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Facilitation in the soil microbiome does not
necessarily lead to niche expansion
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Abstract

Background: The soil microbiome drives soil ecosystem function, and soil microbial functionality is directly linked
to interactions between microbes and the soil environment. However, the context-dependent interactions in the
soil microbiome remain largely unknown.

Results: Using latent variable models (LVMs), we disentangle the biotic and abiotic interactions of soil bacteria,
fungi and environmental factors using the Qinghai-Tibetan Plateau soil ecosystem as a model. Our results show
that soil bacteria and fungi not only interact with each other but also shift from competition to facilitation or vice
versa depending on environmental variation; that is, the nature of their interactions is context-dependent.

Conclusions: Overall, elevation is the environmental gradient that most promotes facilitative interactions among
microbes but is not a major driver of soil microbial community composition, as evidenced by variance partitioning.
The larger the tolerance of a microbe to a specific environmental gradient, the lesser likely it is to interact with
other soil microbes, which suggests that facilitation does not necessarily lead to niche expansion.

Keywords: Microbial co-occurrence, Facilitation, Stress gradient hypothesis, Latent variable modelling, C/N ratio,
Elevation

Background
Soil microbial communities are of vital importance to plant
productivity, climate change and overall ecosystem function-
ing. Soil ecosystem functioning is the result of myriad inter-
actions between microbes and soil environmental factors [1].
Many studies have sought to identify co-occurring microbes
to explain their mutual interactions and correlations with dif-
ferent ecosystem services [2–4], while others have focused
on understanding the role of soil factors in determining mi-
crobial community structure [5]. However, these studies
have failed to discriminate direct microbial-microbial

interactions from those induced by a third factor, such as soil
factors, because the statistical methods adopted did not ac-
count for the influence of environmental factors in biasing
the co-occurrences patterns. Moreover, environmental fac-
tors may also determine the interactions or not between or-
ganisms, the so-called context-dependent interactions [6].
These context-dependent interactions might determine the
capability of the soil microbial community to deliver ecosys-
tem services and thus influence overall ecosystem function
[7], especially since soil factors are more important than land
use in determining bacterial community structure [8], driving
microbial community assembly [9] and influencing the plant
response to inoculation, e.g., with mycorrhizal fungi [10].
The development of statistical methods that can detect biotic
interactions of microorganisms and assess their influence in
structuring microbial communities represents a challenge in
microbial ecology.
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Latent variable models (LVMs) offer the possibility of dis-
entangling co-occurrence patterns into components describ-
ing shared environmental responses and residuals patterns of
co-occurrence [11]. Thus, the microbial co-occurrence
resulting from abiotic responses can be separated from the
co-occurrence induced by biotic interactions [12]. LVMs can
provide a better understanding of the ecological interactions
of organisms [13, 14] and are increasingly being used in
microbiome studies [15]. Moreover, LVMs can be used to
explain changes in community abundance as a result of shifts
in environmental factors. LVMs provide the highest poster-
ior density (HPD) interval, a range of values in which an en-
vironmental variable determines the abundance of an
organism, analogous to the confidence interval of a regres-
sion coefficient. Therefore, the HPD indicates the signifi-
cance of an environmental variable (if the HPD interval
contains zero, the influence of the variable is considered
non-significant). In addition, the HPD interval indicates the
tolerance or sensitivity of a specific organism to an environ-
mental factor. The wider the HPD interval, the more tolerant
an organism is to a specific environmental condition; if the
interval includes zero, the organism does not depend on that
environmental factor to exist. In summary, the HPD interval
indicates the range of environmental conditions at which an
organism might exist, thereby providing information on the
organism’s multidimensional niche.
The aims of this study are to (1) disentangle the role

of environmental factors in shifting interactions in the
soil microbial community and (2) investigate the contri-
bution of potential biotic interactions in determining the
contraction or expansion of microbial niches by evaluat-
ing the relationship between the HPD interval and the
residual correlations. We hypothesize that environmen-
tal factors shift not only the microbial community but
also their interactions, which implies that the number
and intensity of microbial interactions are related to the
range of each covariate response. We test this hypothesis
by investigating a gradient of soil environmental factors
and the microbial community in the Qinghai-Tibetan
Plateau wetland using LVMs. The Qinghai-Tibetan Plat-
eau wetland, the largest and highest plateau on Earth,
has suffered an unprecedented warming trend [16] that
has reduced the area of Tibetan alpine tundra [17] and
led to substantial changes in soil factors and soil micro-
bial community, diversity, activity [16, 18] and functions
[19]. Consequently, the Qinghai-Tibetan Plateau wetland
is an interesting ecosystem to test our hypothesis.

