
https://doi.org/10.1007/s00224-021-10037-w

Greedy is Optimal for Online Restricted Assignment
and Smart Grid Scheduling for Unit Size Jobs

Fu-Hong Liu1 ·Hsiang-Hsuan Liu2,3 ·Prudence W. H. Wong4

Accepted: 12 February 2021
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2021

Abstract
We study online scheduling of unit-sized jobs in two related problems, namely,
restricted assignment problem and smart grid problem. The input to the two problems
are in close analogy but the objective functions are different. We show that the greedy
algorithm is an optimal online algorithm for both problems. Typically, an online algo-
rithm is proved to be an optimal online algorithm through bounding its competitive
ratio and showing a lower bound with matching competitive ratio. However, our anal-
ysis does not take this approach. Instead, we prove the optimality without giving the
exact bounds on competitive ratio. Roughly speaking, given any online algorithm and
a job instance, we show the existence of another job instance for greedy such that (i)
the two instances admit the same optimal offline schedule; (ii) the cost of the online
algorithm is at least that of the greedy algorithm on the respective job instance. With
these properties, we can show that the competitive ratio of the greedy algorithm is
the smallest possible.

Keywords Optimal online algorithm · Restricted assignment · Smart grid scheduling

1 Introduction

In this paper, we study online scheduling of unit-sized jobs in two related problems,
namely, restricted assignment problem and smart grid problem.

This article belongs to the Topical Collection: Special Issue on Approximation and Online
Algorithms (2019)
Guest Editors: Evripidis Bampis and Nicole Megow

This work is partially supported by Polish National Science Centre grant 2016/22/E/ST6/00499.
This work is supported by Networks Sciences & Technologies(NeST), School of EEECS, University
of Liverpool. This work was partially done when Hsiang-Hsuan Liu worked in Wroclaw University,
Poland. A preliminary version of this paper was published in WAOA 2019 [1].

� Fu-Hong Liu
fhliu@cs.nthu.edu.tw

Extended author information available on the last page of the article.

/ Published online: 8 April 2021

Theory of Computing Systems (2021) 65:1009–1032

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-021-10037-w&domain=pdf
http://orcid.org/0000-0001-6073-8179
mailto: fhliu@cs.nthu.edu.tw

The input to the two problems are in close analogy but the objective functions are
different. We show that the greedy algorithm (precise definition to be given later)
is an optimal online algorithm for both problems by showing that both objective
functions have led to the same property of the greedy algorithm. The property is
crucial for the optimality of the greedy algorithm. We first describe the two problems
and then explain how they are related.

SmartGrid Scheduling The smart grid scheduling problem arises in demand response
management in electrical smart grid [2–6] - one of the major challenges in the 21st
century [7–9]. The smart grid [10, 11] makes power generation, distribution and con-
sumption more efficient through information and communication technologies. One
of the main challenges is that peak demand hours happen only for a short duration, yet
can make the electrical grid very inefficient. For example, in the US power grid, 10%
of generation assets and 25% of distribution infrastructure are required for the peak
hours which is roughly 5% of the whole time [7, 12]. Demand response management
is to reduce peak load by shifting demand to non-peak hours [13–18] through tech-
nological advances in smart meters [19]. It is beneficial to both the power supplier
and consumers. On one hand, it can bring down the cost for the supplier operating
the grid [13]. On the other hand, it can reduce electricity bill for consumers as it is
common that suppliers charge according to generation cost [17]. Research initiatives
in the area include [20–23].

We consider online scheduling of unit-sized requests with the following input. A
consumer sends in a power request j with unit power requirement, unit duration of
service, and feasible timeslots F(j) that j can be served. The operator of the smart
grid selects a timeslot from F(j) for each request j . The load of the grid at each
timeslot t is the number of requests allocated to t . The energy cost is modeled by a
strictly increasing convex function f (t) on load(t). The objective is to minimize the
total energy cost over time, i.e., minimize

∑
t f (load(t)).

Restricted Assignment Problem The assignment problem [24, 25] and its variant
restricted assignment problem [26] have been extensively studied. The assignment
problem is concerned with a set of jobs and a set of machines in which each job
specifies a vector of processing times (a.k.a. size/load) it takes to complete if it is
assigned to the corresponding machine. The completion time of a machine is the
total processing times of jobs scheduled on it and the objective is to minimize the
makespan (a.k.a. the maximum load over all machines). For the restricted assign-
ment problem, each job is associated with a processing time (a.k.a. size/load) and
a subset of machines that the job can be scheduled on. As pointed out in [26],
the restricted assignment problem can be applied to say a wireless communica-
tion network where customers arriving one-by-one each request a certain amount
of service and must be assigned a base-station within range to service it. We con-
sider online scheduling of unit size jobs. This means that a job increases the load
of the assigned machine by one. The objective is to minimize the maximum num-
ber of jobs assigned to any machine while satisfying the assignment restriction
constraints.

1010 Theory of Computing Systems (2021) 65:1009–1032

Our contribution Notice that with unit size, the input for the grid scheduling problem
and the restricted assignment problem is indeed the same. Timeslots in grid schedul-
ing is in analogy to machines in restricted assignment; feasible timeslots in analogy
to subset of machines; load of timeslots in analogy to load of machines. The differ-
ence of the two problems lie in the objective functions. Our main contribution is the
following theorem about both problems.

Theorem 1 When the input to the grid scheduling problem and the restricted assign-
ment problem is a set of unit-sized jobs, the greedy algorithm is an optimal online
algorithm having the best possible competitive ratio.

Typically, an online algorithm is proved to be an optimal online algorithm through
bounding its competitive ratio and showing a lower bound with matching competi-
tive ratio. However, our analysis does not take this approach. Instead, we prove the
optimality without giving the exact bounds on the competitive ratio.

In this paper, we develop an adversary design technique. We design some adver-
sarial input which is bad for the greedy strategy. Also by this technique, we design
an adversary for any online algorithm that performs bad enough to be worse than
the performance of a greedy strategy. By these adversarial inputs, we can show that
greedy is the best online strategy for this problem.

More specifically, given any online algorithm and a load configuration (to be
defined precisely later), we show the existence of two job instances J1 and J2 such
that (i) J1 and J2 admit the same optimal offline schedule represented by the given
load configuration; (ii) the cost of the schedule produced by the given online algo-
rithm on J1 is at least the cost of the schedule produced by the greedy algorithm
on J2. This means that when we consider any job instance for the greedy algo-
rithm, there is always another job instance such that the ratio versus the (same)
optimal offline schedule of the greedy algorithm is not larger than any online
algorithm. Hence, we can show that the competitive ratio of the greedy algorithm
is the smallest possible. The existence of the two job sets relies on a property
about the relative costs of two comparable schedules (see Theorem 2). We show
that this property holds for both objective functions for the grid scheduling prob-
lem and the restricted assignment problem, hence, the optimality holds for both
problems.

Interestingly, our adversary design shows that there is an adversary for the greedy
strategy, regardless of the cost function, as long as the cost function is strictly
increasing and convex.

Related Work on Grid Scheduling The offline version of the grid problem with unit
power requirement and unit service duration can be solved optimally in polynomial
time [27]. The solution iteratively assigns request j to the timeslot with the small-
est load in F(j) and rearranges the other requests to make an optimal schedule.
However in the online setting where a request must be irrevocably scheduled, rear-
rangement is not allowed. It is interesting to study the performance of the greedy
strategy without the rearrangement. A previous work [28] has studied the greedy
strategy on the problem with unit power requirement, unit service duration and cost

1011Theory of Computing Systems (2021) 65:1009–1032

function f (t) = load2(t) and claimed that the algorithm is 2-competitive. However,
as stated in [29], the greedy algorithm is indeed at least 3-competitive. Hence, it is
still an open problem to determine how good or bad the greedy strategy is. Our results
in this paper establish the optimality of the greedy algorithm.

For arbitrary power requirements and service durations, the problem becomes
NP-hard [15, 27]. Theoretical study on this problem mainly focuses on the cost
function f (t) = loadα(t) [30, 31]. In particular, Liu et al. [30] gave the first
online algorithm with competitive ratio O(logα wmax

wmin
) for contiguous feasible times-

lots, where wmax and wmin are the maximum and minimum service duration
of the requests respectively. They also proved that all deterministic online algo-
rithms have competitive ratio at least Ω(αα) for this problem. Chau et al. [31]
designed a greedy algorithm based on a primal-dual approach and improved the
upper bound on the competitive ratio to O(αα), which is asymptotically optimal.
Note that the feasible timeslots of requests we considered are more flexible than
that in [30, 31]. Other work on demand response management can be found in
[4, 13, 15, 17].

