
Disjoint Paths and Connected Subgraphs
for H-Free Graphs

Walter Kern1, Barnaby Martin2, Daniël Paulusma2, Siani Smith2(B),
and Erik Jan van Leeuwen3

1 Department of Applied Mathematics, University of Twente,
Twente, The Netherlands

w.kern@twente.nl
2 Department of Computer Science, Durham University, Durham, UK
{barnaby.d.martin,daniel.paulusma,siani.smith}@durham.ac.uk

3 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands
e.j.vanleeuwen@uu.nl

Abstract. The well-known Disjoint Paths problem is to decide if a
graph contains k pairwise disjoint paths, each connecting a different ter-
minal pair from a set of k distinct pairs. We determine, with an exception
of two cases, the complexity of the Disjoint Paths problem for H-free
graphs. If k is fixed, we obtain the k-Disjoint Paths problem, which is
known to be polynomial-time solvable on the class of all graphs for every
k ≥ 1. The latter does no longer hold if we need to connect vertices from
terminal sets instead of terminal pairs. We completely classify the com-
plexity of k-Disjoint Connected Subgraphs for H-free graphs, and
give the same almost-complete classification for Disjoint Connected
Subgraphs for H-free graphs as for Disjoint Paths.

1 Introduction

A path from s to t in a graph G is an s-t-path of G, and s and t are called its
terminals. Two pairs (s1, t1) and (s2, t2) are disjoint if {s1, t1} ∩ {s2, t2} = ∅. In
1980, Shiloach [19] gave a polynomial-time algorithm for testing if a graph with
disjoint terminal pairs (s1, t1) and (s2, t2) has vertex-disjoint paths P 1 and P 2

such that each P i is an si-ti path. This problem can be generalized as follows.

Disjoint Paths
Instance: a graph G and pairwise disjoint terminal pairs (s1, t1) . . . , (sk, tk).

Question: Does G have pairwise vertex-disjoint paths P 1,. . . ,P k such that P i

is an si-ti path for i ∈ {1, . . . , k}?

Karp [12] proved that Disjoint Paths is NP-complete. If k is fixed, that is, not
part of the input, then we denote the problem as k-Disjoint Paths. For every
k ≥ 1, Robertson and Seymour proved the following celebrated result.

W. Kern—Recently passed away and we are grateful for his contribution.
D. Paulusma—Supported by the Leverhulme Trust (RPG-2016- 258).

c© Springer Nature Switzerland AG 2021
P. Flocchini and L. Moura (Eds.): IWOCA 2021, LNCS 12757, pp. 414–427, 2021.
https://doi.org/10.1007/978-3-030-79987-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79987-8_29&domain=pdf
https://doi.org/10.1007/978-3-030-79987-8_29

Disjoint Paths and Connected Subgraphs for H-Free Graphs 415

Fig. 1. An example of a yes-instance (G,Z1, Z2) of (2-)Disjoint Connected Sub-
graphs (left) together with a solution (right).

Theorem 1 ([18]). For all k ≥ 2, k-Disjoint Paths is polynomial-time solv-
able.

The running time in Theorem 1 is cubic. This was later improved to quadratic
time by Kawarabayashi, Kobayashi and Reed [13].

As Disjoint Paths is NP-complete, it is natural to consider special graph
classes. The Disjoint Paths problem is known to be NP-complete even for
graph of clique-width at most 6 [8], split graphs [9], interval graphs [15] and line
graphs. The latter result can be obtained by a straightforward reduction (see,
for example, [8,9]) from its edge variant, Edge Disjoint Paths, proven to be
NP-complete by Even, Itai and Shamir [5]. On the positive side, Disjoint Paths
is polynomial-time solvable for cographs, or equivalently, P4-free graphs [8].

We can generalize the Disjoint Paths problem by considering terminal
sets Zi instead of terminal pairs (si, ti). We write G[S] for the subgraph of a
graph G = (V,E) induced by S ⊆ V , where S is connected if G[S] is connected.

Disjoint Connected Subgraphs
Instance: a graph G and pairwise disjoint terminal sets Z1, . . . , Zk.
Question: Does G have pairwise disjoint connected sets S1, . . . , Sk such

that Zi ⊆ Si for i ∈ {1, . . . , k}?

If k is fixed, then we write k-Disjoint Connected Subgraphs. We refer to
Fig. 1 for a simple example of an instance (G,Z1, Z2) of 2-Disjoint Connected
Subgraphs. Robertson and Seymour [18] proved in fact that k-Disjoint Con-
nected Subgraphs is cubic-time solvable as long as |Z1| + . . . + |Zk| is fixed
(this result implies Theorem 1). Otherwise, van ’t Hof et al. [22] proved that
already 2-Disjoint Connected Subgraphs is NP-complete even if |Z1| = 2
(and |Z2| may have arbitrarily large size). The same authors also proved that 2-
Disjoint Connected Subgraphs is NP-complete for split graphs. Afterwards,
Gray et al. [7] proved that 2-Disjoint Connected Subgraphs is NP-complete
for planar graphs. Hence, Theorem 1 cannot be extended to hold for k-Disjoint
Connected Subgraphs.

416 W. Kern et al.

• • • • • • •

Fig. 2. The graph H = 3P1 + P4.

