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Magnon-polaron anomaly in nonlocal spin transport through antiferromagnetic insulators
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We present a nonlocal spin transport theory for the coupled dynamics of magnetization and lattice vibrations
in antiferromagnetic insulators. We find that magnon-polaron formation, i.e., coherently hybridized magnon and
acoustic phonon modes, not only leads to anomalous features in the nonlocal spin current but also renormalizes
the spin-flop transition field of the antiferromagnets. A length scale for the magnon-polaron formation below
which the spin current is not affected by the lattice is also extracted from this nonlocal setup.
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I. INTRODUCTION

Magnetization dynamics can be affected by lattice distor-
tions and vice versa through magnetoelastic coupling (MEC),
as demanded by reciprocity [1,2]. In the strong coupling
regime, where the coupling rate exceeds both subsystem loss
rates, MEC results in a hybridized state, i.e., a magnon polaron
(MP) [3,4]. Anomalous features caused by MP formation
manifest themselves in ferromagnetic insulators (FIs) in the
spin Seebeck effect [5,6], where a thermal gradient drives a
spin current, spin Peltier effect wherein spin bias generates a
heat current [7], and ultrafast pump-probe spectroscopy [8,9].
A nonlocal spin transport experiment reveals that the nonlocal
spin Seebeck effect can be suppressed rather than enhanced
due to the MEC, above a characteristic length [10]. It has
also been shown that there is a length scale for MP formation
below which the lattice distortion does not affect the nonlocal
spin current [11].

Antiferromagnets (AFs) have unique features over ferro-
magnets, including a lack of stray magnetic fields, which
makes them more robust against magnetic fields [12]. They
also have fast dynamics lying in the THz regime due to the
exchange coupled oppositely oriented spins. The spin Seebeck
effect in AFs at finite magnetic fields has been investigated
experimentally [13,14], and theoretically [15-17]. The spin
transport properties of AFs have also attracted much attention
in recent years. It has been shown that spin transport in AFs
by thermally generated magnons can only be achieved with
broken sublattice symmetry which can be realized by either
a finite magnetic field or normal metal contacts [18]. It has
also been shown that the spin conductance diverges as one
approaches the spin-flop transition while the spin Seebeck
coefficient remains finite [17].

A nonlocal spin transport measurement [19] provides
a unique tool to accurately determine the spin transport
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properties in metals [20], semiconductors [21], and insulators
[19] by varying the injector-detector distance. This nonlocal
measurement geometry has been utilized to investigate the
spin Seebeck effect [22] as well as the temperature [23] and
magnetic field [24] dependence of the magnon spin transport
through FIs. Such a nonlocal measurement has been success-
fully implemented to observe long-distance spin transport,
which can exceed tens of micrometers [25], and the spin
Seebeck effect [26].

The level repulsion between magnons and optical phonons
in AFs has been studied in Ref. [27] in a way that is rem-
iniscent of the Fls, although the coupling of magnons to
low-energy acoustic phonons was neglected. The MP formed
by the coupling of magnons to the optical phonons, however,
is not accessible within the transport measurements which are
of great importance in elucidating the underlying low-energy
physical phenomena. An anomaly in the spin Seebeck effect
response in a uniaxial AF insulator due to the MP formation
has been detected in a local configuration [28]. Applying a
magnetic field near to the spin-flop transition field allows
one of the magnon branches of AF to become tangential to
the acoustics, giving rise to the formation of MP. Further
increasing the magnetic field causes these modes to intersect
at two points for which MEC turns them into hybridized MP
states. We present a theory that demonstrates these MPs leave
their fingerprint on nonlocal spin transport and could thus
be probed in experiment. The coupling of magnons to the
acoustic phonons not only leaves a resonant anomaly on the
nonlocal spin current but also renormalizes the spin-flop tran-
sition field. We find that the nonlocal spin transport, depicted
in Fig. 1, can probe a length scale for MP formation which
cannot be extracted from a local measurement [28].

II. MAGNON POLARONS

We develop an effective long-wavelength theory for the
coupled dynamics of magnetization and lattice displacement,
which is applicable to a wide class of exchange coupled
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FIG. 1. Nonlocal spin transport setup: A nonequilibrium spin
density accumulated in the left metallic lead by the spin Hall effect
biases magnons that diffuse through the antiferromagnetic insulator,
and are affected by lattice vibrations. The spin current pumped into
the right metallic lead induces a nonequilibrium spin accumulation
which can be detected electrically by the inverse spin Hall effect.
A magnetic field H is applied to the AF in the z direction, and the
injector-detector separation distance is denoted by d. The dynamics
of two oppositely oriented sublattice magnetic moments M, and
Mj;, precessing around the magnetic field, are coupled through the
exchange interaction and MEC.

