
Streaming Deletion Problems
Parameterized by Vertex Cover

Jelle J. Oostveen(B) and Erik Jan van Leeuwen

Department of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands

{j.j.oostveen,e.j.vanleeuwen}@uu.nl

Abstract. Streaming is a model where an input graph is provided one
edge at a time, instead of being able to inspect it at will. In this work, we
take a parameterized approach by assuming a vertex cover of the graph is
given, building on work of Bishnu et al. [COCOON 2020]. We show the
further potency of combining this parameter with the Adjacency List
streaming model to obtain results for vertex deletion problems. This
includes kernels, parameterized algorithms, and lower bounds for the
problems of Π-free Deletion, H-free Deletion, and the more spe-
cific forms of Cluster Vertex Deletion and Odd Cycle Transver-

sal. We focus on the complexity in terms of the number of passes over
the input stream, and the memory used. This leads to a pass/memory
trade-off, where a different algorithm might be favourable depending on
the context and instance. We also discuss implications for parameterized
complexity in the non-streaming setting.

1 Introduction

Streaming is an algorithmic paradigm to deal with data sets that are too large
to fit into main memory [22]. Instead, elements of the data set are inspected in
a fixed order1 and aggregate data is maintained in a small amount of memory
(much smaller than the total size of the data set). It is possible to make multiple
passes over the data set. The goal is to design algorithms that analyze the data
set while minimizing the combination of the number of passes and the required
memory. We note that computation time is not measured in this paradigm.
Streaming has proved very successful and is extensively studied in many diverse
contexts [27,29]. In this work, we focus on the case where the data sets are
graphs and the streamed elements are the edges of the graph.

1 We consider insertion-only streams throughout this paper.
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A significant body of work on graph streaming works in the semi-streaming
model, where Õ(n) memory2 is allowed, with the aim of limiting the number of
necessary passes to one or two. This memory requirement might still be too much
for the largest of networks. Unfortunately, many basic problems in graphs require
Ω(n) or even worse space [18,19] to compute in a constant number of passes.
Therefore, Fafianie and Kratsch [17] and Chitnis et al. [13] introduced concepts
and analysis from parameterized complexity [16] to the streaming paradigm. For
example, it can be decided whether a graph has a vertex cover of size at most K
using one pass and Õ(K2) space, which is optimal. This led to various further
works [4,6,11] and the first systematic study by Chitnis and Cormode [10].

Our work continues this line of research and follows up on recent work by
Bishnu et al. [5,6]3. They made two important conceptual contributions. First,
they analyzed the complexity of parameterized streaming algorithms in three
models that prescribe the order in which the edges arrive in the stream and that
are commonly studied in the literature [6,14,27,28]. The Edge Arrival (EA)
model prescribes some permutation of all the edges of the graph. The Vertex
Arrival (VA) requires that the edges appear per vertex: if we have seen the
vertices V ′ ⊆ V already, and the next vertex is w, then the stream contains the
edges between w and the vertices in V ′. Finally, the Adjacency List (AL) gives
the most information, as it requires the edges to arrive per vertex, but when
vertex v appears in the stream, we also see all edges incident to v. This means
we effectively see every edge twice in a single pass, once for both of its endpoints.

The second and more important contribution of Bishnu et al. [5] was to
study the size K of a vertex cover in the graph as a parameter. This has
been broadly studied in parameterized complexity (see e.g. the PhD thesis of
Jansen [25]). They showed that the very general F-Subgraph Deletion and
F-Minor Deletion problems all admit one pass, Õ(Δ(F) · KΔ(F)+1) space
streaming algorithms in the AL model, by computing small kernels to which
then a straightforward exhaustive algorithm is applied. On the other hand, such
generic streaming algorithms are not possible in the EA and VA models, as then
(super-) linear lower bounds exist even if the size of a smallest vertex cover is
constant [5].

We focus on the induced subgraph version of the vertex deletion problem,
parameterized by the size of a vertex cover. Here, Π is a collection of graphs.