Results
Soil physicochemical properties
The geographical and physicochemical characteristics of
the 43 sites are summarized in Table S1. Soil TC varied
greatly among the samples (from 3.25 to 345.69 g kg− 1).
Soil pH varied from 6.42 to 9.25. Soil TN ranged from

0.58 to 17.35 g kg− 1. Soil TP varied from 0.32 to 2.13 g
kg− 1. DOC ranged between 23.76 and 239.82 mg L− 1.
The C/N ratio varied from 2.87 to 28.64. The E2/E3 ra-
tio and SUVA254 ranged from 3.99 to 9.70 and 0.24 to
5.21, respectively. pH (r = − 0.551, p < 0.001), TN (r =
0.847, p < 0.001), DOC (r = 0.663, p < 0.001), TP (r =
0.572, p < 0.001) and C/N (r = 0.599, p < 0.001) were all
significantly correlated with TC. However, the E2/E3 ra-
tio (r = 0.039, p = 0.663) and SUVA254 (r = 0.029, p =
0.742) were not correlated with TC.

Microbial community responses to environmental
variation
The members of the microbial community responded dif-
ferently to changes in pH, elevation, P, C, N, C/N, and the
variables related to the characteristics of soil organic matter
(DOC, E2/E3 ratio, and SUVA254). Supplementary Table
S2 summarizes the number of microbial orders within each
phylum that exhibited significant positive or negative coeffi-
cients for each environmental variable. To obtain an over-
view of the regression coefficients, we summarized those
with significant values according to their median and inter-
quantile range (IQR: the range of values corresponding to
50% of the total observed coefficients). This allowed us to
better understand the intensity (median of coefficients) and
direction of the effects (positive or negative) and general
variability (IQR) for specific groups of microbes.
More bacterial (11) than fungal (6) orders increased in

abundance with increasing elevation (median = + 0.83;
IQR = [0.52 to 1.01]), and more fungal (6) than bacterial
(4) orders decreased in abundance with increasing eleva-
tion (median = − 0.85; IQR = [− 1.18 to − 0.59]) (Fig. S1).
The abundances of a total of 39 bacterial and 6 fungal or-

ders increased with increasing pH. More bacterial orders
responded to increasing pH positively (39) than negatively
(4), whereas more fungal orders responded negatively (8)
than positively (6). Capnodiales (Ascomycota) had the lar-
gest positive coefficient (+ 1.96), whereas Entorrhizales (Ba-
sidiomycota) exhibited the smallest coefficient (− 3.17)
(Supplementary Fig. S1). Similarly, changes in TC had more
positive than negative effects on the bacterial community
(Supplementary Fig. S2); 14 bacterial orders increased and
five decreased in abundance with increasing TC (Supple-
mentary Table S2). The response of the fungal community
to TC was nearly opposite that of the bacterial community,
as three and nine fungal orders responded positively and
negatively, respectively. Although the number of microbes
affected by TC was relatively small compared to the re-
sponse to pH, the coefficient values were larger, ranging
from − 3.60 to 4.17, suggesting that TC imposed stronger
changes in relative abundance in the microbial community
than pH.
The relative abundances of 34 microbial orders shifted

in response to increasing TN: one bacterial and eight
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fungal orders responded positively (IQR = 0.60 to 1.81),
whereas four bacterial and three fungal orders
responded negatively (IQR = − 1.47 to − 0.82). The mi-
crobes belonged to seven different phyla (Acidobacteria,
Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes,
Proteobacteria, Ascomycota, Basidiomycota, and Chytri-
diomycota) (Supplementary Table S2).
Interestingly, the response to the C:N ratio (Supple-

mentary Fig. S3) differed from the isolated effects of C
and N. Thirteen bacterial and fungal orders from differ-
ent phyla exhibited positive responses to increasing C:N:
one Bacteroidetes (Bacteroidales order), one Cyanobac-
teria, five Proteobacteria, and five Ascomycota. Twenty-
three bacterial orders from 8 different phyla (Acidobac-
teria, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi,
Gemmatimonadetes, Nitrospirae, and Proteobacteria)
and four fungal orders responded negatively to an in-
creasing C:N ratio. Hysteriales (Ascomycota) was most
favored by increasing the C:N ratio (Supplementary Fig.
S3). Similar to the C:N ratio, any increase in TP above
its average value (1.15 g·kg− 1) reduced the abundances
of bacteria (12) and fungi (5) (Supplementary Fig. S4).
Their coefficients had IQRs of − 0.74 to − 0.44. Only one
bacterial order, Ktedonobacteria C0119 (Chloroflexi),
and three fungal orders, Pleosporales, Pezizales and
Dothideomycetes (Ascomycota), showed a preference for
higher values of TP (Supplementary Fig. S4).
High values of DOC increased the abundances of 8