bipartite AFs. The total free energy of the AF is U = Uag +
Uel + Unec, Where Uy is the magnetic, U is the elastic,
and Upe. 1s the magnetoelastic part of the AF free energy.
It is convenient to describe the magnetic state of AF in a
continuum representation (long-wavelength limit) using the
two vectors M(r, 1) = [Mu(r, 1) + Mp(r,1)]/2 and I(r, 1) =
[My(r,t) — Mp(r, t)]/2, where M4 /Mj represents the mag-
netic moment of the respective sublattice A/B at the point
(r, t). The magnetic free energy is given by

a , A K,
Unnag = 5 dr(zm +3 —H-m—EnZ), (1)

where n = 1/]1] is the Néel order parameter and m = M/|M|
which satisfy m-n =0 well below the Néel temperature.
Moreover, s = s4 + sp where s4/p = y‘lMOA/B is the satura-
tion spin density of the A/B sublattice, a and A are the inter-
and intrasublattice exchange constants, H is the external mag-
netic field, and K denotes the uniaxial anisotropy both taken
in the z direction. The two sublattices can be transformed into
each other by a symmetry transformation of the crystal such
that the dynamic equations of m and n are invariant under
an interchange of the two sublattices. The gap for one of the
magnonic modes closes at the critical field, H. = /K(K + a),
which determines the spin-flop transition point. The elastic
free energy of the bipartite AF lattice is described by

U == ZpXR Ry + = [ZZfSX”]Z

X i=xy2

1
D0 D WS + 50" Rs — Ry, (2)

X ij=x.yz

where R is the displacement vector from the equilibrium
position, p, is the density of each sublattice x =A/B,
a* is the nearest-neighbor force constant, A, and w, are
elastic constants for the respective sublattices, and S, ;; =
1(dR,;/dx; + dR, ;/dx;) is the strain tensor. The rota-
tional deformations are ignored. In the long-wavelength
limit, the magnetoelastic free energy of the AF is given
by [27]

Unee =25 _By; / dVnn;Sij, 3)

izj

where Bij = BH(Sij +BL(1 - 5,‘]'), with B” (BL) being the di-
agonal (off-diagonal) magnetoelastic constant. In materials
with at least two sublattices, additional terms due to the in-
ternal spin structure might also be possible [27].

The coupled magnetization and lattice displacement dy-
namics can be obtained by minimizing the action as

n=-mx (Het, —on) —n x (Her ,, —om), (4a)
m = —m X (Her , — am) —n x (Hegr , — om), (4b)
.. 1 3U 0 U 2.
Ry=———— + — - IR, @

" py IR, Zax, * (4e)

where Hegr ,, = —s~ 6/ /6m and Heft;n = —s‘lrSZ/l/Sn are ef-
fective magnetic fields for m and n, and « denotes the Gilbert
damping of the magnetization in the bulk. A choice is made
to include only one damping parameter, whereas in principle
n and m may damp differently. Moreover, the relaxation time
7, is a phenomenological damping term for the bulk lattice
vibrations which is also chosen to be the same for both sub-
lattices.

Without MEC, the ground state, which is an antiferromag-
netic phase with n = +z and m = 0, is stable for H < H,.
By passing through the critical field, the system undergoes a
phase transition to the spin-flopped phase where the two spins
aligned nearly perpendicular to the magnetic field. To find
the ground state of the coupled magnetization-elastic system
we need to minimize the total free energy with respect to
n and R, considering that [n|> = 1 and that the exchange
terms disappear in the uniform state. The ground state is the
antiferromagnetic phase which is stable for H < HMEC, where
the MEC critical field is given by [32]

sB?
HMC —pg [ - ———L ®)
‘ ‘ Kp Zij:A,B Cizj,z

with ¢;;, being the transverse sound velocity of the AF and
P = PA + pPB.

In Fig. 2(a), the phonon and the magnon dispersion for
the AF, including two magnon modes and an acoustic phonon
branch, are shown. The finite magnetic field breaks the degen-
eracy between magnon modes. While increasing the magnetic
field pushes the magnon and phonon modes away from each
other in FIs, in contrast, here it brings the lower magnon mode
into close vicinity of the acoustic branch so that they become
tangential to each other at the touching magnetic field Hr,
shown in Fig. 2(b). Further increasing the magnetic field leads
to an intersection of magnon and acoustic phonon modes.
The MEC turns this intersection into hybridized magnon-
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FIG. 2. (a) The antiferromagnetic insulator dispersion showing
two magnon branches (blue) and an acoustic phonon branch (red).
(b) At a high magnetic field H = Hy ~ 0.93H,, the lower magnonic
branch, the ferromagneticlike mode, touches the acoustic phonon
branch. (c) By further increasing the magnetic field H > Hr, the
lower magnonic and the acoustic phonon modes intersect at two
points where the level repulsion indicates the formation of hybridized
magnon-polaron states. Here, we adopt parameter values pertaining
to Cr,03 [29-31].

polaron states which appear as a level repulsion shown in
Fig. 2(c).