Π-free Deletion [VC]

Input: A graph G with a vertex cover X, and an integer � ≥ 1.
Parameter: The size K := |X| of a vertex cover.
Question: Is there a set S ⊆ V (G) of size at most � such that G[V (G)\S]
does not contain a graph in Π as an induced subgraph?

2 Throughout this paper, memory is measured in bits. The Õ notation hides factors
polylogarithmic in n. Note that O(log n) bits is the space required to store (the
identifier of) a single vertex or edge.

3 As the Arxiv version contains more results, we refer to this version from here on.
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To avoid triviality4, we assume every graph in Π is edgeless or K ≥ �. We
assume the vertex cover is given as input; if only the size is given, we can use
one pass and Õ(K2) space or 2K passes and Õ(K) space to obtain it [10,13]
(this does not meaningfully impact our results). The unparameterized version of
this problem is well known to be NP-hard [26] for any nontrivial and hereditary
property Π. It has also been well studied in the parameterized setting (see e.g. [9,
20,31]). When parameterized by the vertex cover number, it has been studied
from the perspective of kernelization: while a polynomial kernel cannot exist in
general [8,21], polynomial kernels exist for broad classes of families Π [21,24].
As far as we are aware, parameterized algorithms for this parameterization have
not been explicitly studied.

In the streaming setting, Chitnis et al. [11] showed for the unparameter-
ized version of this problem in the EA model that any p-pass algorithm needs
Ω(n/p) space if Π satisfies a mild technical constraint. For some Π-free Dele-

tion [VC] problems, the results by Bishnu et al. [5] imply single-pass, poly(K)
space streaming algorithms (through their kernel for F-Subgraph Deletion

[VC]) in the AL model and lower bounds in the EA/VA model. They also pro-
vide an explicit kernel for Cluster Vertex Deletion [VC] in the AL/EA/VA
models. However, this still leaves the streaming complexity of many cases of the
Π-free Deletion [VC] problem open.

Our Contributions. We determine the streaming complexity of the general Π-

free Deletion [VC] problem. Our main positive result is a unified approach
to a single-pass polynomial kernel for Π-free Deletion [VC] for a broad class
of families Π. In particular, we show that the kernelization algorithms by Fomin
et al. [21] and Jansen and Kroon [24] can be adapted to the streaming setting.
The kernels of Fomin et al. [21] consider the case when Π can be characterized
by few adjacencies, which intuitively means that for any vertex of any member of
Π, adding or deleting edges between all but a few (say at most cΠ) distinguished
other vertices does not change membership of Π. The exponent of the polynomial
kernels depends on cΠ . Jansen and Kroon [24] considered even more general
families Π. We show that these kernels can be computed in the AL model using
a single pass and polynomial space (where the exponent depends on cΠ). This
generalizes the previous results by Bishnu et al. [5] as well as their kernel for
F-Subgraph Deletion [VC].

To complement the kernels, we take a direct approach to find more memory-
efficient algorithms, at the cost of using many passes. We show novel parame-
terized streaming algorithms that require Õ(K2) space and O(K)O(K) passes.
Here, all hidden constants depend on cΠ . Crucially, however, the exponent of
the space usage of these algorithms does not, which provides an advantage over
computing the kernel. We also provide explicit streaming algorithms for Clus-

ter Vertex Deletion [VC] and Odd Cycle Transversal [VC] that require
Õ(K) space (both) and 2KK2 and 3K passes respectively, as well as streaming
algorithms for Π-free Deletion [VC,|V (H)|] when Π = {H} and the problem
is parameterized by K and |V (H)|. A crucial ingredient to these algorithms is a

4 Otherwise, removing the entire vertex cover is a trivial solution.
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streaming algorithm that finds induced subgraphs isomorphic to a given graph
H. Further details are provided in Sect. 3.