bacterial and 8 fungal orders (Supplementary Fig. S3)
distributed in six phyla (Acidobacteria, Actinobacteria,
Deinococcus-Thermus, Proteobacteria, Ascomycota, and
Basidiomycota). Their IQRs varied between 0.43 and
1.17. Only fungi belonging to Pleosporales seemed to
prefer lower values of DOC, and seven orders belonging
to the phyla Actinobacteria, Aminicenantes, Bacteroi-
detes, Chloroflexi and Proteobacteria preferred high
DOC values. DOC molecular size also influenced the soil
microbiome. Increases in the E2/E3 ratio negatively im-
pacted 13 microbial orders from five different phyla
(Actinobacteria, Bacteroidetes, Chloroflexi, Proteobac-
teria, and Ascomycota) (Supplementary Fig. S3). The co-
efficients ranged from − 2.41 to − 0.30. Only five fungal
orders from three different phyla (Ascomycota, Basidio-
mycota and Glomeromycota) responded positively to
changes in the E2/E3 ratio, with coefficients ranging
from 0.59 to 1.18. By contrast, more orders were affected
positively (33) than negatively (12) by SUVA254 (Supple-
mentary Fig. S3). Most of the positive responders
belonged to the phyla Ascomycota and Proteobacteria (7
orders), while the others belonged to six bacterial phyla
(Acidobacteria, Actinobacteria, Chloroflexi, Firmicutes,
Gemmatimonadetes, and Nitrospirae) and two fungal
phyla (Basidiomycota and Chytridiomycota). The posi-
tive coefficients ranged from 3.12 to 0.30. The orders

that decreased in abundance with increasing SUVA254
included one fungal order (Pleosporales) and 11 bacterial
orders belonging to seven different phyla (Acidobacteria,
Actinobacteria, Aminicenantes, Bacteroidetes, Fibrobac-
teres, Firmicutes, and Proteobacteria). The negative coef-
ficients ranged from − 1.75 to − 0.44.
We performed variance partitioning to determine how

much of the variability of each order could be explained
by a single or group of environmental factors using Boral
analysis. The influence of environmental factors differed
according to order for both the fungal and bacterial
communities. Overall, the set of covariates (pH, elevation,
P, C, N, C/N, DOC, E2/E3 ratio, SUVA254, and geo-
graphic distance) explained an average of 39.74% of soil
microbial abundance, with a range of 80.13% (Entorrhi-
zales) to 13.0% (Gemmatimonadales). The environmental
variables explained more than 50% of the variability for
only 27 bacterial orders (17.4%), as shown in Fig. 1, and
on average the soil factors contributed to explaining
22.8 ± 10.22% of the bacterial abundance. The average in-
fluence of geographical distance on microbial variability
was 7.06 ± 5.3%. C, N (TC, TN, and C:N ratio), P, and the
organic matter characteristics (DOC, E2/E3, and
SUVA254) contributed equally in determining the bacter-
ial community. However, their influences were all signifi-
cantly higher than the influence of elevation (median
3.58%; IQR 1.81–5.96%) and pH (median 3.79; IQR 2.57–
5.38%) (Fig. 1). We included a measurement of skewness
to illustrate the uneven distribution of the bacterial data
compared with the fungal data. We also observed a highly
positively skewed distribution of the proportion of vari-
ance (0.61), indicating that only a small part of the vari-
ation of the bacterial orders can be explained by
considering only the measured covariates (Fig. 1).
The response of the fungal community differed from

that of the bacterial community, with a greater propor-
tion of variability explained by the selected environmen-
tal variables (Fig. 2). Overall, the environmental factors
explained more than 50% of the variability of 48 fungal
orders, which represented 58.5% of the total evaluated
fungi. The fungal community also exhibited greater sen-
sitivity to changes in soil factors, which explained an
average of 35.38 ± 11.8% of the variability. Consistent
with the results for bacteria, the influence of geographic
distance on the fungal community was minimal (10.0 ±
4.55%). We also observed a secondary role of changes in
elevation in determining the fungal community, with an
average explained variance of 5.79 ± 3.93%, similar to the
influence of pH (5.75 ± 5.13%). For the fungal commu-
nity, changes in C and N (14.34 ± 6.51%), organic matter
(11.76 ± 5.66%), and P (10.01 ± 4.55%) exhibited the
highest explanatory power. The fungal community also
presented a less skewed distribution (− 0.17) than the
bacterial community, indicating that the set of covariates
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Fig. 1 (See legend on next page.)
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played a major role in determining the fungal commu-
nity, in contrast to the bacterial community (Fig. 2).

