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A magnet with precessing magnetization pumps a spin current into adjacent leads. As a special
case of this spin pumping, a precessing macrospin (magnetization) can assist electrons in tunneling.
In small systems, however, the Coulomb blockade effect can block the transport of electrons. Here,
we investigate the competition between macrospin-assisted tunneling and Coulomb blockade for the
simplest system where both effects meet; namely, for a single tunnel junction between a normal
metal and a metallic ferromagnet with precessing magnetization. By combining Fermi’s golden rule
with magnetization dynamics and charging effects, we show that the macrospin-assisted tunneling
can soften or even break the Coulomb blockade. The details of these effects—softening and breaking
of Coulomb blockade—depend on the macrospin dynamics. This allows, for example, to measure
the macrospin dynamics via a system’s current-voltage characteristics. It also allows to control a
spin current electrically. From a general perspective, our results provide a platform for the interplay
between spintronics and electronics on the mesoscopic scale. We expect our work to provide a basis
for the study of Coulomb blockade in more complicated spintronic systems.

I. INTRODUCTION

To compete with modern electronics, systems of
spintronics—the spin analog of electronics—are becom-
ing smaller. In turn, mesoscopic effects become more im-
portant. On the one hand, this complicates the descrip-
tion of spintronic effects. On the other hand, however, it
opens up new ways to investigate and manipulate spin-
tronic systems. Here, we demonstrate how the Coulomb
blockade—a prominent effect of mesoscopic physics—can
be used to measure magnetization dynamics via a sys-
tem’s current-voltage characteristics.

We consider a single tunnel-junction between a nor-
mal metal and a metallic ferromagnet; see Fig. 1. A
tunnel junction is a thin insulating layer which separates
two metallic systems (leads) from each other. Classi-
cally, a tunnel junction forms a capacitor, as the insulat-
ing layer separates the two metallic systems by a small
distance. Quantum mechanically—as the name ”tunnel
junction” suggests—electrons can tunnel through the in-
sulating layer. The classical and quantum perspectives
are related: when an electron tunnels through the junc-
tion, it changes the charge on the capacitor and, in turn,
it changes the electrostatic Coulomb energy stored in the
capacitor [1, 2]. If an electron does not have enough en-
ergy to compensate the cost in Coulomb energy, then the
tunneling is blocked; this is the Coulomb blockade [1, 2].

The energy to overcome Coulomb blockade can come
from thermal fluctuations, from the voltage source, or—
in the present case—from the magnetization dynamics.
To focus on the role of the magnetization dynamics, we
consider the limit of zero temperature. For simplicity,
we assume the magnetization to precess in a steady state
and we use the macrospin approximation; that is, we de-
scribe the magnetization as a single vectorM . A precess-
ing macrospin (magnetization) acts as a time-dependent
magnetic field for electrons and—as a special case of adi-

abatic pumping [3, 4]—pumps spin-polarized electrons
into adjacent leads [5–7]. For a tunnel-junction, this
means that a precessing macrospin can assist electrons
in tunneling [8]; see also [9, 10].

FIG. 1. We consider a single tunnel-junction between a nor-
mal metal (left lead) and a metallic ferromagnet (right lead)
with a magnetization in a steady state precession. Separating
two metallic systems, the tunnel-junction forms a capacitor
(capacitance C). For R� RK = h/e2, an electron, when tun-
neling, changes the charge on the capacitor by e and, in turn,
it looses the charging energy (Ec = e2/2C) to its electrostatic
environment [1, 2]. For low voltage (eV < Ec) and low tem-
perature (kbT � Ec), this energy loss usually forbids charge
transport (Coulomb blockade). However, we show that the
precessing magnetization can break the Coulomb blockade by
assisting electrons in tunneling.

In this article, we study the competition between
Coulomb blockade and macrospin-assisted tunneling.
This places our work into the emerging field of meso-
scopic spintronics. Other topics in this field include, for
example, the study of noise in spintronics [8, 11–17], the
mesoscopic Stoner instability [18–21], or spintronics with
quantum dots [22–27] which is closely related to our work.
Here, we show that the macrospin-assisted tunneling can
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provide enough energy to overcome the Coulomb block-
ade. Thereby, the macrospin-assisted tunneling softens
or even breaks the Coulomb blockade and, as a result,
the system’s current-voltage characteristics reveals the
macrospin dynamics.