We note that in recent years a number of exact algorithms were designed for
k-Disjoint Connected Subgraphs. Cygan et al. [4] gave an O∗(1.933n)-time
algorithm for the case k = 2 (see [17,22] for faster exact algorithms for spe-
cial graph classes). Telle and Villanger [20] improved this to time O∗(1.7804n).
Recently, Agrawal et al. [1] gave an O∗(1.88n)-time algorithm for the case k = 3.
Moreover, the 2-Disjoint Connected Subgraphs problem plays a crucial role
in graph contractibility: a connected graph can be contracted to the 4-vertex path
if and only if there exist two vertices u and v such that (G−{u, v}, N(u), N(v))
is a yes-instance of 2-Disjoint Connected Subgraphs (see, e.g. [14,22]).

A class of graphs that is closed under vertex deletion is called hereditary.
Such a graph class can be characterized by a unique set F of minimal forbidden
induced subgraphs. Hereditary graphs enable a systematic study of the com-
plexity of a graph problem under input restrictions: by starting with the case
where |F| = 1, we may already obtain more general methodology and a better
understanding of the complexity of the problem. If |F| = 1, say F = {H} for
some graph H, then we obtain the class of H-free graphs, that is, the class of
graphs that do not contain H as an induced subgraph (so, an H-free graph can-
not be modified to H by vertex deletions only). In this paper, we start such a
systematic study for Disjoint Paths and Disjoint Connected Subgraphs,
both for the case when k is part of the input and when k is fixed.

Our Results

By combining some of the aforementioned known results with a number of new
results, we prove the following two theorems in Sects. 3 and 4, respectively. In
particular, we generalize the polynomial-time result for Disjoint Paths on P4-
free graphs to hold even for Disjoint Connected Subgraphs. See Fig. 2 for an
example of a graph H = sP1 + P4; we refer to Sect. 2 for undefined terminology.

Theorem 2. Let H be a graph. If H ⊆i sP1 + P4, then for every k ≥ 2, k-
Disjoint Connected Subgraphs on H-free graphs is polynomial-time solv-
able; otherwise even 2-Disjoint Connected Subgraphs is NP-complete.

Theorem 3. Let H be a graph not in {3P1, 2P1 + P2, P1 + P3}. If H ⊆i P4,
then Disjoint Connected Subgraphs is polynomial-time solvable for H-free
graphs; otherwise even Disjoint Paths is NP-complete.

Theorem 2 completely classifies, for every k ≥ 2, the complexity of k-Disjoint
Connected Subgraphs on H-free graphs. Theorem 3 determines the com-
plexity of Disjoint Paths and Disjoint Connected Subgraphs on H-free

Disjoint Paths and Connected Subgraphs for H-Free Graphs 417

graphs for every graph H except if H ∈ {3P1, 2P1 + P2, P1 + P3}. In Sect. 5 we
reduce the number of open cases from six to three by showing some equivalencies.

In Sect. 6 we give some directions for future work. In particular we prove that
both problems are polynomial-time solvable for co-bipartite graphs, which form
a subclass of the class of 3P1-free graphs and give exact algorithms for both
problems based on Held-Karp type dynamic programming techniques [2,10].

2 Preliminaries

We use H ⊆i H ′ to indicate that H is an induced subgraph of H ′, that is, H can
be obtained from H ′ by a sequence of vertex deletions. For two graphs G1 and
G2 we write G1 + G2 for the disjoint union (V (G1) ∪ V (G2), E(G1) ∪ E(G2)).
We denote the disjoint union of r copies of a graph G by rG. A graph is said to
be a linear forest if it is a disjoint union of paths.

We denote the path and cycle on n vertices by Pn and Cn, respectively. The
girth of a graph that is not a forest is the number of edges of a smallest induced
cycle in it.

The line graph L(G) of a graph G has vertex set E(G) and there exists an
edge between two vertices e and f in L(G) if and only if e and f have a common
end-vertex in G. The claw K1,3 is the 4-vertex star. It is readily seen that every
line graph is claw-free. Recall that a graph is H-free if it does not contain H as
induced subgraph. For a set of graphs {H1, . . . , Hr}, we say that a graph G is
(H1, . . . , Hr)-free if G is Hi-free for every i ∈ {1, . . . , r}.

A clique is a set of pairwise adjacent vertices and an independent set is a
set of pairwise non-adjacent vertices. A graph is split if its vertex set can be
partitioned into two (possibly empty) sets, one of which is a clique and the other
is an independent set. A graph is split if and only if it is (C4, C5, P4)-free [6]. A
graph is a cograph if it can be defined recursively as follows: any single vertex is
a cograph, the disjoint union of two cographs is a cograph, and the join of two
cographs G1, G2 is a cograph (the join adds all edges between the vertices of G1

and G2). A graph is a cograph if and only if it is P4-free [3].
A graph G = (V,E) is multipartite, or more specifically, r-partite if V can

be partitioned into r (possibly empty) sets V1, . . . , Vr, such that there is an edge
between two vertices u and v if and only if u ∈ Vi and v ∈ Vj for some i, j with
i �= j. If r = 2, we also say that G is bipartite. If there exist an edge between
every vertex of Vi and every vertex of Vj for every i �= j, then the multipartite
graph G is complete.

The complement of a graph G = (V,E) is the graph G = (V, {uv | u, v ∈
V, u �= v and uv /∈ E}). The complement of a bipartite graph is a cobipartite
graph. A set W ⊆ V is a dominating set of a graph G if every vertex of V \W
has a neighbour in W , or equivalently, N [W] (the closed neighbourhood of W)
is equal to V . We say that W is a connected dominating set if W is a dominating
set and G[W] is connected.

