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Abstract. Modelling social phenomena in large-scale agent-based sim-
ulations has long been a challenge due to the computational cost of
incorporating agents whose behaviors are determined by reasoning about
their internal attitudes and external factors. However, COVID-19 has
brought the urgency of doing this to the fore, as, in the absence of viable
pharmaceutical interventions, the progression of the pandemic has pri-
marily been driven by behaviors and behavioral interventions. In this
paper, we address this problem by developing a large-scale data-driven
agent-based simulation model where individual agents reason about their
beliefs, objectives, trust in government, and the norms imposed by the
government. These internal and external attitudes are based on actual
data concerning daily activities of individuals, their political orientation,
and norms being enforced in the US state of Virginia. Our model is
calibrated using mobility and COVID-19 case data. We show the util-
ity of our model by quantifying the benefits of the various behavioral
interventions through counterfactual runs of our calibrated simulation.

Keywords: Large-scale social simulation · Norm reasoning agents ·
Computational epidemiology

1 Introduction

In social systems in general, and in the science of epidemiology in particular,
human behavior has always been recognized to play a crucial role [9]. This is espe-
cially true in the COVID-19 pandemic since, prior to the availability of vaccines,
efforts at containing the epidemic have emphasized behavioral changes, such as
mask wearing, physical distancing (e.g., keeping 6 ft apart), and social distancing
(e.g., working from home, schooling from home). Compliance with these recom-
mendations has varied widely, both spatiotemporally and demographically [12].
In most places, these non-pharmaceutical interventions (NPIs) were implemented
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starting in March 2020. For example, in the US state of Virginia nine Execu-
tive Orders (EOs) were implemented between March and July 2020. Were some
of these EOs more effective than others in limiting the spread of COVID-19?
More generally, what determines the effectiveness of NPIs? Does their timing
and sequence matter? These are all important questions to answer for devel-
oping effective mitigation plans for the next major epidemic. In this work, we
propose an agent-based simulation approach for these problems, focusing on an
analysis of the EOs implemented in Virginia.

Computational models of disease spread, including agent-based simulations,
have become quite sophisticated. However, incorporating realistic models of
human behavior in these simulations remains a challenge [5,10]. Most models
assume a certain level of compliance with a behavioral intervention, and apply
it uniformly at random [16]. In reality, however, compliance can be highly non-
uniform as it depends on a number of factors, including: demographics, peer
influence, political orientation, risk assessments, and beliefs about the efficacy of
the behavior [2,4]. To improve epidemic simulations, we therefore need methods
for the realistic modeling of behavior.

Belief-Desire-Intention (BDI) models developed in the MAS community, par-
ticularly those incorporating normative reasoning, are a natural fit for this prob-
lem [15]. However, it has been challenging to find appropriate data to calibrate
such behavior models in simulations. Our approach is to use cellphone-based
mobility data and a synthetic population [1] to create a data-driven simulation
which is sufficiently detailed that the effects of behavioral responses to the EOs
can be evaluated. To address the challenges of scaling, we adapt the BDI-based
multiagent programming technology, 2APL [6,7], to support discreet time steps
and deferral of action execution. We integrate this new library, Sim-2APL, with
a new distributed agent-based simulation framework we call PanSim. This aspect
of the work is presented in our companion paper [3]. In the current paper, we
focus on the simulation design and evaluation. Our main contribution here is a
framework that allows detailed investigation of the effects of non-pharmaceutical
interventions through the use of multiple sources of data and appropriate behav-
ioral models for agents.

2 Simulation Design

In this section, we describe our COVID-19 simulation, the key components of
which are illustrated in Fig. 1. We start with a synthetic population of the
US state of Virginia, where agents have realistic demographics, weekly activity
schedules, and activity locations drawn from real location data. In our simula-
tion, each individual in the synthetic population is represented by a norm-aware
Sim-2APL agent (Sect. 2.2) which reasons about whether to comply with the
various EOs that were implemented in Virginia (Sect. 2.3). The agents interact
via a disease model implemented in the novel PanSim distributed environment
(Sect. 2.4). In Sect. 3 we show how we calibrate the parameters of our simulation
with real-world data, while in Sect. 4 we evaluate our simulation by comparing
the disease progression when different norm interventions are put in place.