For slow precession, the macrospin-assisted tunneling
softens the Coulomb blockade; see Fig. 2. For strong
precession, the macrospin-assisted tunneling breaks the
Coulomb blockade; see Fig. 3. In both cases, the
macrospin dynamics governs the flow of charge current.
Read in reverse: the charge current can be used to mea-
sure the magnetization dynamics; see Figs. 2 and 3. To
be more explicit, we choose the macrospin’s precession
axis as the z−direction. The precessing macrospin is then
described by M = M(sin θ cosφ, sin θ sinφ, cos θ), where

polar angle θ and precession frequency φ̇ are constant.
Roughly speaking: the polar angle θ can be inferred from
the tunnel-junction’s differential conductance; while the
precession frequency φ̇ can be inferred from the combined
information of conductance and differential conductance.
Alternatively, one can infer θ and φ̇ from the position of
kinks in the current-voltage characteristics; see Figs. 2
and 3.

We close the introduction by relating our work to Ref.
[28], where the effect of an electromagnetic environment
was studied for a magnetic tunnel junction with one pre-
cessing magnetization. Using P (E)-theory, they derive a
general expression for the charge current, which should
also cover our result [29]. However, their focus is on open
circuits, where no charge current can flow and a voltage
build-up is predicted instead. In open circuits—with al-
ways vanishing charge current—the Coulomb blockade
and its breaking cannot be seen directly. In contrast to
their work, we use a simple Fermi’s golden rule approach,
treat the electrical environment classically, and focus on
closed circuits. While less general, our simple approach
makes the physics particularly transparent. So, we can
easily see how macrospin-assisted tunneling breaks the
Coulomb blockade. In retrospect, we can even identify
the results of Ref. [28] as important indirect signs of
the breaking of Coulomb blockade by macrospin-assisted
tunneling.

II. THE MODEL

The breaking of Coulomb blockade by macrospin-
assisted tunneling can be found within a simple model:
the electrons are described quantum mechanically by
single-particle Hamiltonians; whereas, the Coulomb en-
ergy is taken into account on the classical level.

The magnetic right lead is described by Hr =∑
ρσσ′ |ρσ〉hσσ

′

r,ρ 〈ρσ′| ; where σ and σ′ denote the spin

in z-direction (the magnetization’s precession axis), ρ
denotes the right-lead states with corresponding energy
ερ, and hr,ρ = ερ −Mσ/2 with the vector of Pauli-
matrices σ and, for simpler notation, the magnetiza-
tion length M includes all constants [30]. The left lead

is described by Hl =
∑
λσ |λσ〉ελ〈λσ| ; where λ de-

notes the left-lead states with the corresponding energy
ελ. We assume spin-conserved tunneling, described by
Ht =

∑
λρσ |ρσ〉t0〈λσ| + h.c. , where t0 are the tunnel-

ing amplitudes between states ρ and λ; for simplicity, we
disregard the state-dependence of t0.

In addition to the Hamiltonian, we need to spec-
ify the distribution functions. We assume the tunnel-
ing events to be rare, such that local equilibrium is re-
established before each tunneling event. Then, the elec-
trons are distributed according to the Fermi distribution
f(ε) = 1/[exp[(ε−µ)/T ]+1], where we assume the chem-
ical potential µ and the temperature T to be equal in
both leads. We emphasize, however, that µ is only the
chemical potential—not the electrochemical potential.

III. THE COULOMB BLOCKADE REGIME

The (electrostatic) Coulomb energy is taken into ac-
count in addition to the single-particle contributions. In
the circuit, Fig. 1, there are two different scales for the
electrostatic energy: first, there is eV , which is the work
done by the voltage source when one electron is pumped
from one side to the other; second, there is Q2/(2C),
which is the energy stored in the capacitor with capaci-
tance C and charge Q. Which of these energy scales is
relevant for the tunneling of electrons? As discussed in
Ref. [1], this strongly depends on the tunnel junction’s
environment—in particular, it depends on the environ-
mental resistance R: for a small resistance R� RK , the
(ideal) voltage source fixes the charge on the capacitor
to Q = CV , such that the energy stored in the capacitor
remains fixed and the tunneling is governed by the volt-
age source; for large resistance R� RK , in contrast, the
voltage source cannot immediately restore the charge on
the capacitor, such that the capacitor’s energy governs
the tunneling. The natural scale separating these two
cases is the resistance quantum (von Klitzing constant)
RK = h/e2 [1]. In the following, we focus on R � RK
and the limit of zero temperature T = 0, which puts the
system into the Coulomb blockade regime.