The above results provide a trade-off in the number of passes and memory
complexity of the algorithm used. However, we should justify using both the
AL model and the parameter vertex cover. To this end, in Sect. 4, we investigate
lower bounds for streaming algorithms for Π-free Deletion [VC]. The (unpa-
rameterized) linear lower bound of Chitnis et al. [11] in the EA model requires
that Π contains a graph H for which |E(H)| ≥ 2 and no proper subgraph is a
member of Π. We prove that the lower bound extends to both the VA and AL
models, with only small adjustments. Hence, parameterization is necessary to
obtain sublinear passes and memory for most Π. Since Vertex Cover is one
of the few natural graph parameters that has efficient parameterized streaming
algorithms [13,17], this justifies the use of the vertex cover parameter. We also
extend the reductions by Bishnu et al. [5] to general hardness results for Π-

free Deletion in the VA and EA model when the size of the vertex cover is a
constant (dependent on Π), justifying the use of the AL model for most Π.

We also consider the parameterized complexity of H-free Deletion [VC]
in the non-streaming setting. While polynomial kernels were known in the non-
streaming setting [21], we are unaware of any investigation into explicit parame-
terized algorithms for these problems. We give a general 2O(K2)poly(n, |V (H)|)
time algorithm. This contrasts the situation for H-free Deletion parame-
terized by the treewidth t of the graph, where a 2o(t|V (H)|−2)poly(n, |V (H)|)
time lower bound is known under the Exponential Time Hypothesis (ETH) [31].
We also construct a graph property Π for which we provide a lower bound
of 2o(K log K)poly(n, |V (H)|) for Π-free Deletion [VC] under ETH. Further
details are provided in Sect. 3.

Preliminaries. We work on undirected graphs G = (V,E), where |V | = n, |E| =
m. We denote an edge e ∈ E between v ∈ V and u ∈ V with uv ∈ E. For a
set of vertices V ′ ⊆ V , denote the subgraph induced by V ′ as G[V ′]. Denote
the neighbourhood of a vertex v with N(v) and for a set S denote N(S) as⋃

v∈S N(v). We write N [v] for N(v) including v, so N [v] = N(v) ∪ {v}.
We denote the parameters of a problem in [·] brackets, a problem A param-

eterized by vertex cover number and solution size is denoted by A [VC, �].

2 Adapting Existing Kernels

We first show that very general kernels for vertex cover parameterization admit
straightforward adaptations to the AL streaming model. The kernels considered
are those by Fomin et al. [21] and by Jansen and Kroon [24]. Fomin et al. [21] pro-
vide general kernelization theorems that make extensive use of a single property,
namely that some graph properties can be characterized by few adjacencies.

Definition 1. ([21, Definition 3]) A graph property Π is characterized by cΠ ∈
N adjacencies if for all graphs G ∈ Π, for every vertex v ∈ V (G), there is a set
D ⊆ V (G) \ {v} of size at most cΠ such that all graphs G′ that are obtained
from G by adding or removing edges between v and vertices in V (G) \ D, are
also contained in Π.
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Fomin et al. show that graph problems such as Π-free Deletion [VC], can
be solved efficiently through kernelization when Π is characterized by few adja-
cencies (and meets some other demands), by making heavy use of the Reduce

algorithm they provide. The idea behind the Reduce algorithm is to save enough
vertices with specific adjacencies in the vertex cover, and those vertices that we
forget have equivalent vertices saved to replace them. The sets of adjacencies
we have to consider can be reduced by making use of the characterization by
few adjacencies, as more than cΠ adjacencies are not relevant. The number of
vertices we retain is ultimately dependent on � ≤ K.

In the AL streaming model, we have enough information to compute this
kernel, by careful memory management in counting adjacencies towards specific
subsets of the vertex cover. The following theorem then shows how this algorithm
leads to streaming kernels for Π-free Deletion [VC] as an adaptation of [21,
Theorem 2]. We call a graph G vertex-minimal with respect to Π if G ∈ Π and
for all S � V (G), G[S] /∈ Π.

Theorem 1 (♣5). If Π is a graph property such that:

(i) Π is characterized by cΠ adjacencies,
(ii) every graph in Π contains at least one edge, and
(iii) there is a non-decreasing polynomial p : N → N such that all graphs G that

are vertex-minimal with respect to Π satisfy |V (G)| ≤ p(K),

then Π-free Deletion [VC] admits a kernel on O((K + p(K))KcΠ ) vertices
in the AL streaming model using one pass and O((K + KcΠ ) log(n)) space.