418 W. Kern et al.

3 The Proof of Theorem 2

We consider k-Disjoint Connected Subgraphs for fixed k. First, we show a
polynomial-time algorithm on H-free graphs when H ⊆i sP1 +P4 for some fixed
s ≥ 0. Then, we prove the hardness result.

For the algorithm, we need the following lemma for P4-free graphs, or equiv-
alently, cographs. This lemma is well known and follows immediately from the
definition of a cograph: in the construction of a connected cograph G, the last
operation must be a join, so there exists cographs G1 and G2, such that G
obtained from adding an edge between every vertex of G1 and every vertex of
G2. Hence, the spanning complete bipartite graph of G has non-empty partition
classes V (G1) and V (G2).

Lemma 1. Every connected P4-free graph on at least two vertices has a spanning
complete bipartite subgraph.

Two instances of a problem Π are equivalent when one of them is a yes-instance
of Π if and only if the other one is a yes-instance of Π. We note that if two
adjacent vertices will always appear in the same set of every solution (S1, . . . , Sk)
for an instance (G,Z1, . . . , Zk), then we may contract the edge between them at
the start of any algorithm. This takes linear time. Moreover, H-free graphs are
readily seen (see e.g. [14]) to be closed under edge contraction if H is a linear
forest. Hence, we can make the following observation.

Lemma 2. For k ≥ 2, from every instance of (G,Z1, . . . , Zk) of k-Disjoint
Connected Subgraphs we can obtain in polynomial time an equivalent
instance (G′, Z ′

1, . . . , Z
′
k) such that every Z ′

i is an independent set. Moreover,
if G is H-free for some linear forest H, then G′ is also H-free.

We can now prove the following lemma.

Lemma 3. Let H be a graph. If H ⊆i sP1 +P4, then for every k ≥ 1, k-Disjoint
Connected Subgraphs on H-free graphs is polynomial-time solvable.

Proof. Let H ⊆i sP1+P4 for some s ≥ 0. Let (G,Z1, . . . , Zk) be an instance of k-
Disjoint Connected Subgraphs, where G is an H-free graph. By Lemma 2,
we may assume without loss of generality that G is connected and moreover that
Z1, . . . , Zk are all independent sets.

We first analyze the structure of a solution (S1, . . . , Sk) (if it exists). For
i ∈ {1, . . . , k}, we may assume that Si is inclusion-wise minimal, meaning there
is no S′

i ⊂ Si that contains Zi and is connected. Consider a graph G[Si]. Either
G[Si] is P4-free or G[Si] contains an induced rP1 + P4 for some 0 ≤ r ≤ s − 1.
We will now show that in both cases, Si is the (not necessarily disjoint) union
of Zi and a connected dominating set of G[Si] of constant size.

First suppose that G[Si] is P4-free. As G[Si] is connected and Zi is indepen-
dent, we apply Lemma 1 to find that Si\Zi contains a vertex u that is adjacent
to every vertex of Zi. Hence, by minimality, Si = Zi∪{u} and {u} is a connected
dominating set of G[Si] of size 1.

Disjoint Paths and Connected Subgraphs for H-Free Graphs 419

Now suppose that G[Si] has an induced rP1 + P4 for some r ≥ 0, where we
choose r to be maximum. Note that r ≤ s − 1. Let W be the vertex set of the
induced rP1 +P4. Then, as r is maximum, W dominates G[Si]. Note that G[W]
has r + 1 ≤ s connected components. Then, as G[Si] is connected and W is a
dominating set of G[Si] of size r + 4 ≤ s + 3, it follows from folklore arguments
(see e.g. [21, Prop. 6.3.24]) that G[Si] has a connected dominating set W ′ of size
at most 3s + 1. Moreover, by minimality, Si = Zi ∪ W ′.

Hence, in both cases we find that Si is the union of Zi and a connected
dominating set of G[Si] of size at most t = 3s + 1; note that t is a constant, as
s is a constant.

Our algorithm now does as follows. We consider all options of choosing a
connected dominating set of each G[Si], which from the above has size at most
t. As soon as one of the guesses makes every Zi connected, we stop and return
the solution. The total number of options is O(ntk), which is polynomial as k
and t are fixed. Moreover, checking the connectivity condition can be done in
polynomial time. Hence, the total running time of the algorithm is polynomial.

��
The proof our next result is inspired by the aforementioned NP-completeness
result of [22] for instances (G,Z1, Z2) where |Z1| = 2 but G is a general graph.

Lemma 4. The 2-Disjoint Connected Subgraphs problem is NP-complete
even on instances (G,Z1, Z2) where |Z1| = 2 and G is a line graph.

Proof. Note that the problem is in NP. We reduce from 3-SAT. Let φ =
φ(x1, . . . , xn) be an instance of 3-SAT with clauses C1, . . . , Cm. We construct
a corresponding graph G = (V,E) as follows. We start with two disjoint paths
P and P̄ on vertices pi, xi, qi and p̄i, x̄i, q̄i, respectively, where xi, x̄i correspond
to the positive and negative literals in φ, respectively. To be more precise, we
define:

P = p1, x1, q1, p2, x2, q2, . . . , pn, xn, qn, and P = p̄1, x̄1, q̄1, . . . , p̄n, x̄n, q̄n,

We add the two edges e = p1p̄1, and f = qnq̄n. For i = 1, . . . , n − 1, we also add
edges qip̄i+1 and q̄ipi+1. We now replace each xi by vertices xj1

i , xj2
i , . . . xjr

i , where
j1, . . . , jr are the indices of the clauses Cj that contain xi. That is, we replace
the subpath pi, xi, qi of P by the path pi, x

j1
i , xj2

i , . . . xjr
i , qi. We do the same

path replacement operation on P̄ with respect to every x̄i. Finally, we add every
clause Cj as a vertex and add an edge between Cj and xj

i if and only if xi ∈ Cj ,
and between Cj and x̄j

i if and only if x̄j ∈ Cj . This completes the description of
G = (V,E). We refer to Fig. 3 for an illustration of our construction.

