covariance matrix is symmetric, the PCs constitute an orthonormal basis.
The number of PCs to preserve for analyses was selected based on visual inspection of
the eigenvalue spectrum (scree plot), which encodes the amount of variance explained
by each PC.

Note that although we performed the PCA separately for each brain region, the data
for each brain region were acquired simultaneously. This allowed us to localise the data
to a reduced PC space that spans all three regions. Using these different dimensions, we
constructed a 6D space with the dimensions being (PC 1HIP, PC 2HIP, PC 1PAR, PC 2PAR,
PC 1PFC, PC 2PFC). While not comprising the whole principal component space, we will
refer to this reduced 6D space as the phase-space. When the data for each mouse at every
time point are projected onto this six-dimensional phase-space, it creates a brain state
point corresponding to that time point in the phase space. Connecting these points se-
quentially in time for a specific mouse then produces the trajectory for the state of its
brain in the phase-space.

Louvain clustering

Louvain clustering (Blondel et al., 2008) identifies quasi-stationary pockets of the phase-
space – clusters – in which the data trajectory remains roughly stable for some period
of time. Louvain clustering is a graph clustering method and is based on the concept
of modularity, which measures the density of links within the clusters, relative to the
density of links between clusters. Weights of links are taken into account in the defini-
tion of modularity. The method can be applied to find clusters based on the trajectories
in the PC space by discretising the space into cells. In particular, we gridded the phase-
space into 96 (531,441) cells, with 9 cells in each dimension, equally spread in the domain
[−12,12] for all brain regions – HIP, PFC and PAR. (The value 12 as domain boundaries
corresponds to the maximum absolute value of the PCs for the entire time series across
all brain regions, which is just above 11.5.) We then constructed a matrix M with the fol-
lowing entries

Mi j = P (i → j after τ steps | i ), (2.1)

which denotes the conditional probability of the trajectory to move from cell i to cell j
after time τ. In other words, matrix element Mi j stores the probability of a jump from
cell i to cell j over a time interval τ. Here, we used τ = 30 ms. M is a transfer matrix,
and can be used to statistically simulate the time evolution of the state of the mouse
brain in phase space (Dekker et al., 2019). It can also be seen as a directed network with
weighted edges denoting the conditional probability of transfer from one node to an-
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other in a given lag time: nodes in the network are then the phase-space cells in the phase
space. Stated differently, Louvain clustering provides an algorithm to identify clusters of
phase-space cells in the phase-space in which the mouse brain is (statistically) likely to
remain.

The neural trajectories in the phase space are continuous, meaning that exiting one
cluster means entering (or passing through) a neighbouring cluster. In contrast, a coarse
time resolution or larger τ can cause the empirical trajectories to seem discrete and jump
from one cell to a distant one. Further, noise can cause a trajectory to exit and rapidly re-
enter the same cluster. We therefore smoothed the PC time series data using a Gaussian
with a full-width-half-maximum of 30-ms (selected to match τ).

The clusters are defined by analysing spatio-temporal modularity of the neural trajec-
tories in the phase space. In particular, clusters are regions (contiguous cells in the phase
space) in which the trajectories remain roughly stable for some period of time, relative
to the time it takes to transit to another cluster [Fig 2.1(c)]. This is the goal of the Lou-
vain algorithm applied to matrix M using time parameter τ. In initial explorations with
pilot data, we found that modularity generally and smoothly decreased with increasing
τ. Furthermore, the locations and boundaries of clusters were qualitatively comparable
with τ’s ranging from 5-300 ms. Here we selected τ= 30 based on the approximate time
windows of spike smoothing (Lehky, 2010). On the other hand, we acknowledge that this
parameter selection is somewhat arbitrary, and it is possible that different features of
the data would be highlighted by different values of this parameter. In section 2.4.3, we
discuss this choice in more detail.

Cluster features

The Louvain clusters are defined based solely on the neural trajectory data. In order to
characterise these clusters and relate them to mouse behaviour, we computed the follow-
ing attributes for each cluster. Some of these features can also be calculated per mouse,
but we computed them as aggregated over all datasets.

• Exploration bias, a normalised measure of the percentage of time the mice spent
exploring the novel object while the brain was in each cluster. Comparing the ex-
ploration percentage while in cluster i to the overall exploration percentage yielded
its exploration bias, defined as

ζb(cluster i) = percentage exploration in cluster i

overall percentage exploration
. (2.2)

If ζb(cluster i ) > 1, then the mice explored the object for longer while in brain-
state cluster i than they do on average over the whole phase-space. If this number
is significantly higher than 1 across the group of mice, the mice explore more often
than on average when their brain activity’s position in the phase-space places them
in cluster i , which, via the eigenvectors shown in Fig. 2.2, can be reconstructed
as certain combinations of residual spectra being activated or covarying during
exploration.

• Absolute exploration bias, defined as ζabs = abs(ζb − 1). This is the distance of ζb

from one, and depicts the general strength of the bias (exploration or non-explora-
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tion).

• Average residence time of state of the mouse’s brain within each cluster. Note that
since we are working in phase-space, a cell in a given cluster might share bound-
aries with cells that do not belong to the same cluster. It is possible that noise can
make the neural trajectory to rapidly exit-and-reenter a cluster within a few ms. We
consider these transient fluctuations to be spurious, and we therefore introduced
an additional 30-ms [aligned with the τ in Eq. (2.1)] allowance period to keep count
of the residence time if the state of the brain exits and enters a cluster within this
time frame. We also omit residence times of 1 or 2 ms in this statistic.

• Interregionality, which indicates whether the cluster has more variance in some
brain regions compared to others. This indicates whether the cluster is dominated
by one region, or whether it comprises dynamics from two or three regions. We
defined interregionality (IR) of cluster i as

IR(i ) = max[var(in i , HIP), var(in i , PFC), var(in i , PAR)]

var(in i , HIP)+var(in i , PFC)+var(in i , PAR)
. (2.3)

Note that IR ∈ [1/3,1]; the lower limit 1/3 corresponds to the case where the vari-
ance is equally spread across all three brain regions, whereas IR=1 indicates that
the variance is exclusively concentrated within one brain region.

• Mouse specificity, which indicates whether a cluster is defined from one or a small
number of mice, vs. whether data from most or all mice contributed an equal num-
ber of data points. Mouse specificity was computed by first calculating the percent-
age pm(i ) of cluster i ’s data points that are from each of the 11 mice m. Then the

mouse specificity is defined as
∑

m

∣∣∣∣
1

11
−pm

∣∣∣∣, i.e., as the sum of the absolute differ-

ences from 1/11.

• Cluster magnitude, the average distance of data points in the cluster to the origin
of the phase-space. Distance to the origin was measured by computing the 6D Eu-
clidean distance, weighing each dimension equally.

2.2.4 Statistics

Statistical robustness was checked in multiple respects. To check whether random explo-
ration data can reproduce the same ζb distribution across the clusters, the behavioural
time series of exploration were shuffled (without changing the brain or PC data), and
the above metrics were recomputed. The shape and number of clusters themselves was
checked against random permutations by shuffling the PC data, while preserving the in-
ternal 6D coordinates (i.e., only shuffling the time sequence of these 6D data points). A
final statistical check was the universality of the results across the mice. To this end, we
determined ζb for each of the eleven mice and performed a Wilcoxon signed rank test.
The Wilcoxon test determines whether any sample�x is symmetrically distributed around
zero. In our case, we test whether it is symmetric around one (testing �x ′ =�x−1). It is differ-
ent from the regular student’s t-test in the sense that the Wilcoxon test is non-parametric
– it focuses on the signed ranks, rather than the actual values of the differences. In our
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case, we used it to test the hypothesis that the novel exploration was consistently in the
same clusters across animals.

Figure 2.2: Panels (a)-(c): eigenspectra of the three brain regions. Panels (d)-(i): the top two PCA eigenvec-
tors. For all panels: black indicates those obtained from the average covariance matrix across all eleven mice,
while coloured lines indicate individual mice. The background shading in the bottom two rows indicates ap-
proximate canonical spectral boundaries for δ-, θ-, β- and γ-bands. These bands are purely for reference; the
analyses was based on the full spectrum up to 100 Hz, not on individual bands.

2.3 Results

2.3.1 General

Across all eleven mice, the average percentage of time spent exploring the novel ob-
ject was 16.4%. The individual numbers were 15%, 9%, 16%, 9%, 23%, 16%, 13%, 16%,
13%, 37% and 14%. The parameters a (the scaling factor) and b (the exponent) of the
fits subtracted from the power spectra in each time step were a = 0.01± 0.004 and b =
−0.36 ± 0.09. The averages and standard deviations were calculated over all channels,
mice, brain regions and parts of the experiment (training + test).

2.3.2 PCA eigenvectors

Inspection of the eigenvalue spectra from the PCA on the residual time series per brain
region and per mouse indicates that a large amount of variance in each dataset can be
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explained only by two PCs (Figure 2.2). In the interest of convenience and comparability,
upon visual inspection, we retained only the top two PCs from each brain region per
mouse.

Remarkably, the PC eigenvectors for each mouse exhibited strong consistency across
the mice, as seen in Fig. 2.2. This motivated us to compute the average covariance matrix
for all the mice together, and then rerun the PCA on this average matrix. The resulting PC
eigenvectors are displayed in the same figure in black. We used the latter as the reference
set of axes onto which we projected the brain state data for all mice. The advantage of this
approach is that it provides us with a common phase space for all mice for performing
our analyses.

Figure 2.3: Example cluster found by applying Louvain clustering to the matrix M . The axes are the first PCs
from each region. In other words, this shows only 3 of the 6 dimensions of the PC space. Blue indicates the
distribution of all data, red indicates the distribution of the data of one example cluster. For visualisation pur-
poses, the outer edges of the data clouds are marked in grey. In the background, the resolution of the Louvain
clustering is marked (9×9).

2.3.3 Clusters

Projecting the brain state data onto the 6D (PC 1HIP, PC 2HIP, PC 1PAR, PC 2PAR, PC 1PFC,
PC 2PFC) phase-space produces a time series of the 6D coordinates per mouse. In total,
data from eleven mice produced 13,644,532 data points. Gridding the 6D space produced
2417 non-empty cells (c.f. the maximum possible 1,000,000 cells). In the calculation of
the conditional probabilities for the brain state to transfer from one cell to another, used
as entries in matrix M , we made sure that only movements between cells within the data
of a single mouse are used. The Louvain clustering on matrix M identified 60 clusters.

An example cluster is visualised in Fig. 2.3. The axes are from the first PC of each
brain region. The blue colours illustrate the distribution of all data on these axes, and the
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red colours illustrate the density of the example cluster. Note that the data have higher
concentration towards the origin of the phase space. This particular cluster is index #4,
contains 273 cells, and comprises 529,167 data points (about 4% of the data).

2.3.4 Cluster attributes

We start investigating the general properties of these clusters by computing the metrics
discussed in section 2.2.3. Fig. 2.4a shows the correlation matrix (Spearman) for the clus-
ter metrics described in the Methods section.

We focus on the exploration bias and the absolute bias, because these two metrics are
linked to the animals’ behaviour. Exploration bias was largely uncorrelated to the other
metrics. Absolute exploration bias, however, was negatively correlated with the amount
of data: clusters with more data had exploration biases closer to 1 (see also Fig. 2.4b).
This is interesting to relate to the positive correlations between absolute exploration bias
and residence time and distance to the origin: Clusters in which trajectories remained
for longer periods of time – and clusters that were further away from the origin of the PC
phase-space – were more likely to be modulated by behaviour. One can think of these pe-
ripheral clusters are requiring more energy in the PC space to push away from the origin,
and may therefore reflect brain states that deviate from the ongoing state. In contrast, the
clusters located towards the centre of the PC space contain much more data per cluster,
and also more transitions across clusters.

Fig. 2.4c-e shows distributions for three of the cluster properties. The residence times
ranged from tens of ms to 700 ms, but were concentrated around 100 ms, with an aver-
age of 140 ms. The observation that neural trajectories tend to remain in a stable state
for a few hundred ms before transitioning to another stable state is consistent with pre-
vious findings in the LFP and EEG literature (Michel and Koenig, 2018; Luczak et al.,
2009; Mishra et al., 2020b). In the interregionality and mouse specificity, more spread
is observed in the histograms, reflecting that some clusters were of a ‘universal nature’ in
terms of how well they were represented across mice and across the three brain regions,
but some were not. A relatively high abundance of lower values in both metrics reflects
that for the larger fraction of the clusters, dynamics are shared across the animals and
reflect coordination across the brain.

2.3.5 Exploration data and Wilcoxon test

To investigate the significance of the exploration bias, we computed ζb for all clusters,
both for individual mice and for the group-aggregated data. Results are shown in Fig. 2.5a
(squares for individual data and circles for aggregated data). We sorted the clusters by ζb

of the full dataset. Around half of the clusters had below-average exploration bias. Most
clusters showed individual variability across animals (note that the aggregated results
can be considered a weighted average, because not all animals had the same amount of
data per cluster). Panel (c) shows that clusters also varied in the total amount of data per
cluster, with the clusters exhibiting strong exploration biases having overall less data.

We performed three sets of statistical evaluations on the exploration bias results.
First, we tested the individual data against a bias score of 1 (corresponding to no ex-
ploration bias), which tests the consistency of the sign of the bias across animals. Only
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Figure 2.4: Panel (a): Spearman’s correlation matrix of relevant variables. Negative correlations are denoted in
blue, positive correlations are denoted in red. Numerical values of correlations are shown in black for those with
correlation significance level p < 0.05, other (non-significant) correlations are shown in grey. Panel (b): Cluster
distance to origin versus absolute exploration bias, corresponding to the encircled Spearman’s correlation of 0.6
in panel (a). Scatter marker size in panel (b) corresponds to number of data points. For reference, we denoted
two clusters with their respective number of data points. Panel (c)-(e): Histograms and associated mean values
of (c) average residence time (in ms), (d) interregionality (between 0.33 and 1, higher means more variance in a
particular brain region) and (e) mouse specificity (between 0 and 1, higher means more dominated by a smaller
set of mice).

animals with at least 2% of their data in the particular cluster are used in this analysis
(Wilcoxon rank-sign test), as accounting for mice with smaller amounts of data may re-
sults in non-representative values of the exploration bias in these clusters. Results are
shown in panel (e), with circles indicating data points of p < 0.2. Four clusters exceeded
a p < 0.05 threshold. On the one hand, this is a somewhat lenient threshold and was un-
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corrected for multiple comparisons, but this result is consistent with the cross-animal
variability in bias scores seen in panel (a). On the other hand, with N = 11, a Wilcoxon
sign-rank test can only achieve p < 0.05 with at least 10 data points in the same direc-
tion. We complemented this test using permutation testing. Visually comparing panels
(c) and (e) may lead to the conclusion that the exploration significance of the clusters
is driven by the amount of data in the cluster. We checked this by performing a bise-
rial rank-correlation between the (dichotomous) significance and the amount of data,
resulting in a correlation of 0.22, contradicting this idea.

The second test was based on shuffling the data to determine whether our results
could have been observed in random data in the same reduced PC space. To this end,
we scrambled the PC time series (which shuffles the links between phase-space cells), a
re-applied Louvain clustering. Results are shown in Fig. 2.5a,d,f. Here we observed only
28 clusters with uniform amount of data and clustering bias. Note that in this process
we did not shuffle the exploration data. Because the resulting clusters are now randomly
situated in the phase-space, and the amount of data in these clusters is uniform, the
exploration data of any mouse is perfectly spread across all clusters, resulting in a near-
invariant exploration bias per individual rodent [visible in horizontal dotted ‘lines’ in
panel (b)]. Note also that in all cases, the p-values of the shuffled data were larger than
the p-values of the empirical data labelled as significant.

The final set of statistics involved shuffling the temporal mapping between behaviour
and brain. We cut the behaviour time series at a random time point and swapped the
second for the first segment, and then recomputed ζb for each cluster. Note that this
procedure preserves both the LFP data and the behaviour data, only randomising their
behaviour with respect to the LFP signal. This procedure was repeated 100 times, and
the grey shaded region in Fig. 2.5(a) illustrates two standard deviations around the mean
shuffled exploration bias.

Overall, these tests confirm that the clustering structure found in the data was not
observed when clustering noise, and that there is individual variability in the specific
clusters in which animals investigated the novel object that is not accounted for by ran-
dom reshuffling of the behavioural data.

2.4 Discussion

2.4.1 Multivariate neural dynamics

Neural activity is diverse and dynamic over space, time, and frequency (Buzsáki and
Llinás, 2017; Varela et al., 2001; Bassett and Sporns, 2017). Characterising these dynam-
ics remains a major challenge in neuroscience. Here we adopted a recently developed
method (Dekker et al., 2019; Tantet et al., 2015) to define low-dimensional phase-space
clusters that allow for characterising and exploring spatio-temporal dynamics of neural
trajectories in multi-site electrophysiology. An advantage of PLC is that it allows for a mix
of linear (PCA) and nonlinear (Louvain clustering) methods to identify trajectory-based
clustering in a reduced-dimensional space.
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2.4.2 Consistency of PCs across mice

It is striking that the eigenvectors of the top two PCs were so similar across the eleven
mice. This is not a trivial result due to biased selection, because we simply took the
top two components rather than, e.g., picking the components that maximised a cross-
mouse correlation. It is also not a trivial result of the 1/ f -like nature of the power spec-
trum, because this feature was removed prior to the covariance matrix generation.

Instead, we interpret this result to indicate that there are fundamental characteristics
of this cortical-hippocampal network that are (1) concentrated in a lower-dimensional
space, and (2) conserved across mice. That the dynamics are concentrated in a subspace
of the total data space is often reported in multichannel neural recordings (Luczak et al.,
2009). This supports the notion that neural computations are distributed over space and
frequency, and thus the motivation for investigating weighted combinations of data fea-
tures (such as electrodes and frequencies). The similarities of the PCs across animals is
likely due to intrinsic anatomical and architectural patterns that govern the local neural
dynamics. On the other hand, the PCs were not fully identical across mice, and the resid-
ual variance likely comprises a combination of unique factors and sampling variability.

Whether to apply multivariate decompositions to data pooled over individuals is de-
bated in the neuroscience literature (Calhoun et al., 2009; Parra et al., 2019; Cohen, 2021b),
and leads to a trade-off between increased generalisation vs. increased sensitivity to in-
dividuals.

We decided to use the same PC space for all mice in order to have a common (for all
mice) phase-space, which facilitated pooling the cluster characteristics across all mice.
The mouse specificity in Fig. 2.4e indicates that there are many clusters in which most or
all mice are well represented – indicating that inter-regional brain dynamics of distinct
mice are situated in the same clusters – and there were also several clusters with near-1
values of mouse specificity, indicating that some clusters were unique to individual mice.

In this analysis, we have chosen to work with the top two PCs in all three brain re-
gions. For the dataset we use here, these components turned out to be dominant in terms
of explained variance, but this is not a trivial or universal result. The PLC method is there-
fore not strictly bound to the choice of which PCs to use. Depending on the data, it is
possible that it is more appropriate to use three in each brain region, for example.

2.4.3 Interpretation of clusters and usage of Louvain clustering

Over time, the trajectory of the brain state moves around in the phase-space. These tra-
jectories are not random, and instead remain within relatively confined ‘provinces’ for
periods of time. Louvain clustering identifies these periods of relative stability as clus-
ters. A key parameter of Louvain clustering is τ, which is the time-scale at which a trajec-
tory is considered stationary. In our pilot analyses with data from one mouse (not shown
here), we found that the clustering was stable for a range of τ values, and thus we selected
τ = 30 ms in the interest of consistency. It is possible that different features of the data
would be highlighted for larger differences in this parameter, e.g., over hundreds of ms or
seconds. Determining how trajectories and clustering are related across temporal scales
is an interesting avenue for future research to explore.

Given that the PLC method is several steps away from the raw data, one might wonder
whether these clusters are meaningful, or simply reflect residual noise. We addressed
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this in two ways. First, Louvain clustering applied to shuffled data showed qualitatively
distinct patterns of results compared to the real data (e.g., Fig. 2.4). Indeed, clustering
shuffled data produced only 28 clusters, compared to the 60 clusters in the real data,
even though the amount of data was the same.

Second, we examined the relationship between the cluster characteristics and explo-
ration behaviour. The results shown in Figs. 2.4 and 2.5 suggest that clusters close to
the centre of the PC phase-space were generally not modulated by behaviour, whereas
clusters further away from the origin had exploration biases that deviated from 1. These
findings suggest that the brain space trajectories associated with active behaviour are
‘high-energy’ states that are maintained for relatively longer periods of time.

On the other hand, there was also considerable individual variability in the exact ex-
ploration bias scores over the different animals, evidenced by the relatively large p-values
in the Wilcoxon test (although one must keep in mind that with N=11, the Wilcoxon test
can only return a p<.05 result if 10/11 datapoints have the same sign). Some clusters had
relatively little or no data for some animals. This finding raises the question of whether
the clustering should have been done on individual animals instead of on the group data.
As we wrote earlier, group-defined clusters have several advantages in terms of compa-
rability of cluster findings and universality of the spectral-temporal structure of the data.
Nonetheless, these are analysis choices that users can determine on their own; our pri-
mary purpose here was to illustrate the utility and interpretability of the PLC method.

The quadratic relationship between exploration bias and distance to the phase-space
origin is highlighted by the significant correlation with absolute exploration bias. Thus,
although the direction of the exploration bias score varies across animals and clusters,
there is in general more behavioural variability as the data move towards the periphery
of the phase-space. It is possible that the centre of the space reflects brain states of rela-
tively low energy or of transitions between states of higher energy. On the other hand, one
must keep in mind that the outer edges of the phase-space are relatively sparse, which
means that the clusters had overall less data. This can become statistically problematic
in the extreme case of, for example, a cluster comprising only 50 data points from a single
mouse that is exploring the object for the entire time window.

2.4.4 Limitations and future directions

The PLC method is not without limitations. As mentioned above, clusters with relatively
little data, or that are dominated by a single animal, can provide cluster characteristics
that may not be fully representative of group dynamics. In the present application, the
higher density of data towards the centre of the phase-space means that clusters at the
outer edges of the data cloud have overall less data. This is apparent in Fig. 2.5c, which
shows differences in densities of clusters spanning four orders of magnitudes. We chose
not to remove any clusters based on total amount of data, although we did exclude ani-
mals from group-level t-tests if those animals had too little data in that cluster.

A second limitation is the operational definition of a cluster in noisy data such as LFP.
Small and fast jumps out of, and then back into, a cluster may reflect noise or a true rapid
fluctuation between states. This would manifest as low residence times. We chose to filter
out jump-but-return trajectories that were faster than 30 ms.

Third, the physiological meaning of PLC-derived clusters remains unknown. We spec-
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ulate that the brain remains in a particular state while in these clusters, similar to the
interpretation of EEG microstates (Michel and Koenig, 2018; Luczak et al., 2009; Mishra
et al., 2020b). This could be investigated more in the future, for example by investigat-
ing spiking dynamics in different LFP-defined clusters. The behavioural relevance of the
clusters is also unclear; it is possible that a more easily interpretable link to behaviour
would result from a simpler experiment (e.g., simple visual responses in anaesthetised
animals), but we choose for a more naturalistic and therefore more complex environ-
ment.

In this chapter, we focused on identifying and characterising the clusters; the data
provide additional richness that we did not fully explore. For example, the trajectories
exhibit changes in speed, curvature, and direction over time, and may exhibit spatio-
temporal oscillations within and across clusters. These dynamics might be related to
neural computations and behaviour, and might vary systematically during stimulus or
motor processing (Linderman et al., 2019; Glaser et al., 2020).

The PLC method is general, and can be applied to many additional tasks or behaviour
elements. It can also be applied to larger-scale measurements such as EEG and MEG.
Depending on the application and the data, it may be the case that the phase-space di-
mensions have to be adapted, to, for example, focus on a single brain region, or more or
fewer principal components.
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ABSTRACTABSTRACT

We introduce a framework of cascading tipping, i.e. a sequence of abrupt 
transitions occurring because a transition in one subsystem changes the 
background conditions for another subsystem. A mathematical framework 
of elementary deterministic cascading tipping points in autonomous dynam-
ical systems is presented containing the double-fold, fold-Hopf, Hopf-fold 
and double-Hopf as the most generic cases. Statistical indicators which can 
be used as early warning indicators of cascading tipping events in stochas-
tic, non-stationary systems are suggested. The concept of cascading tipping 
is illustrated through a conceptual model of the coupled North Atlantic Ocean 
- El-Niño-Southern Oscillation (ENSO) system, demonstrating the possibility of 
such cascading events in the climate system.
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3.1 Introduction

Earth’s climate system consists of several subsystems, e.g. the ocean, the atmosphere,
ice and land, which are coupled through fluxes of momentum, mass and heat. Each of
these subsystems is characterised by specific processes, on very different timescales, de-
termining the evolution of its observables. For example, processes in the atmosphere
occur on much smaller timescales than in the ocean; hence, in weather prediction the
upper ocean sets the background state for the evolution of the atmosphere. Similarly, in
equatorial ocean–atmosphere dynamics associated with the El-Niño-Southern Oscilla-
tion (ENSO) phenomenon, the global meridional overturning circulation can be consid-
ered a background state, as it evolves on a much larger timescale.

This notion that one subsystem provides a background state for the evolution of an-
other subsystem is important when critical transitions are considered. In the climate
system, a number of tipping elements have been identified (Lenton et al. (2008) give
an overview of these), where changes in observables can occur relatively rapidly com-
pared to the changes in their forcing near so-called “tipping points”. Examples of tipping
elements are the Atlantic meridional overturning circulation (AMOC) (Stommel, 1961),
the Arctic sea ice (Bathiany et al., 2016), monsoon patterns, mid-latitude atmospheric
flow (Barriopedro et al., 2006), vegetation cover (Hirota et al., 2011) and more local sys-
tems like coral reefs and permafrost. When one subsystem undergoes a transition, which
changes the background state of another subsystem, a transition may also be induced in
that second subsystem. Such dynamical interactions which lead to coupled transitions
are examples of ‘tipping cascades’ or ‘domino effects’ (Kriegler et al., 2009; Lenton and
Williams, 2013).

Many tipping points have been analysed in separate subsystems, both for phenom-
ena of the present-day climate (Lenton, 2011; Bathiany et al., 2016), and for past climates
(such as the abrupt cooling of the Younger Dryas, Livina and Lenton (2007), and the de-
sertification of the Sahel region, Kutzbach et al. (1996)). However, less attention has been
paid to the interaction between transitions in different subsystems. For example, when
the AMOC collapses, precipitation patterns may change such that the equilibrium struc-
ture of the vegetation cover in the Amazon rainforest is shifted (Aleina et al., 2013). This
may result in another transition, concerned with forest growth or dieback. Another ex-
ample is the influence of the AMOC on the trade winds (through meridional sea surface
temperature gradients), which in turn influence the amplitude of ENSO. In models, a
collapse of the AMOC has been found to intensify ENSO (Lenton and Williams, 2013;
Timmermann et al., 2007; Dong and Sutton, 2007), although there are also other effects
that would weaken ENSO (Timmermann et al., 2005).

An example in past climates is the coupling between the ocean’s overturning circu-
lation and land ice. The rapid glaciation of the Antarctic continent around the Eocene –
Oligocene boundary (34 Ma) is often explained in terms of a CO2 threshold being reached
that allowed a major ice sheet to grow (DeConto and Pollard, 2003; Gasson et al., 2014).
However, a two-step signal is found in the oxygen isotopic ratio, δ18O, which is attributed
to a deep-sea temperature drop followed by the (slower) growth of the Antarctic Ice Sheet
(AIS). One suggestion to explain the two-step transition is that the deep-sea temperature
drop was related to a change in the pattern of the global MOC (Tigchelaar et al., 2011).
The ice sheet formation is then argued to have been driven by decreasing atmospheric
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CO2 (Pearson et al., 2009). The switch in MOC (first tipping) led to the changes in the
atmospheric CO2 (e.g. Elsworth et al. (2017)) which caused the growth of the AIS (second
tipping). This leads to the question of whether a cascading tipping event occurred.

In the last few years, much work has been carried out to formulate statistical indi-
cators and early warning signals of tipping points. A system close to a critical transi-
tion shows features of a “critical slowing down” (Dakos et al., 2008; Scheffer et al., 2009;
Kuehn, 2011). In the vicinity of the tipping point, the system slowly loses its ability to re-
cover from small perturbations. This results in increased variance, auto-correlation and
potentially also increased skewness and flickering (Scheffer et al., 2009). Various meth-
ods providing a specific scalar and a threshold when approaching the transition have
been suggested, such as degenerate fingerprinting (Held and Kleinen, 2004; Thompson
and Sieber, 2011) and detrended fluctuation analysis (DFA) (Peng et al., 1994; Livina and
Lenton, 2007).

When considering cascading tipping points, the auto-correlation of two time series
and their interaction need to be analysed simultaneously. Podnobik and Stanley (2008)
proposed an altered form of DFA to assess the cross-correlation between two non - sta-
tionary time series and called this method detrended cross-correlation analysis (DCCA).
In the computation of the fluctuation function, they used cross-covariance instead of
auto-covariance and fit this to a power law. This concept is further extended by defining
a coefficient ρDCCA that accounts for the auto-covariance of the individual time series
(Zhou, 2008; Yuan et al., 2015). However, no statistical analysis or indicators have yet
been formulated for cascading tipping events.

In this chapter, we provide a quantitative approach to cascading tipping events. We
start with a mathematical framework to formulate elementary cascading tipping points
(Sec. 3.2). Next, we discuss statistical metrics to analyse, diagnose and potentially pre-
dict cascading transitions, and apply them to ensemble simulations of the elementary
cascading tipping points (Sec. 3.3 and SI C.2). Finally, we apply the new concepts to an
example within the climate system: the potential cascading tipping mechanism between
the AMOC and ENSO (Sec. 3.4). We summarise and discuss our findings in Sec. 3.5.

3.2 Mathematical framework for cascading tipping

In the climate system, tipping points are usually related to rapid transitions, where an ob-
servable in the climate system may change abruptly in a relatively short time compared
with changes in the forcing of the observable. Such rapid changes usually involve tran-
sitions from one equilibrium state to another, which can often be explained using clas-
sical bifurcation theory for autonomous dynamical systems. To a certain extent, these
concepts can also be applied to non-autonomous systems (so-called slow–fast systems)
when the time variation of parameters can be viewed as a slow external forcing (Kuehn,
2011). They form the basics for understanding phenomena such as noise-induced tip-
ping (Thompson and Sieber, 2011) and rate-dependent tipping (Ashwin et al., 2012).

In this section, we present a mathematical framework for simple cascading transi-
tions, which acts as a first step towards analysing the more complex real-world transi-
tions. We focus on bifurcation-induced tipping points, and consider two types of bifur-
cations that are thought to be relevant to mechanisms of abrupt changes in the climate
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system; the back-to-back saddle-node bifurcation is often used to explain transitions be-
tween two coexisting equilibria (multi-stable systems), while the Hopf bifurcation can
explain the appearance of oscillatory behaviour (Thompson and Stewart, 2002). There-
fore, abrupt change in the system appears as a consequence of a parameter crossing a
specific critical value at the bifurcation point.

A back-to-back saddle-node bifurcation (two saddle-nodes connected by a common
unstable branch) generically occurs in physical systems (that have bounded states) when
one parameter varies and the simplest dynamical system has a bifurcation that is de-
scribed by

d x

d t
= a1x3 +a2x +φ (3.1)

where the ai (i ∈ 1,2) are constants, φ is a parameter, x is the state variable and t is
time. There are multiple equilibria in the system if and only if a1 < 0, a2 > 0 and within
the parameter interval |φ| < ((−4a3

1 a3
2)/(27a4

1))1/2. In this case, the back-to-back saddle-
node bifurcations occur at φc =±((−4a3

1 a3
2)/(27a4

1))1/2. In the following, we often use the
terms ‘fold bifurcation’ and ‘saddle-node bifurcation’, although in practice we only use
‘back-to-back’ saddle-node bifurcations.
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Figure 3.1: Stable (solid), unstable (black dotted) and oscillatory (amplitude red dotted) regimes of various
cascading tipping types (as depicted on top of the figure). Black, orange and black dots indicate fold, Hopf and
torus bifurcations, respectively. Top panels: leading system versus forcing φ. Middle panels: following system
versus coupling γ. Bottom panels: (coupled) following system versus forcing φ. Critical values of (coming from
lower branch) leading tipping (top), following tipping (middle) and the combined cascading tipping event (bot-
tom) are marked by the grey vertical dashed line.

A Hopf bifurcation also generically occurs in physical systems, and the simplest dy-
namical system in which it occurs when one parameter is varied is described by

{
d x
d t = a1 y +a2(φ− (x2 + y2))x
d y
d t = b1x +b2(φ− (x2 + y2))y

(3.2)
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where, again, ai ,bi , i = 1,2 are constants, φ is the parameter, (x, y) is the state vector and
t is time. The state vector satisfying Eq. (3.2) reaches a stable periodic orbit if and only if
a1b1 < 0 and φ> 0; the transition from steady to periodic occurs at φ= 0. There are two
other bifurcations when one parameter is varied (the transcritical and pitchfork bifurca-
tions); however, these bifurcations are non-generic because special conditions must hold
(e.g. symmetry) and so they are not considered here. Using the saddle-node and Hopf
bifurcations, cascading tipping can be viewed as a combination of two coupled subsys-
tems, where each subsystem undergoes one of these two types of bifurcations. Combin-
ing these bifurcations leads to four types of cascading tipping, which are discussed in the
following.

Coupling two systems introduces a direction to the cascade and we take account of
this by defining a ‘leading’ system, which during its transition changes a parameter (that
is, the coupling term) in the ‘following’ system. The changing parameter in the following
system can then bring the following system closer to a bifurcation point, potentially even
resulting in a second transition. In this section, we only look at deterministic cases, which
do not allow for noise to play a role in the tipping. Therefore, transitions in the leading
system result in a changed coupling term that can lead to transitions in the following
system. In bifurcation diagrams versus forcing, the bifurcation points (for deterministic
systems) can overlap. However, the transitions are distinguishable in transients, because
the following system always tips after the completion of the first transition. This is why we
show the bifurcation diagrams of both systems versus forcing (Fig. 3.1) and an example
of a transient (Fig. 3.2) for each type. They will be discussed in more detail below.

3.2.1 Double-fold cascade

The most intuitive system that has the potential to undergo a cascading tipping event is a
system where both the leading and the following system have saddle-node bifurcations.
Analogous to Eq. (3.1), a dynamical system containing a double fold cascade is then

{
d x
d t = a1x3 +a2x +φ
d y
d t = b1 y3 +b2 y +γ(x)

(3.3)

where x is the state vector of the leading system, y that of the following system, ai ,bi

(i ∈ 1,2) are constants, and φ is a parameter in the leading system. The key is here that the
function γ, which serves as a parameter in the following system, depends on the leading
system. The most simple coupling between the two systems is represented by γ(x) = γ1+
γ2x. Observe that a change in the forcing parameter φ can induce a transition in x, which
may affect the coupling function γ such that also y undergoes a transition. We would like
to emphasise that the forcing φ does not directly affect y but only through a change in x
(which is effectively only significant when x tips).

Implementing this system with the values shown in Tab. C.1 gives insight in the sys-
tem’s equilibrium structure (Fig. 3.1a) and transient behaviour (example in Fig. 3.2a).
When φ is changed moving through the bistable regime of the leading system the cou-
pling moves the following system through its own bistable regime (see Tab. C.1). Fig-
ures 3.1a and b show the equilibria of the leading (versus φ) and following systems (ver-
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Figure 3.2: Example simulations for each cascading event type: the double-fold cascade (a), the fold-Hopf
cascade (b), the Hopf-fold cascade (c) and the double Hopf cascade (d). Black and grey lines indicate the lead-
ing systems, red and orange lines indicate the following systems. Dotted lines indicate time before the critical
threshold in the forcing φ(t ) (black/grey) or coupling κ(x) (red/orange) is reached, solid lines indicate the time
after this. Parameter values for the modelled systems are given in Tab. C.1.

sus γ), respectively, showing the bistable regime in the centre of the figure, embedded in
the saddle-node structure. Varying φ alters the state of the leading system, which affects
the state of the following system through the coupling γ. This results in the existence of
four stable states in the following system of the bistable regime of the leading system:
two per state of the leading system, as shown in Fig. 3.1i. The leading system’s state acts
as a background condition modulating the position of the following system’s equilibria;
therefore, in case of transition, the leading system’s state may drastically reposition the
equilibria of the following system. This is intuitively visible in Fig. 3.2a, where a time
series example of the dynamical system in Eq. (3.3) shows a cascading tipping event (pa-
rameters shown in Tab. C.1). When the leading system (black) is forced (by changing φ) to
move from a bistable to a monostable regime, it transits towards a new equilibrium. Dur-
ing this transition, the following system (red) is affected and leaves the regime in which
it had four possible equilibria; it also transits to a different state.

3.2.2 Fold-Hopf cascade

The second type of cascading tipping event involves a saddle-node bifurcation in the
leading system and a subsequent Hopf bifurcation in the following system. Using analo-
gous notation as in Eq. (3.3), the simplest system that captures this so-called fold–Hopf
cascade is





d x
d t = a1x3 +a2x +φ
d y
d t = b1z +b2(γ(x)− (y2 + z2))y
d z
d t = c1 y +c2(γ(x)− (y2 + z2))z

(3.4)

where x is again the state vector of the leading system, and (y, z) that of the follow-
ing system. By slowly varying the parameter φ (e.g., linearly as φ(t )) the leading system
moves through its bistable regime (see Tab. C.1 for parameter values) and via the cou-
pling γ(x) = γ1 +γ2x forces the following system across the Hopf bifurcation point.
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The bifurcation structure of the leading system of Eq. (3.4), using the parameters
stated in Tab. C.1, is displayed in Fig. 3.1b. As in Fig. 3.1a, this system’s bifurcation di-
agram shows a saddle-node structure. The following system in Fig. 3.1f, now undergoes a
Hopf bifurcation and subsequent oscillatory behaviour. In Fig. 3.1j, it can be seen that in-
creasing φ on the lower branch of the leading system regime will still result in a stationary
equilibrium for the following system. When increasing φ across φc , the leading system
moves towards another state (seen in Fig. 3.1b) and the coupling γ increases (across γc

in Fig. 3.1f). An oscillation then occurs in the following system. This mechanism makes
it possible for steady and oscillatory states to coexist on the right side of the Hopf bi-
furcation in Fig. 3.1j. An example of a time series showing a fold–Hopf cascading event
is displayed in Fig. 3.2b. A transition in the leading system (black) brings the following
system (red/yellow) into an unstable equilibrium that eventually leads to an oscillatory
state.

3.2.3 Hopf-fold cascade

A third type of cascading event involves a Hopf bifurcation in the leading system and a
subsequent saddle-node bifurcation in the following system. Using similar notation to
the previous subsection, the simplest system with a Hopf–fold cascade (see Tab. C.1 for
parameter values) is given by





d x
d t = a1 y +a2(φ− (x2 + y2))x
d y
d t = b1x +b2(φ− (x2 + y2))y
d z
d t = c1z3 +c2z +γ(x)

(3.5)

where (x, y) is the state vector of the leading system, and z that of the following system.
Again, we can slowly increase φ such that the leading system (x, y) crosses a Hopf bifur-
cation; via the coupling γ(x) = γ1 +γ2x the following system is then moved through its
bistable regime such that a fold is reached in z.

Fig. 3.1c contains the typical bifurcation structure of the leading system in Eq. (3.5),
containing a Hopf bifurcation separating a stationary from an oscillatory regime. The fol-
lowing system’s equilibrium structure for varying γ is given by Fig. 3.1g. In this particular
configuration, for any negative φ there are multiple stable equilibria, as seen in Fig. 3.1k.
This makes sense, as φ only affects the following system via its impact on the leading
system, and for negative φ the leading system remains constant. At φ= 0, the Hopf bifur-
cation in the leading system is reached and (x, y) starts oscillating. The following system
oscillates a little along with the leading system due to the oscillatory changing value of γ.

Whenφ increases more, the amplitude of the leading system’s oscillation grows, which
eventually causes γ to cross the threshold; the following system then leaves its bistable
regime (be it temporarily as γ will be reduced again due to the oscillation). This forces the
following system into its upper branch, as can be seen in Fig. 3.1g. The upper branch’s
stable oscillation ends at φ ≈ 0.8 (in Fig. 3.1k), because the amplitude becomes large
enough for the system to swap between multiple equilibria. An example of such a cas-
cading transition event can be seen in Fig. 3.2c, where an oscillation starts in the leading
system (black/grey). A particular phase of this oscillation then causes the following sys-
tem (red) to transit into the second equilibrium.

3

85

Cascading transitions in the climate system

157823 Dekker BNW.indd   85157823 Dekker BNW.indd   85 18-03-2022   10:2118-03-2022   10:21



3.2.4 Double-Hopf cascade

A fourth type of cascading tipping event discussed here involves a Hopf bifurcation in
the leading system and a subsequent Hopf bifurcation in the following system. Using
analogous notation to the previous subsections, this double Hopf cascade is captured by
the following dynamical system:





d x
d t = a1 y +a2(φ− (x2 + y2))x
d y
d t = b1x +b2(φ− (x2 + y2))y
du
d t = c1v +c2(γ(x)− (u2 + v2))u
d v
d t = d1u +d2(γ(x)− (u2 + v2))v

(3.6)

where (x, y) is the state vector of the leading system, and (u, v) that of the following
system. If φ forces (x, y) such that it crosses the Hopf bifurcation point, the coupling
γ(x) = γ1 +γ2x causes a crossing of the second Hopf bifurcation in (u, v).

Figures 3.1d and h show the bifurcation diagrams of the leading and following sys-
tems, with supercritical Hopf bifurcations. The following system (in Fig. 3.1l) is station-
ary for many values of φ, up to the point that the leading system starts oscillating, which
for high enough values of φ is large enough to make the following system cross the Hopf
bifurcation. However, γ oscillates with the leading system (for φ > 0). This means that
oscillatory behaviour in the following system can only be expected in a particular part
of the leading system’s oscillation period. This interaction between the two oscillations
results in torus bifurcations for particular values of φ. An example of a time series show-
ing a double-Hopf cascading transition is shown in Fig. 3.2d. After a (slow) oscillation in
the leading system (black/grey) has started, a (fast) oscillation in the following system
(red/yellow) arises in particular phases of the slow oscillation.

3.3 Statistics of cascading tipping points

In the previous section we formulated elementary deterministic dynamical systems that
can exhibit cascading tipping. In order to detect tipping events from, for example, ob-
served time series in real systems, we need to detect whether a system is close to a crit-
ical transition. In general, systems close to critical transition recover more slowly from
perturbations, which in turn increases memory in the time series. This leads to the phe-
nomenon of ‘critical slowing down’ prior to bifurcation points. In this section, we sim-
ulate cascading tipping events to (a) study the statistical character of such events, (b)
diagnose (post-tipping) whether tipping events are causally related and (c) take a first
step towards statistical indicators for the prediction of cascading tipping events.

3.3.1 Methods for single tipping points

Several methods have been suggested for the analysis of time series to detect the ap-
proach of a single tipping point. For saddle-node bifurcations, the key features of a time
series such as this is a critical slowing down. This can be investigated using standard
quantities such as increasing auto-correlation (e.g. the lag-1 auto-correlation), increas-
ing variance and increasing skewness (Held and Kleinen, 2004; Scheffer et al., 2009; Kuehn,
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2011). Although critical slowing down near critical transitions is a general feature of (even
chaotic) dynamical systems (Tantet et al., 2018), the standard metrics like auto-correlation
at lag 1 and variance do not always provide an early warning signal (e.g. in Greenland ice
core data in Livina and Lenton (2007)). Hence, more complicated indicators have been
introduced, such as (i) degenerate fingerprinting (DF) and (ii) the detrended fluctuation
analysis (DFA) (Held and Kleinen, 2004; Thompson and Sieber, 2011; Peng et al., 1994;
Livina and Lenton, 2007). DFA is argued to be a solution to the problem that the sim-
ple lag-1 auto-correlation does not capture the approach to a transition in highly non-
stationary data in long time series (Peng et al., 1994; Livina and Lenton, 2007). The latter
is characterised by high auto-correlation due to the gradual increase or decrease of the
system itself, distorting the signal of the critical slowing down, a problem in standard
metrics and DF.

As critical slowing down implies an increasing auto-regressive behaviour in the time
series prior to a transition, the memory component is increased. In general, the first step
in DF is the projection of the data fields onto the leading EOF, which gives a time series
xn (Held and Kleinen, 2004). After time-equidistant interpolation and detrending of the
data, in the DF method one fits the following general auto-regressive process to the time
series xn :

xn+1 = c · xn +σηn (3.7)

where ηn is Gaussian white noise and c = exp(−λ∆t ) the AR(1) coefficient. Here λ can be
seen as the decay rate of perturbations in previous time steps. As the approaching of a
bifurcation point involves an increase in memory, the value of c is presumed to increase
towards one when approaching a saddle-node bifurcation point.

In DFA, one first chooses an integer window size s and divides the (cumulatively
summed) time series X (n) in Ns = N /s segments that do not overlap, where N is the
length of the time series. In every window, the best polynomial fit of a chosen order is cal-
culated. A quadratic polynomial is used here. The squared deviation from this quadratic
polynomial for every window is summed, resulting in a measure of the auto-covariance
fluctuating around the fit:

F 2(ν, s) = 1

s

s∑
i=1

[X ((ν−1)s + i )−xν(i )]2 (3.8)

with X the detrended time series and xν the best polynomial fit in segment ν. Then, an
average is taken over all segments to obtain the fluctuation function F (s):

F (s) =
√√√√ 1

N /s

N /s∑
ν=1

F 2(ν, s) (3.9)

which depends solely on s. The long-range auto-correlations can now be recognised by
fitting the fluctuation function to a power law and looking at the resulting DFA-exponent
α, according to

F (s) ∝ sα (3.10)

For α ≤ 0.5, there is no long-term correlation and the fluctuations are indistinguishable
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from white noise. However, when α > 0.5, there are long-term correlations present and
for α≥ 1.5 the system has reached a bifurcation point. In the simulations analysed here
the DFA scaling exponent is fitted explicitly for every (moving) window.

3.3.2 Methods for cascading tipping points

Cascading tipping involves two systems with their own bifurcation structure and their
proximity towards bifurcation points. Although the leading system may be close to tip-
ping, the following system might still be far from its bifurcation point and needs the crit-
ical transition of the leading system to even come close to this point; this makes the be-
haviour of the following system more prone to noise, less dependent on the leading sys-
tem and less auto-correlated prior to the first tipping. This is why the general measures
for single tipping events cannot be used, nor can regular cross (Pearson’s) correlation.
The reason for this is that the following and leading systems do not have a one-to-one
relationship (that is, weakly Pearson correlated), but are rather coupled through specific
parameters, which is only visible in long-range correlations.

When approaching a cascading tipping point, the long-range cross-correlation be-
tween the leading state x and the following state y is expected to increase. The state x
becomes more auto-correlated and is less susceptible to noise, and therefore influences y
through the coupling in a more robust way. To find long-range cross-correlations, the so-
called ‘detrended cross-correlation analysis’ (DCCA) method was developed (Zebende,
2011; Podnobik and Stanley, 2008; Zhang et al., 2001; Zhou, 2008). Instead of using the
auto-covariance to calculate the fluctuation function, as is used in Eq. (3.8), one uses the
cross-covariance as follows:

F 2
DCCA(ν, s) = 1

s

s∑
i=1

[(X ((ν−1)s + i )−xν(i ))

· (Y ((ν−1)s + i )− yν(i ))]2

(3.11)

The symbols in Eq. (3.11) are similar to Eq. (3.8). With this function, one can calculate
the fluctuation function and subsequent power law scaling coefficient (Podnobik and
Stanley, 2008; Zhang et al., 2001), similar to Eq. (3.9).

A variation on this method was proposed by Zebende (2011) and involves the ratio
between F 2

DCCA and FDFA of the two systems. Specifically, one chooses a certain segment
size s and computes:

ρDCCA = F 2
DCCA

FDFA{x}FDFA{y}
(3.12)

which measures the level of the long-term cross-correlation between variable x and y ;
the quantity ρDCCA has values between -1 and 1.

There are several a priori limitations of using the power law scaling coefficient and
ρDCCA. First of all, the results are sensitive to choices of the maximum segment size (s)
and the window size, induced by the noise in our simulations. Making the window size
too large decreases the possibility of seeing any development prior to the tipping points,
as windows including the tipping event itself are biased by strong auto-correlation and
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the (tipping) trend in the data. However, making the window size too small increases the
uncertainty in the exponential fit. Similarly, adding small segments co-determining the
exponential fit makes the method prone to noise, while larger segments are limited by the
window size and computation time. In our simulations, window sizes of 120 data points,
and segments sizes between 10 and 60 within those windows were used to calculate the
fluctuations per segment size and to calculate F (s) (Eq. (3.9)). More research is needed to
find the optimal values for the window and segment sizes, and to potentially reduce this
limitation in the analysis of cascading transitions. Another limitation of using the power
law scaling coefficient and ρDCCA is that the way that the two systems are coupled (e.g.
linearity, with or without temporal lag) affects how an evolution in the leading system
affects its cross-correlation with the following system in both magnitude and time. Fi-
nally, to observe trends in these metrics, the signal in the cross-correlation between the
two systems has to overcome the (partly mutually independent) noise. However, close
to critical transition, the recovery from noise actually decreases, making the often subtle
change in the detrended cross-correlation harder to distinguish from noise. These lim-
itations may make the detrended cross-correlation metrics less useful in applications,
but trends in the detrended cross-correlation metrics might still act as early warnings for
cascading transitions, as shown in the next section.

In SI C.2, we provide detailed simulations to test the cross-correlation indicators DCCA
and ρDCCA, in combination with before and after-ratios of auto-regressive metrics. The
cross-correlation indicators seem to be sensitive to window and segment sizes and from
this analysis alone, their potential as early warning indicators is still inconclusive.

3.4 Application: the coupled AMOC-ENSO system

In this section, we find an application of the concept of cascading tipping (the fold-Hopf
case). This application reflects that cascading transitions are not only a purely mathe-
matical concept, but do occur in idealised physical models. Here, we consider cascading
tipping in a model that couples the Atlantic Meridional Overturning Circulation (AMOC)
and the El-Niño-Southern Oscillation (ENSO).

3.4.1 Background

To demonstrate and quantify the coupling between the AMOC and ENSO, we use out-
put from global climate model simulations. In the ESSENCE project (Ensemble Sim-
ulationS of Extreme weather events under Nonlinear Climate changE) several simula-
tions were performed using the ECHAM5/MPI-OM coupled climate model, including
so-called ‘hosing’ experiments (Sterl et al., 2008), where fresh water is added around
Greenland to mimic ice sheet melting.

From these climate model simulations we used two ensembles; the first is the “stan-
dard” experiment, where greenhouse gases evolve according to observations and from
the year 2000 onward follow the SRES-A1b scenario (experiment name SRES-A1b). The
second ensemble is the same as the standard experiment but has additional freshwater
input (1 Sv = 106 m3/s) around Greenland from the end of the year 2000 onward (exper-
iment name HOSING-1). The HOSING-1 ensemble contains a classical hosing experi-
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Figure 3.3: Panel (a): Evolution of the five standard SRES-A1b runs (black) and five HOSING-1 runs (red) in
terms of the overturning stream function. Panel (b): NINO3.4 of the standard SRES-A1b ensemble (black) and
the HOSING-1 ensemble (red). Shaded thin lines indicate monthly means, thick lines indicate the deseason-
alised values.

Time period Ensemble Variable Value
1950-2000 Standard SRES-A1b Mean 25.86 ± 0.046

Standard SRES-A1b Variance 1.705 ± 0.447
2001-2100 Standard SRES-A1b Mean 27.51 ± 0.032

Standard SRES-A1b Variance 2.581 ± 0.112
2001-2100 HOSING-1 Mean 27.27 ± 0.053

HOSING-1 Variance 3.21 ± 0.42

Table 3.1: NINO3.4 statistics (of deseasonalised data) for the different ensembles. The uncertainty stated is
the standard deviation among the five runs within the ensemble. It is visible that in the case of a collapsed
overturning, El-Niño intensifies more than without a collapsed overturning. Values in bold represent increases
in the variability of NINO3.4.

ment, following the procedure from Jungclaus et al. (2006). Five runs of each ensemble
are chosen, specifically runs 041–045 of the HOSING-1 and runs 021–025 of the SRES-
A1b ensemble. The temporal resolution used is monthly data between 1950 and 2100.
The spatial fields are on a curvilinear grid, with 40 vertical levels in the ocean. We use
deseasonalised data because we are interested in interannual variability, not in seasonal
variability, as El-Niño is associated with these timescales. We use the maximum of the
Atlantic meridional overturning stream function at 35◦N as an AMOC index, and the
NINO3.4 index as an ENSO index, which is the average SST over the region 170◦W - 120◦W
by 5◦S - 5◦N.

The results for the evolution of the AMOC and ENSO are shown in Fig. 3.3. It is clearly
visible that the AMOC decreases strongly in the hosing experiments, by approximately
85%. Tab. 3.1 compares statistical properties for the time intervals before and after 2001
(which is the year at which the hosing starts). We use the non-anomaly statistics, as this
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gives us information about the differences in the mean. We do note that we only use five
runs per ensemble, which means that the uncertainty is not statistically robust. We only
present it in Tab. 3.1 to give the reader an idea of the range of the variables among the
different runs.

It is visible from Tab. 3.1 that the variability of NINO3.4 increases (bold numbers) if
we compare the 1950–2000 and 2001–2100 periods. This increased variability is visible
in both the standard and the HOSING-1 runs. However, the variability is much stronger
in the HOSING-1 experiment, indicating that the decrease of the AMOC indeed has an
amplifying effect on ENSO. The large difference between the standard and hosing runs
suggests that the NINO3.4 index changed in the hosing experiment, potentially as a con-
sequence of the decrease of the AMOC. As the first tipping is artificially induced (without
any measurable critical slowing down), and the models used here are far more complex
than the simple dynamical systems we discussed in previous sections, the question of
whether cascading tipping is actually occurring in these runs is beyond the scope of this
chapter. We only use this data to justify the coupling of AMOC and ENSO.

Several mechanisms have been suggested in the literature regarding the coupling be-
tween the AMOC and ENSO. The first mechanism is concerned with oceanic waves. A
colder North Atlantic creates density anomalies that induce the southward propagation
of oceanic Kelvin waves (along the American coast) across the Equator. In western Africa,
this energy radiates as Rossby waves towards the north and south, which induces Kelvin
waves to move along the tip of southern Africa into the Indian Ocean, which eventually
reach the Pacific. Consequently, the eastern equatorial Pacific thermocline deepens on
a decadal timescale. This deepening has a weakening effect on the amplitude of ENSO
(Timmermann et al., 2005).

The second mechanism is concerned with the trade winds. Cooling in the northern
tropical Atlantic (due to AMOC weakening) induces anticyclonic atmospheric circulation
(Xie et al., 2007) that intensifies the northerly trade winds over the northeastern tropi-
cal Pacific. This leads to a southward displacement of the Pacific intertropical conver-
gence zone (Zhang and Delworth, 2005) and generates a meridional SST anomaly due to
anomalous heat transport and the wind–evaporation–SST feedback in the Pacific. Also,
Dong and Sutton (2007) found an atmospheric coupling through Rossby waves sent into
the northeast tropical Pacific. This is in line with Dijkstra and Neelin (1995), who argued
that part of the contribution to the zonal wind stress, τext, arises from processes outside
the tropical Pacific. The result of the wind-stress coupling between the two systems is an
intensification of ENSO, and this mechanism is argued to be stronger than the coupling
through oceanic waves (Timmermann et al., 2005).

3.4.2 Models and coupling

To study the possible cascading transition through the wind-stress coupling, we use a
conceptual model. For the AMOC, the classical Stommel box model (Stommel, 1961) is
used. It consists of a polar (subscript p) and an equatorial box (subscript e), both with a
temperature T and salinity S coupled by a density-driven flow rate. The state variables
are then defined as ∆T = Te −Tp and ∆S = Se −Sp . The time evolution of these variables
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is as follows (Cessi, 1994):

{
d∆T

d t =− 1
tr

(∆T −θ0)−Q(∆ρ)∆T
d∆S
d t = Fs

H S0 −Q(∆ρ)∆S
(3.13)

where the first term in the temperature equation refers to relaxation towards a back-
ground temperature, and the second term refers to density-driven meridional transport.
Specifically, tr is the surface temperature restoring timescale and θ0 is the equator-to-
pole atmospheric temperature difference. Q(∆ρ) is the transport function, which is cal-
culated from a diffusion timescale and the meridional density gradient ∆ρ. In the salin-
ity equation, S0 is a reference salinity, and H is the ocean depth. The parameter Fs is the
freshwater flux, which can be used as a bifurcation parameter. The stream function

Ψ= γ0∆ρ/ρ0 = γ0(αT ∆T −αs∆S)

represents the strength of the AMOC, with γ0 > 0 a flow constant, ρ0 a reference density
and αT ,αS the thermal and haline expansion/contraction coefficients.

For the El-Niño–Southern Oscillation, we use the conceptual model as proposed in
Timmermann et al. (2003). This model has a state vector consisting of the temperature
of the western Pacific T1, the temperature of the eastern Pacific T2 and the thermocline
depth of the western Pacific h1. The model finds is based on the Zebiak and Cane (1987)
ENSO model, with a two-strip and two-box approximation, and a shallow-water model
for the upper ocean with a fixed mixed layer depth.

{
dT1
d t =−α(T1 −Tr )− u(T2−T1)

L/2
dT2
d t =−α(T2 −Tr )− w(T2−Tsub)

Hm

(3.14)

where 1/α a typical thermal damping timescale, Tsub the temperature below the mixed
layer, Hm and L the depths of the mixed layer and basin width, respectively, w upwelling
velocity and u atmospheric zonal surface wind being linear to wind stress: u/(L/2) = εβτ

and w/Hm = −ζβτ. The parameters ε and ζ refer to the strength of zonal and vertical
advection (bifurcation parameters).

The subsurface temperature Tsub is parametrised as

Tsub = Tr − Tr −Tr 0

2

[
1− tanh(H +h2 − z0)

h∗
]

(3.15)

where h2 is the east equatorial Pacific thermocline depth (calculated as the deviation
from a reference depth H), z0 is the depth for which w becomes its characteristic value
and h∗ is the sharpness of the thermocline. The thermocline depths are calculated as
follows:

h2 = h1 +bLτ

dh1

d t
= r (−h1 − bLτ

2
)

(3.16)

where b is the efficiency of the wind stress τ to drive the thermocline tilt. For further
details, we refer to Timmermann et al. (2003). In the Stommel–Timmermann models, we
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use the standard parameter settings, as given in the references, unless stated otherwise.