COVID-19 Simulation with Norm-Aware Agents 101

ACS, NHTS
~3.5mln 

addresses

SYNPOP
Popula�on 

with weekly 
ac�vi�es

Sim-2APL
Norm-aware

agents

PanSim
Simulate 
disease 

spreading

Norms �meline Virginia

Real-world data
Sim-2APL: 

Cuebiq mobility
PanSim: 

COVID cases

mobility
index & 

epicurve

Experimentsselected norms

epicurve

Agents design

Epidemic simula�on with norm-aware agents

Simula�on parameters
Sim-2APL: trust and fa�gue

PanSim: infec�vity

δ

Calibrate

Person

County

Occupa�on

Work Hours

Shopping loca�on

Shopping �me

...

§2.1 §2.1 §2.2-2.3

§2.3

§2.4

§3

over-
sampled

by
mapped

1:1
alternate

§4

mobility
index & 
epicurve

affect

Fig. 1. COVID-19 simulation setting.

2.1 Data Sets Used in the Simulation

We use four data sets in this work, as described briefly below.

Synthetic Population of Virginia, USA: Agents in our simulation are drawn
from a synthetic population of the state of Virginia, USA. This synthetic popu-
lation has been constructed from multiple data sources including the American
Community Survey (ACS), the National Household Travel Survey (NHTS), and
various location and building data sets, as described in [1]. This gives us a very
detailed representation of the region we are studying (multiple counties within
Virginia). Agents are assigned demographic variables drawn from the ACS, such
as age, sex, race, household income, and political orientation. In each county c,
we label each household as Democratic with probability equal to the percent-
age of Democratic voters in the 2016 U.S. presidential elections in county c, and
Republican otherwise. Agents are also assigned appropriate typical weekly activ-
ity patterns by integrating data from the NHTS. For each activity, each agent is
assigned an appropriate location, using data about the built environment from
multiple sources, including HERE, the Microsoft Building Database, and the
National Center for Education Statistics (for school locations).

Mobility Data: In order to model the changes in mobility due to various
Executive Orders (EOs) implemented between March and July 2020, we use
anonymized and privacy-enhanced cellphone-based mobility data provided by
Cuebiq. This data set contains location pings generated from the cellphones of a
large number of anonymous and opted-in users throughout the USA. Cuebiq col-
lects data with informed consent, anonymized all records and further enhanced
privacy by replacing pings corresponding to home and work locations with the
centroids of the corresponding Census blockgroups. We aggregate the data to the
county level as follows. First we calculate the average radius of gyration for cell-
phone users in the county. The radius of gyration is given by r =

∑
l d(l, lc)/k,

where l is the location (latitude and longitude) of the user, lc is the centroid of all
the locations visited by the user on that day, k is the number of locations visited
by the user on that day, and d is the Haversine distance. We then calculate a
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mobility index as the percentage change in average r over all users in a given
region on a given day compared with the average for the same day of the week
in the same region during January and February of 2020, i.e., before any EOs
were issued. For example, the mobility index for a specific Monday in May 2020
is the percentage change in the average r on that day compared to the average
over all Mondays in January and February 2020.

COVID-19 Case Data: We use county-level COVID-19 case data from USA
Facts to calibrate the disease model in our simulation. A caveat is that the
number of confirmed cases probably under-counted the number of actual cases
substantially, especially early in the epidemic, due to limited testing. We com-
pensate for this in the simulation calibration by choosing a scale factor of 30,
i.e., we assume that the actual number of cases was 30× the reported number of
cases. This arbitrary choice can straightforwardly be changed without affecting
the methodology in our work.

Executive Orders in Virginia: We use a data set on Executive Orders that
were implemented in each state in the USA [14] from the Johns Hopkins Coro-
navirus Resource Center [11]. From this we extract the ones that were imple-
mented in Virginia in the period between March 1st and June 30th, 2020. In
the simulation, EOs are represented by norms that agents may obey or vio-
late, as described in Sect. 2.3. We quantify the benefits of these EOs through
counterfactual runs of our calibrated simulation in Sect. 4.