An electron can only tunnel if it has enough energy
available. When one electron tunnels, the charge on the
capacitor Q is changed by −e for left-to-right tunneling
or by +e for right-to-left tunneling. So, the change in
electrostatic energy is ∆Eel = Q2/2C − (Q ∓ e)2/2C.
Assuming tunneling events to be rare, the capacitor is
recharged to Q = CV before each tunneling event. In
turn, we find ∆Eel = ±eV − Ec with the charging en-
ergy Ec = e2/2C. If the applied voltage is too small
(∆Eel < 0), we enter the regime of Coulomb blockade,
where electrons cannot tunnel unless the missing elec-
trostatic energy is supplied in a different way [1, 2]. At
T = 0, the missing energy cannot come from thermal
activation. However, the precessing macrospin can assist
electrons in tunneling [8] and, thereby, it provides the
missing energy.
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IV. MACROSPIN-ASSISTED TUNNELING

As a first step, we determine the tunneling rate be-
tween states in the left lead and states in the right lead.
We assume the tunnel-coupling to be a weak perturba-
tion, such that we can use Fermi’s golden rule.

Before Fermi’s golden rule can be applied, we have
to change to the magnetization’s rotating frame of ref-
erence, such that the leads’ Hamiltonians become time
independent. So, following Ref. [8], we apply a trans-
formation U(t) =

∑
ρσ |ρσ;M(t)〉〈ρσ| +

∑
λσ |λσ〉〈λσ|,

where |ρσ;M(t)〉 is an instantaneous eigenstate of
M(t)σ̂; formally, M(t)σ̂|ρσ;M(t)〉 = Mσ |ρσ;M(t)〉
with M = |M |. This transformation does not af-

fect the left lead’s Hamiltonian H̃l := UHlU
† =

Hl. But it diagonalizes the right lead’s Hamiltonian
H̃r := UHrU

† =
∑
ρσ |ρσ〉ξρσ〈ρσ|, where ξρσ = ερ −

Mσ/2. The magnetization’s time-dependence is trans-

ferred to the tunneling Hamiltonian H̃t := UHtU
† =∑

ρλσσ′ |ρσ〉[R†(t)]σσ′t0〈λσ′|+ h.c. . That is, the tunnel-
ing amplitudes become time-dependent and non-trivial
in spin space,

t0 → R†(t) t0 . (1)

The spin-space rotation R(t) is defined by its elements
[R(t)]σσ′ := 〈ρσ;M(t)|ρσ′〉. Note, however, that this
definition is not unique, as a rotation around the magne-
tization direction (spin quantization axis) has no physical
effect. This gives rise to a gauge freedom which can be
used to simplify the calculation [15].

Due to its time dependence, the transformation not
only rotates the Hamiltonian but it also generates a
new term, −iUU̇† = −i

∑
ρσσ′ |ρσ〉[R†Ṙ]σσ′〈ρσ′|, in

the rotating-frame Hamiltonian. The spin-off-diagonal
part of −iR†Ṙ induces transitions—also known as
Landau-Zener-transitions—between spin-up and spin-
down states. However, we assume a large magnetiza-
tion length M , such that we can disregard these tran-
sitions [31]; this is also known as adiabatic approxima-

tion [15]. The remaining spin-diagonal part of −iR†Ṙ
gives an additional time-evolution phase—also known
as Berry-phase—which is different for spin-up and spin-
down states. However, we eliminate the spin-diagonal
part of −iR†Ṙ by fixing the gauge analog to Ref. [15];
that is, we explicitly choose

R(t) =

(
cos θ2 e

−iω−t − sin θ
2 e
−iω+t

sin θ
2 e

iω+t cos θ2 e
iω−t

)
, (2)

with ω± = φ̇(1± cos θ)/2, where ω− is the rate at which
the Berry-phase is acquired. Even though this choice
eliminates the spin-diagonal part of −iR†Ṙ, it does not
eliminate the Berry-phase. Instead, the Berry-phase is
transferred to the tunneling elements, Eq. (1). To sum-
marize: for the specific choice, Eq. (2), the newly gen-

erated term −iR†Ṙ can be disregarded in an adiabatic
approximation.