Figure 3.4: Zonal equatorial wind stress versus the Atlantic temperature gradient. Data from the ESSENCE (En-
semble SimulationS of Extreme weather events under Nonlinear Climate changE) project are used, where the
black dots refer to five members of the standard ensemble with SRES-A1b forcing (1950–2100 period ), and the
red dots refer to five members of the HOSING-1 ensemble where in 2000 a freshwater perturbation is applied
(i.e. 2000–2100 period). A 5-year running mean is applied, yearly averages are shown. The zonal equatorial wind
stress is defined here as the average zonal wind stress over the 0-10◦N latitudinal band. The Atlantic tempera-
ture gradient is defined as the difference between the SST in a northern box (50-60◦N, 50-20◦W) and a southern
box (0-20◦N, 45-20◦W). The blue line indicates a linear fit.

We couple the AMOC and ENSO models through the relation between the Atlantic
meridional temperature gradient (in the Stommel model) and the Pacific zonal wind
stress (in the Timmermann model); the Pacific zonal wind stress mechanism, which is the
more important of the two aforementioned mechanisms, is found in the literature, and
described in the previous section. Even in a simplified model, the relation between wind
stress and meridional temperature gradient is physically justified: thermal wind balance
indicates a direct connection between the adjustment of wind stress to changes in the
meridional temperature gradient. In the Timmermann model, the zonal wind stress τ is
expressed as

τ = µ(T2 −T1)

β
(3.17)

with µ/β parameters that control the influence of the zonal temperature gradient on the
wind stress, set to be 0.02 Pa·K−1. We add an external wind stress term τext that is depen-
dent on the meridional temperature gradient in the Atlantic ∆T , i.e.,

τ = τext(∆T )+ µ

β
(T2 −Tr ) (3.18)

with a negative relation between τext and the Atlantic meridional SST gradient ∆T as we
know from the literature described above (a stronger positive ∆T results in stronger east-
erlies and thus a negative τext). Note that both the Pacific wind stress τ and specifically its
external part τext should always be negative. The total wind stress is negative because this
area (at low altitude) is strictly dominated by easterly winds, and τext is negative because,
through the meridional temperature gradient, it reflects the influence of the zonal mean
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Hadley cell on the equatorial Pacific. Physically, the Hadley cell only induces negative
zonal wind stress in this region.

In the coupling (3.18), we fix β and vary µ as the coupling parameter. For τext we take
a linear relation as follows:

τext =ατ∆T +γτ−τ0 (3.19)

where all coefficients are constant over time. The parameters ατ and γτ can be estimated
from the ESSENCE data as discussed in Sec. 3.4.1; τ0 reflects the constant part in the
zonal mean wind stress, which we subtract because we are interested in the contribution
of changes in the meridional overturning. Using five ESSENCE runs per ensemble for
both the standard forcing and hosing-experiment, respectively, ∆T is computed as the
absolute difference between the SST in the North Atlantic area (50−60◦N × 50−20◦W)
and the equatorial Atlantic region (0− 20◦N × 45− 20◦W). For the wind stress τext, the
zonally integrated wind stress averaged over the 0−10◦N region is taken. In Fig. 3.4, 5-
year running means of annual averages are plotted for the hosing simulations (in red)
and the standard simulations (in black). Clearly, τext decreases as ∆T increases, meaning
that when the AMOC collapses (larger ∆T ) the wind stress τext becomes more negative
and the external part of the trade winds increases. However, we also note that the spread
in the simulation data is large, which can, in part, be attributed to internal variability
present in the simulations. The coefficients ατ and γτ were found to be (from a linear fit)
-0.000376 Pa·◦C−1 and -0.0119 Pa. By looking at the ∆T regime in Fig. 3.4, τ0 is chosen to
be the wind stress at 19 ◦C: τ0 =ατ ·19+γτ ≈−0.0190 Pa. This results in a final quantised
expression for the coupling:

τext ≈−0.000376 ·∆T +0.00715 (3.20)

3.4.3 Results

The AMOC model’s bifurcation diagrams are shown in Figs. 3.5a and b, and clearly dis-
play a saddle-node structure. For an interval of values of the freshwater flux Fs the system
has multiple equilibria, whilst for other values only one equilibrium remains. This means
that when we are in the high-Ψ branch and Fs is large enough, the system can make a
transition to the low-Ψ branch. This is depicted by the blue arrow in Fig. 3.5b.

The bifurcation diagram of the ENSO model with τext as a parameter is shown in
Fig. 3.5c. The bifurcation diagrams become much simpler than in the original Timmer-
mann et al. (2003) model, the reason for this is extensively discussed in Dijkstra and
Neelin (1995). Figure 3.5d shows the influence of µ for the position of the oscillatory
regime: on each branch, two Hopf bifurcations can be found and the µ value of the first
Hopf bifurcation decreases with more negative τext. This indicates that a Hopf bifurca-
tion can be crossed if τext is decreased, while µ is kept constant. In other words, for the
right value of µ, the eastern Pacific SST starts oscillating (El-Niño ‘intensifies’) when the
easterly external wind is increased. For the coupled model, we use µ= 0.00146.

Using τext to couple the AMOC and ENSO models, we performed simulations with
∆t = 0.1days and the Runge–Kutta fourth-order integration method. To initiate the col-
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Figure 3.5: Bifurcation diagrams and forward runs of the Stommel (a, b) and Timmermann (c, d) models. The
blue arrow indicates the collapse of the overturning circulation, which (negatively) amplifies the external zonal
wind stress in the Pacific τext, such that the system enters an oscillatory state. The orange arrow indicates sub-
sequent tipping in the following (ENSO) system. Panel (a): Meridional temperature gradient equilibria versus
freshwater flux. Panel (b): The non-dimensional stream function versus freshwater flux. These figures show the
multiple states of the overturning. Panel (c): Eastern equatorial Pacific SST versus τext (for µ= 0.00145), show-
ing a regime where the system is stationary and a regime where the system is oscillatory; Panel (d): eastern
equatorial Pacific SST versus µ for different values of τext. Orange dots indicate Hopf bifurcation points, and
orange dotted lines indicate oscillatory regimes. Black and grey solid lines indicate stable equilibria, and black
dashed lines indicate unstable equilibria.

lapse of the overturning, a freshwater forcing Fs is applied in the form of a step function:

Fs =
{

0.006 if t ≤ 500 y

0.01 if t > 500 y
(3.21)

Using the coupling of Eq. (3.20), we attain the results shown in Fig. 3.6. The exact quan-
tification of the coupling partly modulates which effect the collapse of the AMOC has on
ENSO. For the chosen coupling, the collapse of the overturning leads to the crossing of
the first Hopf bifurcation point in the following system, and an oscillation starts grow-
ing. As is visible in Fig. 3.3, the relation between ∆T and τ has quite some spread, which
implies a large uncertainty in the values of ατ and γτ. We would like to stress that the
regime in which the Hopf bifurcation is crossed is dependent on multiple variables, such
as these coupling parameters. Running the forward integration of the coupled model for
values betweenατ =−0.00041 andατ =−0.00033, uncovers the fact that (ceteris paribus),
for higher (lower) values of ατ, the oscillation indeed becomes weaker (stronger), finally
resulting in a disappearance of the oscillation at ατ ≈ −0.000335 at a time step of 0.25
days.

Despite the parameter sensitivity, this is a typical illustration of the fold–Hopf cas-
cading behaviour discussed in earlier sections. This re-enforces the possibility that cas-
cading transitions are possible in real physical systems.
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Figure 3.6: Simulation run of the coupled Stommel–Timmermann model for different model configurations,
where the collapse of the overturning flow function (black) leads to the crossing of a Hopf bifurcation in the
eastern equatorial Pacific SST (orange). Parameter values as in Timmermann et al. (2003), with µ= 0.00146.

3.5 Summary, discussion and conclusions

In this chapter, we introduced the concept of cascading tipping, which can occur when
a transition in a leading system alters background conditions for a following system that
then undergoes a transition. We presented a mathematical framework around this con-
cept, using generic bifurcations (saddle-node and Hopf) in both leading and following
systems. Four types of deterministic dynamical systems with the possibility for cascad-
ing events were formulated, including the double-fold cascade, the fold–Hopf cascade,
the Hopf–fold cascade and the double-Hopf cascade. In all cases we assumed a linear
coupling between the following and leading system. The double-fold coupled system has
previously been considered in another context (Brummitt et al., 2015), where it was also
noted that not all subsystems undergo tipping (‘hopping’) in systems with more than
two coupled fold cascades. Moreover, stochastically coupled multi-stable systems have
been considered in networks, where different types of domino effects can occur depend-
ing on the synchrony of the transition in the different network nodes (Ashwin et al., 2017;
Creaser et al., 2018). Here we only consider two coupled systems, but allow different types
of bifurcations, and the systems are physically coupled in a directional way.

We discussed statistical indicators and analysis tools for cascading tipping points.
Indicators for cascading tipping points are found in detrended cross-correlation anal-
ysis (DCCA) and a special case of extrapolation using the DFA of the following system.
These tools were applied in simulations involving both the double-fold and fold–Hopf
cascades. The increased variance, AR(1) and DFA scaling exponent are clearly found in
each case of single tipping. The cross-correlation indicators (DCCA and ρDCCA) did not
evolve much throughout the time series, which indicates their insensitivity with respect
to the proximity to single tipping points. Several limitations on the use of these variables
have been mentioned. However, it seems that these metrics are highly sensitive to win-
dow and segment sizes, which means that their potential as early warnings of cascading
transition events is inconclusive. The ratios of auto-regressive metrics before and after
the first transition seem to be a stronger warning of cascading transitions. More research
is needed to exactly quantify these metrics.

The concept of cascading tipping was applied to study the behaviour of a model de-
scribing a link between the Atlantic meridional overturning circulation (MOC) and ENSO.
We modelled this using a coupling between the Stommel (1961) model and the Timmer-

96

Chapter 3

157823 Dekker BNW.indd   96157823 Dekker BNW.indd   96 18-03-2022   10:2118-03-2022   10:21



mann et al. (2003) ENSO model by a meridional temperature gradient-dependent term
in the external wind stress of the ENSO model. Through analysis of the bifurcation dia-
grams and simulations, a cascading tipping event is indeed possible within this model in
the form of the fold–Hopf cascade. Obviously, both models are highly idealised and more
detailed models of both AMOC and ENSO are needed to demonstrate the occurrence of
such a cascading transition in the climate system.

A potential example of a double-fold cascade, which was not further treated here,
could be the impact of a bistable MOC on the (bistable) land ice formation on the Antarc-
tic continent. In this case the coupling exists through the atmospheric CO2 concentra-
tion, which depends on mixing and circulation in the ocean while strongly determining
the existence of an ice sheet (DeConto and Pollard, 2003). During the Eocene–Oligocene
transition, where a large ice sheet grew on Antarctica, a two-step signal is observed in
the deep-sea δ18O ratio, suggesting two abrupt transitions. Using a box model by Gildor
and Tziperman (2000), Tigchelaar et al. (2011) showed that a two-step signal can be pro-
duced by (first) a MOC transition which changes the CO2 concentration meaning that
a transition occurs in the land-ice model. Although from a physical perspective, this is
a potential example of a cascading transition, we make no claim about whether such a
transition likely occurred at the Eocene–Oligocene transition. Here, more detailed mod-
els are also needed and transition are expected to be more complicated (Tantet et al.,
2018).

These two applications reflect the relevance of this chapter. There are likely many
cases in which these cascading events occur in climate and therefore highlight the im-
portance of the topic. Future research will point out whether these events are likely to
happen in the future climate and whether these effects also occur in fields other than
climate science. Of course, this chapter covers the very basics of deterministic cascad-
ing events. However, one can imagine a wide range of phenomena if more complicated
transitions between attractors are considered and when noise is included. For example,
when a leading chaotic system is coupled to a deterministic following system with a
saddle-node bifurcation structure, a slight change in the chaotic attractor may change
the background conditions for the following system such that it undergoes a transition.
An application here may be the effect of a mid-latitude atmospheric jet on the Atlantic
MOC. We hope that this chapter will stimulate more research on the various types of cas-
cading tipping and also on the development of well-suited indicators and early warnings
of such events.
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PART II

STATIC NETWORK 
APPROACHES

On the relation between dynamics and underlying 
network structures
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“The central task of a natural science is to make the 
wonderful commonplace: to show that complexity, 
correctly viewed, is only a mask for simplicity; 
to find pattern hidden in apparent chaos.”

HERBERT A. SIMON, 1978
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Introduction to Part II

Part I described methods to describe macroscopic behaviour of systems with N inter-
acting agents ai (i ∈ {1, ..., N }) in a lower-dimensional state variable S ∈Rn , with n � N .
Crucial to the potential of describing a system’s behaviour in such a low-dimensional
state variable is a certain extent of homogeneity among the agent’s interactions. If the
interactions vary strongly across the population, aggregation of them might not be pos-
sible or may not show the complex behaviour observed in reality, as small may have a
profound effect on the macroscopic behaviour. One example of heterogeneity can be
found in to whom people interact, which is highly relevant for dynamical phenomena
like fake news or epidemic spreading: people may form many interactions within eth-
nicities, age groups and geographical regions, but fewer between such groups. Another
example is differences in how many interactions each agent has. In short, accounting
for the interaction structure explicitly accounts for an additional level of detail, and is
commonly done in the form of networks, consisting of nodes, representing the system
agents, and links, representing interactions between them, defined by scalar weights wi j

for each agent pair (ai , a j ), with i , j ∈ {1, ..., N }. Higher absolute weights imply stronger
interactions.

The analysis of the network structures as static objects is a large and rapidly growing
research field in itself, but not the scope of this dissertation. Instead, I focus on what the
structure of these networks can tell us about the dynamics playing out on top of them. To
do this, it is important to distinguish static networks, in which the network structure un-
derlying the dynamics in a system remains invariant over time, from temporal networks,
when this underlying network structure does evolve over time. Systems with static under-
lying networks are discussed in Part II, and temporal networked systems are discussed
in Part III. In this light, it is also important to separate the system’s dynamics from the
system’s underlying interaction structure (see Fig. ib on p. 12). They can be intimately
linked: when playing the game of tag, a (Boolean) contact between two agents implies
full transmission of the status of being ‘it’: dynamics and interaction structure are very
closely linked. But the underlying structure and the dynamics on top are not necessarily
one-to-one connected: for example, in epidemiology, the disease spreading is bound by,
but not defined by the connections between agents that can infect each other, because
of the presence of incubation time scales and probabilistic transmission.

To illustrate how network structure impacts dynamics of the system, I proceed with
the example of epidemiology, which was also addressed in the introduction to Part I. In
this case, rather than assuming a homogenised mixing and interaction of the population
(which was the case in Part I), two non-uniform underlying static network structures are
distinguished that describe the interactions. The first network contains the interactions
of children at a primary school (Gemmetto et al., 2014; Stehlé et al., 2011) also shown in
Fig. iib, and the second contains interactions of attendees at a scientific conference (Cat-
tuto et al., 2010; Stehlé et al., 2011). For both datasets, two hours of contact data is used
to generate the networks, and an SIR model is simulated on top of these connections as
follows. Instead of having a state variable consisting of three system-wide variables of
susceptibles S(t ), infectious I (t ) and recovered R(t ), each agent now attains these stages
individually. With a transmission probability of β and a recovery rate of γ, the disease is
transmitted probabilistically upon contact. The results are shown in Fig. iv.
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Eyeballing the panels (a) and (c) already indicates a strong difference in social struc-
ture: while the primary school children are quite segregated into classroom groups, the
mixing of conference attendees is much more intertwined. Also when looking at the de-
gree distributions in panel (b), we see that the primary school children have an approxi-
mate Poisson-shaped degree distribution, while the conference attendees show a larger
spread: having a few attendees with very large (up to 70) unique contacts, but also many
with less than 10 (reflected in the tiny dot sizes in the periphery in panel (d)). In node
colours, the panels (a) and (c) show the moment at which agents on average become
first infected. Clearly, more peripheral children (in (a)) and conference attendees (in (c))
are affected later, on average. In particular, we see the clustered pattern in the network
of panel (a) back in the node colours: if nodes in any cluster are affected, quickly most
others in such well-connected parts are as well. Even though the average degree of the
primary school is higher, and the intra-cluster connections are strong, the spreading in
the scientific conference grows more rapidly, reflecting the effect of the exact structure of
the network, favouring fast spread through the centre nodes. If one would have focused
on the average degree (indicated in panels (b) and (d)), one might have pointed to the
primary school as the system with the fastest spread. Clearly, the network structure un-
derlying the spreading dynamics plays an important role in its speed and direction. This
illustrates the motivation behind part II of this dissertation.

Figure iv: SIR model applied to two different network structures: a primary school (same as in Fig. iib) (Gem-
metto et al., 2014; Stehlé et al., 2011), and a scientific conference (Cattuto et al., 2010; Stehlé et al., 2011). Panel
(a, c): network structures, where node colours represent the time at which the agent (child or conference at-
tendee) is infected, on average in the ensemble of simulations. Red is early, blue is late. Panel (b, d): degree
distributions for the primary school (blue) and the scientific conference (red). Average node degree is anno-
tated by the vertical line. Panel (e): evolution of the % agents that are either infectious or recovered. Here,
β= 0.1 and γ= 0.02 and an ensemble of 10N is used, where each agent is used as patient zero 10 times.

Part II comprises the three chapters 4, 5 and 6 that all focus on the dynamics of de-
lays in railway systems. The three chapters approach this problem from three different
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angles, all concerning the link between the underlying infrastructure and the dynam-
ics playing out on top. Chapter 4 involves the analysis of the network itself, weighted by
spatial heterogeneities that impact delays, such as train frequency, travel times and de-
lay change statistics. By creating these weighted graphs for four European countries (the
Netherlands, Italy, Germany and Switzerland), an international comparison was made in
several network aspects. In particular, a spectral clustering algorithm is applied to iden-
tify dynamical clusters in the network. These clusters are interpreted in terms of role in
the total delay and their connectivity to the rest of the network, which points out region
differences.

In chapter 5, the concepts in chapter 4 are extended to a model that simulates the
Belgian railway delays. The resulting model is of a diffusion-like type: it evolves from a
node to all its neighbours, weighted by the model aspects. This is in contrast with many
traditional railway models, which are discrete, more clearly relating to the discrete nature
of delays and trains that transport them. On the other side, diffusion-like models have
advantages relating to their simplicity, low computational demand and easy calibration.
The chapter discusses how the model increases performance when coarse graining the
network, resulting in reduced network topologies consisting of interacting clusters rather
than individual stations. The main difference with chapter 4 is its scope: while chapter 4
focuses on geographical characterisation and the role of subregions in the larger system
dynamics, chapter 5 focuses on prediction. In particular, we address what the predefined
timetable and the network can tell us about how the dynamics evolve, while also using
geographical information.

The final chapter in this part, chapter 6, aims to find the causes and mechanisms
of large-scale disruptions, rather than focusing on their simulation. In contrast to chap-
ters 4 and 5, we propose a discrete-event model. In particular, we focus on how different
dynamical layers, i.e., the train service lines, the (physical) rolling stock and the crew, can
cause a cascade of delays that rapidly affects a large geographic area — a phenomenon
that can be a main driver of the observed large geographic spreading of delays in the
Netherlands when delays are severe enough. We show how this discrete-event model can
be used to diagnostically infer causes of past delays and show the impact of mitigation
measures of dispatchers changing the schedules of the aforementioned dynamical lay-
ers.

While chapters 4 and 5 explicitly search for the link between dynamics and the un-
derlying network (through topological analysis of the network and using it to explicitly
simulate the dynamics), chapter 6 reasons from a different perspective. There, delays are
not transported continuously as determined by (weighted) network aspects, but trans-
ported in a strongly anisotropic manner, fully favouring particular directions of spread,
neglecting possible other links in the network. That is, the delays follow the train line
routes, with certain additional spreads to other routes caused by transfers of rolling stock
and crew members. In other words, in chapter 6, delays do not spread in all possible di-
rections in the network. The realisation of this potential disconnection between network
and dynamics is in the case of railways already evident by the non-applicability of gen-
eral network metrics like degree and centrality to be descriptive for its dynamics, as is
also touched upon in the chapters 4-6 and at the end of this dissertation. Summarised,
the overarching question in these chapter is the following:
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Research question Part II: How can we investigate the interdependence of a
system’s dynamics and its underlying static network architecture?
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This chapter is published as: Dekker, M. M. (2021). 
Geographic delay characterization of railway 
systems. Scientific Reports, 11(1):1–13. 
Supplementary material to this chapter  
can be found in SI D.

CHAPTER 4

GEOGRAPHIC DELAY 
CHARACTERISATION  
OF RAILWAY SYSTEMS
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ABSTRACTABSTRACT

Railway systems provide pivotal support to modern societies, making their effi-
ciency and robustness important to ensure. However, these systems are sus-
ceptible to disruptions and delays, leading to accumulating economic damage. 
The large spatial scale of delay spreading typically make it difficult to distin-
guish which regions will ultimately be affected by an initial disruption, creating
uncertainty for risk assessment. In this chapter, we identify geographical 
structures that reflect how delay spreads through railway networks. We do so 
by proposing a graph-based, hybrid schedule and empirical-based model for 
delay propagation and apply spectral clustering. We apply the model to four 
European railway systems: the Netherlands, Germany, Switzerland and Italy. 
We characterise these geographical delay structures in the railway systems of 
these countries and interpret these regions in terms of delay severity and how 
dynamically disconnected they are from the rest. The method also allows us to 
point out important differences between these countries’ railway systems. For 
practitioners, such geographical characterisation of railways provides natural
boundaries for local decision-making structures and risk assessment.
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4.1 Introduction

Transport systems provide a core function to our society, moving passengers and goods
around the globe to allow for global trade, business and leisure. Efficient infrastructure
and mobility has been found important for economies to grow (Wbcsd, 2009). However,
at severe economic costs, the efficiency of many such systems is regularly affected by per-
turbations and subsequent spread of disruptions. Examples can be found in trade net-
works being affected by epidemics (Ivanov, 2020), earthquakes (Inoue and Todo, 2019)
or cyclones (Shughrue et al., 2020), energy and internet problems due to power outages
(Buldyrev et al., 2010), railway disruptions due to natural hazards (Dekker et al., 2021f,
2019; Bhatia et al., 2015; Ludvigsen and Klæboe, 2014) and many more. The economic
costs of such events, also on smaller scales, motivate scholars and practitioners to inves-
tigate the robustness and resilience of these systems to perturbations (Pagani et al., 2019;
Nogal et al., 2016; Ouyang et al., 2012), and to understand and predict subsequent evolu-
tion of perturbations (Goverde, 2010; Dekker and Panja, 2021). This chapter focuses on
understanding the structure of the evolution of such perturbations in a subset of trans-
port systems: railway systems.

Railway systems involve the on-time geographical transport of passengers or goods,
utilising resources (assets, like physical trains or crew) according to a predefined sched-
ule, from, via and towards nodes (e.g., stations) in a network, along certain routes or
tracks (edges). While the on-time dynamics are described in a pre-defined schedule, of
interest here are the temporal deviations from the schedule, which are referred to as de-
lays, calculated as the executed time minus the predefined time — in situations with no
delay at all, all resources run on time and no delay is present; hence, no perturbation or
associated dynamics is present. What sets apart railway systems from many other trans-
port systems, is their dependence on a detailed pre-determined system, in some coun-
tries even down to the particular assets used per activity (Dekker and Panja, 2021). This
attribute, in combination with usually high utilisation of existing capacity commonly
causes perturbations that are an interesting (and necessary) topic of study. In the remain-
der of this chapter, when we talk about ‘dynamics’ of railway systems, we actually refer
to the spreading and change of delays rather than the scheduled movement of the assets
— note that the latter is usually a well-optimised plan that contains, by construction,
little interacting elements (although the timetable itself may be prone to cascading-like
phenomena that in turn affect the delay dynamics (Dekker and Panja, 2021)).

The research on transport delays can be split into multiple parts. A first part focuses
on understanding the origin of initial perturbations, involving research on natural disas-
ters as mentioned above, but also on smaller-scale fluctuations of activity delays that may
give rise to systemic delay generation (Wen et al., 2019; Dekker et al., 2021f; Fleurquin
et al., 2013; Kecman and Goverde, 2015b). Oftentimes, these studies are case-specific,
due to the heterogeneous (and often external) nature of such initial perturbations. An-
other line of transport delay research focuses on prediction of delays: the simulation of
how a currently delayed situation will evolve to a (future) situation. Many kinds of ap-
proaches to this problem exist: micro simulation tools including a high level of detail
on each edge (Middelkoop and Loeve, 2006; Nash and Huerlimann, 2004), larger-scale
stochastic and analytic models both on the planning and realisation side (Goverde, 2010;
Schöbel, 2012; Fleurquin et al., 2013; Monechi et al., 2018; Dekker et al., 2021d), and
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in more recent years, machine learning or data-driven studies are contributing to the
field (Dekker et al., 2019; Kecman and Goverde, 2015a; Marković et al., 2015; Oneto et al.,
2018). A third branch of research involves the understanding of delay dynamics on a more
structural level: characterising the nature and (semi-)universal ‘laws’ without the specific
aim of prediction. For example, finding macroscopic nation-wide patterns in railway de-
lay (Dekker et al., 2019), characterising mechanisms of how trains pass delay onto other
assets (Monechi et al., 2018), how the interaction between crew, rolling stock and line
planning can lead to delay cascades (Dekker and Panja, 2021).

This chapter contributes to the third branch of transport (or railway) delay litera-
ture and focuses on the large spatial scale that is usually associated with these systems.
We aim to identify geographic regions that act as subsystems, partially independent in
terms of delays, and these clusters are reinterpreted in terms of their role in the global
system, which add to the understanding of the general structure of these often nation-
wide systems. The identification of such regions contributes to the overall understanding
of the dynamics of delays, providing answers to questions like ‘where is delay generally
generated, propagated through and attracted?’ and ‘what regions are dynamically near-
isolated and may be treated as such?’. These questions are useful for practitioners to not
only help in prediction methods, but also for more strategic decisions on infrastructure
planning and updates of future timetables.

Identifying substructures in complex systems such as railways is commonly done us-
ing clustering algorithms, with applications ranging from physics to ecology (Dam, A. van
et al., 2021), climate (Tantet et al., 2015) and even epidemics (Scarpino and Petri, 2019).
The wide variety of applications comes with a multitude of clustering methodologies.
Graph-based clustering is often based on random-walks and modularity-optimisation
principles (Newman, 2006), like the famous Louvain clustering method (Blondel et al.,
2008), or on spectral properties of core graph matrices (Luxburg, 2007). A famous data-
based clustering method is K -means (MacQueen, 1967), while many other methods ex-
ist. It is important to note the difference between identifying substructures in the net-
work topology alone, and doing so by accounting for spatial structures in dynamic pro-
cesses happening on top of the network topology. In this chapter, we focus on the latter,
using spectral clustering. The main reason for choosing spectral clustering as opposed
to any modularity-optimisation tool is that spectral modes and the shape of the eigen-
spectrum reveal more than just the detection of communities (as we see later in Fig. 4.3
of this chapter). But indeed, there are important advantages of modularity optimisation,
as well, such as the automatic optimisation of the number of detected clusters.

Also in transportation literature, clustering techniques have been applied, e.g., to as-
sist real-time management, operations and decision making (Chen, 2014; Yang et al.,
2017; Cerreto et al., 2018; Kadir et al., 2018). Other papers apply clustering tools on statis-
tical variables to identify general states in the system (Xia et al., 2012; Lin, 2019; Dekker
et al., 2019). Even though compartmentalising the geographical system based on ob-
served or simulated delay patterns is less common, it is not new, e.g. concerning the
identification of communities in cargo ships (Kaluza et al., 2010), assessing topological
properties in the Swiss railway network (Erath et al., 2009) or quantifying resilience in the
Indian railways (Bhatia et al., 2015). However, combining data on the dynamics of the
(delay of the) system, with data on the infrastructure has rarely been done in railway lit-
erature. This, and the subsequent interpretation of those found communities, is the goal
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of this chapter. It is important to emphasise that mere (topological) clustering of only
the infrastructure, neglecting all other dynamical and operational information, would
provide clusters that have less of an operational meaning: delay does not diffuse equally
along directions that are topologically equivalent. The relation between more general
diffusion dynamics among subregions in a networks has been investigated theoretically
before (Siudem and Hołyst, 2019), but to our knowledge, this has never been applied to
characterise dynamic structures in railway systems.

The chapter is structured as follows. The model and the associated clustering method
is discussed and applied to a fictitious transport network in section 4.2. In section 4.3, we
apply the methods to real data of four European railway systems and show the results of
the model and clustering. We interpret the clusters in terms of connectivity and role in
the country’s delay in section 4.4. We end with several conclusive remarks in section 4.5.

4.2 Methods

In this section, we build a graph-based model for delay dynamics based on infrastruc-
ture and empirical train delays. We start by separating the underlying infrastructure from
the delay dynamics that happens on top. The underlying infrastructure, consisting of
nodes, being stations or departure/arrival locations, and edges as the railway tracks be-
tween them, is assumed to remain invariant in this analysis — different from, for example
network perturbation analyses or node-failure transport problems (Bhatia et al., 2015;
Buldyrev et al., 2010; Pescaroli and Alexander, 2016). We henceforth use the term ‘nodes’
and ‘stations’ interchangeably. The aim of this chapter is to provide insights in the ge-
ographic aspects of delay propagation. To this end, we distinguish factors that result in
spatial non-uniformity: e.g., edges with a higher frequency of trains, fewer parallel tracks
and re-routing options, are more prone to propagate or amplify delay than other edges.
Rather than purely looking at the topology of the underlying infrastructure network, it is
such non-uniformity that defines weights of the edges that largely impact the resulting
spectral clustering. We note that there are also other types of non-uniformity in railway
systems that are not directly related to geography that are outside of the scope of this
chapter.

We distinguish two types of spatial non-uniformities: (1) those consequential to traf-
fic flows, as found in the timetable, and (2) those that are due to other effects, which we
infer from delay statistics. Traffic flows are static properties that affect delay propagation
and can be determined from the system’s timetable, e.g., (planned) running times and
resource travel frequency. These factors are used to imply what portion of existing delay
at a station is propagated in each possible direction. Spatial non-uniformities unrelated
to the timetable, in contrast, relate to dynamic factors affecting delays and are derived
from delay statistics rather than from the static (non-delayed) timetables. These factors
act as multipliers: if, from the timetable, we expect delay to be transported in a certain
direction, we use statistics to estimate whether it amplifies or dampens. Below, we build
a model where we define both of these factors.
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4.2.1 Spatial non-uniformity in traffic flows

Spatial non-uniformity in traffic flows comes from within the system’s internal prede-
fined properties, like the timetable. The intuition is that edges with more traffic propa-
gate delay more easily and busier routes involve more congestion. In particular, delays
are carried along with trains in the direction of their trajectories and nodes are more
easily affected by a neighbouring node’s delays if the link between them contains high-
frequent traffic, a mechanism that is commonly used in delay propagation models (Mon-
echi et al., 2018; Dekker et al., 2021d). We capture the spatial non-uniformity in traffic
flows by identifying the proportional direction of delay propagation from any node to-
wards each of its edges, using the relative frequencies f of trains. Another spatial non-
uniformity in the timetable concerns the fact that in some areas, the edges are very short,
leading to short running times τ. Combining these two factors of spatial non-uniformity
in traffic flows results in a single edge weighing factor α (see Fig. 4.1a) for each edge i j
between nodes i and j (i.e., i , j ∈ {1, ..., N } where N is the number of stations, and i and j
make a direct connection in the railway network):

αi j =
fi j ·τmin∑

j ′ fi j ′ ·τi
(4.1)

where τmin is the system-wide minimum running time. The factor τmin/τi therefore
reflects changes in the weights of α of all edges of node i based on its running times
relative to the minimum.

4.2.2 Spatial non-uniformity due to other effects

Besides spatial non-uniformity in traffic flows, there are also factors outside from the
timetable that increase or decrease delays, depending on the area in the railway net-
work. Examples of such factors are a large number of block signals, fewer parallel tracks,
speed limits, high volume of passengers (delaying boarding times), decreased vision and
increased chances of infrastructure problems or trees falling on tracks. In our model, we
derive these factors in an aggregated way from data by comparing delays of trains before
and after crossing every edge. Specifically, we determine the edge weighing factor βi j for
such spatial non-uniformities for each edge i j as follows:

βi j =
〈Di j

arr〉
〈Di j

dep〉
(4.2)

where 〈Di j
dep〉 and 〈Di j

arr〉 denote the observed average departure and arrival delays

of trains moving from node i to j (i.e., across edge i j ), respectively. In other words, it
quantifies how much delay changes along this edge: βi j < 1 indicates that delays are, on
average, decreased, while βi j > 1 indicates an average increase of delays when passing
through edge i j . (We take the averages in both the numerator and the denominator in
Eq. (4.2) to prevent near-zero arrival or departure delay times from strongly altering the
β value of the edge.) Examples and the intuition of β are illustrated in Fig. 4.1b.
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Figure 4.1: Panel (a): Illustration of the spatial non-uniformity in traffic flows α. Note that αi j also contains a
term concerning the running time of trains from i , but the proportions of all outgoing links from i remain in
tact; hence the description of αi j as the fraction of delay in i going to j . Panel (b): Illustration of the spatial
non-uniformity in delay statistics β. Panel (c): First non-trivial eigenvector of an example network where we
assumed β constant, and α only variant because of changing transport frequencies (denoted in edge width
and labels). Eigenvector coefficients are shown in node colours, from blue to red. Panel (d): Clustering of the
example network, where K = 3.

4.2.3 Model

The multiplications of the spatial non-uniformity factors α and β result in weights of
edges that reflect how delay geographically spreads through a railway network. This can
be viewed as a delay propagation model, although we never use it to actually simulate
delays — we use it to identify communities. The intuition of this model is as follows.
Consider two stations I and II, connected by edge i j . Given an initial delay of D0 at station
I, it can be deduced from the timetable that a fraction αi j of D0 is propagated towards
II — the rest, (1−αi j ) ·D0, either remains at I or travels towards other stations. During
the propagation of αi j ·D0 towards II, the delay is increased or decreased on edge i j by
a factor βi j . In other words, the delay arriving at II in the next time step is αi jβi j D0. We
generalise this reasoning by constructing the matrix M by element-wise multiplication
of the factors α and β for any pair of nodes i and j in the railway network:

Mi j =





αi jβi j if i , j are directly connected

1−∑
k αi kβi k if i = j

0 elsewhere

(4.3)

As we are mainly interested in the dynamics and direction of delay propagation, rather
than the absolute values of delay, we assume our model to conserve delay. This requires
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the matrix M to become row-stochastic, which is realised by defining the diagonal el-
ements as in Eq. (4.3) to be 1−∑

k αi kβi k . We refer to the matrix M as the dynamical
matrix, which, given a delay vector �D(t ) at time t , gives the delay vector at the next time
step t +∆t through the following multiplication:

�D(t +∆t ) = �D(t )+∆t ·M ·�D(t ) (4.4)

where ∆t refers to a time step, which is arbitrary and not of concern for the research
in this chapter. Both α and β are dimensionless and we only use M to find out structural
properties of the railway systems rather than for explicit delay modelling — i.e., even
though Eq. (4.4) illustrates an interpretation of M , we do not use this equation.

4.2.4 Properties of M

Many important model properties can be derived analytically from the row-stochastic
matrix M , and we focus our research to the properties of this matrix. (Note that M con-
tains averaged, time invariant, entries through the definitions of α and β and therefore
does not depend on time.) Any delay simulation done using M eventually ends up with

a ‘trivial’ delay vector with equal entries: �Di (t ) = �c at all nodes i , where �ci := c = �D(t0)
N

with N the total number of nodes. The trivial vector reflects that, given enough time, de-
lay is spread in all corners of the graph (assuming it being connected). The question of
how delay spreads in the transient is of interest to us, i.e., before this trivial solution. One
way of identifying structural properties of a graph-based model is to look at the spectral
modes. The intuition behind this is to find geographical delay patterns D that are persis-
tent, i.e. slow to diffuse. Such patterns reveal natural boundaries that delays might not
easily cross and geographical divisions into regions where delay is easily exchanged. In
2.5, we discuss how we use these spectral modes to define clusters. Mathematically, the
problem of finding spectral modes D is defined in the eigenproblem of matrix M :

M ·D =λD (4.5)

with eigenvectors D and eigenvalues λ. The closer λ is to 1, the slower the delay decay
in a (relative) delay distribution fixed by D (this follows directly from Eq. (4.5)) — i.e., the
more persistent is the geographical delay pattern D. In particular, there is one solution
with λ = 1 such that M ·D = 1 ·D, because M is row-stochastic. This is the aforemen-
tioned solution with constant coefficients, and corresponds to the first eigenvector. This
does not provide any insight in the dynamic structure of the system, and is referred to
as the ‘trivial’ eigenvector. The attribute of these eigenvectors being persistent, points to
dynamical connections among nodes with approximately equal coefficients in an eigen-
vector. In other words, the coefficients of the eigenvectors can be used to find clusters of
nodes that are have a dynamical connection, as we follow up on in the next section.

4.2.5 Clustering

The clustering is based on the coefficients of the eigenvectors. The defining property of
eigenvectors of M with eigenvalues close to 1 is that their coefficients are approximately
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conserved under multiplication with the matrix M , which through Eq. (4.4) defines the
change of any delay vector. In other words, geographic delay distributions following the
distribution of coefficients in an eigenvector are amplified over time. As illustrated in
Fig. 4.1c, it therefore makes sense to cluster eigenvector coefficients based on their value.
A single eigenvector provides interesting information already, which is why we propose a
spectral approach in this chapter. Combining multiple eigenvectors, however, allows us
to do the actual clustering. Let us assume that we are searching for K clusters (the ques-
tion of choosing K is addressed later). A common method of finding these clusters is by
creating a K -dimensional embedding based on the first K − 1 non-trivial eigenvectors
(as the first eigenvector is constant and does not add any information), and applying a
K -means algorithm to this space (Dam, A. van et al., 2021; Luxburg, 2007; Shi and Malik,
2000; Ng et al., 2002). Indeed, this results in K clusters that are based on the respective
differences between eigenvector coefficients. There are many more clustering methods,
with various advantages and disadvantages. The advantage of K -means clustering is that
it is one of the most well-known and intuitive Euclidean distance-based clustering meth-
ods. The disadvantage of K -means is that many implementations of the algorithm are
not deterministic, and that K is not automatically defined.

We derive an appropriate value of K based on a procedure referred to as the ‘eigen-
gap heuristic’ (Luxburg, 2007), which is based on the eigenvalue spectrum. High (near-1)
eigenvalues correspond to relatively persistent — and thus to us important — eigenvec-
tors �. Sudden ‘jumps’ in the eigenspectrum therefore point to a group of more important
eigenvectors (those with higher λ) and the rest of the spectrum (those with lower λ) and
can thus be used to distinguish which eigenvectors are therefore of interest. Assuming an
equal number of clusters one can distinguish with this set of eigenvectors (although the
trivial eigenvector is not useful in this analysis), the largest ‘eigengap’ in the eigenspec-
trum defines K . Having a maximum number of desired clusters (in the remained of this
chapter, we use Kmax = 15), results in:

K = max15
i=2{λi−1 −λi } (4.6)

Summarised: we start with the eigendecomposition (Eq. (4.5)), then from the eigen-
value spectrum we determine K , we continue by constructing the K −1-dimensional em-
bedding with the first K −1 non-trivial eigenvectors (the minus-1 stems from excluding
the trivial eigenvector), and apply K -means to the coefficients in this space. This results
in K clusters.

4.2.6 Toy example

We illustrate the model and associated clustering in a fictitious transport system con-
sisting of 10 nodes and 14 edges in Fig. 4.1c-d. Trains go from node to node in a net-
worked manner and their (bidirectional) frequencies are denoted in numbers on each
edge, creating geographical differences in α. The factor β is assumed here to be constant:
β = β0 = 1. The resulting M matrix gives the first non-trivial eigenvector as displayed in
colours in the nodes in Fig. 4.1c. By eye already, one can distinguish the red coloured
nodes (coefficients > 0) from the the blue coloured nodes (coefficients < 0), which also
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makes sense dynamically: even though connections between nodes 4 and 6, and between
2 and 8 exist, they are much weaker than the interconnections between nodes 1-5, and
subsequently do not bring the coefficients (i.e., of 4/6 and 2/8) of the first eigenvector
close together. It turns out that for this system, K = 3. The resulting clustering is found
in Fig. 4.1d, confirming our observations by eye on the coefficient separation in Fig. 4.1c:
the algorithm groups the interconnected region of 1-5. It also distinguishes nodes 6 and
7 from 8-10, as a result from the strong connection between 6 and 7. While this is only a
fictitious toy network, in the following sections, we apply the same algorithm to real and
much larger transport networks.

4.3 Application to European railway systems

We apply the algorithm to data of nation-wide railway systems of four European coun-
tries: the Netherlands, Italy, Germany and Switzerland. We have chosen these systems
based on their relative comparability: railways in the United States, for example, have
a strong emphasis on cargo transport (in contrast to European railways, having more
emphasis on passengers) affecting frequency and regularity of the timetables, and even
various topological aspects. Another example is the Chinese railway system, differing
from European systems in terms of scale: having fewer stations (per unit area) and much
longer running times. Hence, for the illustration of the methods in this chapter, we fo-
cus on four railway systems that are relatively comparable, but still have smaller cross-
differences. We start this section by elaborating on the data itself and topological proper-
ties of these systems, after which we present the spectral results of the M matrix for every
of these four systems. We end this chapter with showing the resulting clusters.

4.3.1 Data

We utilize operational data from the Dutch, Italian, German and Swiss railway systems,
including data on infrastructure, schedules (used to determine the values of αi j for ev-
ery edge i j ) and realized delay data (used to determine the values of βi j ). Details on the
source and cleaning of the data can be found in SI D. The data contains departure and
arrival times, locations and their delays, per unique train number, along with infrastruc-
ture information on stations, their connections and longitude-latitude data. We obtain
daily average variables like frequencies and running times by looking at periods of 16 to
31 days (depending on the country, see SI D). Frequency is computed as average number
of trains per hour by summing the daily number and dividing by 24. A minimum value
of 1 minute running time (in hours) is taken: i.e., lower average running times are ap-
proximated to 1 minute. In Tab. 4.1, an overview of several static properties of the railway
systems is given. Insights in the networks themselves is supported by also showing two
network metrics: the average degree, which refers to the average number of links each
node has, and the average betweenness, which is the fraction of shortest paths between
all pairs of nodes that pass through a respective node, averaged over all nodes.

In Tab. 4.1, we can see several differences across the four systems. When interpreting
these numbers, it is good to emphasise that the distance between nodes and the level of
detail varies across the four datasets: for example, in the Netherlands, the data is more
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Variable Netherlands Germany Switzerland Italy
# connected nodes 658 5815 1346 2201
# edges 1438 15764 3827 6683
Average degree 2.26 2.90 2.56 3.26
Average betweenness 0.048 0.0052 0.0095 0.013
Average daily # train activities per node 173 20.54 102.35 22.47
Average daily # unique service lines per node 10.8 2.2 10.3 2.8
Average α* 0.201 0.117 0.132 0.067
Average β* 1.009 0.974 0.837 0.991

Table 4.1: General overview of the four countries assessed in this chapter. Node numbers are determined after
removal of nodes that are not connected to the giant component. *Here, we show the average non-diagonal α
and β values.

detailed the level of passenger stations: there are sensors near the tracks (also outside of
stations) that log whether trains are passing by. This level of resolution is higher for the
Dutch case than in the other sets, affecting static properties of the system like reducing
average running time between edges or average degree, for example. (This resolution dif-
ference will not affect cross-system comparisons in later figures.) But even when taking
this note into account, we conclude that the German railway system is clearly the largest,
in terms of both nodes and edges. The low average degree and high average betweenness
in the Netherlands can be explained by the fact that it includes many degree-2 nodes se-
quential on a line (by construction, but partly also due to the high resolution of the data),
rather than having larger hubs that are interconnected.

Figure 4.2: Normalised histograms of occurrence of α and β values in the four analysed countries, excluding
diagonal elements of the α and β matrices. In panel (a), the vertical lines indicate fractions of 1, marking α

values that are associated with proportional train frequencies or integer-minute running times.

From a dynamical perspective, the values about service lines and train activities are
more relevant. Service lines are defined as single-direction trips from a starting station
to an ending station (commonly at the other side of the country), crossing various in-
between stations. These lines are denoted with a unique number and are important ad-
vectors of delay (Dekker and Panja, 2021), which is why their structure is important for
railway dynamics. The smaller systems (Switzerland and the Netherlands) clearly dom-
inate with respectively 10.3 and 10.8 unique lines per node, in comparison to Germany
and Italy, having values of 2.2 and 2.8 respectively. This reflects the dynamically denser
nature of the Dutch and Swiss railway systems, and is confirmed in the higher number of
daily train activities per node (102-173 for the Netherlands and Switzerland as opposed
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to 20-22 for Italy and Germany).
The average α and β values also have an important meaning. They are proxies for

the density of trains — modulated by frequency and running time — and statistical delay
increases (on edges), respectively. A relatively high α in the Netherlands and, to lesser
extent, Switzerland depicts relatively high train density between stations and tracks of
degree-2 nodes to prevent scheduled fragmentation of delay spread. The β values are
like a railway edge-performance metric: the lower, the less delay is increased along its
edges. Interestingly, the dense, highly utilised Swiss railway network performs best when
looking at these numbers, having an average β of 0.84. (Note that for a full performance
comparison among these railway systems, one should statistically correct for a number
of factors like delay changes within nodes, which is not included here.) The histograms
of α and β of the four countries are shown in Fig. 4.2a and b, respectively. In several
countries, α values correspond to integer-fractions of one: 1/2, 1/3, 1/4, etc., reflecting
integer-minute running times on tracks where only 1 line is traveling, or the respective
proportions as calculated from the relative train frequencies (see Fig. 4.1a). This is most
notable in Switzerland and the Netherlands, where we expect such short tracks (of 1, 2,
3, 4 or 5 minutes running time) and many degree-2 nodes to exist, because of the high
density of these railway systems. The Italian system has more lower values of α than the
other countries (with the Dutch system having the fewest), corresponding to either tracks
connected to nodes with trains in many (other) directions, or tracks with large average
running times. In panel (b), the distributions of β are wrapped around 1, correspond-
ing to no significant average change in delay on these tracks. Furthermore, we see that
Switzerland has more β values lower than 1 in comparison to other countries — the latter
two mainly having values of β close to 1.

4.3.2 Spectral results

From the values of α and β, we determine the matrix M using Eq. (4.3). Fig. 4.3 shows the
first non-trivial (i.e., second) eigenvectors of the four countries in panels (a)-(d), and the
associated eigenspectra in panel (e) (with a normalised horizontal scale).

The coefficients of the first non-trivial eigenvector in all four countries show a dipole-
like structure. In the Netherlands (Fig. 4.3a), the coefficients depict a north-south gra-
dient, highlighting a northern region (near Groningen) in negative coefficients and the
south (towards Maastricht) in positive coefficients, with a better connected centre in be-
tween, including cities like Rotterdam and Amsterdam. The Italian coefficients (Fig. 4.3b)
also show a north-south gradient. Germany (Fig. 4.3c) shows a clear separation of the
area south of Frankfurt (including cities like Karlsruhe and Stuttgart) in red. Apparently,
this area may have persistent delays that are less easily exchanged with the rest of the
country. The Swiss graph (Fig. 4.3d) shows, like in the Dutch and Italian case, a geo-
graphic gradient: from east to west, highlighting the south including the cities of Geneva,
Lausanne and Sion on the west.

Figure 4.3d shows the eigenspectra of the four countries, with a normalised horizon-
tal axis to compare the spectra independent of network size. The eigenvalues are rela-
tively high. The slow decrease of the eigenspectra indicates that these are not strongly
disconnected clusters. The relatively faster decrease of the Dutch eigenspectrum reveals
that in the weighted network spun by M , the delay changes in Dutch railway system is
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Figure 4.3: Panel (a)-(d): First non-trivial eigenvectors of the M matrix, for the four European railway systems:
(a) the Netherlands, (b) Italy, (c) Germany and (d) Switzerland. As absolute values of the coefficients are not
relevant (only their relative magnitude to other ones in the same country are relevant), the colourbar and coef-
ficients are shown normalised. Several important cities are annotated by black stars. Panel (e): Eigenspectra of
the four countries, with normalised horizontal axis.

more strongly dominated by the first few components, as opposed to others. This reflects
that the first K eigenvector are better suited for compartmentalising the Dutch railways
into subregions, than they are for other countries.

The (simple) dipolic structure of these eigenvectors and the fact that there are many
high-value eigenvalues in the spectrum both point to the need of multiple eigenvectors
to obtain a more refined view of dynamic structures in these networks.

4.3.3 Clustering results

Using the eigengap heuristic and the eigenspectra in Fig. 4.3d, we determine K — the
number of clusters to search for, and the dimension of the embedding (see Sec. 4.2.5).
Subsequently, we apply the K -means clustering algorithm to the eigenspace and find the
clusters shown in Fig. 4.4, with the geographic locations of the clusters in panels (a)-(d)
and abstracted networks (including delay exchange in the arrow widths) in panels (e)-(h).

In general, a total of 10, 11, 9 and 10 clusters are found in the railway systems of the
Netherlands, Italy, Germany and Switzerland, respectively. By nature of the planar (2D-)
structure of railway networks, the clusters are geographical intraconnected regions. In
the Netherlands (Fig. 4.4a), the country is cut up in mostly equal-sized regions, with
exceptions of smaller clusters (2, 5, 9) at the edges of the country (e.g. in the rural ar-
eas of Zeeland in the south-west, Limburg in the south, and a poorly connected part in
the north-east) — probably as a result of service lines being less frequent and more dis-
connected from the centre of the country in these areas. Easily spotted are the central
cluster 1, including the major cities of Amsterdam and Utrecht, and cluster 3, including
Rotterdam, together including most of the so-called ‘Randstad’, the most urbanised and
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Figure 4.4: Panel (a)-(d): Clusters in the four European railway systems as found using K -means on the em-
bedding built by the first K −1 non-trivial eigenvectors of the matrix M (where K is found using the eigengap
heuristic). In particular, K equals respectively 10, 11, 9 and 10 for these four countries. Panel (e)-(h): Abstracted
versions of upper panels, reflecting the clusters and their connections. Arrows indicate connectivity between
clusters in terms of α and β — the elements of M . The arrow width depicts the total sum of elements of M
directed from one cluster to another. Node sizes reflect number of railway stations in each cluster.

transport-heavy area of the Netherlands. The clustering in Italy (Fig. 4.4b) also subdi-
vides the country into more-or-less equal areas, with some exceptions of small clusters
in the far north and south (clusters 5, 6, 10). Three notable clusters can be identified, in-
cluding important Italian cities: 1, being the largest with Milan and Turin, 11, including
most of Tuscany and Bologna, and 4, including Rome. The island of Sicily is only weakly
connected to the rest via a train ferry at the city of Messina, and the island is further sub-
divided into two other clusters. Germany (Fig. 4.4c), in contrast, is subdivided in only 9
clusters (although being the largest railway system among these four) that are not equal
in size: clusters 1, 2, 6 and 8 add up to than 85% of the country, including several foreign
tracks. Cluster 6 almost perfectly coincides with the German federal states (‘Bundeslän-
der’) of Nordrhein-Westfalen, Hessen and Rheinland-Pfalz, while cluster 1 covers most
central-eastern states (these Bundeslände are also used in operations by the dominant
railway company, Deutsche Bahn). Several much smaller clusters can be found in the
south: clusters 4, 5 and 7, even being foreign (non-German) clusters and hence not of
importance here. The large size of the clusters reflect that railway transport on the tracks
are generally well distributed, travel long distances, and are less regional. The Swiss parti-
tioning (Fig. 4.4d) results in rather small, intricately connected clusters (as is also visible
in the abstracted graph in Fig. 4.4h). Several major urban areas can be recognised like
the Geneva-Lausanne area (cluster 4) and the area around Bern (cluster 4), while the
area around Zürich is divided into two clusters (cluster 1 and 2).

In the abstracted plots (panels (e)-(h)), the arrows and their widths provide informa-
tion on the general flow of delay, proxied by the elements of M : thick arrows mean more
(and larger) elements of M between these clusters, indicating stronger pathways of delay
propagation as dictated by the α and β values, while small arrows mean the opposite.
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The Netherlands has a relatively well connected dynamical core in its centre: exchanging
most delay among the four clusters 1, 3, 4 and 8, containing several major transport cor-
ridors for both passengers and freight. The Italian plot indicates that most exchange is in
the centre and north, between clusters 1, 8, 11, 4 and 7, reflecting touristic and urbanised
areas, possibly leading to well-connected railway operations. The German clusters are
mostly connected in the west and south: forming a strong bond between 2 and 6 in par-
ticular, reflecting some international transport and core lines from Cologne and Frank-
furt to Stuttgart. The core connections of the clusters in Switzerland are mostly along the
northern border, connecting the cities of Bern and Zürich.

4.4 Interpretation and relation to daily operations

The clusters reflect regions where delay is expected to to be propagated within the clus-
ter, and less so towards outside of the cluster, incorporating the two factors of spatial non-
uniformity. This section is devoted to interpret and understand the relevance of these
clusters in terms of the delay and daily operations. We start by defining two metrics that
allow such interpretation and apply them to the clusters found in Fig. 4.4. Subsequently,
we compare the four countries and their clusters in terms of these metrics.

4.4.1 Metrics to interpret clusters

To find the operational and dynamical meaning of the clusters found in Fig. 4.4, we first
define a few relevant quantities that we later combine into two cluster-characterising
metrics. We attribute any train’s delay to its departure location. The first quantity is the
total delay Dtotal from stations in the cluster. Second, we determine the internal delays
Dint: delays of trains departing and arriving within the cluster. Third, exported delays
Dexp of trains departing from within the cluster, but arriving in another, are computed.
And fourth, the imported delays Dimp of trains departing from another cluster, arriving
inside the analysed cluster. The following relation holds: Dtotal = Dint +Dexp. With these
quantities, we compute two metrics which allow for easy interpretation of the clusters:
(1) their fraction of the country-wide delays, measured by the cluster severity and (2) their
dynamical (dis-)connectedness to other clusters, proxied by the cluster independence.

Cluster severity S(n) for any cluster n is the ratio of Dtotal of cluster n to the average
Dtotal over all clusters:

S(n) = Dtotal(n)
1
N

∑N
i Dtotal(i )

(4.7)

with N being the total number of clusters. So, if S(n) > 1, the cluster covers an above-
average part of the delays in the country, and vice versa. This does not incorporate cluster
size, meaning that if all stations cover equal amounts of delay, larger clusters immediately
have larger values of S(n). We have chosen to not account for cluster size to make S(n) a
property of the cluster as a whole, make it better interpretable and relate to the practical
use of the metric: small clusters might otherwise attain very high values of S(n) while in
practice not that dominant in delay.
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Cluster independence I (n) for any cluster n is defined as the ratio between delays
exchanged internally in the cluster, w.r.t. the delays exchanged with other clusters:

I (n) = Dint(n)�
G(n) · (Dimp(n)+Dexp(n))

(4.8)

where G(n) is the number of nodes in cluster n. The factor 1�
G(n)

is included to counteract

the bias that larger clusters automatically have more internal delays (Dint(n)) than they
exchange with neighbouring clusters (Dimp(n)+Dexp(n)). We assume here that the total
internal delay grows with the number of stations in the cluster (e.g., Dint(n) ∝G(n)) and
that the delay exchange grows with the square root of that (e.g., Dint(n) ∝ �

G(n)) —
much like the area of a circle grows with the radius squared, but the circumference merely
grows with the radius.

Note that we do account for the cluster size bias in I (n), but not in S(n). This might
seem inconsistent. However, S(n) is already normalised by the average value of total de-
lays in the clusters, while I (n) is not a normalised value. The quotient of internal delays
versus delay exchange (i.e., I (n) ·�G(n)) will vary greatly and therefore, adding

�
G(n) as

a normalisation factor benefits the interpretation of I (n) to be this quotient relative to
the cluster size. More specifically, the resulting interpretation would be that I (n) = 1 for
all clusters where the internal delays are exactly

�
G(n) as large as the delay exchange, al-

lowing a cross-comparison of large and smaller delays. Note that we proxy (and refer to)
dynamical ‘connectedness’ with I (n), which formally only measures the amount of de-
lay exchange with surrounding clusters. In the text, this terminology is interchangeably
used.

The metrics S(n) and I (n) both surround values of 1: values lower than 1 depict clus-
ters that cover a less-than-average delays and are well-connected, respectively, and val-
ues higher than 1 reflect clusters with more-than-average delays and that are less con-
nected. This allows to split the I (n)−S(n) plane into four parts, that can be used to in-
terpret the clusters. Four cluster categories can be distinguished, as displayed in Tab. 4.2:
named for easier reference Type A, Type B, Type C and Type D clusters.

S(n) < 1 S(n) > 1

I (n) > 1 Type A: Type B:
less delay exchanged with other clusters less delay exchanged with other clusters

small amounts of originating delay large amounts of originating delay
I (n) < 1 Type C: Type D:

more delay exchanged with other clusters more delay exchanged with other clusters
small amounts of originating delay large amounts of originating delay

Table 4.2: Cluster categories in the I (n)−S(n) plane.

4.4.2 Metric results

The values of I (n) and S(n) for all clusters n across the four countries (in colours) are
plotted in Fig. 4.5 (a few clusters with too little data to estimate I (n) and S(n) well are left
out). The numbers in each circle refer to the numbers in Fig. 4.4.
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The panels (a) and (b) allow for both an in-country comparison of the clusters as well
as a cross-country comparison of the spread of the I (n) and S(n) values. In panel (a),
the immediate observation is the relatively low I (n) values in Switzerland in contrast to
relatively high values in the Netherlands, with Germany and Italy approximately in be-
tween. Apparently, many clusters in the Swiss system exchange more delays with other
clusters than they have internally. This may be a consequence of the fact that this rela-
tively small country has many trains connecting clusters, rather than travelling in a sep-
arated space. This points to a potential source of vulnerability: delay can quickly spread
across the country. Looking more closely to the cluster numbers within each country, we
can find mostly urban and central areas having low I (n) values and regions place at the
edges of the country having higher I (n) values. Examples are the area of Zürich, Bern
and Lausanne (numbers 2, 3, 4) having low-I (n) in Switzerland, while the Milan region
(1) and several regions at the edges (Sicily and far north) in Italy have much higher I (n)
values. In the Netherlands, the highest I (n) values are found in rural areas in the north
and south. An exception seems to be Germany, where clusters 1 and 6 are so large that
they convey well-separated, but urban areas.

