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We study two graph parameters, namely the geodetic number and the Steiner number, 
which are related to the concept of convexity. We show that, in asteroidal triple-free 
graphs, the Steiner number is greater than or equal to the geodetic number. This answers a 
question posed by Hernando, Jiang, Mora, Pelayo, and Seara in 2005. Besides, we show that 
the gap between the two parameters can be arbitrarily large even in unit-interval graphs, 
a proper subclass of AT-free graphs.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The geodetic number of a graph was introduced by Buckley, Harary and Quintas [1] (see also [5] for a recent sur-
vey). It is defined as follows. A geodesic in a graph is a shortest path between two vertices — that is — a path 
that connects the two vertices with the fewest number of edges. Let G = (V , E) be a graph. For a set S ⊆ V let 
I (S) = { z | ∃ x, y ∈ S z lies on a x, y-geodesic }. A set S is geodetic if I (S) = V . The geodetic number g(G) of G is defined 
as the cardinality of a minimum geodetic set.

Let G = (V , E) be a graph and W ⊆ V . A Steiner W -tree is a connected subgraph T of G with the least number of edges 
that contains all vertices of W . Any vertex in V (T ) \ W is called a Steiner vertex. The Steiner interval S(W ) is the set of all 
vertices such that each of them is in some Steiner W -tree. If S(W ) = V , then W is a Steiner set. The Steiner number s(G)

is defined as the cardinality of a minimum Steiner set [5]. Fig. 1 gives an example showing the two parameters.
For graphs in general there is no order relation between the Steiner number and the geodetic number [6]. For distance-

hereditary and interval graphs Hernando, Jiang, Mora, Pelayo, and Seara [3] showed that every Steiner set is geodetic —
that is — g(G) ≤ s(G). In their paper the authors posed the question whether the same holds true for AT-free graphs. We 
answer the question positively in Section 2.

Let G be a graph. For any subgraph H of G , we use V (H) to denote the set of vertices of H . An edge with endpoints 
u and v is denoted by u → v , and u is a neighbor of v . The neighborhood of a vertex v , denoted by N(v), is the set of 
neighbors of v . The closed neighborhood of a vertex v , denoted by N[v], is N(v) ∪{v}. A vertex v attaches to a subgraph H of 
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Fig. 1. A unit interval graph with geodetic number 4 and Steiner number 5. The right side is the intersection model of the graph on the left. The set 
{I1, I3, I4, I7} is a geodetic set, and {I1, I3, I4, I5, I6} is a Steiner set. It is shown in Theorem 2 that both sets are minimum.

G if N(v) ∩ V (H) 
= ∅. For U ⊆ V (G), the subgraph induced by U is denoted by G[U ]. We use u � v to denote a u, v-path 
in G . For a path P and two vertices x and y on P , we denote the subpath that runs between x and y by x �

P
y. The distance

between x and y, denoted by d(x, y), is the number of edges on an x, y-geodesic.

2. Steiner sets in AT-free graphs

Asteroidal triples were introduced by Lekkerkerker and Boland to identify those chordal graphs that are interval 
graphs [4]. An asteroidal triple, AT for short, is a set of three vertices {x, y, z} such that for every pair of them there is 
a path between them that avoids the closed neighborhood of the third. A graph is AT-free if it has no asteroidal triple. Well-
known examples of AT-free graphs are cocomparability graphs. However, AT-free graphs need not be perfect; for example, 
C5 is AT-free.

A dominating set is a subset D of vertices such that the intersection of D and the closed neighborhood of any vertex is 
nonempty. Two vertices constitute a dominating pair if every path between them induces a dominating set. The following 
result appears in [2].

Lemma 1 (See [2]). Every connected AT-free graph has a dominating pair.

A tree is a caterpillar if the removal of all leaves results in a path. The path is called the backbone of the caterpillar. From 
Lemma 1 we obtain the following immediately.

Lemma 2. Given an AT-free graph G, let W ⊆ V (G), and let T be a Steiner W -tree. Then there exists a Steiner W -tree T ′ such that 
V (T ) = V (T ′) and T ′ is a caterpillar.