FIG. 2. This figure shows the softening of Coulomb blockade
for slow precession (~|φ̇| < Ec) with 0 < θ < π/2 and φ̇ < 0.
While charge transport is still blocked for low voltages; due
to macrospin-assisted tunneling, a current flows already for
eV > Ec + ~ω+. The details of the current flow depend on
the macrospin dynamics. Thus, the macrospin dynamics can
be measured (indirectly) by the charge current. The standard
Coulomb blockade is included as reference (blue-dashed).

Now, in the rotating frame, it is straightforward to ap-
ply Fermi’s golden rule. Treating the tunneling Hamilto-
nian H̃t as perturbation, we obtain the golden-rule rate

Γλσ′�ρσ =
2π

~
|t0|2

1 + σσ′ cos θ

2
× δ (ξρσ − ελ + σ′~ωσσ′ − eV ± Ec) ,

(3)

where +Ec and −Ec correspond to left-to-right tunnel-
ing λσ′ → ρσ and right-to-left tunneling ρσ → λσ′ re-
spectively. The macrospin orientation governs the spin-
projection factor (1 + σσ′ cos θ)/2, which is cos2 θ2 for

equal spins σ = σ′ and sin2 θ
2 for opposite spins σ 6= σ′.

The macrospin dynamics enters through the frequency
ωσσ′ = φ̇(1 − σσ′ cos θ)/2, which is ω− for equal spins
σ = σ′ and ω+ for opposite spins σ 6= σ′. In the rotating
frame, the macrospin dynamics translates into the time-
dependence of the perturbation (tunneling Hamiltonian);
see Eqs. (1) and (2). Consequently, the macrospin dy-
namics induces the energy shift, σ′~ωσσ′ , in the golden-
rule rate. In other words, the precessing macrospin gives
energy to—or takes energy from—the tunneling elec-
trons; that is, it can assist electrons in tunneling [8].

Now, knowing the golden-rule rate, Eq. (3), we can
determine the charge current.

V. CHARGE CURRENT

The net charge current I = Il→r−Ir→l is the difference
between the left-to-right current Il→r and the right-to-
left current Ir→l.

At first, we focus on the left-to-right current Il→r; that
is, we consider only electrons that are tunneling from
the left lead to the right lead. Formally, it is given
by Il→r = e

∑
ρλσσ′ Γλσ′→ρσf(ελ)[1− f(ξρσ)], where the
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golden-rule rate, Eq. (3), is summed over all states and—
since electrons can only tunnel from filled states into
empty states—it is weighted by the filling factor f(ελ)
and the Pauli-blocking factor [1 − f(ξρσ)]. More explic-
itly,

Il→r=
gt
2e

∑
σσ′

1+σσ′cos θ

2
(4)

×
∫
dεl

∫
dεr f(εl−eV )[1−f(εr)]δ(εr−εl+Ec+σ′~ωσσ′) ,

where we shifted the integrals εl → εl − eV and εr →
εr + Mσ/2. Furthermore, we assumed the densities of
states ρl and ρr to be constant on all scales smaller than
M and to be independent of the spin [32]. The tunnel-
ing conductance gt is defined by gt = 8π2|t0|2ρlρr e2/h.
From Eq. (4), it becomes clear that eV is just the elec-
trical part of the electrochemical potential: f(εl− eV ) =
1/[exp[(εl − µl)/T ] + 1], where µl = µ + eV is the elec-
trochemical potential of the left lead.

For infinite capacitance (Ec = 0) and without mag-
netization dynamics (ωσσ′ = 0), the δ-function in Eq.
(4) ensures the conservation of energy for the tunneling
electrons. For finite capacitance, however, a tunneling
electron loses the charging energy Ec to the electrostatic
environment (capacitor) [1, 2]; see Fig. 1. The energy
shift σ′~ωσσ′ accounts for the effect of the macrospin dy-
namics onto the tunneling electron; namely, it describes
the energy gain or loss due to the macrospin precession.
Performing the integrals in Eq. (4), we obtain

Il→r =
gt
2e

[
cos2

θ

2
Π(eV −Ec−~ω−)

+ sin2 θ

2
Π(eV −Ec+~ω+)

+ sin2 θ

2
Π(eV −Ec−~ω+)

+ cos2
θ

2
Π(eV −Ec+~ω−)

]
, (5)

where Π(x) is the ramp function; that is, Π(x) = 0 for
x ≤ 0 and Π(x) = x for x > 0. The four terms in Il→r
arise from the different combinations of spins in left-to-
right tunneling.