Context-dependent interactions of the microbial
community
The environmental factors not only contributed to
shaping the microbial community but also shifted the
strength of microbial interactions. We observed sig-
nificant shifts in interactions between different micro-
bial phyla (Table 1). Interestingly, changes in

elevation produced the highest number of positive
shifts in bacterial-bacterial interactions (Supplemen-
tary Fig. S5-S6). Changes in the C:N ratio induced
more negative than positive shifts in both bacterial-
bacterial and bacterial-fungal interactions (Supplemen-
tary Figure S7-S8). The responses to changes in pH
were more equally distributed, with relatively equal
numbers of positive and negative shifts. By compari-
son, fewer shifts were observed in the interactions be-
tween different fungi.

Fig. 2 Analysis of variation partitioning showing the percentage of variance of the fungal community explained by elevation, pH, C and N (total
C, total N, and C:N ratio), organic matter (DOC, E2/E3 ratio, and SUVA254), geographical distance (latitude and longitude) and P. Taxa not
classified at the order level are represented by * and ** for the phylum and class levels, respectively

(See figure on previous page.)
Fig. 1 Analysis of variation partitioning showing the percentage of the variance of the bacterial community explained by elevation, pH, C and N
(total C, total N, and C:N ratio), organic matter (DOC, E2/E3 ratio, and SUVA254), geographical distance (latitude and longitude) and P. (A)
microbes with more than 30% of variance explained by the environmental factors; (B) microbes with less than 30% of variance explained by the
environmental factors; (C) boxplot of all bacteria for each group of environmental variable. Taxa not classified at the order level are represented
by * and ** for the phylum and class levels, respectively
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The shifts in the interactions of the fungal phylum Glo-
meromycota (Fig. 3) in response to changes in the C:N ra-
tio were particularly notable. This fungal phylum
exhibited a significant positive shift when interacting with
the bacterial phyla Bacteroidetes and WCHB1–60 and
with the fungal phylum Ascomycota. By contrast, under an
increasing C:N ratio, the phylum Glomeromycota ap-
peared to shift from positive to negative interactions with
the bacterial phyla Proteobacteria and Gracilibacteria and
the fungal phylum Basidiomycota. The interactions with
Glomeromycota were the only two significant shifts ob-
served in response to changes in the C:N ratio (Table 1).
Remarkably, we also found a negative relationship be-

tween the closeness centrality measure and the range of
environmental coefficients given by the HPD interval
(Fig. 4) for all variables measured. In summary, the lar-
ger the HPD interval, the less likely a microbe is to co-
occur with other microorganisms. Overall, the changes
in the HPD interval explained 32% (E2/E3) to 47% (TN)
of the variability in the closeness value.

Discussion
Microbial community shifts following changes in soil
environmental factors
Our analysis provided many insights on the behavior of
the soil microbial community under various environ-
mental conditions. Overall, changes in pH influence
more microbes than any other variable, but the propor-
tion of variance explained by pH was smaller than that
explained by the group of variables related to C and N
(TC, TN, and C:N ratio), organic matter, and P. The ma-
jority of microbes preferred comparatively higher values
of pH. The observed prevalence of positive coefficients
for high pH suggests that the microbial community in
the Qinghai-Tibetan plateau prefers more basic pH
values.
Most of the soil microbes in this study preferred

higher elevation, particularly bacteria, contrasting the
findings in the Peruvian mountains [20]. We collected
soil samples between 2717 and 4815m a.s.l., with an
average elevation of 3722m a.s.l., whereas the samples

Table 1 Number of shifts in microbial interactions (positive or negative) in response to soil environmental factors (C:N ratio,
elevation, and pH)

C:N Elevation pH

Positive shift Negative shift Positive shift Negative Shift Positive shift Negative shift

Bact-Bact 6 14 27 17 10 9

Fung-Fung 1 1 1 1 – –

Bact-Fung 6 5 4 6 2 1

Fig. 3 Significant shifts in correlation coefficients following changes in the C:N ratio between the fungal phylum Glomeromycota and the phyla
Proteobacteria, Gracilibacteria, WCHB1–60, Ascomycota, Bacteroidetes, and Basidiomycota
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collected in the Peruvian mountains ranged from 200m
to 3450m a.s.l. from three different habitats (organic
soil, mineral soil, and leaf surfaces). In our study, the
populations of microbial taxa increased following the in-
crease in elevation. This result suggests that we sampled
an elevation gradient that significantly affected the mi-
crobial community, thereby providing a better under-
standing on the microbial community patterns at high
elevation [21]. Yang et al. (2014) detected fewer genes at
higher elevations than at 3400 m a.sl [22]., which they at-
tributed to the presence of aboveground vegetation that
could produce and supply organic C and other resources
to the soil microbial community.
We found that the effects of the C:N ratio on the mi-