2.2 Agents Activities and Deliberations

Each agent in the synthetic population is characterized by its weekly activity
schedule, a set of typical daily activities over the course of one week. The sched-
ule defines the location, start time and duration of all agents’ activities as one
of 7 distinct high level activity types: HOME, stay at or work from home; WORK,
go to work or take a work-related trip; SHOP, buy goods (e.g., groceries, clothes,
appliances); SCHOOL, attend school as a student; COLLEGE, attend college
as a student; RELIGIOUS, religious or other community activities; and OTHER,
any other activity, including recreational activities, exercise, dining at a restau-
rant, etc. For example, one activity in an agent’s schedule could state “SHOP at
location l between 7 p.m. and 8 p.m.” These activity types categorize a larger
number of low-level activity types, including but not limited to those describing
the categories above. The high level activity types are what the agents use for
reasoning, while the lower level activity types – which we do not use for reason-
ing because they are not guaranteed to have been sampled accurately during the
creation of the synthetic populations – are only used to assign the location and
activity time and duration according to the activity schedule. Each simulation
step corresponds to one day, and at each simulation step, each agent retrieves
and performs the activities from its activity schedule for the day of the week
corresponding to that step.

We interpret each activity in an agent’s daily schedule as a (to-do) goal for the
corresponding Sim-2APL agent. For each activity (i.e. goal) in its daily schedule,
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the agent generates a plan based on its goal, identifies any norms applicable to
the activity, and decides whether it will obey or violate the norm(s) (See Sect. 2.3
below). If there are no applicable norms, or if the agent decides not to obey the
norm, the agent uses the default plan for the to-do goal, i.e., the planned daily
activity. However, if the agent decides to obey an applicable norm, the default
plan for the daily activity is transformed into a norm-aligned plan. For example,
if a norm specifies a mask should be worn in public places, the SHOP activity in
the example above will be transformed into a SHOP activity with a “wearing a
mask” modality.

2.3 Reasoning with Norms

We consider 11 norms representing a subset of the Executive Orders imple-
mented in the state of Virginia (US). We distinguish regimented norms (R) that
cannot be violated by agents, from non-regimented norms (NR) where agents
may autonomously decide whether to comply with the norm or not. In addition,
some norms have parameters that further specify the applicability of a partic-
ular instance of the norm to the activity itself or to the agent considering that
activity. For example, the type parameter of the BusinessClosed norm specifies
the type of business to which the norm instance applies (e.g., an instance may
specify that only Non-Essential Business (NEB) should close), while the size and
type parameters of the SmallGroups norm specify the maximum size of groups
permitted in a context of a particular type (e.g., no more than 10 people are
allowed in a public space). The type parameter of SchoolsClosed, finally, specifies
the grade levels that are closed (e.g., K-12 specifies all K-12 level schools are
closed, i.e. the norm applies only to activities of type SCHOOL when the agent
performing the SCHOOL activity is attending K-12 level education). The norms
are summarized in Table 1 and briefly explained in Table 2. Figure 2 shows the
date on which each norm came into force.

Factors Influencing Agent Decisions. If a regimented norm applies to an
activity of an agent, the agent simply obeys the norm. If a non-regimented norm
applies, the agent’s decision whether to obey or violate the norm is influenced by
a number of factors determined by the agent’s beliefs and preferences regarding
the activity. For example, in deciding whether to maintain physical distancing in
a particular shop (i.e., to obey a MaintainDistance norm during a SHOP activity
in a particular shop), agents take into account how many other agents they
have observed maintaining physical distancing (dist) in the shop in the past,
and their trust in the government1. Note that a norm may not be applicable to
(relevant for) certain activities or agents, e.g., the norm WearMaskPublInd is
not applicable to WORK or SCHOOL. Each factor is represented by a real value in
the interval [0, 1], and the factors are summarized in last five columns of Table 1.
1 Our choice of the factors influencing the agents’ decisions, as well as of the norms