We now focus on the line graph L = L(G) of G. Let Z1 = {e, f} ⊆ E = V (L)
and let Z2 consist of all vertices of L that correspond to edges in G that are
incident to some Cj . Note that Z1 and Z2 are disjoint. Moreover, each clause Cj

corresponds to a clique of size at most 3 in L, which we call the clause clique
of Cj . We claim that φ is satisfiable if and only if the instance (L,Z1, Z2) of
2-Disjoint Connected Subgraphs is a yes-instance.

420 W. Kern et al.

C1◦

p1• x1
1◦ ◦ ◦ q1• p2• x1

2◦ ◦ ◦ q2• p3• ◦ ◦ q3•

p̄1•

e

x̄1
1◦ ◦ ◦ q̄1• p̄2• ◦ ◦ ◦ q̄2• p̄3• x̄1

3◦ ◦ q̄3•

f

Fig. 3. The construction described with edges added for the clause C1 = (x1 ∨x2 ∨ x̄3).

First suppose that φ is satisfiable. Let τ be a satisfying truth assignment
for φ. In G, we let P 1 denote the unique path whose first edge is e and whose
last edge is f and that passes through all xj

i ∈ V if xi = 0 and through all x̄j
i if

xi = 1. In L we let S1 consist of all vertices of L(P 1); note that Z1 = {e, f} is
contained in S1 and that S1 is connected. We let P 2 denote the “complementary”
path in G whose first edge is e and whose last edge is f but that passes through
all xj

i if and only if P 1 passes through all x̄j
i , and conversely (i = 1, . . . , n). In

L, we put all vertices of L(P 2), except e and f , together with all vertices of
Z2 in S2. As τ satisfies φ, some vertex of each clause clique is adjacent to a
vertex of P 2. Hence, as P 2 is a path, S2 is connected and we found a solution
for (L,Z1, Z2).

Now suppose that (L,Z1, Z2) is a yes-instance of 2-Disjoint Connected
Subgraphs. Then V (L) can be partitioned into two vertex-disjoint connected
sets S1 and S2 such that Z1 ⊆ S1 and Z2 ⊆ S2. In particular, L[S1] contains a
path P 1 from e to f . In fact, we may assume that S1 = V (P 1), as we can move
every other vertex of S1 (if they exist) to S2 without disconnecting S2.

Note that P 1 corresponds to a connected subgraph that contains the adjacent
vertices p1 and p̄1 as well as the adjacent vertices qn and q̄n. Hence, we can modify
P 1 into a path Q in G that starts in p1 or p̄1 and that ends in qn or q̄n. Note that
Q contains no edge incident to a clause vertex Cj , as those edges correspond to
vertices in L that belong to Z2. Hence, by construction, Q “moves from left to
right”, that is, Q cannot pass through both some xj

i and x̄j
i (as then Q needs to

pass through either xj
i or x̄j

i again implying that Q is not a path).
Moreover, if Q passes through some xj

i , then Q must pass through all vertices
xjh
i . Similarly, if Q passes through some x̄j

i , then Q must pass through all vertices
x̄jh
i . As Q connects the edges p1p̄1 and qnq̄n, we conclude that Q must pass, for

i = 1, . . . , n, through either every xjh
i or through every x̄jh

i . Thus we may define
a truth assignment τ by setting

xi =

{
1 if Q passes through all x̄j

i

0 if Q passes through all xj
i .

Disjoint Paths and Connected Subgraphs for H-Free Graphs 421

We claim that τ satisfies φ. For contradiction, assume some clause Cj is not
satisfied. Then Q passes through all its literals. However, then in S2, the vertices
of Z2 that correspond to edges incident to Cj are not connected to other vertices
of Z2, a contradiction. This completes the proof of the lemma. ��
A straightforward modification of the reduction of Lemma 5 gives us Lemma 6.
We can also obtain Lemma 6 by subdividing the graph G in the proof of Lemma 4
twice (to get a bipartite graph) or p times (to get a graph of girth at least p).

Lemma 5 ([22]). 2-Disjoint Connected Subgraphs is NP-complete for
split graphs, or equivalently, (2P2, C4, C5)-free graphs.

Lemma 6. 2-Disjoint Connected Subgraphs is NP-complete for bipartite
graphs and for graphs of girth at least p, for every integer p ≥ 3.

We are now ready to prove Theorem 2.

Theorem 2 (restated). Let H be a graph. If H ⊆i sP1+P4, then for every k ≥
1, k-Disjoint Connected Subgraphs on H-free graphs is polynomial-time
solvable; otherwise even 2-Disjoint Connected Subgraphs is NP-complete.