crobial community were more significant than the iso-
lated effects of TC and TN. The C:N ratio of the studied
sites ranged between 2.87 and 28.64. Increasing the C:N
ratio reduced microbial populations due to the reduced

availability of N, explaining the high proportion of nega-
tive coefficients. Our results indicate that the majority of
these soil microbial communities preferred lower C:N ra-
tios. Osler and Sommerkorn [23] introduced a framework
suggesting that when the C:N ratios of microbial food re-
sources are less than 25:1, there is an excess of N; how-
ever, at higher ratios, N becomes limiting, and microbes
start to compete for N sources. Our results corroborate
this framework by revealing that more bacteria were nega-
tively than positively affected by high C:N ratio values.
Interestingly, no significant reductions in the populations
of fungal taxa (order level) were observed in our range of
C:N ratios, likely due to the capacity of fungi to decom-
pose more complex organic materials [24].
The changes in P content also explained a large pro-

portion of the relative abundances of both bacteria and
fungi. Overall, soil P content influenced more bacteria
than fungi. Our results support the findings of Delgado-

Fig. 4 Relationship between the median of residual co-occurrence for each microbial taxon (order level) and the range of the high-density
posterior interval (HPD interval) according to our standardized environmental factors (elevation and soil factors)
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Baquerizo et al. [5], who demonstrated major roles of C,
N, and P in shaping microbial community structure and
extended their results by revealing a hierarchy of their in-
fluence on specific orders of both bacteria and fungi.
Moreover, we also found a small role of pH in explaining
microbial community variability. Since pH influences nu-
trient availability [25], the effect of pH likely represents an
indirect measure of a nutrient not analyzed in this study.
Such a possibility would explain the major role of pH in
determining the microbial community in studies where
pH is the only soil factor assessed [26]. Therefore, adding
additional soil nutrient variables strongly impacts the ex-
planatory power for microbial community relative abun-
dance. Our study confirms the main role of soil nutrients
in predicting microbial community structure and diversity
[9, 27] and, by using a different approach, shows that bac-
terial abundance responds mainly to soil factors. Such a
small and likely indirect role of pH is contrary to the
current vision in soil microbiology.
The characteristics of soil organic matter also contrib-

uted to determining the microbial populations. The soil
microbes preferred higher values of DOC and the low-
molecular-weight fraction of organic matter, as reflected
by a lower E2/E3 ratio. Some microbes also appeared to
be favored by an increasing percentage of aromatic com-
pounds in DOM, as reflected by the SUVA254 value.

Context-dependent interactions of the soil microbiome
Although elevation did not have high explanatory power
for microbial variation, it did result in more positive
than negative shifts in microbial interactions. Our results
extend to the microbial community the general notion
that the importance of positive interactions increases
under a stress gradient, as suggested by the stress gradi-
ent hypothesis (SGH) for plants [28]. According to He
and Bertness [29], plant species interactions may shift
from competition to facilitation with increasing stress.
Based on our analysis, changes in elevation presented a
gradient that promoted more positive microbial interac-
tions. However, not every variable exhibited the same pat-
tern. Increases in the C:N ratio resulted in more negative
than positive shifts, suggesting increasing competition,
whereas pH induced nearly equivalent numbers of positive
and negative shifts. Therefore, our results indicate that
while some environmental variables induce positive shifts
in microbial interactions, others seem to promote in-
creased competition. Microbial interactions respond to
stress gradients, and elevation appears to be one type of
stress. Nutrient limitation is a major factor controlling mi-
crobial activity. As the C:N ratio increases, microbes must
compete for reduced N supply. Thus, the C:N ratio repre-
sents resource partitioning, in which microbes compete
more strongly as nutrients become less available.

Interestingly, the interactions between different fungal
phyla appeared more stable than the bacterial-bacterial
and fungal-bacterial interactions (phylum level). How-
ever, the phylum Glomeromycota presented both positive
and negative shifts. Glomeromycota is a new monophy-
letic phylum to which the mycorrhizal fungi were
assigned [30]. These fungi possess an extensive external
mycelium with phenotypic variation and may also inter-
act with other soil microbes via the so-called mycorrhi-
zosphere [31]. Previous research has shown that
interactions with arbuscular mycorrhiza are context-
dependent and likely determined by soil conditions [32].
Our results contribute to the understanding of soil
mycorrhizal interactions by showing that the C:N ratio
influences the strength of soil mycorrhizal associations
not only with plants but also with other soil fungi.
The current literature divides the SGH into two differ-