mentioned above, should be considered as a ‘proof of concept’ to illustrate our frame-
work. In more realistic simulations, elicitation of the most relevant factors in a well-
designed study would be paramount. This is left for future work.
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Each agent’s initial trust in the government is determined by sampling a
beta distribution Betav(αv, βv) (with v = R for Republican and v = D for
Democrat), where αv = μv · κ, βv = (1 − μv) · κ. The means μR and μD are
determined by calibration (explained in Sect. 3); κ = αv+βv = 100 characterizes
the spread of the distribution, and, for simplicity, is fixed for both distributions.
To simulate the decreasing compliance with measures that in reality manifested
over time, agents in our simulation decrease their trust in the government by
a constant factor f per simulation step after tf simulation steps (days). Both
tf and f are fixed for all agents and are determined through calibration. The
factor acc specifies the probability that an agent can be accommodated to work
from home (in our simulation acc = 0.45 [8], and is the same for all agents). The
factors mask, dist and symp specify the fraction of other agents encountered at
a certain location who were wearing a mask, maintaining physical distancing,
and who were (visibly) symptomatic, respectively. Symptoms are only visible
if an agent is actually infected (determined by the disease model PanSim, see
Sect. 2.4), but not all infected agents are symptomatic. The factor all specifies
the number of agents encountered at a given location in excess of the maximum
number of agents allowed by the norms currently in force.2

Table 1. Which activities are affected by regimented (R) and non-regimented (NR)
norms, and the factors influencing the decision to comply with each norm.

Norm Id Param Type Activity types transformations Influencing agents believes

WORK SHOP OTHER SCHOOL RELIGIOUS trust symp acc mask dist all

AllowWearMask n1 – NR mod mod mod mod mod x x

BusinessClosed n2 type R del

EmplWearMask n3 – R mod

EncourTelework n4 – NR del x x x

MaintainDistance n5 – NR mod mod mod mod mod x x

RedBusinessCapac n6 perc R del

SchoolsClosed n7 type R del

SmallGroups n8 size, type NR del del del del del x x x

StayHome n9 appl NR del del del del del x

TakeawayOnly n10 – R short

WearMaskPublInd n11 – NR mod mod mod x x

Violating or Obeying a Norm. To determine whether to obey or violate
a norm n when performing an activity act , the agent calculates a probability
p(n, act) of obeying n at the current simulation step, given by:

p(n, act) =
1

1 + e(−k · (x − x0))
(1)

2 Due to space limitations, we refer to the code repository for the specific details of
the factors: https://bitbucket.org/goldenagents/sim2apl-episimpledemics.

https://bitbucket.org/goldenagents/sim2apl-episimpledemics
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where x represents the evidence for complying with n computed as the aver-
age value of the factors (excluding the trust factor) that support the compliance
with n when performing act, x0 = 1 − trust represents the agent’s distrust in
the institution that issued n, and k is the logistic growth rate or steepness of
the curve (k = 10 in our simulation). Note that when the trust in the institution
is extreme (e.g., x0 is close to 0 or 1), the decision to comply with the norm
becomes more “resistant” to evidence supporting norm compliance. For exam-
ple, if the agent has no trust in the institution (i.e., x0 = 1), the probability
of complying with a norm that depends only on the factor mask is 0.5 when
100% of other agents do wear a mask, but drops off steeply as the value of mask
declines (when 75% of other agents do wear a mask, the probability to comply
with the norm drops to approximately 0.07 for k = 10). However, if the trust
value is more balanced (e.g., x0 = 0.5), the decision to comply with the norm
relies more on the supporting evidence.

Table 2. A brief explanation of the norms enforced in our simulation and of their
parameters.

Id Interpretation Parameters

n1 Mask wearing is allowed and encour-
aged

–

n2 Businesses of type type are closed type ∈ {NEB}: the type of business,
NEB = Non Essential Business

n3 Employees working in retail must wear
a mask during work activities

–

n4 Telework is encouraged –

n5 Physical distance of 1.5 m should be
maintained

–

n6 Capacity of business should be reduced
to perc

perc: percentage of business capacity

n7 Schools of type type are closed type ∈ {K12, HE,K12 or HE}: the
type of school, K12 = primary and sec-
ondary education HE = Higher Edu-
cation (HE)

n8 The maximum allowed size of groups of
type type is size

type ∈ {public, private, all}: the target
settings, either public, private or both
(all); size ∈ N: maximum size of groups