We note that the theorem applies to F-Subgraph Deletion [VC] when Δ(F)
(the maximum degree) is bounded as well as to Cluster Vertex Dele-

tion [VC]. As such, our streaming kernels generalize the kernels of Bishnu
et al. [5] for these problems, while the memory requirements and kernel sizes
are fairly comparable. A discussion and further implications for several general
problems, following Fomin et al. [21], appear in the full version of the paper.

We also give an adaptation (♣) of a more recent kernel by Jansen and
Kroon [24], which has another broad range of implications for streaming ker-
nels. This kernel uses a different characterization of the graph family, however,
the adaptation to the AL streaming model is very similar. We observe that the
adaptation of this kernel leads to a streaming algorithms for problems like Per-

fect Deletion [VC], AT-free Deletion [VC], Interval Deletion [VC],
and Wheel-free Deletion [VC].

3 A Direct FPT Approach

In this section, we give direct FPT streaming algorithms for Π-free Dele-

tion [VC] for the same cases as Theorem 1. This is motivated by the fact that
Chitnis and Cormode [10] found a direct FPT algorithm for Vertex Cover

5 Further discussions and proofs for results marked with ♣ appear in the full online
version of the paper.
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Fig. 1. The different cases how a P3 can exists with respect to Y , part of the vertex
cover. Notice that the case where the entire P3 is contained in Y is not included here.
Case 3 assumes there are no Case 1 or Case 2 P3’s in the graph anymore.

using O(2k) passes and only Õ(k) space in contrast to the kernel of Chitnis
et al. [11] using one pass and Õ(k2) space. Therefore, we aim to explore the
pass/memory trade-off for Π-free Deletion [VC] as well.

3.1 P3-free Deletion

We start with the scenario where Π = {P3}, which means we consider the
problem Cluster Vertex Deletion [VC]. The general idea of the algorithm
is to branch on what part of the given vertex cover should be in the solution.
For managing the branching correctly, we use a black box enumeration technique
also used by Chitnis and Cormode [10]. In a branch, we first check whether the
‘deletion-free’ part of the vertex cover (Y ) contains a P3, which invalidates a
branch. Otherwise, what remains is some case analysis where either one or two
vertices of a P3 lie outside the vertex cover, for which we deterministically know
which vertices have to be removed to make the graph P3-free. We illustrate this
step in Fig. 1. Case 1 and 2 have only one option for removal of a vertex. After
Case 1 and 2 no longer occur, we can find Case 3 occurrences and show that we
can delete all but one of the vertices in such an occurrence. So, if this process
can be executed in a limited number of passes, the algorithm works correctly.

To limit the number of passes, the use of the AL model is crucial. Notice
that for every pair of vertices y1, y2 in the vertex cover, we can identify a Case 1
or 2 P3 of Fig. 1, or these cases but with v in the vertex cover as well, in a
constant number of passes. This is because we can first use a pass to check the
presence of an edge between y1 and y2, and afterwards use a pass to check the
edges of every other vertex towards y1 and y2 (which are given together because
of the AL model). This means we can find P3’s contained in the vertex cover
or corresponding to Case 1 or 2 P3’s in O(K2) passes total. The remaining
Case 3 can be handled in O(K) passes from the viewpoint of each y ∈ Y . So
this algorithm takes O(2KK2) passes (including branching).

Theorem 2 (♣). We can solve Cluster Vertex Deletion [VC] in the AL

streaming model using O(2KK2) passes and O(K log n) space.