Related Work on (restricted) Assignment Problem Online (restricted) assignment
problem of jobs with arbitrary size has also been studied as the problem of load bal-
ancing. When jobs can be scheduled on any (unrestricted) machine, Graham [24,
25] has shown that the greedy algorithm is (2 − 1

m
)-competitive where m is the

number of machines and this has been improved to 2 − ε in [32]. For restricted
assignment, Azar et al. [26] have shown that the greedy algorithm is (�logm� + 1)-
competitive and no online algorithm can do better than �log(m + 1)�-competitive.
This implies that the greedy algorithm is very close to optimal. Our result indeed
shows that the greedy algorithm is the best possible online algorithm for unit-
sized jobs although the precise competitive ratio is yet to been established. The
restricted assignment problem is also studied in �p norm [33, 34] and Ioannis Cara-
giannis [33] has shown that the greedy algorithm is an optimal online algorithm
with competitive ratio 1/(21/p − 1). We consider arbitrary strictly increasing con-
vex functions and show that the greedy algorithm remains optimal for unit-sized
jobs.

In the offline setting, the (unrestricted) assignment problem has also been stud-
ied as scheduling on unrelated machines in which Lenstra et al. [35] have shown
a 2-approximation algorithm and that approximating the problem with approxima-
tion ratio 3/2 is NP-hard. For restricted assignment, a breakthrough was made by
Svensson [36] who has shown that the integrality gap of the configuration LP for
the restricted assignment problem is at most 1.942. Various special cases have been
studied [37–43]. The (restricted and unrestricted) assignment problem has also been
studied for temporary jobs that depart [44–48].

Organization of the Paper We present some preliminaries in Section 2. We then
present a framework of analysis in Section 3 and establish the optimality of the greedy
algorithm in Section 4. Finally, we conclude in Section 5.

1012 Theory of Computing Systems (2021) 65:1009–1032

2 Preliminaries

Problem Definition We unify the two problems as follows. We are given a set of
machines. Each job j has unit size and a set of permitted machines Pj , which is a
subset of machines. A job instance J is a set of jobs together with their release order.
Two job instances can contain the same set of jobs but with different release orders.

A schedule S(J) of a job instance J is an assignment assigning each job to a
machine. We simply use S when the context is clear. We denote the machine to which
j is assigned by the schedule S by mS(j). A schedule S is feasible if each job j ∈ J

is assigned to one of the machines in Pj . That is, S is feasible if mS(j) ∈ Pj for
all j in the job instance. We denote by A(J) the schedule produced by a scheduling
algorithm A on J . We denote the optimal offline algorithm by O and its schedule
O(J).

In a schedule S of some job instance J , the load of machine i, loadS(i), is the
number of jobs assigned to the machine i. That is, loadS(i) = |{j : mS(j) = i}|.
The cost of machine i, costS(i) is a strictly increasing convex function of the load of
i and costS(i) = 0 if the load of i is 0. We overload the notation and use S(J) to
also denote the total cost of schedule S with instance J , which is the sum of costS(i)

over the machines. The goal is to minimize the total cost S(J).
For unit-sized jobs, both grid scheduling problem and restricted assignment prob-

lem can be modeled as the problem above. The two problems have the same input
but with different objective functions. For the grid scheduling problem, the objective
is to minimize the sum of the costs over all machines, while for the restricted assign-
ment problem, the objective is to minimize the max of the loads over all machines.
To unify the objectives, we can design a cost function for restricted assignment prob-
lem that is able to grow rapidly such that the maximum load of machines dominates
the sum of the total cost. One of such cost function is costS(i) = nloadS (i) where n

is the number of jobs in S. One can show that the minimum cost S(J) for the cost
function implies that the maximum load over all machines in S is minimized. The
cost function is convex and strictly increasing when n > 1. The case where n = 1
can be unified trivially. The analysis in this paper does not require the specified cost
function to be known beforehand and thus the results of this work applies even if the
cost function depends on n.

Online Model We consider the online model. The jobs are released one by one, and
the released job has to be assigned before the next one is released. At any time,
the online algorithm knows only the released jobs without any knowledge about the
future. The decisions of an online algorithm are made irrevocably. We measure the
performance of online algorithms by competitive ratio [49], which is defined as the
maximum ratio between the cost of the online algorithm and the cost of an optimal
offline algorithm knowing the whole input.

The Greedy Algorithm G When a job arrives, it is assigned to the machine with the
smallest number of jobs currently assigned.

1013Theory of Computing Systems (2021) 65:1009–1032

A critical theorem We first introduce a theorem which is useful when comparing the
costs of two schedules.

Definition 1 Consider an algorithm A, the level of job j decided by A, levelA(j),
is the number of jobs on the machine mA(j) right after the time when j is assigned
to it. That is, a job with levelA(j) means that it is the levelA(j)-th job assigned to
mA(j) by A.

Definition 2 Given a schedule S produced by an algorithm A on job instance J , the
accumulated size at level k, L(k)

S , is defined as the total number of jobs with level at

most k. That is, L(k)

S := |{j : levelS(j) ∈ [1, k]}|. For better readability, we use Lk

to represent L(k)

S when the schedule S is clear.

Theorem 2 Given two schedules S and S ′ which have the same number of jobs
(which are not necessarily of the same job instance) and the accumulated size Lk and
L′

k for S and S ′ respectively, if
Lk ≥ L′

k for all k ≥ 1, then the cost of S is at most that of S ′.

Proof Let f (x) be the cost corresponding to load x. First of all, we observe that the
cost of schedule S can be written as

∑

j∈J

(

f
(
levelS(j)

) − f
(
levelS(j) − 1

)
)

. (1)

We claim that we can map each job j ′ in S ′ to a unique job j in S such that
levelS ′(j ′) ≥ levelS(j). The claim can be proved inductively by first mapping jobs
in S ′ at level 1 and because of L1 ≥ L′

1, there are enough jobs in S at level 1 to
have a unique mapping. Then we can map jobs in S ′ at level 2 to unmapped jobs
in S at level 1 and any jobs at level 2 because L2 ≥ L′

2. Since the number of jobs
up to level i in S is always at least that in S ′, we can repeat this mapping for each
level. The claim then follows. Furthermore, as the cost function f is convex, we have
f

(
levelS ′(j ′)

) − f
(
levelS ′(j ′) − 1

) ≥ f
(
levelS(j)

) − f
(
levelS(j) − 1

)
. Summing

up over all pairs of mapped jobs using (1) concludes the theorem.

3 Framework of Analysis

In this section, we give a framework of the analysis and we then present the details of
analysis in the next section. As proved in Theorem 2, we can compare schedules by
looking at some aggregate property of the schedule instead of the precise allocation of
jobs to the machines. We further formalize this notion as configuration of a schedule.

Given an arbitrary schedule S, the configuration of S, config(S), is defined as the
multi-set of loads of the machines. Two schedules are considered as having the same
configuration if they have the same multi-set of machine loads even with different
order. Moreover, we represent the configuration of a schedule as the sequence of

1014 Theory of Computing Systems (2021) 65:1009–1032

loads sorted from low to high and we can compute the cost of a certain configuration.
We denote by cost(C) the cost of configuration C.

Example Consider a case with five machines and ten jobs, and two schedules S1
and S2. Let �i be the load on machine mi . Suppose the load of S1 is �1 = 1, �2 = 2,
�3 = 2, �4 = 5, and �5 = 0; the load of S2 is �1 = 2, �2 = 1, �3 = 0, �4 = 2, �5 = 5.
The two schedules S1 and S2 have the same configuration (0, 1, 2, 2, 5). See Fig. 1
for an illustration.

The high level idea of the analysis is roughly as follows. We attempt to find some
“bad” instances for the greedy algorithm G and show that for each such bad instance
we can always find another bad instance for every other online algorithmA such that
the ratio of G to O on its bad instance is no more than the ratio of A to O on its
own bad instance. We can then bound the competitive ratio of G by that of A. We
are going to find these bad instances through characterizing the job instances by the
configuration of their optimal schedules. Figure 2 is an illustration of the framework.