The S(n) values in panel (b) are by definition spread around the value of S(n) = 1,
because S(n) is normalised by its average (Eq. (4.7)). Still, the spread provides valuable
information on these countries. While the Swiss clusters are relatively well spread across
the average, the German systems have a few clear outliers on both sides: the southern
border (4 and 7) clearly having the smallest fraction of delays, whereas the area around
Köln (6) has the largest fraction of delays. Both Italy and the Netherlands show many
clusters in the low-S(n) domain, with a few outliers with high S(n) values, mostly in the
bigger cities — Amsterdam, Utrecht and Rotterdam (1 and 3) in the Netherlands, and
Milan (1) in Italy.

In panel (c), the clusters are shown in the combined I (n)− S(n) plane. The top-left
quadrant (Type A clusters) mainly comprises Dutch and Italian rural clusters, such as the
far north or south in these countries: the areas of Friesland and Limburg in the Nether-
lands and Sicilian and northern areas in Italy. The rural nature of clusters in this category
is no surprise, as their periphery-located position in the network make them usually less
connected with the rest (i.e., high I (n)) and less prone to delays (i.e., low S(n)). The Type
B clusters (I (n),S(n) > 1) are mainly found in Germany, with the busy, well-connected
areas around Berlin, Köln and Hamburg. One other notable cluster is the urban Milan
region in the north of Italy (cluster 6), clearly separated from other Italian clusters. At
the bottom-left we see the Type C clusters, containing several German, Swiss and Italian
clusters that are quite well connected, but play less of a role in the total delay. The Type D
clusters (bottom-right), are mainly found in Switzerland, interpreted as well-connected
clusters that also play a large role in the total delay. The Swiss Type D clusters are the
relatively urban regions in this country around Zürich and Bern.

Summarised, comparing countries in the I (n)− S(n) plane reveals that Switzerland
generally has low values of I (n), implicating the strong connectivity of this railway net-
work. Germany is not really represented in the Type A and Type D categories, and is well
represented in Type B. This may reflect that German delays are usually quite compart-
mental: large delays may arise but these large clusters mainly keep these delays within.
The Italian and Dutch clusters show a large spread for values S(n) < 1, and several clus-
ters around I (n) = 1,S(n) > 1. There seem to be a few clusters in both of these countries
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that determine a disproportionally large amount of the total delay (high S(n)), but these
clusters have an average connection with the rest of the country (unlike several German
clusters). Overall, the patterns in Fig. 4.5 seem to relate to operational characteristics,
topological embedding in the general railway network and even urban differences across
the clusters.

4.5 Conclusion

To find geographical delay structures that have a dynamical meaning in railway systems,
we developed a graph-based model and proposed a method to use spectral properties of
this model to characterise the railway systems’ delay dynamics geographically.

In particular, combining spatial non-uniformity factors that can be derived from the
timetable and from statistics, all model information is encapsulated in the dynamical
matrix M whose spectral properties can be used to compartmentalise any transport sys-
tem’s geographical network into clusters. We analyse four European nation-wide railway
systems: the Netherlands, Italy, Germany and Switzerland. Both infrastructural and op-
erational data are used, revealing dynamic properties of the four countries (Tab. 4.1) —
making an interesting comparison in itself — and an optimal partition. The clusters vary
in size and are connected in different ways to the nation-wide networks, resulting in the
identification of core, central clusters and peripheric, near-disconnected clusters. The
operational meaning of the clusters is expressed in two variables: cluster independence
I (n), reflecting the dynamical (dis-)connectedness of the cluster to the rest of the coun-
try, and cluster severity S(n), reflecting the fraction of delay the cluster is responsible for.
This leads to the classification of four cluster types, showing that high-S(n) values are
usually obtained by the more urban and dense clusters (e.g., high values relating to busy
areas like the region around Milan, Zürich, Frankfurt and Amsterdam), and that I (n) is
partially distinguishes rural regions from central regions, but is partially also affected by
how a country is operationally handled.

Throughout the chapter, various comparisons have been made between these four
countries, revealing the Netherlands and Switzerland to be dynamically dense railway
networks (i.e., having high utilisation of their tracks), while Germany and Italy are much
larger and sparser networks. Shorter steps between (logging) stations make the edges on
average small in the Netherlands, with the longest edges in Italy. The clusters in Switzer-
land show low values of I (n), depicting a strong interconnectedness among them. The
Italian S(n) is dominated by the Milan region, with almost all other regions having S(n) <
1. The upper-right corner of the I (n),S(n) plane is dominated by several German clusters
near Hamburg, Berlin and Köln.

The matrix M consists of quantities α and β that are based on average quantities:
single values per edge of the railway networks. It should be noted that, in reality, many
ingredients of these quantities, such as running times, train frequency (in Eq. (4.1)) and
the delay statistics in En. (4.2) may vary significantly over time and per train. Also the
spatial non-uniformity factor β derived from delay statistics is dependent on seasonality
and weather. Working with average quantities limits the potential of simulating specific
instances of delays. Additionally, the model does not incorporate node-specific aspects
built in the timetable, such as dwell time supplements and buffer times — the model
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rather focuses on spatial non-uniformity on the edges to assess the directions and speed
of delay propagation. These limitations assert that this model should not primarily be
used for prediction purposes, but rather to gain time-average and system-wide under-
standing of geographic delay evolution.

Railways, by schedule, have long-stretched service lines going from one side of the
country to the other. Per definition, this means that perturbations quickly pass through
large parts of the country, as is also reflected in the high eigenvalues of M (Fig. 4.3). The
structure of the dynamics therefore does not favour partition much, and care should be
taken into separating them too strongly in the interpretation of Figs. 4.4 and 4.5. Still,
compartmentalisation is an important topic in railways, in particular when it comes
to defining regions to subdivide operations and dispatching. The proposed clustering
should therefore be viewed more as a statistical average, or a composite of dynamic
modes, rather than a full geographical segregation of delays. For future research, the con-
nection and strength between the found clusters should be compared with delay prop-
agation on a larger spatial scale: the relation between regional effects and nation-wide
effects is still an important unresolved topic in transport literature. This work brings us
one step closer to a solution.

For both scholars and railway practitioners, these results shape deeper understand-
ing of how their railway systems work, how they differ from each other, and how regions
with these systems each play a unique role. While the country-by-country statistics in
Fig. 4.2 and Tab. 4.1 add to system-wide insights, the clustering in Fig. 4.4 may help prac-
titioners to find boundaries when aiming to subdivide countries into smaller operational
regions. Connections among the clusters may inform railway operators of statistically av-
erage directions of delay flows. And the characterisation of the clusters by I (n) and S(n)
in Fig. 4.5 provides insights in how analogies between countries and regions can and
cannot be made, and how different regions play different roles. For scholars, the con-
struction and subsequent clustering of the M matrix is a simple procedure and can be
generalised to many other transport systems, beyond railways alone. While delay is a
quantity strictly bound towards a predefined transport schedule, in theory many other
dynamic variables on networks can be analysed in the same manner. We believe that the
presented methodology and results for the European countries contributes to deeper un-
derstanding of these systems, and we hope that this chapter ignites more research in the
relation between regional effects and nation-wide effects in transport systems.
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ABSTRACTABSTRACT

Railway systems form an important means of transport across the world. How-
ever, congestions or disruptions may significantly decrease these systems’ 
efficiencies, making predicting and understanding the resulting train delays a 
priority for railway organisations. Delays are studied in a wide variety of models, 
which usually simulate trains as discrete agents carrying delays. In contrast, in 
this chapter, we define a novel model for studying delays, where they spread 
across the railway network via a diffusion-like process. This type of modelling 
has various advantages such as quick computation and ease of applying var-
ious statistical tools like spectral methods, but it also comes with limitations 
related to the directional and discrete nature of delays and the trains carrying 
them. We apply the model to the Belgian railways and study its performance in 
simulating the delay propagation in severely disrupted railway situations. In 
particular, we discuss the role of spatial aggregation by proposing to cluster 
the Belgian railway system into sets of stations and adapt the model accord-
ingly. We find that such aggregation significantly increases themodel’s per-
formance. For some particular situations, a non-trivial optimal level of spatial 
resolution is found on which the model performs best. Our results show the 
potential of this type of delay modelling to understand large-scale properties 
of railway systems.
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5.1 Introduction

Railway systems are of vital importance for transporting passengers and goods. The trains
in these systems travel via predefined schedules that allow for highly efficient utilisation
of the routes and tracks. Temporal deviations from such scheduled operations are com-
monplace. They take the form of delays and decrease the system’s efficiency. Small delays
are often absorbed by built-in buffers and therefore do not have effects on larger scales
(Zieger et al., 2018; Dekker and Panja, 2021). However, from time to time, logistic dis-
ruptions — often caused by external factors like weather — lead to congestion or even
a large-scale stand-still, with detrimental costs to society and economy (Ludvigsen and
Klæboe, 2014; Tsuchiya et al., 2007; Büchel et al., 2020; Dekker et al., 2021f).

The above shows the importance of better understanding of delay propagation and
its prediction. A large variety of delay propagation models exists, and the choice of the
approach depends on a number of questions related to, among other factors, the spatial
focus, availability of data and the delay severity. For example, when aiming to accurately
predict the delay in a geographically confined area, there are high-performing statistical
models (Kecman and Goverde, 2015b; Li et al., 2016). However, such statistics generally
only work accurately in circumstances where delay is not too severe — as per definition
these highly delayed scenarios are exceptional. Also, when upscaling to larger areas, long-
range interactions and associated correlations come into play which may be difficult to
account for when using average statistics. Larger scales and more highly delayed scenar-
ios are therefore often analysed with machine learning or big-data approaches (Dekker
et al., 2019; Oneto et al., 2018), but at the cost of understanding cause-and-effect or fine
spatial resolution. Alternatives to such purely data-driven methods can be found in mod-
els where mechanisms of delay propagation are explicitly implemented. For example,
Monechi et al. (2018) analysed the German and Italian railways and found a set of ‘laws’
that drive the spreading of delays, analogous to epidemic spreading models.

Of course, the infrastructure networks underlying the dynamical processes in any of
the mentioned models play an important constraining role. However, this information is
already embedded in the schedules and therefore less discussed in the context of delay
simulations. However, the role of railway network topology is addressed by various schol-
ars in relation to resilience properties (Sen et al., 2003; Erath et al., 2009; Bhatia et al.,
2015). Most models are based on the schedules of the railway system, commonly using
trains as agents that have the potential to carry delays. The perspective of delays as a
properties of discrete trains or events can be found in many analytical models (Goverde,
2010; Gambardella et al., 2002; Büker and Seybold, 2012; Harrod et al., 2019; Dekker and
Panja, 2021), using either deterministic or stochastic techniques to derive future delays
from past information. Because of the abundance of this perspective in existing delay
propagation models, we refer to the view of delays as properties of discrete trains or
events as the ‘traditional view’. In contrast, one could also view delays as variables asso-
ciated not to trains, but to the nodes (stations) and edges of the railway network, which
stay in the same position. How delay spreads between these nodes does not have to be
described in terms of discrete trains and events, but instead a description may rely solely
on general (or even system-wide) quantities such as the network topology and schedule.
One can make the analogy of fluid dynamics: while traditionally, delays are treated as La-
grangian particles (i.e., following the trains as the fluid carrying the particles), we propose
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to treat delays from an Eulerian point of view (i.e., determining incoming and outgoing
delays in a fixed spatial frame). This is also discussed in Dekker and Panja (2019). This is
the basis of the model proposed in this chapter.

The traditional view of delays as discrete quantities of explicitly modelled trains or
events is useful because it allows for tracking expected routes of delays along the train’s
trajectories explicitly. In other words, given that you know that delay is in the system at
location A, it is unlikely to spread in all possible directions from A, but more likely to fol-
low a particular direction that is dependent on which trains are exactly affected. One only
knows this direction if discrete train units (and their trajectories) are explicitly included
in the model. But there are also disadvantages of such models. One limitation is that
many such models rely on many statistics in addition to mere schedule information. For
example, if trains A, B and C are simulated explicitly, the interactions of all their events
and relative magnitudes of their delays have an impact on each other’s delays. These rela-
tions need to be well studied using for example neural networks (Oneto et al., 2017, 2018)
or probability updating (Corman and Kecman, 2018; Berger et al., 2011). Another limiting
consideration of treating delays as discrete quantities is the spatial scale. In confined sys-
tems, the mechanisms of delay propagation and their parameters can be well-defined, as
in Kecman and Goverde (2015b). Defining all such interactions on a country-wide scale
is generally more more complex, due to potential long-range correlations.

In this chapter, we propose to treat delays not as bound by discrete trains or events,
but rather as continuously spreading across the infrastructure network. The spreading
between nodes of the network is weighted by properties of the system. The intuition be-
hind these models is that on average — in a ‘mean-field approximation’ — these pa-
rameters drive the overall direction of delay propagation. We refer to this way of treating
delay propagation as ‘diffusion-like spreading’. Small-scale accuracy is traded for larger
scale accuracy: when looking at a micro-scale or individual trains, we expect this non-
traditional way of dealing with delays to be less accurate than more detailed models, but
on a large scale, we expect the performance of such a model to increase. As is shown in
section 5.2, the model contains only simple schedule information (e.g., train frequencies
and travel times) rather than complicated statistics, and all model information is embed-
ded in a single matrix, which makes analysis of the system’s properties easy. The men-
tioned reasons motivate us to write this chapter on delay propagation as a diffusion-like
spreading mechanism. We apply our proposed model to the Belgian railways as a case
study to discuss when and how it is advantageous to use such models.

An important aspect of delay propagation in general is the spatial scale and reso-
lution of the analysis. High resolution (‘micro-scale’) modelling allows for explicit sim-
ulation of infrastructure capacity issues, the role of speed gradients or the identifica-
tion of station-specific properties, for example. Low resolution, but large-scale (‘macro-
scale’) modelling captures the impact of long-range interactions related to resource al-
location (Dekker and Panja, 2021), the impact of long train lines (Dekker et al., 2019) or
other system-wide properties. Many models lie between these extremes. Diffusion-like
models should typically be regarded as having a lower resolution but working well on a
larger scale, because of the earlier mentioned trade of small-scale accuracy for larger-
scale accuracy. Spatial resolution is often expressed by treating railway infrastructure
as a network, consisting of nodes (geographical locations) and edges (connections be-
tween them). At the highest spatial resolution, the nodes are certain control points in
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stations and tracks, where train activities are logged (Dekker and Panja, 2021). More com-
monly is a slightly aggregated version of this, namely the more coarse passenger stations
(Bhatia et al., 2015; Goverde, 2010; Monechi et al., 2018). Lower resolutions are obtained
when constructing regions that correspond to groups of stations — so-called ‘clusters’,
on which we elaborate later. Larger geographical areas in lower resolutions combine ex-
isting delays from higher resolutions and are treated as one unit. Choosing the correct
level of spatial aggregation is an important consideration to make when assessing the
viability of the diffusion-like model.

When discussing spatial aggregation, it is important to define how higher levels of
aggregation are derived from the lower ones. In particular: how do we join stations and
tracks together into larger and coarser regions? A large amount of complex network lit-
erature is devoted to this question of clustering, and clustering methods come in many
forms in various applications (Fortunato and Hric, 2016). For example, clustering meth-
ods focusing on the structure of the underlying networks indicate how topology leads to
a natural aggregation of nodes into larger groups. This can be quantified by the so-called
modularity of the partition, first proposed by Newman (Newman, 2006). Various clus-
tering algorithms based on modularity optimisation exist, such as the Louvain method
(Blondel et al., 2008).

Spectral clustering focuses on properties of the eigenspace of the Laplacian or model-
relevant matrices. A third common method for clustering any — also non-networked
— data is K-means (Steinhaus, 1956; MacQueen, 1967), which defines centroids and
groups nodes based on their respective distances to these cluster centroids (also known
as Voronoi iteration (Lloyd, 1982)), given a definition of ‘distance’ between nodes. This
method has been used in the context of transportation before, albeit mostly to charac-
terise statistical space (rather than actual stations and physical space) (Kadir et al., 2018;
Cerreto et al., 2018). An important aspect of K-means, in contrast to for example the Lou-
vain method, is that it requires the specification of the number of desired clusters (K ) up
front, which can be both advantageous and disadvantageous. However, the freedom of
choosing K turns out to be useful when analysing our diffusion-like delay model. This,
together with the fact that K-means is a well known and commonly used method, moti-
vates us to use K-means with geographical distance to cluster the stations in this chapter.
By choosing the number of clusters, we vary the spatial aggregation level. We will com-
pare the performance of the diffusion-like model on each of these levels.

In summary, the aim of this chapter is to discuss the usefulness of treating delay prop-
agation as a diffusion-like spreading mechanism. We propose a model doing so in sec-
tion 5.2. We apply the model to the example case of the Belgian railways and discuss the
data and methodology for this in section 5.3. Section 5.4 discusses the results of a toy
model, its performance on different types of disrupted situations, and the overall perfor-
mance of the model. Here we discuss in what cases the diffusion-like aspect of the model
is beneficial and what we can learn about the Belgian railways using this framework. We
end with a summary and several conclusive remarks in section 5.5.
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5.2 Model

In this section we introduce our diffusion-like model. We start by defining the delay vari-
able and set up the equations that describe its evolution over time. We continue by dis-
cussing how this model can be generalised to any spatial scale. For a detailed derivation
of the model, see SI E.1. Tab. 5.1 summarises the variables and parameters of the model.

5.2.1 General concepts

The main idea behind the model is to define the delay on fixed locations, and to de-
scribe the evolution of this delay distribution over time using macroscopic parameters
such as train frequencies and travel times. While delays are inherent attributes of trains
(i.e. agents), we aggregate the delays on passenger stations (i.e. nodes), as the impact of
disruptions can mostly be felt at level of stations rather than being a problem of indi-
vidual trains. This aggregation of delays onto stations means that we lose some of the
finer details on which delays belong to which train. However, it will allow us to use tools
for studying dynamical processes on networks: a delay is associated to each node, and its
evolution is determined by the coupling of nodes through edges. For ease of notation, we
will use the terms ‘station’ and ‘node’ interchangeably even though some nodes are actu-
ally junctions and not stations. We denote the delay of a station i at time t by Di (t ). This
variable is defined as the sum of the delays of all trains that are moving towards station i
at time t :

Di (t ) =
∑

T∈T (i ,t )
dT (t ), (5.1)

where T (i , t ) is the set of trains moving to station i (i.e. the very next station they
cross will be i , whether they stop there or not) at time t and dT (t ) denotes the delay
carried by train T at time t . We consider two ways in which the value of Di can change
over time:

1. A train, which was previously moving towards another station j , reaches j and is
now moving towards i . Therefore, its delay is now added to Di .

2. A train, which was moving towards i , reaches i and either moves further towards
another station or ends its trajectory. Therefore, its delay is removed from Di .

The delay of station i at the next time step — we refer to this as Di (t +∆t ), with ∆t
being the time step size — is dependent on the delays in various locations at the previous
time step, not only Di (t ). Thus, we write the relation between the delays between two
consecutive time steps using a delay vector �D = (D1,D2, . . . ,DN )T , where N is the total
number of nodes:

Di (t +∆t )−Di (t ) = F1,i (�D)︸ ︷︷ ︸
New incoming

trains towards i

− F2,i (�D)︸ ︷︷ ︸
Arrival of trains

at station i

(5.2)

with F1,i describing how the delay at station i changes over a time step ∆t by means
of the first term above (the addition of delay), and F2,i likewise by the second term above
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(the removal of delay). In the next section we express both these functions F1,i and F2,i in
terms of several parameters and �D(t ). An illustration of the model and its terms is given
in Fig. 5.1.

Figure 5.1: Model visualisation: (a) station and line (edge in the network) dependent parameters, (b) illustration
of the two mechanisms behind the delay dynamics dynamics, i.e. the appearance of new trains with their delays
and the departure of the already included ones, (c) an example of the network aggregation.

5.2.2 Diffusion model equations

The first term (F1,i ) sums the delays carried by all trains that start moving towards i in
the interval [t , t +∆t ]:

F1,i (�D) =
∑

Trains T that started moving to i
at τ ∈ [t , t +∆t ]

dT (τ).

This sum can be rewritten as a sum over the neighbours of i . By making a number
of assumptions, like approximating the fraction of trains in each direction by the relative
frequency (a full derivation can be found in SI E.1), we can rewrite the delay of a train
moving to a station j as function of the delay of that station D j and express how many of
the trains arriving at a station j continue to i . This leads to:

F1,i (�D) = ∆t
∑

j∈Nin(i )
p j i B j D j (t ). (5.3)

Here Nin(i ) is the set of stations j that have an edge to i . The parameter p j i is the
probability that a train that reaches station j will continue towards station i , and is com-
puted as follows:

130

Chapter 5

157823 Dekker BNW.indd   130157823 Dekker BNW.indd   130 18-03-2022   10:2118-03-2022   10:21



p j i = P (to i |from j )

= P (to i |(from j & do not end at j )) ·P (do not end at j )

=
f j i∑

�∈Nout( j )
f j�

·
(
1−Probability that train

has end station at j

)

= r j i (1− s j ), (5.4)

where Nout( j ) is the set of stations to which there is an edge from j . The value of p j i

is equal to a multiplication of two factors. The first (denoted by r j i ) is the probability that
if a train reaches j and it does not end its journey there, it will then continue towards i .
Note that we consider this probability to be independent of where the train came from:
we do not consider any memory in this process. The value is calculated as the frequency
of trains going from j to i divided by the frequency of all outgoing trains from j . The
second factor in Eq. (5.4) (denoted by 1− s j ) is the probability that the train does not end
at j — s j itself is the probability that a train that arrived at j ends its journey there, for
example because it is the terminus. The variable Bi in Eq. (5.3) is a station-dependent
parameter, defined as

Bi =
∑

edges e to i fe∑
edges e to i fe te

=
∑

�∈Nin(i ) f�i∑
�∈Nin(i ) f�i t�i

, (5.5)

where fe denotes the frequency of trains on edge e, and te corresponds to the time
a train takes to cross edge e. The parameter Bi has units of time−1 and can therefore be
interpreted as a rate. The inverse of Bi is the average time of edges towards i , weighted
by their frequency. A high value of Bi corresponds to a station with incoming short edges
with high frequency. Intuitively, Bi can be thought of as a station’s train turnover rate.
The second term of Eq. (5.2) (F2,i ) counts the delays of trains that reach station i and
therefore remove their delays from Di . We express F2,i as follows (for details see SI E.1):

F2,i (�D) =
∑

Trains T that reached i
at τ ∈ [t , t +∆t ]

dT (τ)

=∆tBi Di (t ). (5.6)

The term only depends on the delay Di (t ) at station i at the previous time step, and
the previously mentioned parameter Bi . The delay loss at a station can be interpreted as
an exponential process with rate Bi . The contributions F1 and F2 are expressed in terms
of the delay state vector �D and in terms of various railway parameters (summarised in
Tab. 5.1). Filling in these two terms into Eq. (5.2) gives the full expression for the evolution
of the delay D at any station i :

Di (t +∆t )−Di (t ) =∆t

[ ∑
j∈Nin(i )

p j i B j D j (t )−Di (t )Bi

]
.

We can simplify the sum over the neighbours of i by using the railway network’s ad-
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jacency matrix A, which has entries entries A j i = 1 if there is an edge from station j to
station i and entries zero elsewhere:

Di (t +∆t )−Di (t )

∆t
=

∑
j

A j i B j D j (t )p j i −Di (t )Bi .

Here, the sum goes over all nodes j . This equation can be written in matrix form using
�D as a column vector. Moreover, we can take the limit∆t → 0. This leads to the expression

d�D(t )

d t
= G ·�D(t ). (5.7)

The above equation contains the core model matrix G, an N × N matrix defined as
follows (δi j is the Kronecker delta):

Gi j = A j i p j i B j −δi j B j . (5.8)

All of the dynamics of the model are encapsulated in the matrix G.

Variable Description
Di (t ) Delay at station i and time t
A j i Adjacency matrix of the railway network
Bi Train turnover rate of station i
dT (t ) Delay carried by train T at time t
fi j Train frequency from stations i to j
t̄i j Average travel time from station i to j
p j i Fraction of trains to j that continues to i
r j i Fraction of trains to j that continue to i if they do not end at j
s j Fraction of trains that end at station j
T (i , t ) Set of trains moving to station i at time t
Nout( j ) Set of stations to which there is an edge from j
Nin( j ) Set of stations from which there is an edge towards j
N Number of stations
δi j Kronecker delta (δi j = 1 if i = j , and 0 otherwise)

Table 5.1: Overview of the model variables and parameters.

5.2.3 Model aggregation to clusters of stations

In this chapter, we aim to describe how well our model describes real delay propaga-
tion patterns. One variable in this analysis is the level of spatial aggregation at which we
simulate the model. In the previous section we explained the model where each node of
the network consists of a single station or junction. However, the same principles can be
applied to a network where nodes correspond to a group of such stations. The method
we use to group stations into clusters is explained in Sec. 5.3.4. Here, we discuss how
the model parameters for the full-resolution model based on individual stations can be
translated into a lower resolution version. The discussed aggregation process is very sim-
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ilar to network of networks idea known in the networks literature (Gao et al., 2011; Kivelä
et al., 2014; Siudem and Hołyst, 2019).

Above, each delay variable Di corresponds to one node of the network by transform-
ing delays on trains to delays on stations via Eq. (5.1). This is already a form of coarse-
graining the delay dynamics. Now, we assume that the original railway network of N sta-
tions is divided into K clusters (or groups of stations). We indicate stations with lowercase
letters (i and j ) and clusters with uppercase letters (I and J ). The clusters naturally form
a network: an edge between clusters I and J exists if there is at least one station i in I and
one j in J such that there is an edge between i and j in the original network. We define
the function C from stations to clusters such that C (i ) is the cluster to which station i
belongs. Let DI (t ) denote the total delay of all trains moving to any station in cluster I
at time t , either from inside the cluster, or coming from other clusters. An equation for
the evolution of this delay can be derived in the same way as we did above for stations.
The delay DI can change when trains start towards any station in this cluster, or when
trains arrive at a station in this cluster. The main difference with the non-clustered case
(above) is the fact that in the clustered case, self-loops in the network appear. This is be-
cause trains moving to a station in a cluster — and thus adding to the cluster’s delay —
can reach that station, and then continue to another station in the same cluster, again
adding to the cluster’s delay.

While the equations in the clustered case are the same as in the non-clustered case,
the parameters such as frequencies and travel times are now defined on edges between
clusters. We explain a method to express these cluster parameters in terms of their non-
clustered counterparts (i.e., the ones in Tab. 5.1). We start with the total frequency fI J

and weighted averaged travel time tI J of trains between two clusters I and J . We define
them as

fI J =
∑
i∈I

∑
j∈J

fi j (5.9)

tI J =
∑

i∈I
∑

j∈J ti j fi j∑
i∈I

∑
j∈J fi j

. (5.10)

These definitions are intuitive: the total frequency of trains between two clusters is
the sum of the frequencies on edges going from a station in the first to a station in the
second cluster. The travel time is the weighted average of the travel times of the edges
going from the first to the second, weighted by their frequency.

Next, we need to define the stopping probability sI for a cluster I . In order to do this,
we define the station parameter qi as the probability that a train which arrives in the clus-
ter C (i ), arrives at station i . In a way, it indicates how important station i is in its cluster,
measured by the total frequency of all incoming trains to that station. The quantity is
approximated as follows:

qi =
∑

j∈N (i ) f j i∑
j∈C (i )

∑
�∈N ( j ) f� j

. (5.11)

Note that the values qi are weights of stations whose sum is one. Each station is
weighted by the frequency of incoming trains. Next we use the quantities qi to estimate
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the stopping probability sI for cluster I :

sI =
∑
i∈I

si qi . (5.12)

One can interpret the stopping probability formula using the following formula:

sI =
∑
i∈I

P (stops in i |arrived in i )P (arrives in i |arrives in I )

Using this approach, we can set up a model for any clustering of the original net-
work using only the parameters of the full network. We can thus compute the matrix G
(Eq. (5.7) and (5.8)) for each clustered case. We denote such matrices of the clustered
model by Gc .

An additional possibility, which we do not discuss further, is to define a clustered
model directly, without relying on the parameters of the full network. In this case, the
frequencies, average travel times and stopping probabilities need to be directly measured
from data.

Figure 5.2: Panel (a): Average delay per train in November 2019, shown at every node. Panel (b): Average num-
ber of trains passed through the edge on April 11th, 2019 (taken as an example day). Only passenger trains are
used when calculating these numbers.

5.2.4 Model considerations

There are a number of important assumptions we used in our model (see also SI E.1).
Because we aggregate delays from trains onto stations, we lose a lot of details, such as
origin-destination information of trains. In the derivation of the model, a delay ‘arriv-
ing’ at a station is subsequently spread out and propagated to all neighbours of that sta-
tion, based on a fixed weighting of the outgoing edges. However, in real railway systems,
there is a high correlation between where the delay comes from and where it goes to, and
memory effects can be important. Our model is expected to work better on lower spatial
resolution, on scales where a lot of trains and train routes contribute to the dynamics of
a single node, such that trains picking a random direction constitute a decent approx-
imation to the real dynamics, which on the detailed level is inherently schedule-based
and not random. Furthermore, the delays in our model are treated as variables smoothly
varying in time and space. In reality, delays which are localised in space are of a discrete
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nature: a single train can be delayed, and when the train has ‘passed’ a station, the delay
suddenly disappears from this station. This means that the time series of Di (t ) in reality
has a lot of jumps, namely every time a train reaches this station or starts towards it. In
the model, Di (t ) is smoothly varying. Another important consideration is that the model
only propagates delay and removes delay from the system — it does not add any new
delays. Moreover, the only mechanism by which delays are removed from the station is
when a train ends its trajectory, which is encoded in the parameters si . An underlying
assumption is thus that each train keeps its initial delay until it has reached its final stop.
In practice, of course, delays are constantly generated, often due to small noise-like in-
cidents or other (delayed) trains blocking platforms or tracks, and in more exceptional
cases due to new disruptions. Moreover, trains can lose some delay by travelling faster
or because of scheduled buffer times at stations, which is not included in our model. For
these reasons, we will only compare the results of our model to data of days with a large
disruption: by focusing on a time point with a large amount of delay and analysing its
dissipation through the network, we minimise the effects of smaller stochastic delays,
which are expected to contribute less to the dynamics in these situations. A final limi-
tation we would like to mention is that in our model, the finite travel time of trains and
their location on an edge is lost: in our assumptions, a train’s delay counts fully towards
to the next station’s delay, wherever the train is on an edge towards that station. For small
time steps, this means the train’s delay also counts immediately to the propagated delay
further on in the network, even if in reality the train would still need more time to cross
the edge.

Next to the limitations mentioned here, our model also has clear benefits: a compact
description (the matrix G), the fact that it is linear and thus amenable to analytical study
and the straightforward generalisation to lower spatial resolution. We discuss advantages
of the model throughout, and at the end of this chapter. Some of the limitations men-
tioned above directly stem from our choice for a network-based, diffusion-like model. It
is one of the aims of this chapter to investigate whether our model, and its built-in poten-
tial for spatial aggregation, can reproduce the dynamics of delay propagation observed
in a real railway system.

5.3 Data and Methods

We apply the model to the Belgian railway system as an example. We chose the Bel-
gian railway system for multiple reasons. Being a West-European country, Belgium has a
rather dense and strongly utilised railway system with over 100 m of lines per km2, be-
ing one of the world’s densest national railway systems (International Union of railways,
2020). In contrast to, for example, the American or Chinese railways (both have about
10-25 m of railways per km2). Additionally, freight and high-speed trains make up only a
small fraction of the total railway transport in this country. These aspects require more
complex scheduling in the Belgian case, and it implies a more interesting delay evolution
to use as an example. Another reason for analysing the Belgian railways is the availabil-
ity of data, which is discussed below. A discussion on the international relevance of the
results is given in the conclusions.
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5.3.1 Data and Pre-processing

We use the open data provided by Infrabel, the service company of the Belgian railway
network (Infrabel, 2021). The data contains geographical information on railway stations
and the physical railway lines, recorded tracks of passenger trains with details on sched-
uled and realised departure and arrival times of their activities on each station or junc-
tion, as well as associated delays. The time stamps and delay data are in seconds. We use
data from all Belgian passenger railway activities between January 2019 until May 2020.
The data covers an average number of 3600 daily unique trains on business days, and
2200 on weekends or holidays.

The first step is to reconstruct the graph of the Belgian railway network. First we add
all stations as nodes in our graph. We get the edges by mapping the geographical loca-
tions of railway stations onto geographical shapes of railway lines and every two stations
are connected together if and only if there is a line connecting them without intermedi-
ate stations. The geometry of railway lines is more intricate than simple edges between
stations, since there exist places of splits and merges of multiple lines. We implement
these by adding so-called “junction” nodes along the lines.

The dataset contains all railway stations, which except of passenger train stations
include merchandise platforms, technical depots, carwashes, etc. Passenger trains tend
to skip those intermediate platforms and the passage information is not recorded. In
order to bypass this limitation, in case when there is no edge between two consecutive
stations in the track record, we assume that the train follows the shortest path between
them. Delay accumulation or reduction is then evenly spread across the intermediate
stations along that path.

There are two kinds of passenger trains available in the data that can be characterised
by the proportion of skipped stations along the track: 1) local trains, which usually circu-
late at shorter distances and stop at every station along the path and 2) intercity trains,
which circulate at larger distances and skip some intermediate stations. We exclude from
the analysis the intercity trains that skip a significant portion of stations along the track
(usually these are international trains) and extra trains that run ad hoc on a specific day.
The number of disregarded trains is less than 3-5% of the total data. We further use the
notion of a railway graph and a railway network interchangeably.

The reconstructed network and two important delay statistics are shown in Fig. 5.2.
The graph contains 822 stations and 972 edges. Because the network has mostly a line-
like structure, 78% of all stations have degree 2 and the average degree is 2.19. In panel
Fig. 5.2a, we show the average delay of trains travelling towards stations in November
2019. A general trend from small average delays in the north-west to larger average de-
lays in the south-east is visible, with the cities of Antwerp (north) and Brussels (centre,
the capital) also having rather high average delays. Panel Fig. 5.2b colours the edges of
the network with the average number of trains per day that crosses them. Several lines
between the large cities of Bruges, Ghent, Brussels and Antwerp stand out.

We use the recorded tracks to estimate the model parameters. In particular, we cal-
culate the edge parameters fi j and ti j and the station parameters si (see Tab. 5.1) for
each month separately. Within a month we aggregate all frequency and temporal counts
for each day of the week. Moreover, for each day we keep separate counts for six 4-hour
periods of the day. For each station j this leads to the estimation of parameters s j as the
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average fraction of arriving trains that end their trajectory at station j , and fi j and ti j ,
the average frequency and average passage time of trains going from station i to j . For
simulations of disrupted situations, we use the parameters obtained for the month, day
of the week and period of the day corresponding to the timing of the peak delay on the
disrupted days. If not mentioned otherwise, we use ∆t = 30 seconds in all results in this
chapter. Simulations of the model were coded in Python. For the clustering discussed in
section 5.3.4, we used the KMeans function of scikit-learn. The data and code is publicly
available.

5.3.2 Disrupted situations

As discussed in the introduction, we expect diffusion-like models to be of most inter-
est to study large-scale delay propagation: e.g., general directions of delay evolutions —
as individual delays will be predicted erroneously due to lack of trajectory information of
delays by abstracting away from individual trains. Therefore, we focus our model analysis
on days in which such large-scale delay propagation can be assumed important, namely
where the delays were severe. In contrast, when delays are small, they dissipate quickly
and will not spread much — making identifying large-scale spread of delay of less inter-
est. Another reason why we focus on days with severe delays is that understanding such
days is of great importance to railway companies to be able to handle such situations
well. We refer to days with severe delays as ‘disrupted days’. A list of disrupted days is ob-
tained by looking at the peak in the total delays (i.e., delay summed over all nodes at any
given moment in time) of every day in the dataset, and taking the 50 days with the highest
peaks. The exact dates in this list are given in SI E.2. Throughout the rest of the chapter,
we initialise our simulations at the peak in total delay of these disrupted days, i.e. we de-
termine the delay on each station at the time of peak delay and use this as initial vector
of delays. The model captures the spread and dissipation of existing delays, so these sim-
ulations will capture the propagation of the delays present at the peak — making such
an initial point most interesting. Also, we reason that after the moment of highest total
delay, the relative importance of newly generated (i.e., non-captured) delays is small as
compared to existing delays.

5.3.3 Quantifying model performance

When assessing the model’s performance to reproduce reality, we focus on whether the
model reproduces the correct direction of delay evolution, rather than simulating exact
values well. There are a number of reasons for this. First, when aiming to understand
large-scale propagation of severe delays — which is the aim of this model — accurately
tracking the positioning of delays (rather than the exact values) through space is already
very important information to practitioners. Analysing such directional trends of delays
provides us with information on how the system works, absolute values of delays are not
always necessary for that. Second, in severely delayed circumstances, numeric perfor-
mance comparison can quickly become biased by several high spikes in delays: partic-
ular trains being up to one hour delayed, compared to an average delay of a couple of
minutes in the rest of the network. And third, our model was not designed to capture
small, stochastic variations in the delays. However, such delays are always present in the
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Figure 5.3: Clustering results for (a) K = 5, (b) K = 10, (c) K = 25, (d) K = 50, (e) K = 75 and (f) K = 100. For visi-
bility purposes, only the four largest clusters are coloured (in the order of red, blue, green and yellow). Stations
not belonging to any cluster are coloured grey. Cluster size is measured by the number of associated stations.
Largest cluster sizes are denoted in panel labels.

data, which means that one will never get a good quantitative fit, even if the model would
be a perfect representation of the propagation of existing delays. For these reasons, we
use Spearman’s correlation coefficient ρ to measure the model’s performance. This met-
ric is based on the rank of the variables, i.e., it assess monotonic relationships rather than
linear relationships (which is the case, for example, for Pearson’s correlation coefficient).
We denote the observed delays at all stations at time t by �Dobs(t ): a vector with delay
entries per station. Likewise, we define a simulated delay vector �Dsim(t ). We denote the
vector containing the ranks of the stations based on their delays by r (�D(t )), using either
observed or simulated delays. Then, Spearman’s correlation coefficient at time t is given
by:

ρ(t ) = Pearson
(
r (�Dobs(t )),r (�Dsim(t ))

)

= cov[r (�Dobs(t )),r (�Dsim(t ))]

σr (�Dobs(t ))σr (�Dsim(t ))

In the next section, we use this metric to compare the model performance on differ-
ent levels of spatial aggregation. In the clustered case, the vector �Dsim(t ) will not have N
elements (the number of stations), but K < N , the number of clusters. Each component
of the vector is the total delay in one cluster. We want to compare this with the observed
data on N stations. This observed delay vector therefore also has to be aggregated on
the K clusters, by summing the delays of the stations belonging to the same cluster. To
be able to compare the Spearman’s correlations across simulations with different K , the
observed and simulated delay vectors of dimension K are de-aggregated towards dimen-
sion N (i.e., equally distributed across each cluster’s stations), such that we always com-
pute Spearman’s correlation on vectors of length N , even if the model was simulated on
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the network of clusters.

5.3.4 Clustering

When referring to ‘level of aggregation’, we mean the spatial resolution of the model. Full
resolution would mean using all stations as entities in the model (i.e., no clustering),
and lower resolutions involve clusters or groups of stations as entities in the model. Sec-
tion 5.2.3 describes how we translate node and edge parameters towards a lower resolu-
tion. Here we discuss the means of clustering itself: the process of grouping stations in
an appropriate manner. Many of such clustering methods exist, and we have chosen to
use K-means (Steinhaus, 1956; MacQueen, 1967) on the spatial coordinates of the nodes
in the Belgian railway network (longitude, latitude). We do this for the following reasons.
First of all, we aim to create groups of stations that are adjacent to each other. Although
the way we use K-means does not explicitly incorporate network topology, it does make
sure that the groups of stations are convex (i.e., there is no station from cluster A in the
middle of cluster B), since the railway network is an inherently spatial network. This ge-
ographic basis for the groups also makes them easier to interpret. Another important
reason for using K-means is that we can choose K — the desired number of clusters —
which we can vary to get different levels of aggregation to assess the model performance
with.

We vary K between a minimum number Kmin and maximum number Kmax of clus-
ters, which in this case we set to be 3 and 100, respectively. Note that values of Kmin lower
van 3 are excluded because of the resulting coarseness of the resulting model, and values
of Kmax higher than 100 are excluded because they result in many single-station clusters.
The K-means algorithm starts with an initial set of K points (‘centroids’) and assigns all
stations to the closest centroid. Each centroid now corresponds to a cluster of stations.
Next, the centroid coordinates are redefined as the average of all the stations in its cluster.
This process is then iterated (reassigning stations to closet centroid, updating centroid
coordinates) until it converges to a point where the centroids do not change anymore.

The resulting clusters for several values K are shown in Fig. 5.3. In each plot, the four
largest clusters in the network are shown in colours. Observe the small size of clusters in
the K = 100 case, motivating the Kmax = 100 threshold. We can also see that the largest
clusters (in terms of number of stations) for high values of K are situated around the
major cities of Brussels, Antwerp and Liège. This can be explained by the fact that these
cities contain numerous smaller railway stations that are geographically close together,
while in more rural areas like the south and west, the station density is much smaller.
Urban areas are thus expected to contain larger clusters for relatively large values of K .

5.4 Results

In this section, we show the dynamics of the model and compare it with the data for
a number of disrupted days as example. Then, we apply the model to toy examples to
illustrate in which circumstances this model works well and in which it does not. We end
by discussing the overall performance on all 50 disrupted days.
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Figure 5.4: Example simulations at various resolutions. Panel (a): highest (non-clustered) resolution simulation
of Jan 15, 2019, initialised at the peak delay (18:11). The delay evolution over time of three example stations is
displayed in blue lines (Brussels, Namur and Antwerp). The spatial situation of simulated delays at initialisation
(middle) and 60 min after initialisation (right) are also shown. Panel (b): Simulation of the same day, but at an
spatially aggregated level of five clusters. Red lines in the left panel show the temporal evolution of delays for
each cluster. Again, the middle and right panels indicate spatial delay distribution at initialisation and 60 min
after initialisation. For clarity, the clusters are shaded in the background. Panel (c): Total delay evolution of
three example bad days: Jan 15, 2019, July 25, 2019 and May 4, 2020, all initialised at their peak delay moments.
All maps show delays in seconds, with a cut-off at 500 and 250 seconds respectively, as higher delays were rare
on these instances.

5.4.1 Example simulation

We start by looking at a few example disrupted days. We start with Jan 15, 2019, which
had a peak delay at 18:11. Initialising the non-clustered (‘highest resolution’) version of
the model at this moment, we simulated the delays up to three hours after the peak. The
delay evolutions at three major stations (Brussels, Namur and Antwerp) are displayed in
Fig. 5.4a. It is clearly visible that the simulated delay time series is much smoother than
the real time series, which has strong jumps as a consequence of the discrete nature of
trains: either delayed trains are going to those stations (i.e. delay > 0), or not (i.e., de-
lay = 0). This is also visible in the maps in the upper row of this figure: at initialisation
time, the delays are distributed very discretely across the network (centre-top panel).
The model diffuses the delay across the network after 60 min (right-top panel). In this
figure, we can clearly see one assumption on which the diffusion-like model is based:
it assumes that delay is spread by a very large number of trains, and that it travels to
all other adjacent stations instantly (albeit weighted into small fractions). Of course, in
reality this assumption does not hold.

In panel (b) of Fig. 5.4 we take the exact same day, but instead of modelling at full res-
olution, we cluster the network into five clusters and redo the analysis. We observe that,
by aggregating over the many trains present in each cluster, the jumps in delays visible
in panel (a) become less pronounced: the real delay evolution curves per cluster in panel
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(b) are more smooth. The general trends of the real delay curves in each respective clus-
ter resembles the simulation quite well, even though some undulations are visible. For
example, increases in delays in cluster 1 around 70 minutes and in cluster 5 around 40
minutes after initialisation are visible. This is the result of newly generated delays. Snap-
shots of the spatial distributions of the delay are shown in the maps on the right. They
show how delay dissipates and is transported across the five clusters. A quick compari-
son by eye between the highest resolution maps (top panels) and these lower resolution
maps indicates the resemblance.

Panel (c) of Fig. 5.4 shows the evolution of the total delay in the system (both simu-
lated and real) in three example disrupted days: Jan 15, 2019, July 25, 2019 and May 4,
2020. One can see that the total delay on Jan 15 and May 4 are simulated quite well over
the whole three hours, but the real total delay on July 25 quickly overshoots the simulated
curve — pointing towards the effect of newly generated delays.

Figure 5.5: Model performance in toy systems and across classifications of disrupted days. Panel (a): Model
performance of the random toy system for three different values of the number of lines p (see SI E.4 for details).
Panel (b): Model performance of the star graph toy system for different values of the number of nodes N (keep-
ing p fixed, see SI E.4 for more details). Panel (c)-(e): Model performance along time since peak delay of the
disrupted days, averaged within each classification (see SI E.2 for details), for the model at (a) full resolution,
(b) using K = 10 and (c) using K = 20 clusters. Averages are shown in lines, shaded areas indicate the range of
one standard deviation from the average.

5.4.2 Toy model

In this subsection we introduce two toy systems that allow us to study more fundamen-
tal properties of the model from section 5.2. They are explained in more detail in SI E.4.
The toy systems represent implementations of the model for networks with very sim-
ple topologies: random networks and star networks. Numerous other toy systems can
be thought of, but we specifically compared these because they can test the model per-
formance under different levels of the density of lines and connectivity of nodes. As for
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the real data we measure the model performance using the Spearman’s rank correlation
coefficient.

Fig. 5.5a shows the performance of the model on a random graph-topology (with 15
nodes and 20 edges). We vary the number of lines p from 20, to 100, up to 210 (which is
the maximum number of unique pairs in a 15-node connected graph). It is clear that the
model performance decreases over time. At first, the different values of p do not matter:
the model performance decreases slightly due to the fact that in the model, delays are in-
stantly spreading to various directions further in the system, while in these systems (and
in reality), delays need to arrive at next stations first (carried by trains) before moving
onto next stations. This leads to a discrepancy. As soon as the first trains arrive at next
stations (around t = 50), their delays contribute to delays on new edges where the model
already predicted a small part of it to be. For small numbers of lines (i.e., low p), the spe-
cific direction the train is going is very important. When there are many lines (i.e., high
p), all combined ‘chosen’ directions of the trains approximate the frequency and other
attributes put in the model. In other words, the model approximates reality better for
densely used lines. And this seems to be visible: high p (blue line) starts deviating posi-
tively from the red line after t = 50. At much later points, the initial delays start arriving
at their ending stations, which collapses the correlation down to much lower values.

For the star graphs (see panel (b) of Fig. 5.5), where we fix the number of lines p = 50
we take a look on the dependence on the number of nodes. The number of nodes do
not seem to matter much, but it is clear that the star graph indicates much smaller cor-
relations than the random graph. Although this is merely an example system, we intu-
itively expect that as soon as trains start driving towards the centre, other delays (as a
consequence of the diffusion-like nature of the model) are simulated to be at each of the
connected nodes, quickly limiting the correlation.

The above toy systems reflect that our model works better for denser networks with
the higher number of train lines.

5.4.3 Classification of disrupted days

We now investigate whether the initial geographical delay distribution has an effect on
the accuracy of the diffusion-like model. For this, we distinguish four categories across
the 50 disrupted days, classified by eye based on the delay patterns on the peak delay
moments. SI E.1 discusses this classification in more detail and also shows the delay
maps. The first and largest group (25 days) contains the situations where almost all of
the delays are localised near Brussels, the capital city of Belgium and important railway
hub. In Belgium, train lines between east and west and north and south respectively all
pass through Brussels, which makes it an important factor in the delay dynamics in the
railway network. The second group (7 days) contains situations where the delay is also
localised, but on a different location than Brussels. The third group (5 days) contains
those situations with multiple locations with high delays. Finally, we consider the group
of stations (13 days) where the delay is not localised but instead spread out over a large
region.

As before, we perform simulations with as initial condition the peak delay distribu-
tion. In Fig. 5.5c-e we show the evolution of the Spearman’s correlation over time, av-
eraged per group. We show this for different spatial resolutions. We find that there are
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no clear differences between the groups. The situations with delays localised near a city
which is not Brussels (shown in orange) seem to perform a bit worse than the others, but
we should be very cautious in interpreting this: the variation within a group is very large,
as shown in the shaded areas.

The fact that there is no clear difference in model performance between groups could
indicate that the spatial localisation of the disruption is not a good determinant of the
accuracy of our diffusion-like model. The obvious question then is: is there a better mea-
sure, or characteristic, which can distinguish between different disrupted situations and
indicates whether a diffusion-like delay spread is warranted? We plan to explore this in
future work.

5.4.4 Overall performance

We now turn to the overall performance of the model over the 50 disrupted days. On
each of these days, we determine the peak in the total delay and simulate the delays up
to two hours after this peak. We then compare what really happened throughout these
two hours to what we simulated by computing the Spearman’s correlation coefficient ρ
at each time point (see Eq. (5.13)). We do this for each number of clusters K (3 ≤ K ≤ 100).
The average correlations per K and t over the 50 disrupted days is shown in Fig. 5.6a. It is
clear that in general, the higher t , the lower the correlation. This is intuitively correct: the
higher the time after initialisation, the more the model will start differing from reality, for
example due to new incoming delays in the real data that are not captured by the model
or errors the model that grow with time. In the same panel, we see that higher number
of clusters K also decreases the correlation, which is less obvious. On the one hand, in-
formation is lost when coarse graining: for lower values of K detailed information on
the positioning of the trains is put together into larger clusters, which may reduce their
simulation quality. On the other hand, the diffusion-like spreading is presumably more
accurate when looking at a larger scale (lower K ), since on these scales the discreteness
of delays is averaged out in the data, too. Interestingly, panel (a) also shows bands of K
values with near-equal correlations: up to K = 8, the correlations seem to be more or less
the same (very high), at least up to t = 45 min. The second band of near-equal correla-
tions is between 8 ≤ K ≤ 17, followed by a more gradual decay of correlations with K ,
but a sharp decrease in those correlations at K ≈ 27. One reason for these sudden cor-
relation decreases could be a strong rearranging in the clustering at those K values: e.g.,
in Fig. 5.3, panels (a) and (b), one can see that for K = 5, Brussels is at the border of the
red cluster, while at K = 10, it is in fact in the middle of a cluster. Such rearranging can be
quite sudden from one value of K to another. In contrast, the slow decrease in correlation
within those K -bands can be related to a slow change in the clustering structure.

Panel (b) in Fig. 5.6 shows the correlation ρ 40 minutes after model initialisation, as
function of K , for each individual disrupted day. Clearly, these curves seem less gradual
as the average displayed in panel (a). In fact, changing K by 1 may impact the correlation
up to 0.5 in some exceptional cases — specifically when K is small (which makes sense as
the clustering structure changes rapidly around these values). The average is displayed
in black, and the gradual decrease with K is visible. Red, thin lines indicate days on which
the maximum correlation is at values K ≥ 9, which is counteracting the overall pattern we
see that the correlation keeps increasing with decreasing K — on these seven days, the
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Figure 5.6: Panel (a): Average Spearman’s rank correlation coefficients in colours averaged over the 50 disrupted
days, for various values of K (vertical) and time points after model initialisation (horizontal, in minutes). The
contours indicate the levels 0.5, 0.6, 0.7, 0.8 and 0.9. The vertical dashed line corresponds to 40 minutes after
initialisation, which is used in the other panel. Panel (b): Spearman’s rank correlation coefficients at 40 min
after initialisation. Individual days are split into days that have their maximum at values of K < 9 (in blue) and
those that have their optimum performance at values of K ≥ 9 (in red). The black line indicates the 50-day
average.

model performs best on a non-trivial level of K , between 9 and 11. SI E.3 discusses this
non-trivial level (i.e., K = 10) more in-depth and potential reasons why this clustering
configuration may be optimal in some circumstances. The blue lines indicate all other
days (where optimal correlations are found with very low values of K ).

5.4.5 Model discussion

Our results show that modelling delay as a diffusion-like spreading phenomenon clearly
has limitations: on the scale of individual stations (Fig. 5.4a), the discrete nature of de-
lays, accompanied with periodic undulations and sharp changes in delay is not simu-
lated at all. Also, delays bound to trains usually travel in a specified direction, which
is not captured by our model (which is a weighted form of unidirectional spreading).
The diffusion-like-spreading assumption corresponds to the view that the delay propa-
gation is based not on single trains carrying a delay, but on many tiny trains, all going in
various possible directions with their portion of the delay, which are randomly chosen,
weighted by the variables in the model (e.g., frequency and travel times). Thinking about
the diffusion-like model in this way motivates the use of coarse graining to improve the
model. Qualitatively we show this in Fig. 5.4b and c and quantitatively this is discussed
in Fig. 5.6: a clear increase in performance is visible when comparing results from the
clustered version of the model to clustered data. Still, there is a loss of correlation with
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simulation time: the further from the initialisation time, the more new trains and delays
enter the system and change the real delay time series, unaccounted for by the model. It
is important to note that the latter will always be a caveat for delay propagation models
due to the inherent stochasticity of delay generation.

The toy systems we tested are meant as illustrations to indicate what the model ben-
efits from: average patterns. As soon as the network is dense and there are many trains
travelling on it, the real delays spread roughly along simple statistics like train frequen-
cies, which are the basis of this model. But as soon as the network becomes more sparse,
especially when it becomes tree-like, the correlation drops.

Our discussion on the classification of disrupted situations showed no clear differ-
ences in model performance based on the initial condition, at least as far as its local-
isation (which is the basis of the classification) is concerned. However, our approach
was naive: we classified the disrupted days by eye into four groups. We cannot conclude
that there are no other, better metrics that do distinguish situations in which the delays
spread in a more diffusion-like manner than in other situations — something we do find
in the toy examples. Hence, we propose to investigate such metrics further in future work.

The high performance at low values of K implies that a coarse resolution is better
suited for these type of models. The disadvantage of that is the loss of detail. Also, as
shown in the toy examples, there are cases we can think of that are not suitable to be
modelled well by the model: high sparsity of trains increases the discrete nature of delays
and decreases the applicability of the mean-field approximation. Another example where
these models have low accuracy is when the delays are mainly governed by stochasticity,
and not by propagation dynamics. This is the case in situations where the overall delay
level in the network is low. Such situations are difficult to capture well in many delay
propagation models, in fact.

We propose therefore that the model presented here finds its niche in the problem
of simulating the propagation of severe delays on a large scale. In such circumstances,
the exact magnitude of delays at fixed positions is not always of most interest, while the
general trend, speed of delay decay and direction of the overall bulk of delay are of high
importance. Such information is well retrievable from the clustered model. In fact, this
model is arguably very suited to analyse these large-scale dynamics and how they de-
pend on network topology and high-level parameters such as train frequencies. All in-
formation of the system’s dynamics is embedded in the G-matrix in Eq. (5.8) — a single
matrix that can be analysed using spectral methods to investigate its eigenproperties,
for example. Another advantage of this model is its simplicity. Using only a small set of
parameters that are easily retrievable from the schedules (which can usually be found
online for any European railway system), one can model the whole railways with a single
simple differential equation (Eq. (5.7)).

5.5 Conclusions

In summary, we devised a model that simulates delays as a diffusion-like spreading phe-
nomenon. The intuition is that, on average, the direction and dissipation of delay relates
to aspects of the schedule such as train frequencies and travel times. We apply the model
to the Belgian railways and investigate its strengths and weaknesses. In particular, we
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find that the model performance increases sharply when coarse graining by grouping
stations together into clusters. We conclude that this model is mainly of use when work-
ing on larger scales and aiming to identify system properties related to delay dissipation
and general directions of delay propagation, rather than accurate individual prediction.

We have illustrated the workings and performance of the model using the Belgian
railway network as an example. Our framework, however, is general and could be ap-
plied to any country. Nevertheless, there are some international differences that should
be taken into account. One aspect which may influence the performance of the model in
different countries, is the position of important railway hubs. Hubs, such as large cities,
are expected to play an important role in the delay propagation dynamics. In Belgium,
these hubs are well distributed across the country, apart from the more rural areas in the
south-east and far-west. This means that, in our geographic clustering, the hubs usu-
ally fall into different clusters. The Netherlands, in contrast, has its most important cities
concentrated in the west of the country. In a model with a small number of clusters, it
is possible that many of these hubs end up in the same cluster, which may have an un-
wanted effect on the model’s performance and usefulness. For this reason, it might be
important to consider other clustering methods.

Not only geographic differences should be considered when trying to extrapolate
these results internationally. Various factors impacting delay propagation vary from coun-
try to country, like policy, protocols, infrastructure details and delay statistics in general
(Schipper and Gerrits, 2018). However, we argue that the increase in model performance
when coarse graining is robust to these changes, because the reason for it is of a more the-
oretical nature: diffusion-like spreading captures average delay fluxes, which are more
prominent in clustered systems.

Applying the model to other countries is straightforward, since its ingredients are
general and easily obtained: train turnover rates, frequencies, travel times and adjacency
matrices are readily derived from network architecture and railway schedules. A natural
extension of our work would thus be to compare the network models for different coun-
tries and explore the properties in different spatial resolutions.

All of the model’s dynamics are essentially derived from the matrix G, also for the clus-
tered versions. Exploring the spectral and topological properties of the weighted network
that G describes and relating those properties to the dynamics of the railway system are
of interest in our future work. It is possible that a few simple metrics, derived from this
matrix, could be used for a quick international comparison of railway networks.

Despite its simplicity, this model already gives us a tool to better understand rail-
way network dynamics. However, there are multiple improvements to suggest for future
work. For example, it is possible to add noise to the model, to account for the generation
of new delays. The magnitude and distribution of stochastically generated delays at dif-
ferent stations can possibly be derived from the data. It would be interesting to see how
noise may lead to an ‘equilibrium’ delay distribution, in contrast to the highly disrupted
situations we considered in this chapter.