Let us stress some details. The use of the AL model is crucial, as it allows us
to locally inspect the neighbourhood of a vertex when it appears in the stream.
The same approach would require more memory or more passes in other models
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Algorithm 1. The procedure FindH.
1: function FindH(solution set S, forbidden set Y ⊆ X, integer i)
2: for each Set O of i vertices of H that can be outside X do � Check non-edges
3: Denote H ′ = H \ O
4: for each Occurrence of H ′ in Y do � Check O(

( |X|
|H|−i

)
(|H| − i)!) options

5: S′ ← ∅, O′ ← O
6: for each Vertex v ∈ V \ (S ∪ X) do
7: Check the edges/non-edges towards H ′ ∈ Y
8: if v is equivalent to some w ∈ O′ for H ′ then
9: S′ ← S′ ∪ {v}, O′ ← O′ \ {w}

10: if O′ = ∅ then return S′ � We found an occurrence of H

11: return ∅ � No occurrence of H found

to accomplish this result. Also note that we could implement this algorithm in a
normal setting (the graph is in memory, and not a stream) to get an algorithm for
Cluster Vertex Deletion [VC] with a running time of O(2K ·K2 · (n+m)).

3.2 H-free Deletion

We now consider a more generalized form of Π-free Deletion [VC], where
Π = {H}, a single graph. Unfortunately, the approach when H = P3 does not
seem to carry over to this case, because the structure of a P3 is simple and local.

Theorem 3 (♣). We can solve H-free Deletion [VC] in 2O(K2) poly(n, |
V (H)|) time, where H contains at least one edge and K is the size of the vertex
cover.

In the proof, we rely on the assumption that � < K and use that the vertices
outside the vertex cover can be partitioned into at most 2K equivalence classes.
Moreover, we use the algorithm implied by the work of Abu-Khzam [1] to find
occurrences of H in G.

In order to analyze the complexity with respect to H more precisely and to
obtain a streaming algorithm, we present a different algorithm that works off a
simple idea. We branch on the vertex cover, and then try to find occurrences of H
of which we have to remove a vertex outside the vertex cover. We branch on these
removals as well, and repeat this find-and-branch procedure. In an attempt to
keep the second branching complexity low, we start by searching for occurrences
of H such that only one vertex lies outside the vertex cover, and increase this
number as we find no occurrences. For briefness, we only present the occurrence
detection part of the algorithm here, a procedure we call FindH. Note that this
is not (yet) a streaming algorithm.

Lemma 1 (♣). Given a graph G with vertex cover X, graph H with at least
one edge, and sets S, Y ⊆ X, and integer i, Algorithm1 finds an occurrence
of H in G that contains no vertices in S and X \ Y and contains |V (H)| − i

vertices in Y . It runs in O
((

h
i

)
[i2 +

(
K

h−i

)
(h − i)!((h − i)2 + Kn + (h − i)in)]

)

time, where |V (H)| = h and |X| = K.
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FindH is adaptable to the streaming setting, as is the complete algorithm.
All the actions FindH takes are local inspection of edges, and many enumeration
actions, which lend itself well to usage of the AL streaming model. The number
of passes of the streaming version is closely related to the running time of the
non-streaming algorithm. This then leads to the full find-and-branch procedure.

Theorem 4 (♣). We can solve H-free Deletion [VC] in the AL model,
where H contains at least one edge, using O(2KhK+2Khh!) or alternatively
O(2KhK+2K!h!) passes and O((K + h2) log n) space, where |V (H)| = h.

3.3 Towards Π-free Deletion

An issue with extending the previous approach to the general Π-free Dele-

tion problem is the dependence on the maximum size h of the graphs H ∈ Π.
Without further analysis, we have no bound on h. However, we can look to the
preconditions used by Fomin et al. [21] on Π in e.g. Theorem 1 to remove this
dependence.

The first precondition is that the set Π ′ ⊆ Π of graphs that are vertex-
minimal with respect to Π have size bounded by a function in K, the size of the
vertex cover. That is, for these graphs H ∈ Π ′ we have that |V (H)| ≤ p(K),
where p(K) is some function. We can prove (♣) that it suffices to only remove
vertex-minimal elements of Π to solve Π-free Deletion. Note that Fomin et
al. [21] require that this is a polynomial, we have no need to demand this. If we
also assume that we know the set Π ′, we obtain the following result.