Let I be the set of all possible job instances. We partition I according to the
optimal configuration of job instances. Job instances J and J ′ are in the same
partition IC if and only if they both have the optimal configuration C. That is,
config(O(J)) = config(O(J ′)) = C. The following are some properties of IC .

Observation 1 Consider a partition IC and the corresponding optimal configuration
C.
(1) Since the cost function is strictly increasing and convex, any two different con-

figurations have different cost. Hence, for each job instance J , there is exactly
one IC such that J ∈ IC , i.e., the partition is well defined.

(2) By definition, for any job instance J ∈ IC , config(O(J)) = C.

Fig. 1 The two schedules have the same configuration (0, 1, 2, 2, 5). a A schedule with loads (1; 2; 2; 5;
0). b A schedule with loads (2; 1; 0; 2; 5)

1015Theory of Computing Systems (2021) 65:1009–1032

Fig. 2 An illustration of the framework. Each partition, say IC , has exactly one corresponding J ∗ in which
we are interested and J ∗ makes G to have the largest cost. In a partition, each J ′ may be different for
different online algorithm A but the cost of A on J ′ must be at least the cost of G on J ∗. There are other
job instances represented by � that are neither J ∗ nor J ′ and are not crucial to the analysis

(3) For any two job instances J1, J2 ∈ IC , consider their optimal schedules O1
and O2, respectively. Although config(O1) = config(O2), O1 may not be a
feasible schedule for J2, and neither the other way round.

With the above partition, we can express the competitive ratio of G, denoted by
R(G), as follows.

R(G) = max
J∈I

G(J)

O(J)
= max

IC
max
J∈IC

G(J)

O(J)
= max

IC
max
J∈IC

G(J)

cost(C)
.

This means that we can characterize the competitive ratio by considering the job
instance in each IC with the highest greedy cost. We denote this job instance as J ∗,
i.e., for a given C, J ∗ = argmaxJ∈IC G(J). It is not clear how to find such job
instances directly and instead we try to find their counter parts (bad instances) for any
online algorithm A which share the same C. Precisely, for any online algorithm A,
we show the existence of a job instance J ′ ∈ IC such that A(J ′) ≥ G(J ∗). This
implies G(J ∗)

cost(C)
≤ A(J ′)

cost(C)
= A(J ′)

O(J ′) , where the last equality is because J ′ ∈ IC . We can
then bound the competitive ratio of G by that of A as follows:

R(G)=max
IC

max
J∈IC

G(J)

cost(C)
=max

IC

G(J ∗)
cost(C)

≤max
IC

A(J ′)
O(J ′)

≤max
IC

max
J∈IC

A(J)

O(J)
=R(A) .

Then we can conclude Theorem 1. Section 4 is devoted to finding J ∗ (Section 4.1)
and J ′ (Section 4.2).

1016 Theory of Computing Systems (2021) 65:1009–1032

4 Optimality of the Greedy Algorithm

In this section, we construct J ∗ and J ′ as required in the framework in Section 3.

4.1 The Job Instance J∗ for the Greedy AlgorithmG

4.1.1 Overview

Given an optimal configuration C and the corresponding set of job instances IC , we
aim to find a job instance J ∗ ∈ IC such that J ∗ is the most troublesome job instance
for G among all job instances in IC .

We will find J ∗ by artificially designing a job instance and transform C to schedule
S∗ as follows. First, J ∗ will have the same number of jobs as in the given C and
we will impose the set of permitted machines of each job and the release order of
the jobs in the construction. Second, during the construction, C will be transformed
to a schedule S∗ by changing the configuration. The construction will ensure the
following properties:

– C is the optimal configuration of J ∗ (Lemma 3);
– S∗ is the schedule of running a greedy algorithm on J ∗ (Lemma 2);
– for any job instance J ∈ IC , we will have G(J ∗) ≥ G(J) (Corollary 1).

To achieve this, we design the set of permitted machines of each job and choose
the release order carefully.

Although the job instance J ∗ seems to be artificial, we can prove that G(J ∗) is
the highest among all job instances in IC (Corollary 1). That is, consider any job
set and any release order, as long as the job set with the release order has optimal
configuration C, its greedy cost is no greater than the greedy cost of J ∗.

4.1.2 Construction of the Job Instance J∗

We aim to construct a job instance with high greedy cost, i.e., we want the greedy
schedule for the job instance to have as few jobs at each level as possible. This can be
done by setting a small set of permitted machines. However, this may result in a high
optimal cost as well and the ratio between the greedy cost and the optimal cost is still
small. Hence we have to balance the greedy schedule and the feasibility of optimal
configuration of the job instance.

First we explain how to transform the given optimal configuration C to schedule
S∗.

Assume that C = (v1, v2, · · · , vh), where 0 < v1 ≤ v2 ≤ · · · ≤ vh, we treat
C as building blocks with h columns and each column i has vi blocks (where each
block corresponds to one job). The transformation runs in rounds, in each round,
we choose a certain number of blocks, remove them from C and put them in S∗
(which is initially empty) and produce another configuration. During the process, the
configuration C changes to reflect the removal of blocks. Hence, the number of non-
zero terms in the configuration changes over the process as well. The number of non-
zero terms in the configuration in each round takes an important role in our construc-
tion. We denote by NE(i) the set of machines with non-empty load in the end of
round i.

By default, NE(0) is the set of non-empty machines in C.

1017Theory of Computing Systems (2021) 65:1009–1032

At the beginning of round i, letm1, m2, · · · , m|NE(i−1)| be the non-empty columns
in the configuration. We remove the jobs one by one from the least-loaded non-
empty column m1. The removing procedure stops once the size of the set of removed
blocks in this round, denoted as J ∗

i , is greater than or equal to the number of non-
empty columns in the updated configuration (that is, the configuration after removing
the jobs). Notice that by the construction,

|NE(i)| ≤ |J ∗
i | ≤ |NE(i)| + 1. (2)

In round i, after removing the blocks from C, we update S∗ by placing each of
them at |J ∗

i | distinct machines with the highest loads in current S∗ (note that S∗ is
initially empty at the beginning of the first round). We call this set of machines as
B(i).

We will prove later that the machines in B(i) cover all the machines in NE(i)

(Observation 3) and the blocks we placed in each round are on the same level
(Lemma 1), which means they are placed evenly.

Now we design other parameters of the job instance J ∗. As mentioned before,
each block is corresponding to one job. For each job j , its permitted machines are
the machines corresponding to the columns the block was in C and S∗. That is,
Pj = {mC(j)} ∪ {m∗

j }, where mC(j) and m∗
j are the columns of block j in the con-

figurations C and S∗, respectively. The release order of the jobs in J ∗ is exactly the
order their corresponding blocks removed from C. Algorithm 1 is a demonstration to
find the job instance J ∗. Figure 3a gives an example configuration and Fig. 3b is the
corresponding J ∗ of the configuration in Fig. 3a.

1018 Theory of Computing Systems (2021) 65:1009–1032

(a) An optimal configuration C

(c) The corresponding J* for some A(b) The corresponding J*

Fig. 3 An example of finding J ∗ and J ′. a is a configuration with 8 jobs and 4 machines. To obtain J ∗,
we first remove from (a) the jobs j1, j2 and j3, which are in the least-loaded machines and the number of
such jobs is at least the number of non-empty machines: m3 and m4. These 3 jobs are assigned to m2,m3
and m4 in J ∗ respectively. Then we remove j4 and j5 from (a) and assign them evenly to the second level
of J ∗. After that, we stack the remaining jobs onto J ∗ such that each job occupies a level since the current
number of non-empty machines in (a) is at most 1. The bottom part of (b) shows the permitted machines
of each job which is the union of machines the job assigned to in (a) and (b). On the other hand, for finding
J ′ for some A, we first release j1, which is at the least-loaded machine in (a), with all machines being
permitted and get thatA schedules j1 to m1. Then we release j2 and j3 with the permitted machines of the
3 highest-load machines in the current JA, which are m1,m2 and m3. And then we release j4 and j5 with
the permitted machines m1 and m3. Finally we release j6, j7 and j8 with the current highest-load machine
as their permitted machine

4.1.3 C is Optimal andS∗ is Greedy for J∗

We have to show that J ∗ ∈ IC . Moreover, we show that S∗ generated during the
construction process is a greedy schedule for J ∗. That is, there is a greedy algorithm
for the input job set and the release order generating the schedule S∗ (with a certain
tie breaking).