Proof. Let T be a Steiner W -tree and let X = V (T ). Then the graph G[X] is connected and AT-free since the class of AT-free 
graphs is hereditary. By Lemma 1, G[X] has a dominating pair, say {x, y}. Consider any path P in G[X] with endpoints x
and y. Then V (P ) is a dominating set of G[X]. To obtain a caterpillar T ′ that spans X , connect each vertex of X \ V (P ) to 
a neighbor in P . �
Remark 1. In an AT-free graph, due to the existence of a dominating pair, every Steiner-W tree can be converted to a 
caterpillar T with a chordless backbone. Such a Steiner-W tree is called canonical.

Let W be a Steiner set of an AT-free graph G . To prove that every Steiner set W of G is geodetic, we consider the 
nontrivial case in which W 
= V . Let T be a canonical Steiner W -tree, and let P be the backbone of T . On P there is a 
Steiner vertex z. Let x′ and y′ be the pair of vertices on P such that the path x′ �

P
y′ contains z and no vertex in W except 

x′ and y′ . The path x′ �
P

y′ is called the critical path corresponding to z. Note that if for every z the corresponding critical 
path is a geodesic, then W is geodetic. However, if this is not the case (e.g. Fig. 2), we show that any critical path is “short 
enough” such that the AT-freeness ensures that some geodesic, connecting two vertices in W and containing z, overlaps 
with it.

In a graph G with Steiner set W , let u ∈ V (G), and let X ⊆ Y ⊆ V (G). The vertex u is a private neighbor of X with respect 
to Y if N[u] ∩ X 
= ∅ and N[u] ∩ (Y \ X) = ∅. A leaf x of a Steiner-W tree is private to X with respect to Y if in G the 
vertex x is a private neighbor of X with respect to Y .

Lemma 3. Let T be a canonical Steiner-W tree. If there is a Steiner vertex, then the difference between the length of the corresponding 
critical path x′ � y′ and that of an x′, y′-geodesic is at most 2.
T
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Fig. 2. An AT-free graph with W = {x, y, w1, w2, w3} being a Steiner set. Thick edges form a Steiner-W tree, which contains a Steiner vertex z. The 
x, y-path in the tree is critical corresponding to z, but it is not a geodesic.

Fig. 3. Cases when z not on a x′, y′-geodesic. (a) |{x′, y′} ∩ {x, y}| = 1. Assume x = x′ . Vertex z lies on a w, y′-geodesic. (b) |{x′, y′} ∩ {x, y}| = 2. Vertex z
lies on a w1, w2-geodesic.

Proof. Let Q = x′ �
T

y′ and Q ′ be an x′, y′-geodesic, with q and q′ being the lengths, respectively. Suppose to the contrary 

that q > q′ + 2. Then q ≥ 4, and therefore there exist x1 
= y1 such that N(x′) ∩ V (Q ) = { x1 } and N(y′) ∩ V (Q ) = { y1 }. Let 
L be the set of leaves private to V (Q ) with respect to V (T ), and let L̃ be the set of leaves private to {x1, y1} with respect 
to V (Q ). We claim that

∀ u ∈ L \ L̃ N[u] ∩ V (Q ′) 
= ∅.

To see that, assume that there exists a vertex u belonging to L \ L̃, and N[u] ∩ V (Q ′) = ∅. Clearly, there is an x′, y′-path 
that avoids N[u] via Q ′ . Furthermore, the backbone of T is chordless, so we have a u, x′-path that avoids N[y′] via Q and 
a u, y′-path that avoids N[x′] via Q . This results in an asteroidal triple {x′, y′, u}. Therefore, the claim holds, and Q can be 
substituted for x1 → x′ �

Q ′ y′ → y1, with every leaf in L \ L̃ attaching to this path, forming a smaller tree containing W . �

From the proof of Lemma 3 one can see that when substituting a subpath from the backbone for another, the AT-
freeness ensures the adjacency for some leaves to the new path. Similar operations are applied in the proof of the main 
result (Theorem 1). A general statement is given in Lemma 4.