n9 Stay at home if belong to category appl appl ∈ {sick or age ≥ 65, all}: the
group of agents to which the norm
applies, either people sick or older than
65 (sick or age ≥ 65), or everyone (all)

n10 Only take away allowed for restaurants –

n11 A mask must be worn in public indoor
settings

–
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When an agent violates a norm with respect to a scheduled activity, the norm
is ignored for that activity and the agent adopts the default plan for the activity
(the to-do goal of the agent). When an agent obeys a norm with respect to an
activity, the activity is subject to a transformation. We distinguish three types
of transformations of activities:

– mod : the modality (in our model either wearing a mask or practicing physical
distancing) of the activity is changed. For example, when the norm Wear-
MaskPublInd is obeyed for the SHOP activity, the agent performs that activ-
ity while wearing a mask. In the code, the modality is a flag that is inter-
preted by PanSim and affects the susceptibility or infectivity of an agent (see
Sect. 2.4).

– del : the activity is cancelled. When an activity is cancelled, it is transformed
into a HOME activity, unless the agent can shift the next scheduled activity.
For example, if an agent is scheduled to go to WORK, but its working place
is closed, the agent will stay HOME, unless in its daily schedule there is a
consequent activity (e.g., a SHOP activity) that can be performed earlier.

– short : the activity is shortened. For example, when obeying a TakeawayOnly
norm, the agent will spend less time at the restaurant.

The Activity Types Transformations shown in Table 1 specify how the norms
affect each activity type. If no transformation is indicated in Table 1 for a pair
〈norm n, activity type at〉, the norm n does not apply to activities of type at.
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Fig. 2. Cumulative number of combined recorded cases in the counties of Goochland,
Fluvanna, and Charlottesville (blue line). Red and green lines are introduction of new
restrictions and relaxations of previous ones. (Color figure online)

2.4 Environment Design

To model the spread of COVID-19, we implemented a novel distributed agent-
based epidemic simulation platform, which we call PanSim. In PanSim, a simu-
lation progresses in discrete timesteps. When a Sim-2APL agent decides to visit
a location, it interacts with other agents visiting that location, and observes
the visible attributes exhibited by these agents such as: coughing, wearing mask,
social distancing, etc., allowing it to modify its behavior based on its observations
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at subsequent timesteps. The probability of symptomatic and asymptomatic
agents transmitting or becoming infected per unit time (5 minutes) under dif-
ferent action modalities such as the wearing of a mask or physical distancing,
is given by the probabilistic addition of all individual interactions of that day.
To simulate cases being introduced from outside, we artificially expose 5 agents
during the first 5 days of the simulation, and 3 more agents each simulation day
after.

The novelty of PanSim lies in the fact that, unlike previous epidemic simu-
lation frameworks, PanSim has explicit support for modeling human behavior,
increasing the number and type of social phenomena that can be modeled, and
allowing disease progression to be driven by explicit colocation rather than statis-
tical likelihood of contact between agents. The colocation in turn is the result of
locations and times that individual agents – implemented in any agent program-
ming language – can explicitly choose for their activities. PanSim further allows
scaling up the number and complexity of agents and visits by distributing the
simulation across multiple compute nodes, where each node simulates a distinct
set of agents and locations. PanSim synchronizes its instances across compute
nodes by sharing only the data relating to agents visiting a location simulated
on another node, ensuring all its instances remain synchronized throughout the
simulation with minimal communication. Both the framework and experiments
showing the scalability are described in detail in the companion paper [3].