Proof. If H contains an induced cycle Cs for some s ≥ 3, then we apply Lemma 6
by setting p = s+1. Now assume that H contains no cycle, that is, H is a forest.
If H has a vertex of degree at least 3, then H is a superclass of the class of
claw-free graphs, which in turn contains all line graphs. Hence, we can apply
Lemma 4. In the remaining case H is a linear forest. If H contains an induced
2P2, we apply Lemma 5. Otherwise H is an induced subgraph of sP1 + P4 for
some s ≥ 0 and we apply Lemma 3. ��

4 The Proof of Theorem 3

We first prove the following result, which generalizes the corresponding result of
Disjoint Paths for P4-free graphs due to Gurski and Wanke [8]. We show that
we can use the same modification to a matching problem in a bipartite graph.

Lemma 7. Disjoint Connected Subgraphs is polynomial-time solvable for
P4-free graphs.

Proof. For some integer k ≥ 2, let (G,Z1, . . . , Zk) be an instance of Disjoint
Connected Subgraphs where G is a P4-free graph. By Lemma 2 we may
assume that every Zi is an independent set. Now suppose that (G,Z1, . . . , Zk)
has a solution (S1, . . . , Sk). Then G[Si] is a connected P4-free graph. Hence, by
Lemma 1, G[Si] has a spanning complete bipartite graph on non-empty partition
classes Ai and Bi. As every Zi is an independent set, it follows that either Zi ⊆ Ai

or Zi ⊆ Bi. If Zi ⊆ Ai, then every vertex of Bi is adjacent to every vertex of Zi.
Similarly, if Zi ⊆ Bi, then every vertex of Ai is adjacent to every vertex of Zi.
We conclude that in every set Si, there exists a vertex yi such that Zi ∪ {yi} is
connected.

422 W. Kern et al.

The latter enables us to construct a bipartite graph G′ = (X ∪Y,E′) where X
contains vertices x1, . . . , xk corresponding to the set Z1, . . . , Zk and Y is the set
of non-terminal vertices of G. We add an edge between xi ∈ X and y ∈ Y if and
only if y is adjacent to every vertex of Zi. Then (G,Z1 . . . Zk) is a yes-instance of
Disjoint Connected Subgraphs if and only if G′ contains a matching of size k.
It remains to observe that we can find a maximum matching in polynomial time,
for example, by using the Hopcroft-Karp algorithm for bipartite graphs [11]. ��

The first lemma of a series of four is obtained by a straightforward reduction
from the Edge Disjoint Paths problem (see, e.g. [8,9]), which was proven
to be NP-complete by Even, Itai and Shamir [5]. The second lemma follows
from the observation that an edge subdivision of the graph G in an instance
of Disjoint Paths results in an equivalent instance of Disjoint Paths; we
apply this operation a sufficiently large number of times to obtain a graph of
large girth. The third lemma is due to Heggernes et al. [9]. We modify their
construction to prove the fourth lemma.

Lemma 8. Disjoint Paths is NP-complete for line graphs.

Lemma 9. For every g ≥ 3, Disjoint Paths is NP-complete for graphs of
girth at least g.

Lemma 10 ([9]). Disjoint Paths is NP-complete for split graphs, or equiva-
lently, (C4, C5, 2P2)-free graphs.

Lemma 11. Disjoint Paths is NP-complete for (4P1, P1 + P4)-free graphs.

Proof. We reduce from Disjoint Paths on split graphs, which is NP-complete
by Lemma 10. By inspection of this result (see [9, Theorem 3]), we note that
the instances (G, {(s1, t1), . . . , (sk, tk)}) have the following property: the split
graph G has a split decomposition (C, I), where C is a clique, I an independent
set, C and I are disjoint, and C∪I = V (G), such that I = {s1, . . . , sk, t1, . . . , tk}.
Now let G′ be obtained from G by, for each terminal si, adding edges to sj and
tj for all j �= i. Then consider the instance (G′, {(s1, t1), . . . , (sk, tk)}).

We note that G′[C] is still a complete graph, while G′[I] is a complete graph
minus a matching. It is immediate that G′ is 4P1-free. Moreover, any induced
subgraph H of G′ that is isomorphic to P4 must contain at least two vertices of
I and at least one vertex of C. If H contains two vertices of C, then as G′[C]
is a clique, H contains two non-adjacent vertices in I. Similarly, if H contains
one vertex of C (and thus three vertices of I), then H contains two non-adjacent
vertices in I. Since C is a clique in G′ and every (other) vertex of I is adjacent
in G′ to any pair of non-adjacent vertices of I, it follows that G′ is P1 + P4-free
as well.

We claim that (G, {(s1, t1), . . . , (sk, tk)}) is a yes-instance if and only if
(G′, {(s1, t1), . . . , (sk, tk)}) is a yes-instance. This is because the edges that
were added to G to obtain G′ are only between terminal vertices of differ-
ent pairs. These edges cannot be used by any solution of Disjoint Paths for
(G′, {(s1, t1), . . . , (sk, tk)}), and thus the feasibility of the instance is not affected
by the addition of these edges. ��

Disjoint Paths and Connected Subgraphs for H-Free Graphs 423

We are now ready to prove Theorem 3.

Theorem 3 (restated). Let H be a graph not in {3P1, 2P1 + P2, P1 + P3}. If
H ⊆i P4, then Disjoint Connected Subgraphs is polynomial-time solvable
for H-free graphs; otherwise even Disjoint Paths is NP-complete.

Proof. First suppose that H contains a cycle Cr for some r ≥ 3. Then Disjoint
Paths is NP-complete for the class of H-free graphs, as Disjoint Paths is
NP-complete on the subclass consisting of graphs of girth r + 1 by Lemma 9.
Now suppose that H contains no cycle, that is, H is a forest. If H contains a
vertex of degree at least 3, then the class of H-free graphs contains the class
of claw-free graphs, which in turn contains the class of line graphs. Hence, we
can apply Lemma 8. It remains to consider the case where H is a forest with no
vertices of degree at least 3, that is, when H is a linear forest.