Theorem 5 (♣). If Π is a graph property such that:

(i) we have explicit knowledge of Π ′ ⊆ Π, which is the subset of q graphs that
are vertex-minimal with respect to Π, and

(ii) there is a non-decreasing function p : N → N such that all graphs G ∈ Π ′

satisfy |V (G)| ≤ p(K), and
(iii) every graph in Π contains at least one edge,

then Π-free Deletion [VC] can be solved using O(q · 2K · p(K)K · K! · K ·
p(K)! · p(K)2 · n) time.

We argue this algorithm is essentially tight, under the Exponential Time
Hypothesis (ETH) [23], by augmenting a reduction by Abu-Khzam et al. [2].

Theorem 6 (♣). There is a graph property Π for which we cannot solve Π-

free Deletion [VC] in 2o(K log K)poly(n) time, unless ETH fails, where K is
the vertex cover number of G, even if each graph that has property Π has size
quadratic in its vertex cover number.

Next, we look to further improve the bound of Theorem5. Note that so far,
we have made no use at all of the characterization by few adjacencies of Π, as
in Theorem 1. We now argue that there may be graphs in Π that cannot occur
in G simply because it would not fit with the vertex cover.
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Lemma 2 (♣). If Π is a graph property such that

(i) every graph in Π is connected and contains at least one edge, and
(ii) Π is characterized by cΠ adjacencies,

and G is some graph with vertex cover X, |X| = K, and S ⊆ V (G) some vertex
set. Then G[V (G) \ S] is Π-free if and only if G[V (G) \ S] is Π ′-free, where
Π ′ ⊆ Π contains only those graphs in Π with ≤ (cΠ + 1)K vertices.

The precondition that every graph in Π is connected is necessary to obtain
this result. We can use Lemma 2 in combination with Theorem5 to obtain a new
result. Alternatively, using a streaming version of the algorithm instead of the
non-streaming one, immediately also provides a streaming result.

Theorem 7 (♣). Given a graph G with vertex cover X, |X| = K, if Π is a
graph property such that

(i) every graph in Π is connected and contains at least one edge, and
(ii) Π is characterized by cΠ adjacencies, and
(iii) we have explicit knowledge of Π ′ ⊆ Π, which is the subset of q graphs of at

most size (cΠ + 1)K that are vertex-minimal with respect to Π,

then Π-free Deletion [VC] can be solved using O(q · 2K · ((cΠ + 1)K)K · K! ·
K · ((cΠ +1)K)! · ((cΠ +1)K)2 ·n) time. Assuming cΠ ≥ 1 this can be simplified
to O(q ·2K · cΠ

K ·KK+3 ·K! · (cΠK)! ·n) time. In the streaming setting, Π-free

Deletion [VC] can be solved using O(q · 2K · cK
Π · KK+2 · K! · (cΠK)!) passes

in the AL streaming model, using Õ((cΠK)2 + q · (cΠ + 1)K) space.

The required explicit knowledge of Π ′ might give memory problems. That
is, we have to store Π ′ somewhere to make this algorithm work, which takes
Õ(q · (cΠ + 1)K) space. Note that q can range up to KO(K). We adapt the
streaming algorithm to the case when we have oracle access to Π in ♣.

3.4 Odd Cycle Transversal

Specific forms of Π-free Deletion [VC] allow for improvement over Theo-
rem 7, which we illustrate for the problem of Odd Cycle Transversal [VC].
Note that odd cycle-free and induced odd cycle-free are equivalent.

Odd Cycle Transversal [VC]

Input: A graph G with a vertex cover X, and an integer �.
Parameter: The size K := |X| of the vertex cover.
Question: Is there a set S ⊆ V (G) of size at most � such that G[V (G)\S]
contains no induced odd cycles?

The interest in this problem comes from the FPT algorithm using iterative
compression provided in [15, Section 4.4], based on work by Reed et al. [30].
Although Chitnis and Cormode [10] have shown how iterative compression can
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be used in the streaming setting, adapting the algorithm out of Reed et al. seems
difficult. The main cause for this is the use of a maximum-flow algorithm, which
does not seem to lend itself well to the streaming setting because of its memory
requirements. Instead, we present the following approach.