Once delay is generated in a real railway system, there are mechanisms and feed-
back loops that can amplify it or mitigate it. Such mechanisms are not present in the
model, but would be a valuable addition. Such feedbacks can be nonlinear, complicat-
ing the model but possibly generating new dynamics. Finally, our model is ‘first-order’:
the spread of delay is determined only by where it is, not where it came from. Including
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a memory mechanism will probably increase the accuracy of the model, but may also
make it more complex. One way to do this is to not consider delay on stations, but in-
stead on edges. In such a version of the model, the directional information of trains is
partially kept, contrary to in our station-based model.

Diffusion-like spreading is researched in many other fields other than transport lit-
erature. In particular, it is well established that the vulnerability versus perturbations of
networked systems including social, epidemiological and engineering systems depends
on (any quantification of) the modularity (Newman, 2006): a more modular dynamical
structure prevents large-scale spreading (Balcan et al., 2009; Dekker and Panja, 2021).
Determining the modularity from the G-matrix can be an interesting next step, as the G-
matrix does not only incorporate topology, but weights each edge by features from the
schedules.

The results in this chapter are not only of interest for modellers, but also for railway
practitioners. First, the model output can provide insights into system-wide properties,
like delay decay and general directions of delay propagation. Second, it is easy to use
and all information is embedded in the G matrix. For example, practitioners might be
interested in how isolated regions are from each other: the off-diagonal elements of the
G matrix at the appropriate level of coarse graining reflects how strongly regions are con-
nected, i.e. how much delay flows from one region to another. From an operational point
of view, optimal levels of clustering like those seen for the red curves in Fig. 5.6b (see also
SI E.3) can be used to categorise situations, issue protocols or form threat assessments in
terms of delays.

We hope that the model itself and the results of the application to Belgium moti-
vates researchers and practitioners to vary the spatial aggregation level to non-trivial lev-
els. We believe these diffusion-like models can offer useful insights on how aspects such
as network structure, basic schedule parameters and spatial resolution affect the delay
propagation through a railway network. Ultimately, such models can lead to a better un-
derstanding of railway delay dynamics.
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ABSTRACTABSTRACT

The core functionality of many socio-technical systems, such as supply chains, 
international trade and human mobility, concern transport over large geograph-
ically-spread complex networks. The dynamical intertwining of many heteroge-
neous operational elements, agents and locations are oft-cited generic factors 
to make these systems prone to large-scale disruptions: initially localised per-
turbations amplify and spread over the network, leading to a complete stand-
still of transport. Our level of understanding of such phenomena, let alone the 
ability to anticipate or predict their evolution in time, remains rudimentary. We 
approach the problem with a prime example: railways. Analysing spreading of 
train delays on the network by building a physical model, supported by data, 
reveals that the emergence of large-scale disruptions rests on the dynamic 
interdependencies among multiple ‘layers’ of operational elements (resources 
and services). The interdependencies provide pathways for the so-called delay 
cascading mechanism, which gets activated when, constrained by local una-
vailability of on-time resources, already-delayed ones are used to operate new 
services. Cascading locally amplifies delays, which in turn get transported over 
the network to give rise to new constraints elsewhere. This mechanism is a rich 
addition to some well-understood ones in, e.g., epidemiological spreading, or 
the spreading of rumours and opinions over (contact) networks, and stimulates 
rethinking spreading dynamics on complex networks. Having these concepts
built into the model provides it with the ability to predict the evolution of large-
scale disruptions in the railways up to 30-60 minutes up front. For transport 
systems, our work suggests that possible alleviation of constraints as well as a 
modular operational approach would arrest cascading, and therefore be effec-
tive measures against large-scale disruptions.
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6.1 Introduction

Socio-technical systems such as supply chains, (inter)national trade and human mobility
provide pivotal support to modern societies. Even though each one operates in its own
intricate ways that are typically tuned to highly optimised benefit-to-cost ratios, their
core functionality involves transport over geographically-spread, complex network ar-
chitectures. Of particular interest are those situations in which — at detrimental costs to
societies and economies — initial perturbations spread through a significant part of the
network, leading to ‘large-scale disruptions’, i.e., near system-wide standstill of trans-
port (Shughrue et al., 2020; Inoue and Todo, 2019; Dekker et al., 2019). The initial per-
turbations are often triggered by exogenous events: indeed, well-documented are the
world trade and supply chain disruption events that have been caused by natural dis-
asters (World Economic Forum, 2011), and the ongoing COVID-19 pandemic (Ivanov,
2020). Related research focuses on risks associated with critical infrastructures, service
elements, alternative scenarios planning (Jaffino et al., 2020; Dong et al., 2019; Hech-
mann et al., 2015; Bhatia et al., 2015; Ghaemi, 2018) and case studies of (potential) dis-
asters (Pant et al., 2016; Ivanov, 2020). On the one hand, the dynamical intertwining of
many heterogeneous operational elements and agents, network connectivity, and geo-
graphical spread are oft-cited generic factors responsible for the susceptibility of these
systems to disruptions (Schipper and Gerrits, 2018; Dekker et al., 2021f; Gu et al., 2020;
Pagani et al., 2019; Vespignani, 2010). On the other, combined with a lack of reliable em-
pirical data, the same factors also contribute to hinder the understanding, anticipation
and prediction of systemic build-up of large-scale disruptions.

In order to address this problem, here we consider a prime example network trans-
port system: railways. In most countries, railways witness large-scale disruptions — man-
ifested by near system-wide train service delays — multiple times a year (Dekker et al.,
2021f). Large-scale disruptions in railways lead to heavy economic damage by hindering
cargo and passenger transport (Tsuchiya et al., 2007). Conversely, investments in robust
railway systems may prompt economic growth (Politico, 2019; International Transport
Forum (ITF), 2009). These especially hold true for densely urbanised countries in Europe,
wherein railway transport, planned at a high density and frequency to match the extent
of urbanisation, has developed to be an inextricable asset for societal and economic well-
being, and is projected to be even more intensely developed due to rising demands and
sustainability goals. While scattered delays are commonplace, they do occasionally build
up to a large — near system-wide — scale, as illustrated for Italy, Germany, the Nether-
lands and Switzerland in Fig. 6.1.

All cases in Fig. 6.1, except Italy, were initiated by extreme weather: storms ‘Niklas’
(2015), ‘Friederike’ (2018) and ‘Burglind’ (2018, ‘Eleanor’ in the English nomenclature).
Exogenous triggers like these — be it weather conditions, power outages (Dekker et al.,
2021f), accidents or even earthquakes (Tsuchiya et al., 2007) — are typical for the on-
set of problems, but the consequences were driven by the system’s internal dynamics,
propagating and amplifying delays to near system-wide scale. Indeed, in the year July
2017 - June 2018, 29 days were marked as strongly disrupted days for the Dutch rail-
ways, with most of them occurring in November, December and January. This is no co-
incidence, even though railway companies use icing protection, adjusted timetables and
many other precautions to prevent cold weather affecting their performance. Statistics
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Figure 6.1: Examples of large-scale disruptions. Railway delays for strongly disrupted situations in four Eu-
ropean countries (shown only are the delays larger than two minutes in colours; see SI F.1 for data description
and sources). Panel (a): near-simultaneous occurrence of several problems in the Italian railways in March
2015 — a major one around Rome, affecting mostly intercity trains, and one between Milan and Venice. Panel
(b): effect of cyclone ‘Niklas’ (31 March, 2015) on the German railways. In particular, a specific train near Peg-
nitz (center-south) was severely damaged by a fallen tree and the rooftop of the Munich station was destroyed,
along with multiple smaller incidents across the country. The high risk of more accidents and delays caused
the Deutsche Bahn to cancel most of its train activity throughout the day, leaving passengers stranded in major
cities like Hannover, Frankfurt, Kassel and Berlin. Panel (c): aftermath of storm ‘Friederike’ in January 2018 in
the Netherlands , coinciding with an accident in the north of the country. Fallen trees and damaged overhead
lines made the fire department force the Dutch railways to close at multiple stations — resulting in no train
activity between the end of the morning and 14:00. A combination of the many disruptions with the lack of
resources overview limited the possibility of mitigating delay at crucial corridors. The smaller scale and high
density of the railway system in the Netherlands can be recognised also in Switzerland [panel (d)], where in
January 2018 (coinciding with storm Burglind/Eleanor in the north-west of Europe) a strong disruption in near
Zürich (north) rapidly propagated towards the rest of the country.

like these, notwithstanding the wide variety of operations management for railway sys-
tems, highlight the generic aspects for the build-up of large-scale disruptions: while the
initial primary delays, caused by external events, could possibly have been quickly re-
solved, systems’ internal issues cause new secondary delays, converting an initial locally-
confined problematic event to an amplified near system-wide disruption.

For transport and logistic systems at large, considerable effort has been invested in
identifying risks associated with criticality aspects of infrastructure in situations of haz-
ards like in Fig. 6.1 (Bhatia et al., 2015; Zhu and Goverde, 2019) and how to deal with
disruptions in terms of rescheduling (Ghaemi, 2018; Schipper and Gerrits, 2018; Nielsen
et al., 2012). Related literature aims to understand and predict the evolution of delays
in transport systems, both under regular and disrupted circumstances. Most delay evo-
lution models, however, focus on regular circumstances and predict how delay fluctua-
tions develop using high-resolution statistics obtained from particular incidents or sce-
narios (Zhu and Goverde, 2019; Wei et al., 2015), or from particular stations (Kecman
and Goverde, 2015b; Li et al., 2016) or lines (Huang et al., 2019; Janić, 2018; Wen et al.,
2019). These models come in various forms, mainly in the context of air and railway
transport: analytical (Goverde, 2010), agent-based (Gambardella et al., 2002), stochas-
tic (Büker and Seybold, 2012; Meester and Muns, 2007; Pyrgiotis et al., 2013; Campanelli
et al., 2014) and purely data-driven (Oneto et al., 2017; Dekker et al., 2019). A second rele-
vant branch of transport literature focuses on robustness and vulnerability aspects, such
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as definitions of transportation resilience (Leobons et al., 2019), perturbations in the net-
work topology (Bhatia et al., 2015; Lordan et al., 2015), and data-based analyses on how
the systems are connected (Guo et al., 2019; Pagani et al., 2019). Specifically note that
the above references include studies of multiple types of transport systems: airways, rail-
ways, supply chains, and even the analogy with freight truck and cargo ship transport. All
these systems share the common feature of schedule-based transport, where disruptions
may lead to subsequent delay of other transport units (Chung et al., 2017; Ludvigsen and
Klæboe, 2014; Helbing, 2013; Fleurquin et al., 2013). This effect, universal to many trans-
port systems, is often commonly referred to as ‘cascading’ of delay; in this chapter we
analyse its contribution to large-scale disruptions for railways.

In the context of these models, which use the language of networks and dynamics,
it is crucial to make the distinction between (a) dynamics on networks, where dynam-
ics of a certain state variable evolve on top of, and is thus bound by (a time-invariant)
network topology, and (b) dynamics of networks, i.e., involving (dynamic) links that can
(re)appear, disappear or change weights (e.g., Cuadra et al. (2015); Simonsen et al. (2008);
Buldyrev et al. (2010); Bhatia et al. (2015); Albert et al. (2000); Holme et al. (2002)). In
transport literature, the study of delay propagation generally conveys dynamics of the
former type, while literature on infrastructure and resilience generally focuses on dy-
namics of the latter type.

Even though the above two paragraphs indicate transport literature as an active and
broad field of study, there are still many unknowns, such as how the system as a whole
evolves during disruptions, e.g., following an exogenous trigger. Due to heterogeneity
in terms of space, time, human interactions and externalities that impact the system,
the existing models typically lack accuracy and predictability (of evolution dynamics) in
cases other than ‘regular’ (i.e., non-disrupted circumstances, or are purposed to simu-
late very specific scenarios, e.g., particular types of disruptions (Ghaemi et al., 2018) or
geographical areas (Middelkoop et al., 2012; Wen et al., 2019). The contrast between dis-
rupted and regular circumstances is manifold (and are visible in the results in this chap-
ter, e.g., Fig. 6.4). Under regular, non-disrupted circumstances, delays are generally small
and are of a less interactive nature with other delays, which allows for the applicability of
data averages and a linear or local view (Kecman and Goverde, 2015b). The decreased in-
teractivity of delays is a result of the fact that the schedules (or timetables) contain built-
in buffers that, in case of delay, prevent the delay from affecting other transport units
due to limited capacity of, e.g., platforms, tracks, or exchange of resources. Additionally,
isolated delays can also be easily mitigated by human control. However, in case of (mul-
tiple) disruptions, the severity of delays exceeds the buffer and mitigation capacity and
start building up and affecting other transport units, making the analysis rather complex
(Dekker et al., 2021f). For railways, Fig. 6.1, provides a visual feel of delays building up
and spreading across large spatial and temporal scales. The figure suggests that neither
methods under regular circumstances, nor the specific incidents or scenarios covered in
the existing literature are applicable to the underlying delay propagation mechanisms.

In this chapter, we focus on finding generic delay propagation mechanisms that do
apply to situations as in Fig. 6.1. Indeed, Fig. 6.1 prompts us to conceptualise the inter-
twining of the many heterogeneous operational elements and agents in terms of stochas-
tic processes playing out on a complex (infrastructure) network that remains invariant in
time. We do so by constructing a structure with multiple layers of dynamics on a fixed
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infrastructure network — each layer of dynamics conveying the movements of a cer-
tain type of resource or service required for the system’s operations. This conceptuali-
sation reveals that the interdependencies among the resources and services give rise to
pathways for the delay cascading mechanism, which gets activated when, constrained
by local unavailability of on-time resources, already-delayed ones are used to operate
new services. Cascading amplifies delays locally for both resources and services, which
in turn transport the amplified delays geographically over the network to give rise to new
constraints elsewhere — describing phenomena we see in strongly disrupted situations
like in Fig. 6.1. Building the above concepts into a physical model leads us to reveal that
the emergence of large-scale disruptions in networked transport requires three building
blocks: constraints, cascading and transport. Not only does this chapter bring new un-
derstanding of the evolution of disruptions, but the data-based interlinkages between
transport resources and resulting cascading effect has also never been quantitatively
shown in transport literature.

The model allows us to extract the key (delay-)amplifying role played by cascading,
and to also predict the evolution of large-scale disruptions in the railways up to 30-60
minutes up front. We note here that the concept of cascading in itself is not new. Cas-
cading in other dynamical systems like the Earth’s climate (Dekker et al., 2018b), or in
network science in general is an active topic of research. On the one hand, in dynam-
ics of networks, cascading has resulted in concepts like ‘cascading failure’, depicting the
loss of connectivity in a network by a sequential removal of nodes and/or links (Simon-
sen et al., 2008; Pescaroli and Alexander, 2016; Bhatia et al., 2015; Buldyrev et al., 2010).
On the other, in dynamics on networks, such as innovation diffusion (e.g., in the work of
Watts (Watts, 2002)) cascading refers to when an adoption, a rumour, an opinion or an
infection process spreads through the entire network. In our work, the notion of cascad-
ing presented refers to interlayer spillover effects within the multiple layers of dynamics
on a fixed infrastructure network, and it simply cannot be described by a diffusion-like
model. Our work therefore stimulates us to rethink and contributes to broaden our hori-
zon to spreading dynamics on complex networks (we will return to this discussion in
section 6.6).

The chapter is structured as follows. In section 6.2 we explain the cascading mecha-
nism and how three ingredients may lead to large-scale disruptions: constraints, cascad-
ing and subsequent transport, and illustrate using a case example. In section 6.3 we for-
mulate a model from these building blocks. In section 6.4, using the model, we quantify
the role of cascading in driving large-scale disruptions. We investigate the performance
and predictive power of the model in section 6.5. We conclude the chapter in section 6.6
with a discussion on the broader outlook.

6.2 The three building blocks for large-scale disruptions

We start by pointing out the generalities of transport systems. They are based on a cer-
tain (infrastructure) network: e.g., rails and stations for railway transport, airports and
airline services for air transport, and highways and cities for car transport. Nodes in a rail
network correspond to stations between which resources (trains, personnel, scheduled
lines) move on edges, which are the tracks between stations. In this chapter, we treat the
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network as fixed or time-invariant, and study the system dynamics that is taking place
on the network. The data for the Dutch railway system can be found in a repository on
Open Science Framework (https://osf.io/tps4r/). Data of other national railway
systems, used only in Fig. 6.1, were found partially via another paper (Monechi et al.,
2018), i.e., from the following websites: OpenDataCity for German data (http://www.
opendatacity.de/), ViaggiaTreno for the Italian data (http://www.viaggiatreno.
it/) and OpenTransportData for the Swiss data (https://opentransportdata.swiss/).
Details on time intervals and data considerations can be found in SI F.1.

As stated above, crucial to understanding the evolution of delay in case of a disrup-
tion is the impact and interactions of operational resources and agents. Using the exam-
ple of railways networks, we conceptualise these elements by distinguishing three ‘lay-
ers’ of dynamics on the network, each of which has its own operator-specified schedule
(i.e., dynamics) but is dependent on the schedules of the other layers: (a) a (train) service
layer, containing the planned services, of which information is made publicly available
via the timetable, (b) a rolling stock resource layer, involving the physical train units used
to run the services, and (c) a crew resource layer, containing the personnel required to
operate the trains. (Although we focus on railways, analogous formulation and dynami-
cal layering is applicable to other transport systems.) For railways, resources and services
couple by the condition that at least one rolling stock unit and at least two crew mem-
bers (one driver and one conductor) are needed to run a service, leading to dynamic
couplings — interdependencies — that link these layers along the (train) service routes.
These interdependencies serve as the potential pathways for delay cascading in the fol-
lowing manner. Under regular circumstances, the layers act (largely) independently due
to built-in local spare resource capacities and scheduled buffer times between service ac-
tivities. However, new delays are generated when, constrained by local unavailability of
on-time resources (i.e., when delays exceed buffer times and no spare resources are avail-
able), already-delayed ones are reused to run new services, activating ‘delay cascading’
(i.e., a process of delay generation at specific network nodes). Subsequently, these newly
generated delays then get geographically transported along the service routes, and possi-
bly create a similar constrained situation at some other node. (Most train services do not
cross national borders, making cascading mainly a national problem, seen in Fig. 6.1.) In
this manner, constraints, cascading and subsequent transport of delays reinforce each
other to make a localised delay perturbation amplify towards a large-scale disruption —
this is exactly why we refer to these elements as the building blocks of large-scale disrup-
tions.

Before we build these concepts into a physical model and quantify cascading, let us
start with defining delay itself. All services and resources have planned and realised ac-
tivity times; the planned ones constitute the predefined schedule of the railway operator.
For a train service, every (discrete) activity a — in the forms of departures, arrivals or
passings-by — can have a nonzero delay value d(a) = treal(a)− tplanned(a), i.e., the activ-
ity is executed at a realised time treal later [d(a) > 0] or earlier [d(a) < 0] than the planned
time tplanned. The change in delay of a train service’s activity a with respect to its previous
activity is referred to as the delay jump δ(a). For example, consider a crew member com-
ing from service X that needs to transfer in 10 minutes (i.e., the buffer time) to another
service Y. Given that he is 16 minutes late from service X, the buffer time is exceeded
and part of his delay from service X is transmitted to service Y if no replacement crew is
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available: it will cause a delay jump of 6 minutes for service Y’s next activity. Delay jumps
in such situations can be suppressed by the use of spare resources or by buffers built in
the schedule. Although affected by numerous factors, many large delay jumps are caused
by delays cascading from one layer to another via resource-service interdependency [as
illustrated in Fig. 6.2(a-c)].

6.3 The model

The model is built on the following premise: if a service line, rolling stock unit or crew
member is delayed, then the delay is transported along the rest of its route, minus the
buffers. We develop three variants of the model, all in the same vein of linking the full sys-
tem’s resource schedules as discrete events: (1) the ‘monolayer model’, containing only
the train services, wherein we explicitly incorporate the transport of delays along the ser-
vice routes (it has no cascading), (2) the ‘bilayer model’, where we link the rolling stock
layer to the monolayer model, and (3) the ‘trilayer model’, where we add the crew layer
to the bilayer model. In the bi- and trilayer models delay also propagates cumulatively
via rolling stock and crew: delay (minus built-in buffers) is passed on from one activity
of a resource to the next activity performed by the same resource. The model we build
has similarities to existing max-plus transport models (Goverde, 2010), but is novel in (a)
incorporating both rolling stock and crew layers, and (b) utilising real schedules for all
resources at the full-system scale (see SI F.2 and F.3 for details).

Following the prescribed schedule of the railway operator, the model is formally de-
scribed as follows. Consider activity a of a certain train service line. Then consider the
recent past activities {a′} of all resources (activities performed by the personnel, rolling
stock units, and service line activities) used to execute a prior to a. Then, having denoted
the delay for activity a′ by d(a′), the buffer between activities a′ and a by β(a′, a) and the
Heavyside theta function by H [i.e., H (x) = 1 if x > 0, and 0 otherwise], the model cal-
culates d(a) as

d(a) =




max
{a′}

{H [d(a′)−β(a′, a)]} if {a′} is non-empty

0 otherwise.
(6.1)

In our related works, we have also experimented with an added noise term ζ to this
model, allowing us to analyse the sensitivity of the results to noise. In general, it turns
out that the cascading mechanism has a much stronger impact on the delay evolution
than (Gaussian distributed) noise because cascading copies and amplifies existing delay
rather than creating new (noisy) delay from scratch. In this chapter, however, we do not
include the noise term, lest avoiding confusion between model noise and interpreted
noise in the real data, as in Fig. 6.4 (see also SI F.3). Initialised at some time t0, i.e., being
constrained to the train operator’s schedule predefined at t0, the model propagates initial
delays to future (t > t0) ones via Eq. (6.1).

For clarity, let us provide an example calculation of d(a). Imagine a train activity a
that is ran by a train service s. Its previous activity aprev had 30 seconds delay (no buffer),
and we are interested in the delay of activity a. One of the rolling stock unit used for
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a came from elsewhere, where it had 300 seconds delay, with a buffer of 120 seconds
(for recombining into service S). Two crew members transferred to service S, one (mem-
ber I ) with 720 seconds delay (with buffer 600) and one (member I I ) with 540 seconds
delay (with buffer 600). Table. 6.1 summarises these numbers. The set {a′} in Eq. 6.1
contains four activities, of which the buffers (third column) should be subtracted from
their delays (second column), to get the potential contribution (fourth column) the de-
lay of their combined activity, d(a). The corresponding delay jumps δ(a) are calculated
by comparing the resulting d(a) for each model to the delay of the previous activity of the
service d(aprev). In the monolayer model, we obtain dmono(a) = max{30} = 30 (such that
δmono(a) = 0), in the bilayer model dbi(a = max{30,180} = 180 (such that δbi(a) = 150)
and in the trilayer model dtri(a) = max{30,180,120,0} = 180 (such that δtri(a) = 150).

Resource Delay d Buffer β Potential
contribution

Train service 30 0 30
Rolling stock 300 120 180
Crew member I 720 600 120
Crew member I I 540 600 0

Table 6.1: An example calculation of delay propagation in case of resource transfers. All values are stated in
seconds.

6.4 Quantification of cascading

In Fig. 6.2(d-e) we plot the delay cascading metric γ, defined as the cumulative sum of
all resource transfer-related delay jumps, i.e., γ = ∑

a δ(a), consequential to some initial
delay dinit due to planned service 3028 on December 3, 2017 at the city Alkmaar. Given
a predefined buffer time, the higher dinit is, the more buffers are exceeded; i.e., the more
positive delay jumps occur, and the more γ increases. Stated differently, the ‘tighter’ the
buffer times are planned — often the tendency of benefit-to-cost optimisations — the
more prone transport and logistic systems would become to large-scale disruptions.

In real-time operations, cascading like this will of course not go unnoticed, as rail-
way dispatchers will take mitigation measures in real time. Rescheduling of rolling stock
and crew, and service cancellations constitute mitigation measures; in effect, for t > t0,
they simply alleviate (some of) the constraints imposed on the model by the operator’s
schedule defined at t0. To briefly showcase how the model reproduces delay build-up
in a real situation, let us now use it to evolve an actual delay snapshot of the entire sys-
tem, and compare the results to the real data. To this end, we choose December 11, 2017
as a case study, another day with a severe blizzard (similar to the Dutch case shown in
Fig. 6.1). On this day, a code red weather alert was issued from 12:00h onward, in an-
ticipation of which, the Dutch railways used an adapted schedule. Notwithstanding, the
west and centre of the country got disrupted to the point that almost no train traffic was
possible around Utrecht and Amsterdam in the afternoon. Having initialised the model
with the system snapshot at t0 = 19:00h — meaning also that the model is constrained
to the operator’s predefined schedule at 19:00h — we compare the model predictions for
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the evolution of delay to the observed data at 20:00h in Fig. 6.3. The aim of this figure is
to illustrate whether our model reproduces amplification (in terms of delay magnitude)
and geographic spread of delay well, when we initialise the model at a certain moment
of time. Similarities between reality [panel (a)] and the model output [panel (b)] can be
found in the centre and east of the country, whereas differences can be seen in the south
and north (such differences affect the model’s performance, analysed later). The total
delays [panel (c)] for the mono- and bilayer models are seen to decrease quickly, while
the trilayer model predicts the (increasing) evolution of the total delay rather well for the
first 90-120 minutes. Note that the trilayer model prediction considerably overshoots the
real data after 21:00h in panel (c). [In section 6.4, we will demonstrate that the period
19:00-21:00 happens to coincide with a large number of mitigation measures (Fig. 6.4a),
suggesting that the dispatchers have mitigated much of the delay that the model predicts
(this is consistent with the overestimation of the delay by the trilayer model)]. Still, the
overall better performance of the trilayer model is logical, since in terms of modelling the
entire system’s dynamics, this model is the most complete, and therefore it captures the
fullest extent of the cascading effects. For this reason, we henceforth exclusively consider
the trilayer model, referring to it simply as ‘the model’.

Figure 6.3: Model simulations of a real situation. Comparison of simulation and observed data on December
11, 2017. All models were initialised with the system snapshot at 19:00h. Panels (a) and (b) show the spatial
distribution of delay at 20:00h in the real data (a) and simulation outcome of the trilayer model (b). Panel (c)
shows the total delay evolution in time for the observed data and simulation outcomes of the three models.
The trilayer model predicts the total delay well up to 120 minutes, after which it decays while in reality the
total delay increased again. The differences between the monolayer model and the bi-/trilayer models stem
from delay cascading, built in the latter ones. Only delays larger than 3 minutes are shown for visualisation
purposes.

In order to quantify the role of delay cascading in large-scale disruptions, we resort
to a comparison of the delay jumps predicted by the model prediction and the opera-
tional data, as extracting this directly from the operational data is not possible since no
cascading-related information, such as explanations for mitigation measures and cas-
cading events, are logged. By initialising the model every 15 minutes between 06:00h on
a day and 01:00h on the next, we first compute all model-predicted delay jumps with 15
minutes lead time. This lead time is chosen based on a high performance of the model
(quantified below by C in Fig. 6.5c-f). We then heuristically classify them, upon compar-
ing with operational data, in the following six categories: cascading due to (I) crew and
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(II) rolling stock transfers, mitigated cascading due to (III) rescheduling and (IV) cancel-
lations, (V) other larger incidents (delay jumps > 10 minutes), and (VI) net noise (i.e.,
all other unaccounted for delay jumps), as follows (details in SI F.3). If there was a pos-
itive delay jump at a rolling stock/crew transfer point in the operational data, and the
model indicated a cascading event, then the delay jump is accordingly categorised as I
or II. Other large and small delay jumps in observed data are categorised as V and VI
respectively. Lastly, large delay jumps indicated by the model but not found in the opera-
tional data, upon cross-checking with the latter, are attributed to mitigation measures by
rescheduling (III) or cancellations (IV). Note that category III concerns crew only; we lack
real-time rolling stock rescheduling data since the Dutch railways infrastructure com-
pany ProRail does not record them. Further, the distinction between categories V and
VI is artificial: it is primarily meant to demonstrate the occurrences of ‘large’ vs. ‘small’
incidents across day classes in Fig. 6.4(b).

For clarification purposes, let us provide an example for the delay jump classification.
Consider a train that departs from station A with 600 seconds delay, while earlier, upon
arrival at this station (i.e., its previous logged activity), it had 180 seconds delay, result-
ing in an observed delay jump of dobs = 600−180 = 420 seconds. With 15 minutes lead
time, the model however happens to produce dsim = 360 seconds delay. Since dobs > 0
and dsim > 0, we check the resource schedules, and find that the train re-departed from
station A with a different crew than it had upon arrival at station A, and one of these crew
members was delayed. We therefore mark the observed delay jump of 420 seconds as
category I: cascading due to crew. Carrying out this procedure for all activities and asso-
ciated delay jumps in the data, and adding their contribution together (per time window)
results in the data that are shown in Fig. 6.4.

Figure 6.4(a) shows the delay jump contribution of these categories for our case study
day December 11, 2017 (note: this is the same day as in Fig. 6.3); the respective contribu-
tions of these categories to the delay jumps can be seen to fluctuate heavily through the
day — this is in fact typical for any day. In particular, many mitigation measures are found
on this day, mostly in the evening, after 18:00h. By scaling up to four days each for four
unique day-classes as used by the Dutch railways (Black, Red, Neutral and Green days),
we show the relative contribution of each delay jump category in Fig. 6.4(b). Quantitative
details on this classification, can be found in SI F.1. ‘Black’ days refer to days with many
service cancellations and severe delays, while ‘Green’ days refer to days with barely any
cancellation and only small delays (with ‘Red’ and ‘Neutral’ in between). For communi-
cation reasons we keep the label names as is used by railway practitioners.

Shown in approximate absolute hours Fig. 6.4(b) are the aggregated contributions of
each of the categories. When deriving the role of cascading from this figure, it is impor-
tant to realise that categories I and II (cascading through crew and rolling stock) indi-
cate a baseline portion of cascading: those that were detectable using the heuristic de-
scribed two paragraphs above. The sizeable magnitude of mitigation categories III and IV
in Fig. 6.4(a) indicates that many cascading-induced delay jumps were prevented by rail-
way dispatchers. Further, categories V (‘other large incidents’) and VI (‘net noise’) cover a
combination of externalities, coincidences, but also more cascading (which could not be
captured by the heuristic) and secondary effects of cascading. It is for this reason that we
identify the aggregated contributions of categories I-IV as the minimum (average) cas-
cading metric γ for real-time operations. Figure 6.4(b) shows that γ decreases with the
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Figure 6.4: Origins of delay jumps. Total (summed) delay jumps, sorted by various mechanisms that cause
them, and subdivided in ‘labels’, for Panel (a) one case study (December 11, 2017), and panel (b) their pro-
portions averaged over four days each for four day classes (‘Black’, ‘Red’, ‘Neutral’ and ‘Green’) for the Dutch
railways. The origins of the delay jumps were identified by comparing observed data to model output. Mag-
nitudes [panel (a)] and relative magnitudes [panel (b)] were calculated for time windows of 5 minutes, with a
30-minutes smoothening window used for display purposes. Four types of delay jumps that act as delay sources
are distinguished: (I) delay cascading due to crew transfers (purple), (II) delay cascading due to rolling stock
transfers (red), (V) other larger incidents (blue) and the positive part of (VI) net noise. Three types of delay
jumps that act as delay recovery are distinguished: (III) mitigated cascading due to rescheduling (yellow), (IV)
mitigated cascading due to cancellations (green), and the negative part of (VI) net noise. The positive part and
the negative part are plotted separately in a cumulative sense — up- and downward, respectively. In panel (b),
the total identified delay cascading (observed plus mitigated) is highlighted in hours.

day-severity decreases: on Black days, we find an average of γ= 21 hours, while on Green
days, this is only γ= 6 hours. The relation between γ and day-severity suggests that cas-
cading indeed becomes increasingly important in more disrupted situations. (Also, the
mitigation measures devised by the Dutch railways are evidently seen to be quite effec-
tive.)

6.5 Predicting the evolution of large-scale disruptions

Finally, we address the matter of predicting the evolution of large-scale disruptions us-
ing the model. How accurate the model predicts this evolution is referred to as the ‘model
performance’. The relevance of model performance is twofold: for validating the model,
and for providing (early) warnings to predict the evolution of disrupted situations in real-
time operations. For the former, comparing model performance across multiple types of
days (‘Green’, ‘Black’, etc.) may identify the cases wherein cascading, built in the model’s
mechanisms (i.e., the three building blocks from section 6.2), indeed played an domi-
nant role in delay propagation (in cases when the performance is high), or when other
(excluded) factors played a significant role (in cases when the performance is low).
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In general, prediction by any delay propagation model suffers from two limiting fac-
tors: (i) large, poorly predictable, new incidents external to the system (captured partly
by the blue and the grey areas in Fig. 6.4), and (ii) mitigation measures (yellow and green
areas in Fig. 6.4) that alleviate constraints on the model imposed by the operator’s prede-
fined schedule at initialisation time t0. By leaving these out by construction, our model
outputs how delay would build up in their absence [this, in fact, is the qualitative expla-
nation for the discrepancy between Figs. 6.3(a) and (b), as remarked earlier]. The model’s
prediction accuracy therefore gets limited to a certain lead time (t − t0) — the longer it
is, the more negative influence (i-ii) have on its performance. We therefore define a pre-
dictability horizon (t−t0), for which the condition Ct0 (t ) = c holds for some c. Here Ct0 (t )
is the cosine of the angle φ, obtained from the dot product between the system-wide real
and model-determined departure delay vectors �D = [d(a1),d(a2), ...,d(an)], obtained by
aggregating all the train services in the time window W (t ,∆t ) ≡ [t −∆t/2, t +∆t/2] with
window size ∆t = 30 minutes:

Ct0 (t ) ≡ cos[φt0 (t )] =
�Dreal(t ) ·�Dmodel, t0 (t )

|�Dreal(t )||�Dmodel, t0 (t )| . (6.2)

We use this quantity as the model performance metric, with values between 0 (performing
poorly) and 1 (performing perfectly). Although cosine similarity (like many other corre-
lation metrics) does not incorporate absolute delay magnitudes when comparing model
output to observed data since they are scaled out in Eq. (6.2), the quantity C does take
into account the spatial distribution as well as the corresponding relative magnitudes of
delays (of which larger delays are of particular interest) over the entire network.

The lead time should in principle correlate well to the cosine similarity modulo the ab-
sence of the two limiting factors (i-ii). While we have little means to quantify (large exter-
nal) incidents, we can quantify mitigation measures by Pt0 (t ), defined as the ratio (deter-
mined using the schedule at t0):

Pt0 (t ) = executed crew actions scheduled to be in W (t ,∆t )

all crew actions scheduled to be in W (t ,∆t )
. (6.3)

(Ideally one should also account for rolling stock rescheduling in the interval [t0, t ], but as
pointed out earlier, we do not have data on live rescheduling of rolling stock.) Analogous
to the predictability horizon, one can also define the mitigation horizon (t − t0) for which
the condition Pt0 (t ) = p holds for some p.

Using the definitions (6.2-6.3), we first investigate the predictability horizon for our
case study day December 11, 2017 (as in Fig. 6.3 and Fig. 6.4a). Starting at 6:00h on the
day, the model is initialised every 6 minutes, run forward, and both C and P are calcu-
lated at every time point (at 1 minute resolution) up to 01:00 AM on the next day for each
run. The results are shown in Fig. 6.5(a); both the horizontal and vertical axes display
time of day. The diagonal represents t = t0, on which C = P = 1 trivially holds. Using the
time-stamps displayed on the horizontal axis, in Fig. 6.5(a) we plot Pt0 (t ) in blue at ev-
ery point on the left of the diagonal — e.g., for the little black circle — where t0 is the
model initialisation time-stamp of the point, and t is the crew activity time-stamp, cor-
responding to the intersection point of a horizontal line (shown by the right arrow) from
that point and the diagonal. A similar process is followed for plotting Ct0 (t ) in red on the
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right of the diagonal, but this time using the time-stamps displayed on the vertical axis.
The blue and the red contours for several values of c and p then respectively correspond
to the mitigation and predictability horizons; they respectively measure how far ahead in
time the crew schedule remains invariant enough, and how far up front in time the delay
situation can be predicted. For example, the large distance of the P and C contours to
the diagonal at t = 16:00h (following the arrows) means that the crew (that were working
around 16:00h) were barely rescheduled prior to 16:00h, and the model also performed
well to predict the delay state at 16:00h. Similarly, distance of the P-contour to the di-
agonal dropped considerably after 16:00 hour, resulting in large amounts of cascading
mitigation, as in Fig. 6.4a.

We expect that the two horizons to track each other for large-scale disruptions (the
larger P is, the less the constraints at model start-time t0 are alleviated, meaning that
the higher the model performance C ought to be). The relation between the two is ex-
plored in the C -P diagrams in Fig. 6.5(b-c) in two different ways. The scatter of points in
Fig. 6.5(c) denote the C and P values for five different colour-coded lead times (t − t0) at
hourly values of t , for the same four large-scale disruption (Black) days as in Fig. 6.4(b).
While there is a large scatter in Fig. 6.5(c), their averages, plotted in circles marked with
lead-time values, indicate a near-linear relation between C and P for lead time up to an
hour. The same is seen in Fig. 6.5(b), wherein the contour bands Ct0 (t ) = 0.35±0.1 and
Pt0 (t ) = 0.7±0.05 from Fig. 6.5(a) on December 11, 2017 are also seen to track each other
well with an offset all through the day. Finally, Fig. 6.5(d-f) we compute the C -P diagrams
for the other days as in Fig. 6.4(b). For a given lead time, we find two distinct trends with
increasing day-severity: (i) P decreases significantly [ostensibly to facilitate mitigation
measures, as seen in Fig. 6.4(b)], (ii) notwithstanding that, the model performance C —
the cosine similarity — improves (in particular, the 30-min lead time averages improves
from 0.43 and 0.51 on Green and Neutral days to 0.59 on Black days). This is indeed coun-
terintuitive, but is explained by the following. The delay spreading mechanisms are bet-
ter captured by the model on Black (severely disrupted) days in contrast to the Green
days, for which delay spreading is dominated by incidents and noise events external to
the model [covered by the blue and the grey areas in Fig. 6.4(b)]. This corroborates our
central message — namely that delay cascading dominates large-scale disruption events:
despite more mitigation measures, more buffers are systemically exceeded on Black days
than on, e.g., Green days.

6.6 Conclusion and outlook

We show that large-scale delay evolution during railway disruptions emerge from the
complex interactions of resources and services. Central to large-scale disruptions are
the processes of delay amplification and spreading on the (fixed or time-invariant) in-
frastructure network. We find that these processes require a dynamical interplay among
three building blocks: (a) constraints (the required resources are delayed), (b) cascading
(this delay is passed on secondary services), and (c) transport (the secondary services
spread the delay across long spatial and temporal time scales), wherein cascading play-
ing the key role for delay amplification. Although we consider only railway systems here,
the conceptual similarity in resource allocation and schedule-based dynamics in other
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systems like airways and logistic systems suggests that cascading can be an important
driver to large-scale disruptions in these systems as well.

Although, in this chapter, we focus on railway transport with a wider outlook to trans-
port and logistic systems at large, our work connects to a wider class of dynamical pro-
cesses taking place on networks. In the introduction we have already pointed out that the
problem we study here — spreading phenomena on fixed (time-invariant) railway infras-
tructure network — belongs to the type of dynamics on networks. Well-studied examples
of this type are diffusion-related phenomena on networks (e.g., in various (bio)chemical
reaction-diffusion, or activation-inhibition processes running on networks (Nakao and
Mikhailov, 2010; Diego et al., 2018)), network epidemiology (Brockmann and Helbing,
2013), and the spreading of rumours and opinions over social networks (Watts, 2002;
Centola et al., 2007). Even though one can make a distinction among these regarding
nature-made or human-made systems subtypes, the spreading mechanism we identify
here, viz., delay cascading across multiple layers of resources and service elements, is a
rich (and supported by real life data) addition to literature of dynamics on networks. The
constraint-cascading-transport mechanism of (delay) spreading, which we derive here
using the example of railway transport, adds to the understanding of the spreading dy-
namics on complex networks. While we hope that our work will stimulate a wider search
into spreading phenomena on complex networks, we also note that the multi-layer cou-
pled dynamics can also be formulated as a temporal network (Holme and Saramäki,
2012), which is however beyond the scope of the the current work.

Finally, for the specialist field of transport research, we foresee two effective measures
to arrest cascading, potentially averting large-scale disruptions. First, the introduction
of ample spare resource capacities and buffer times, to ensure that local constraints do
not get easily activated. The trilayer model pinpoints precisely where vulnerabilities lie
within the railway operator’s schedule: e.g., in Fig. 6.2 we show that delays in the Dutch
city of Alkmaar (north-west) at a particular moment in time has the potential to cause
delays in the city of Nijmegen (east) at a later point in time: a form of building long-range
causal correlations in the system. Spare crew in Alkmaar would not only prevent this spe-
cific spread, but upscaling the model’s results to long-term statistics would also provide
any transport system’s dispatcher with data to pinpoint ideal locations and quantities
of spare resources — an analysis we plan to execute in the future. (Having said this, we
acknowledge that optimising the system for benefit-to-cost ratios will limit the possibil-
ities of having spare resources.) A second measure to prevent cascading is a modular de-
sign approach for the transport functionalities. Modular designs (like the Danish railway
system), by definition, do not reuse resources from one area to another, which prevents
delay cascading between these regions. Modular design approaches have been consid-
ered in the context of operational rescheduling during disruptions (Potthoff et al., 2010;
Nielsen et al., 2012). We hope that this work prompts new research into the trade-offs
and complexity of how to design transport systems resilient to disruption spreading.
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PART III

TEMPORAL NETWORK 
APPROACHES

On the role of interaction sequences and vulnerability 
to spreading
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“I think the next century will be the century of
complexity.”

STEPHEN HAWKING, 2000
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Introduction to Part III

In Part II, I discussed the interaction between dynamics in a complex system and its
underlying network architecture. In chapters 4, 5 and 6, the example of railway systems
is taken. In this example, it is natural to assume a fixed, constant underlying network
architecture: even though the railway infrastructure is subject to changes in tracks and
stations, these changes are slow with respect to the dynamics on top of the network. For
example, while it may take years to build new tracks and stations, the delay dynamics
in railway systems happen in a matter of hours, up to a day (because of the reset of the
resources and schedules). This reveals an important concept to dynamics in complex
systems in general: the concept of time scales. I distinguish two relevant time scales for
this dissertation — a third will be added later. The first is the time scale of the dynamics
(τdyn), referring to a typical period of time on which the dynamics evolve. The second is
the time scale of the change in agent interactions, i.e., in the network architecture (τnetw).
Clearly, for the railways: τdyn � τnetw, which allows us to assume an invariant network
architecture (‘τnetw →∞’), which greatly simplifies the analysis. This inequality, motivat-
ing the use of static networks, typically holds for urban transportation systems (hence the
focus on railway systems in chapters 4-6), but also for, e.g., many hydrological systems,
where the water flows much faster than rivers and lakes change, plant vein structures,
in which nutrients are distributed faster than the growth of plant veins, and the spread-
ing of a popular video on social media, which happens much faster than the networks of
friends and followers change.

However, in many complex systems, this inequality does not hold: network architec-
ture may evolve at similar time scales as the dynamics of interest (τdyn ≈ τnetw), or even
faster (τdyn > τnetw). In such cases, the changes in the network architecture needs to be
taken into account explicitly by the use of temporal networks. Topologically, temporal
networks are composed of a set of networks, each representing all agents (nodes) and
their interactions (links) at a specified time or time interval. These ‘snapshot’ networks
are connected in the temporal dimension by connecting identical agents at different time
steps. This results in two types of links: those representing actual interactions at any time
(interval), and those that represent a temporal connection of an agent. The time period
between two network snapshots should of course typically be of the order of τnetw to rep-
resent the changes in the network architecture well. However, oftentimes, this is not the
case because of empirical constraints. For example, in human interaction data (e.g. those
used in chapter 8), the time between contacts may be a few seconds, while the sampling
time may be measured in minutes. Also for practical purposes, a sizeable and perhaps
constant sampling time may be beneficial, which may not represent reality best. Hence,
one can speak of a third relevant time scale relating network architecture changes to dy-
namics on top: the time scale of sampling the network architecture τsamp. Despite poten-
tial limitations due to τsamp being larger than τnetw, temporal networks have important
advantages when compared to their static (non-time varying) counterparts when aiming
to describe dynamical phenomena.

The importance of including temporal changes in the network architecture becomes
especially apparent when dealing with spreading phenomena, which typically involve
an important memory part and a high necessary resolution of interaction sequences. Let
me highlight this in an example of, again, a simple model of disease spreading using the
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primary school example also used in Figs. iib and iva. The same SIR model as in the intro-
duction to Part II is used here, but on different network structures. Note that in reality, a
disease typically evolves from agent to agent on a timescale of days — e.g., for SARS-CoV-
2, the incubation and infectious periods are found to vary between a couple of days up
to a few weeks (He et al., 2020) — while the empirical networks used here span just over
a couple of hours. This means that τdyn � τnetw, which would be a problem if we would
use this network architecture for more than just this illustration. I chose a single agent
as the one being infected at t = 0 to initialise the disease spreading (‘patient zero’). The
results are shown in Fig. v, for three cases of the underlying network structure. In the first
case (panel [a]), the static network is used — the fully aggregated network over 2 hours of
primary school children interactions, which does not involve any time-varying network
architecture. This does include a disconnected cluster, which is therefore never reached
by the disease. In five time instances, the evolution of the disease across this network is
shown in node colours, reflecting the average status across an ensemble of 300 simula-
tions. The resulting evolution of the total % agents that are either infectious (I ) or recov-
ered (R) is shown to the right in purple. As suspected, the yellow and red colours spread
first in the highly connected clusters (in fact, corresponding to classrooms) close to pa-
tient zero, while later also progressing to children further in the network. In panel (b),
the network architecture is changed across five time intervals (each of 6 time steps, each
being an aggregate over 24 min in the empirical dataset). Clearly, the number of connec-
tions in each network snapshot is much smaller, also limiting the spread: both visible in
the node colours as well as in the brown line in the right panel being much lower than
the purple one. Overall, the individual brown lines are quite confined — even though
the spreading of the disease is stochastic and the network architecture is changing over
time. To illustrate the importance of sequences in spreading phenomena, I shuffled the
first four network architectures, but kept the last one the same for visual comparison.
The results, shown in panel (c), dramatically change: in the t = 24 panel, we see that the
disease has spread much further in the disconnected components to the upper right and
lower right than in panel (b). Also, when looking at the results the right panel, the re-
sults vary much more than in panels (a) and (b): three main branches of outcomes can
be distinguished, as marked by the arrows. Note that the eventual outcomes of branches
2 and 3 are also quite different from the outcome in panel (b), while the same network
architectures are use, but merely shuffled.

A number of concepts can be learnt from the example above, that are relevant to the
focus on chapters 7, 8 and 9. First, the impact of a time-varying network architecture
in general: clearly, the network snapshots in panel (b) are much different from those in
panel (a). Moreover, the outcomes of the very same spreading model are dramatically
different (i.e., the purple versus the brown lines), resulting from the fact that the agents
simply do not have all their unique interactions at the same time, throughout the simu-
lation period, which, if true, would of course quicken the spread — as visible in panel (a).
Comparing panel (b) to (c) also reveals that sequences matter: shuffling order of contacts
may have a large effect on the outcome of the spreading dynamics. And third, specific
attention can be given to the right panel of (c), where the different branches reflect that
particular (stochastic) infections early on may greatly influence the general direction of
the spreading later on — in this case, leading to a difference of 30%-point of the popula-
tion.
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Figure v: Illustration of how (temporal) network architecture affects dynamics on top by simulating an SIR
model on the contacts in a primary school (same dataset as in Figs. iib and iva) (Gemmetto et al., 2014). Panel
(a): Static network of interactions over two hours. Node colours indicate the average status across an ensem-
ble of 300 simulations using the same initialisation with a single agent. The average status is calculated via
averaging end statuses of the simulation (0: susceptible, 1: infectious, 2: recovered). In the right panel, the %
agents that are either infectious (I ) or recovered (R) is given by purple lines, indicating individual runs using
the network structure on the left. For reference, the grey and brown dashed lines show averages of the other
approaches. Panel (b): Same as panel (a), but for a temporal network approach, where five intervals are used,
reflecting the network architectures shown in this panel, each representing the structure of 6 consecutive time
steps. The network architectures correspond to the real empirical intervals in the two hours used in (a), i.e., 24
min each. The brown lines in the right panel show the evolution of the fraction I or R. Panel (c): Same as panel
(b), but where the network snapshots are shuffled (apart from the final one, to allow visual comparison). Grey
lines in the right panel show the evolution of the fraction I or R. All network components are shown, not only
the giant components (unlike before). Vertical lines in the right panels indicate the moments at which network
architecture is changed (i.e., borders between intervals of the temporal network).

These concepts — the impact of time-varying network architectures in general, in-
teraction sequences, and the importance of specific connections to the general outcome
— are the focus of this part and will be addressed in the following chapters. Chapter
7 proposes a method to analyse the impact of time-varying structures on its vulnera-
bility to spreading phenomena, much like the one in Fig. v, and quantifies this in the
novel metric entropy of temporal entanglement. The calculation of this metric involves
the transformation of grouped agent interactions to events, which can be linked through
time (in an ‘event map’) by checking whether two events contain at least one shared
agent. Tracking these events explicitly addresses sequences of interactions among the
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agents. The strength of this metric lies in that it does not require any simulation model,
but rather focuses on the information in the temporal networks themselves. We show
that this topology-based metric is useful to describe dynamics on top of the network.

In some sense, chapter 8 is an application of chapter 7, using empirical human inter-
action data from an art fair in Amsterdam 2020. Like in chapter 7, it utilises events to track
interactions and their sequences over time. The aim of the chapter is to quantify which
agents would be most crucial to a hypothetical spreading dynamics happening through
the interactions in this art fair. In colloquial words, we aimed to identify behavioural ‘su-
perspreaders’ by taking into account the sequences of their interaction. While identifying
important spreaders from mere network degree would have been trivial, unexpectedly,
degree is not necessarily a dominant factor when incorporating sequences of interac-
tions. We quantify the agent’s impact on the spreading by contact sequence centrality.

The final chapter of this dissertation, chapter 9, involves the simulation of the first
wave of SARS-CoV-2 infections in the Netherlands, with the ultimate aim to test the gov-
ernment’s intervention strategies. While a much more detailed model than the more the-
oretical principles in chapters 7 and 8, it utilises the principles of temporal networks,
sequential information and the effect of specific infections to the outcome at the same
time. The model used in this chapter simulates 170,000 agents, moving across the Dutch
municipalities in an hourly resolution, meaning that every hour, the network architec-
ture underlying the spreading dynamics of SARS-CoV-2 changes. Particular interest is
given to the closure of schools, interventions involving people’s mobility and locally ad-
justed interventions — reflecting on targeted approaches to reduce the spreading vul-
nerability as discussed in chapters 7 and 8.

Summarised, the overarching question addressed in Part III is:

Research question Part III: How can we quantify and influence spreading
vulnerability in temporal networks?
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This chapter can be found as a preprint: Dekker,M. M., 
Schram, R.,Ou, J., and Panja,D. (2021e). The hidden 
dependence of spreading vulnerability on 
topological complexity. arXiv:2107.01651. 
Supplementary material to this chapter  
can be found in SI G.

CHAPTER 7

THE HIDDEN DEPENDENCE OF 
SPREADING VULNERABILITY ON 
TOPOLOGICAL COMPLEXITY

157823 Dekker BNW.indd   172157823 Dekker BNW.indd   172 18-03-2022   10:2118-03-2022   10:21



ABSTRACTABSTRACT

Many dynamical phenomena in complex systems concern spreading that plays 
out on top of networks with changing architecture over time — commonly known 
as temporal networks. A complex system’s proneness to facilitate spreading 
phenomena, which we abbreviate as its ‘spreading vulnerability’, is often sur-
mised to be related to the topology of the temporal network featured by the 
system. Yet, cleanly extracting spreading vulnerability of a complex system 
directly from the topological information of the temporal network remains a 
challenge. Here, using data from a diverse set of real-world complex systems, 
we develop the ‘entropy of temporal entanglement’ as a novel and insightful 
quantity to measure topological complexities of temporal networks. We show 
that this parameter-free quantity naturally allows for topological comparisons 
across vastly different complex systems. Importantly, by simulating three dif-
ferent types of stochastic dynamical processes playing out on top of temporal 
networks, we demonstrate that the entropy of temporal entanglement serves 
as a quantitative embodiment of the systems’ spreading vulnerability, irre-
spective of the details of the processes. In being able to do so, i.e., in being able 
to quantitatively extract a complex system’s proneness to facilitate spreading 
phenomena from topology, this entropic measure opens itself for applications 
in a wide variety of natural, social, biological and engineered systems.
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7.1 Introduction

Networks, consisting of system elements (agents) and their interactions by nodes and
links respectively, have proved to be effective tools for analysing complex systems. For
a large variety of them, notable emergent dynamical phenomena of interest concern
spreading, effected by individual agents playing the role of carriers and transmitting to
others as they interact, e.g., sharing information through conversations (Cattuto et al.,
2010; Stehlé et al., 2011), passing of signals among animals (Almaas et al., 2004; Yosef
and Regev, 2011) and of infectious disease pathogens (Stehlé et al., 2011; Firth et al.,
2020), purveyance of (fake) news (Wang et al., 2019), synchronicity in neuronal spikes
(Klausberger and Somogyi, 2008; Rakshit et al., 2018), and cascading dynamics in socio-
technical systems (Badie-Modiri et al., 2020; Mancastroppa et al., 2019; Masuda and Holme,
2020; Li et al., 2020a). When the agents’ identities, and the precise sequences and timings
of their interactions over a given time interval are compiled together into a temporal net-
work (Holme and Saramäki, 2012; Riolo et al., 2001; Isella et al., 2011; Perra et al., 2012;
Li et al., 2017, 2020a), it becomes evident that spreading is actually a dynamical process
taking place on top of the network.

From this, it seems natural to expect that the topological complexity of a temporal
network will have a profound influence on the system’s proneness to facilitate spreading
phenomena — we abbreviate the latter as its spreading vulnerability (quantified later in
this chapter) — e.g., the formation and dispersion of epidemiological bubbles or echo
chambers will dictate how fast, or efficiently, pathogens or (fake) news may spread. How-
ever, establishing a quantitative relation between the two, from which the system’s spread-
ing vulnerability can be extracted directly from the topological complexity of the tempo-
ral network featured by the system, remains a challenge. The key obstacle stems from the
heterogeneities in the agent interactions intrinsic to temporal networks in the temporal
domain — there simply are no rules to guide which agent may interact with which others,
when, for how long and in which precise sequence — that need to be suitably combined
with the topological complexities that are already present in the network of agent-to-
agent contacts at any given time. Note that the latter, i.e., the agents’ contact network at
any given time, is in fact a static network, for which methods to deal with heterogeneities
are already well-established in the forms of degree distribution, various forms of central-
ity measures and community detection algorithms (Girvan and Newman, 2002).

Here we develop an insightful quantity to measure topological complexities of tem-
poral networks: we name it the entropy of temporal entanglement (the choice for this
name is justified below, and it bears no connection to entanglement entropy for quantum
many-body systems). Using real-world temporal networks data, and simulating three dif-
ferent dynamical processes on top of them, we show that this entropic measure not only
allows for a quantitative comparison of vastly different complex systems, but crucially,
it also bears a clean relation to the system’s spreading vulnerability, irrespective of the
details of the processes. In other words, this entropic measure is able to directly, and
cleanly, extract a complex system’s proneness to facilitate spreading phenomena from its
topology.

We coin the term ‘entanglement’ because of the following. Real-world temporal net-
works often follow a ‘discrete time convention’, wherein the agents’ interactions, denoted
by agent-to-agent contacts, are sampled at some fixed interval (which we denote as τs ):
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Figure 7.1: Temporal entanglement. Panel (a) An example of a temporal network, in terms of agent-to-agent
contacts as interactions among eight numbered agents, at snapshots taken at integer units of sampling time.
Snapshots are shown as time layers; the agent-to-agent contacts at integer times is shown as black links
within the corresponding time layer. The agents’ temporal paths (strings) from one snapshot to the next are
shown as grey lines. The changes in the topology of the agent-to-agent contacts from one snapshot to the
next make the strings weave through, and entangle with each other. Panel (b) Entanglement of the strings
at t = 0, extracted from panel (a); shown explicitly are the temporal paths (strings), labelled by Roman agent
indices, and the events in dark blue circles, labelled by Greek indices. Events are the connected components
of the agents’ contact network at t = 0. Panel (c) Calculation of the agent-to-agent propagator matrix P (0) as
P (0) =Q(in)(0) ·Q(out)(0). The iα-th element of the agent-to-event propagator matrix Q(in)(0) is the probability
of a random walker to start at agent i prior to t = 0 and end at event α at t = 0 in one hop. Similarly, the αi -th
element of the event-to-agent propagator matrix Q(out)(0) is the probability of a random walker to start at event
α at t = 0 and end at agent i subsequent to t = 0 in one hop.

an example is shown in Fig. 7.1(a), where the temporal network consists of layers in time,
denoted in integer units of τs . Then the grey lines denoting the agents’ temporal paths
across the layers in Fig. 7.1(a) — obtained by following individual agents in time — re-
semble strings laid out in time. Changes in agent interactions, i.e., in agent-to-agent con-
tacts, from one snapshot to the next make the strings weave through and entangle with
each other. (In the absence of any interactions among the agents at integer times, the
strings will simply be parallel to each other, without any entanglement.)