If H contains four connected components, then the class of H-free graphs
contains the class of 4P1-free graphs, and we can use Lemma 11. If H contains
an induced P5 or two connected components that each have at least one edge,
then H contains the class of 2P2-free graphs, and we can use Lemma 10. If H
contains two connected components, one of which has at least four vertices, then
H contains the class of (P1 + P4)-free graphs, and we can use Lemma 11 again.
As H /∈ {3P1, 2P1 + P2, P1 + P3}, this means that in the remaining case H is an
induced subgraph of P4. In that case even Disjoint Connected Subgraphs
is polynomial-time solvable on H-free graphs, due to Lemma 7. ��

5 Reducing the Number of Open Cases to Three

Theorem 3 shows that we have the same three open cases for Disjoint Paths
and Disjoint Connected Subgraphs, namely when H ∈ {3P1, P1+P3, 2P1+
P2}. We show that instead of six open cases, we have in fact only three.

Proposition 1. Disjoint Paths and Disjoint Connected Subgraphs are
equivalent for 3P1-free graphs.

Proof. Every instance of Disjoint Paths is an instance of Disjoint Con-
nected Subgraphs. Let (G,Z1, . . . , Zk) be an instance of Disjoint Con-
nected Subgraphs where G is a 3P1-free graph. By Lemma 2 we may assume
that each Zi is an independent set. Then, as G is 3P1-free, each Zi has size at
most 2. So we obtained an instance of Disjoint Paths. ��
Proposition 2. Disjoint Paths on (P1 +P3)-free graphs and Disjoint Con-
nected Subgraphs on (P1 + P3)-free graphs are polynomially equivalent to
Disjoint Paths on 3P1-free graphs.

Proof. We prove that we can solve Disjoint Connected Subgraphs in poly-
nomial time on (P1 +P3)-free graphs if we have a polynomial-time algorithm for
Disjoint Paths on 3P1-free graphs. Showing this suffices to prove the theorem,

424 W. Kern et al.

as Disjoint Paths is a special case of Disjoint Connected Subgraphs and
3P1-free graphs form a subclass of (P1 + P3)-free graphs.

Let (G,Z1, . . . , Zk) be an instance of Disjoint Connected Subgraphs,
where G is a (P1 + P3)-free graph. Olariu [16] proved that every connected
P1 + P3-free graph is either triangle-free or complete multipartite. Hence, the
vertex set of G can be partitioned into sets D1, . . . , Dp for some p ≥ 1 such that

– every G[Di] is 3P1-free or the disjoint union of complete graphs, and
– for every i, j with i �= j, every vertex of Di is adjacent to every vertex of Dj .

Using this structural characterization, we first argue that we may assume that
each Zi has size 2, making the problem an instance of Disjoint Paths. Then we
show that we can either solve the instance outright or can alter G to be 3P1-free.

First, we argue about the size of each Zi. By Lemma 2 we may assume that
every Zi is an independent set and is thus contained in the same set Dj . If G[Dj]
is 3P1-free, then this implies that any Zi that is contained in Dj has size 2. If
G[Dj] is a disjoint union of complete graphs, then each vertex of a Zi that is
contained in Dj belongs to a different connected component of Dj and Zi ∪ {v}
is connected for every vertex v /∈ Dj . As at least one vertex v /∈ Dj is needed
to make such a set Zi connected, we may therefore assume that for a solution
(S1, . . . , Sk) (if it exists), Si = Zi ∪{v} for some v /∈ Dj . The latter implies that
we may assume without loss of generality that every such Zi has size 2 as well.

If p = 1, then each connected component of G is 3P1-free, and we are done.
Hence, we assume that p ≥ 2. In fact, since any two distinct sets Di and Dj are
complete to each other, the union of any two 3P1-free graphs induces a 3P1-free
graph. Therefore we may assume without loss of generality that only G[D1] might
be 3P1-free, whereas G[D2], . . . , G[Dp] are disjoint unions of complete graphs.

Recall that Zi = {si, ti} for every i ∈ {1, . . . , k} and we search for a solution
(P 1, . . . , P k) where each P i is a path from si to ti. First suppose si and ti
belong to D1. Then P i has length 2 or 3 and in the latter case, V (P i) ⊆ D1.
Now suppose that si and ti belong to Dh for some h ∈ {2, . . . , k}. Then P i has
length exactly 2, and moreover, the middle (non-terminal) vertex of P i does not
belong to Dh.

We will now check if there is a solution (P 1, . . . , P k) such that every P i has
length exactly 2. We call such a solution to be of type 1. In a solution of type 1,
every P i = siuti for some non-terminal vertex u of G. If si and ti belong to
Dh for some h ∈ {2, . . . , p}, then u ∈ Dj for some j �= i. If si and ti belong to
D1, then u ∈ Dj for some j �= 1 but also u ∈ D1 is possible, namely when u is
adjacent to both si and ti.