Recall that in round i, B(i) is the set of machines chosen to (evenly) assign the
chosen jobs J ∗

i , and NE(i) is the set of machines in C′ which are non-empty after
removing J ∗

i . We first observe the relation of machines in B(i) and NE(i), and show
that Algorithm 1 is valid. More specifically, we prove that all machines in NE(i) can
be covered by the highest load machines. Hence, at the end of round i, the machines

1019Theory of Computing Systems (2021) 65:1009–1032

in B(i) are equally-loaded and the level of each jobs j ∈ J ∗
i is equal to i (that is, in

Algorithm 1, Line 10 is achievable). This property of the construction is essential for
proving that the resulting schedule S∗ is a greedy schedule for J ∗.

Observation 2 For all jobs j ∈ J ∗
i , mC(j) ∈ NE(i − 1).

Proof According to Algorithm 1, Line 7, we choose jobs from the updated optimal
configuration C′. Also, once a job is chosen, it is removed from C′ (Line 8). Hence,
mC(j) ∈ NE(i − 1).

Observation 3 There is a G with some tie breaking to choose a subset B(i) of |J ∗
i |

machines such that NE(i) ⊆ B(i).

Proof By Inequality 2, |J ∗
i | = |B(i)| ≥ |NE(i)|.

There are two cases in the i-th round, |J ∗
i | = |NE(i)| or |J ∗

i | = |NE(i)| + 1. If
|J ∗

i | = |NE(i)|, we can choose B(i) as NE(i) and NE(i) ⊆ B(i).
The case |J ∗

i | = |NE(i)| + 1 comes from the situation when mC(j) /∈ NE(i)

where j is the last job in J ∗
i . That is, the removal of j causes a new empty column in

the updated C. In this case, mC(j) ∈ NE(i − 1) \ NE(i). We can choose B(i) to be
the union of NE(i) and mC(j). Hence, NE(i) ⊆ B(i).

Lemma 1 At the end of round i, (a) B(i) ⊆ B(i − 1), and (b) the machines in B(i)

have equal load. Note that B(0) is defined as the set of non-empty machines in the
given optimal configuration C.

Proof We prove it by induction in rounds. The argument holds for the first round,
since S∗ is initially empty and all machines have load 0. Now suppose that the argu-
ment holds for the first k − 1 rounds. It implies that by the construction, |B(k)| ≤
|B(k − 1)| since |J ∗

k | ≤ |J ∗
k−1|. Also by the construction, NE(k) ⊆ NE(k − 1).

There are two cases in the k-th round, |J ∗
k | = |NE(k)| or |J ∗

k | = |NE(k)| + 1. If
|J ∗

k | = |NE(k)|, we choose B(k) as NE(k) ⊆ NE(k − 1).
In the case |J ∗

k | = |NE(k)| + 1, we choose B(k) to be the union of NE(k) and
mC(j). Hence, B(k) = NE(k) ∪ {mC(j)} ⊆ NE(k − 1).

In both cases, by Observation 3, B(k) ⊆ NE(k − 1) ⊆ B(k − 1). By the inductive
hypothesis, all machines in B(k − 1) have the same load (because every job in J ∗

k−1
has the same level k − 1). The jobs in J ∗

k can be assigned to machines B(k) evenly
and have the same level k (Line 10). Hence the statement is proven.

Lemma 2 S∗ is a greedy schedule for J ∗.

Proof We prove that for all j ∈ J ∗, when j arrives (according to the release order of
J ∗), loadS∗(mC(j)) ≥ loadS∗(m∗j).

Consider job j ∈ J ∗k, by Observation 2 and 3, mC(j) ∈ NE(k − 1) ⊆ B(k − 1).
Also, by Lemma 1(a), m∗j ∈ B(k) ⊆ B(k − 1). Since mC(j) and m∗j are both in
B(k − 1), by Lemma 1(b), loadS∗(mC(j)) = loadS∗(m∗j).

1020 Theory of Computing Systems (2021) 65:1009–1032

Note that by the construction, {mC(j), m∗(j)} are the permitted machines of j and
it implies S∗ assigns j to the least-loaded machine among j ’s permitted machines.
Thus the lemma follows.

Lemma 3 J ∗ is a job instance in IC . That is, the optimal configuration of J ∗ is C.

Proof We prove this lemma by using the legal-path argument in [27]. For the
completeness, we explain the idea of the legal-path argument first.

Based on the machine assignment, we construct a directed multi-graph G =
(V , E) and define the legal-path in G. Each machine i is represented by a vertex ui in
V . For each pair of vertices ui and uk , there is an edge from ui to uk if there is a job j

which is assigned to ui , and uk is also a permitted machine of j . Any directed path in
G, ui1 , ui2 , · · · , uik indicates a sequence of job shiftings such that the machines ui1

and uik are the only two machines of which the load is changed by the rescheduling.

Definition 3 ([27]) A directed path in the graph G is a legal-path if and only if the
load of the machine represented by the starting point is at least 2 more than the load
of the one representing the ending point.

The authors of [27] also proved that as long as there is no legal-path in G, the
corresponding assignment is optimal:

Claim ([27] Lemma 7) If there is no legal-path in the construction based on the
assignment S, S is optimal.

We claim that loadC(mC(j)) ≤ loadC(m∗(j)) for any job j . It follows that in the
constructed graph G, every edge points from a lower-load vertex to a higher-load
vertex. Hence, in G, for any directed path, the last vertex has higher load than the
first vertex. Therefore, there is no legal path in G and the lemma is proved.

By Algorithm 1, every job j has at most two permitted machines, mC(j) and m∗j .
The final step is to prove the claim is true that loadC(mC(j)) ≤ loadC(m∗(j)).

Consider the jobs j in J ∗
k (that is, the jobs chosen in the k-th round) for each k.

Let j� be the last chosen job in J ∗
k . By Observation 3, there exists a greedy sched-

ule G by choosing B(k) = NE(k) or B(k) = NE(k) ∪ {mC(j�)} (in the second
case, removing the job j� causes a new empty column in the updated C). By the
construction, we choose jobs from the least-loaded machines, and loadC(mC(j)) ≤
loadC(m) for any m ∈ NE(k). Therefore, for any job j with m∗j ∈ NE(k),
loadC(mC(j)) ≤ loadC(m∗(j)). For the job j with m∗j = mC(j�) /∈ NE(k),
loadC(mC(j)) ≤ loadC(mC(j�)) = loadC(m∗(j)) since j� is the last chosen job in
J ∗

k .

1021Theory of Computing Systems (2021) 65:1009–1032

4.1.4 The Job Instance J∗ is the most Troublesome Among IC forG

Now we show that the job instance J ∗ has the highest greedy cost among all job
instances in IC . Recall that the schedule S∗ produced by Algorithm 1 is G(J ∗). We
compare S∗ with greedy schedule of any job instances in IC .

Lemma 4 Consider a configuration C, the job instance J ∗ in IC , and any job
instance J ∈ IC . For all k ≥ 1, we have Lk ≥ L∗

k where L∗
k and Lk are the

accumulated sizes at level k for the schedule S∗ and G(J) respectively.

Proof We prove the lemma by induction on k. Without loss of generality, we set
L0 = 0 and L∗

0 = 0. Thus the base case L0 ≥ L∗
0 holds.

Assume that Lk−1 ≥ L∗
k−1 for some k > 0, we prove that Lk ≥ L∗

k .
Let Jk denote the set of jobs at level k in schedule G(J), i.e., Jk = {j ∈ J |

levelG(J)(j) = k}. Recall in Lemma 1 that J ∗
k are the jobs at level k in S∗. Sup-

pose on the contrary that Lk < L∗
k . By combining this inequality with the inductive

hypothesis Lk−1 ≥ L∗
k−1, we have

|Jk| < |J ∗
k | . (3)

We consider the set of machines M to which jobs in J \ J1 ∪ J2 ∪ · · · ∪ Jk are
assigned by O(J), that is, M is the non-empty machines in C that remain after the
jobs J1 ∪ J2 ∪ · · · ∪ Jk are removed.