Lemma 4. Let G be an AT-free graph and W a Steiner set of G. Let T be a canonical Steiner-W tree, and P be the backbone of T . For 
any subpaths P ′ = x′ �

P
y′ of P and P ′′ = x′′ �

P
y′′ of P ′ , if the distance between an endpoint of P and one of P ′ is at least 2, i.e. 

min{d(x′′, x′), d(x′′, y′), d(y′′, x′), d(y′′, y′)} ≥ 2, then any leaf private to V (P ′′) with respect to V (P ′) attaches to all x′, y′-paths in 
G.

Theorem 1. Let G be AT-free. Every Steiner set of G is geodetic.

Proof. Let W be a Steiner set of G and let z ∈ V (G) \ W . We show that z is on a geodesic between two vertices in W . Let 
T be a canonical Steiner W -tree containing z, P be the backbone of T , and Q = x′ �

P
y′ be the critical path corresponding 

to z.
Assume that Q is not an x′, y′-geodesic. Then by Lemma 4 there is a nonempty set of leaves L̃ private to {x1, y1}

with respect to V (P ), where x1 and y1 are the neighbors of x′ and y′ on Q , respectively. In particular, let Lx be the 
set of leaves private to x1 with respect to V (P ) and L y the set of leaves private to y1 with respect to V (P ). Observe 
that |{x′, y′} ∩ {x, y}| > 0 since otherwise by Lemma 4 Q can be substituted for an x′, y′-geodesic, forming a smaller tree 
containing W . Let x and y be the endpoints of P , it suffices to consider the two cases (see Fig. 3): |{x′, y′} ∩ {x, y}| = 1 and 
|{x′, y′} ∩ {x, y}| = 2. We show that

(i) If |{x′, y′} ∩ {x, y}| = 1, then z is on a geodesic between a leaf to either x′ or y′ .
(ii) If |{x′, y′} ∩ {x, y}| = 2, then z is on a geodesic between a leaf to either x′ or y′ , or on a geodesic between two leaves.

In the following, let q and q′ be the length of Q and that of an x′, y′-geodesic Q ′ , respectively.
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For |{x′, y′} ∩ {x, y}| = 1, assume without loss of generality that x′ = x. Then q = q′ + 1 and there is a leaf w in Lx such 
that N[w] ∩ V (Q ′) = ∅, since by Lemma 4 every leaf non-private to x1 with respect to V (Q ) attaches to an x, y-path. We 
show that w → x1 �

P
y′ is a w, y′-geodesic.

Claim: Let u be a neighbor of w on a w, y′-geodesic. If d(w, y′) < q, then u ∈ N(x′).

Proof Any w, y′-geodesic Q ′
w contains a neighbor of x′ since otherwise {w, x′, y′} is an asteroidal triple. Then, Q ′

w is of the 
form

w � ux � y′

where ux ∈ N(x′). With d(x′, y′) = q′ , we have

q′ = d(x′, y′) ≤ 1 + d(ux, y′) ≤ d(w, y′) < q = q′ + 1.

Thus, d(w, ux) = 1 and x′ → ux �
Q ′

w

y′ is an x′, y′-geodesic. �

Claim: If d(w, y′) < q, then there is a w, y′-geodesic Q ′
w such that every leaf in Lx attaches to Q ′

w .