3 Calibration

We calibrate the behavior and disease parameters independently from each other
in two distinct processes. For this reason, the best parameters for either model
were not yet available when calibrating the other. In each process, the parame-
ters for the model not being calibrated were fixed to our best estimations (based
on results of earlier trial runs) of the values. In other words, the parameters for
the disease model were fixed in the process in which we calibrated the behav-
ior model, and vice versa. Both calibration processes are performed by means of
Nelder-Mead (NM) minimization [13]. NM iteratively refines an initial configura-
tion of parameters until it finds a local optimum that minimizes a given objective
function, in this case the Root Mean Square Error (RMSE) between observations
in the simulation and the real world. Calibration was performed using data from
the counties of Charlottesville (41119 unique agents in the synthetic population,
83.25% of which voted Democratic, 16.75% Republican), Fluvanna (24109 unique
agents, 45.35% Democratic, 54.65% Republican), and Goochland (20922 unique
agents, 37.55% Democratic, 62, 45% Republican) for a total of 86150 agents,
61.55% Democratic, 33, 45% Republican. These counties have been selected for
their proximity, number of agents, and variation in voting preference. For each
set of parameters selected by NM, we run 5 different simulations in order to
account for non-determinism in the simulation.

Agent Parameters. We calibrate the four parameters of the agent model intro-
duced in Sect. 2.3, i.e., the means μD and μR of the two beta distributions
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Fig. 3. The mobility index observed in the simulation plotted against that recorded
by Cuebiq in each simulated county (a), and percentage confirmed cases (×30) of the
population plotted against that of the recovered agents in the simulation (b).

from which we sample the trust attitudes of Democratic and Republican agents,
respectively, the fatigue factor f , and the time step tf in the simulation at which
the fatigue becomes active. We calculate the RMSE between the mobility index
in our simulation and in the real-world Cuebiq data (calculated as per Sect. 2.1).
We apply a smoothing to the mobility index of each day by averaging it with
the mobility index of the 6 preceding days in order to smooth out the intrinsic
difference in the weekly repeated mobility trends between the synthetic popu-
lation and Cuebiq data. We perform these simulations with the disease model
parameters fixed to inf s = 0.00045 and inf a = 0.0003375 (best estimate).

Disease Model Parameters. The two parameters of the disease model that
are calibrated are the infectivity of symptomatic (inf s) and asymptomatic (inf a)
agents. We calculate the RMSE between the cumulative infection case count in
the three simulated counties and the number of recovered agents in our sim-
ulation. The agent parameters are fixed to μD = 0.776816, μR = 0.106955,
f = 0.0125, and tf = 60 (best estimate).

Calibration Results. For both calibration processes, we run NM until 10
consecutive configurations of parameters did not improve the objective func-
tion. The final parameters determined by our calibration are: μD = 0.704621,
μR = 0.004685, f = 0.0125 and tf = 60 for the agent model (RMSE: 17.6574),
and inf s = 0.0000481 and inf a = 0.0000241 for the disease model (RMSE:
2052.0222). Figure 3 compares the mobility (Fig. 3a) and the number of recov-
ered agents (Fig. 3b) resulting from these parameters with the real data. The
agent parameter calibration found a relatively good fit for the decrease in mobil-
ity, including the increase in mobility after the first few weeks. However, the large
differences between the different counties could not be reproduced by our simu-
lation. The disease model calibration resulted in a slightly less aggressive spread
of the disease than the (scaled) recorded case count in the first few months of
the COVID-19 outbreak.
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4 Quantifying the Effects of Normative Interventions

We perform an experiment with the calibrated models to understand the relative
impact of the measures instigated by the institutions in Virginia on the behavior
of its residents. Given the list of n = 9 normative interventions that took place in
Virginia as per Fig. 2, we run 10 different experiments: in experiment Ei, for 0 ≤
i ≤ n, we enact only the first i executive orders. For example, in experiment E0,
no norm is enforced, i.e., we simulate a scenario where no behavioral intervention
takes place; in experiment E1, we enact only the first EO, i.e., norms {n1, n4}
starting from March 12th; in experiment E2 we enact the first two EOs, i.e.,
{n1, n4} starting from March 12th and also {n7(K12 )} starting from March
13th, etc. In each experiment we compute the total number of agents that has
been infected at the end of the simulation. This time, we include the county of
Louisa in the simulation, for a total of 119087 agents. We run each experiment
5 times to account for non-determinism in the simulation.