We will show in the following paragraphs that

|J ∗
k | ≤ |M| . (4)

Combining Inequality 3 and Inequality 4, we have

|Jk| < |M| . (5)

Since C is a feasible configuration for job instance J , after removing the jobs J1 ∪
J2∪· · ·∪Jk , the updated C is also feasible for J \J1∪J2∪· · ·∪Jk . Recall that |M| is
the number of non-empty machines in C that remain after the jobs J1 ∪ J2 ∪ · · · ∪ Jk

are removed. This means that the jobs J \ J1 ∪ J2 ∪ · · · ∪ Jk can be scheduled to
at least |M| machines. However, by Inequality 5, |Jk| < |M|, which means that
the number of jobs at level k in G(J) is strictly less than the number of machines
to which J \ J1 ∪ J2 ∪ · · · ∪ Jk can be scheduled. It implies the existence of a
job j ∈ J \J1 ∪J2 ∪ · · · ∪Jk that can be assigned to one of the machines with load k

or lower, while G(J) assigned j to a machine with load higher than k. It contradicts
to the fact that G(J) is a greedy algorithm. Thus we have Lk ≥ L∗

k and the lemma
follows. We show in the following paragraphs that Inequality 4 holds.

A Property for Proving Inequality 4 Before proving Inequality 4, we describe a prop-
erty of Algorithm 1. In the algorithm, we have an order of job removal. We remove
the jobs from the least-loaded machine in C. The order of job removal decreases
the number of non-empty machines in a rapid way. In fact, the job removal has the
least number of non-empty machines among all job removals with the same number
of removed jobs. This is because we can change other orders to the order without

1022 Theory of Computing Systems (2021) 65:1009–1032

decreasing the number of empty machines. It is either both orders have the same
set of empty machines or the other order has an empty machine whose original load
is larger than the original loads of all empty machines in our order. For both the
cases, we can replace the other order by our order without decreasing the number
of empty machines. Recall that |M| is the number of non-empty machines in C that
remain after the jobs J1 ∪ J2 ∪ · · · ∪ Jk are removed. The number of removed jobs is
Lk = |J1| + |J2| + · · · + |Jk|. Let M∗ be the non-empty machines in C after Lk jobs
are removed according to the removing order of Algorithm 1. Since both M∗ and M

consider removing the same number of jobs, we have

|M∗| ≤ |M| . (6)

Proof of Inequality 4 To show Inequality 4, i.e., |J ∗
k | ≤ |M|, we consider all two

cases of Inequality 2. Case 1: |J ∗
k | = |NE(k)|; and Case 2: |J ∗

k | = |NE(k)| + 1.
Case 1: |J ∗

k | = |NE(k)|. Recall that |M∗| is the number of non-empty machines
in C that remain after Lk jobs are removed in the order we used in Algorithm 1.
The number of removed jobs is Lk . Recall the assumption Lk < L∗

k we used for
the proof by contradiction. We remove more than Lk jobs when generating S∗ up to
level k. We defined |NE(k)| to be the number of non-empty machines that remain
after L∗

k jobs are removed from C in the order. Since we remove more jobs when
considering NE(k) than considering M∗, we have |NE(k)| ≤ |M∗|. By combining
this inequality, the case assumption and Inequality 6, we have |J ∗

k | = |NE(k)| ≤
|M∗| ≤ |M|. Inequality 4, i.e., |J ∗

k | ≤ |M|, is proved for this case.
Case 2: |J ∗

k | = |NE(k)|+1. Let j be the last considered job in J ∗k in the order we
used in Algorithm 1. The case |J ∗

k | = |NE(k)|+1 comes from the situation when j is
the last removed job on machinemC(j). That is, the removal of j causes a new empty
column in C. Recall that |NE(k)| is the number of non-empty machines that remain
after L∗

k jobs are removed from C in the order. In the case where |J ∗
k | = |NE(k)|+1,

these non-empty machines are full, i.e., no job is removed from these machines. This
means if we add back (undo job removal) any number of jobs, the number of non-
empty machines increases by at least 1. Recall that |M∗| is the number of non-empty
machines in C that remain after Lk jobs are removed in the order. Also recall the
assumption Lk < L∗

k we used for the proof by contradiction. We remove fewer jobs
when considering M∗ than considering NE(k). This means |M∗| is at least one more
than |NE(k)| (since j is the last removed job on mC(j)), i.e., |M∗| ≥ |NE(k)| + 1.
By combining this inequality, the case assumption and Inequality 6, we have |J ∗

k | =
|NE(k)| + 1 ≤ |M∗| ≤ |M|. Inequality 4, i.e., |J ∗

k | ≤ |M|, is also proved for this
case.

By Lemma 4 and Theorem 2, we have the following statement.

Corollary 1 Given a configuration C, the job instance J ∗ in IC , and any job
instance J ∈ IC , we have G(J) ≤ G(J ∗).

1023Theory of Computing Systems (2021) 65:1009–1032

4.2 A Job Instance J ′ for an Online AlgorithmA

Given an arbitrary deterministic online algorithm A and an optimal configuration C
with the corresponding set of job instances IC , we prove that there is a bad instance
J ′ ∈ IC for A such that A(J ′) ≥ G(J ∗).

4.2.1 Construction of the Job Instance J ′

Similar to the construction of J ∗, we aim to construct a job instance J ′ which has
a high cost for a given online algorithm A. However, unlike the greedy strategy, we
have no knowledge about the behavior of A. Instead, we reference a simulation of A
as an oracle and design the job instance such that every decision made by A makes
some troubles for itself in the future. Since A is an online algorithm, it is practicable
for us to make use of the history ofA and design the next group of released jobs such
that the previous decisions of A become bad choices. The construction is detailed in
Algorithm 2 and explained below.

Consider an optimal configuration C = (v1, v2, · · · , vh) where 0 < v1 ≤ v2 ≤
· · · ≤ vh. The job instance J ′ is constructed in rounds where in round i, for
1 ≤ i ≤ h, we construct J ′i, which contains vi jobs corresponding to the jobs at
column vi in C — this association to jobs in C and hence to J ∗ is crucial in the
analysis to be shown later. All the jobs in J ′i have the same set of h − (i − 1)
permitted machines, which we denote by B(i). The machines in B(i) is determined
based on the simulation1 of A on jobs in J ′

1, · · · , J ′
i−1. Precisely, B(i) is cho-

sen to contain the highest-load machines in A, ties are broken by taking machine
with smaller machine index. The reason to choose the highest loaded machines as
permitted machines is that we want to make the load of A continue to accumu-
late on the higher load machines (versus the situation the configuration C that the
corresponding jobs are on the relatively lower load machines). At the end of con-
structing J ′

h, we set J ′ = ∪1≤i≤hJ
′
i and we denote the schedule of A on J ′ by

S ′.
To further illustrate the construction, for round 1, J ′

1 contains v1 jobs and the per-
mitted machines B(1) contains machines 1 to h. For round 2, J ′

2 contains v2 jobs and
B(2) contains h − 1 machines with the highest loads after A schedules J ′

1. Figure 3
gives an example demonstrating how we find the job instance J ′. In particular,
Fig. 3c is the corresponding J ′ for some online algorithm A of the configuration in
Fig. 3a.

To complete the construction, we also need to specify the release order of jobs
(Line 6 in Algorithm 2). From the discussion before, it is required that the jobs in J ′

i

are released after J ′
i−1. As for jobs in J ′

i , the jobs with lower level in C are released
before the jobs with higher level.

1We note that we can refer to the simulation of A sinceA is an online algorithm.

1024 Theory of Computing Systems (2021) 65:1009–1032

4.2.2 J ′ ∈ IC

In this section, we prove that J ′ ∈ IC , i.e., O(J ′) has the same configuration as C as
stated in the following lemma.

Lemma 5 O(J ′) has the same configuration as C.

Proof We prove this lemma by arguing that C is an optimal schedule of J ′. We use
the critical interval argument in [50] and claim that the schedule returned by the YDS
algorithm on J ′ is the same as C.

The YDS algorithm solves the dynamic voltage scheduling (DVS) problem. Our
problem resembles the DVS problem. The machines in our problem is in analogy to
time points in the DVS problem. The permitted machines in our problem is in anal-
ogy to feasible time points in the DVS problem. In the DVS problem, feasible time
points are contiguous, but in our problem, permitted machines can be incontiguous.
Nevertheless, we will show that J ′ has a property that we can rearrange the machines
such that the permitted machines for each job is contiguous. The objective of the
DVS problem is ∑

t

(load of time point t)α

for some constant α > 1.
The analysis of the YDS algorithm only needs the cost function to be convex and

not necessarily the α-th power, so the analysis applies on general convex functions.
This means the YDS algorithm also solves the objective

∑

t

f (load of time point t) (7)

for some convex function f . Formula 7 is the same as the objective in our problem.