Proof Let Lx be the set of leaves private to x1 with respect to V (P ). If no such geodesic exists, then there are distinct 
elements u1, u2 ∈ Lx such that N[u1] ∩ V (Q ′

u2
) = ∅ and N[u2] ∩ V (Q ′

u1
) =∅, where Q ′

u1
and Q ′

u2
are a u1, y′-geodesic and 

a u2, y′-geodesic, respectively. It follows that x1 /∈ V (Q ′
u1

) ∪ V (Q ′
u2

), and {u1, u2, y′} is an asteroidal triple. �
The two claims given above show that d(w, y′) ≥ q and z is on a w, y′-geodesic.
For |{x′, y′} ∩ {x, y}| = 2, if q = q′ + 1, then the same argument as in the previous case applies. By Lemma 3 it remains 

to consider q = q′ + 2. For any x′, y′-geodesic Q ′ , there exist leaves w1 and w2 private to x1 and y1, respectively, such that 
N(w1) ∩ V (Q ′) = ∅ and N(w2) ∩ V (Q ′) = ∅. We show that w1 → x1 �

P
y1 → w2 is a w1, w2-geodesic. Suppose to the 

contrary that

d(w1, w2) < q.

Then every w1, w2-path contains both a neighbor u of x′ and a neighbor v of y′ since otherwise either {w1, x′, y′} or 
{w2, y′, x′} is an asteroidal triple. Therefore,

q′ = d(x′, y′) ≤ 2 + d(u, v) ≤ d(w1, w2) < q = q′ + 2. (1)

It follows that

q′ − 2 ≤ d(u, v) ≤ q′ − 1, (2)

and at least one of w1 and w2 is adjacent to u or v — that is —

N(w1) ∩ {u, v} 
= ∅ or N(w2) ∩ {u, v} 
= ∅.

Assume without loss of generality that u ∈ N(w1).

Claim: Let Lx be the leaves private to x1 with respect to V (P ) and L y the leaves private to y1 with respect to V (P ). There 
exist w1 ∈ Lx and w2 ∈ L y such that every vertex in L̃ attaches to a w1, w2-geodesic.

Proof Similar to the claim in the previous case, for every w1 ∈ Lx , there exists w2 ∈ L y such that every vertex in L y attaches 
to a w1, w2-geodesic. If there is no geodesic as requested in the claim, then there exists w ′

1 ∈ Lx such that N[w ′
1] ∩

V (Q ′
w1

) =∅ and N[w1] ∩ V (Q ′
w ′

1
) = ∅, where Q ′

w1
and Q ′

w ′
1

are a w1, w2-geodesic and a w ′
1, w2-geodesic, respectively. It 

follows that x1 /∈ V (Q ′
w1

) ∪ V (Q ′
w ′

1
), and {w1, w ′

1, w2} is an asteroidal triple. �
Let R be the w1, w2-geodesic specified in the claim above. By (2) the path R ′ = x′ → u �

R
v → y′ is an x′, y′-path 

shorter than Q . By (1) we have either d(w1, w2) = d(u, v) + 2 or d(w1, w2) > d(u, v) + 2. For the former case every leaf in 
L̃ attaches to R ′ , and Q can be substituted for R ′ to form a smaller tree containing W . For the latter, the w1, w2-geodesic 
is of the form

w1 → u � v → v ′ → w2,

R
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where v ′ is the neighbor of w on the w1, w2-geodesic. Every leaf in L̃ attaches to the subtree T ′ that consists of the path 
x′ → u �

R
v → y′ and the edge v → v ′ . We can obtain a subgraph of G containing W with fewer edges by substituting Q

for T ′ . This leads to a contradiction, and w1 → x1 �
P

y1 → w2 is a w1, w2-geodesic containing z.

As a result, in either |{x′, y′} ∩ {x, y}| = 1 or |{x′, y′} ∩ {x, y}| = 2, there is a requested geodesic, and the theorem is 
proved. �

The following is an immediate consequence of Theorem 1.

Corollary 1. Let G be AT-free. It holds that g(G) ≤ s(G).

Although g(G) ≤ s(G) when G is AT-free, the equality is not guaranteed to hold even for subclasses like unit-interval graphs, 
as shown in Theorem 2.

Theorem 2. For a unit-interval graph, the geodetic number and the Steiner number are, in general, not equal. Moreover, the difference 
between the two numbers can be arbitrarily large.

Proof. Consider the unit interval graph given in Fig. 1. We show that the geodetic number is 4 and the Steiner number is 
5.