Fig. 4. Cumulative cases in E1-10, and in the real-world (×30, blue line). (Color figure
online)

Figure 4 shows the number of recovered agents at each time step in the simu-
lations (SIR plots available in the code repository), with the standard deviation
between the 5 runs shown as the confidence interval. E0 shows that if no mea-
sures had been taken, the spread of COVID-19 would have been several times
more rapid. The higher curves do not show exponential growth until the end of
the simulation, since our simulation contained only 119087 agents. After a suffi-
ciently large portion of the population has been infected it becomes increasingly
hard for the disease to encounter susceptible agents, slowing the spread.

Table 3 shows the total number of agents that have been infected at the end
of the simulation (including those not yet recovered). The experiment E9, where
all the norms were enforced, shows the lowest number of total infections, with
a reduction of 27% in cases compared the E8 – in which the maximum group
size was completely lifted instead of relaxed from 10 to 50 people – and an 83%
reduction compared to the experiment where no norms were enforced.

The largest decrease was from E5 to E6, closely follows by E6 to E7. In
the last EO in E6 the maximum group size of 10 was also applied to private
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Table 3. The average number of cumulative cases in each experiment

Exp. Cumulative cases Diff. w.r.t. Ei−1 Diff. w.r.t. E0

E0 90983.6 ± 41.802 0.0%

E1 80711.0 ± 343.627 −11.29% −11.29%

E2 71616.2 ± 241.017 −11.27% −21.29%

E3 71760.6 ± 297.292 +0.20% −21.13%

E4 64674.4 ± 445.714 −9.870% −28.92%

E5 49118.0 ± 4162.414 −24.05% −46.01%

E6 30505.0 ± 10202.892 −37.89% −66.47%

E7 20599.0 ± 4423.636 −32.47% −77.36%

E8 21195.6 ± 4044.473 +2.90% −76.70%

E9 15569.6 ± 5144.708 −26.54% −82.89%

gatherings, in addition to the already closed K-12 schools higher education was
closed, and physical distancing was declared compulsory. In the last EO in E7,
the earlier reduction of business capacity to 10 was relaxed to 50% capacity,
but offset by requiring all employees to wear masks. Given the large uncertainty
in E6, we cannot conclusively declare it more effective than E7, but rank both
as similarly effective. This means that, from the norms considered in this work,
restricting the group size in private settings, making physical distancing compul-
sory, and requiring employees to wear masks were the most effective in reducing
the spread of COVID-19.

It should be noted that for the purpose of this work, various simplifications
have been applied to the actual norms enforced. Moreover, in practice the EOs
(including relaxations) have been issued in response to the actual spread of
COVID-19 at that time, while in our simulation they were fixed to their original
dates. Nevertheless, these results show that behavioral responses of individual
agents to normative interventions, and not just the effect of an assumed level of
compliance, can be studied through our proposed simulation framework.

5 Conclusion

We presented a novel distributed agent-based simulation framework for large-
scale multi-agent simulations of norm-governed behaviors in epidemics, and
applied it to the case of COVID-19. We modeled a population of agents rep-
resenting individuals from the state of Virginia, whose daily behavior was deter-
mined from multiple data sources, including the American Community Survey.
We calibrated and validated the behavior exhibited by the agents, affected by
the norms enforced in the state of Virginia (such as school and business closures,
mask-wearing and physical distance interventions) using Cuebiq mobility data
and the COVID-19 infection data. We used the model to compare the sensitivity
of the COVID-19 outbreak size to the different normative interventions. In future
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work, we intend to evaluate the scalability of our framework, to introduce more
complex agents dynamics, such as inter-agent communications, and to evaluate
a number of different hypothesis about the COVID-19 pandemic.

Future work also includes improving the simulation calibration. We believe
that reducing the arbitrary scaling of the observed number of cases from 30 to a
smaller factor will result in better calibration. Improving the mobility calibration
to reflect the variations in mobility index from one county to another may require
further refinement of the behavior model. We are also working on scaling up to
larger populations, such as all the 133 counties and independent cities in the
state of Virginia, which add up to over 7.6 million agents, and evaluating more
complex experiment designs.

More broadly, we believe that effective intervention to mitigate novel epi-
demics requires methods to evaluate the effects of normative interventions in
detail, which in turn requires being able to model human behavioral choices and
responses. Through the use of substantial real-world data, BDI models of agent
reasoning, and a scalable simulation platform, we can come closer to this goal.
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