7.2 Entropy of temporal entanglement

We begin by introducing ‘events’. Events are the connected components of the agents’
contact networks at integer times. An example can be found in Fig. 7.1(a-b), where the
interactions among agents 1 through 4 and agents 5 through 8 constitute two distinct
events at t = 0. In this definition, every agent becomes a part of a single event, and all
agents are equivalent within an event; in addition, some may be solo-agent events, as
seen at t = 1 in Fig. 7.1(a). [Note also that the equivalence of agents within an event does
not respect the precise agent-to-agent contacts within events, such as the absence of a
direct contact between agents 1 and 4 at t = 0 in Fig. 7.1(a), while all the others are in
direct contact in that event; we take this up in the paragraph below Eq. (7.2).]
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We then probe the topology of a temporal network, consisting of N agents, using
random walkers hopping along agents’ temporal paths forward in time. (Probing net-
work topology using random walkers is a common practice.) The entire procedure is
parameter-free, and is formally described in SI G.1.1. We summarise it here for m events
at time t in three steps; a rendering of them for the example system in Fig. 7.1(a) with
N = 8 and m = 2 at t = 0, and the corresponding calculations are shown in Fig. 7.1(b-
c). (1) Using Roman and Greek letter indices to denote agents and events respectively,
we construct the N ×m ‘agent-to-event propagator matrix’ Q(in)(t ), with matrix element
Q(in)

iα denoting the probability for a random walker to start at agent i prior to t and reach
event α at (integer) time t in one hop. (2) Similarly, we construct the m × N ‘event-to-
agent propagator matrix’ Q(out)(t ), with matrix element Q(out)

αi denoting the probability
for a random walker, to start at event α at time t and reach agent i subsequent to time t
in one hop. (For both steps, the hops are thus coupled to the sampling time interval τs .)
(3) Finally, we construct the N ×N ‘agent-to-agent propagator matrix’ as

P (t ) = Q(in)(t ) ·Q(out)(t ). (7.1)

Upon extending this procedure to finite (integer) interval ∆t leads us to the product
matrix ℘(t ,∆t ) = P (t ) ·P (t + 1) ·P (t + 2) . . .P (t +∆t ) that similarly contains the full en-
tanglement information in the finite time interval [t , t +∆t ]. By construction, the matrix
element ℘i j (t ,∆t ) is the probability of a random walker starting at agent i prior to time
t to end up at agent j subsequent to time (t +∆t ) following agents’ temporal paths. Us-
ing these probabilities, we define the entropy of temporal entanglement over the interval
[t , t +∆t ] as

S(t ,∆t ) = − 1

N ln N

∑
i , j

℘i j (t ,∆t ) ln ℘i j (t ,∆t ). (7.2)

The N ln N factor ensures S ∈ [0,1].

Construction of the entropy of temporal entanglement that respects the precise agent-
to-agent contacts within events [such as the absence of a direct contact between agents 1
and 4 at t = 0 in Fig. 7.1(a), while all the others are in direct contact in that event] follows
a line similar to the above, albeit it is slightly more involved. The corresponding entropy
of temporal entanglement Sc, formally derived in SI G.1.2, is also parameter-free and
fully determined by the topology of the network. In SI G.1.2 we argue that with decreas-
ing sampling time interval τs , Sc approaches S, the entropy of temporal entanglement as
calculated in Eqs. (7.1-7.2) in terms of the connected components of the agents’ contact
networks, which we henceforth adhere to.
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7.3 Results

7.3.1 Interpretation and properties

Three insightful attributes of S(t ,∆t ) are critical for being able to extract a complex sys-
tem’s proneness to facilitate spreading phenomena. These are: (1) S(t ,∆t ) represents the
agents’ mixing (i.e., mingling) propensity in the interval [t , t +∆t ] (we explore this fur-
ther in 7.3.2 below), (2) it respects the temporal sequence of agent interactions, and (3)
in building up the sequences forward in time, it automatically incorporates causality:
note that a spreading phenomenon in the past can influence its future dynamics, but not
vice versa. While (2-3) can be gleaned from how ℘ is built from the P-matrices, (1) fol-
lows from that ℘i j (t ,∆t ) is the probability of a random walker starting at agent i prior
to time t to end up at agent j subsequent to time (t +∆t ) following temporal paths: the
more distinct temporal paths there are to trace a given agent i back from any agent j ,
the more nonzero ℘i j elements there are. These attributes further translate to the fol-
lowing useful properties of S(t ,∆t ). (a) An agent, who never interacts with another in
the interval [t , t +∆t ], has zero contribution to S(t ,∆t ). This, in fact, is the basis for why
small S(t ,∆t ) corresponds to a highly fragmented temporal network, i.e., large num-
ber of disjoint components in the interval [t , t +∆t ], possibly with many agents sepa-
rated from each other throughout the interval. (b) It allows us to quantify the contri-
bution of an individual agent to entanglement, which we take up in SI G.1.3. (c) Typi-
cally, an increasing ∆t would imply more nonzero ℘i j ’s: more distinct temporal paths
become available to trace a given agent i back from any agent j . This implies that for
any value of t , S(t ,∆t ) is monotonic in ∆t ; e.g., as can be seen in Fig. 7.2(a-b); for a
fixed value of ∆t however, S(t ,∆t ) is non-monotonic in t . [There are other fundamen-
tal properties of S(t ,∆t ) that one expects entropic measures to satisfy, e.g., (i) as the
agents keep interacting, S(t ,∆t ) → 1 as ∆t → ∞, as observed in Figs. 7.3(a-b), and (ii)
if we divide N agents into two groups A and B of sizes NA and NB respectively, then
(N ln N )S(t ,∆t ) ≥ (NA ln NA)S A(t ,∆t )+ (NB ln NB )SB (t ,∆t ). Such properties are however
not pertinent to the focus of this work.]

In contrast to the above, the practice of aggregating the agents’ contact networks over
a certain time interval for a temporal network into a static one (Li et al., 2020a; Isella et al.,
2011; Riolo et al., 2001; Masuda and Holme, 2013; Stehlé et al., 2011) discards the precise
sequences and durations of agent interactions. As for methods that do capture hetero-
geneities in the temporal domain by means of, e.g., checking how communities evolve
in time (Rosvall and Bergstrom, 2010; Peixoto and Rosvall, 2017), constructing temporal
counterparts of degree and betweenness (Kim and Anderson, 2012), or treating a tempo-
ral network as a multilayer one with layers representing discrete time snapshots (Mucha
et al., 2010), we note the following. The emphasis of temporal betweenness on shortest
paths makes it ideal to identify topological centrality, but for the application of spread-
ing vulnerability, path lengths are only important in terms of which agents are traceable
in a fixed time interval. Of critical importance for spreading vulnerability are the exact
interaction sequences and frequencies, which are considerably less focused on in the
existing literature. Likewise, concerning community detection approaches, under time
reversal, the community structure in the multilayer network will remain invariant, while
the dynamics of a process taking place on top of the temporal network will be profoundly
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Figure 7.3: Standardised mixing propensity s and the systems’ vulnerability V to spreading phenomena (for
precise definitions of both, see main text 7.3.3 below). Panel (a) Mixing propensity vs the number of events per
agent as a system-characterising property, shown for 12 complex systems: from green (slow rate of increase)
to red (fast rate of increase). The systems are noted in panel (b) in the same colour coding. Panel (b) Pearson’s
correlation between S(t ,∆t ) and Vi(t ,∆t ) , with i ∈ (maj,del,dis), corresponding to a majority-vote model, a
transport delay model and an epidemiological susceptible-infected (SI) model respectively (see text and SI G.3
for details). Panel (c) The full time-series of S(t ,∆t ) and Vi(t ,∆t ) on day 2 of the Baboons dataset (Gelardi et al.,
2020). Displayed on the x-axis are the times of day. ∆t = 20 minutes (i.e., 60 units of sampling time intervals) is
used. Panel (d). Same as in panel (c), but using day 2 of the Hospital dataset (Vanhems et al., 2013).

different.

7.3.2 Representation of mixing propensity

In order to demonstrate that the entropy of temporal entanglement has a clear relation-
ship to the agents’ propensity to mixing, we consider two temporal network datasets that
track student contacts respectively in a high school and a primary school by wearable
sensors, sampled at 20 seconds intervals (Génois and Barrat, 2018; Stehlé et al., 2011;
Mastrandrea et al., 2015) (details on the data in SI G.3). Per dataset, in Fig. 7.2(a-b) we plot
the time evolution of S(t ,∆t ) for four different ∆t-values, varying t over one full school
day. Further, delving into the (publicly available) metadata, in Fig. 7.2(c-d) we plot the
contact networks of the agents aggregated over two five-minute intervals, one each for
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high and low values of S(t ,∆t ). The correspondence between the top and the bottom
panels demonstrates that the students’ mixing behaviour, adapting to changing school
circumstances, is being reflected in the topological complexity of the temporal network,
which in turn is being captured by the entropy of temporal entanglement (school breaks
invite more mixing in comparison to being separated in classrooms, and correspondingly
lead to more topological complexity and higher entropy of temporal entanglement).

Given the above, an unbiased (e.g., from number of agents, sampling time interval)
cross-system comparison of topological complexities of temporal networks requires two
rescaling operations. The first (natural) one is that∆t must be replaced by∆e, the average
number of events per agent in the interval ∆t (the assumption here is that the agents’
contact networks are sampled frequently enough such that contact sequences are fully
captured). The second one concerns normalising the entropy to define a standardised
mixing propensity:

s(∆e) = 1

T

T∑
t=0

S(t ,∆e)

S(t ,∆e0)
, (7.3)

where ∆e0 is a constant for standardisation. Note that s(∆e) is a monotonically in-
creasing function of ∆e since S(t ,∆t ) is a monotonically increasing function of ∆t . Plot-
ting s(∆e) vs. ∆e in a log-log plot in Fig. 7.3(a), using ∆e0 = 5, we observe the differences
in how characteristically fast s(∆e) builds up in different real-world systems (see SI G.3
for details on the systems). (Even though ∆e0 is merely a standardisation parameter, it
should be chosen not too small to have some stability in the plot. We have experimented
with other values such as ∆e0 = 1 and the results do not substantially differ.) We anal-
yse this further in SI G.2 to demonstrate that the fastest rate of increase in the entropy
of temporal entanglement is achieved when the agents’ contact sequences, in the tem-
poral domain, only contain trees. Real-world temporal networks of course contain loops
(e.g., due to repetitive interactions among agents); note also that social contacts are often
structured in ‘bubbles’, which enhances the chances of having loops.

7.3.3 Relation to spreading vulnerability

We begin by quantifying spreading vulnerability of a complex system, which requires
adding dynamical processes on top of the temporal network that the system features. For
this purpose, we consider three different types of stochastic processes: (1) a majority-vote
model that simulates the opinion on a dilemma that spreads through events by means
of the majority votes, (2) a transport delay model, where delay spreads through events
due to all the participants copying the delay of the maximally delayed agent, and (3) an
epidemiological susceptible-infected (SI) model with infection probability β = 0.8. De-
tails of the models and their backgrounds can be found in SI G.4. The corresponding
process variables are respectively expressed as Vi(t ,∆t ), with i ∈ (maj,del,dis), and just
like the entropy of temporal entanglement S(t ,∆t ), they are normalised to the interval
[0,1] (elaborated in SI G.4). Like S(t ,∆t ), for any given t , Vi(t ,∆t ) is a monotonically in-
creasing function of ∆t , and the spreading vulnerability is quantified by how fast Vi(t ,∆t )
increases as a function of ∆t . [Also, like S(t ,∆t ), Vi(t ,∆t ) exhibits strong heterogeneous
behaviour as a function of t .]
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We then simulate the above three stochastic processes for all the systems in Fig. 7.3(a).
Using ∆t = 15 minutes we plot the process variables together in Figs. 7.3(c-d) for the tem-
poral network dataset for interacting baboons (Gelardi et al., 2020) and hospital patients
and workers(Vanhems et al., 2013): visual inspection immediately reveals that for both
systems, the variations in S and Vi over time are highly synchronised. For all the complex
systems in Fig. 7.3(a), the Pearson’s correlation coefficients between S(t ,∆t ) and Vi(t ,∆t )
are tabulated in Fig. 7.3(b) using the same colour scheme [of Fig. 7.3(a)]. The table clearly
showcases that the entropy of temporal entanglement is essentially an embodiment of
a complex system’s vulnerability to spreading phenomena, irrespective of the details of
the processes playing out on top of the networks. In other words, the entropy of temporal
entanglement secures a clean relation between the spreading vulnerability of a complex
system, and the topology of the temporal network featured by the system, and thereby,
the current work indicates that computing the entropy of temporal entanglement is suf-
ficient to quantitatively assess a complex system’s proneness to facilitate spreading phe-
nomena.

7.4 Discussion and outlook

Summarising, we have developed the entropy of temporal entanglement as a measure
of topological complexity of temporal networks. By construction, it is a parameter-free
quantity that embodies collective topological property at any given timescale, allowing
for comparisons across vastly different complex systems. By simulating three different
dynamical processes playing out on the top of real-world temporal networks, we have
demonstrated that the entropy of temporal entanglement is a good representation of the
systems’ spreading vulnerability, irrespective of the details of the processes — less en-
tanglement (lower topological complexity) means lower spreading vulnerability and vice
versa.

Let us reflect on why this topological entropy measure is such a good predictor of
spreading dynamics, irrespective of the details of the dynamical processes put on top on
the temporal networks. The reason can be traced back to the fact that the ℘i j (t ,∆t ) is
the probability of a random walker to start at agent i prior to time t , and end up at agent
j subsequent to time t +∆t . With

∑
j ℘i j (t ,∆t ) = 1, the time evolution of ℘i j (t ,∆t ) as a

function of ∆t can itself be seen as a spreading process starting at agent i at time t , al-
beit a deterministic one — determined entirely by the topology of the temporal network,
free of any parameter. It is therefore logical that the entropy of temporal entanglement
serves as a quantitative embodiment of the systems’ spreading vulnerability, irrespective
of the details of the processes. Nevertheless, the important fact remains that the entropy
of temporal entanglement establishes a clean quantitative relation between the topolog-
ical complexity of a temporal network and the system’s proneness to facilitate spreading
phenomena.

System vulnerability is receiving progressively more attention in widely diverse areas,
especially in the context of large perturbations induced by, e.g., the COVID-19 pandemic,
species’ habitat loss and fragmentation, disruption of food webs, and robustness of bio-
logical systems such as gene regulation, metabolism, neural dynamics, and engineered
systems. The common features underlying this diversity are that (a) these are complex
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systems, wherein the components (e.g., species, genes) have (developed) time-varying
functional dependencies among each other (e.g., sharing resources and by-products, reg-
ulating biochemistry) that can be expressed as temporal networks, and (b) the effect of
a perturbation, albeit initially localised in space and time, will potentially spread or cas-
cade through the entire system. Predicting the spreading vulnerability of perturbations
directly from topological complexity would be an asset — especially considering that the
availability of real-world data on large perturbations are typically limited — for exam-
ple, for mapping their tipping points (Dakos et al., 2019), or alternatively, for tracing the
boundaries of their safe operating spaces (Rockström et al., 2009) that separate success-
ful recovery from irreversible degradation. Albeit the dynamical processes running on
top of the (temporal) networks will undoubtedly possess a diverse range of time-scales
(and interact with the time-scales of the changes in the network topology), the topologi-
cal complexity of the networks will be a crucial factor in dictating the spreading dynam-
ics. The general nature of our methodological approach sets the stage for these applica-
tions in such wide and far-reaching areas.
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ABSTRACTABSTRACT

Human social behaviour plays a crucial role in how pathogens like SARS-CoV-2 
or fake news spread in a population. Social interactions determine the contact 
network among individuals, while spreading, requiring individual-to-individ-
ual transmission, takes place on top of the network. Studying the topological 
aspects of a contact network, therefore, not only has the potential of leading 
to valuable insights into how the behaviour of individuals impacts spreading 
phenomena, but it may also open up possibilities for devising effective behav-
ioural interventions. Because of the temporal nature of interactions — since 
the topology of the network, containing who is in contact with whom, when, 
for how long, and in which precise sequence, varies (rapidly) in time — analys-
ing them requires developing network methods and metrics that respect tem-
poral variability, in contrast to those developed for static (i.e., time-invariant) 
networks. Here, by means of event mapping, we propose a method to quantify 
how quickly agents mingle by transforming temporal network data of agent 
contacts. We define a novel measure called contact sequence centrality, which 
quantifies the impact of an individual on the contact sequences, reflecting the 
individual’s behavioural potential for spreading. Comparing contact sequence 
centrality across agents allows for ranking the impact of agents and identify-
ing potential ‘behavioural super-spreaders’. The method is applied to social 
interaction data collected at an art fair in Amsterdam. We relate the measure 
to the existing network metrics, both temporal and static, and find that (mostly 
at longer time scales) traditional metrics lose their resemblance to contact 
sequence centrality. Our work highlights the importance of accounting for the 
sequential nature of contacts when analysing social interactions.
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8.1 Introduction

Human behaviour plays a central role in generating patterns of interaction that allow for
the spreading of a great variety of entities — from rumours (Choi et al., 2020) to viruses
(Stehlé et al., 2011) to memes (Kotsakos et al., 2015). Most recently, the importance of
such patterns of interaction has been borne out by the COVID-19 crisis. A virus like
SARS-CoV-2, which caused the COVID-19 pandemic, spreads through physical contact,
or through aerosols that have a finite range; for the virus to be transmitted, people will
have to have make close contacts with each other. It is for this reason that behavioural in-
terventions, aiming to break the chains of close human contacts, were our only weapon
against COVID-19 for the better part of 2020 and remain so until vaccine coverage is suf-
ficient.

As such, the pandemic underscored the need for better models and measures of hu-
man behaviour and the contact patterns it generates. On the technological side, record-
ing individual-level contacts through wearable sensor technology has recently seen con-
siderable development that render the study of contact patterns scientifically feasible
(Génois and Barrat, 2018; Cattuto et al., 2010; Stehlé et al., 2011). For example, albeit still
imperfect, sensor accuracy is beginning to approach the level and scale needed to inform
epidemiology and to model interventions (Masuda and Holme, 2013; Zhang et al., 2021;
Liu et al., 2018). In contrast, on the methodological side, we still lack adequate tools to
assess, represent, and model the myriad ways in which human behaviour generates pat-
terns of individual-level contacts. This limits progress in many disciplines that require
such information, but especially hampers progress along the behaviour-epidemiology
interface that is so important in improving our preparedness to deal with the current and
future pandemics. This chapter develops methodologies that can begin to fill this gap, by
exploiting connections among improved empirical assessments of contact patterns and
novel quantitative metrics that are sufficiently advanced to analyse behavioural contact
patterns. In particular, it focuses on quantifying the role of each individual in the overall
contact patterns, reflecting the agent’s impact on the potential of (e.g., epidemiological)
spreading in a system.

To achieve these goals, we utilise a network approach in which patterns of contacts
which are generated by individual behaviour are mapped on to a contact network. In
such a network, each individual corresponds to a node and a link between two nodes rep-
resents a contact between two individuals. The advantage of using a network approach
is that a general spreading process of some entity (of which pathogen spreading in epi-
demiology is one, where the concerned pathogen is the entity) can be analysed by means
of a two aspects: (a) a contact network, borne out of people’s behaviour in social inter-
actions, and (b) a spreading process occurring within a population, which can then be
modelled as a dynamical process that uses the network connections as pathways. From a
network science perspective, it then becomes natural to expect that the topological prop-
erties of interaction networks can be used to analyse the potential of spreading dynamics.
In addition, this approach allows us to analyse the relative importance of different indi-
viduals in this dynamical process by analysing the effect that removing the individual
would have on the network structure. Individuals who contribute greatly to the spread of
entities on the network may then represent potential targets of intervention.

It is important to note, however, that spreading dynamics can take on many forms:
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infectious diseases will spread differently from rumours or political opinions, which are
yet different from spreading of delays in network transport (Dekker and Panja, 2021).
Nevertheless, the common element they all share is (deterministic or stochastic) trans-
mission upon contact, and spreading is therefore dependent on the topology of the con-
tact network: who interacts with whom, for how long and in which precise sequence. For
example, if a person A spreads the rumour, a person B can only spread the rumour to
person C if (s)he has been in contact with A before the contact with C . Tracking these
sequences of interactions, therefore, provides the basis of any spreading phenomenon.
While the work presented here was developed in the context of modelling behaviour dur-
ing the COVID-19 pandemic, the importance of better models for human behaviour in
generating contact networks should therefore be seen as generic.

Before a satisfactory analysis of this process can be found, however, several problems
that arise in the currently used network analytic techniques (for evaluating the structure
of contact networks and the role of different individuals in generating them) must be
addressed. First and foremost, in reality, a contact network is dynamic, i.e., the topol-
ogy of a contact network is changes over time. In Network Science such networks are
called temporal networks. Many existing methods that analyse contact networks, empir-
ically obtained through wearable sensors (Blanken et al., 2020), treat contact networks as
static, since, for instance, recorded contacts may not be adequately logged or the analy-
sis needs to be simplified by collapsing networks over the time domain. From a Network
Science perspective, this is in fact reminiscent of one way to reduce the complexity of
a temporal network by downscaling it to a static one: a network with a time-invariant
topology, obtained through aggregation of all edges over a certain time interval (Li et al.,
2020a; Isella et al., 2011; Riolo et al., 2001; Masuda and Holme, 2013; Stehlé et al., 2011).
However, information on who interacts with whom, for how long and in which precise se-
quence gets lost in such aggregations. Static representations therefore do not reflect the
dynamic aspects of human behavior: changing interactions, structures and sequences (Li
et al., 2017, 2020a; Mucha et al., 2010; Génois and Barrat, 2018; Centola, 2010; Schläpfer
et al., 2014; Kiti et al., 2019; Cattuto et al., 2010) have been shown to have large impacts
on various dynamical processes (Mucha et al., 2010; Perra et al., 2012; Scholtes et al.,
2014; Peixoto and Rosvall, 2017). Static representations miss a crucial opportunity to in-
tervene at the contact network level, e.g., by targeting interventions at specific points in
the time domain. Secondly, while there are static topological metrics available to quan-
tify the impact of agents on spreading mechanisms, static network techniques cannot
differentiate between agents whose contacts are structured in the same way but located
at different time points. Examples of such topological metrics are degree, closeness or be-
tweenness centrality (Dezső and Barabási, 2002; Pastor-Satorras and Vespignani, 2002),
k-shell decomposition algorithm (Kitsak et al., 2010), methods based on clustering and
the topology potentials (Wang and Zhao, 2015), improved coreness centrality and eigen-
vector centrality (Ahajjam and Badir, 2018), influential individuals (Zhang et al., 2019).

More prudent (existing) approaches to deal with the complexity of temporal contact
networks entail setting a threshold to filter out the non-essential edges or edges that ex-
ist only by chance: for example, Grabowicz et al. (2014) used a simple threshold based
on the number of events (i.e., count of edges across time) between two nodes; Kobayashi
et al. (2019) defined a temporal null model to identify pairs of nodes having more inter-
actions than expected given their activities; and in yet another thread of studies, Mellor
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(2018) and Mellor (2019) introduced the temporal event graph (TEG), which uses event
(interaction between two individuals) as nodes and shared event attendees as edges in a
directed graph. These efforts may focus on only part of the complexity of temporal net-
works and provide possible ways to identify structures (Grabowicz et al., 2014; Kobayashi
et al., 2019), communities (Génois and Barrat, 2018; Peixoto and Rosvall, 2017; Peel et al.,
2017) and quantify connectivity (Mellor, 2019; Badie-Modiri et al., 2020; Torricelli et al.,
2020). However, in the context of spreading phenomena, these metrics are not meant
for quantifying agent impacts on contact chains in human interactions (and thereby the
spread of a concerned entity).

A more principled approach to unravelling behavioural heterogeneity and the impact
of individual actors, which we develop in this chapter, is to consider the full dynamics of
people’s contacts in the form of a temporal network. Specifically, we provide a way for-
ward by developing (a) a systematic methodology for representing people’s (dynamical)
contact networks as event graphs, and (b) techniques to analyse the role that individuals
play in generating these network structures. The latter information can be used to as-
sess individuals’ impacts on the contact sequence while respecting (temporal) sequence
of contacts.

The chapter is structured as follows. We start by introducing the methodology to ex-
tract an individual’s impact on contact sequences in a system in section 8.2, for which
we need to introduce a reconstruction of the temporal graph using ‘event mapping’. In
section 8.3, we apply the methodology to data collected during an art fair in Amsterdam
in August 2020, where we also provide experimental details and discuss the evolution of
the most important metrics over time, as well as relate them to the existing network met-
rics like contact degree. In section 8.4, we discuss these findings and relate them to the
broader discussion on spreading phenomena in networked systems.

8.2 Methods

In this section, we introduce the mapping of temporal network data into an event graph
in order to facilitate the identification of agent impacts on a sequence of contacts.

8.2.1 Event mapping of contact sequences

We track the contact sequences of the agents in the following manner. In Fig. 8.1(a) we
show an example of a (randomly generated) temporal system with eight agents and four
time steps t ∈ {0,1,2,3} in three types of graphs. In the centre, the temporal graph is
shown where agents are denoted in squares. The contacts among the agents at every
snapshot are denoted by black links, while the agents’ movements across snapshots are
shown by grey links. To the left of the panel, we show the corresponding aggregated con-
tact network over the entire time range, wherein two agents are connected by an edge if
they have been in contact at any of the four time steps: the aggregated contact network
therefore does not distinguish any sequence between the interactions.

To the right of Fig. 8.1(a), we combine connected components within time snapshots
into single circular nodes, which we refer to as events (Dekker et al., 2021e), resulting in
yet another graph: the event graph. Events may consist of either single or more agents,
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as marked by the numbers indicated inside each node. The events are linked by the ‘re-
usage’ of agents; this is exactly how every agent can act like a spreader between consec-
utive events, which makes event mapping a natural choice for describing the dynamical
evolution of a spreading phenomenon. For example, at t = 0, agent 5 is interacting with
agent 3. From there, they go their separate ways: at t = 1 agent 5 interacts with agent
8, and agent 3 interacts (in a larger group) with agents 1, 2 and 7. Indeed, the event (3,
5) at t = 0 links to both (5, 8) and (1, 2, 3, 7) at t = 1. Using these events, one can con-
vert the (temporal) network snapshots to an event graph (directed in time), shown at the
right of Fig. 8.1(a). Not only does this event mapping collapse complex temporal network
data into a single directed graph, but most importantly, it also preserves the sequences
of contacts. [An important question is to what extent the information for spreading phe-
nomena is already embedded in the static contact graph, and when it is important to do
event mapping. This is a question we address multiple times in this chapter, by compar-
ing the results of our metrics (defined below) to properties of the static contact network.]

The event graph allows for an intuitive analysis of which (agent contacts in) events
in later time steps are eventually traceable back to the an event in earlier time steps via
both direct and indirect connections. An example of such a contact sequence is given in
Fig. 8.1(b). There, we track the events that are linked to agent 5 at t = 0 (coloured red),
over four sequential time snapshots. At t = 0, only the event where agent 5 itself is in-
volved is coloured red [i.e., agents (3,5)]. Over time, ‘secondary’ events become coloured
red in the event graph, meaning that in due course of time, progressively more events,
and the agents contained therein, can be traced backwards to agent 5 at t = 0§. In the
end, for most applications, how many agents can be traced backwards to agent 5 at t = 0
is the most relevant quantity (rather than the number of events, i.e., the number of red
dots). This prompts us to define P ( j , t ,∆t ):

P ( j , t ,∆t ) = Number of agents traceable to agent j at time t within time interval [t , t +∆t ]

N
, (8.1)

where N is the total number of agents. In other words, P ( j , t ,∆t ) is the fraction of
unique agents at time t +∆t that can ultimately be linked backwards to agent j at time t
— clearly, P ( j , t ,∆t ) is a function of the starting time t and elapsed time ∆t . In Fig. 8.1(b),
we show P (5,0,∆t ) for different values of ∆t , using agent 5 as ‘agent zero’: at ∆t = 0,
P (5,0,1) = 2/8 = 25% since at∆t = 0 two (3 and 5 itself) out of eight agents are linked to 5 at
t = 0. Similarly, P (5,0,2) = 6/8 = 75% since there are six agents (1, 2, 3, 5, 7 and 8) that can
be traced backwards to agent 5 at t = 0, and so on. Clearly, a high value of P ( j , t ,∆t ) for
low ∆t would indicate fast mingling of the agents in the time interval (t , t +∆t ), making
the system highly prone to spreading phenomena from the perspective of starting with
agent j at t = 0. Conversely, a low value of P ( j , t ,∆t ) for high∆t would imply the opposite.
It is obvious that for fixed t , P ( j , t ,∆t ) is a monotonically increasing function of ∆t , while
for fixed∆t and a different initialisation time t , P ( j , t ,∆t ) may vary and therefore possibly
result in lower values with increasing t .

In panel (b), we use agent 5 as a mere example to illustrate the calculation of P ( j =
5, t ,∆t ). A more representative quantity is obtained by taking the average over all agents
j :
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Figure 8.1: Illustration of the event mapping and an individual’s contact sequence centrality using a toy exam-
ple. All throughout this figure, individual agents are in squares (and numbers), events are in circles. Panel (a):
In a temporal network, the time evolution of the contact graph (middle) captured in a sequence of snapshots.
Contact data over the four snapshots can be aggregated to obtain a static (and aggregated) contact network
(left), but in doing so, the sequential information is lost. We term the connected network components within
each snapshot ‘events’, they are seen as nodes in an event graph (right). In an event graph the event-to-event
trajectories of agents are the links. Colours of circles and snapshots indicate time from blue to red. Panel (b):
Example of a contact sequence when tracing all events and subsequent agents back to agent 5 at t = 0. Start-
ing time t , time elapsed ∆t , the percentage unique agents [P (5)], traceable to 5 and the average percentage of
agents in the contact sequence P̄ are indicated. Panel (c): Same as (b), but after removal of agent 3, resulting
in a ‘perturbed’ contact sequence of agent 5. The (now absent) links that were associated with agent 3 are in
dashed green arrows, and the events that are consequentially not traceable to 5 anymore are coloured green.
The associated (lowered value of) P−3(5) is shown. Averaging over all agents provides P̄−3, and allows us to cal-
culate the Contact Sequence Centrality of agent 3: C (3) = P̄ − P̄−3, which is clearly marked in the bottom panel.
For abbreviation, we excluded the t and ∆t between brackets when showing values of P , P̄ and C .

P̄ (t ,∆t ) = 1

N

N∑
j

P ( j , t ,∆t ) (8.2)

the value of which is also indicated in Fig. 8.1b. The value of P̄ says something about
the (unperturbed) contact sequences: high values indicate that spreading to many agents
within (t , t +∆t ) is likely, and vice versa. We aim to identify the impact of each agent
on the overall contact sequences. We measure this by looking at the P̄ value when we
remove an agent — the intuition being that the resulting change in P̄ reflects the im-
pact of the removed agent. Again, we start with the example of the contact sequence of
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agent 5 (i.e, P (5) instead of P̄ ). Now, to assess the impact of another agent — agent 3 —
on agent 5’s contact sequence, we remove this agent from the system and show what it
does to agent 5’s contact sequence in Fig. 8.1(c). The removal results in the absence of
important links (denoted in green dashed lines) and, consequently, in limiting the con-
tact sequence’s reach (i.e., excluding the green nodes). The proportion of agents in agent
5’s contact sequence is now written as P−3(5, t ,∆t ), where the subscript −i refers to the
removal of agent i . In particular, we have P−3(5,0,2) = 2/8 = 25%, which is lower than
P (5,0,2), since the large event comprised of agents 1, 2, 7 and the removed 3 cannot be
traced back to agent 5 at t = 0 anymore. More generally, for any agents i , j the relation
P−i ( j , t ,∆t ) ≤ P ( j , t ,∆t ) holds, because the contact sequence is either equal or shrunk by
the removal of agent i .

The impact of an agent on the contact sequence is naturally quantified by the differ-
ence in P̄ between the unperturbed [panel (b)] and the perturbed event graph. For the
impact of agent 3, the latter is shown in panel (c). Averaging over the contact sequences
of each agent j , we obtain an expression for the impact of an individual agent on the
contact sequence which we refer to as contact sequence centrality:

C (i , t ,∆t ) = 1

N

[∑
j

P ( j , t ,∆t )−
∑

j
P−i ( j , t ,∆t )

]

= P̄ (t ,∆t )− P̄−i (t ,∆t ). (8.3)

A high C (i , t ,∆t ) indicates that the removal of agent i decreases the fraction of agents
in an average contact sequence sharply, which reflects an important role of i in connect-
ing contact sequences. This way, C (i , t ,∆t ) becomes an attribute of agent i . It might just
reflect that agent i itself has had a lot of contacts in the interval (t , t +∆t ) (i.e., the degree
of agent i in the aggregated contact graph is high), but that is not necessarily the case. It
may also be that agent i serves as the intermediary between two larger ‘bubbles’ or tem-
poral communities, which will become disjointed if agent i is removed from the system.
Example values of C (3, t ,∆t ) are shown in Fig. 8.1(c) for the case of agent 3.

8.2.2 Other agent-based topological network metrics

It is important to assess whether the contact sequence centrality C merely reflects static
properties of the network topology that could have been found more easily using tradi-
tional methods, or whether it provides us with new information regarding an agent’s role
in the system. This prompts us to compare C values to various other agent-based met-
rics that have been around in the literature. Some of them are derived from the contact
network like the one shown Fig. 8.1(a) on the left, obtained by aggregating all the tempo-
ral network snapshots into one single, unweighted, undirected contact network within a
certain (or the whole) time interval. The degree of an agent i equals the number of links
this agents has, i.e. the number of unique agents i had been interacting with. Similarly,
the contact betweenness is the betweenness centrality in the aggregated contact network;
betweenness centrality is defined as the fraction of all shortest paths (i.e., between all
unique pairs of agents in the aggregated network) that passes through an agent. As for
event maps of temporal networks, the number of events at any time snapshot is the num-
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ber of events of sizes larger than 1 (i.e., ‘non-individual events’) the agent attends. The
average event size determines the average number of attendants of events in general.

Finally, for temporal networks, many non-static quantities have been developed, as
variants of their static counterparts, in order to study the temporal structural properties
of the system (Hafiene et al., 2020; Masuda and Lambiotte, 2020). While they have been
developed for degree and closeness as well (Kim and Anderson, 2012), we choose to com-
pare ∆P̄ to two types of betweenness other than the aforementioned contact between-
ness. To explain the difference, we refer to the graphs shown in Fig. 8.1(a). On the left, we
see the contact graph, in which the contact betweenness (already mentioned above) is
defined. On the right, we see an event graph, where the nodes are events. The between-
ness — i.e. fraction of shortest paths going through them — of nodes in this graph is
computed, and when taking the average of all events where any agent i is participating,
we obtain the value of what we refer to as the event betweenness of this agent. Likewise,
we can focus on the network in the middle: the temporal graph. Nodes here are agents
at a specific time snapshot. The betweenness in this graph is computed, and then we
again average over all nodes in this graph belonging to each agent individually, which re-
sults in what we refer to as the temporal betweenness of an agent. The event betweenness
and temporal betweenness are related, but not necessarily the same, as finer network
structures within events are not incorporated in the event betweenness (while they are
in temporal betweenness), and the event betweenness calculates shortest paths between
pairs of events rather than pairs of agents.

Because of computational limitations, we choose to calculate temporal betweenness
and event betweenness in time intervals smaller than the full datasets (i.e., we take ten
subsequent 4-min time intervals). This results in multiple values per agent (each belong-
ing to one of these intervals), of which the average is reported in later usage of these
metrics.

8.3 Application to human interaction data

In this section, we perform event mapping and contact sequence calculations on human
interaction data measured at an art fair in Amsterdam. After describing the experiment
details in section 8.3.1, we discuss the resulting P̄ and C values in section 8.3.2, and com-
pare the latter to other metrics in section 8.3.3.

8.3.1 Experiment and sensor data

In August 2020, after the first peak of COVID-19 infections was decaying in the Nether-
lands, right before the start of the second wave of infections, an art fair was organised
in Amsterdam with the goal of assessing the effectiveness of physical distancing inter-
ventions. For an illustration of the art fair, see Fig. 8.2. During this three-day art fair,
different interventions to promote physical distancing were implemented: walking di-
rections, face masks, and a buzzer-notification (a buzzing sound when coming within
1.5m of another visitor). The three day art fair was split into eleven time slots and the
aforementioned interventions varied across these time slots. Each visitor was asked to
wear a sensor that recorded the distance to the sensors of other visitors within line of
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sight (max 30m) using ultra wide band technology. Whenever two sensors were within
1.5m of one another the opposing tag ID was registered and the contact was logged lo-
cally (at a 1-second resolution), which was sent to a database via access points, placed
near the entrance of the art fair. Researchers from the University of Amsterdam collected
the questionnaire and sensor data and have published this in previous work (Tanis et al.,
2021; Blanken et al., 2020). The ethics review board of the University of Amsterdam (2020-
CP-12488) approved data collection, and all participants provided informed consent be-
fore participating. All personally identifiable information used to link the questionnaire
and sensor data has been destroyed. All methods were performed in accordance with the
relevant guidelines and regulations.

From time to time, in most experiments, the interaction registration was hampered
by not synchronising to the access points well, altering some of the time stamps. Because
the time stamps are crucial to the analysis in this chapter, we chose to limit the analysis
to parts of the experiments that did not contain such gaps (see SI H for a supplementary
figure on choosing the correct parts of the data).

Table 8.1 shows an overview of the experiments, their (filtered) duration, conditions
and the resulting number of agents. More details can be found in Tanis et al. (2021).

Exp Duration Walking Supplementary SDS setting # Agents Avg. degree Avg. degree
[min] direction intervention per agent

Exp 2 19 min Bidirectional Facemask No feedback 98 10.2 0.10
Exp 3 25 min Bidirectional None No feedback 95 5.1 0.05
Exp 4 50 min Bidirectional Buzzer Buzzer after 2 sec 88 18.1 0.21
Exp 6 55 min Unidirectional None No feedback 130 19.6 0.15
Exp 7 38 min Unidirectional Buzzer Buzzer immediately 88 7.9 0.09

stops after 2 sec
Exp 9 85 min No direction Buzzer Buzzer immediately 109 17.3 0.16

stops after 2 sec
Exp 10 42 min No direction Buzzer Buzzer immediately 120 11.7 0.10

persists after 2 sec
Exp 11 44 min No direction None No feedback 89 17.4 0.20

Table 8.1: Details of the conditions and attributes of the experiments. In the second column (‘Duration’) we
note the filtered window durations, rather than the full experiment times. Event counts and link frequencies
are determined using only events with sizes larger than 1. Number of agents may differ from that in Tanis et al.
(2021) because we focus on only a part of each experiment (see Fig. H.1). The average degree and the average
degree per agent have been calculated from the aggregated contact network, aggregated over the full valid
duration of the experiments.

8.3.2 Evolution of P̄ and C

In Fig. 8.3, in order to illustrate differences among the experiments, we show the time
evolution of the system property P̄ and the contact sequence centrality C (for specified
agents) in three of these experiments: 7, 9 and 11. The conditions behind these experi-
ments are quite different as shown in Tab. 8.1: experiment 11 contained no interventions
at all, while direction and buzzer feedback interventions are differently applied in exper-
iments 7 and 9. Importantly, we use the experiments to highlight several aspects of P̄ and
C .

First, in the top row, we show the evolution of P̄ (t ,∆t ) — see definition in Eq. (8.3) —
as a function of (the starting time) t . A parameter that needs to be chosen is ∆t , modu-

8

193

Quantifying agent impacts on contact sequences in social interactions

157823 Dekker BNW.indd   193157823 Dekker BNW.indd   193 18-03-2022   10:2118-03-2022   10:21



En
tr
an

ce

WC

Bar

Figure 8.2: The art fair on Amsterdam on the first day with bidirectional walking directions (top) and schematic
layout of the location (bottom). The art fair consisted of 28 stands, spanning 1,080m2. Visitors entered on the
left of the plan in the bottom panel, where also the access point was placed. Figure adapted and reprinted with
permission from Tanis et al. (2021).

lating the time interval across which the tracing between agents is done (see Fig. 8.1(b)
for an example). This choice requires special attention, because while some agents may
have most impact in the short run, others may have more impact on the long run. In other
words: the individual differences in impact on contact sequences, the main topic of this
chapter, are dependent on the ‘time scale’ ∆t we are interested in (we will come back to
this later). In Fig. 8.3(a)-(c), we choose ∆t = 300 and 600 seconds. For example, the black
curve represents the average fraction of unique agents in the time interval (t , t +300 sec-
onds) in the contact sequence of any agent at time t . High values at time t (may) indicate
that large and frequent events are taking place in the interval (t , t + 300 sec), involving
many unique mingling people, as opposed to mingling only within specific bubbles or
clusters. Clearly, the grey curve (∆t = 600) is always above the black curve (∆t = 300),
which is expected, as over a longer time span P̄ has more time to grow. Visual inspec-
tion of the panels (a)-(c) immediately reveals a number of differences in the evolution
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Figure 8.3: Evolutions of P̄ and C of experiments 7 (left column), 9 (middle column) and 11 (right column). Pan-
els (a)-(c): Evolution of P̄ (t ,∆t ) over time t at ∆t =300 seconds (black/red) and ∆t =600 seconds (grey/blue).
We also show P̄−i (t ,∆t ) (red and blue curve, respectively) and C (i , t ,∆t ) (red and blue area) for the most im-
pactful agents i at these levels of ∆t . Panels (d)-(f ): Evolution of P̄ (t ,∆t ) over elapsed time ∆t , averaging over
t , for the same experiments 7, 9 and 11. For a few values of ∆t , we indicate the value of P̄ (t ,∆t ). Panels (g)-(i):
Evolution of C (i , t ,∆t ) for each agent i (in grey). Specific agents are denoted in colours: the agents with the
highest C at ∆t =300 (red) and 600 seconds (blue) as in panels (a)-(c), the agent with the highest C at a near-
maximum ∆t (i.e., 90% of the maximum time elapsed) in green, and the agent with the highest static contact
degree as a black dashed line. Note that in panel (g), the red, blue and green lines overlap (only green shows),
and in panel (h), the red and blue overlap (only blue shows).

of P̄ (t ,∆t ) among the different experimental settings: while experiment 7 remains rather
flat at low values, experiment 9 contains a build-up towards much higher values (up to
0.30 for ∆t = 300 sec), and experiment 11 lies in between the two and seems to be split
in alternating phases of highs and lows. Without going into the specifics of these exper-
iments, the shapes of the P̄ curves can be interpreted as follows. A constant, flat curve
(like in experiment 7) indicates that the interaction configuration is such that the poten-
tial of any spreading phenomenon does not vary much in time: if a disease or rumour
would start at the start of the time interval, or in the middle, it would spread with roughly
equal speed. However, a lot of variation in P̄ (like in experiment 9) indicates that the
structure of interactions and the temporal graph itself is different when starting at differ-
ent time points. Sometimes, it promotes tracing many agents through contact sequences
(e.g., at 14:20, we have that P̄ = 40% in 10 minutes) by means of very frequent events with
randomised attendees, which may imply that the system is vulnerable to spreading dy-
namics like disease transmissions and rumour spreading. In other cases, the temporal
network structure only contains narrow contact sequences, tracing only few agents to
each other (e.g., at 13:30, we have that P̄ = 5% in 10 minutes), which is the case in a well-
segregated agent population.

In Fig. 8.3(a)-(c), to mark the effect of individual agents in the system, we also plot
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C after fictitiously removing the ‘most impactful agent’ at both levels of ∆t plotted here:
300 and 600 seconds, in red and blue, respectively. Note that there are different ways to
define the ‘most impactful agent’, and the correct choice is depending on the application.
In particular, the ranking of agents in terms of their impact on the contact sequences is
in reality dependent on both t and ∆t , i.e., who is ‘most impactful agent’ varies over time.
For illustration purposes we choose to average all C values over t and look at the agent
with the highest value of C at fixed, chosen values of ∆t (in other panels we use the same
procedure). In other words, our definition of ‘most impactful agent’ is the agent that at a
chosen value of ∆t , has the highest value of C , averaged over the possible time starting
points t . In the panels (a)-(c), the reduction in P̄ (marked by the red and blue areas) if
we would remove these high-impact agents remains relatively invariant over time t in
experiment 7, while in experiments 9 and 11, there are clear moments in time where
the most impactful agents seem to have their highest impact: for experiment 9, this is
near the peak, and for experiment 11, most impact is found either at the start, or around
17:27-17:37. The agents denoted in red and blue are not necessarily the same agent (see
below).

While in the upper row, we see how P̄ evolves over time, indicating where contact se-
quences promoted any spreading dynamics most, we now look at how P̄ grows with ∆t
in panels (d)-(f), which reflects how many people you can trace via contact sequences
within a given time interval size ∆t . These are monotonically increasing curves: taking a
larger time window allows the system reach equal or more agents, but never fewer. Cross-
experimental differences can be observed in the slope at which P̄ is increasing with ∆t :
at ∆t = 10 minutes, while P̄ only reaches 8.7% in experiment 7, it reaches 14.4% in ex-
periment 11, and even 21.7% in experiment 9. These differences based in the topology
of the respective temporal networks, but may have implications on potential dynamics
on top. For example, the fact that the contact sequences in experiment 9 reach many
more agents in the same time interval as experiment 7, implies that spreading phenom-
ena like disease transmission or rumour spreading may be more fast-paced in the setting
of experiment 9. There are several considerations to be made when concluding this, as
discussed in section 8.4. While the black lines show averages over t , the increase of P̄
with ∆t varies in time — sometimes this growth is faster than in other moments — which
is shown in the grey shaded areas. Note that the variations around the black curve are
much larger in experiments 9 and 11 than in experiment 7, also seen in panels (a)-(c).

8.3.3 Relating C to existing network metrics

The bottom panels (g)-(i) in Fig. 8.3 show C (i , t ,∆t ), which is the effect of the removal of
agent i on the black curves shown in panels (d)-(f). The curves of all agents i are shown
in gray, but we focus on four aspects: the agent with the highest C for ∆t = 300 in red,
the same for ∆t = 600 in blue, the same for ∆t = 90% of the total time in green, and the
agent with the highest degree in the aggregated contact network in the interval (t , t +∆t )
in black dashed lines. Note that we scanned C based on a few chosen ∆t values to high-
light particular agents (in red, blue and green), but then plotted these agents over the
whole spectrum of ∆t values (on the horizontal axis) — ‘their’ ∆t value is merely to label
them and does not play any further role. We henceforth refer to these agents as the ‘red’,
‘blue’ and ‘green’ agents. The reason for plotting the highest-degree agent (black dashed)
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is to assess whether having a high degree in the aggregated contact network is be re-
lated to the most impactful agents and the various time scales ∆t . The answer clearly
depends on the experiments: in experiment 7, there is a single curve clearly above all
others on all time scales ∆t , which means that the red, blue and green agents overlap.
With a clear separation to the second and third places, the highest degree agent is not
even close to having most impact on larger time scales (note that the vertical scale is log-
arithmic, which creates a natural convergence of high-impact curves to the right), albeit
that this agent remains is in the top 10% of agents with highest C values. In experiment
9, the place for the highest C switches between agents. Up to values of ∆t of about 1300
seconds, a particular agent dominates C (overlapping blue and red), which also happens
to be the agent with the highest degree. However, at ∆t = 1300 sec, the green agents takes
over the dominance in C , who had a modest impact before that. Such separation reveals
the dependency on time scale when assessing the impact of a specific agent on contact
sequences. In particular, it confirms the hypothesis that aggregated properties do con-
tain most information for contact sequence centrality at small values of ∆t , while they
lose their relevance at larger values of ∆t . This is highly pronounced in experiment 11. At
short time scales, the red curve marks the highest-∆P̄i individual, which also happens to
be the highest-degree agent. Around ∆t ≈ 400 sec, this individual is surpassed by another
(marked in blue), which dominates the spectrum of∆P̄i at most time scales, but is caught
up by yet another (in green) at the largest time scale, where the red/highest-degree agent
is clearly having a lower impact than many other agents.

Further, Fig. 8.4(a)-(f) show the relationships between C (i , t ,∆t ) at a fixed value of
∆t (averaged over t ) — denoted by C (i , tav ,∆t ) — and six existing network metrics. On
the one hand, in panels (a)-(c) we show three such scatterplots: C (i , tav ,∆t ) versus the
degree of the agent i in the aggregated network, obtained from the aggregated contact
network; the number of (non-individual) events the agent participates in; and the aver-
age size of the events (including those including only a single disconnected agent) in the
time interval (t , t +∆t ). Being obtained from the aggregated network, these are all ‘static’
network properties: they do not provide information on the sequences of interactions.
For example, the degree is obtained from the static contact network and frequency or
sequences are not taken into account. Likewise, the number of non-individual events an
agent has been participating in does not necessarily reflect a wide range of agents — all
participated events may be containing only the same people, and the average event size
reflects how often the people participates in individual events (i.e., isolated from the rest
of the agents). All three metrics (especially the [fully aggregated] degree) correlate rela-
tively well with C for smaller values of ∆t , across all three experiments (in colours). Still,
there is quite some spread: agents with the highest C are not the ones with the highest
network metrics. Also, while experiment 7 has generally smaller degree, the scatter in the
C values seems to be equal to the other two experiments. On the other hand, panels (d)-
(f) describe three forms of betweenness: event, contact and temporal betweenness (see
section 8.2.2). A clean relation between C and temporal or event betweenness is barely
visible.

Also relevant to the art fair experiment are metadata obtained from questionnaires
(for details, see Tanis et al. (2021)). We aggregated questions related to the attitudes of
the individuals towards the interventions and dangers of the COVID-19 pandemic that
was present during the time of the experiment (August 2020), involving questions like
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Figure 8.4: Panels (a)-(f ): Relation between agent’s impact on C and various network properties. Different
colours denote different experiments. Panels (g)-(h): Same as in panels (a)-(f), but for two metadata metrics:
the inferred attitude of the agent with respect to COVID-19 measures based on questionnaire data, and the
agent’s age. Panel (i): Spearman’s rank correlation coefficients between contact degree and Ci for different val-
ues of ∆t for each of the three experiments. Thick lines indicate the correlation coefficients when using the
average degrees of the agents when looking at interval sizes ∆t (as marked by the horizontal axis), while the
dotted lines use the overall degree, independent of ∆t . Per experiment, ∆t values of up to half of the experi-
ment’s total time interval are used, to keep enough initialisation times t to average over.

“Do you adhere to the 1.5 meter distance rule as issued by the Dutch government?”. Par-
ticipants’ reply on a scale from 1 to 7, where a lower score indicates more scepticism
on the pandemic and less strict following of the Government imposed COVID-19 rules,
while a higher score means the opposite. The average over 22 of such questions is shown
at the horizontal axis in panel (g). Clearly, there are no significant differences between
the experiments, and no relation is visible with C . In panel (h), we also plot the age of
these participants, also yielding no significant relationship with the impact on spreading
capability. Not all agents filled in the questionnaires however, resulting in less dots in the
metadata panels than in panels (a)-(f).

Putting together Figs. 8.3(g)-(i) and Fig. 8.4(a)-(f), several relations between network
metrics and C can be inferred, but any such relation would be subject to the time scale
∆t : for small values of ∆t , the static degree may be well suited to describe an agent’s im-
pact: having more unique direct contacts means that the agent, potentially, have been
in contact with many other agents, which directly affects P̄ . In turn, therefore, removing
that agent would result in a higher C . At higher time scales, however, the effect of se-
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quences becomes more important. Agents with (potentially) smaller initial impact and
contact degree may have a larger impact on larger time scales because they serve as con-
duits of contact for large bubbles or other more subtle temporal structures. This is visible
in Fig. 8.3(g)-(i). To explicitly test the effect of time scale on whether traditional network
metrics are sufficient, we show the Spearman’s rank correlation coefficient between the
contact degree and C as a function of ∆t in Fig. 8.4(i). The overall degree (independent
on ∆t is also correlated to C , shown in dotted lines). A clear decay of this correlation with
∆t is visible, reflecting that for small ∆t , static metrics like the contact degree are suffi-
cient, but for larger time scales, the sequential information becomes important, which
motivates a more complex metric like contact sequence centrality C .

8.4 Discussion and Conclusion

In this chapter, we have developed and demonstrated a methodology to quantify agent
impact on contact sequences in social interactions from the perspective of spreading
phenomena. Spreading phenomena are versatile in their nature and types; however, one
common element they share is that they all require individual agents as carriers of the
entity, and an agent in possession of the concerned entity can pass it on to others that
do not have it, leading to the natural expectation that the temporal topology of agent
interactions — who interacts with whom, when and in which sequence — will have a
profound influence on the spreading dynamics.

In order to quantify this effect, we have proposed a new measure for individual differ-
ences in their impact on contact sequences. The measure is obtained by porting all con-
tact information — while preserving the sequences of contacts — into an event graph,
and tagging the connections between events by agents’ temporal paths. From the event
graph, we determine the metric P̄ (t ,∆t ), which is the average fraction of agents at time
(t+∆t ) traceable from any agent at time t . Likewise, contact sequence centrality C (i , t ,∆t )
represents an agent i ’s impact on the contact sequence in terms of how strongly P̄ changes
when all temporal links belonging to agent i are removed.

For event mapping, we have used the convention that at every (integer) snapshot the
agents’ contact network within an event is a complete one. For example, for the agents’
contact network snapshot at time t , agents 1-and-2 and 2-and-3 may have been recorded
to directly interact, but not 1-and-3: in such a case event mapping introduces a direct in-
teraction between agents 1-and-3 that are not originally present in the empirical data.
While this is a subtle issue discussed elsewhere in detail (Dekker et al., 2021e), we note
the value of C is dependent on the choices made in this convention. This is not neces-
sarily a drawback for the concept of contact sequence centrality that we have developed
here, but may limits its applicability depending on the time-scale of transmission of a
quantity of interest. For example, imagine that the time-scale for transmission is very
short relative to the typical duration of an event. Then, in the above example event in-
volving three agents 1, 2 and 3, it will not matter whether 1 and 3 interact directly or not:
agent 1 will effectively be in direct contact with agent 3.

Note also that we have calculated both P̄ and P̄−i forward in time. This is an obvious
choice for spreading dynamics, but for other applications, calculating these quantities
backward in time would be more appropriate. For example, when interested in the vul-
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nerability of a specific vendor in a supply chain, the more time-backward dependence
the vendor has, the more it will be vulnerable to random failure. In other words, the
choice of the direction of time for calculating P̄ and P̄−i depends on the application.
Note also that the removal of a specific agent in our calculations is merely a conceptual
construct to assess its impact on the contact sequence — the actual removal of this agent
may have unforeseen effects on the topology of the temporal network that cannot be
captured in a conceptual framework.

Contact sequence centrality is a purely topological property, reflecting properties of
connections. In other words, agents with high levels of C can be treated as what are collo-
quially referred to as (behavioural) super-spreaders (Zhang et al., 2019; Kitsak et al., 2010;
Ahajjam and Badir, 2018), being more central to the contact sequences. Our work serves
to highlight the fact that super-spreaders are not necessarily those individuals that have
most contacts: as shown in Fig. 8.3(g)-(i), we see that the highest-degree agent starts los-
ing its dominance in C when looking at larger time scales. In particular, increasing the
time interval ∆t makes the degree less and less determinant for the C values, as shown in
Fig. 8.4(i). What sets our metric apart from aggregated (and static) and various temporal
metrics is that the exact sequence of the interactions matter: in the example of Fig. 8.1(c),
removing agent 3 removes an edge early on in the time series, which has cumulative ef-
fects later on. Moreover, reversing the direction of time would yield the same values of
all static metrics like degree, and also for temporal betweenness for the aggregated net-
works, even though it would fundamentally change the values C .

Finally, it is important to realise that topology of the contact sequences alone is not
enough for the behaviour-epidemiology interface, or for that matter for any dynamical
process playing out on top of the temporal network; the process itself may have its own
inherent time-scale parameters. Let us elaborate a bit on this point using an example like
pathogen spreading, which comes with its own time-scales, such as incubation period,
or the time required for an infected agent can itself be infectious. On a given school day,
all students in a school may be sequentially traceable to each other as measured by our
metrics: Pi = 1 for all students i , and ∆t = 1 day. However, the disease may only spread
to students directly linked to a patient zero i0, simply because secondary contacts do
not matter because of the incubation time of COVID-19: the direct contacts were not
infectious yet. Given this, it is natural to expect that the eventual dynamics of pathogen
spreading will be a combination all time-scales involved, including event frequency in
the temporal network.

Indeed, to make the current approach relevant for epidemiology, the observation pe-
riod of contacts among the agents needs to be sufficiently longer than the incubation
period, and the time-lag between being infected and being infectious, bringing us to an
issue of practicality. While the event mapping is a relatively quick process to compute,
depending on the number of time steps T , the calculation of P̄ scales with an extra fac-
tor N because the contact sequence tracking [e.g., as in Fig. 8.1(b)] has to be done for
every agent. However, when computing the C for every agent i , yet another factor N is
brought in, as all calculations have to be done fully over when removing i . Hence, the
computational complexity of C is of the order O (T N 2). This means, given that the con-
tact networks of the agents are sampled at 1-second interval, that for making the current
method applicable for COVID-19 epidemiology (with an incubation time of about 5.2
days (Li et al., 2020b) and infectiousness starting time of 12.3 days (He et al., 2020)), fur-
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ther course-graining methods to preprocess the network in the the temporal domain will
need to be developed.

In this chapter, we have analysed an application inspired by the COVID-19 pandemic,
as the structure and dynamics of contact networks have proved pivotal to forge a con-
ceptual link between human behaviour and virus spread. However, our understanding
of human behaviour is still limited by a lack of adequate measurement techniques and
modelling frameworks. In our view, therefore, further development of technology and
methodology to obtain and analyse direct measures of behavioural contact networks
is essential to advance our understanding of human behaviour, and to improve the re-
silience of society in dealing with pandemics.
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ABSTRACTABSTRACT

Worldwide, the intervention measures to curb the initial spread of SARS-CoV-2 
has consisted of a combination of lockdowns, mobility restrictions, social dis-
tancing and mask-use. Unravelling their efficacies while simultaneously keep-
ing in perspective their social costs, however, has remained difficult, given 
that such non-pharmaceutical interventions require high resolution models 
regarding demography and mobility at a sub-national scale. Here, we achieve 
such resolution using a country-scale demographically-stratified population 
and a spatially-explicit individualbased epidemiology, calibrated to hospital 
admissions data and mobility trends extracted from mobile phone signals and 
Google. Coupling these datasets allows us to evaluate the intervention meas-
ures taken, focusing on the first COVID-19 wave in the Netherlands. We com-
pare a set of national interventions, including travel reductions, behavioural 
measures such as social distancing and school closure, showing that at least 
the first two had an important effect on the epidemic spread. Analogously, we 
test the scenario in which interventions would have been implemented on a 
local (municipality) level, providing a quantification of the trade-off between 
case numbers and disruptions due to interventions.
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9.1 Introduction

Reduction in mobility, enhanced levels of personal hygiene, social distancing and vari-
ous combinations thereof — including complete lockdown in case of ‘extreme’ circum-
stances — are common intervention measures deployed to curb the spread of pathogens
at times of epidemics. Every form of intervention measure comes however at the cost of
social and economic disruption. For controlling the spread of an epidemic, it is therefore
of paramount importance to implement those intervention measures that are not only
effective but are also socially minimally disruptive. Well-tuned epidemiology, capable of
testing a variety scenarios in terms of measures, timing (Kretzschmar et al., 2020) and
targeted sub-national regions, is the standard route for informing the policy base that
intervention measures typically rely on.