Verifying the existence of a type 1 solution is equivalent to finding a perfect
matching in a bipartite graph G′ = A ∪ B that is defined as follows. The set A
consists of one vertex vi for each pair {si, ti}. The set B consists of all non-
terminal vertices u of G. For {si, ti} ⊆ D1, there exists an edge between u and
vi in G′ if and only if in G it holds that u ∈ Dh for some h ∈ {2, . . . , p} or u ∈ D1

and u is adjacent to both si and ti. For {si, ti} ⊆ Dh with h ∈ {2, . . . , p}, there
exists an edge between u and vi in G′ if and only if in G it holds that u ∈ Dj

Disjoint Paths and Connected Subgraphs for H-Free Graphs 425

for some j ∈ {1, . . . , p} with h �= j. We can find a perfect matching in G′ in
polynomial time by using the Hopcroft-Karp algorithm for bipartite graphs [11].

Suppose that we find that (G, {s1, t1}, . . . , {sk, tk}) has no solution of type 1.
As a solution can be assumed to be of type 1 if G[D1] is the disjoint union of
complete graphs, we find that G[D1] is not of this form. Hence, G[D1] is 3P1-
free. Recall that G[Dj] is the disjoint union of complete graphs for 2 ≤ i ≤ p.
It remains to check if there is a solution that is of type 2 meaning a solution
(P 1, . . . , P k) in which at least one P i, whose vertices all belong to D1, has
length 3.

To find a type 2 solution (if it exists) we construct the following graph G∗.
We let V (G∗) = A1 ∪ A2 ∪ B1 ∪ B2, where

– A1 consists of all terminal vertices from D1;
– A2 consists of all non-terminal vertices from D1;
– B1 consists of all terminal vertices from D2 ∪ · · · ∪ Dp; and
– B2 consists of all non-terminal vertices from D2 ∪ · · · ∪ Dp.

Note that V (G∗) = V (G). To obtain E(G∗) from E(G) we add some edges (if
they do not exist in G already) and also delete some edges (if these existed in
G):

(i) for each {si, ti} ⊆ B1, add all edges between si and vertices of B2, and
delete any edges between ti and vertices of B2;

(ii) add an edge between every two terminal vertices in B1 that belong to dif-
ferent terminal pairs; and

(iii) add an edge between every two vertices of B2.

We note that G∗[D1] is the same graph as G[D1] and thus G∗[D1] is 3P1-free.
Moreover, G∗[B1∪B2] is 3P1-free by part (i) of the construction. Hence, as there
exists an edge between every vertex of A1 ∪ A2 and every vertex of B1 ∪ B2 in
G and thus also in G∗, this means that G∗ is 3P1-free. It remains to prove that
(G, {s1, t1}, . . . , {sk, tk}) and (G∗, {s1, t1}, . . . , {sk, tk}) are equivalent instances.

First suppose that (G, {s1, t1}, . . . , {sk, tk}) has a solution (P 1, . . . , P k).
Assume that the number of paths of length 3 in this solution is minimum over all
solutions for (G, {s1, t1}, . . . , {sk, tk}). We note that (P 1, . . . , P k) is a solution
for (G∗, {s1, t1}, . . . , {sk, tk}) unless there exists some P i that contains an edge
of E(G)\E(G∗). Suppose this is indeed the case. As G∗[D1] = G[D1] and every
edge between a vertex of A1 ∪ A2 and a vertex of B1 ∪ B2 also exists in G∗,
we find that the paths connecting terminals from pairs in D1 are paths in G∗.
Hence, si and ti belong to Dh for some h ∈ {2, . . . , p} and thus P i = siuti where
u is a vertex of Dj for some j ∈ {2, . . . , p} with j �= h.

As we already found that (G, {s1, t1}, . . . , {sk, tk}) has no type 1 solution,
there is at least one P i′ with length 3, so P i′ = si′vv′ti′ is in G[D1]. However, we
can now obtain another solution for (G, {s1, t1}, . . . , {sk, tk}) by changing P i into
sivti and P i′ into si′uti′ , a contradiction, as the number of paths of length 3 in
(P 1, . . . , P k) was minimum. We conclude that every P i only contains edges from
E(G)∩E(G∗), and thus (P 1, . . . , P k) is a solution for (G∗, {s1, t1}, . . . , {sk, tk}).

426 W. Kern et al.

Now suppose that (G∗, {s1, t1}, . . . , {sk, tk}) has a solution (P 1, . . . , P k).
Consider a path P i. First suppose that si and ti both belong to B1. Then we
may assume without loss of generality that P i = siuti for some u ∈ A2. As B1

only contains terminals from pairs in D2 ∪ . . . ∪ Dp, the latter implies that P i

is a path in G as well. Now suppose that si and ti both belong to A1. Then we
may assume without loss of generality that P i = siuti for some non-terminal
vertex of V (G) = V (G∗) or P i = siuu′ti for two vertices u, u′ in A2 ⊆ D1.
Hence, P i is a path in G as well. We conclude that (P 1, . . . , P k) is a solution for
(G, {s1, t1}, . . . , {sk, tk}). This completes our proof. ��

6 Conclusions

We first gave a dichotomy for Disjoint k-Connected Subgraphs in
Theorem 2: for every k, the problem is polynomial-time solvable on H-free graphs
if H ⊆i sP1 + P4 for some s ≥ 0 and otherwise it is NP-complete even for k = 2.
Two vertices u and v are a P4-suitable pair if (G − {u, v}, N(u), N(v)) is a yes-
instance of 2-Disjoint Connected Subgraphs. Recall that a graph G can be
contracted to P4 if and only if G has a P4-suitable pair. Deciding if a pair {u, v}
is a suitable pair is polynomial-time solvable for H-free graphs if H is an induced
subgraph of P2 +P4, P1 +P2 +P3, P1 +P5 or sP1 +P4 for some s ≥ 0; otherwise
it is NP-complete [14]. Hence, we conclude from our new result that the pres-
ence of the two vertices u and v that are connected to the sets Z1 = N(u) and
Z2 = N(v), respectively, yield exactly three additional polynomial-time solvable
cases.