1025Theory of Computing Systems (2021) 65:1009–1032

For completeness, we state the YDS algorithm [50] with adaptions:

Definition 4 Given a set of machines S, the density is defined as the following:

d(S) = |{j : Pj ⊆ S}|
|S| ,

where Pj is the permitted machines of job j .

Definition 5 A critical set is a set of machines such that the density is maximized.

The YDS Algorithm Repeat the following steps until there are no jobs:

1) Find the critical set S and evenly assign jobs j with permitted machines Pj ⊆ S

to machines in S.
2) Remove S from the set of machines and remove the jobs which are already

assigned.

YDS is proven to be optimal for minimizing the total energy consumption [50]. By
the convexity of the cost function in our problem, it implies that the YDS algorithm
optimally solves our problem. That is, if in each critical set S, only jobs j with Pj ⊆
S are executed, the schedule is optimal.

Note that to adapt the critical interval argument, we need to rearrange the machines
so that the set of permitted machines of each job forms a contiguous interval. It can be
done since by our construction, the permitted machines of any two subset of jobs, J ′

x

and J ′
y , B(x) ⊆ B(y) if x > y. Also, since in our problem each of the jobs are unit-

size, there is no preemption issue as the analogue of the dynamic voltage scheduling
problem.

In the following, we are going to prove that the schedule generated by the YDS
algorithm on job instance J ′ is the same as C. Recall that J ′

i is the set of jobs on the
(h − (i − 1))-th highest load machine in C, and B(i) is the set of permitted machines
of jobs in J ′

i . Denote Si as B(i) \ B(i + 1) (let B(h + 1) be φ), the set Sh−(i−1) is
the i-th critical set and there is only one machine inside, which is the i-th highest
load machine (with load vh−(i−1)) in C. The reason is that by the construction of J ′,
for each 1 < i ≤ h, |J ′

i | ≥ |J ′
i−1| and B(i − 1) = B(i) ∪ {Mi} where Mi is the

machine with the (h − (i − 2))-th highest load in C. Hence d(B(i)) ≥ d(B(i − 1)).
By induction, Sh is the first critical set, Sh−1 is the second critical set, and so on.
Furthermore, in the YDS schedule on the input J ′, J ′

i is the set of jobs assigned to
the machine in Si .

By the construction in Algorithm 2, J ′
i is the set of jobs assigned to the machine

with the (h − (i − 1))-th highest load in C, which is the machine in B(i) \ B(i + 1)
(let B(h + 1) be φ). Hence, the schedule constructed by the YDS algorithm is the
same as C.

4.2.3 A(J ′) ≥ G(J∗)

Recall that the schedule S ′ produced by Algorithm 2 is A(J ′). We compare S ′ with
the greedy schedule S∗ = G(J ∗) produced by Algorithm 1.

1026 Theory of Computing Systems (2021) 65:1009–1032

Observation 4 Given an optimal configuration C, there exists constructions of J ∗
and J ′ such that for any job in C, the corresponding jobs in J ∗ and J ′ have the same
position in the release orders in J ∗ and J ′.

Proof The release orders are the same due to Line 6 in Algorithm 1 and Line 6 in
Algorithm 2.

To compare S ′ and S∗, we construct J ′ and J ∗ simultaneously with the same
release order and compare their accumulated number of jobs L′

k and L∗
k (for S ′ and

S∗ respectively) for each k.
Consider the output J ∗ of Algorithm 1 given configuration C. We denote by q

the number of levels in S∗, which means J ∗ = ⋃q

i=1 J ∗
i . According to Algo-

rithm 1, J ∗1, J ∗2, · · · , J ∗q is the release order of J ∗. According to Observation 4,
there exists the same release order of jobs for finding J ∗ and J ′ under the same
given configuration C. We denote by Q the sequence of jobs representing the com-
mon release order of J ∗ and J ′. The sequence Q is defined to only involve the
order of the jobs but not their permitted machines. We partition Q by the sizes
|J ∗

1 |, |J ∗
2 |, · · · , |J ∗

q | and denote by Q(i) for 1 ≤ i ≤ q the subsequence of Q start-
ing from the L∗

i−1-th job (exclusively) and ending with the L∗
i -th job (inclusively). It

implies that |Q(i)| = |J ∗
i | and q is the number of subsequences we partition Q into,

i.e., Q = ⋃q

i=1 Q(i). When we release the jobs Q to Algorithm 1, the jobs Q(i) are
the jobs at level i in S∗. On the other hand, when we release the jobs Q to Algo-
rithm 2, we do not know where A will schedule these jobs. Instead, we consider the
permitted machines of these jobs. To indicate the permitted machines, we use P ′

j to
point out that the permitted machine of job j ∈ Q is defined by Algorithm 2. We
denote by P ′(i) the union of the permitted machines (defined by Algorithm 2) of
jobs Q(i), i.e., P ′(i) = ⋃

j∈Q(i) P ′
j .

Lemma 6 Consider the schedules S ′ and S∗ and the corresponding accumulated
size L′

k and L∗
k , we have L∗

k ≥ L′
k for all k ≥ 1.

The inequalities hold even if k > q, where q is the number of levels in S∗.

Proof By releasing the common sequence of jobs Q (obtained from Observation 4
with a configuration C) to Algorithm 1 and Algorithm 2, we obtain S∗ and S ′
respectively. To further observe the properties of S ′, we consider partial sched-
ules of S ′. A partial schedule S ′(i) of S ′ is the schedule obtained by releasing
Q(1), Q(2), · · · , Q(i) to Algorithm 2. In other words, S ′(i+1) is obtained by releas-
ingQ(i+1) to Algorithm 2 based on schedule S ′(i). We note that the jobs inQ(i+1)
may not be released in the same round in Algorithm 2. But we can obtain the same
schedule S ′ by releasing the jobs Q(1), Q(2), · · · , Q(q) accordingly. We denote
by l′k(i) the set of jobs at level k of schedule S ′(i), i.e., l′k(i) = {j ∈ ⋃i

x=1 Q(x) |
levelA(j) = k}. Since S ′(i+1) is obtained by adding jobs to S ′(i)without modifying
any existing job in S ′(i), we have l′k(i) ⊆ l′k(i + 1). We denote by L′

k(i) the accumu-

lated number of jobs up to Q(i), i.e., L′
k(i) = ∑k

x=1 |l′x(i)|. It implies L′
k = L′

k(q).
Since l′k(i) ⊆ l′k(i+1), we have L′

k(i) ≤ L′
k(i+1). We prove the lemma by induction

on two parameters, index i and level k. For each inductive step, we increase the index

1027Theory of Computing Systems (2021) 65:1009–1032

by one, to be i + 1, and consider the levels up to level (i + 1), namely, k ≤ (i + 1).
More precisely, we show that if L∗

k ≥ L′
k(i) for all k ≤ i, then L∗

k ≥ L′
k(i +1) for all

k ≤ (i + 1). Thus we obtain L∗
k ≥ L′

k(q) for all k ≤ q. Since |Q| is the total number
of jobs, we have L′

k(q) ≤ |Q| for all k. And since the total number of levels in S∗ is
q, we have L∗

q = |Q| ≥ L′
k(q) for all k. Thus we have L∗

k ≥ L′
k(q) for all k (even for

k > q, where S ′ has more levels than S∗). Since L′
k = L′

k(q), the lemma follows.
For the base case, we show that L∗

1 ≥ L′
1(1). By the definition of L∗

i , we have
L∗
1 = |J ∗1| = |Q(1)|. Since there are only |Q(1)| jobs released, L′

1(1) ≤ |Q(1)|.
By combining the two results, we have L∗

1 = |Q(1)| ≥ L′
1(1).