Precisely herein lies a challenge. The nature of the population and human behaviour
is key to epidemiological dynamics, for instance regarding the age-stratification and the
demographic composition of a society, how people travel, interact and mingle across dif-
ferent age groups, environmental conditions, demographies and sub-national regions
(Lloyd-Smith et al., 2005; Prem et al., 2017; Mossong et al., 2008). Moreover, even though
the social perception of any form of intervention measure as a ‘disruption’ from business-
as-usual is universal, human behaviour and response to interventions varies strongly
across societies and cultures, and is highly heterogeneous even within a population living
in a certain geographical region (Marks et al., 2021). It is for this reason that epidemiol-
ogy meant to inform policy requires local embedding, i.e., incorporation of demographic,
mobility and behavioural aspects specific to the concerned population (Vos et al., 2021).
When a novel pathogen breaks out, the challenge gets further compounded due to uncer-
tainties in its attributes such as the mode of transmission or the duration of its incubation
period (Elias et al., 2021). Building epidemiology taking all this into account is however
not only highly complex, but also requires detailed data at high resolutions.

Accounting for the aforementioned heterogeneity and local embedding bridges epi-
demiology to the study of complex networks. Chapters 7 and 8 in this dissertation analyse
human interaction systems to obtain insights in system properties associated with epi-
demic spreading. The chapters do this from a network point-of-view, contributing to a
vast amount of literature concerning a system’s vulnerability to spreading, the concept
of superspreading (Lloyd-Smith et al., 2005; Endo et al., 2020) and effective interven-
tions (Brauner et al., 2021; Sharma et al., 2021; Flaxman et al., 2020; Mistry et al., 2021).
When using human interaction networks in the context of epidemiology, depending on
the scale and scope of the analysis, and the resolution of available data, an important
consideration concerns the temporal variation of the network structure. To fully resolve
epidemic spreading, high resolution data on temporal variations of the contact network
is arguably required, due to the importance of sequences in spreading processes (as dis-
cussed in chapters 7 and 8): a person can only infect a person once he or she has been
infected before, not vice versa. A practical problem, however, concerns the size of the
data, computation power to track infectious sequences, and the near-impossibility of
tracking contacts of population sizes at the level of countries. Hence, to work on larger
scales, many epidemic models are not individual based, but rather assume full or partial
(i.e., through stratification) homogeneity in the population interactions (e.g., see intro-
duction of part I). At smaller population sizes, both static network approaches (Li et al.,
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2020a; Isella et al., 2011; Riolo et al., 2001; Masuda and Holme, 2013; Stehlé et al., 2011;
Zhang et al., 2021), where the contact networks are aggregated or assumed constant, and
temporal network approaches (Li et al., 2017, 2020a; Mucha et al., 2010; Génois and Bar-
rat, 2018; Centola, 2010; Schläpfer et al., 2014; Kiti et al., 2019; Cattuto et al., 2010) aim to
characterise systems to obtain useful insights for the larger system, or focus on outbreaks
in (small) systems assumed to be closed, for example in the context of the spreading
of sexually transmitted diseases in small communities (Liljeros et al., 2003; Helleringer
and Kohler, 2007). This chapter relates to this literature by accounting for the temporal
and geographic nature of contacts on an individual basis, but at the same time avoiding
high-resolution contact data requirements. We do this by working on a semi-aggregated
spatial resolution (municipalities) and calculating transmission probabilities via a (de-
mographically and geographically) stratified force-of-infection instead of individual con-
tacts.

This chapter focuses on the effectiveness of implemented interventions. By and large,
intervention measures deployed during the first COVID-19 wave in spring 2020 were not
enough to spatially constrain the disease: the worldwide spread of SARS-CoV-2 along the
pathways of globalised travel was too fast to allow for it to happen. Reliable data (specif-
ically, near-real time data needed for policy-informing epidemiology) on community-
transmission were not readily available to researchers during most part of the first wave.
Neither were there sufficient number of test kits to track infections. In such a situation,
for setting intervention policies, large parts of the world used epidemiological insights
that were emerging from China, where the outbreak came a couple of months earlier,
even though it meant that local contexts specific to regions in China were being used
elsewhere. By the time test kits and reliable data started to become available as the first
wave wore off, the pandemic had already taken firm roots worldwide. In other words, in
real-time, it was difficult to assess the effectiveness of intervention measures, and ques-
tions regarding the necessity of targeting full countries rather than sub-national regions
remained unchecked.

The aim of this chapter is to make these assessments in hindsight. We evaluate the
intervention measures taken during the first COVID-19 wave in the Netherlands using a
large individual-based model, which accounts for heterogeneities in demography, mo-
bility and behaviour and is validated by a combination of multiple data sources (on de-
mography, mixing, hospitalisation, mobility and serology). Because of the large combi-
nation of data sources used and model components, we move many of the methodolog-
ical details to SI I.1. Hence, section 9.2 comprises the main steps and dynamical aspects
of the model. The results of the model are threefold. First, in section 9.3, we calibrate
the model to the first wave and distinguish how different demographic and geographic
entities played a role in the first wave. In the second part of the results (section 9.4), we
experiment with removing some of the national interventions that were issued by the
Dutch government, which reflect their effectiveness in counteracting the spreading. In
the final part of this chapter, we discuss the effectiveness of regional interventions (at the
level of municipalities), addressing whether national interventions were really necessary.
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9.2 Methodology

To start with, the first COVID-19 wave in Netherlands covered the period February 27,
2020 (the first tested case of COVID-19 in the Netherlands) till June 1, 2020 (lifting of
most intervention measures). In this timeline, there are four distinguishable periods in
terms of the national interventions, which we refer to as phases: (i) Phase 1 (February
27 - March 11) when transmission of the pathogen progressed unchecked, (ii) Phase 2
(March 12 - March 22) with minor interventions involving a working-from-home policy,
cancellation of large events and some social distancing and face mask advice, (iii) Phase 3
(March 23 - May 11) involving a lockdown with closed schools, event centres, mandated
social distancing and working-from-home policies, and (iv) Phase 4 (May 11 - May 31)
involving a gradual lifting of all measures.

The model steps are subdivided into eight steps, illustrated in Fig. 9.1. We divide our
(simulation) analysis into two parts: (i) demography, mobility and mixing considerations,
and (ii) epidemiology and first-wave phenomenology, both consisting of four steps (1-4
and 5-8 respectively in Fig. 9.1). The key steps of the dynamics are summarised below,
supplemented by methodology related to the mobility, transmission and interventions
later in this section. SI I.1 contains additional details on the methods.

9.2.1 Model steps

Step 1, demographic categories. We resolve the Dutch population into 11 demographic
categories. Similarly, we resolve the Netherlands geographically into its 380 official mu-
nicipalities. From the registry data made available by Statistics Netherlands (CBS, the
national statistics agency), we obtain the composition of each municipality in terms of
these demographic groups as per their residency. We then distribute 170,721 agents —
each representing approximately 100 Dutch residents since the population size of the
Netherlands is about 17 million — with their homes located proportionately in the 380
municipalities.

Steps 2 and 3, mobility. Using (a Dirichlet distribution constructed from) hourly mo-
bility data based on mobile phone signals, we make the agents move stochastically across
municipalities at hourly time resolution, including a differentiation between regular, fre-
quent and incidental travels. In this way, every agent on average conforms to the mo-
bility pattern that is typical for the demographic category and the home-municipality it
belongs to (e.g., work-related, day-night and weekday-weekend travel rhythms).

Step 4, mixing. Steps 2-3 also yield us the exact composition of the agents that are
found in any municipality at any given hour, including details on their demographics
and residency. Agents that are present in the same municipality in the same hour have
the possibility to mix, i.e., to interact with each other at close proximity. In our approach,
we distinguish four mixing situations: ‘home’, ‘school’, ‘work’ and ‘other’, corresponding
to those distinguished in survey data that define our mixing rates, known as the POLY-
MOD study (Prem et al., 2017). Every mixing situation distinguishes the involved agents’
demographic categories, the hour of day, and whether the agent, at the concerned hour,
is found to be present in its home municipality.

Steps 5-6, pathogen transmission. We use SEIR dynamics for agent-to-agent pathogen
transmission, which means that every agent at any time has one of the following four la-
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bels: susceptible (S), exposed (E), infected (I ) and recovered (R). In this process, we as-
sume a closed population during the wave, i.e., we ignore births/deaths as well as migra-
tion across the border. Every susceptible agent can be potentially exposed: a susceptible
agent belonging to a demographic category g , present in a municipality m and (hourly)
time t experiences a force of infection that is a function of the overall susceptibility of de-
mographic category g , the phase of the first wave (phases 1 through 4, described earlier),
mixing with agents present in municipality m at time t , as per step 4, and their respec-
tive infectiousness. Because testing capacity during the first wave was limited, the initial
group of agents infected (I ) is inferred from hospital admission data, which were mainly
confined in south: the Noord-Brabant and Limburg provinces.

Steps 7-8, syncing the epidemiological analysis to national-level first wave phe-
nomenology. Different types of intervention measures put in place in different phases of
the first wave contributed to reductions in mobility, mixing and thereby, pathogen trans-
mission. We extract the reduction in mobility from observed Google mobility data during
the first wave, and apply this to the working demographies. Similarly, for epidemiologi-
cal dynamics following the SEIR-model, we account for the reduction in pathogen trans-
mission due to changes in human behaviour (such as mask-wearing, enhanced level of
hygiene and social distancing) by means of varying a country-wide parameter — result-
ing in β1 through β4, one each for each phase of the wave, calibrated to observed hospital
admission data. Changes in mixing are incorporated by applying relative mixing changes
as found by survey studies in the Netherlands (Backer et al., 2021).

9.2.2 Mobility patterns

The basis for the mobility patterns is mobile phone signal data gathered by the company
Mezuro, resulting in numbers of daily travels by people living in any municipality i to
municipality j , split into frequent, regular and incidental movements. The demographic
data provided by Statistics Netherlands (CBS) allowed us to distinguish 170,721 agents
with demographic details, which we link to movement data by assuming working and
school-going agents have frequent movements, while the other demographies have reg-
ular or incidental movements.

The construction of the actual mobility pattern of an agent in the model is done by
creating a Dirichlet distribution, using the movements data (normalised) as shape pa-
rameters, from which we draw fractions of the day spent in each municipality (i.e., re-
sulting in 380 fractions for each of the 380 municipalities). These fractions are rounded
to hours and concatenated to form a day’s schedule, such that for every hour, the agent’s
position is specified. This is done for 7 days, after which the agent’s movements are re-
peated.

9.2.3 Transmission mechanisms

Transmission from susceptible (S) to exposed (E) in this SEIR-based model is stochastic
and based on a force of infection λ, which is used as an hourly infection probability. The
intuition behindλ exerted on a susceptible agent is that each demographic category con-
tributes to additional chance of transmission, weighted by the expected mixing between
the agent and this group and the fraction infected in this group. The full equation for λ
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for people from demographic group g in municipality m at time t is as follows, involving
a summation over all demographic groups g ′ adding to the force of infection:

λ(g ,m, t ) = h(g )︸︷︷︸
Susceptibility of g

· β(t ) · s̄(t )︸ ︷︷ ︸
Phase & daily cycle

·
∑

Group g ′
ng ,g ′ · I (g ′,m, t )

N (g ′,m, t )
︸ ︷︷ ︸

Mixing with groups g ′

(9.1)

The first part of the equation involves a parameter h(g ) that reflects the suscepti-
bility of agents from demographic group g to the disease (see SI I.1.5). The second part
(β(t ) · s̄(t )) contains the aforementioned phase parameter β that involves behavioural
aspects like wearing face masks and keeping social distance and a daily cycle parame-
ter s̄(t ) (see SI I.1.6), specifying that people barely have any contacts in the middle of
the night, for example. The third part involves the mixing with the eleven different de-
mographic groups: ng ,g ′ is the expected number of contacts that groupg has with group
g ′, based on the mixing matrix that reflects the situation (i.e., ‘home’, ‘school’, ‘work’ or

‘other’). The fraction I (g ′,m,t )
N (g ′,m,t ) is the fraction of the total number (N ) of people of group

g ′ in municipality m that are infectious (I ).

Transmission from exposed (E) to infectious (I ) and from infectious (I ) to recovered
(R) are not probabilistically implemented, but involve a time lag: an incubation and an
infectious time scale, respectively. The exact duration of these lags differ per case and are
drawn from Weibull distributions: W (4.6,20), and W (5,1), respectively, based on de Vlas
and Coffeng (2021).

9.2.4 Interventions

The first wave of COVID-19 cases in the Netherlands happened across the period of
February 27 (first tested case) to June 1, 2020. We split this period into four phases based
on the interventions taking place, in which we mimic changes in mobility, mixing, be-
haviour and school closure. Details about these phases are shown in Tab. 9.1.

First, we address changes in mobility due to a working-from-home policy by reducing
inter-municipality travel in the model using Google Mobility data (Google, 2021), which
reports percentual mobility changes across this period. We implement this by placing the
reported percentage of people, randomly drawn from the working categories, at home.
Second, changes in mixing patterns are addressed by determining percentual changes
in the mixing among different age groups from Dutch survey data (Backer et al., 2021)
in the months February, April and June 2020, and applying these changes element-wise
to the mixing matrices used in our model. Third, behavioural changes are represented
by varying β(t ) in Eq. (9.1) across the phases. Fourth and final, schools are closed by
placing school-going agents, i.e., Primary school children, Secondary school children and
Students, and parents of primary school children (see SI I.1.7 for the derivation of these
parents) at home, both in terms of location and mixing.
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Figure 9.2: Calibration (a-b), and demography- and geography-resolved results from our analysis (c-e). Panel
(a), left axis: the daily number of new infections and exposures in yellow and green, respectively. Right axis:
daily hospital admissions from analysis output (red) and observed data (black). Background colours and ver-
tical black lines denote the four phases (arbitrary colouring). Uncertainty intervals mark minima and maxima
in the ensemble of realisations used in the analysis; the same holds for panels (b), (c) and (e). Panel (b): Hos-
pitalisation doubling time over the period March 13 - March 27, 2020 (shaded grey shaded time domain) in
analysis (red, 4.69 days) and observed data (black, 4.61 days). Panel (c): % affected agents (i.e., E , I or R) per
demographic group over time. Panel (d): % affected agents per municipality on two days (March 5, May 25).
Blue circles indicate the geographical locations of the three example municipalities shown in panel (e). Panel
(e): Infected agents (yellow) and hospital-admitted agents (analysis in red, and observed data in black) in three
municipalities in different parts of the country: Eindhoven, The Hague and Groningen. Analysis data corre-
spond to an ensemble of 10 independent realisations.
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Phase Start End Travel Mixing Behaviour Schools
1 Feb 27 Mar 11 - - β= 0.135 Open
2 Mar 12 Mar 22 -31.7% Reduced as per Apr 2020 β= 0.11 Closed halfway∗
3 Mar 23 May 10 -42.4% Reduced as per Apr 2020 β= 0.09 Closed∗
4 May 11 Jun 1 -20.1% Reduced as per Jun 2020 β= 0.11 Open

Table 9.1: Overview of the four phases distinguished in the first wave of COVID-19 in the Netherlands, and how
they are expressed in the model. Note that the first phase does not have an explicit starting date in the model,
because the model is temporally calibrated to the start of the second phase based on the moment at which a
threshold value of θ = 1.8% of the population has been affected. ∗Schools were closed during Mar 16 - May 10,
which is also what we use in our model, resulting in a slightly asynchronous intervention from the four phases.

9.3 Reproducing the first wave

Having initialised the analysis by the cumulative infection numbers throughout the Nether-
lands per March 1, 2020, we simulate the epidemiological dynamics following steps 1-8
described above. The direct model output is in terms of infections, which is converted
into hospital admissions following a similar procedure as used for the initialisation, be-
cause of the limited testing capacity (i.e., making it impossible to compare simulated
infection numbers to accurate numbers of tested cases). We further forward-interpret
the (simulated) hospitalisation data for the entire first wave. Country-wide hospitalisa-
tion data have been made available by the Nationale Intensive Care Evaluatie registration
(NICE) throughout the first wave [thick black line, Fig. 9.2(a)]. The simulated hospitali-
sations are clearly functions of the four β-parameters, whose numerical values we fix
by matching to the NICE-data [Fig. 9.2(a)]. Specifically, β1 is determined by matching
the simulated (initial) doubling time for hospital intake to that obtained from the NICE-
data [Fig. 9.2(b)]. The corresponding values of the β-parameters can be found in Tab. 9.1.
Overall, this allowed us to match the hospital admission data fairly well, both in terms of
absolute numbers as well as in the doubling time — with a model doubling time of 4.69
days, and an observed value of 4.61 days.

Importantly, the stratification embedded in our simulations in terms of 11 demo-
graphic groups and 380 municipalities allows us to reveal how the first wave played out
demographically and geographically. We show these, averaged over 40 runs that consti-
tute the ensemble of simulation realisations, in Figs. 9.2(c) and (d) respectively. The varia-
tions between individual runs in how the demographic categories are affected, visualised
in Fig. 9.2(c), are found to be relatively small due to the relative well-mixed spread of the
demographic groups across the various municipalities: precisely where the epidemic ex-
actly is does not seem to matter. In terms of seropositivity, adolescents and middle-age
working agents dominate the signal, while the youngest and oldest groups are least af-
fected.

The limited across-runs variation however does not hold for the geographical spread.
Fig. 9.2(d) shows the average in terms of geographical spread — for example, we see the
relatively high prevalence of the disease in the south, which is a consequence of the fact
that the epidemic started mainly in the provinces of Noord-Brabant and Limburg in the
south of the country. Individual runs (see SI I.2.2), however, distinguish epidemic foci in
different places of the country, resulting in a relatively wider spread in municipalities, as
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shown in Fig. 9.2(e) for three municipalities across the country.
Still, from these results we conclude that — notwithstanding only four epidemiolog-

ical parameters for the entire country, one for each phase of the wave — our simulations
capture the observed epidemiological dynamics reasonably well. Importantly, the demo-
graphic and geographic-explicit stratification in the analysis has the important attribute
that it allows us to explicitly test the epidemiological impact of specific types of interven-
tion, or intervention measures implemented specific regions or specific demographic
groups. For these, we use the ensemble of runs in Fig. 9.1, using the β-values as per Ta-
ble 9.1 in the Methods section, as ‘the reference’.

9.4 Evaluation of national-level intervention measures

Like many other countries, the Dutch government implemented mainly nationwide in-
tervention measures during the first wave rather than regional-specific ones. We focus
on three categories of interventions: (i) behavioural measures, in the form of wearing
masks, enhanced hygiene levels and social distancing, (ii) mobility reduction, associated
with encouraging people to work from home and closing large events, and (iii) school
closure. In order to unravel the impact of any (single) one of these on the epidemiologi-
cal dynamics, we alter the simulations in the following manner, and compare the corre-
sponding hospitalisation curves to the reference, which is shown in green in Fig. 9.3(a)
(it essentially coincides with the observed data because of calibration as per Fig. 9.2).

Testing the impact of the behavioural intervention measures is straightforward: we
simply use the same β-value in our simulations in the last three phases of the wave as
in the first one, i.e., β2 = β3 = β4 = β1 = 0.135, while keeping everything else the same as
in the reference. The results of leaving out behavioural measures are shown by the blue
curves in Fig. 9.3. Checking the epidemiological impact of limiting mobility is somewhat
more cumbersome, even though using the same β-values as in the reference ensures that
limiting mobility does not interfere with the behavioural intervention measures. During
the first wave, there were never any fully closed borders between sub-national regions
(such as, e.g., in Italy (Berardi et al., 2020)). However, a working-from-home policy was
implemented which most people adhered to, as visible in public transport usage (van der
Drift et al., 2021) as well as in Google mobility data (Google, 2021). For testing the epi-
demiological impact of the mobility-limiting intervention measure, we simply remove
the mobility decrease percentages that were found in the Google Mobility data (Tab. 9.1).
The corresponding time evolution of the epidemic is shown in red curves in Fig. 9.2. As
for the impact of closing schools, we note that the Dutch schools were closed relatively
late (March 16, while the first confirmed case was on Feb 27) following a long political
debate, which exact dates are currently followed in the reference simulation. To evaluate
the epidemiological impact of closing schools, we let the school-going children to con-
tinue to go to school in the simulations (keeping β-values the same as in the reference).
The resulting curves for this intervention measure are shown in yellow in Fig. 9.2.

We evaluate the impact of these intervention measures in terms of three indicators
in Fig. 9.2. Note that none of the intervention measures applied to phase 1, such that
approximately identical infection numbers are reached in each of the scenarios up to
March 12, which with a lag of 14 days between infection and hospitalisation means that
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all hospitalisation curves are well-aligned up to approximately March 27, 2020. In panel
(a), we show the cumulative hospital admissions, which allows for easy comparison of
the severity of each scenario. A clear hierarchy is visible: leaving out travel reductions
(red) supersedes the reference (green) by more than 100%, from which we conclude that
the travel reductions that we observed from the Google Mobility data prevented a dou-
bling of the hospitalisation cases. Note that these are only calculations up to June 1. This
is followed by the blue curve; behavioural changes such as wearing face masks and social
distancing prevented another 40% of hospital admissions. Then, strikingly, the closure of
schools seems to have no significant effect. There are a few important discussion points
related to the closure of schools, which are mentioned in the discussion section.

The second indicator, displayed in panel (b), concerns the geographic spread of the
disease, measured by the fraction of municipalities in which the daily hospital admis-
sion rate has reached at least 0.08% of its population, or had reached this value before
(i.e., this metric never decreases). The same hierarchy is visible as in panel (a). Expect-
edly, omitting travel reductions results in a more than doubling of the spatial spread,
reaching (with significant hospital admissions in) more than 70% of all municipalities
in June, while the other scenarios are more close together. Finally, in panel (c), we show
national seropositivity levels across the 11 demographic categories. Although we add ob-
served seropositivity (in black) to this panel, those values are highly uncertain because
of a variety of biases involved in the data collection (Vos et al., 2021). We add them to do
a comparison of the general tendency across the demographic groups, which is higher
seropositivity for adolescents, lower for older people and very low for the youngest —
a tendency also found in the model output of the reference (green). Comparing the four
scenarios reveals the same hierarchy as in panel (a), with a disproportionally high level of
seropositivity for non-studying adolescents and middle-age working agents when travel
reductions are omitted (red).

9.5 Evaluation of regional intervention measures

Next, we evaluate the potential of subnational interventions, implemented at the munic-
ipality level. The Dutch government did not implement subnational intervention mea-
sures, aside from bringing out an early advice to work from home in the south of the
country, the epicenter for the first wave. The reasoning for this was as follows: once
COVID-19 cases were discovered locally, likely lagged temporally by incubation and in-
fectious periods, the pathogen would have spread throughout the entire country any-
way. This is in line with observations that the Netherlands is spatially well-connected in
terms of people’s mobility patterns, facilitated by a robust public transport system and a
high population density. Nevertheless, given that intervention measures do have a social
cost for the populace, we test the epidemiological impacts of two types of subnational
intervention measures. The timing and nature of municipal interventions is naturally
dependent on (a) mandates from the national government, and (b) actual number of
cases in the municipality. We simulate (a) by restricting the nature of municipal inter-
ventions to what has been implemented in reality on a national level at the same dates
— i.e., if in our simulations, a municipality decides to issue interventions at March 29,
it will implement the interventions that in reality the national government had in place
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on March 29. The number of cases (I ) in real-time is tracked, and the local timing and
decision making to intervene is determined when the fraction of the population that is
infected exceeds a certain threshold. Choosing the value of this threshold poses a trade-
off: a lower threshold ensures implementation of local interventions in an early stage of
the COVID-19 wave which would suppress hospital admission counts, but could unnec-
essarily shut down economic and social activity in some parts of the country that are less
affected by the disease. Vice versa, a higher threshold would target areas where the epi-
demic has progressed most, but could pose the risk of starting control too late, resulting
in more hospital admissions. To show the effect of different thresholds for prevalence of
infectious cases, we chose a wide range of 3%, 1% and 0.33%.

The results are shown in Fig. 9.4. On the left side, the epidemiological impact of
subnational interventions is quantified in terms of the number of hospital admissions
(graphs). The lockdown as implemented in the Netherlands is represented by the black
(observed) and green lines (prediction), which resulted in approximately 13 thousand
hospital admissions up to 1 June 2020. Higher thresholds for deciding to implement a
local lockdown clearly result in higher numbers of cumulative hospital admissions (top
left) and a lower percentage of municipalities affected (top right). Here, a decision thresh-
old of 3% (dark red) is too high; although it allowed for 185 million additional person-
days spent without interventions, it resulted in a 157% increase in number of admissions
(approximately 19 thousand). The more stringent thresholds of 1.0% and 0.33% result
in numbers of hospital admissions closer to a national lockdown (4,670 and 355 addi-
tional admissions, respectively), but at a more modest social benefit (103 million and
35 million additional person-days free from interventions, respectively). Interestingly, at
the lower threshold of 0.33% (yellow), approximately 10% of the municipalities remain
without interventions for the full duration of the first wave. The maps show the corre-
sponding geographical distribution of percentages of affected people, i.e., people who
have experienced infection (left) and the social benefits of subnational interventions in
terms of the fraction of repeated simulations in which a municipality is without inter-
ventions (right). Municipalities that remain free from interventions are mainly located
in the north and east of the country, as can be most clearly seen for the scenario with
the 0.33% threshold. From a mobility perspective, these are also the more rural, isolated,
and less densely populated subnational regions of the country. We also test a scenario
in which the national policies are implemented, but where, additionally, the borders of
the municipalities are closed when confronted with 1.8% of the local population being
infectious (I ). Panel (a) shows that this scenario (grey) decreases the number of hospital
admissions by approximately a third, for this particular threshold chosen.

It is important to note that because of the high computational demand of these local
scenarios, only a small amount of runs are shown (ensemble sizes of five members for 3%
and 1%, and two members for 0.33%) — larger ensemble sizes will provide more accurate
results. Still, as we also saw in Fig. 9.2 and 9.3, we mainly expect geographical differences,
i.e., which municipalities are affected, rather than strong differences in aggregated met-
rics such as cumulative hospital admissions and spatial spread.
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9.6 Discussion and Outlook

In summary, the model indicated national travel reduction and national behavioural
change as effective measures in the Dutch first wave of COVID-19. At the same time,
we assessed the effectiveness of local interventions, providing a quantification of the
trade-off of being affected by interventions and increasing case numbers. In current lit-
erature, there is a variety of approaches used to investigate similar questions. Using a hi-
erarchical Bayesian transmission model, Brauner et al. (2021) also evaluated first-wave
intervention measures using a statistical approach, estimating that group size limita-
tions and school closures were the most important measures. Analogously, also with a
Bayesian hierarchical model, Sharma et al. (2021) analysed the resurgence of COVID-19
in Europe and found a much more limited effect of school closures, and a more pro-
nounced effect for the closure of non-essential businesses and prevention of gather-
ings. Flaxman et al. (2020), also following Bayesian hierarchy, indicated that in the Eu-
ropean first wave, (full) lockdowns were the main reducer of further spread, far exceed-
ing other interventions in effectiveness. Mistry et al. (2021) proposes a method to infer
sub-national mixing matrices from key socio-demographic features, and indicate how
these can be used for population-wide epidemic modelling, while still accounting for a
number of sub-national heterogeneities. The above papers indicate that there are differ-
ent methodological approaches to this question — in fact, all of these works are different
than the individual-based approach proposed in this chapter, with associated advan-
tages and disadvantages.

The methodology proposed in this chapter comprises demographic and geographic
stratification, and distinguishes multiple circumstances of mixing. Still, there are still
forms of granularity that limits our ability to precisely omit (and therefore: evaluate) spe-
cific interventions. This is of particular importance when discussing the effect of the clo-
sure of schools. In practise, school-going children would, instead of meeting many other
like-aged people, be placed at home in near-isolation because of their indoors studying
activities. In the model, this is simulated as a combination of factors: we place them at
home, the mixing matrix changes from ‘School’, to ‘Home’, it is reduced based on sur-
vey studies in the Netherlands throughout this wave, their mobility is reduced and the
β value changes. In the ‘no school closure’ scenario (yellow curves in Fig. 9.3), however,
we only omit their placing at home and the mixing matrix changes, which are the only
measures we could explicitly link to the closure of schools. The result is that we cannot
omit all changes that happened due to school closures, which may lead to an under-
representation of the impact of school closure. Still, it is expected that school closure in
the Netherlands specifically had a minor effect in the first wave, because it was relatively
late (16 March, which was after the peak; see the amount of exposed people, in green,
in Fig. 9.2). Note that conclusions from previous work (Brauner et al., 2021) that indi-
cated an large effects of school closures were based on groups of countries, not solely the
Netherlands.

Other limitations to the methods in this chapter concern the generation of mobility
patterns of agents. We use the Mezuro mobility data to infer weights of where people are
likely to go (used as input for the scale parameters of the Dirichlet distributions from
which we draw their locations, see SI I.1.3). In practise, however, there is more struc-
ture in these movements: we cannot distil sequential of visits by the same person in the
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Mezuro data. Also, if people work in a particular other municipality, they are likely to go
there many times, instead of redrawing their locations each day, resulting in a wide va-
riety of municipalities visited — as it is now in the model. The reduction of mobility is,
as mentioned, based on Google Mobility data, which is chosen because they kept track
of mobility changes throughout the first wave of COVID-19 in the Netherlands. How-
ever, their data is relatively aggregated: it is nation-wide and split into a small number of
categories, making it difficult to specify mobility reductions per demographic group or
geographic part of the Netherlands.

A main contribution of this work is in found in the geographic explicit nature of the
transmission model, which allows for experimentation with locally-adjusted measures
rather than only national ones. For now, we implemented this by allowing each munic-
ipality to intervene separately, based on a local hospitalisation threshold. When infer-
ring implications from these results, ultimately, they should be translated onto the (local)
level at which such decision making takes place. In the Netherlands, there are different
levels of governance in this respect, such as 12 provinces and 25 Veiligheidsregio’s. In par-
ticular the latter could be considered for a more tailored advice of how locally-adjusted
measures may be more efficient (from a cost-benefit point-of-view) to limit epidemic
spreading. Still, the chapter showcases how heterogeneity can be addressed in highly
complex situations, how (implicit) network approaches can help understanding these
patterns and how one can intervene to limit macroscopic spreading phenomena hap-
pening on top of these networks — which adds to the position of this chapter as the
conclusion of this dissertation’s Part III.
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In short, the three parts in this dissertation covered research questions concerning
(I) macroscopic states, (II) the impact of network architecture and (III) spreading vul-
nerability in complex systems. In all chapters, these concepts are related to a form of
collective change in the respective complex system — be it behavioural states expressed
in the brain, climate tipping points, large-scale railway disruptions or epidemic spread-
ing. The dissertation is not a comprehensive overview of all possible approaches to these
questions. Rather, the chapters aim to contribute to both methodological advancement
and the understanding of the example systems studied here, and, throughout this va-
riety, provide an overarching perspective on methodology to macroscopic dynamics in
complex systems in general. This section contains a reflection and outlook from this per-
spective.

An overarching perspective

A main challenge in this dissertation is the necessary level of detail in any of the analy-
ses or models: while the phenomenology may be macroscopic, information on the driv-
ing mechanisms may be found in microscopic details, e.g., local disruptions leading to
nation-wide railway delays (chapter 6), or a confined group of infectious individuals
spreading a virus throughout a country (chapter 9). By nature, complex systems con-
sist of large amounts of components, and in the real world, there are many sources of
heterogeneity and external influences that may not be possible to fully account for. As
the reader might have noticed, throughout the three parts of this dissertation, a growing
level of detail in the methodology can be recognised.

In part I, the effort was to express three unique complex systems — the Dutch rail-
way system, the brain of mice and coupled climate sub-systems — into low-dimensional
state variables. In other words, either statistically or from physical reasoning, the aim was
to fuse the large amount of microscopic heterogeneity and stochasticity in these systems
together into a a few macroscopic variables. The resulting analyses were on a macro-
scopic level: formulating and analysing the phase-spaces between system-wide princi-
pal components (chapters 1 and 2), and investigating transitions across macroscopic
states (chapters 1 and 3). Even though part I does not ignore microscopic interactions
in the system — e.g., chapter 1 implicitly incorporates these by using observed data —
the chapters in part I do not explicitly account for them. This is in contract with Part II,
where the effect of network architecture and component interactions are explicitly ad-
dressed. For example, in chapter 4, the role of spatial non-uniformities in developing
geographical patterns in railway dynamics is researched, and the main question of chap-
ter 6 is how microscopic interactions between railway resources may lead to wide-spread
railway disruptions. The role of detailed interactions is pursued even further in part III,
where interaction sequences of individual agents are related to a system-wide vulner-
ability to spreading (chapter 7) or their impact on spreading is quantified (chapter 8).
The ultimate product of this trend is the final chapter (chapter 9), which accounts for
many sorts of heterogeneity, such as demography, mobility and government policy, in its
simulation of SARS-CoV-2 spreading — in sharp contrast to the low-dimensional state
variables in chapters 1-3.

How microscopic interactions lead to macroscopic behaviour and which level of de-
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tail to include in the analysis are fundamental problems in complex systems literature.
From an overarching perspective, I state three considerations concerning the develop-
ment of methods in this dissertation.

Consideration #1: Concepts versus predictions

The first considers the aim of the research: whether it is conceptual understanding, ex-
plaining the macroscopic phenomenology, or prediction, concerning the accurate sim-
ulation of a particular phenomenon to be able to predict or hindcast it in scenarios or
a predefined state. Even though conceptual understanding and accurate prediction are
not mutually exclusive, the aim of the study implicates the level of detail to include. For
example, in chapter 3, the low-dimensional climate model connecting the stability of
the Atlantic Meridional Overturning Circulation (AMOC) to potential oscillations in the
equatorial Pacific is greatly simplified, but its aim was to illustrate conceptually the po-
tential of such events and the respective role of different parameters or physical drivers.
In fact, earliest findings of multiple stable equilibria of the AMOC were also derived from
such a simple model (Stommel, 1961). An accurate simulation of such an event, involving
timing, the exact magnitudes and their implications, is a different question and requires
advanced and high-resolution climate models. Also when researching railway dynamics,
this contrast is visible. In chapter 4, averaged statistics and schedule information was
used to obtain more understanding in geographical structures, the proposed model is
not suitable for accurate prediction purposes. (In fact, the spectral clustering method
in chapter 4 was made possible because of particular simplifying aspects of the model.)
Chapters 1 and 5 focused more on prediction of railway delays, for example, by using sta-
tistical analysis on observed data and including many more variables explicitly (such as
start and ending stations, train turnover rate, edge-specific running times, etc.), respec-
tively. One would argue that a perfect model provides both conceptual understanding
and predictive power, but that is not always possible.

Consideration #2: Level of relevant heterogeneity

In complex systems, agents and their interactions are hardly ever fully homogeneous.
An important consideration also in this dissertation concerns the level of heterogeneity
that is relevant to add in the analysis. In chapter 3, the temperature in the North Atlantic
in reality varies enormously due to geographic differences, differences in water masses
and many more factors. Still, for the purpose of identifying equilibrium states, it suf-
ficed to use a single temperature difference between the North and Equatorial Atlantic.
In contrast, chapter 9 aims to test the effectiveness of governmental interventions in the
Dutch first wave of COVID-19, which in particular implied the closure of schools and re-
gional strategies. The latter two particularly affect certain demographic groups (parents
and children) or have a geographic component, respectively, which require the model to
include demographic and geographic stratification explicitly. In railways, the choice of
relevant details to distinguish is not trivial, illustrated by the variety of approaches across
the four railway chapters (1, 4, 5 and 6). In other railway literature, highly microscopic
models are commonly used to test timetables (e.g. in Middelkoop and Loeve (2006)),
which do require details such as types of tracks, trains and infrastructure connections
superseding the level as included here. On the other hand, when studying mechanisms
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driving large-scale spread of delay (e.g., in chapter 6), such details may not always be nec-
essary and excluding them allowed us to abstract the network into single types of nodes
and edges. Another form of heterogeneity is introduced in part III, differentiating it from
part II. In part III, we account for temporal changes in the network architecture. Whether
it is important to account for such ‘temporal heterogeneity’ is partially matter of time
scales, as discussed in the introduction to parts II and III.

Consideration #3: Application perspective

A third consideration is the mere practical side of including additional levels of detail in
any analysis, which can be constraint by aspects of data collection and computational
limits. When studying spreading phenomena in systems where the spreading pathways
change over time, ideally, detailed information on these temporal variations is used, such
as the temporal networks in chapters 7 and 8. Moreover, the time scale of this interaction
data should be equal or lower than the actual dynamics to have enough temporal resolu-
tion (as discussed in the introduction of part III on p. 148), and the length of the dataset
should be long enough to be able to capture any dynamical evolution at all — which is
a problem mentioned at the end of chapter 8 (p. 177). Such data requirements make do-
ing the same analysis on a large scale unfeasible, which advocates for techniques such as
coarse graining. In chapter 9, we did not have enough information to infer mobility, de-
mography and mixing in more refined geographical locations than municipalities, or at
more refined temporal resolutions than hours. At this municipality scale, we had to work
without explicit interactions between couples of agents, but instead used a demographic
mixing-weighted ‘force of infection’ (p. 185) exerted on each person within the same mu-
nicipality, probabilistically accounting for interactions he or she might have during the
specified hour. Another example was the impact of external factors affected railway dy-
namics, which are known to be important (Wei et al., 2015; Ludvigsen and Klæboe, 2014;
Dekker et al., 2021f), but difficult to quantify dynamically: it relates to details such as in-
dividual trees falling on tracks and weathering of the tracks and electric lines, of which
data is not available. Even though the role of the availability of microscopic information
may sound trivial, it is an important consideration in the approach. It also may define
an upper limit of the accuracy of prediction in general: given that no information at the
detailed level of trees near railway tracks (chapters 1 and 6), or the exact neurological
differences between one mouse brain and another (chapter 2), is available, can we even
simulate these systems with full accuracy at all? This practical problem relates to the
question of Laplace’s demon (p. 8) and the numerical (practical) argument against its
ability to predict the future from the current state. For the railway case, I elaborate on
this further on below.

Consideration #4: Interdisciplinary

Under the umbrella of complex systems methods, this dissertation contains a variety of
example systems, each with their own intricate details, requiring input from experts of
the respective fields — neuroscientists (chapter 2), epidemiologists (chapter 9), trans-
portation researchers (chapter 6) and behavioural scientists (chapter 8). Still, working
on dynamics in each of these systems reveals that many methodological principles are
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interdisciplinary. A clear example is the re-usage of the same methodology from an ap-
plication in railways (chapter 1) to an application in neuroscience (chapter 2): the con-
densing of high-dimensional data into a few principal components that span a low-
dimensional phase-space in which clusters have a macroscopic meaning. Other exam-
ples can be found in the spreading vulnerability metrics (chapters 7 and 8), applied to a
variety of systems such as human interaction at schools, natural systems, citation net-
works and social media.

Application to railways

The reader might have distinguished a second narrative in this dissertation, one besides
the more general relation between microscopic elements and macroscopic behaviour in
dynamical phenomena. It concerns application of railways and a particular associated
emergent phenomenon: large-scale railway disruptions. Railway dynamics are explicitly
addressed in chapters 1, 4, 5 and 6, and, arguably, the spreading vulnerability research
in chapters 7 and 8 also connects to railways via the principles of the delay cascades in
chapter 6. These events typically involve initially local perturbations. Common causes
of these perturbations are infrastructure problems due to weather, frost, or trees falling
on tracks and overhead lines. Still, such local problems may spread delays across large
geographical areas, such as in the case of February 2, 2012 shown in Fig. 1.1 on p. 25 —
making railway disruptions a perfect example in which microscopic interactions result
in macroscopic phenomena. More details on a few case studies of these events together
with a small review on relevant problems and opportunities can be found in Dekker et al.
(2021f) (not included in this dissertation). An important factor in the most extreme cases
of these events turns out to be the lack of synchronous information, which severely lim-
its the ability for dispatchers to remain in control of the traffic flow, which is why these
events are also colloquially referred to as ‘out-of-control situations’.

The results of chapters 1, 4, 5 and 6 are from a dynamical and predictive nature,
whereas the direct operational implications were not the focus. In fact, embedded in a
project framework as shown in Fig. vi, the research in these chapters was conducted in
close collaboration with researchers from other disciplines that did focus on this practi-
cal side of these disruption events. The project is split in three parts: subproject A con-
cerns the understanding, anticipation and characterisation of these events, subproject
B addresses how, during such events, the logistics should be handled, and subproject C
involved microscopic simulations to test the findings of subprojects A and B. The inter-
play between microscopic interactions and macroscopic phenomena is especially true
for large-scale disruption events, making complexity science a suitable start to work on
the topics in subproject A (left side), in which the anticipation and the geographic iden-
tification of such events are separated into two steps. The right side of the framework
concerns subproject B, in which four steps were identified in how to effectively manage
such events. Subproject B was led by researcher Rolf van Lieshout. In his research, he pro-
duced a range of alternative line plans that were self-organised, i.e., without the need of a
functioning central dispatching (Van Lieshout et al., 2020; Van Lieshout et al., 2021). This
is especially useful in the case of large-scale disruptions, characterised by asynchronous
information flow and limitations to central dispatching.
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Monitoring Effective measures
(Complexity Science) (Operations Research)

Step 1: Anticipate
amplification using early
warning metrics

Step 3: Reschedule the
non-disrupted region

Step 2: Identify and isolate
the disrupted region

Step 4: Modify line system
inside the disrupted region

Step 5: Schedule resources
inside the disrupted region

Step 6: Manage passenger
flows

Figure vi: The project framework from Dekker et al. (2021f), describing how the characterisation of large-scale
disruptions and the subsequent adaptation to such events are connected, by linking research in chapters 1, 4,
5 and 6 (left side) to that of another PhD project (right side).

The chapters in this dissertation aim to either explicitly (chapters 1, 4, 5, 6) or implic-
itly (chapters 7 and 8) add to our understanding of these events. Step 1 in the framework
of Fig. vi is mainly addressed in chapters 1 and 6. The first chapter was also chrono-
logically the first effort to characterise such disruptive events. Using a principal compo-
nent analysis, we identified covarying patterns in the delay dynamics (Fig. 1.2 on p. 32),
from which a low-dimensional phase-space was found. Expressed in these macroscopic
variables, large-scale disruptions could be defined and anticipated using an early warn-
ing metric. Given the abstract nature of this phase-space, an understanding of more de-
tailed dynamics driving such (pseudo-)transitions became evidently beneficial, and this
resulted in the discrete-event model in chapter 6, which distanced from macroscopic
statistics, but focused on the mechanics and drivers of delay dynamics. In particular, we
found and simulated potential delay cascades across railway resources. In cases of se-
vere delays, rolling stock and crew members associated with the delayed train lines are
also affected. When these resources are transferred to other train lines, these train lines
may become additionally delayed, as well (this is explained more elaborately in Fig. 6.2
on p. 138). We used a model for such cascades to diagnostically identify when this effect
played a role, and when a lot of pressure was exerted on dispatchers to prevent this effect
(‘delay mitigation’) — see Fig. 6.4 on p. 142.

Chapter 4 concerns step 2 in the framework of Fig. vi, even though it focuses on
a general geographical characterisation of delay dynamics in four European countries.
The results are a first step towards identifying dynamically sensible areas to isolate (i.e.,
the ‘disrupted region’ in step 2) in case of severe disruption. It also involves an interna-
tional perspective on the role of various regions in the total delay and their exchange with
neighbouring regions (Fig. 4.5 on p. 104). Chapter 5 is somewhat in between steps 1 and
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2: it describes a model in which we aim to predict and simulate delays at various geo-
graphical scales and discuss advantages of defining delays as variables on larger scales in
general. Chapter 7 formulates the obtained understanding of delay cascades in chapter 6
into a theoretical framework. In particular, the proposed ‘entropy of temporal entangle-
ment’ can be applied to compare and assess the vulnerability against such cascades in
railway schedules.

Even though these chapters each analyse these railway events from a different per-
spective, a practically useful early warning metric was not found — one that provides rail-
way practitioners with explicit tools to implement, beyond mere statistical alarms (chap-
ter 1) or simulation models focusing on particular aspects of such events (e.g., chapter 6).
A reason for this is that the dynamical models in chapters 1, 4, 5 and 6 (along with many
other railway models) miss two key ingredients: human control (‘real-time dispatching’)
and external or incidental influences such as weather, accidents and infrastructure mal-
functioning. Both ingredients are inherently difficult to model and important topics for
future research. A possibility would have been to add agent-based control based on pro-
tocols, but not all dispatching decisions are fully captured in protocols due to the wide
range of dispatching possibilities. Dynamical modelling of human dispatching and con-
flict resolution would contribute significantly in this respect, which requires highly case-
specific behavioural descriptions of agents and their adaptive decision-making. Such di-
rections could be beneficial to pursue for railway research.

The other missing ingredient — external and incidental influences — is arguably even
more complex. For example, in Dekker et al. (2021f), we discuss three cases of severe dis-
ruptions that were caused by extreme weather (February 3, 2012 and January 18, 2018)
and an electric outage (January 17, 2017), respectively. In theory, such influences could
be dynamically implemented in simulation models in a probabilistic way, resulting in
low but nonzero probabilities for such events. Quantifying such probabilities, and their
dynamical impact may, because of their rarity, is notoriously difficult to do accurately,
especially in real-time. Consequentially, even if we could build a perfect model of how
delays spread and how dispatching reacts (i.e., using the first aforementioned ingredi-
ent), if the cause of the disruption related to an electric outage, we would have no pre-
diction of the event prior to its initialisation. Hence, throughout the railway chapters in
this dissertation, I focused on the dynamical aspects of these events after a potentially
externally-caused initial perturbation has taken place.

Also note that even if a perfect early warning could be found (including both ingre-
dients), it is of low practical use when it is a boolean alarm on its own. Sufficient details
need to be provided to do something with that information, such as the type of problem,
the identification of certain trains that play an important role or a particular disrupted
area. Anecdotally, the importance of de-synchronisation of information, loss of oversight
and IT problems turned out to be very important in large-scale disruptions. Such prob-
lems are less related to dynamics and predictions, but more about information and (IT-
)infrastructure. Therefore, part of the solution to such events lies in analysing the infor-
mation systems, rather than the dynamical aspects of delay evolution.

Summarised, the railway chapters in this dissertation, together with the concept of
spreading vulnerability in chapters 7 and 8, aim to contribute to understanding dynam-
ical phenomena in railway systems: the evolution, cause and geographical aspects of
large-scale disruptions. A practically useful early warning — i.e., the step ‘before’ this
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understanding — could not be found, but, given that such a feat would be possible at all,
the work here made a first step. Future research directions concern the aforementioned
missing ingredients, and more general ones as discussed on p. 203.

Network architecture and dynamical phenomena

The relation between network architecture and how determining it is for the dynamics
happening on top of the network is one of the key research questions in this disserta-
tion. In parts II and III, these networks are included in the analyses. In most cases (e.g.,
chapters 4, 5, 7 and 8), the networks were incorporated explicitly. However, networks also
have played implicit roles in some of the analyses: in chapter 6, the network architecture
is merely used to form pathways on which the proposed delay cascades can evolve, and
in chapter 9, the network of human interaction (to simulate SARS-CoV-2 transmission)
is only implicitly formed by means of large clusters of people in each municipality —
agent-to-agent interaction is explicitly not modelled there. Searching for the connection
between network architecture and dynamics on top of the network throughout the ap-
plications in this dissertation, revealed a few critical remarks on this interplay.

First, many topological metrics are useful to study the structure of network architec-
tures, but their relation to dynamical phenomena happening on top of the network archi-
tectures is not trivial, and potentially even very weak. For example, dynamical phenom-
ena may be associated with highly discrete and anisotropic evolution — such as in rail-
way systems, where delays follow trains that are prescheduled to follow particular lines
instead of evolving in every direction (which one might expect from a network point-of-
view). In chapter 5 we tried to model railways from a diffusion-like perspective by using
edge and node weights, but in the end this approach has limited predictive power for
cases in which the delays are relatively weak, or when individual trains drive the delay
evolution — the latter is not unusual as highlighted in the delay cascades in chapter 6.
Following the example of railways further, two well-known network metrics are displayed
in Fig. vii for the Dutch railways: the node degree and betweenness centrality of stations.
While Utrecht central station (Ut) is clearly visible in these metrics, the station with most
passengers per day (Amsterdam central, Asd) has a node degree of 3 and a mediocre
betweenness centrality. Dynamically less significant service control points can also be
distinguished to have high values in these metrics, such as one near Zwolle (Zlgea). Note
that the degree scale only runs up to 6 and many nodes have degree 2, which is common
in transportation networks due to their 2D, planar nature. These observations illustrate
that these network metrics do not provide much insight in the delay dynamics happening
on top of the network — which can be a problem for many more complex systems: stan-
dard network metrics do not necessarily provide much insights in the dynamics, and the
relationship might be obscured by a discrete, probabilistic or anisotropic nature of the
dynamics. This also implicates the limited practical use of percolation theory and node
failure techniques to railway dynamics: in many disrupted railway situations, stations are
still operating (i.e., not ‘removed’ from the network), and rerouting barely happens in the
Dutch railway case.

Second, there is growing criticism on the direct applicability of standard network
models to real-world systems in general. As mentioned in the general introduction, the
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Figure vii: Node degree (left) and betweenness centrality (right) of all nodes in the Dutch railway network.
Station abbreviations are used. A few notable ones are Utrecht (Ut), Amsterdam (Asd), Rotterdam (Rtd) and
Arnhem (Ah) central stations, a (non-passenger) service control point near Zwolle (Zlgea) and an important
transfer station near Amsterdam, called Amsterdam Sloterdijk (Ass). Node degree is defined as the amount of
links per node, and betweenness centrality is defined as the fraction of shortest paths (of all node pairs) that
includes the node.

discovery of scale-free networks (Barabási and Albert, 1999) was significant, but the uni-
versality of it as it was proposed in the real-world is questionable (Mitchell, 2009). The
proposed network growth mechanism of preferential attachment (or Yule process (Yule,
1925)), which implies that nodes with many links are more likely to obtain more, indeed
results in network structures that are scale-free. That is, the degree distribution follows
Zipf’s law or the related Pareto’s principle (Newman, 2005). However, there are many
other mechanisms that drive such network structures, such as combining exponentials,
inverse quantities and random walks (Newman, 2005; Mitzenmacher, 2003). Addition-
ally, many examples of real-world systems can be found where such power law distribu-
tions are not present, resulting in (stretched-)exponential or log-normal distributions,
even in systems that were previously found to follow power laws (Clauset et al., 2009).
Besides limitations of generative network models, standard networks principally include
nodes and links that (albeit weighted) involve some form of comparability or homogene-
ity, which may not reflect several heterogeneities that are crucial for the system dynam-
ics. In railway networks, for example, all stations are homogenised as ‘nodes’, while sta-
tions in bigger cities are logistically very different from rural ones — not only in terms
of network topology. In the case of human interaction, a scalar link weight might not be
enough to capture all complexities regarding disease transmission: it assumes that with
a single scalar you can compare the link’s strength with another link’s strength. However,
external conditions such as temperature and humidity may alter the transmissivity over
time, which would theoretically be possible to include in the weight of links by making
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their weights a function of time or climate, but is often not done. For example, in the
primary school network (Fig. iib on p. 14), some links between the children are made
during a break outside, which is for epidemiological purposes very different from those
in a small, confined room. Or, in the citation network in Fig. iid on p. 14, some citations
may be in a negative context, when counteracting an argument made in an earlier pa-
per, which may be very different from a positive context when studying how information
spreads through scientific literature. Pursuing this problem, the network science com-
munity has made significant advancements in the direction of multiplex networks (e.g.,
in Mucha et al. (2010)) and sophisticated ways of weighing or stratifying links and nodes,
to account for such qualitative differences.

A third remark concerns temporal networks and echoes the importance of the net-
work sampling time scale and its relation to the time scale of the targeted dynamics,
as mentioned in multiple instances across this dissertation, such as the introduction to
part III (p. 148) and chapter 8. In light of limited availability of data and potentially not
having a choice in the sampling time scale of empirical temporal networks, this partic-
ularly means that temporal networks are not automatically the better choice to describe
spreading phenomena.

A final note concerns the adaptivity of network architecture. In part III, many exam-
ples of temporal networks are discussed: networks that change over time. In those cases,
the temporal networks were prescribed and treated as non-reactive to the dynamics or
environment. In other words, while the dynamics on top was affected (bound) by these
architectures, it was not the other way around. However, the architecture response is an
important principle in many complex systems: cases in which the network architecture
adapts to either the environment or the dynamical state on top of the graph. Such sys-
tems are referred to as complex adaptive systems and are an active research topic of to-
day. In fact, many systems in nature and society, even some in this dissertation, may be
regarded as complex adaptive systems. In epidemiology, people adapt to the state of the
disease: in the early stage of COVID-19 in the Netherlands, for example, people did not
regard it as a major threat and only started reducing their contacts (altering the typical
network patterns) when the disease was more widespread. The effect of the adaptivity of
the system’s structure to environmental conditions may therefore be important to con-
sider when utilising network architectures to describe network phenomena.

Future directions

Although in each of the chapters, case-specific follow-ups are possible and mentioned
in each of the chapter discussion sections, three general future directions can be distin-
guished and are listed below.

Direction #1: Prediction of cascading dynamics

Cascading dynamics are conceptually addressed in multiple chapters of this dissertation
and are roughly described as causal pathways in the dynamics across multiple agents
or subsystems. In chapter 3, cascades across coupled climate subsystems are found in
the form of interacting critical transitions. In chapter 6, we find cascades on a more mi-
croscopic detail: delayed train lines that automatically delay associated rolling stock and
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crew, which may pass on their delays onto other train lines upon transfer, which in turn
also affect associated rolling stock and crew, leading to a potential cascade of delays to-
wards large geographic areas. In chapters 7 and 8, cascades are explicitly found in the
interaction sequences, where changing network architectures act as pathways for cas-
cading spreading phenomena. Especially when it concerns cross-system interactions, it
is of high societal relevance to predict cascading dynamics — e.g., as in chapter 3 and
6, or in a famous electric outage in Italy, associated with cascading interactions between
communication networks and their dependence on electricity (Buldyrev et al., 2010).

In the case of critical transitions that set in motion other transitions, such as dis-
cussed in chapter 3, prediction of such cascades relates to the vast literature on early
warnings of tipping points. The theory of ‘critical slowing down’ is well established, asso-
ciated with indicators such as increased autocorrelation, variance, skewness and flicker-
ing (Dakos et al., 2008; Kuehn, 2011; Scheffer et al., 2009). However, many of these met-
rics concern individual transitions rather than cascading transitions, which may involve
more complex approaches such as detrended fluctuation analysis (used in chapter 3 and
its accompanying SI C). This is an active branch of research and contributes to our un-
derstanding of cascading dynamics of critical transitions. However, there are also other
forms of cascading dynamics, that do not involve critical transitions. Such pathways may
be difficult to recognise and call for studying individual mechanisms. The inference of
causal links in such complex systems requires more sophisticated tools such as tools
proposed in Runge et al. (2019), or studies focusing on the detection of specific cascades,
such as in chapter 6.

In general, chained causal links that form cascading dynamics are vital to many dy-
namical phenomena discussed in this dissertation. Predicting their onset can be of vital
importance for intervention and system design purposes.

Direction #2: Spreading vulnerability and system design

Several chapters in this dissertation address spreading dynamics. Chapter 7 defines an
entropy-based metric that specifies a system’s vulnerability to spreading, and chapter 8
quantifies the impact of individual agents in this vulnerability using ‘contact sequence
centrality’. Both link spreading dynamics to aspects in a system’s network architecture.
A natural question is what exactly makes a system vulnerable to spreading. Knowing the
answer to this questions allows for more robust system design and cross-comparison of
systems.

Fig. 7.3 on p. 158 in chapter 7 already makes first steps in this direction by comparing
the vulnerability of a variety of systems using the entropy metric. Ultimately, these result-
ing spreading vulnerabilities are dependent on the systems’ designs: particular configu-
rations of the sequences of agent interactions favour, and others limit spreading in the
system. This is of particular interest in the cases of epidemiology and railways. In chap-
ters 6, 7 and 8, several suggestions of important factors have been made, concerning
system modularity, entanglement of interactions and sequence centrality. In epidemi-
ology, an obvious direction is the creation of ‘bubble’ structures in the interaction net-
works where people are allowed the interact within, but not across. More subtle would
be to investigate and target those people that connect those bubbles, arguably the ones
with high contact sequence centrality (see chapter 8). In the railways example, this would
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imply paying extra attention to spreading connections made via the utilised resources;
allocating crew and rolling stock to service lines in the same confined area. Such mod-
ular timetable designs are already naturally in place in other countries such as Italy and
Denmark, where a larger variety of railway companies handles each their own region,
with associated advantages and disadvantages. In the Netherlands, a large fraction of the
train lines are managed by a single railway company.

It is clear from these examples that a proper quantification of spreading vulnerability
and its drivers allows for the designing of systems that are robust to spreading phenom-
ena. While chapter 7, we already proposed a pure network-based metric to quantify this,
more research is needed to characterise spreading vulnerability in cases where dynami-
cal time scales play an important role, or where such high-resolution temporal network
data is not available.

Direction #3: Spreading vulnerability and system interventions

While system design is focused on spreading prevention, information on spreading vul-
nerability can also be used on-the-fly spreading limitation, which has to do with system
control or interventions. On a more general and theoretical level, on-the-fly limiting of
spreading is highly relevant to societal problems such as the aforementioned spread-
ing of infectious diseases and railway delays. Chapter 9 already discusses this from an
applied perspective in the case of SARS-CoV-2 spreading in the Netherlands and the ef-
fectiveness of governmental interventions. It involves reacting to spreading rather than
preventing it, and has to do with keeping up the system’s performance as much as possi-
ble, while preventing further spread — such as isolating a disrupted region as discussed
in the above railway application section, or implementing regional COVID-19 measures
instead of nationally. In the railways, the degrees of freedom are partially confined to pro-
tocols which can be studied to include a form of control module in railway modelling.
Analogous to the second direction mentioned above, a general approach to spreading
vulnerability and interventions may be of high societal value.