The right-to-left current Ir→l can be found analogously
to the left-to-right current Il→r; only the roles of the
leads are exchanged [33]. Combining both, we find that
the charge current, I = Il→r − Ir→l, is antisymmetric
in the voltage; that is, I(−V ) = −I(V ). This is a con-
sequence of assuming the densities of states to be spin-
independent.

To gain a better understanding of the charge cur-
rent, let’s consider a situation with static macrospin
(φ̇ = 0) at first. In the limit of infinite capacitance
(Ec = 0), the tunnel-junction behaves as a resistor; that
is, the current-voltage relation is described by Ohm’s
law I = gtV . For finite capacitance (Ec > 0), in con-
trast, the tunneling electrons loose the energy Ec to

the electrostatic environment. This loss effectively re-
duces the voltage by Ec/e. Consequently, we obtain I =
gt[(V −Ec/e) Θ(V −Ec/e)−(−V −Ec/e) Θ(−V −Ec/e)],
which is the standard Coulomb blockade result [1, 2]: if
the voltage is too low (|eV | < Ec), the charge transport is
blocked (I = 0). However, when the macrospin precesses

(φ̇ 6= 0), it can assist electrons in tunneling; thereby,
it softens the Coulomb blockade or—if the precession is
strong enough—it can even break the Coulomb blockade.

VI. BREAKING OF COULOMB BLOCKADE

When the macrospin precesses slowly (~|φ̇| < Ec),
the Coulomb blockade is softened: electrons can tun-
nel through the junction, even if the applied voltage
is smaller than—but close enough to—the charging en-
ergy; see Fig. 2. The missing energy is provided by
the precessing macrospin. So, the macrospin dynamics
governs the softening of Coulomb blockade. In turn,
a measurement of the charge current can reveal the
macrospin dynamics. For example in the voltage regime
Ec+~ω+ < eV < Ec+~ω−, compare Fig. 2, the current

is given by I = gt sin2(θ/2)[eV − Ec − ~φ̇ cos2(θ/2)]/2e.
Thus, a measurement of the differential conductance
dI
dV = sin2(θ/2)gt/2 reveals the polar angle θ. Then,

knowing θ, the precession frequency φ̇ can be inferred
from the current I itself. A shortcoming of this method
is that one has to know in which regime the voltage is.
A simpler way would be to measure the current-voltage
characteristics, Fig. 2, and determine the magnetization
dynamics from the position of the kinks at Ec±~ω+ and
Ec ± ~ω−—or analogously from the position of jumps in
the differential conductance.

While only softened for slow precession, the Coulomb
blockade is completely broken for strong macrospin pre-
cession (~|ω+| > Ec and/or ~|ω−| > Ec). In this case, the
precessing macrospin gives enough energy to the tunnel-
ing electrons, such that tunneling is possible even if there
is no other source of energy. In turn, even at low voltages,
we find a linear relation between current and voltage; see
Fig. 3. So, the macrospin dynamics governs the breaking
of Coulomb blockade. And again, a measurement of the
charge current can reveal the macrospin dynamics. How-
ever, in contrast to the softening of Coulomb blockade,
the (differential) conductance can reveal the polar angle
θ even at zero voltage. For example in the low voltage
regime (Ec + ~ω+ < eV < −Ec− ~ω+), as shown in Fig.
3, the current is given by I = gtV sin2(θ/2), which re-
veals the polar angle θ but not the precession frequency
φ̇ [34]. To determine the precession frequency, one has
to go to higher voltages again.

VII. DISCUSSION

We have found that macrospin-assisted tunneling can
break the Coulomb blockade. More explicitly, we con-
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FIG. 3. This figure shows the breaking of Coulomb blockade
for strong macrospin precession (~|ω+| > Ec) with 0 < θ <

π/2 and φ̇ < 0. The standard Coulomb blockade is included
as reference (blue-dashed). Because of the macrospin-assisted
tunneling, the Coulomb blockade disappears; that is, a charge
current flows at arbitrary low (but nonzero) voltages. Yet,
the details depend on the macrospin dynamics. In turn, a
measurement of charge current can reveal the macrospin dy-
namics.