For the inductive step, we show that if L∗
k ≥ L′

k(i) for all k ≤ i, then L∗
k ≥

L′
k(i+1) for all k ≤ (i+1). We first show that L∗

i+1 ≥ L′
i+1(i+1). For index (i+1),

we release the job set Q(i + 1). We do not know in which levels A schedules these
jobs. However, we only need to consider the jobs being scheduled in level 1 to (i+1).
In the worst case,A schedules all the jobs in Q(i + 1) in level 1 to (i + 1) and no job
is scheduled in higher levels. It implies that L′

i+1(i + 1) ≤ L′
i (i) + |Q(i + 1)|. Since

L∗
i ≥ L′

i (i) by the inductive assumption, we have

L∗
i+1 = L∗

i + |J ∗i + 1| = L∗
i + |Q(i + 1)|

≥ L′
i (i) + |Q(i + 1)| ≥ L′

i+1(i + 1) .

Before proving the next case, we recall the properties of Algorithm 1 and 2. From
Inequality 2, we have |J ∗

i | ≥ |NE(i)|. Since J ∗
i is the job set at the i-th level of S∗,

by the definition of levels, |J ∗
i−1| ≥ |J ∗

i |. Thus we have |J ∗
k | ≥ |NE(i)| for all k ≤ i.

On the other hand, we relate Algorithm 1 and Algorithm 2 by relating NE(i)

in Algorithm 1 to P ′(i + 1) regarding the corresponding P ′
j in Algorithm 2. More

precisely, we claim that |NE(i)| is an upper bound for |P ′(i+1)| as explained below.
By Algorithm 2, if a job j is released in round x, then the number of permitted
machines of j is h−x +1 where h is the total number of columns in C. By removing
all the jobs released before j from C, h − x + 1 is also the number of non-empty
columns in the modified C.

This argument holds no matter where j is in the common sequence Q. For ease
of analysis, we assume that j is the first (released) job in Q(i + 1). In Algo-
rithm 1, by removing all the jobs released before j from C, i.e., removing all the jobs
Q(1), Q(2), · · · , Q(i), NE(i) is defined to be the non-empty columns in the modi-
fied C. Thus h − x + 1 ≤ |NE(i)|. Since in Algorithm 2, the permitted machines of
the jobs released after j are chosen from the machines with the highest loads, these
permitted machines are subsets of j ’s permitted machines, namely, subsets of the
h − x + 1 permitted machines. Thus we have |P ′(i + 1)| ≤ h − x + 1 ≤ |NE(i)|.

Now we show that L∗
k ≥ L′

k(i + 1) for all k ≤ i. Recall that |P ′(i + 1)| ≤
|NE(i)|, which means the number of permitted machines of jobs inQ(i+1) is at most
|NE(i)|. For each level k, we consider two cases: Case 1, |l′k(i + 1)| ≥ |NE(i)|; and
Case 2, |l′k(i + 1)| < |NE(i)|. For Case 1, since the |P ′(i + 1)| permitted machines
are chosen from the machines with the highest loads, A cannot add more jobs to
some level k for k ≤ i if level k already has at least |P ′(i + 1)| jobs. Now we
have |l′k(i + 1)| ≥ |NE(i)| and |P ′(i + 1)| ≤ |NE(i)|, which means |l′k(i + 1)| ≥
|P ′(i + 1)|. Thus A cannot add jobs into level k and we have |l′k(i + 1)| = |l′k(i)|.

1028 Theory of Computing Systems (2021) 65:1009–1032

For Case 2, since the jobs in Q(i + 1) have only |P ′(i + 1)| permitted machines,
A can increase the number of jobs for some level k for k ≤ i up to |P ′(i + 1)| if
level k has less than |P ′(i + 1)| jobs. Since |P ′(i + 1)| is upper bounded by |NE(i)|
and level k may have fewer jobs than |P ′(i + 1)|, the number of jobs for level k

may be increased by A but must not be more than |NE(i)|. Thus we have |l′k(i +
1)| ≤ |NE(i)|. Recall from the previous paragraphs that |J ∗

i | ≥ |NE(i)|. We have
|l′k(i + 1)| ≤ |J ∗

i |. Since |J ∗
i | ≤ |J ∗

k | for k ≤ i, we have |l′k(i + 1)| ≤ |J ∗
k | for k ≤ i.

On the other hand, by the definition of levels, we have |l′k(i + 1)| ≤ |l′k−1(i + 1)|.
Since the number of jobs decreases when k increases for level k, the levels in both
the cases are contiguous. This means there exists a level z such that the levels from 1
to z are in Case 1 and the levels from (z + 1) to k are in Case 2. By combining the
two cases and the inductive assumption, for all k ≤ i, we have

L′
k(i + 1) =

k∑

x=1

|l′x(i + 1)|

=
(

z∑

x=1

|l′x(i + 1)|
)

+
⎛

⎝
k∑

x=z+1

|l′x(i + 1)|
⎞

⎠

≤
(

z∑

x=1

|l′x(i)|
)

+
⎛

⎝
k∑

x=z+1

|J ∗x|
⎞

⎠

= L′
z(i) +

k∑

x=z+1

|J ∗x| ≤ L∗
z +

k∑

x=z+1

|J ∗x| = L∗
k .

By Lemma 6 and Theorem 2, we have the following statement.

Corollary 2 Given any deterministic online algorithm A, G(J ∗) ≤ A(J ′).

5 Conclusion

We have shown the optimality of greedy algorithm for online grid scheduling and
restricted assignment problem for unit-sized jobs. Nevertheless, we have not been
able to derive the precise competitive ratio of the greedy algorithm. It is therefore of
immediate interest to find the competitive ratio.

As mentioned in the introduction, in the restricted assignment problem for arbi-
trary sized jobs, the greedy algorithm is almost the best online algorithm. Deriving a
similar result for the grid scheduling problem would be of interest.

Acknowledgements The authors would like to thank Marcin Bienkowski for helpful discussion.

1029Theory of Computing Systems (2021) 65:1009–1032

References

1. Liu, F.-H., Liu, H.-H., Wong, P.W.H.: Greedy is optimal for online restricted assignment and smart
grid scheduling for unit size jobs. In: WAOA, pp. 217–231 (2019)

2. Hamilton, K., Gulhar, N.: Taking demand response to the next level. IEEE Power Energy Mag. 8(3),
60–65 (2010)

3. Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power Energy Mag. 7(2), 52–62 (2009)
4. Lui, T.J., Stirling, W., Marcy, H.O.: Get smart. IEEE Power Energy Mag. 8(3), 66–78 (2010)
5. Zpryme Research & Consulting: Power systems of the future: The case for energy storage, distributed

generation, and microgrids. http://smartgrid.ieee.org/images/features/smart grid survey.pdf (2012)
6. Fang, X., Misra, S., Xue, G., Yang, D.: Smart grid – the new and improved power grid: A survey.

IEEE Commun. Surv. Tutorials 14(4), 944–980 (2012)
7. US Department of Energy: The Smart Grid: An Introduction. http://www.oe.energy.gov/

SmartGridIntroduction.htm (2009)
8. European Commission: Europen smartgrids technology platform. ftp://ftp.cordis.europa.eu/pub/fp7/

energy/docs/smartgrids en.pdf (2006)
9. UK Department of Energy & Climate Change: Smart grid: A more energy-efficient electricity supply

for the UK. https://www.gov.uk/smart-grid-a-more-energy-efficient-electricity-supply-for-the-uk
(2013)

10. Farhangi, H.: The path of the smart grid. IEEE Power Energy Mag. 8(1), 18–28 (2010)
11. Masters, G.M.: Renewable and efficient electric power systems. Wiley (2013)
12. Chen, C., Nagananda, K.G., Xiong, G., Kishore, S., Snyder, L.V.: A communication-based appliance

scheduling scheme for consumer-premise energy management systems. IEEE Trans. Smart Grid 4(1),
56–65 (2013)

13. Logenthiran, T., Srinivasan, D., Shun, T.Z.: Demand side management in smart grid using heuristic
optimization. IEEE Trans. Smart Grid 3(3), 1244–1252 (2012)

14. Maharjan, S., Zhu, Q., Zhang, Y., Gjessing, S., Basar, T.: Dependable demand response management
in the smart grid: A stackelberg game approach. IEEE Trans. Smart Grid 4(1), 120–132 (2013)

15. Koutsopoulos, I., Tassiulas, L.: Control and optimization meet the smart power grid: Scheduling of
power demands for optimal energy management. In: e-Energy, pp. 41–50. ACM (2011)

16. Caron, S., Kesidis, G.: Incentive-based energy consumption scheduling algorithms for the smart grid.
In: SmartGridComm, pp. 391–396. IEEE (2010)