Final remarks

This dissertation contains efforts to contribute to our understanding of emergent phe-
nomena in complex systems, both from a methodological and an applied perspective.
The work contains a variety of applications and their associated dynamical phenomena.
We have defined states in railway, neurological and climate systems, found geographic
patterns in nation-wide transport systems, and discussed the vulnerability of various hu-
man interaction and mobility structures to spreading dynamics. While answering some
of the questions in these systems, as research goes, many more appeared — none of the
proposed methods and models have ‘fully solved’ the observed macroscopic dynamical
phenomena. Ideally, one might argue, we eventually reach the ability to simulate nation-
wide mobility, human behaviour and infectious disease spreading to the highest resolu-
tion and accuracy. But is this realistic? The perfect, full-resolution simulation of reality
will always, or at least in the near future, be a fantasy. (E.g., see Scarpino and Petri (2019)
for fundamental limits to the predictability of outbreaks.) This relates back to Laplace’s
demon, mentioned in the general introduction (p. 8). The implicit consequence of the
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demon’s inability to predict the past and future is that methods linking the effect of mi-
croscopic features to collective change in a system will, although flawed, always remain
important. This realisation lies at the core of this dissertation and motivates the efforts
presented. I hope to have contributed to solutions for building that bridge. Regarding the
paradox of the simultaneous imperfection and usefulness of models, the British statisti-
cian George E.P. Box once wrote in the context of the ideal gas law:

“Now it would be very remarkable if any system existing in the real world could
be exactly represented by any simple model. However, cunningly chosen parsi-
monious models often do provide remarkably useful approximations. (...) For
such a model there is no need to ask the question ‘Is the model true?’. If ‘truth’
is to be the ‘whole truth’ the answer must be ‘No’. The only question of interest
is ‘Is the model illuminating and useful?’.” (Box, 1976)

Or, reformulated in the shorter, well-known aphorism:

“All models are wrong, but some are useful”
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Appendix A

Supplementary information to Chapter 1

A.1 Data processing

This section concerns processing of the discrete logging data from the Dutch railways to
continuous time series.

A.1.1 Data aggregation

We start by defining ‘nodes’ as the points at which logging takes place, and ‘segments’ as
the tracks between them. In the Dutch railway system, not only the number of delays are
logged, but also whether they concern departures, passings or arrivals. To make the data
uniform over the entire network, at any given time, we aggregate all logging activities on
to the segments that the trains should be travelling on. Precisely: we aggregate the depar-
ture and arrival activities respectively on the segment that the designated train moves to
and where it comes from, in the following manner (see Fig. A.1).

Figure A.1: Transformation of logged delay at nodes to segmental delay. Consider a train travelling from node A
and to node B, where delays dA and dB are logged. Left: departure logging at A, meaning that we ‘forward’ this
logged delay in space towards segment AB. Right: arrival logging at B, we aggregate this event also to segment
AB.

The choice of dealing with delays on segments (instead of nodes) is motivated in
threefold. First and foremost, to improve on spatial precision during aggregation: at larger
stations, where many different train lines cross, we would lose information about the di-
rection of the delay propagation if we summed up all delays for the incoming and/or the

S
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outgoing trains into one node. Secondly, delays mostly change on the segments them-
selves. Only in specific cases (e.g., crew transfers, blocking of parts of a station), changes
in delay actually take place at a node. (Consequently, the logged activities almost always
relate to movements of trains, except for departures at large stations where there is a
planned gap between arrival and departure.) The third reason for the choice of segments
to aggregate the time series on is that it facilitates easy visualisation.

The logs are discrete events. To get a real-time progression of delays on the network,
we need to process the logs to generate continuous time series data. At the logging events
(e.g., a departure event at node A in Fig. A.1), both the planned (tp ) and realised (tr )
times are recorded. At the moment of logging, the delay carried by this train is obviously
tr − tp . But between tr and tp , the train is already delayed and consequently affecting the
segment, although the train is yet to enter the segment. This leaves us with two choices
to deal with the delay: (a) keep the delay with the train, i.e., keep it on the segment where
the train presently is, or (b) put the delay on the segment where it is planned to be. We
choose the latter, since it more accurately indicates the effect of the delay on the network:
e.g., when a train is an hour late at a given segment, it already causes problems before it
actually gets there (an hour later than scheduled).

Mathematically, we define delay as explained in Eq. (1.6) and (1.6) in chapter 1. In this
form, the equation for di (t ) contains a discontinuity when t reaches tr . This is unwanted,
since for prediction purposes, we need to treat the system as a continuous dynamical sys-
tem. We therefore introduce a Gaussian weighted running window with two parameters:
the Gaussian variance σ and a parameter tuning the width of the window p:

d̄i (t ) =
∑t+pσ

t ′=t−pσ di (t ′) ·e
− 1

2

(
t ′−t
σ

)2

2pσ+1
(A.1)

We use p = 5 and σ = 3 seconds, tuned to give a relatively smooth curve without losing
too much detailed information. This means that the aggregation is done on a 5-second
time resolution, which, for computational reasons, is further reduced to 1-minute time
resolution, implying that the precise values of σ and p do not affect the results. In Fig. A.2
we show a smoothed sample time series from February 4, 2018, wherein the distinctive
(smoothed) saw-tooth pattern is clearly visible.

A.1.2 Problems with data during large disruptions

In case of very large disruptions, errors in the data logging occurs due to information loss
on the exact locations of trains. Another source of errors is the large-scale stand-still of
trains, while not all trains are registered as ‘cancelled’. A consequence of these errors is
that trains that are restarted after a network-shutdown are sometimes treated as if they
are merely delayed (rather than being cancelled and restarted). This results in unrealisti-
cally high delay values (sometimes over 13 hours). An instance of this situation occurred
on January 18, 2018, also considered as one of the case studies in Dekker et al. (2021f).
On this particular day, trains stood still for a full afternoon without being cancelled, and
were simply restarted.

Even for a dataset consisting of 365 days, these strong but erroneous delay sources
have a major impact on the PCA due to their large impact on the variance, while they
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Figure A.2: Delay for the segment from station Utrecht Vaartsche Rijn towards station Utrecht Central Station,
between 21:00 and 23:00. This particular data is from 1 July 2017.

clearly do not play any dynamical role whatsoever. In order to remove these spurious
events, each train activity that is registered to move with a delay larger than three hours
are considered first cancelled, and then replanned as a ‘new’ train such that it loses its
delay signature.

A.1.3 Classification of days

To get a rough indication of the performance of the system, the manager of the main
railway network in the Netherlands (ProRail) uses a day-to-day labelling of each day. The
labelling is based on two variables: punctuality and cancellations. These metrics are cal-
culated on a fraction of all train activities. First, the focus is only on the arrival activities at
the final destinations, making sure that each train activity is counted only once. Secondly,
only passenger (and no freight) trains are considered. Thirdly, a specific subset of service
control points (SCPs) are evaluated, but not all of them. This subset is chosen by expert
judgement and in communication with the Dutch ministry of Infrastructure, based on
impact on the infrastructure, personnel stress level and passenger flow, and is based on
the coverage of lines such that only important stations (in terms of where delay can easily
arise, spread or change) are considered. Again, this is motivated to not count a delayed
train passing through many SCPs more times than trains that are travelling through less
SCPs. Finally, The delay data at the specified service control points is only calculated a
few times per day per train line.

Table A.1 shows the specified values per label. Formally, the black days are a subset
of red days, but we separate these for analysis purposes.

The SCPs considered are the following (Dutch) passenger stations: Rode School, Gronin-
gen, Leeuwarden, Delfzijl, Bad Nieuweschans, Winschoten, Veendam, Harlingen Haven,
Sneek, Stavoren, Emmen, Coevorden, Hardenberg, Almelo, Oldenzaal, Hengelo, Enschede,
Zwolle, Raalte, Kampen, Deventer, Apeldoorn, Zutphen, Winterswijk, Doetinchem, Ni-
jmegen, Arnhem, Venray, Venlo, Roermond, Sittard, Heerlen, Maastricht, Maastricht Rand-
wyck, Kerkrade Centrum, Eindhoven, Tilburg, ’s-Hertogenbosch, Geldermalsen, Tiel, Ede,
Barneveld Zuid, Amersfoort, Almere, Utrecht, Gorinchem, Dordrecht, Roosendaal, Vlissin-
gen, Rotterdam, Gouda, Amsterdam Zuid, Amsterdam, Hoorn, Alkmaar, Haarlem, Schiphol
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Airport, Alphen aan den Rijn, Leiden, Den Haag Centraal and Den Haag HS.

Label Punctuality Cancellations Number of days
Green >92.5% <1% 46
Neutral - - 292
Red <85% >5% 21
Black <75% >10% 6

Table A.1: Day-to-day severity labels by Dutch asset manager ProRail. The last column shows the number of
days in the dataset used in this study (July 1, 2017 - June 30, 2018). Note that the label ‘Neutral’ applies when
none of the other labels does.

A.1.4 Choosing the relevant principal components

Figure A.3 shows the distribution of the explained variance and autocorrelation decay
time scale for the first ten PCs, explaining our choice for using only the first two compo-
nents for the reduced phase-space. As mentioned in Sec. 1.3, we perform the PCA on the
data from the ‘disrupted days’, i.e., the red and the black days combined together.
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Figure A.3: Variance explained (a) and time scale of autocorrelation decay rate (b) for the first ten principal
components (PCs).

The explained variance (upper panel) by the first two PCs is distinctively more than
for the other components, while the persistence (lower panel, defined as the time scale
for the decay of the autocorrelation function) of the first three PCs stands out. Because
the third PC contains so little variance, we retain only on the first two PCs to construct
the reduced phase-space.

A.2 Sensitivity analyses

The choices we have made for pc , ε and tmax in chapter 1 are 0.08, 30 min and 90 min,
respectively. The choices should not be based on optimising the PSS alone, as they are
system-dependent: some systems require more time accuracy in practise (thus forcing
ε to be small), while other require a strong reduction in false alarms (lowering pc ). This
section is devoted to analysing the results for various choices made in chapter 1 (among
which the values of the mentioned parameters). Summarised, it follows that the results
are robust and that an intermediate value of the parameters often suffices.
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A.2.1 Principal components

Since the PCs — calculated from the data on the ‘red’ and the ‘black’ days — form the
backbone of our analysis, their choice must be robust. In order to ensure this within
the scope of the full dataset, with respect to various time resolutions, periods and delay
severity labels (see SI A.1.3), we compare the results of the first 10 PCs to those calculated
from the full dataset (365 days, 1-min time resolution) as a reference, using Pearson’s cor-
relation coefficient. Note that in this comparison between the two sets of PCs, their order
(decreasing in variance within each set) may not be the same; hence, the correlations
shown are obtained without maintaining the order of the PCs, but maximising these cor-
relations within the first 25 reference PCs. The results are shown in Fig. A.4.

Figure A.4: (Absolute) correlation of the coefficients of the first 10 PCs with the main dataset over various
(a) time steps, (b) periods and (c) day-classifications. Average is shown in thick red line, shaded areas reflect
+/- one standard deviation. The order of the eigenvectors is optimised in terms of correlation with the main
dataset.

Figure A.4a concerns robustness of the PCs with respect to time resolution. For time
steps between 1 and 60 minutes, the correlation with the main dataset remains above
0.8 on average, presenting strong evidence of time step robustness. The high robustness
up to 60 minutes can be explained by the fact that large amplification (implying most
variance) happens on timescales of about an hour. Decreasing the time resolution also
increases the amount of variance explained by the first four PCs (not shown), as a result of
the fact that long-(time-)scale variance is more structural than short-scale fluctuations.
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A second PC robustness check is performed with respect to period within the one year
of data; the results of 2 half-year sets and 4 three-months sets are compared to the whole
year, providing insight in non-stationarities related to seasonal variation and changes
in the timetable. The resulting correlations are shown in Fig. A.4b. The average correla-
tions remain above 0.7, reflecting sufficient robustness. The period October to December
seems to correlate the weakest, possibly related to the weather.

The third robustness check focuses on the severity labels (see SI A.1.3), with results
shown in Fig. A.4c. The PCs of the green and neutral sets compare best with the main
dataset, which makes sense as these are the largest sets. However, this might also point
to a bias (of the main set) to describe common small fluctuations rather than large dis-
ruptions. Overall, the green, neutral and red sets perform reasonably well, with averages
of 0.83, 0.85 and 0.64, respectively. The black days correlate worst, with an average of
0.49, indicating that these black days (few as they are) are only weakly represented by the
current principal components.

A.2.2 Clustering

The (sub)clusters calculated in Sec. 1.3.2 need to be checked for robustness against grid-
ding (resolution, grid size and symmetric-logarithmic gridding) and the time lag chosen
for the transition matrix that formed the basis for clustering.

The results of the clustering with respect to various choices of the grid resolution is
shown in Fig. A.5. The similarities across different resolutions are self-evident, as long as
one does not choose too low or too high resolutions. We therefore decided to stick to the
middle range, i.e., 123×123.

Figure A.5: Phase-space, containing clusters in colours, and subclusters in various shades of the same (arbi-
trary) colour using transition matrices of various grid resolutions. Areas where there are realisations have been
coloured. The used value of time lag τ is 30 min.

Figure A.6 shows the clustering for various time lags used in calculating the transition
matrix. Here too the similarities across different time lags are self-evident, as long as one
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does not choose too small or too large time lags. We therefore decided to stick to the
middle range, i.e., 30 min.

Figure A.6: Phase-space, containing clusters in colours, and subclusters in various shades of the same (ar-
bitrary) colour using transition matrices of various time lags. Areas where there are realisations have been
coloured. Used grid resolution is 123x123.

A.2.3 Alarm lags

We continue with checking how various choices of the critical probability affect the time
lag τalarm at which an alarm is given, and in turn, whether an alarm is given at all within
the time horizon tmax.

Figure A.7 shows the τalarm for pc = 0.01 and pc = 0.25, to compare with Fig. 1.6 of
chapter 1 (where pc = 0.08). For pc = 0.01, almost the whole phase-space is coloured,
indicating that, with high enough tmax, alarms are practically always given, which is not
useful. When pc increases to 0.25, we see that only a very small part of the phase-space
is coloured, limiting predictions only to short times. Intuitively, all of this makes sense:
long-term predictions are simply more uncertain. We therefore need to choose pc some-
where in the intermediate range.

A.2.4 Parameter sensitivity of Peirce skill score

The parameters ε, pc and tmax have a great modulating impact on the skill score.
Figure A.8a-c show the dependence of the skill score on ε and pc . The lower ε is, the

more precise the predictions are in time, but at the cost of skill (i.e., less alarms when
there should be alarms). The score also decreases for higher values of pc (this can be
understood as: there will be a lot more missed alarms, since only a few grid cells will give
an alarm at high pc ; see SI A.2.3). In other words, there is an optimum for the skill with
respect to pc .
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Figure A.7: Same plots as in Fig. 1.6 of chapter 1, but for (a-c) pc = 0.01 and (d-f) pc = 0.25.

Figure A.8d-f reveal the dependence of the skill on the time horizon tmax and pc . A
small time horizon means that one only needs to predict instances of disruption shortly
beforehand, which is intuitively a more easily achieved. This is visible in the much higher
skill scores at low values of tmax. Again, the feature of increasing, then decreasing skill
with respect to pc is visible in these figures.

Another feature visible in Fig. A.8 is that the skills score curves of subclusters 2 and
3 do not differ much with respect to each other, while the curves of subcluster 4 are dif-
ferent: primarily in the form of the shift of the optimum toward higher pc values. This
can explained by the fact that false alarms are important in the signal of this subcluster:
for a pc value of 0.08, alarm is given already at 79% of the phase-space. An increase in
the value of pc reduces the part of the phase-space where an alarm is given, which also
reduces the false alarms.

A final feature in Fig. A.8a-c is the median τalarm. Up to pc ≈ 0.15, more than half of
all alarms given are above 15 min. This is connected to the choice of ε, which should be
smaller than the alarm lag given. If this is not the case, then the alarm’s precision in time
becomes arbitrary.

A.3 Case study of a regular day

Here, we discuss the performance of the prediction scheme if there are no instances
when the system reaches the disrupted state. Figure A.9 shows the system’s trajectory
in the phase-space on April 27, 2018, along with all prediction outcomes towards sub-
clusters 2 and 3.

The system does not attain high PC1 values and remains within the lower subclusters,
mainly in the positive PC2 area (i.e., delays mostly on L1 and L3). It does not reach sub-
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Figure A.8: Peirce Skill Score for the predictions done towards entering subclusters (a,d) 2, (b,e) 3 and (c,f)
4. Top: Peirce Skill Score for different values of pc (x-axis) and ε (in coloured solid lines, legend). Black line
(right axis) indicates the median lag at which an alarm is given (i.e., average τalarm, right axis), including a
band width of 25% and 75% percentiles, shown in grey shading. A time horizon of tmax = 90 minutes is chosen.
Bottom: Peirce Skill Score for different values of pc and tmax. A band width of ε= 30 minutes is chosen.

clusters 2 and 3 at all, but does enter subcluster 4 twice (as noted earlier, this is common
for regular days). In the right panels, we see that in the night or early morning, the system
stays ‘quiet’: correctly, almost no alarms are given, resulting in a lot of correct rejections
(blue dots). Later in the day, delay builds up and after a lot of false alarms, the metric
correct predicts (‘hits’) the entrance to subcluster 4.

Correct predictions to enter subcluster 4 are made up to 56 minutes in advance, with
a band width of ε= 30 minutes. The time horizon τmax is 90 minutes, so there are no cor-
rect predictions between 56 and 90 minutes prior to the entrance of the subcluster. This
actually reflects the situation on regular days: the system may touch upon, or even reach,
subcluster 4, but it remains difficult to predict. As the choice of pc = 0.05 is relatively low,
a lot of false alarms (58%) are given, while no missed alarms are registered. The absence
of missed alarms combined with the occurrences of hits maximises the ratio #H/#O (i.e.,
it becomes 1), increasing the Peirce skill to a positive score despite the number of false
alarms. However, while predicting the entrance in subclusters 2 and 3, we obtain a nega-
tive PSS due to the fact that no Hits are predicted (it never reaches these subclusters).

The right panels of Fig. A.9 show the evolution of the total delay and cancellations.
For cancellations we use the number of train activities (departure, arrival, short stops
etc.) that were scheduled, but cancelled, per minute. This is a measure of the reduction
of ‘stress’ on the system by human decision. Note that there is a strong increase in total
delay roughly from 19:00 onward, coinciding with the entrance to subcluster 4. The signal
in cancellations per minute is however difficult to interpret. It seems that during two
events, roughly at 06:00 and 13:00, there were a lot of cancellations; we could not retrieve
the reasons behind these cancellations. It could be that these cancellations avoided the
entrance to subcluster 4, by limited the system’s overall delay.
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Figure A.9: Same as in Fig. 1.7 of chapter 1, but for the case of April 27, 2018.
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Appendix B

Supplementary information to Chapter 2

B.1 Example time series

Figure B.1: Example time series of (a) the raw electrode signal, and (b) a principal component (PC1 Hippocam-
pus) of mouse 278418, the training dataset. Only 1500 ms is shown out of approximately 600,000 ms in total.
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Appendix C

Supplementary information to Chapter 3

C.1 Parameter and simulation settings

Double fold - Eq. (3.3) Fold-Hopf - Eq. (3.4) Hopf-fold - Eq. (3.5) Double Hopf - Eq. (3.6)
Leading system φc =±0.19 (Fold) φc =±0.38 (Fold) φc = 0 (Hopf) φc = 0 (Hopf)

Bistable for Bistable for Oscillatory for Oscillatory for

|φ| <
√

−4a3
1 a3

2

27a4
1

|φ| <
√

−4a3
1 a3

2

27a4
1

φ> 0 φ> 0

(if a1 < 0, a2 > 0) (if a1 < 0, a2 > 0) (if a1b1 < 0) (if a1b1 < 0)
Coupling γ= 0.48x γ=−0.1+0.12x γ= 0.05+0.5x γ=−0.05+2x
Following system γc =±0.54 (Fold) γc = 0 (Hopf) γc =±0.38 (Fold) γc = 0 (Hopf)

Bistable for Oscillatory for Bistable for Oscillatory for

|γ| <
√

−4b3
1b3

2

27b4
1

γ> 0 |γ| <
√

−4c3
1 c3

2

27c4
1

γ> 0

(if b1 < 0,b2 > 0) (if b1c1 < 0) (if c1 < 0,c2 > 0) (if c1d1 < 0)
Parameters a1 =−0.5 a1 =−1 a1 = 0.05; a2 = 1 a1 = 0.04; a2 = 2

a2 = 0.5 a2 = 1 b1 =−0.05; b2 = 1 b1 =−0.04; b2 = 2
b1 =−0.5 b1 = b2 = 1 c1 =−1 c1 = 0.4; c2 = 1
b2 = 1.0 c1 =−1; c2 = 1 c2 = 1 d1 =−0.4; d2 = 1

Table C.1: Parameter values and coupling for the four types of cascading tipping as shown in Figs. 3.1 and 3.2.

C.2 Simulations

In this section we discuss the previously described metrics applied in ensemble simula-
tions of cascading transition events. This provides insight into the statistical characteris-
tics of these events, the causal relation between tipping of both systems and the potential
prediction of these events. We focus on the double-fold and the fold–Hopf cascading tip-
ping cases for multiple reasons. First, these cases are most illustrative in terms of relation
to physical systems. Second, in these cases the leading system starts with a fold bifurca-
tion, which creates a clear threshold for the start of the event (which is convenient for
analysis purposes).
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Double fold - Eq. (C.1) Double fold - Eq. (C.1) Fold-Hopf - Eq. (C.2)
(following system tips) (following system does not tip)

Forcing and coupling φ(t ) = 0.0012t φ(t ) = 0.0012t φ(t ) = 0.002t
γ(x) = 0.05+0.37x γ(x) = 0.05+0.37x γ(x) =−0.2+0.3x

Parameters a1 =−0.5 a1 =−0.5 a1 =−1
a2 = 0.5 a2 = 0.5 a2 = 1
b1 =−0.5 b1 =−0.25 b1 = 0.1;b2 = 1
b2 = 1.0 b2 = 1 c1 =−0.5; c2 = 1

Integration time tmax = 500 tmax = 500 tmax = 500
∆T = 0.5 ∆T = 0.5 ∆T = 0.5

Noise Noise mean = 0 Noise mean = 0 Noise mean = 0
Noise variance = 0.1 Noise variance = 0.1 Noise variance = 0.1

Initial conditions (x0, y0) = (−0.8,−1) (x0, y0) = (−0.8,−1) (x0, y0, z0) = (−0.5,1,−1)

Table C.2: Parameter values, coupling and initial conditions for the ensemble simulations of the Double Fold
and Fold-Hopf systems as shown in Figs. C.1, C.2 and C.3.
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Figure C.1: Ensemble (100-member) simulations of a dynamical system undergoing a double-fold cascade
(Eq. (C.1)) where both systems undergo a transition, parameter values as in Tab. C.2. Panel (a): states of x
(black) and y (red). Panel (b): variance of x (black) and y (red). Panel (c): autoregressive coefficient at lag 1
of x (black) and y (red). Panel (d): detrended fluctuation analysis scaling exponent of x (black) and y (red).
Panel (e): detrended cross-correlation analysis scaling exponent. Panel (f ): detrended cross-correlation coeffi-
cient by Zebende (2011). White-shaded areas indicate windows containing the actual transitions. The increased
variance, AR(1) and DFA scaling exponent prior to transition in the leading system and following system, re-
spectively confirms the predicted increased memory through critical slowing down.
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Figure C.2: As in Fig. C.1, but without any transition in the following system. In this case, only the leading
system has a transition. Parameter values are given in Tab. C.2.

Double-fold cascading tipping

To simulate these events and use statistical indicators, noise has to be included. The sys-
tem of equations used here is

{
d x
d t = a1x3 +a2x +φ+ζx
d y
d t = b1 y3 +b2 y +γ(x)+ζy

(C.1)

where in addition to Eq. (3.3), ζx ,ζy are Gaussian white noise terms. We simulate an en-
semble of 100 members with the parameter settings and initial conditions as displayed
in Tab. C.2. The results of this ensemble are displayed in Fig. C.1. Running windows con-
taining the transition are shaded white as these data are misleading when one wants to
know what happens before the bifurcation points. We make the distinction between the
leading-transitional period (LTP), which is the time series before the tipping point in the
leading system, and the following-transitional period (FTP), which is the time series be-
tween the first tipping point and the tipping point in the following system. The FTP can
be seen as an in-between state that is stable for both systems, although the following sys-
tem is close to bifurcation, meaning it is rather prone to noise. Therefore, the duration
of this state is highly unpredictable. However, as we will see in this section, the FTP does
provide information regarding the diagnosis of a potential second transition.

In the LTP, we clearly see the gradual increasing leading system’s variance, the AR(1)
coefficient and DFA scaling coefficient. These are all evidence of the leading system slowly
approaching a bifurcation point, according to the change in the parameter. There is not
much evidence of long-range auto-correlations in the time series of the following system,
as its variance is low and the DFA scaling exponent remains below 0.5, pointing towards
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the fact that the detrended fluctuations are statistically white noise. The AR(1) coefficient
of the following system does increase just prior to the first tipping, but it also stays small
(compared to unity).

The detrended cross-correlation scaling exponent (abbreviated here as DXA) does
give > 0.5 values, but the range throughout the ensemble members is too large most
of the time to see any structural development when approaching the bifurcation point.
During the leading system’s transition, a strong increase is visible, pointing towards rather
strong cross-correlated behaviour during this period (as the following system also shifts
its equilibrium a little).

The quantity ρDCCA seems to attain a small positive value (around 0.3) and stays rela-
tively constant throughout the whole time interval. One important aspect of the calcula-
tion of ρDCCA, as we found by experimentation, is that the values are very sensitive to the
segment size s and the moving window size. The moving window determines the amount
of data that is available to find long-range correlations, and the segment size has a strong
impact on the accuracy of the fits and on the related segmented fluctuations. Due to the
fact that we need a temporal evolution of the statistical indicators in this type of prob-
lem, we need moving windows and, thus, encounter a problem. As these indicators (DXA
and ρDCCA) have been successfully applied in simpler systems (Zebende, 2011; Podnobik
and Stanley, 2008; Zhang et al., 2001; Zhou, 2008), more research on the sensitivity of the
indicators with respect to the segment size and moving window size may lead to more
robust results.

During the FTP, the variance, AR(1) and DFA of the leading system are strongly re-
duced. However, the gradual increase of the following system’s variance, AR(1) coefficient
and DFA scaling coefficient are definitely visible, pointing towards the approach of a bi-
furcation in the following system. Also notable is the contrast in the DFA of the following
system before and after the tipping of x. The DFA of y goes from a white-noise regime
(around 0.5) before the tipping of x towards a regime where the detrended fluctuations
point to long-range auto-correlations after the tipping of x (1–1.5). This illustrates the
relation between the leading system’s state and the following system’s DFA scaling ex-
ponent. The DXA remains relatively high, but overall no structural development is seen
in this graph. The quantity ρDCCA exhibits the same behaviour as in the LTP, most likely
due to the previously mentioned reasons. To assess the consequences of the cascading
effect on the statistics mentioned, we compare the results with a case where the system
(Eq. (C.1)) does not undergo a tipping in the following system (so only one transition re-
mains). The resulting ensemble results are shown in Fig. C.2. The most important differ-
ences between a regular cascading event and a single tipping event can be found when
comparing the variance, AR(1) and DFA scaling coefficient changes between LTP and
FTP (or the period after the first transition). During the LTP, the leading system is close
to transition and has strong auto-regressive behaviour, whilst the following system is far
from its bifurcation point. During the FTP, the following system generally gains memory
because it is brought closer to its transition point, and the leading system loses memory
because it just arrived at a new state. Therefore, we expect that from the LTP towards the
FTP, the variance, AR(1) and DFA will decrease in the leading system, and increase in the
following system. To quantify this effect, Tab. C.3 shows the ratios of the different quan-
tities, indicated by Q, during the FTP and LTP phases (Q̄FTP/Q̄LTP), for the cases with a
second tipping (corresponding to runs shown in Fig. C.1) and without second tipping
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Ratios Mean Standard deviation
With second tipping

Leading variance 0.24 0.44
Leading AR(1) 0.62 0.09
Leading DFA 0.79 0.27
Following variance 3.95 1.53
Following AR(1) 1.92 0.39
Following DFA 1.70 0.49
Without second tipping

Leading variance 0.15 0.06
Leading AR(1) 0.60 0.08
Leading DFA 0.74 0.23
Following variance 1.63 0.42
Following AR(1) 1.34 0.31
Following DFA 1.40 0.41

Table C.3: Comparison of the ratios of autoregressive variables prior to and after the first transition, using the
ensembles shown in Fig. C.1 and Fig. C.2.

t-test variable T-statistic dF p-value*
Leading variance 1.62 101.67 0.11027
Leading AR 1.32 197.07 0.18904
Leading DFA 1.23 190.60 0.22264
Following variance 13.73 112.38 0.0
Following AR 9.93 184.12 0.0
Following DFA 4.13 190.17 0.00006

Table C.4: Results of Student’s t test on the differences between the ratios (in Tab. C.3) of the cases with and
without second tipping. *p-values calculated using the scipy.stats Python package.

(Fig. C.2). All ensemble members are included in these values, accounting for a mean
and standard deviation of the ratios. As expected, the leading system’s auto-regressive
metrics decrease in both cases, which is visible in the fact that the mean values of the
ratios of the leading system’s auto-regressive variables are lower than 1. Furthermore, as
expected, the following system’s auto-regressive behaviour increases (ratios > 1) in both
cases; however, it is striking that in the case of a cascading tipping event (with second
tipping), the following system’s ratios are much higher than those in the case of a single
tipping event (without second tipping). To investigate whether the difference in the ra-
tios between single or double tipping is indeed significant, a Student’s t test was carried
out. The results are shown in Tab. C.4. The high p-values for the leading system’s ratios
indicate no significant difference between single or double tipping, but the low p-values
for the following system’s ratios indicate a significant difference. This shows the poten-
tial of using the ratio of auto-regressive variables before and after a transition to assess
whether a cascading transition may follow. Further research is needed to quantify this
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expectation and to assess the sensitivity of these ratios to the system’s parameters.
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Figure C.3: As in Fig. C.1, but for the fold-Hopf cascade (Eq. (C.2)). Parameter values are given in Tab. C.2.

Fold-Hopf cascading tipping

Many statistical indicators have been specifically applied on fold bifurcations, because
these transitions show a clear sign of critical slowing down and increased auto-correlation;
this is due to their irreversibility and the process of going from one equilibrium towards
another. A state approaching a Hopf bifurcation reacts differently to perturbations than
a state approaching a saddle-node bifurcation. Therefore, we will consider the fold–Hopf
cascade in the light of the previously described statistical indicators. For this, we use the
following stochastic dynamical system:





d x
d t = a1x3 +a2x +φ+ζx
d y
d t = b1z +b2(κ(x)− (y2 + z2))y +ζy
d z
d t = c1 y +c2(κ(x)− (y2 + z2))z +ζz

(C.2)

This system is similar to Eq. (3.4), but white noise is added through the terms ζx ,ζy and
ζz z. We used an ensemble of 100 simulations with the parameter settings and initial con-
ditions as displayed in Tab. C.2. The results of the ensemble are shown in Fig. C.3. Here,
we do not make the distinction between the LTP and the FTP, because in contrast to the
double-fold cascade, the following system undergoes a transition that is easily reversed
and the system is either stationary or oscillating. We subtract a running average from the
states and calculate the statistics from those series to prevent the oscillation from dom-
inating the signal in the auto-correlation. The following system (red) is quickly drawn
towards the equilibrium state (y, z) = (0,0), and the leading system (black) is in a steady
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state. During the time leading up to the bifurcation point, the variance, AR(1) coefficient
and DFA of the leading system x gradually increase, as is expected as we force this system
towards its bifurcation point. It also seems that the AR(1) of the following system slightly
increases during this period.

After the transition of the leading system, the oscillation of the following system im-
mediately starts due to noise. The variance and AR(1) of the following system after the
bifurcation are strongly increased with respect to before the bifurcation, despite the re-
moval of the running average to eliminate the oscillation’s signal. On average, the DFA
scaling exponent of the following system also increases, which relates it to the leading
system’s state. The DXA sharply increases just prior to the critical transition, although it
retains relatively high values throughout the whole time series. The reason behind this
might be the low level of noise that is chosen, or other simulation-specific parameters.
It could also due to the fact the following system has a high, weakly varying DFA scaling
exponent on average, which in turn might affect the height and variability of the cross-
correlation. The ρDCCA coefficient remains positive and small, as in the double-fold case.
Again, this may have to do with the choice of window and segment sizes.
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Appendix D

Supplementary information to Chapter 4

D.1 Data sources and processing

D.1.1 Data sources

Operational data for the Netherlands is obtained from the Dutch infrastructure manager
ProRail and covers the period July 2018 to June 2019. A selection of 16 days is made, based
on delay severity (4 days in each of four categories; Green, Neutral, Red and Black, for
more details see the SI F and chapter 1), taken to statistically cover multiple situations.
Network data on locations and links of the nodes and edges of the railway network, in-
cluding delay time series can be found in an Open Science Framework related to previous
work (Dekker et al., 2019): https://osf.io/tps4r/. Data for the German and Italian
railways are obtained from the supplementary material of Monechi et al. (2018), who re-
ceived this data from the OpenDataCity (http://www.opendatacity.de/) and the Vi-
aggiaTreno (http://www.viaggiatreno.it/) websites. The German data spans across
March 2015, and the Italian data across March 2015 and April 2015. The Swiss railway
data is obtained from the OpenTransportData website (https://opentransportdata.
swiss/) over January 2018. The German data consists of several stations across the bor-
der in mainly the south and west, which are strongly connected to its lines.

D.1.2 Data cleaning

From the infrastructure data, the network topologies of these systems is determined. In
all but the Dutch case, the data had to be cleaned for unrealistically long edges. These
edges arise from trains travelling long distances between major cities without stopping
in subsequent smaller stations, effectively adding direct edges between major cities that
in practice are not direct edges. This cleaning is done by looking at the distribution of
edge lengths. Also, because the timetable may vary from day-to-day, I set the minimum
train frequency on any to be 1 per hour, and scheduled running times to be at least 1
minute, to avoid values of α to become zero or infinity.

Furthermore, it is important to note that there are disconnected (e.g. Sardinia in the
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Italian case) and non-operational components in some of the railway systems analysed
in chapter 4. These parts are omitted - we focus on the giant component and where nec-
essary, make all links bidirectional. Note that these problems only concern a small frac-
tion of the links in these systems.

D.1.3 Train types

We focus on passenger trains only, and exclude freight trains in the analysis. One reason
for this is that freight trains are (economically) privacy sensitive, meaning that it is diffi-
cult to get a complete dataset. Another reason is that delay is not always well-defined for
such trains, as their routes and schedules are mostly separated from the main schedule.
It should be noted that their contribution to delay is usually only minor, as, for exam-
ple in the Netherlands, they cover only 5.7% of all Dutch train kilometres in 2017 (num-
bers courtesy of the Dutch infrastructure manager ProRail). More details can be found in
Dekker et al. (2019), section 3.1.
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Appendix E

Supplementary information to Chapter 5

E.1 Model derivations

In this section we explain how we arrive at an equation for the evolution of the time
delays Di , defined on the stations of the network. Recall that the evolution over a time ∆t
is written in general as

Di (t +∆t )−Di (t ) = F1,i (�D)−F2,i (�D),

where �D is the vector with all delays in the network. The two terms above describe how
the delay on a station can increase and decrease respectively. We will describe how we
obtain an explicit formula for these terms below.

E.1.1 Expressing the delay of a train as function of the delay on a sta-
tion

Since we aggregate delay on stations but have data on train flows, we need a way of ex-
pressing a train’s delay d as function of the station’s delay D it is contributing to. In other
words, we need to find a function f such that:

dT (t ) = f (DS(T,t )(t )),

where we have introduced the new notation S(T, t ), which is the station towards which
train T is moving at time t . By definition, the delay of a station is the sum of the delays
of trains moving to that station. Under assumption that all trains currently moving to i
equally contribute to the delay Di , this leads to:

dT (t ) = DS(T,t )(t )

# trains moving to S(T, t ) at time t
= DS(T,t )(t )∑

edges e to S(T, t ) fe te
, (E.1)
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where to compute the number of trains moving towards a station i , we use the formula

# trains moving to i at time t =
∑

edges e to i
fe te =

∑
�∈Nin(i )

f�i t�i . (E.2)

Here e = (�, i ) refer to edges, fe denotes the frequency of trains on edge e and te average
time it takes to travel edge e. The product of fe and te is then the average number of trains
on this edge. By Nin(i ) we denote the in-neighbour of station i , i.e., the stations which
have edges directed towards i (similarly we denote the out-neighbours by Nout(i )). For
example, if a station has only one edge outgoing towards it with 2 trains per hour and it
takes 15 minutes to cross the edge, on average there is 1/2 train on this edge all the time.

E.1.2 First term: New incoming trains

First we compute F1,i (�D), the contribution of new trains on their way to i . These are
trains that, in the time interval [t ,∆t ], passed a neighbour Nin(i ) of i and are now moving
towards i . At time t , these train’s delay was counting towards one of the in-neighbours of
i , but at time t +∆t it counts towards Di . The total contribution is

F1,i (�D) =
∑

Trains T that started on a track to i
in the time τ ∈ [t , t +∆t ]

dT (τ) =

=
∑

j∈Nin(i )

∑
Trains T to j that hit j

and continue to i
in τ ∈ [t , t +∆t ]

dT (τ)

Eq. (E.1)=
∑

j∈Nin(i )

∑
Trains T to j that hit j

and continue to i
in τ ∈ [t , t +∆t ]

D j (t )∑
�∈Nin( j ) f� j t� j

=

=
∑

j∈Nin(i )
#Trains that come into j

and continue to i

D j (t )∑
�∈Nin( j ) f� j t� j

=

=
∑

j∈Nin(i )
#Trains that hit j × Fraction of trains

that come into j
and continue to i

× D j (t )∑
�∈Nin( j ) f� j t� j

(�)

We now make an approximation: we assume that the fraction of trains that continue
from j to i can be computed as follows:

Fraction of trains
that come into j

and continue to i
= f j i∑

�∈Nout( j )
f j�

× (1−Probability that train
has end station at j ) =: r j i × (1− s j ) =: p j i .

This is a strong assumption, as also discussed in chapter 5: here, we assume that trains,
when arriving at any station, pick a random direction on which to continue next, and the
probability is weighted by the overall frequency of trains on the edges. In reality, where
the train comes from matters for where it will go to. Note that if f j i = constant( j ) inde-
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pendent on i , i.e. all tracks starting from j have the same frequency of trains, then

f j i∑
�∈Nout( j )

f j�

reduces to
(
k j ,out

)−1, the out-degree of station j .
We also approximate the number of trains that reach station j in the time interval

[t , t +∆t ]:
#Trains that hit j =∆t ×

∑
�∈Nin( j )

f� j .

In other words, we go over each edge towards j and assume that the number of trains
on each edge e that reaches j in a time interval ∆t is given by fe∆t . For example, if there
are 6 trains per hour on a given edge, we expect that in an interval of 20 minutes, 2 trains
reach the end of the edge.

So now we have

�=
∑

j∈Nin(i )

(
∆t

∑
�∈Nin( j )

f� j

)
×p j i ×

(
D j (t )∑

�∈Nin( j ) f� j t� j

)
=∆t

∑
j∈Nin(i )

p j i B j D j (t ),

where we set

B j :=
∑

edges e to j fe∑
edges e to j fe te

=
∑

�∈Nin( j ) f� j∑
�∈Nin( j ) f� j t� j

.

E.1.3 Term 2: Removal of trains

The delay of trains that arrive to station i in the interval [t , t +∆t ] has to be subtracted
from Di (since now this train’s delay is not counting towards Di , but towards the next
station on this train’s route). We have

F2,i (�D) =
∑

Trains T that reached i
in the time τ ∈ [t , t +∆t ]

dT (τ)
Eq. (E.1)= Di (t )∑

�∈Nin(i ) f�i t�i
×# trains that reach i

in interval [t , t +∆t ].

The number of trains that arrive to i in the interval [t , t +∆t ] is

∑
edges e to i

fe∆t =∆t
∑

�∈Nin(i )
f�i ,

such that we now can state that

F2,i (�D) =
∑

�∈Nin(i ) f�i∑
�∈Nin(i ) f�i t�i

Di (t )∆t
Eq. (5.5)= ∆tBi Di (t ).

E.2 Disrupted days

We apply our model to highly disrupted day. They were identified as follows: for each day
between January 2019 and May 2020, we calculated the peak total amount of delay in the
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network. We then took the 50 most delayed days. Most days are from 2019: Jan 15, Jan 18,
Jan 21, Jan, 22, Jan 23, Jan 30, Jan 31, Feb 4, Feb 25, Mar 10, Apr 2, Apr 29, May 2, May 3,
May 14, May 16, May 27, Jun 5, Jun 19, Jun 24, Jun 25, Jun 27, Jul 23, Jul 24, Jul 25, Oct 2,
Oct 6, Oct 15, Oct 28, Nov 4, Nov 8, Nov 13, Nov 14, Nov 18, Nov 19, Nov 20, Nov 21, Nov
26, Nov 28, Dec 2, Dec 4, Dec 5, Dec 11 and Dec 27. Some of them were from 2020: Feb 9,
Feb 10, Feb 15, Feb 25, Mar 17, May 4.

Figs. E.1, E.2 and E.3 show the situation for these highly disrupted days, at the mo-
ment of peak delay. These images were obtained as follows. From the data, we have a list
(s,d) of stations and the associated delay at the peak moment. We also have the longi-
tude x and latitude y of each station. We assume that the dataset consisting of (x, y,d)
is a sample of a geographical distribution with weights given by the delay. We then use
kernel density estimation with a Gaussian kernel with bandwidth 0.1 to obtain a smooth
approximation to this distribution. We use the class KernelDensity from the Python pack-
age scikit-learn for this. Note that the weights must be positive. We therefore set all delays
that are negative (when trains are ahead of schedule) or zero to a small value (0.001). Note
that the colour on these maps does not hold absolute quantitative information. It only
shows the relative magnitude of the delay in different locations. Since the colours are
normalised for each day separately, colours between different days cannot be directly
compared.

The maps indicate the time of peak delay on top (up to 30 second resolution) and
the total delay in the network at the bottom. The cross marks the location of the station
Brussel-Centraal. Each map also mentions in which group we classified the disrupted sit-
uation. BXL means that high delays only appear around Brussels, the capital and central
hub of the railway network. OP means that there is a single localised peak of delay at an-
other location than Brussels. Situations classified as MP have multiple distinct peaks and
finally S stands for ‘spread out’: in these situations the delay is present in large regions.

E.3 Non-trivial optimal level of K

Figure 5.6 indicates that on a subset of the 50 disrupted days, performance of the model
is optimal for values of K around 10. In this section we discuss possible explanations for
this. From a theoretical perspective, we expect the model performance to increase with
decreasing K , as on a more coarse-grained level, the mean-field approximations in the
model are more valid. For example, delay propagation in all possible directions weighted
by schedule-based parameters like train frequencies mainly works when there are a lot
of trains going in many different directions — the train frequency then becomes a good
weighting factor of where delay really goes. The increasing performance with decreasing
K well visible in Fig. 5.6.

Still, on some days, the performance drops when K becomes too high. To investi-
gate possible explanations, we show the clustering configuration at K = 10 in Fig. E.4.
The clusters are approximately equal in size and well distributed across the country. The
major cities of Brussels, Antwerp, Liège, Ghent and Charleroi are all located in separate
clusters (i.e., 3, 9, 2, 1 and 6, respectively). These cities are also roughly in the centre of
each of these clusters. Notably, all of the disrupted situations with an optimal perfor-
mance around K = 10 fall in the group of situations with delay localised around Brussels
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Total delay: 2161 min

Group: BXL

2019-01-15 18:11:00

Total delay: 3512 min

Group: OP

2019-01-18 08:08:30

Total delay: 1745 min

Group: OP

2019-01-21 08:06:00

Total delay: 1399 min

Group: BXL

2019-01-22 08:06:00

Total delay: 1729 min

Group: BXL

2019-01-23 08:11:30

Total delay: 1682 min

Group: BXL

2019-01-30 08:21:30

Total delay: 1734 min

Group: OP

2019-01-31 18:54:00

Total delay: 1483 min

Group: BXL

2019-02-04 18:31:00

Total delay: 1751 min

Group: S

2019-02-25 16:51:00

Total delay: 1977 min

Group: OP

2019-03-10 21:39:30

Total delay: 1842 min

Group: MP

2019-04-02 17:16:30

Total delay: 1397 min

Group: BXL

2019-04-29 08:01:00

Total delay: 1873 min

Group: BXL

2019-05-02 17:42:00

Total delay: 2899 min

Group: BXL

2019-05-03 16:50:00

Total delay: 4396 min

Group: MP

2019-05-14 07:02:00

Total delay: 2508 min

Group: S

2019-05-16 18:11:00

Total delay: 3197 min

Group: BXL

2019-05-27 16:48:00

Total delay: 1435 min

Group: MP

2019-06-05 07:52:30

Total delay: 1564 min

Group: S

2019-06-19 17:27:00

Total delay: 1708 min

Group: S

2019-06-24 17:52:00

Total delay: 2598 min

Group: OP

2019-06-25 17:50:30

Figure E.1: Spatial distribution of time delays on disrupted days.
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Total delay: 1470 min

Group: S

2019-06-27 17:24:30

Total delay: 1930 min

Group: MP

2019-07-23 17:20:00

Total delay: 2467 min

Group: S

2019-07-24 18:34:00

Total delay: 5132 min

Group: OP

2019-07-25 18:46:00

Total delay: 1496 min

Group: S

2019-10-02 17:44:30

Total delay: 1865 min

Group: OP

2019-10-06 20:43:00

Total delay: 17601 min

Group: S

2019-10-15 17:04:00

Total delay: 1702 min

Group: BXL

2019-10-28 08:22:00

Total delay: 1468 min

Group: S

2019-11-04 18:05:00

Total delay: 1541 min

Group: S

2019-11-08 18:08:00

Total delay: 1482 min

Group: BXL

2019-11-13 07:43:30

Total delay: 1433 min

Group: BXL

2019-11-14 08:06:00

Total delay: 1765 min

Group: BXL

2019-11-18 18:15:00

Total delay: 2211 min

Group: BXL

2019-11-19 09:04:00

Total delay: 1919 min

Group: BXL

2019-11-20 09:42:00

Total delay: 1913 min

Group: BXL

2019-11-21 08:41:00

Total delay: 1687 min

Group: BXL

2019-11-26 17:27:00

Total delay: 1612 min

Group: BXL

2019-11-28 17:32:00

Total delay: 1546 min

Group: BXL

2019-12-02 08:16:00

Total delay: 1649 min

Group: BXL

2019-12-04 07:51:30

Total delay: 2035 min

Group: BXL

2019-12-05 08:21:30

Figure E.2: Spatial distribution of time delays on disrupted days.

260

Supplementary Information

157823 Dekker BNW.indd   260157823 Dekker BNW.indd   260 18-03-2022   10:2218-03-2022   10:22



Total delay: 1666 min

Group: MP

2019-12-11 08:21:00

Total delay: 1621 min

Group: BXL

2019-12-27 19:15:30

Total delay: 3112 min

Group: S

2020-02-09 21:10:00

Total delay: 4773 min

Group: S

2020-02-10 07:41:00

Total delay: 1344 min

Group: BXL

2020-02-15 16:44:00

Total delay: 2172 min

Group: BXL

2020-02-25 17:16:00

Total delay: 1455 min

Group: BXL

2020-03-17 10:30:30

Total delay: 2364 min

Group: S

2020-05-04 17:58:00

Figure E.3: Spatial distribution of time delays on disrupted days.

(see SI E.1).

One possible explanation for the good performance of this number of clusters is as
follows. In Fig. E.4, the major Belgian cities are centred in different clusters. Such hubs are
main routes of delay spreading in severely disrupted situations, but can exhibit compli-
cated dynamics in the real system, since they bring together many trains, from different
directions, can have complicated track layouts and scheduling to ensure connections. In
our clustered version of the model, having these big hubs centred or well enclosed within
clusters entails that the more complicated delay spreading happens within the cluster,
compressed into a single diagonal term in the reduced G-matrix. The inter-cluster spread
mostly contains straight lines between smaller stations and relatively weak connections
(often just a few edges between clusters). So, one factor which may explain the K = 10
optimum is the clustering configuration.

Another factor is of a more theoretical nature. When K becomes too small and the
peak delays are at a boundary of a cluster, inter-cluster delay spreading becomes very
important and difficult to capture. For example, in Fig. 5.3a we see that for K = 5, Brus-
sels — a location with most delays on disrupted days — is situated at the boundary of the
red cluster. The exact direction spreading just after the peak delay is of high importance
because it determines the delays of the yellow and blue cluster to a large extent. Calculat-
ing a Spearman’s correlation of only five clusters will make it prone to a slight deviation
from our model’s expected delay spread, even leading up to negative Spearman’s corre-
lations for the lowest values of K , which is visible at the bottom of Fig. 5.6. Whether these
observations are robust will require more case study-specific research.
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Figure E.4: Clusters at optimal aggregation level of 10 clusters. Indicative names of the clusters are shown in a
legend. The elements of the resulting 10 by 10 G-matrix are reflected in the subpanel at the bottom left: the edge
widths show the off-diagonal elements (i.e., dynamical ‘connectedness’ between clusters), node size indicates
diagonal elements (i.e., smaller nodes mean stronger delay sinks).

E.4 Toy models

E.4.1 Toy model generation

We aim to test the model on smaller and simple networks. For this, we generate ‘toy mod-
els’, involving both an synthetic topology of the infrastructure, as well as an synthetic line
schedule on top of this network. We use the following procedure to generate such toy
models:

• we generate the graph G ,

• for the fixed visualisation layout of the graph G we determine the Euclidean coor-
dinates of each of the vertices for this layout - these are the geographic coordinates
of the station in our example,

• we draw P pairs of graph’s vertices - they will be the beginnings and the ends of the
lines (note: we take each line to be bidirectional in terms of placing trains),

• at the beginning of each line we place a train with a random delay, the trains then
move at a constant (Euclidean) speed, going towards their destination, along the
shortest path in the graph,

• at each moment of time we count the delay of each station and compare it through
the Spearman’s correlation coefficient with our model predictions, averaging over
200 runs.
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E.4.2 Toy model examples

While there are endless possibilities of generating the topology of the infrastructure net-
works for the above toy models, we focus only on two types, of which examples are shown
in Fig. E.5:

• random graphs with 15 vertices and 20 edges. If such drawn graph was not con-
nected, we consider its largest connected component.

• star graph with n +1 vertices, where the vertices 1, . . . , n are connected only to the
vertex 0.

Figure E.5: Considered toy-network topologies: random graph with 15 nodes and 25 edges (left) and star graph
with 9 nodes (right).
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Appendix F

Supplementary information to Chapter 6

F.1 Data

F.1.1 Data source for the Dutch railways

Realised data (i.e., delay information) and train line schedules were obtained from Pro-
Rail, and rolling stock and crew schedules were obtained from the main Dutch railway
company Nederlandse Spoorwegen (NS). Although the latter is not a complete set of
all rolling stock and crew schedules, NS covers about 90% of all train activities in the
Netherlands, allowing for relative completeness in most of the country. All assets are
anonymised for privacy reasons and can be tracked within each individual day. For the
rolling stock schedules on any given day, only the realised schedules are recorded (due
to the nature of how these assets are planned), while for the crew data, both realised and
planned schedules are fully known, including all intermediate mutations to the schedule.
We focus on passenger trains only, and exclude freight trains in the analysis. The main
reason for this is that freight trains are (economically) privacy sensitive, meaning that it
is difficult to get a complete dataset. It should be noted that their contribution to delay
is usually only minor, as they cover only 5.7% of all Dutch train kilometres in 2017 (num-
bers courtesy of ProRail), and having schedules and routes that are often partly separated
from the passenger train dynamics. More details can be found in Dekker et al. (2019),
section 3.1. Results in chapter 6 are obtained from a dataset ranging from 1 July, 2017 to
30 June, 2018. The Dutch data can be found in an Open Science Framework repository
(https://osf.io/tps4r/).

F.1.2 Data source for the other railway systems

Data for the German and Italian railways in Fig. 6.1 is gained from the supplementary
material of Monechi et al. (2018), which got this data from the OpenDataCity (http:
//www.opendatacity.de/) and the ViaggiaTreno (http://www.viaggiatreno.it/)
websites, respectively for March and April 2015. The Swiss railway data is obtained from
the OpenTransportData website (https://opentransportdata.swiss/) over January
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2018. The delay data and network topologies are separate files, such that the topology is
not inferred from the delay data files. No information on rolling stock and crew resources
used in delay activities is known.

F.1.3 Infrastructure and service details of the Dutch railways.

The Dutch railways consist of 402 passenger stations, linked together in a dense network
with the highest line utilisation rate and busiest tracks in Europe according to statistics
from the European Union (European Commission, 2016) and the Dutch Statistics Agency
(CBS) (Ramaekers et al., 2016). Delay, location, time, train line number, activity nature,
and more details are logged each time a train passes by a so-called ‘service-control-point’
(SCP) — which are 801 measure stations on the network, of which the passenger stations
are a subset. The SCPs are used as nodes in this analysis, interlinked by 1438 edges (tracks
between the SCPs). Network data on locations and links of the nodes and edges of the
railway network, including delay time series can be found in an Open Science Frame-
work related to previous work (Dekker et al., 2019): https://osf.io/tps4r/. The three
layers contain, on average (December 2017, only NS), ∼6500 train service lines, ∼600
rolling stock units and ∼2300 crew members per day, respectively. The train lines are
subdivided into 500 unique train series — groups of train lines that are relatively similar
in their trajectories and type of rolling stock.
ProRail and railway operators in the Netherlands classify each individual (whole) day as
one out of four performance categories; ‘Green’, ’Neutral’, ‘Red’ and ‘Black’. The classifi-
cation is based on train punctuality and cancellations — while Green days involve high
punctuality and a low percentage of cancelled trains, Black days involve low punctuality
and a high percentage of cancelled trains. The exact definitions are displayed in Tab. F.1.
Punctuality and cancellation percentages are calculated with a number of constraints,
leading to an ‘effective punctuality’ and ‘effective cancellation’ percentage. First, only ar-
rival activities are used. Secondly, only passenger trains are considered (no freight trains).
Thirdly, only activities on a subset of stations are considered. These stations are chosen
based on impact on not only future delay, but also passengers, pressure on personnel and
infrastructure. This choice is the result of a joint concession with the Dutch Ministry of
infrastructure (Ministerie van Infrastructuur en Milieu, 2014). The fourth and final con-
straint to calculate the effective punctuality and cancellation metrics is that these metrics
are calculated on a few specified points on the day, and averaged. Note that the above is
used to determine the classification of the days, while the results in chapter 6 are not
constrained by the above — in particular, our results are based on all stations.

Label Punctuality Cancellations Number of days
Green > 92.5% < 1% 46
Neutral - - 292
Red < 85% > 5% 21
Black < 75% > 10% 6

Table F.1: Day-to-day severity labels by Dutch asset manager ProRail. The last column shows the number of
days in the dataset (July 1, 2017 - June 30, 2018). The unofficial label ‘Neutral’ applies when none of the other
labels does. Table re-used from Dekker et al. (2019).
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F.1.4 Crew rescheduling data

The data for on-the-fly mutations to the crew schedules have been obtained from Neder-
landse Spoorwegen (NS). For every crew member, it contains not only the final, realised
schedule, but also earlier stages of their schedules — with versions marked by an integer
and accompanying mutation time stamp ts . We need to use the latter to determine the
version of the global crew schedule at any time: for example in the simulation of Fig. 6.3,
or when calculating P in Fig. 6.5. To be precise, at any time t0, all crew mutations with
ts < t0 are known are used in the model starting at t0. One difficulty we face for the mu-
tation data is that every now and then, there are system-wide updates of crew schedules:
many mutations appear with identical time stamps as ‘hindsight’ updates at unrealis-
tic times, e.g., at 02:00h on the day after. While these are clearly distinct from on-the-fly
mutations carried out by traffic controllers, we cannot neglect them. In our simulations,
we account for these by resetting the mutation times towards those at which the crew
activities in question took place.

F.2 Processing delay data

F.2.1 Delay calculation

As mentioned in the previous section, delays are discretely logged at the service-control-
points, using indices to refer to certain activities: departure, arrival or passing-through.
We define delay d of such an activity a as the difference between realised time treal(a))
and the planned time tplanned(a) of any activity:

d(a) = treal(a)− tplanned(a) (F.1)

This means that d(a) is usually positive (when the train is late), but can be negative (when
the train is early); the latter is rare due to the mandate that trains should not depart early.
The transformation of discrete delay logs of individual activities to a continuous time
series of delay may be useful for analysing the data itself (e.g. in principal component
analysis as in previous literature (Dekker et al., 2019)) or for visualisation purposes. Note
that this is not done in the model itself — in which we have discrete delay values for each
activity (rather than a time series of delay in space). We therefore aggregate the discrete
delay values per activity d(a) to a time-dependent delay activity per edge e: D(t ,e). This is
done by interpolating between the delay of departure d(adep) and arrival d(aarr) activities
of the same service, where the departure is being done on one side of edge e, and the
arrival at the other side of e:

D(t ,e) =





t − tplanned(adep) if tplanned(adep) < t < treal(adep)

d(adep)+ d(aarr)−d(adep)
treal(aarr)−treal(adep) · (t − treal(adep)) if treal(adep) < t < treal(aarr)

0 otherwise

(F.2)

Here, we use 1 second resolution, but in principle the aggregation can be done at any
resolution. Depending on the purpose, Eq. (F.2) is done either per train, or aggregated
over all trains that travel across the same edge at a particular time. The resulting time
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series are shaped in a sawtooth-like manner in which individual trains can be re-traced
(Dekker and Panja, 2019).