ent phenomena: (i) a shift from negative to positive in-
teractions under a stress condition and (ii) niche
expansion due to increased facilitation (positive interac-
tions). Although we found evidence of positive shifts
with increasing elevation, we observed a negative associ-
ation between the centrality measures of our network of
microbial co-occurrences and the microbial population
range (given by the HPD interval). Thus, the larger the
tolerance of a microbe to a given environmental variable,
the less likely it is to interact with other microbes, as in-
dicated by loss of centrality within the network. This re-
lationship is consistent with the ecological phenomenon
that a microbe that is more tolerant to or capable of
growth under different environmental conditions is less
likely to depend on interactions with other organisms.
Such organisms tend toward neutrality. By contrast, the
more sensitive a microbial population is to a small range
of an environmental gradient, the more likely it is to de-
pend on other microbes or compete against them.
The soil microbial communities of the Qinghai-Tibet

Plateau are strongly influenced by the changes in soil or-
ganic matter, a soil variable previously reported as sensi-
tive to ongoing climate warming [33]. Wang et al. [34]
reported that warming in the Qinghai-Tibet Plateau pro-
motes plants with less branches and thin roots resulting
in the reduction of the median of root lifespan, and Jia
et al. [33] showed that changes in temperature increased
the soil organic matter turnover. In the current study,
the microbial community presented great dependence
on the organic matter that is mainly provided by the
plants. Therefore, the ongoing climatic changes might
affect the plant physiology and consequently the soil or-
ganic matter. Altogether, the climatic changes can in-
crease the selection pressure on microbes through
changes in the soil organic matter. Previous studies have
shown that warming impacts the soil microbial commu-
nity structure by favoring more fungal than bacterial
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groups [16]. Since no evidence of niche expansion was
found in the current study, some soil microbes might
not be able to adapt to the warming trend in Qinghai-
Tibet Plateau. A deeper understanding of the effects of
global warming is left as an avenue for future research.

Conclusions
In summary, our results show that the members of the soil
microbiome not only interact with each other but also
shift from competition to facilitation or from facilitation
to competition depending on the environmental variable,
giving rise to context-dependent interactions. Our find-
ings indicate that the larger the tolerance of a microbe to
some environmental gradient, the less likely it is to inter-
act with other soil microbes. Overall, environmental gradi-
ents of elevation appear to promote more facilitative
interactions among microbes, consistent with results for
plants [35]. Furthermore, the shift toward more positive
interactions does not necessarily lead to niche expansion.

Methods
Site description and soil sampling
The sampling area is in the northwestern part of the
Qinghai-Tibetan Plateau at elevations ranging from 2717 to
4815m above sea level and has a longitudinal (90° to 102°)

and latitudinal (32° to 39°) gradient covering the entire nat-
ural wetland area of Qinghai Province. The Qinghai-Tibetan
Plateau has a continental high-plateau monsoon climate
characterized by long, cold winters and short, warm sum-
mers. The mean annual air temperature ranges from − 4 °C
to 8 °C, and the average annual precipitation is 650mm [36].
The vegetation cover is primarily Carex meyeriana and Carex
muliensis. Due to the alpine environment, the plant communi-
ties have a short growth period and low primary production
and diversity. In July 2015, soil samples were collected from 43
sites (Fig. 5). Five soil cores with a diameter of 1.5 cm were ran-
domly taken at a depth of 0–30 cm from each site. The samples
were pooled to one sample per site following the same proce-
dures as in Kuramae et al. [27] in order to avoid the bias from
small scale soil variability and to obtain a more representative
sample of the site. The soil samples were transported to the la-
boratory on ice and sieved with a 2-mm mesh to remove roots
and stones. Soil samples for soil physicochemical
characterization and DNA extraction were preserved at − 4 °C
and−80 °C, respectively.

Soil physicochemical characterization
Soil pH was measured in soil-water suspensions (1:5, w/
w) [37]. The total nitrogen (TN) in the soil was deter-
mined by dichromate oxidation using a continuous flow