17. Salinas, S., Li, M., Li, P.: Multi-objective optimal energy consumption scheduling in smart grids.
IEEE Trans. Smart Grid 4(1), 341–348 (2013)

18. Mohsenian-Rad, A.-H., Wong, V.W.S., Jatskevich, J., Schober, R., Leon-Garcia, A.: Autonomous
demand-side management based on game-theoretic energy consumption scheduling for the future
smart grid. IEEE Trans. Smart Grid 1(3), 320–331 (2010)

19. Krishnan, R.: Meters of tomorrow [in my view]. IEEE Power Energy Mag. 6(2), 96–94 (2008)
20. Kannberg, L.D., Chassin, D.P., DeSteese, J.G., Hauser, S.G., Kintner-Meyer, M., (U.S.), P.N.N.L., of

Energy, U.S.D.: GridWise: The benefits of a transformed energy system. Pacific Northwest National
Laboratory (2003)

21. Lockheed Martin: SEELoad™ Solution. http://www.lockheedmartin.co.uk/us/products/
energy-solutions/seesuite/seeload.html

22. REGEN Energy Inc: ENVIROGRID™ SMART GRID BUNDLE. http://www.regenenergy.com/
press/announcing-the-envirogrid-smart-grid-bundle/

23. Toronto Hydro Corporation: Peaksaver Program. http://www.peaksaver.com/peaksaver THESL.html
24. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(9), 1563–1581

(1966)
25. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17(2), 416–429

(1969)
26. Azar, Y., Naor, J., Rom, R.: The competitiveness of on-line assignments. J. Algorithm. 18(2), 221–

237 (1995)

1030 Theory of Computing Systems (2021) 65:1009–1032

http://smartgrid.ieee.org/images/features/smart_grid_survey.pdf
http://www.oe.energy.gov/SmartGridIntroduction.htm
http://www.oe.energy.gov/SmartGridIntroduction.htm
ftp://ftp.cordis.europa.eu/pub/fp7/energy/docs/smartgrids_en.pdf
ftp://ftp.cordis.europa.eu/pub/fp7/energy/docs/smartgrids_en.pdf
https://www.gov.uk/smart-grid-a-more-energy-efficient-electricity-supply-for-the-uk
http://www.lockheedmartin.co.uk/us/products/energy-solutions/seesuite/seeload.html
http://www.lockheedmartin.co.uk/us/products/energy-solutions/seesuite/seeload.html
http://www.regenenergy.com/press/announcing-the-envirogrid-smart-grid-bundle/
http://www.regenenergy.com/press/announcing-the-envirogrid-smart-grid-bundle/
http://www.peaksaver.com/peaksaver_THESL.html

27. Burcea, M., Hon, W.-K., Liu, H.-H., Wong, P.W.H., Yau, D.K.Y.: Scheduling for electricity cost in a
smart grid. J. Sched. 19(6), 687–699 (2016)

28. Feng, X., Xu, Y., Zheng, F.: Online scheduling for electricity cost in smart grid. In: COCOA, pp. 783–
793. Springer (2015)

29. Liu, F.-H., Liu, H.-H., Wong, P.W.H.: Non-preemptive scheduling in a smart grid model and its
implications on machine minimization. Algorithmica 82(12), 3415–3457 (2020)

30. Liu, F.-H., Liu, H.-H., Wong, P.W.H.: Optimal nonpreemptive scheduling in a smart grid model. In:
ISAAC, pp. 53:1–53:13. LIPIcs (2016)

31. Chau, V., Feng, S., Thang, N.K.: Competitive algorithms for demand response management in smart
grid. In: LATIN, pp. 303–316 (2018)

32. Bartal, Y., Fiat, A., Karloff, H.J., Vohra, R.: New algorithms for an ancient scheduling problem. J.
Comput. Syst. Sci. 51(3), 359–366 (1995)

33. Caragiannis, I.: Better bounds for online load balancing on unrelated machines. In: SODA, pp. 972–
981 (2008)

34. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight bounds for
selfish and greedy load balancing. Algorithmica 61(3), 606–637 (2011)

35. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel
machines. Math. Program. 46, 259–271 (1990)

36. Svensson, O.: Santa claus schedules jobs on unrelated machines. SIAM J. Comput. 41(5), 1318–1341
(2012)

37. Ebenlendr, T., Krcál, M., Sgall, J.: Graph balancing: A special case of scheduling unrelated parallel
machines. Algorithmica 68(1), 62–80 (2014)

38. Wang, C., Sitters, R.: On some special cases of the restricted assignment problem. Inf. Process. Lett.
116(11), 723–728 (2016)

39. Lee, K., Leung, J.Y.-T., Pinedo, M.L.: A note on graph balancing problems with restrictions. Inf.
Process. Lett. 110(1), 24–29 (2009)

40. Verschae, J., Wiese, A.: On the configuration-lp for scheduling on unrelated machines. J. Sched. 17(4),
371–383 (2014)

41. Huo, Y., Leung, J.Y.-T.: Fast approximation algorithms for job scheduling with processing set
restrictions. Theor. Comput. Sci. 411(44-46), 3947–3955 (2010)

42. Muratore, G., Schwarz, U.M., Woeginger, G.J.: Parallel machine scheduling with nested job assign-
ment restrictions. Oper. Res. Lett. 38(1), 47–50 (2010)

43. Kolliopoulos, S.G., Moysoglou, Y.: The 2-valued case of makespan minimization with assignment
constraints. Inf. Process. Lett. 113(1-2), 39–43 (2013)

44. Azar, Y., Broder, A.Z., Karlin, A.R.: On-line load balancing. Theor. Comput. Sci. 130(1), 73–84
(1994)

45. Azar, Y., Kalyanasundaram, B., Plotkin, S.A., Pruhs, K., Waarts, O.: On-line load balancing of
temporary tasks. J. Algorithm. 22(1), 93–110 (1997)

46. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S.A., Waarts, O.: On-line routing of virtual circuits with
applications to load balancing and machine scheduling. J. ACM 44(3), 486–504 (1997)

47. Azar, Y.: On-line load balancing. In: Fiat, A., Woeginger, J. (eds.) Online Algorithms: The State of
the Art, pp. 178–195. Springer (1998)

48. Lam, T.W., Ting, H.-F., To, K.-K., Wong, P.W.H.: On-line load balancing of temporary tasks revisited.
Theor. Comput. Sci. 270(1-2), 325–340 (2002)

49. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge University Press
(1998)

50. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy. In: 36th Annual
Symposium on Foundations of Computer Science, pp. 374–382, Milwaukee (1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

1031Theory of Computing Systems (2021) 65:1009–1032

Affiliations

Fu-Hong Liu1 ·Hsiang-Hsuan Liu2,3 ·Prudence W. H. Wong4

Hsiang-Hsuan Liu
H.H.Liu@uu.nl

Prudence W. H. Wong
pwong@liverpool.ac.uk

1 Department of Computer Science, National Tsing Hua University, Tsing Hua, Taiwan
2 Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands
3 Institute of Computer Science, Wroclaw University, Wroclaw, Poland
4 Department of Computer Science, University of Liverpool, Liverpool, UK

1032 Theory of Computing Systems (2021) 65:1009–1032

http://orcid.org/0000-0001-6073-8179
mailto: H.H.Liu@uu.nl
mailto: pwong@liverpool.ac.uk

	Greedy is Optimal for Online Restricted Assignment and Smart Grid Scheduling for Unit Size Jobs
	Abstract
	Introduction
	Smart Grid Scheduling
	Restricted Assignment Problem
	Our contribution
	Related Work on Grid Scheduling
	Related Work on (restricted) Assignment Problem
	Organization of the Paper

	Preliminaries
	Problem Definition
	Online Model
	The Greedy Algorithm G
	A critical theorem

	Framework of Analysis
	Example

	Optimality of the Greedy Algorithm
	The Job Instance J* for the Greedy Algorithm G
	Overview
	Construction of the Job Instance J*
	C is Optimal and S* is Greedy for J*
	The Job Instance J* is the most Troublesome Among IC for G
	A Property for Proving Inequality 4
	Proof of Inequality 4

	A Job Instance J for an Online Algorithm A
	Construction of the Job Instance J'
	J IC
	The YDS Algorithm

	A(J) G(J*)

	Conclusion
	References
	Affiliations