sidered a tunnel junction between a normal metal and
a metallic ferromagnet where the macrospin (magneti-
zation) is in a steady state precession. The precessing
macrospin creates a time-dependent field for electrons,
which can assist them in tunneling [8]. As we have shown,
this macrospin-assisted tunneling shrinks the regime of
Coulomb blockade; see Fig. 2. When the macrospin pre-
cession is strong enough, the regime of Coulomb blockade
vanishes completely; see Fig. 3. In other words, the
macrospin-assisted tunneling can soften or even break
the Coulomb blockade. The details of the softening or
breaking of Coulomb blockade depend on the macrospin
dynamics. Thus, a measurement of the charge current
can reveal the macrospin dynamics.

To get a better understanding of the scales involved,
let’s consider a specific system. For example in Ref. [35],
they report on a magnetic tunnel-junction with elliptical
shape (minor axis 40 nm; major axis 80 nm) and a MgO
tunnel-barrier with thickness 0.9 nm. This leads to a ca-
pacitance of C ≈ 0.25 fF for the tunnel-junction [36]. In
turn, we find a charging energy of Ec ≈ 0.32 meV which
corresponds to a temperature of Tc = Ec/kB ≈ 3.7 K and
a frequency of fc = Ec/h ≈ 78 GHz. To enter the regime
of Coulomb blockade, the temperature must be well be-
low Tc. Then, the precessing macrospin could break the
Coulomb blockade, if it precesses at frequencies above

fc. While the precession frequency reported in Ref. [35]
is only of the order of 10 GHz, it is still close enough
to the critical frequency fc, such that one can expect a
clear softening of the Coulomb blockade; analog to Fig.
2. For a tunnel-junction of larger dimensions and with
a thinner barrier, the critical frequency fc can fall below
10 GHz such that one might also observe the breaking of
Coulomb blockade; analogous to Fig. 3.

Also beyond the specific setup considered here, the
breaking of Coulomb blockade by macrospin-assisted tun-
neling might be interesting; in particular, for scanning
tunneling microscope (STM) setups [28]. In STM setups,
the capacitance is harder to estimate; see Ref. [37] for
example. However, in Ref. [38], where they also use the
Coulomb blockade to investigate a system in a scanning
tunneling spectroscopy (STS) setup, they find a junc-
tion capacitance of C = 21.7 fF. This capacitance cor-
responds to a charging energy of Ec ≈ 3.7µeV, a tem-
perature of Tc = Ec/kB ≈ 42 mK, and a frequency of
fc = Ec/h ≈ 0.9 GHz. So, in this case, a macrospin
precession frequency of roughly 10 GHz would be well
above fc, such that the macrospin assisted tunneling can
easily break the Coulomb blockade. This effect might
be particularly interesting for resonant-state-STM setups
[39, 40]—where the charging energy Ec can be tuned, be-
cause of a large variability in the distance between STM-
tip and probe material.

While we focused on a passive use (indirect measure-
ment of magnetization dynamics), we can also think of
more active uses of the interplay between Coulomb block-
ade and macrospin-assisted tunneling. It could be used to
control a spin current electrically [41]. Or, when the mag-
net’s density of states is spin-dependent, it can be used
to pump a charge current [42]. Because it can be used
to control spin and charge currents, it might also open
up new ways to control the magnetization dynamics.
From a more general perspective, the interplay between
Coulomb blockade and macrospin-assisted tunneling pro-
vides a new platform for the interplay between electronics
and spintronics. From this perspective, magnon-assisted
tunneling (as considered in [9, 10, 43–45]) is a natural
candidate for the generalization of our results.
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O. Ostojić, A. Den Haan, I. Groot, T. Oosterkamp,
A. Otte, and M. Rost, Fast and reliable pre-approach

https://doi.org/10.1103/PhysRevB.58.R10135
https://doi.org/10.1103/PhysRevB.63.121303
https://doi.org/10.1103/PhysRevB.63.121303
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/RevModPhys.77.1375
https://doi.org/10.1103/PhysRevLett.114.176806
https://doi.org/10.1103/PhysRevB.102.054440
https://doi.org/10.1103/PhysRevB.102.054440
https://doi.org/10.1103/PhysRevB.87.155428
https://doi.org/10.1103/PhysRevB.90.174431


7

for scanning probe microscopes based on tip-sample ca-
pacitance, Ultramicroscopy 181, 61 (2017).
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