Fig. 5 The sampling site in the northwestern part of the Qinghai-Tibetan Plateau at elevations ranging from 2717 to 4815m above sea level and
a longitude (90° to 102°) and latitude (32° to 39°) gradient covering the entire natural wetland area of Qinghai Province
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analytical system (SAN++, SKALAR, Netherlands). The
total phosphorus (TP) in the soil was determined by the
HClO4-H2SO4 digestion method according to the soil
analysis manual [38, 39]. The potassium dichromate oxi-
dation method was used to analyze SOC [40]. The dis-
solved organic matter (DOM) fraction of the soil
samples was extracted with deionized water (solid-to-
water ratio of 1:2.5 w/v). Fresh soil samples were added
to deionized water and shaken for 24 h in a horizontal
shaker at room temperature. The DOM extract was fil-
tered using 0.45-μm membrane filters and further di-
luted before measurement in a multi-mode microplate
reader (Synergy H1, BioTek). The spectra were blank-
corrected with distilled water. Each sample was scanned
eight times, and the average was reported. Two optical
properties (the E2/E3 ratio and specific UV absorbance
at 254 nm (SUVA254)) were measured to assess different
DOM properties. The E2/E3 ratio of the absorbance at
250 to 365 nm was used to estimate DOM molecular
size. As high-molecular-weight DOM absorbs at the lon-
ger wavelength, the E2/E3 ratio is lower when the high-
molecular-weight DOM fraction is greater [41].
SUVA254, which correlates with the fraction of aromatic
compounds in DOM [42], was calculated by dividing the
UV absorbance at 254 nm by the concentration of DOC.

DNA extraction and sequencing
Genomic DNA was extracted from 0.5 g of soil using a
FASTDNA™ SPIN Kit for soil (MPBio, Santa Ana, CA,
USA) according to the manufacturer’s instructions. The
DNA concentration was measured using a NanoDrop
2000 spectrophotometer (NanoDrop Technologies, Inc.,
Wilmington, DE, USA). The V3-V4 regions of the bac-
terial 16S rRNA gene and the fungal ITS2 region were
amplified using the primer pair 341F (CCTAYGGG
RBGCASCAG) and 806R (GGACTACNNGGGTATC
TAAT) and the primer pair ITS3F (GCATCGATGA
AGAACGCAGC) and ITS4R (TCCTCCGCTTATTGAT
ATGC) combined with Illumina adapter sequences, a
pad and a linker of two bases and barcodes on the re-
verse primers [43]. The PCR reactions were performed
in a 30-μL mixture containing 3 μL of each primer
(2 μM), 10 μL of template DNA (1 ng/μL), 15 μL of Phu-
sion® High-Fidelity PCR Master Mix (New England Bio-
Labs, Inc., Ipswich, MA, USA) and 2 μL of water. The
following thermal program was used for amplification:
95 °C for 1 min, followed by 30 cycles of 98 °C for 10 s,
50 °C for 30 s, and 72 °C for 30 s and a final extension
step at 72 °C for 5 min. Each sample was amplified in
triplicate, and the PCR products were pooled and puri-
fied using a Qiagen Gel Extraction Kit (Qiagen, Hilden,
Germany). Sequencing libraries were generated using a
TruSeq® DNA PCR Free Sample Preparation Kit (Illu-
mina, San Diego, CA, USA) according to the

manufacturer’s instructions and pooled at an equimolar
ratio. An Illumina HiSeq2000 platform at Novogene Bio-
informatics Technology Ltd., Beijing, China, was used to
perform 250-bp paired-end sequencing. The raw se-
quence datasets were deposited in the NCBI SRA data-
base under accession number SRP158093.

Amplicon sequence analysis
Raw sequences were divided into sample libraries via
sample-specific barcodes and truncated after cutting off
the barcode and primer sequences. Forward and reverse
reads with at least 10 bp of overlap and less than 5%
mismatch were merged using FLASH [44]. Quality filter-
ing on the raw tags was performed according to the
QIIME (V1.7.0, http://qiime.org/index.html) quality con-
trol process [45], and all sequences shorter than 200 bp
or with an average quality score of less than 25 were re-
moved from the raw reads. The remaining sequences
were subjected to chimera removal using the UCHIME
Algorithm (http://www.drive5.com/usearch/manual/
uchime_algo.html). Uparse (Version 7.0.1001, http://
drive5.com/uparse/) was used to classify the operational
taxonomic units (OTUs) at the 97% similarity level [46].
The longest sequence with the greatest number of hits
to other sequences in each OTU was screened as a rep-
resentative sequence. All OTUs with sequence numbers
≤2 were removed in subsequent analyses. For ITS se-
quences, the taxonomic identity was annotated by
QIIME software using a Blast algorithm against se-
quences in the Unite Database (https://unite.ut.ee/); for
16S rRNA sequences, the taxonomic classification was
based on the SILVA Database (http://www.arb-silva.de/)
in Mothur [47].