We also classified, in Theorem 3, the complexity of Disjoint Paths and
Disjoint Connected Subgraphs for H-free graphs. Due to Propositions 1
and 2, there are three non-equivalent open cases left and we ask the following:

Open Problem 1. Determine the computational complexity of Disjoint
Paths on H-free graph for H ∈ {3P1, 2P1+P2} and the computational complex-
ity of Disjoint Connected Subgraphs on H-free graphs for H = 2P1 + P2.

The three open cases seem challenging. We were able to prove the following
positive result for a subclass of 3P1-free graphs, namely cobipartite graphs, or
equivalently, (3P1, C5, C7, C9, . . .)-free graphs (proof omitted).

Theorem 4. Disjoint Paths is polynomial-time solvable for cobipartite
graphs.

Finally, we briefly mention exact algorithms. Using Held-Karp type dynamic
programming techniques [2,10], we can obtain exact algorithms for Disjoint
Paths and Disjoint Connected Subgraphs running in time O(2nn2m) and
O(3nkm), respectively (proofs omitted). Faster exact algorithms are known for
k-Disjoint Connected Subgraphs for k = 2 and k = 3 [1,4,20], but we are
unaware if there exist faster algorithms for general graphs.

Open Problem 2. Is there an exact algorithm for Disjoint Paths or Dis-
joint Connected Subgraphs on general graphs where the exponential factor
is (2 − ε)n or (3 − ε)n, respectively, for some ε > 0?

Disjoint Paths and Connected Subgraphs for H-Free Graphs 427

References

1. Agrawal, A., Fomin, F.V., Lokshtanov, D., Saurabh, S., Tale, P.: Path contraction
faster than 2n. SIAM J. Discrete Math. 34, 1302–1325 (2020)

2. Bellman, R.: Dynamic programming treatment of the travelling salesman problem.
J. ACM 9, 61–63 (1962)

3. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Dis-
crete Appl. Math. 3, 163–174 (1981)

4. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Solving the 2-disjoint
connected subgraphs problem faster than 2n. Algorithmica 70, 195–207 (2014)

5. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity
flow problems. SIAM J. Comput. 5, 691–703 (1976)

6. Földes, S., Hammer, P.L.: Split graphs. Congressus Numerantium, XIX:311–315
(1977)

7. Gray, C., Kammer, F., Löffler, M., Silveira, R.I.: Removing local extrema from
imprecise terrains. Comput. Geom. Theory Appl. 45, 334–349 (2012)

8. Gurski, F., Wanke, E.: Vertex disjoint paths on clique-width bounded graphs.
Theor. Comput. Sci. 359, 188–199 (2006)

9. Heggernes, P., van ’t Hof, P., van Leeuwen, E.J., Saei, R.: Finding disjoint paths
in split graphs. Theor. Comput. Syst. 57(1), 140–159 (2014). https://doi.org/10.
1007/s00224-014-9580-6

10. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
J. Soc. Ind. Appl. Math. 10, 196–210 (1962)

11. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2, 225–231 (1973)

12. Karp, R.M.: On the complexity of combinatorial problems. Networks 5, 45–68
(1975)

13. Kawarabayashi, K., Kobayashi, Y., Reed, B.A.: The disjoint paths problem in
quadratic time. J. Comb. Theory Ser. B 102, 424–435 (2012)

14. Kern, W., Paulusma, D.: Contracting to a longest path in H-free graphs. In: Pro-
ceedings of ISAAC 2020, LIPIcs, 181:22:1–22:18 (2020)

15. Natarajan, S., Sprague, A.P.: Disjoint paths in circular arc graphs. Nordic J. Com-
put. 3, 256–270 (1996)

16. Olariu, S.: Paw-free graphs. Inf. Process. Lett. 28, 53–54 (1988)
17. Paulusma, D., van Rooij, J.M.M.: On partitioning a graph into two connected

subgraphs. Theor. Comput. Sci. 412(48), 6761–6769 (2011)
18. Robertson, N., Seymour, P.D.: Graph minors. XIII. the disjoint paths problem. J.

Comb. Theory Ser. B 63, 65–110 (1995)
19. Shiloach, Y.: A polynomial solution to the undirected two paths problem. J. ACM

27, 445–456 (1980)
20. Telle, J.A., Villanger, Y.: Connecting terminals and 2-disjoint connected sub-

graphs. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS,
vol. 8165, pp. 418–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-45043-3 36

21. van Leeuwen, E.J.: Optimization and Approximation on Systems of Geometric
Objects. University of Amsterdam (2009)

22. van ’t Hof, P., Paulusma, D., Woeginger, G.J.: Partitioning graphs into connected
parts. Theor. Comput. Sci. 410, 4834–4843 (2009)

https://doi.org/10.1007/s00224-014-9580-6
https://doi.org/10.1007/s00224-014-9580-6
https://doi.org/10.1007/978-3-642-45043-3_36
https://doi.org/10.1007/978-3-642-45043-3_36

	Disjoint Paths and Connected Subgraphs for H-Free Graphs
	1 Introduction
	2 Preliminaries
	3 The Proof of Theorem 2
	4 The Proof of Theorem 3
	5 Reducing the Number of Open Cases to Three
	6 Conclusions
	References