It is shown that there is a geodetic set of size 4. We claim that there is no geodetic set of size 3. Since both I1 and I3
are simplicial — that is — each of the neighborhoods is a clique, a geodesic contains neither of them. Furthermore, I2 is 
adjacent to all the other vertices. No geodesic has I2 as an endpoint. By symmetry, {I1, I3, I4} has to be a geodetic set if 
there exists one of size 3. However, neither I5 nor I6 is on the geodesics with endpoints in {I1, I3, I4}. It follows that the 
geodetic number of the graph is 4.

For the Steiner number, a Steiner set of size 5 is given in Fig. 1. We show that the size of a Steiner set of the graph is 
at least 5. Note that the Steiner set containing I2 consists of all the nine vertices so we consider the Steiner sets that do 
not contain I2. Since the neighborhoods of I1 and I3 are cliques, both of them have to be in a Steiner set. The minimal 
connected subgraph containing I1 and I3 has no vertices in X = {Ii | 4 ≤ i ≤ 9}. Thus, for a Steiner set of size less than 
9 at least one element of X has to be in. Because of symmetry, assume that I4 is in the Steiner set. Since a minimal 
connected subgraph containing I1, I3, and I4 contains neither I5 nor I6, it follows that a Steiner set contains {I4, I5, I6} or, 
by symmetry, {I7, I8, I9}. Along with I1 and I3, we have that the Steiner number of the graph is at least 5.

To complete the proof, we modify the graph by adding 2n − 2 vertices, where n − 1 of them correspond to the interval 
identical to I4 and the other n − 1 correspond to I7. Then the gap between the Steiner number and the geodetic number 
becomes n. �
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

Ton Kloks thanks NTUB for their kind hospitality and support while this research was done. The authors thank the 
anonymous reviewers for helpful comments that improves the presentation of the paper.

References

[1] F. Buckley, F. Harary, L. Quintas, Extremal results on the geodetic number of a graph, Scientia, Ser. A 2 (1988) 17–26.
[2] D.G. Corneil, S. Olariu, L. Stewart, Asteroidal triple-free graphs, SIAM J. Discrete Math. 10 (1997) 399–430.
[3] C. Hernando, T. Jiang, M. Mora, P. Pelayo, C. Seara, On the Steiner, geodetic and hull numbers of graphs, Discrete Math. 293 (2005) 139–154.
[4] C. Lekkerkerker, J. Boland, Representation of a finite graph by a set of intervals on the real line, Fundam. Math. 51 (1962) 45–64.
[5] I. Pelayo, Geodesic Convexity in Graphs, Springer Briefs in Mathematics, Springer Science+Business Media, New York, 2013.
[6] I. Pelayo, Comment on “The Steiner number of a graph” by G. Chartrand and P. Zhang: [Discrete Math. 242 (2002) 41–54], Discrete Math. 280 (2004) 

259–263.
135

http://refhub.elsevier.com/S0304-3975(20)30712-X/bib7EE4188424A2BD37BE6E5E9F39ABEB70s1
http://refhub.elsevier.com/S0304-3975(20)30712-X/bib2ABCF2FAB854D3ED86B2C807490CA718s1
http://refhub.elsevier.com/S0304-3975(20)30712-X/bibE5A5A8E63977FD4F9770B26140A2FA8Ds1
http://refhub.elsevier.com/S0304-3975(20)30712-X/bib3EB683EC802E199812D114A4992A0842s1
http://refhub.elsevier.com/S0304-3975(20)30712-X/bibF6709C85F20E4187120557C60C60A2D0s1
http://refhub.elsevier.com/S0304-3975(20)30712-X/bibA883CF352DC919190A5F081C5CE57422s1
http://refhub.elsevier.com/S0304-3975(20)30712-X/bibA883CF352DC919190A5F081C5CE57422s1

	A note on the geodetic number and the Steiner number of AT-free graphs
	1 Introduction
	2 Steiner sets in AT-free graphs
	Declaration of competing interest
	Acknowledgements
	References