It is well known that a graph without odd cycles is a bipartite graph (and
thus 2-colourable) and vice versa. In the algorithm, we guess what part of the
vertex cover is in the solution, and then we guess the colouring of the remaining
part. Then vertices outside the vertex cover for which not all neighbours have
the same colour must be deleted. This step can be done in one pass if we use the
AL streaming model. In the same pass, we can also check if the colouring is valid
within the vertex cover. If the number of deletions does not exceed the solution
size and the colouring is valid within the vertex cover, then the resulting graph
is bipartite and thus odd cycle free.

The total number of guesses comes down to O(3K) options, as any vertex in
the vertex cover is either in the solution, coloured with colour 1 or coloured with
colour 2. This directly corresponds to the number of passes, as only one pass is
needed per guessed colouring.

Theorem 8 (♣). Given a graph G given as an AL stream with vertex cover X,
|X| = K, we can solve Odd Cycle Transversal [VC] using O(3K) passes
and O(K log n) space.

If we think about this algorithm, we can notice that often the colouring we
guess on the vertex cover is invalid. An alternative approach (♣) follows by
noting that a connected component within the vertex cover can only have two
possible valid colourings. We can exploit this to decrease the number of passes
when the number of connected components in the vertex cover is low. This comes
at a price: to easily find components of the vertex cover, we store it in memory,
which increases the memory complexity. Alternatively, we can use O(K) passes
to find the connected components of the vertex cover in every branch.

4 Lower Bounds

We show lower bounds for Π-free Deletion. To prove lower bounds for stream-
ing, we can show reductions from problems in communication complexity, as first
shown by Henzinger et al. [22]. An example of such a problem is Disjointness.

Disjointness

Input: Alice has a string x ∈ {0, 1}n given by x1x2 . . . xn. Bob has a
string y ∈ {0, 1}n given by y1y2 . . . yn.
Question: Bob wants to check if ∃1 ≤ i ≤ n such that xi = yi = 1.
(Formally, the answer is NO if this is the case.)

The following proposition is given and used by Bishnu et al. [5], and gives
us one important consequence of reductions from a problem in communication
complexity to a problem for streaming algorithms.
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Proposition 1. (Rephrasing of item (ii) of [5, Proposition 5.6]) If we can show
a reduction from Disjointness to problem Π in streaming model M such that
the reduction uses a 1-pass streaming algorithm of Π as a subroutine, then any
streaming algorithm working in the model M for Π that uses p passes requires
Ω(n/p) bits of memory, for any p ∈ N [3,7,12].

The structure of these reductions is relatively simple: have Alice and Bob
construct the input for a streaming algorithm depending on their input to Dis-

jointness. If we do this in such a manner that the solution the streaming algo-
rithm outputs gives us exactly the answer to Disjointness, we can conclude
that the streaming algorithm must abide the lower bound of Disjointness.

Chitnis et al. [11, Theorem 6.3] prove hardness for many Π, those that obide
to a small precondition. However, Chitnis et al. do not describe in their reduction
how Alice and Bob give their ‘input’ as a stream to the algorithm for Π-free

Deletion, and thus it would apply only to the EA streaming model. However,
if we observe the proof closely, we can see it extends to the VA model.

We would also like it to extend to the AL model. However, this requires a
slightly stronger precondition on the graph class Π.

Theorem 9. If Π is a set of graphs such that each graph in Π is connected,
and there is a graph H ∈ Π such that

– H is a minimal element of Π under the operation of taking subgraphs, i.e.,
no proper subgraph of H is in Π, and

– H has at least two disjoint edges,

then any p-pass (randomized) streaming algorithm working on the AL streaming
model for Π-free Deletion [�] needs Ω(n/p) bits of space.

Proof. We add onto the proof of [11, Theorem 6.3], by specifying how Alice and
Bob provide the input to the p-pass streaming algorithm.

Let H be a minimal graph in Π which has at least two disjoint edges, say e1
and e2. Let H ′ := H \ {e1, e2}. Create as an input for the streaming algorithm n
copies of H ′, where in copy i we add the edges e1 and e2 if and only if the input
of Disjointness has a 1 for index i for Alice and Bob respectively.