Statistical analysis
To assess the influence of environmental variables (ele-
vation, pH, total carbon (TC), TN, C:N ratio, TP, DOC,
E2/E3 ratio, SUVA254) and geographic distance (be-
cause the sampling points differ in distance, part of the
microbial community variability is a result of geographic
distance) on the microbial communities, we used Latent
Variable Models (LVMs) [14] provided by the boral
package of R [48]. Boral package provides model-based
ordination using Bayesian statistics to capture the
sources of variability in the abundance of different or-
ganisms while account for the effect of environmental
variables and co-occurrences [12]. The advantage of
using LVM is the capacity to quantify to what extent the
variations of bacterial and fungal order taxonomic level
were explained by environmental covariates (elevation
and soil factors) and geographic distance; thus, disentan-
gling the sources of variability in the microbial commu-
nities and allowing us to better identify the microbial
responses to changes in elevation and soil factors.
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Studying the microbial community composition at high
taxonomic resolution based solely on short reads is chal-
lenging, and the choice of taxonomic levels depends on
the quality of the sequence and is limited by available in-
formation in reference databases. The accuracy of LVM
estimates is reduced for low-occurring organisms, and
analyses of rare microbes (i.e., microbes occurring in less
than five samples) are unreliable. Because the proportion
of low-occurring microbes increases greatly at higher
taxonomic levels, LVM adoption would require the re-
moval of those low-occurring microbes and limit the
analysis of potential biotic interactions. Therefore, to
provide a clear but detailed analysis and avoid overinter-
pretation at the OTU level, all analyses of bacterial and
fungal communities were performed at the Order taxo-
nomic level and all the taxa that occurred in less than
five samples were removed. The models were fit assum-
ing weakly informative priors [49]. Priors are probability
values used as the starting point of Bayesian analysis; the
choice of weakly informative priors reduces bias in the
analysis. According to [50], microbiome sequencing data
are compositional. To account for that compositional
nature, we included a sample effect in the LVM. In
addition, differences in the scales of soil factor variables
(g/cm3, mg/dm3, etc.) could bias the analysis of variance
partitioning. Consequently, to guarantee an even com-
parison in the analysis of variance partitioning, we stan-
dardized all environmental factors to units of standard
deviation from the mean of each environmental variable.
As stated earlier, LVMs are joint models [14], thus,

we were able to evaluate not only the changes in
abundance induced by environmental factors but also
the co-occurrence between organisms. Then, for the
microbial community, LVM provides regression coef-
ficients that described the influence of each covariate
(soil factors, elevation, and geographical distance) on
the microbial relative abundance and co-occurrences
between the different microbial populations. To deter-
mine the significance of each regression coefficient,
we checked whether or not the HPD interval included
zero. To summarize all the significant effects, we
evaluated the median and interquartile range (IQR).
This analysis allowed us to understand the strength
of the influence of each environmental variable while
grouping positive and negative effects at the phylum
level.
The HPD interval not only informs whether a regres-

sion coefficient is significant but also reflects the range
of an environmental factor in which a taxon occurs.
Given our sampling size (45 sites), we also evaluated the
HPD value as an estimate of the range of an environ-
mental variable at which an organism might exist,
thereby providing information on the organism’s multi-
dimensional niche.

As a joint model, an LVM allows co-occurrences as a
result of a shared environmental response to be disen-
tangled from the residual correlation. The shared envir-
onmental response reflects any co-occurrence resulting
from the influence of an environmental factor (e.g., soil
nutrients, climate). Any other correlation that cannot be
explained by any of our selected environmental factors is
a residual correlation and can be considered a potential
biotic interaction [14]. To investigate the contribution of
biotic interactions in determining the contraction or ex-
pansion of microbial niches (order level), we combined
the results obtained from the residual co-occurrence
analysis with the values of the HPD interval. To do that,
we evaluated the association between the HPD interval
and the co-occurrence network from the residual correl-
ation. We selected the closeness values as an indicator of
the co-occurrence network. The closeness value is a
measure of node centrality and thus indicates how
dependent each microbe is on all others. We hypothe-
sized that the dependence of a microbe (measured by its
closeness) is related to its niche (measured by the HPD
interval).
Since part of the microbial co-occurrence is a result of

the shared environmental response, this co-occurrence
can shift from positive to negative or vice versa as a re-
sult of changes in the environmental variables. To inves-
tigate the changes in microbial community interactions,
we used a conditional estimator for Spearman’s correl-
ation between two different microbial phyla (fungi and
bacteria) adjusted for the environmental variables of ele-
vation, C:N ratio and pH according to the method devel-
oped by Liu et al. [51]. This method uses a
semiparametric cumulative probability model to preserve
the rank-based nature of Spearman’s correlation while
handling the overdispersed nature of the data. Due to
the limited number of samples in the face of the high
number of possible combinations of interactions, we
performed this analysis at the phylum level.
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