F.2.2 Delay jumps

A delay jump δ(a) is defined as the change in delay of activity a compared to its previous
activity aprevious. Formally:

δ(a) = d(a)−d(aprevious), (F.3)

Note that if a is the train line’s starting activity (i.e., there is no aprevious), then the delay
jump is not defined. Activities a and aprevious can be of various types. For a delay jump at a
station, a is the arrival of a certain train at the station, and aprevious its re-departure. Delay
jumps at stations can arise due to, e.g., resource allocation problems and late transfers.
Delay jumps can also occur on tracks, when a is the departure of a train onto a certain
track, and aprevious is its arrival at the end of the track. In Fig. 6.4 we consider all delay
jumps of all possible types. In practise, railway companies often consider delay jumps to
be only those values of δ that are larger than 3 minutes (‘significant delay jumps’). We do
not make this distinction and consider all values of δ to be ‘delay jumps’ — δ can even be
negative, as can be seen in Fig. 6.4.

F.2.3 Classification of delay jumps

In Fig. 6.4m we label all delay jumps found in the data; while delay jumps can be found
in the data, their causes are not recorded. Here, we describe each of these categories in-
dividually, using the (trilayer) model. The core of this exercise is that we compare the ob-
served delay jump δobs(a) of every activity a with its simulated counterpart δsim(a) when
initialising the model closely before the scheduled time of activity a, i.e. t0 < tplanned(a).
In Fig. 6.4, model runs are reinitialised every 15 minutes, such that the maximum time
between t0 and tplanned(a) is (less than) 15 minutes. Focusing on labelling delay jumps
found in data, four categories can be found:

I Cascading due to a delayed crew transfer. A delay jump is labelled (I) if δsim > 0
because of a delayed crew member in the simulation output, and δobs > 0.

II Cascading due to a delayed rolling stock transfer. Analogous to label (I), delay jump
is labelled (II) if δsim > 0 because of a delayed rolling stock unit in the simulation
output, and δobs > 0.

III Delay jumps larger than 10 minutes, but unaccounted for in the model.

IV Noise, i.e. all other delay jumps. Individual units in this category, as well as the net
sum within a time window can be both positive and negative (as seen in Fig. 6.4.

However, when for any train activity a, a (nonzero and positive) delay jump is found in
the model output, but not in the observed data, we distinguish two reasons describing
this discrepancy:

V Mitigation of the delay jump (δsim) due to rescheduling of the activity: if the sim-
ulation initialised closest to tplanned(a) did not predict a positive delay jump, but
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other simulations (initialised earlier) did, we assume that changes in the schedules
were made to mitigate this delay jump.

VI Mitigation of the delay jump (δsim) due to cancellation of the activity. Whether a
train activity is cancelled can be found directly in the raw data, so no heuristic is
needed here.

To calculate the magnitude of mitigation labels (V and VI), we use the simulated delay
jumps δsim rather than the observed ones δobs as used in labels I-IV. In Fig. 6.4, all delay
jumps (δobs for labels I-IV, δsim for labels V-VI) are accumulated per label within a certain
time window. The relative importance ν(l ) of each label l can then be calculated as:

ν(l ) =
∑

a|δ(a) has label l δ(a)∑
a δ(a)

(F.4)

where a denotes train activities.

F.2.4 Plotting details

For plotting delay data in Figs. 6.1 and 6.3, a smoothening procedure is applied to the
spatial representation of delay, by applying a weighted averaging of neighbouring edges
delay values. The weights are 1 for the edge considered, and 0.25 for neighbours. This is
only done for visualisation purposes, and analyses include only raw values. In Fig. 6.4,
a running window of 5-minutes length (i.e., +/- 2.5 minutes) is used at each (1 minute-)
time step, followed by a 30-minute running mean smoothening over all the percentage
curves. In Fig. 6.4b, four days per class are used from the period July 1, 2017 to 30 June,
2018. In particular, these included Dec 11, 2017, Nov 23, 2017, May 1, 2018 and Apr 30,
2018 for Black days; Nov 18, 2017, Nov 20, 2017, Nov 22, 2017 and Dec 13, 2017 for Red
days; Nov 21, 2017, Dec 3, 2017, Nov 28, 2017 and Dec 16, 2017 for Neutral days; and July
28, 2017, Apr 15, 2018, July 22, 2017 and Sep 17, 2017 for Green days. The days were se-
lected randomly in the dataset. To calculate the averages in Fig. 6.4b, only time windows
around points between 6:00 AM and 1:00 AM (next day) are taken, to avoid confusing
biases in the middle of the night (when only very few trains are travelling).

F.3 Model details

F.3.1 Model basics

The basic principle of the mono-, bi- and trilayer models used in this work is the explicit
simulation of the planned schedules. Starting the the model at any chosen point in time
t0, it iterates over all subsequent planned activities a ∈ {a(t )|t > t0}, sorted by scheduled
activity time (a list of roughly 150,000 activities if initialising at the start of day) — that is,
when an activity a(ti ) is concerned, the delay of all activities before that ({a(t )|t < ti }) are
already determined. For each iteration (activity), the delay is calculated and attributed if
any of the following conditions are met:

• The train line involved in a had delay in the previous activity (sometimes referred
to as ‘advection’).
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• A rolling stock unit used in this activity was transferred from another train line, and
had delay.

• A crew unit used in this activity was transferred from another train line, and had
delay.

This is captured in Eq. (6.1) in chapter 6. Although possible, in chapter 6 we did not in-
clude any noise, such that delay passed on without any (stochastic) reduction (see below
under ‘Noise’), but buffers are always taken into account.

F.3.2 Formal model

Given the set of all train service activities {a(t )} with t referring to their planned time,
we initialise the model at time t0 with knowledge about all activities {a(t )|t ≤ t0}. The
aim of the model is to simulate how delay spreads towards other activities later than
t0: {a(t )|t > t0}. In the monolayer model, we propagate delay of activity a0 ∈ {a(t )|t ≤
t0} to future activity a1 ∈ {a(t )|t > t0} if a1 is the subsequent activity of the train service
performing a0, minus a scheduled buffer β(a0, a1) = tplan(a1)− tplan(a0) for each activity
i . Similarly, in the bilayer model, we not only propagate delay from a0 to a1 when they
are performed by the same train service, but also when the same rolling stock unit is
used. In the trilayer model, delay is propagated via also the re-usage of crew members.
In general, we can express the potential delay propagation that may be propagated from
activity a′ to subsequent activity a as H [d(a′)−β(a′, a)]. The Heaviside function H (x)
is used to prevent trains from departing early (which in practise rarely happens, and if
so, with small delay jumps). For any activity a ∈ {a(t )|t > t0}, then, we compute its delay
from delays of previous activities a′ ∈ {a(t )|t ≤ t0} as in Eq. (6.1), using the maximum of
all potential propagations of delay — of all unique resources used in activity a.

Buffers

Concerning the matter of buffers, we include up to 5 minutes as a necessary transfer
time for resources. For example, if a crew member has 14 minutes to transfer towards
another train, we assume that it needs at least 5 minutes to get to that train, leaving an
effective buffer of only 9 minutes (which is then used in the calculation). If the planned
buffer would be 3 minutes, this results in 0 minutes buffer — instead of a negative buffer
of -2 minutes, we assume that a 3-minute planned buffer must be associated to an easy
transfer that does not require 5 minutes. The role of buffers in the in delay propagation
has been investigated in-depth previously (Zieger et al., 2018), but it is not the goal of the
research in chapter 6.

F.3.3 Initialisation.

Initialising the model from a real snapshot in the past (e.g., as in Fig. 6.3) requires ex-
tra attention. Trivially, the train activities that were realised before the initialisation time
(19:00) need to be put in by the data (as ‘initialisation’), and those far past 19:00 need
to be fully calculated by the model. However, the simulation of delays of train activities
realised just after 19:00 are less trivial — as some information is already available about
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these delays at 19:00 meaning that the delay can be more accurately estimated. We treat
these boundary cases in the following manner (assuming positive delay):

• If tplan(adep) < t < treal(adep): only d(adep) is initialised from the data, and d(aarr)
is extrapolated using only real-time information: equal to d(adep).

• If treal(adep) < t < treal(aarr): both d(adep) and d(aarr) are initialised from the data.

Negative delays in a similar manner, but the case of treal(adep) < t < tplan(adep) arises,
where also only d(adep) is initialised from the data.

F.3.4 Noise

As shown in Eq. (6.1), noise can be put in the model to simulate small (new) delay jumps,
as in the real data: delay changes due to numerous small events like slow driving due
to difficult weather conditions or a large number of passengers being slow to get into the
train. For the model results in chapter 6, we set noise ζ to zero, in order to avoid confusion
between model noise and noise in the real data; inclusion of model noise would have
made interpretation of delay jumps in Fig. 6.4 much more difficult.

In the past, we have used a variation of this model that included explicit noise, by
estimating noise from the data of all delay jumps per aggregated edge e and train series
s over 100 days (Dekker et al., 2019) — e.g., by considering all delay jumps of the 3000
train service series between Utrecht and Amsterdam. From this, we assembled a prob-
ability density function (PDF) per such pair (e, s). In that earlier work, for calculating
the delay of activity a as in Eq. (6.1), we drew the (uncorrelated) noise from these PDFs.
As we ran a similar procedure for chapter 6; we found that cascading effects are much
stronger than the effect of noise for large-scale disruptions, leading us to the conclusion
that stochasticity does not play a major role in their development. For this reason, as well
as to improve interpretability of the real data as in fig. 4, we have excluded explicit noise
from the model.

F.3.5 Mitigation elements

The model describes delay propagation, given that the schedules of train lines and assets
remain the same, i.e., if dispatchers take no mitigation actions (although we do quantify
mitigation in hindsight in Fig. 6.4). This assumption reduces the model’s predictability
horizon. In practise, the Dutch railway organisations have various more detailed contin-
gency plans (Versperringsmaatregelen) in place, partially predetermining action in given
disruption events. These involve protocols on highly specific situations which are beyond
the scope of this research, but may in the future be used to predict delay development
even further (e.g., specifically for the Dutch railways). For the purpose of model perfor-
mance metrics, we exclude trains that end up being cancelled (as we have no prediction
means for that in the model). Mutations on the crew schedules are not implemented
throughout a single model simulation, but re-initialising multiple runs with different ver-
sion of the schedules can be utilised to have updated information on what happens in the
real data (see Figs. 6.4 and 6.5).
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Appendix G

Supplementary information to Chapter 7

G.1 Formal derivations

In this section, we derive the building blocks Q(in) and Q(out) matrices for calculating the
entropy of temporal entanglement. In Sec. G.1.1, we do this for connected components of
the network. In Sec. G.1.2, we follow this up with the derivation of Q(in) and Q(out) matri-
ces for the agents’ precise contact networks at the snapshots as recorded in the data [e.g.,
as can be seen in Fig. 7.1(a) at t = 0], which we henceforth refer to as ‘fine structures’
for brevity. We will witness that the Q-matrices for both cases are determined from topo-
logical symmetry considerations, and are free of fitting parameters. The contribution of
individual agents to entanglement is defined in Sec. G.1.3.

G.1.1 Entropy of temporal entanglement for connected components

Let us start with a single connected component at time t , e.g., as shown in Fig. 7.1(b). For
this, it means that there is a single event α containing n agents at time t . Following our
convention regarding the agent strings as explained in chapter 7 surrounding Fig. 7.1,
such a situation is shown in Fig. G.1(a). Therein, we denote the (topological) weight of
a link from agent i coming into event α by wiα, and similarly, the topological weight of
a link exiting event α and reaching agent j by w ′

α j . These weights are the elements of

the Q(in) and Q(out) matrices, respectively. In this section, we determine these weights
from the following considerations, and subsequently construct the corresponding Q and
P matrices.

A1. The first observation is that the entanglement topology is invariant under time re-
versal. This implies

w1α

w ′
α1

= w2α

w ′
α2

= . . . = wnα

w ′
αn

= cα, (G.1)

for some (yet unknown) cα.
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Figure G.1: Panel (a) Event α taking place at time t for one of the connected components with n agents, labeled
by Roman indices. Panel (b) As a working example we consider the same event structure for eight agents at t = 0
as in Fig. 7.1(b) in chapter 7.

A2. The second observation is that the entanglement topology is invariant under an
exchange operation i ↔ j for all pairs of the agent identities i and j . This further
implies w1α = w2α = . . . = wnα = w , for some (yet unknown) w .

A3. Finally, w and c are determined by considering random walker hops, as is standard
in Network Science, in the following manner. (a) First, wiα is the probability for a
random walker to start at agent i prior to time t and end at event α at time t in one
hop, meaning that w = 1. (b) Similarly, wα j is the probability of a random walker to
start at event α at time t and end at agent j subsequent to time t , yielding cα = n.
Returning to the original notation from Fig. G.1(a), this means that wiα = 1 ∀i and
w ′

α j = 1/n ∀ j .

Important to note here is that the random walkers only move forward in time; i.e., the
link weights respect the direction of time.

Upon putting A1-A3 together, we can construct the relevant Q(in),Q(out) and P ma-
trices for this connected component. First, Q(in), whose iα-th element equals wiα, be-
comes an n×1 matrix with all entries unity, and Q(out), whose α j -th element equals w ′

α j ,

becomes a 1×n matrix with all elements equalling 1/n. Next, P = Q(in) ·Q(out) becomes
an n ×n matrix, for which all elements are equal to 1/n, meaning that at time t all in-
volved (= n) agents contribute n lnn to the entropy of temporal entanglement. [Note here
that both Q(in) and Q(out) are row-normalised, which makes P both row- and column-
normalised. These normalisations stem from the conservation of random walkers — any
random walker starting from any agent prior to time t must end up at some agent sub-
sequent to time t .] In other words, the agents participating in the event are maximally
entangled at time t : indeed, if at time (t+1) the same n agents also participate in an event
together that involves no new agents, then ensured by the relation P 2 = P , the contribu-
tion of these n agents to the entropy of temporal entanglement remains (n lnn)/(N ln N )
also at time (t +1).

The method is trivially extended when there are multiple events taking place at time
t , as shown for an example in Fig. G.1(b) for 8 agents, which, along with the correspond-
ing P in Fig. G.2, is then copied in Fig. 7.1(c) in chapter 7.
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Figure G.2: The 8×8 P-matrix constructed as P =Q(in) ·Q(out) from Fig. G.1(b).

G.1.2 Entropy of temporal entanglement for the fine structures

Calculation of the entropy of temporal entanglement involving the fine structures in the
agents’ contact networks at integer times can also be performed by constructing the
corresponding Q(in), Q(out) and P = Q(in) ·Q(out) matrices — along very similar lines as
in Sec. G.1.1. The procedure is in fact best illustrated by taking another working exam-
ple, which we do in Fig. G.3: note that the fine structures correspond to those shown in
Fig. 7.1(a) at t = 0 (in chapter 7). The key difference between the two working examples
in Fig. G.1 and in Fig. G.3 is that in the latter the fine structures of the agents’ contact
network at time t is possible to capture only by binary events (i.e., each event involves
two agents, corresponding to the link between them). Nevertheless, we follow the same
convention for the denoting the agents, the events, and the weights of the agent-to-event
and event-to-agent links as we did in Sec. G.1.1.

First, the topology, as seen in Fig. G.3, is again time-reversal invariant, which allows
us to write, analogous to Eq. (G.1),

wiα

w ′
αi

= w jα

w ′
α j

= cα (G.2)

where i and j are the two agents participating in (binary) event α, for some (yet un-
known) cα. [That said, the topology is no longer invariant under an exchange operation
w.r.t. the agent identities i ↔ j as was the case in Fig. G.1(a)]. Next, we assign wiα to be
the probability for a random walker to start at agent i prior to time t and end at event α at
time t . Using the principle that, starting at agent i , the random walker chooses any of the
connecting events with equal probability, we obtain Q(in)

c , whose iα-th element equals
wiα (Fig. G.3). Finally, Q(out)

c , whose α j -th element equals w ′
α j , and obeys Eq. (G.2), is

obtained by transposing Q(in)
c and subsequently row-normalising it. The matrix Q(out)

c ,
obtained by means of this procedure, is also shown in Fig. G.3.
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Figure G.3: Constructing the Q(in)
c and the Q(out)

c for the working example, containing the agents’ actual contact
network at t = 0 in Fig. 7.1(a).

The corresponding P matrix, obtained as P (c) =Q(in)
c ·Q(out)

c is shown in Fig. G.4. It can
be shown, using the above procedure to determine Q(in)

c and Q(out), that

P (c)
i j = 1

Ki +K j
for i �= j and P (c)

i i = 1−
∑
j �=i

P (c)
i j , (G.3)

where Ki is the degree of agent i in the contact network at time t . Clearly, P (c)
i j = 0 if

agents i and j are not in contact at time t . Note here that P (c), just as in P , is row- as well
as column-normalised (here too, the normalisations stem from conservation of random
walkers — any random walker starting from any agent prior to time t must end up at
some agent subsequent to time t ). Once P (c) is calculated in this way, the corresponding
entropy of temporal entanglement Sc can be calculated following Eq. (7.2).

Figure G.4: The 8×8 P (c)-matrix constructed as P (c) =Q(in)
c ·Q(out)

c from Fig. G.3.

A discussion on the differences between the P (Fig. G.2) and the P (c) (Fig. G.4) ma-
trices is in order. The difference between the two stems from the fact that the agents
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within the two events in Fig. G.1(b) are maximally entangled, which is not the case for
the agents in Fig. G.3. Mathematically, the difference lies in the fact that P 2 = P in con-
trast to [P (c)]2 �= P (c).

In a more precise formulation, we note that while constructing P (c) by means of com-
bining the probabilities of random walkers to start at agent i prior to time t and end at
event α at time t , or start at event α at time t and end at agent i subsequent to time t , we
have allowed the random walker to take one combined agent-to-agent hop across time
t . From this, one would expect that if a large number of such sequential agent-to-agent
random walker hops would be allowed while the agents’ contact network remains the
same over time [i.e., the same agent contact network holds at times t , (t + 1), . . . , (t +k)
for large k] then the random walker starting prior to time t at agent i to reach all agents
within the corresponding connected component subsequent to time (t +k) with equal
probability. In fact, this is indeed the case, since

lim
k→∞

[P (c)]k = P. (G.4)

This limiting case is made possible by the condition that P (c) matrices are row- as well
as column-normalised (which in essence is the detailed balance condition in statistical
physics, effected by the conservation of random walkers as stated above (van Kampen,
2007)).

Further reflection reveals that the subtleties regarding the differences between P and
P (c) arise due to the discreteness of the time snapshots. In chapter 7 we noted that real-
world temporal network data are often sampled at some fixed interval τs , and also that
the random walker hops are coupled to τs . Given that in theory, τs can be taken to be
infinitesimally small (in comparison to the time-scales of change in the topology of the
agents’ contact network), and that in real world, every interaction lasts for a finite amount
of time, the limit in Eq. (G.4) ensures that P is the correct descriptor for measuring en-
tanglement.

G.1.3 Contribution of a specific agent to entanglement

The contribution Si of agent i to the entropy of temporal entanglement is the difference
between the entropy of temporal entanglement when string i is embedded in the tempo-
ral network, and that when string i is removed from of the temporal network. Note that
two entanglements of agent i at two different snapshots, with agents j and k respectively,
makes agent i an ‘in-between temporal stop’ for agents j and k. With this in mind, Si can
be seen as a measure of betweenness of agent i in a temporal network.

The quantity Si can be calculated as follows. For every time snapshot we construct
the P matrices, and the corresponding P (−i ) matrices by replacing all the i -th row and
column elements of the P matrices by zeros, except the diagonal element Pi i . We then
row normalise both of them separately to obtain the P and the P (−i ) matrices, and con-
struct the product matrices

℘(t ,∆t ) ≡ P (t )P (t +1) . . .P (t +∆t ). (G.5)
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and

℘(−i )(t , t +∆t ) ≡ P (−i )(t )P (−i )(t +1) . . .P (−i )(t +∆t ). (G.6)

This is followed by correspondingly calculating S(t ,∆t ) and S(−i )(t ,∆t ) using Eq. 7.2).
This yields us

Si (t ,∆t ) = S(t ,∆t )−S(−i )(t ,∆t ). (G.7)

G.2 Entropy of temporal entanglement as a function of ∆t

In chapter 7, especially in Fig. 7.3, we have analysed the evolution of the entropy of tem-
poral entanglement. In this section, we investigate the highest rate at which entropy can
increase with the time interval size ∆t , which we in the end extrapolate to the special case
of a perfect tree — i.e., a system we argue has the maximum possible entropy growth with
time.

Although in real-world networks, event sizes vary considerably, for the sake of an il-
lustration, given a certain initialisation time t , let us consider the case where the event
sizes are constant (= n) for ∆t = 1. Following Fig. 7.1, all rows of ℘ will have exactly n
entries containing 1

n , and 0 elsewhere, leading to:

Stree(t ,∆t = 1) = − 1

N ln N
·N ·n ·

(
1

n
ln

1

n

)

= lnn

ln N
.

Extending this to higher values of∆t requires more formality. To this end, we consider
an event E of size nE at some time t ′ = t +∆t where ∆t > 1, and conceptually imagine
that agents from different ‘groups’, labelled by colours such as red, blue etc. participate.
We define a group G as follows: in between times t and t ′, ∀i belonging to one group, and
∀ j belonging to another, there is no event where both i and j are temporally connected
to. Prior to time t ′, let us denote the number of red agents (i.e., belonging to the red group
GR ) by NR , the number of blue agents (i.e., belonging to the blue group GB ) by NB and
so on. Similarly, the number of red agents participating in event E at time t ′ is given by
nR (forming the corresponding subgroup gR ), the number of blue agents participating
in event E at time t ′ is given by nB (forming the corresponding subgroup gB ), and so on.
Clearly,

nR +nB + . . . = n. (G.8)

We also label the elements of ℘(t ,∆t −1) belonging to a given coloured group by indices
of the same colour; e.g., we re-index the red agents by red indices 1R ,2R , . . . ,NR , of which
the agents 1R ,2R , . . . ,nR participate in the event. Then the elements of the ℘(t ,∆t − 1)
matrix corresponding to the red group of agents can be extracted to form an NR ×NR

matrix. Let us denote these elements by the notation pi j , with 1R ≤ (i , j ) ≤NR . Then the
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following relations will hold:

NR∑
i=1R

pi j (t −1) = 1, i ∈GR , j ∈ gR ;

NB∑
i=1B

pi j (t −1) = . . . = 1, i ∈GB , j ∈ gB ; . . .

These relations simply follow from the fact that ℘(t ,∆t−1) is column-normalised, having
noted that ℘i j (t ,∆t − 1) = 0 when agents i and j belong to two different(ly coloured)
groups.

Subsequent to the event at time t , for an agent j ∈ E the elements of P (t ) will be given
by

pi j (t ) = 1

nE





nR∑
j ′=1R

pi j ′ (t −1) i ∈GR , j ′ ∈ gR

nB∑
j ′=1B

pi j ′ (t −1) i ∈GB , j ′ ∈ gB

. . .

, (G.9)

and is independent of j [i.e., pi j (t ) ≡ pi (t )]. This allows us to express the corresponding
change in entropy due to the event E , by separating the agents in different(ly coloured)
subgroups, as

∆S = 1

N ln N

{[
nE

NR∑
i=1R

pi (t ) ln pi (t )−
NR∑

i=1R

nR∑
j=1R

pi j (t −1)ln pi j (t −1)

]

+
[

nE

NB∑
i=1B

pi (t ) ln pi (t )−
NB∑

i=1B

nB∑
j=1B

pi j (t −1)ln pi j (t −1)

]
+ . . .

}
. (G.10)

Using Eq. (G.9) to replace pi j (t ) in Eq. (G.10), and thereafter having dropped the (t−1)
argument for the matrix elements, we have

∆S = nE lnnE

N ln N
+ 1

N ln N








NR∑
i=1R

nR∑
j=1R

pi j ln pi j −
NR∑

i=1R




nR∑
j=1R

pi j


 ln




nR∑
j=1R

pi j






︸ ︷︷ ︸
CR

+



NB∑
i=1B

nB∑
j=1B

pi j ln pi j −
NB∑

i=1B




nB∑
j=1B

pi j


 ln




nB∑
j=1B

pi j






︸ ︷︷ ︸
CB

+ . . .





. (G.11)

Given that pi j ≤ 1, it is easily argued from Eq. (G.11) that CR , CB etc. terms are ≤ 0:
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the only case when they can be zero is when nR , nB etc. either 0 or 1. This in turn means
that an event can maximally contribute to the entropy of temporal entanglement only
when, for every agent pairs (i , j ) participating in the event, between t and t ′ there exists
no event that both i and j are temporally connected to.

Note however that this condition is not possible to maintain for an arbitrary temporal
depth of between t and t+∆t . A toy case where this is possible — returning to the one we
started this section with — is with fixed event size n and also fixed event frequency n per
snapshot, requiring the condition N = nk to be satisfied for some integer k. We illustrate
the procedure with an example below. When increasing ∆t to 2 in that toy example, we
add an extra time step. For the system that is a perfect tree in the temporal domain, any
agents that have participated in events at ∆t = 1, do not participate in an event at ∆t = 2;
instead, all n agents from any event in the first time step participate in n separate events.
This ensures that the all rows of the ℘ matrix have exactly n2 elements with entries 1

n2 , re-

sulting in S(t ,∆t = 2) = 2 lnn
ln N . Continuing this for any value of ∆t , this can be generalised

to:

Stree(t ,∆t ) = − 1

N ln N
·N ·n∆t ·

(
1

n∆t
ln

1

n∆t

)

= ∆t
lnn

ln N
,

leading to a linear relationship between S and ∆t for a perfect tree in the temporal do-
main.

From a point of view of analysing spreading dynamics, the perfect tree is the sys-
tem with the highest spreading vulnerability. For a perfect tree in the temporal domain,
agents only meet agents that do not have a (higher-order) connection in common in the
past. For the application of rumour spreading, for example, in a perfect tree, people that
know the rumour will therefore only meet people that do not know the rumour — ob-
taining the fastest possible spread of the rumour.

G.3 Data from real-world temporal network datasets

In Fig. 7.1 in chapter 7, we use a network constructed by hand for illustration purposes. In
Figs. 7.2 and 7.3, we use temporal network data from real-world systems. In this section
we discuss the preprocessing and availability of these datasets.

G.3.1 High school and Primary school

In Fig. 7.2, we use data on the interactions among students of a high school and a primary
school. Both datasets are frequently used in network science papers. The high school
data is referred to as the ‘Thiers13’ dataset (Mastrandrea et al., 2015), from which we
use two days in the analysis, and the primary school data is the ‘LyonSchool’ dataset
(Gemmetto et al., 2014; Stehlé et al., 2011), from which we also use two days of data in
the table in Fig. 7.3(b). Both are freely accessible at the Sociopatterns project website
(http://www.sociopatterns.org/datasets/). Agent interactions in these datasets
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are defined as close face-to-face proximity of students and teachers using wearable sen-
sors and proximity-sensing infrastructure based on radio frequency identification de-
vices. In the table in Fig. 7.3(b), we also use a second high school dataset (also from the
Sociopatterns project) from 2011, referred to as ‘Thiers11’, from which we use four days
in the analysis. The sampling time interval τs for these datasets is 20 seconds.

G.3.2 Other Sociopatterns datasets

Data from the scientific conference, hospital and workplaces (2013) and (2015) are also
accessible via the Sociopatterns project and are often referred to as the SFHH conference,
LH10, InVs13 and InVs15 datasets. The scientific conference refers to the 2009 SFHH con-
ference in Nice, France (June 4-5, 2009) (Cattuto et al., 2010; Stehlé et al., 2011). The work-
place datasets InVs13 and InVs15 were experiments conducted in French office buildings
in 2013 and 2015 respectively (Génois and Barrat, 2018). The hospital dataset contains
the temporal network of contacts among patients and health-care workers (HCWs) and
among HCWs in a hospital ward in Lyon, France, from Monday, December 6, 2010 at 1:00
pm to Friday, December 10, 2010 at 2:00 pm — we use four separated days in our analy-
sis from this time interval. The study included 46 HCWs and 29 patients (Vanhems et al.,
2013). The sampling time interval τs for these datasets is 20 seconds.

G.3.3 High-energy physics citations

The citations network we analyse in chapter 7 is from the e-print arXiv server HEP-PH
(high energy physics phenomenology) and covers all the citations within a dataset of
34,546 papers with 421,578 edges (Gehrke et al., 2003). Because of the enormous num-
ber of agents (i.e., papers) and (temporal) links, we only use a subset of this dataset. The
dataset comprises papers over approximately 10 years of data. We only use papers be-
tween March 11, 1996 and August 3, 1998. These dates are obtained by taking 10,000
interactions in approximately the middle of the time series (to best relate to the temporal
dynamics of this system). This results in a much smaller number of 4,052 papers (ap-
proximately 10% of the total). If a paper i cites paper j , we treat this as an ‘interaction’
between these two papers. The sampling time interval τs for these datasets is in days.

G.3.4 Baboons

The baboons temporal network we analysed is from an experiment on a group of 20
Guinea baboons living in an enclosure of a primate centre in France, between June 13,
2019 and July 10, 2019 (Gelardi et al., 2020). Only 13 out of the 20 baboons wore proximity
sensors — which is the data we use for this analysis. In our analysis, we use the first five
days of this dataset. The sampling time interval τs for these datasets is 20 seconds.

G.3.5 Sparrows

The sparrows dataset is from a study at the University of California, Santa Cruz Arbore-
tum (Shizuka et al., 2014). The sparrows arrive there in October-November and depart for
their breeding grounds in March-April each year. The study spanned three non-breeding
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seasons: January-March 2010 (Season 1), October 2010-February 2011 (Season 2) and Oc-
tober 2011-April 2012 (Season 3). Each season, the authors captured birds using baited
traps and attached individually unique combinations of colour bands. In Season 2, they
did not band any birds between October-December 2010. Network edges are found based
on co-memberships between flocks (defined as a group of individuals found within a
single 5m radius) by identifying the colour-banded individuals in each flock. Data are
available at τs = 1 day.

G.3.6 Irvine social app

This dataset is comprised of private messages sent on an online social network at the
University of California, Irvine. Users could search the network for others and then initi-
ate conversation based on profile information. An edge (i , j , t ) means that user i sent a
private message to user j at time t (Panzarasa et al., 2009). The data as a whole spans of
approximately 195 days. As with the aforementioned Citations dataset, for this analysis,
we focused on only part of the dataset to improve computational speed. In particular,
we used the first 34 days, resulting in a set of 25,000 interactions and 1136 unique agents
(users). The time is aggregated to τs = 6 hrs.

G.3.7 Art fair

The art fair data is gathered during ‘Smart Distance Lab: The Art Fair’ between August
28 and 30, 2020 in Amsterdam, the Netherlands (Tanis et al., 2021). It consists of eight ex-
periments, where various conditions such as walking direction, face masks and proximity
alerting systems were varied. We use the data from the wearable sensors, that defined an
interaction by two people coming in the proximity of less than 1.5 m. The dataset is avail-
able on Figshare and in a MySQL database. The sampling time interval τs for this dataset
is one second.

G.4 Spreading processes on top of temporal networks

In order to reveal the relationship between the entropy of temporal entanglement and
the dynamical processes playing out on top of the network, we simulate three models
describing three different (stochastic) processes on the real-world systems in Fig. 7.3.
The results of the simulations, reported in chapter 7, have been obtained by performing
ensembles of 25 re-initialised model runs (per initialisation time t ) over 80% of the full
time window per system as starting points t , using ∆t = 12 time steps for the correlations
in Fig. 7.3b, and 60 time steps for the visualisations in panels (c) and (d). Only ensemble
averages are reported in chapter 7. For most datasets, this procedure is repeated over
multiple subsets. For example, the high school data Thiers13 contains five days of data.
Those days are individually run using this ensemble procedure, and the average across
those days is shown in the table in Fig. 7.3(b). Below, we describe the stochastic models.
For all models, the number of agents is denoted by N .
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G.4.1 Majority-vote

For the first model we simulate the propagation of opinions on a dilemma, which is as-
sociated to spreading of information, such as (fake) news, memes or political opinions.
The opinion of agent i at time t can have values 0 or 1. We denote the overall fraction of
agents having opinion 0 with f0, and analogously we define f1. At initialisation (starting
time t , interval size ∆t = 0), we start with half of the population having opinion 0, and the
other half opinion 1. The agent interactions are specified as they are defined by the (real-
world) temporal network’s topology. At each event, all agent’s change their opinion to the
opinion of the majority of the participants. For example, if in an event with three agents,
the opinions are 001, then, the third agent will change its opinion to 0. If the opinions
are tied, all participants will swap to a single opinion, chosen at random. If there is only
one single agent in an event, its opinion will remain the same. No noise is introduced. We
define a single state variable that is dependent on the starting time of the model (t ) and
the time interval (∆t ) that is used to progress it from t onward:

Vmaj(t ,∆t ) = 2 · [max( f0(t ,∆t ), f1(t ,∆t ))−0.5].

The subtraction of 0.5 and subsequent multiplication with 2 make sure that Vmaj ∈ [0,1],
which is a standardised form for easy comparison to the entropy of temporal entangle-
ment.

G.4.2 Transport delay

The second model concerns the propagation of a continuous variable through interac-
tions (events), all event participants will attain the highest value among them. This re-
lates to various real-world phenomena, such as transportation delays (hence the title
of this model), in which transport assets (such as a physical train and a driver to drive
it; assets may need to come from different physical locations (Dekker and Panja, 2021),
and have to wait for the maximally-delayed one — assigning all assets in an event with
a newly generated delay that equals the highest of all the delays in that event. (Another
example is the spread of dominant genes in phylogenetics.) At the start of the model, all
agents are given a random number between 0 and 1, we refer to as the ‘delay’ di of agent
i , which propagates as per the above rule. Over time, the average delay will increase up
to the maximum existing delay. We define a state variable, again dependent on t and ∆t :

Vdel(t ,∆t ) = 2 ·
[

1

N

N∑
i=1

di=1(t ,∆t )−0.5

]
,

which has the same standardisation as the state variable of the majority-vote system, to
bring Vdel between 0 and 1.

G.4.3 Infectious disease

While numerous infectious disease models for networks exist, we chose the simple sus-
ceptible - infected (SI) model. Each of the model’s agents i can be in either one of two
states qi : susceptible (qi = 0) or infected (qi = 1). There is no exposed or recovered state,
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Figure G.5: Evolution of the entropy of temporal entanglement S, and the state variable Vdis, for three values
of β, using ∆t = 15 minutes, for day 2 in the Baboons dataset. Pearson’s correlation coefficients (r ) are also
noted in the figure (which are the values only for this particular day). Note that Fig. 7.3(b) uses five days of the
Baboons dataset, leading to a slightly smaller Pearson’s correlation coefficient for β= 0.8, namely 0.93.

as commonly used in epidemiology. Each model run is initialised with 10% (randomly
chosen) agents being infected. Upon interaction in an event, if one of the participants is
infected, there is a probability β of other (susceptible) participants becoming infected as
well. We define a state variable dependent on t and ∆t , which is the average status q over
all agents:

Vdis(t ,∆t ) = 1

N

N∑
i=1

qi (t ,∆t ),

which is a number between 0 (no infected) and 1 (all agents infected).
Clearly β is a parameter for the spreading of the pathogen. For chapter 7, we have

chosen β = 0.8. For the Baboons dataset, below we present the data for two additional
values of β. While the Pearson’s correlation between S and Vdis decreases with decreasing
β, the correlation still remains substantial even for β as low as 0.2.
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Appendix H

Supplementary information to Chapter 8

Figure H.1: Histograms of the time stamps of events across the eight experiments. In red, the filtered windows
used in chapter 8 are highlighted.
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Appendix I

Supplementary information to Chapter 9

I.1 Model components

This SI is devoted to explaining the eight steps in Fig. 9.1 more elaborately. The general
intuition of the model is as follows. We start with a population of 170,721 agents divided
into 11 demographic groups that live throughout the 380 municipalities as depicted by
demographics data. Using mobile-phone signalling data, we stochastically infer move-
ments of these agents throughout the country, based on their demography and home
locations. This is done in the ‘mobility part’ (steps 1-4). Then, knowing all locations and
movements, we simulate an individual-based SEIR model on top of this, described in the
‘transmission part’ (steps 5-8). The model is on an hourly basis and has a spatial resolu-
tion of the 380 municipalities.

I.1.1 Agents and demographic groups [Step 1]

The first step concerns the definition of the agents and their attributes. We simulate the
Dutch population on a scale 1:100, meaning that each agent in the model represents 100
people in the population. The total size of the Dutch population in 2019 was 17,256,870.
All demographics and population data is obtained from Statistics Netherlands (Centraal
Bureau voor de Statistiek, CBS, in Dutch). Because we need an integer number of agents
in each municipality, we end up with a total of 170,721 agents by rounding down, which
results in a slightly lower number of agents than exactly the total divided by 100 (which
would be 172,569).

Only data aggregated on the municipality level is used, in avoidance of the violation
of privacy. The exact municipality division changes a little bit every year. Because the
mobility data (see SI I.1.2) was using the municipality division of 2018, we projected the
demographic data from 2019 onto the municipalities as they were in 2018. In turn, for
plotting purposes (e.g. for the maps in Fig. 9.1), the municipality borders and shapefiles
of 2020 are taken, requiring an additional projection for plotting. Note that year-to-year
changes of municipality divisions are minor and only affect small municipalities.

We split the Dutch population (per municipality) into eleven demographic categories,
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based on age, whether they go to school or not, and employment status. Data on employ-
ment status and whether people go to school are based on tax records and education
institutional registers, also from Statistics Netherlands. The resulting categories are dis-
played in Tab. I.1. Distinguishing other criteria other than age provides additional infor-
mation on how these people move (being frequent movements or not), specifies mixing
situations (Mossong et al., 2008) and provides additional information on demographic
distribution across the different municipalities. Importantly, it allows us to more explic-
itly target the right agents when implementing interventions (see SI I.1.7-I.1.8).

The overall fractions of each demographic group is displayed in Tab. I.1. The Middle-
age working category is by far the largest. Note that these fractions are not constant
across municipalities: some Dutch municipalities, especially those in the north and east
of the country, have a higher-than-average number of elderly and fewer children, and the
opposite is usually true for larger cities in the west.

Group Criteria Aspects
Age (y) Work School Amount (fraction) Av. time in home Daytime mixing Nighttime mixing

municipality home (not home) home (not home)
Pre-school children 0-4 - - 851880 (4.9%) 6% Home (Other) Home (Other)

Primary school children 5-11 - Yes 1295380 (7.5%) 6% School Home (Other)
Secondary school children 12-16 - Yes 991290 (5.7%) 6% School Home (Other)

Students 17-24 - Yes 1086240 (6.2%) 26% School+Work Home (Other)
Non-studying adolescents 17-24 - - 632530 (3.6%) 26% Work Home (Other)

Middle-age working 25-54 Yes - 5530360 (31.8%) 26% Work Home (Other)
Middle-age unemployed 25-54 - - 1231780 (7.1%) 6% Home (Other) Home (Other)

Higher-age working 55-67 Yes - 1623040 (9.3%) 26% Work Home (Other)
Higher-age unemployed 55-67 - - 1109170 (6.4%) 6% Home (Other) Home (Other)

Elderly 68-80 - - 2102530 (12.2%) 6% Home (Other) Home (Other)
Eldest 80+ - - 802670 (4.6%) 6% Home (Other) Home (Other)

Table I.1: The eleven demographic groups along with the criteria used to define them, and aspects of how they
are implemented in the model.

I.1.2 Inter-municipality travel [Step 2]

Given the distribution of the agents and the demographic categories across the Nether-
lands, we require an empirical basis for the inter-municipality movements of the agents.
This is provided in the form of the average Dutch municipality-to-municipality move-
ments over the period of March 1, 2019 up to and including March 14, 2019, by the
data company Mezuro. They directly measure these movements using cellular mobile
phone data and this has been verified using GPS data. For more details, see https:
//www.mezuro.com/. Specifically, the data comprises a matrix Mi j showing how many
(daily average) visits there were from people living in municipality i to municipality j .
The data does not contain information about movements within a given municipality.
Neither does it provide information about sequenced movements — for example when a
person living in Amsterdam goes to Rotterdam and later on the day goes to Utrecht, the
data indicates that there is a movement of an Amsterdam inhabitant to Rotterdam, and
a movement of an Amsterdam inhabitant to Utrecht (not from Rotterdam to Utrecht).
There is also no information on the duration of the visit nor about demographic aspects
of the people moving.

The daily average visits in Mi j are split into three categories: ‘frequent’, ‘regular’ and
‘incidental’, which is used to crudely infer which movement data to use for which demo-
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graphic category: frequent and regular movements are applied to working and school-
going agents, while incidental movements are applied to all other agents. So in fact, two
mobility matrices M are determined: one (Mfreq) with regular and frequent movements,
and one (Minc) with incidental movements, both averaged across the 14 days that this
data comprises.

I.1.3 Agent movements [Step 3]

The third step of the model concerns linking the mobility data to the movements of in-
dividual agents in the model. The movements are determined per agent. Each agent be-
longs to a particular demographic group g and lives in a municipality m. Given demo-
graphic group g , we use either Mfreq or Minc, as mentioned above. In the following, we
use M to denote the choice of one of these matrices. The municipality m points us to the
particular row Mm to use from the mobility matrix, containing the number of movements
from m to other municipalities. We use this information to create the scale parameters
for the Dirichlet distribution used to draw the fractions of the day from, that the agent
(living in m, belonging to g ), spent in each municipality. We do this as follows.

First, we have to normalise these movements in a proper manner. To account for
the fact that people living in some municipalities have above-average number of move-
ments, we do not normalise the movements Mm by the total (i.e., resulting in a row-sum
of 1), but by the amount of people living in m, effectively obtaining the number of move-
ments to each other municipality per inhabitant of m. However, because we aim to use
these elements to eventually draw fractions of the day spent in each municipality, we
also need to set how much time is spent in the home municipality itself (because Mmm
is not obtained from the data — it only contains movements between municipalities).
We assume that working people and students spend approximately 25% of their time,
and not-working people spend approximately 5% of their time in other municipalities.
Using the average row sums divided by the populations as mentioned above, this results
in values of 1 and 1.5, respectively, for weighing the time spent in the home municipality.
Summarised, this boils down to the following expression of the m′th scale parameters δ

of the Dirichlet distribution, for people living in municipality m, belonging to working
people and students:

δ(m,m′) =
{ Mfreq,mm′

P (m) · 2.5∑
i δ(m,i ) if m �= m′

1 · 2.5∑
i δ(m,i ) if m = m′ (I.1)

where P (m) is the population of municipality m. And analogously for other demo-
graphic groups:

δ(m,m′) =
{ Minc,mm′

P (m) · 2.5∑
i δ(m,i ) if m �= m′

1.5 · 2.5∑
i δ(m,i ) if m = m′ (I.2)

The factor 2.5∑
i δ(m,i ) sets the total sum of the Dirichlet parameters to 2.5, to set the

variability between draws from the resulting distribution to be constant. Histograms of
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the row sums of the mobility matrices, divided by the municipality population sizes are
shown in Fig. I.1. The resulting Dirichlet distribution is used to draw fractions of the day
that a person belonging to the respective demographic group and living in the respective
municipality spends in each municipality — meaning that, per person, 380 fractions are
drawn, one for each municipality. Because of the definition of the shape parameters, the
largest fraction is usually his/her home municipality. These fractions are converted to
integer-hours by multiplying with 24 and rounding down (leftover hours are spent in
home municipalities).

Figure I.1: Histograms showing the row sums of (a) matrix Mfreq and (b) matrix Minc divided by the population
sizes belonging to those rows.

To convert this list into an actual schedule of this person on this particular day, the
order of these visits should be decided. The time spent in the home municipality is cut
in two and the halves is placed at the beginning and ending of the day, marking staying
at home overnight. For example, given that p spends 14 hours of the day in their home
municipality, then p is assumed to spend the hours 0:00-7:00AM and 17:00-24:00PM in
this municipality. Duplicate hours spent in other municipalities are concatenated and
these concatenated periods are place in the leftover hours in a random order. This leads
to daily ‘schedules’ such as visualised in the bottom panel of Step 3 in Fig. 9.1.

We repeat this procedure seven times to end up with a weekly schedule. This ulti-
mately results in a movement pattern that varies from day to day, but is the same for
each day of the week (e.g., Monday in week 1 are equal to Mondays in other weeks). The
resulting fraction of people in other (not-home) municipalities is shown in Fig. I.2 for
different moments of the day, having an average of 16.6% of the time spent in other mu-
nicipalities.

We check the approximate validity of this pattern by comparing these results to sur-
vey data from Dutch governmental research agencies. In particular, from a regular survey
done by the Sociaal Cultureel Planburea (SCP), we know that people (12 years old and
older) in 2016 spent on average 20.5 hours on paid work, 3.3 on schooling and 42.1 on
recreation (Social Cultureel Planbureau, 2016). Also, 38% of the people lives in the munic-
ipality that they work in (Centraal Bureau voor de Statistiek, 2021), i.e., 62% has to travel
to another municipality for work. This means that 20.5

7·24 ·62% = 7.6% of the total time of a
day is on average spent in other municipalities because of work. Furthermore, we know
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Figure I.2: Percentage of people outside of their home municipality (black). At the bottom, in colours, daily-
averaged estimates of time spent outside the home municipality are displayed, due to the activities of work
(green), recreation (yellow) and school (red).

that 48% of students do not live in dorms (Kenniscentrum Studentenhuisvesting, 2020),
which we can use to approximate how many students have to travel between municipali-
ties for their schooling. Analogous to working time, we reason that an additional fraction
of time spent outside of the home municipality due to schooling is 3.3

7·24 · 48% = 0.94%,
assuming that students living in dorms outside of their school municipality and the fact
that youth between 12 and 18 do not live in dorms partially counterbalance. Concerning
recreation, we assume 10% of recreation being outside of the home municipality, which
results in yet another additional fraction of 42.1

7·24 ·20% = 5.0%. Summing them results in
13.5%. This is less than the observed 16.6% (grey line in Fig. I.2), but there are many large
uncertainties in these calculations (e.g., the time spending survey (Social Cultureel Plan-
bureau, 2016) is only based on people of 12 years and older), but we use them to have an
approximate validation.

Another validation to be made concerns the 2.5 in Eqs. (I.1) and (I.2), which is the to-
tal sum of the parameters of the Dirichlet distributions. Statistically, the total sum of the
scale parameters in a Dirichlet distribution indicates the variability across draws. There-
fore, we need to make sure that the variability we set here makes sense. We do this by
calculating the fraction of the day spent in the home municipality of people, and vi-
sualise the between-people variability in this metric. The results are shown in Fig. I.3.
In the left panel, the near-separation is noticeable between groups that had increased
cross-municipality movement (i.e., home-scale parameter of 1 in the Dirichlet distribu-
tion; students and working people) and those that did not (i.e., parameter of 1.5; other
groups). Also, we see that in many groups (also in the ‘All’ category), the distributions of
how long people are in their own municipality varies, and the tails overlap. The differ-
ences across the municipalities in the right column are explained by differences in their
mobility-to-population ratio (illustrated in the row sums in Fig. I.1 and demographic dif-
ferences. Even though we do not have observed data to compare these numbers, they
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do not seem to be unrealistic: large cities such as Utrecht, Amsterdam and Rotterdam
involve people that are probably working there, and may indeed therefore have a higher
fraction of time spent in their home municipality.

Figure I.3: Variability in the fraction of time spent in the home municipality. Panel (a): across different demo-
graphic groups. Panel (b): across a selection of municipalities.

I.1.4 Mixing [Step 4]

From steps 1-3, we know which people are in the same municipality at which moment of
time. In step 4, we determine the mixing of different demographic groups within a mu-
nicipality, assuming proportionate mixing. We base this on two factors: a demographic
stratification in the mixing, and a distinction of four different mixing situations. We fol-
low the POLYMOD study (Mossong et al., 2008; Prem et al., 2017) by distinguishing four
unique situations: ‘home’, ‘school’, ‘work’ and ‘other’. From Prem et al. (2017), we down-
loaded the average contact rate matrices, and converted them from their 16 demographic
groups to our 11 demographic groups.

Which of the four situations applies to a person, is determined by time of day, whether
the person is in his/her home municipality, and the demographic category the person
belongs to. The exact mixing matrices used is shown in Tab. I.1, under ‘Daytime mixing’
(corresponding to time between 8 and 18) and ‘Nighttime mixing’ (other times of day).
For the Students group, we make an exception by not taking one specific mixing matrix,
but averaging the ‘work’ and ‘school’ mixing matrices during daytime.

I.1.5 Initialisation and hospital admissions [Step 5]

Hospital admissions

Let us start with the hospital admission data itself. This is obtained from the Nationale
Intensive Care Evaluatie (NICE) registration, which is the official institution for hospital
reports. In particular, the data can be found under https://data.rivm.nl/meta/srv/
dut/catalog.search#/metadata/4f4ad069-8f24-4fe8-b2a7-533ef27a899f?tab=
relations, which are daily numbers per municipality. In particular, this means that all
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model results had to be translated into daily number (summing over a running window
of 24 time steps).

We proceed by discussing the translation between infection cases and hospital ad-
missions, which is required for both the initialisation and calibration. Following de Vlas
and Coffeng (2021) we use a time lag between becoming symptomatic (in model terms:
infectious I ) and a potential hospital admission of being Weibull-distributed with mean
14 and scale parameter 10. The probability of hospital admission phos, given that a per-
son becomes infectious is not equal for all people: elderly are more susceptible to be-
ing hospital admitted than young children, for example. In Tab. I.2, we show phos across
the various demographic groups. These probabilities are determined as follows. Using
the seropositivity data during the Dutch first wave (Vos et al., 2021) and knowing how
many people there are in each age group (see SI I.1.1), we can estimate the cumulative
number of infection cases per group. Combining this with cumulative hospital admission
data per age group, we can divide the two to get the hospitalisation probability per age
group, which can be translated to the 11 demographic categories we use in chapter 9.
These probabilities phos per demographic category are shown in Tab. I.2. The Weibull-
distributed temporal translation and demography-stratified probability of hospitalisa-
tion are done when translating the model results into hospital admissions, for example
in the red curve in Fig. 9.1a.

Demographic group phos h(g )
Pre-school children 0 1.0

Primary school children 0 2.0
Secondary school children 0.0018 3.051

Students 0.0006 5.751
Non-studying adolescents 0.0006 5.751

Middle-age working 0.0081 3.6
Middle-age unemployed 0.0081 3.6

Higher-age working 0.0276 5.0
Higher-age unemployed 0.0276 5.0

Elderly 0.0494 5.3
Eldest 0.0641 7.2

Table I.2: Susceptibility parameter h(g ) and probability of hospital admission phos.

Initialisation

The model is initialised with an estimated number of infectious cases in the period up
to March 1, 2020. Initialising with fewer cases (i.e., up to before March 1) would increase
the sparsity, and taking a longer initialisation input (i.e., up to later than March 1) would
limit our ability to test intervention measures in Phase 1. This had to be derived from
hospital admissions, because the testing capacity was so low in this period that the tested
infection cases cannot be used to estimate the real number of infections.

While the conversion of model output to hospital admissions is done using a Weibull
distributed time lag, we do the initialisation simpler. We start with hospital admission
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data in the observed data (i.e., it is the other way around), which are specified per mu-
nicipality. We use a flat percentage phos,0, which is the weighted average of all hospi-
tal admission probabilities in Tab. I.2, weighted by the respective category size, and we
translate these numbers back 14 days into the past (instead of fully Weibull-distributed).
The respective affected agents are randomly drawn (within each specified municipal-
ity) based on the resulting numbers. These were assigned the disease stage ‘infectious’ I ,
while the rest of the population was assigned ‘susceptible’ S. We aim to approximate in
the initialisation the number of infection cases up to March 1, which means we have to
take hospital admission data up to March 15.

I.1.6 Disease transmission and λ [Step 6]

The transmission dynamics and force of infection λ are already discussed in the Meth-
ods section of the chapter 9. This section focuses on the susceptibility parameter and
the daily cycle, both part of the equation for λ. The first part of the equation involves a
parameter h(g ) that reflects the susceptibility to the disease, based on the demographic
group g . The age-specific susceptibility parameter shown in Tab. I.2 is based on esti-
mations used in Rijksinstituut voor Volksgezondheid en Milieu (RIVM) (2021), table A3.
The second part (β(t ) · s̄(t )) contains a parameter β that involves behavioural aspects
like wearing face masks and keeping social distance — this parameter is used for dis-
tinguishing four phases in the epidemic as described later. The parameter s̄(t ) = s(t )∑

t s(t )
(where t ∈ [0,24] in hours) is what we refer to as the ‘daily cycle parameter’, reflecting the
fact that people hardly mix during the night, and more throughout the day (see for values
of s(t ) per hour in Tab. I.3).

Hour of day (t ) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
s(t ) 1 1 1 1 1 1 0.75 0.5 0.25 0 0 0 0 0 0 0 0 0 0 0.2 0.4 0.6 0.8 1

Table I.3: Daily cycle parameter s(t ), from which we obtain s̄(t ).

I.1.7 Intervention data sources [Step 7]

There are four factors that we apply to mimic intervention measures. The first are be-
havioural changes such as wearing face masks and social distancing, represented by the
time-varying values of β. We use the β’s as calibration parameters and do not use any
external data source for their determination, other than the qualitative fact that govern-
mental policy on this was issued from phase 2 and on, being more strictly adhered to in
phase 3, and loosened in phase 4. In other words: β should decrease a bit in phase 2, even
further in phase 3, and increase again in phase 4. The phases are summarised in Tab. 9.1.

Other simulated intervention measures were related to mobility, restricting various
events and working branches, and applying a working-from-home policy, which were all
informed by data. The reduction in inter-municipality travel was quantified using Google
Mobility data, which describe how mobility changed across this period across six cate-
gories (shown in Fig. I.4). Using the average of three of these categories — transit stations,
workplaces and retail & recreation, chosen because these reflect inter-municipality travel
best — and averaging the mobility changes within each phase, we end up with three
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scalar percentages for phases 2, 3 and 4, representing a mobility reduction. These per-
centages are implemented by randomly selecting the respective percentage of the popu-
lation among the employed demographic categories, and placing them at home.

Figure I.4: Percentual mobility changes with respect to the baseline, provided by Google Mobility data. Six
categories are distinguished, in different colours. For the purpose of measuring how inter-municipality travel
reduced, we use the average of the categories ‘Transit Stations’, ‘Workplaces’ and ‘Retail and Recreation’. For
each colour, the raw data (thin lines) and 14-day running averaged data (thicker lines) are shown.

Across the first wave of COVID-19, people also started mixing differently. This is ex-
plicitly measured in the Netherlands using surveys in the PIENTER study (Vos et al.,
2021). There, three survey studies are done: one in February 2020, one in April 2020 and
one in June 2020. We only use this data in terms of their percentual changes: that of April
with respect to February, and that of June with respect to February. The authors did not
distinguish the same four unique mixing situations (home, work, school and other) as we
use here, so we translate their (age-stratified) mixing changes into a single 11-by-11 ma-
trix representing percentual changes in the contact rates between the demographic cate-
gories, and apply these percentual changes to all four mixing matrices in the same man-
ner. In particular, the mixing changes in phase 2 and 3 are determined by the percentual
mixing changes from the April surveys with respect to February surveys, and analogously,
the changes in phase 4 are determined from the June surveys. See Fig. I.5.

A final important relevant factor to address among the changes and interventions
during the first wave, was the closing of schools. The specific school closure dates were
March 16, 2020 - May 10, 2020, which are directly used in the model, which in partic-
ular means that the schools get closed halfway phase 2. School closure is implemented
by two aspects. First, during daytime, all agents belonging to the demographic categories
Primary school children, Secondary school children and Students are placed at their home
municipality, and we now utilise the ‘home’ mixing matrix instead of the ‘school’ mixing
matrix to determine their mixing. Second we incorporate the effect of parents of pri-
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Figure I.5: Changes applied to the model mixing matrices, calculated from survey mixing matrices in the PIEN-
TER study (Vos et al., 2021). Top panels: daily contacts in absolute numbers, stratified by age as depicted in the
reference study (left), April 2020 surveys (middle) and June 2020 surveys (right). Bottom panels: element-wise
reductions in contact numbers relative to the reference. These reduction percentages are converted to the de-
mographic groups we use in this study and applied throughout the phases.

mary school children being forced to stay at home because their children are not going
to school anymore. This means that, also during daytime, we place 12% of the Middle-
age working people in their home municipality and set their mixing to ‘home’. These are
chosen separate from people working at home due to the mobility changes, to prevent
double-counting.

The 12% is calculated as follows. In the Netherlands, 84% of people around 45 have
children (CBS, 2004). Applying the crude assumption that agents in the Middle-age work-
ing group (25-54 years) have equal number of children, we deduce that the ages of those
children are uniformly distributed between -6.6 and 22.4 years old (from which you clearly
see why we only use the Middle-age working category), using the average age of mothers,
which is 31.6 (CBS, 2021). Using the Dutch primary-school ages of 4-12 years, this means
that 8/(22.4–6.6) = 28% of these children are at primary schools. Assuming a rough esti-
mate of 50% of those parents actually staying home (the rest having babysitters, family
members or other means of taking care of their children), we end up with 0.84·0.28·0.50 =
0.12, which is 12%.

I.1.8 Connecting model runs to real dates and calibrate [Step 8]

Even though the model is initialised with an approximation of the infection cases up to
March 1, each simulation requires a spinup to start mimicking the observed data well.
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This initial evolution is different for each simulation, and therefore we have to link each
simulation separately to real dates. In other words, the model output has to be calibrated
to actual dates. For this, we use the onset of phase 2 as a reference point. In particular, in
each time step of the model simulation, we calculate the total number of I and R agents.
If this crosses the threshold of 1.8% of the population, phase 2 starts, meaning that this
is March 12. Once this is done, the aforementioned calibration using the β values could
be done.

I.2 Additional model results

I.2.1 Explanation colours in Fig. 9.1

In Fig. 9.1, step 2, the green colours in the map and widths of the lines are both showing
the same data, i.e., the total number of visitors from Amsterdam to other municipalities
on March 1, 2019, as marked by the Mezuro data (see SI I.1.2). Several high-visited mu-
nicipalities are highlighted by using black contours. In Fig. 9.1, step 5, the total number
of hospital admissions are shown between February 27 and March 15 in blue shades.
Several municipalities with high hospital admission counts are highlighted using black
contours. This information is used for the initialisation, as mentioned in SI I.1.5.

I.2.2 Variability in geographic evolution within the ensembles

294

Supplementary Information

157823 Dekker BNW.indd   294157823 Dekker BNW.indd   294 18-03-2022   10:2218-03-2022   10:22



Figure I.6: Percentages affected on May 25 using the Reference scenario, for 20 unique runs (out of an ensemble
of 40). Each column represents identical mobility seeds.
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