As e1 and e2 are disjoint, e2 is incident on two vertices v, w which are not
incident to e1. For every pass the algorithm requires, we do the following. We
provide all the copies of H as input to the streaming algorithm by letting Alice
input all vertices V (H) \ {v, w} as an AL stream. Note that Alice has enough
information to do this, as the vertices incident on the edge e2 in each copy of H
is never included in this part of the stream. Then Alice passes the memory of
the streaming algorithm to Bob, who inputs the edges incident to the vertices
v, w for each copy of H (which includes e2 if and only if the respective bit in the
input of Disjointness is 1). This ends a pass of the stream.

Note that Alice and Bob have input the exact specification of a graph as
described by Chitnis et al. [11, Theorem 6.3], but now as a AL stream. Hence,
the correctness follows. �
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Theorem 9 provides a lower bound for, for example, Even Cycle

Transversal [�] (where Π is the set of all graphs that contain a C4, C6, . . .),
and similarly Odd Cycle Transversal [�] and Feedback Vertex Set [�].
Theorem 9 does not hold for the scenario where Π contains only stars.

Notice that the lower bound proof makes a construction with a vertex cover
size linear in n. Therefore, these bounds do not hold when the vertex cover size
is bounded. We can prove lower bounds with constant vertex cover size for H-

free Deletion with specific requirements on H, for the EA and VA models.
These results follow by adapting the known lower bound construction by Bishnu
et al. [5]. Here, we give a summarizing theorem for these lower bounds.

Theorem 10. (♣). If H is such that either:

1. H is a connected graph with at least 3 edges and a vertex of degree 2, or,
2. H is a graph with a vertex of degree at least 2 for which every neighbour has

an equal or larger degree,

then any algorithm for solving H-free Deletion [VC] on a graph G with
K ≥ |VC(H)| + 1 requires Ω(n/p) bits when using p passes in the VA/EA
models, even when the solution size � = 0.

Theorem 10 proves lower bounds for Odd Cycle Transversal [VC], Even
Cycle Transversal [VC], Feedback Vertex Set [VC], and Cograph

Deletion [VC]. Examples for which Theorem 10 does not give a lower bound
include Cluster Vertex Deletion [VC] (indeed, then a kernel is known [5]),
or more generally, H-free Deletion [VC] when H is a star.

5 Conclusion

We have seen different streaming algorithms and lower bounds for Π-free

Deletion and its more specific forms, making use of the minimum vertex cover
as a parameter. We have seen the potency of the AL streaming model in com-
bination with the vertex cover, where in other streaming models lower bounds
arise. It is interesting that for very local structures like a P3, this combination
works effortlessly, giving a very efficient memory-optimal algorithm. For more
general structures troubles arise, but nonetheless, we can solve the more general
problems with a many-pass, low-memory approach. Alternatively, the adapta-
tions of kernels gives rise to a few-pass, high-memory algorithm, which provides
a possible trade-off when choosing an algorithm.

We also propose the following open problems. Can lower bounds be found
expressing a pass/memory trade-off in the vertex cover size for the Π-free

Deletion [VC] problem? Or alternatively, can we find an upper bound for Π-

free Deletion [VC] using O(K log n) bits of memory but only a polynomial
in K number of passes? Essentially, here we ask whether or not our algorithm
is reasonably tight, or can be improved to only use a polynomial number of
passes in K. A lower bound expressing a trade-off in terms of the vertex cover
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size is a standalone interesting question, as most lower bound statements about
streaming algorithms express a trade-off in terms of n.

We also ask about the unparameterized streaming complexity of Cluster

Vertex Deletion in the AL model. While lower bounds for most other Π-

free Deletion problems in the AL model follow from our work (Theorem9)
and earlier work of Bishnu et al. [5], this appears an intriguing open case.

Finally, we ask if there is a 2o(K log K) lower bound for Π-free Dele-

tion [VC] when Π is characterized by few adjacencies?
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