III. NONLOCAL SPIN TRANSPORT

We consider a nonlocal spin transport setup in which an AF
is coupled to two metallic reservoirs which serve as injector
and detector (see Fig. 1). A nonequilibrium spin accumulation
(spin bias) u = uz which is maintained in the injector by the
spin Hall effect injects magnons into the AF. The magnons
diffuse through the AF to the detector and convert to a spin
accumulation at the AF|detector interface which subsequently
produces a transverse charge voltage due to the inverse spin
Hall effect.

Spin current through the AF bulk can be mediated by
the coherent dynamics of a Néel vector coupled to the
lattice displacement and by thermally generated incoherent
magnons/phonons. At finite temperature, both spin and lat-
tice fluctuations exert additional stochastic torques and forces
on coupled magnetization-lattice dynamics and hence for a
rigorous treatment of spin transport in such structures, both
coherent and incoherent dynamics must be taken into account.
The dynamics of small amplitude excitations of the coupled
magnetization-lattice system 1 is governed by the linearized
equations of motion in the bulk as

LY (x.q, ) = —bg, (6)

where q is the wave vector in the yz plane and .4 is the bulk
differential operator [32]. Here, hg is the vector of stochastic
forces arising from both magnon and phonon fluctuations
which drives ¥ and is related to the Gilbert damping «o
and phonon relaxation time 1, by the fluctuation dissipation

theorem,
(bi(xv q, a))hj(x/’ q/, CL)/))

§(x —x)é(q — q')d(w — )
tanh [fiw/2kpT;] ’

= (21)*8;j1ifi )
where 7n; denotes the dissipation along with magnetization,
Nicsne.on, = sa[1 + (Hy — ?)/(K + a)*1/2, and lattice dy-
namics, Mj—phon ~ Tp, and kpT; is the local thermal energy
associated with the respective subsystem. The effects of spin
bias and spin/phonon noise due to the finite temperature at
the metallic reservoirs are included in the AF dynamics via
boundary conditions. Taking into account both deterministic
and stochastic torques and forces at the AF| metal interfaces,
the boundary conditions read as

ZLv0,q,0) =— b,

ng(d5 qy w) = - bR’ (8)
in which .4 (r) is the boundary operator for the left (right) in-
terface [32] and d is the injector-detector separation distance.
The lattice dissipation and spin current noise result in the
spin and phonon fluctuations in the left (right) normal metal

bLR)> which relgte§ to' damping coefficients 7 according to
the fluctuation-dissipation theorems

(hri(q, )by ;(q', @)
8(q — q')8(w — )
tanh [(hiw — w;,i)/2kgT;i]’

= (27?818 (he> — p1.4)

(&)
where [,I'’=L,R, and #; giving the interfacial
phonon fluctuations at the interfaces, ’7;=phon ~ Ty,

and the dissipation due to the spin pumping, 7=
sdo/[1+ (H — 0*)/(K + a)*] — &2Hy /(K +a)/2 with
o =(a)y+ap)/2 and & = (ay —ag)/2, in  which
a; = hg;l/ (4mrsd), where the spin mixing conductance
g}l parametrizes the spin injection and pumping at the AF]|
metal interfaces. Here, n;; denote the phonon and spin
accumulation in the reservoirs and 7;; is their corresponding
temperature. Both the possibilities of unbroken o) = aj
and broken o, # oy sublattice symmetries at the AF|metal
interfaces are considered. In our setup, a nonequilibrium spin
accumulation is considered in the left normal lead and u; ; is
set to zero for phonons in both leads. Without a temperature
gradient, the spin current thus can be driven solely by the
spin bias. The metallic reservoirs act as a perfect spin sink
such that any spin accumulation generated by spin pumping
at the right AF| metal interface is quickly relaxed so that the
backaction effect on the coupled dynamics can be ignored.
Therefore a net spin current is flowing to the right interface
through AF in response to the spin bias.

We consider an AF sandwiched between two normal
(heavy) metals with rotational and translational symmetries
in the yz plane so that the configuration essentially is a
one-dimensional problem that depends solely on the x co-
ordinate (see Fig. 1). Within the linear approximation the
Dzyaloshinskii-Moriya interaction for this configuration in
which the propagation is perpendicular to the magnetic field
does not contribute to the equations of motion [32] and has no
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FIG. 3. Without MEC, the nonlocal spin current as a function of
applied magnetic field shows an enhancement at H = H, (dashed).
The MEC, however, renders the critical field H. to a lower value
HMEC (inset). At the touching magnetic field Hr, the nonlocal spin
current shows either a peak or a dip depending on the quality factor
of the phonon transport channel. The injector-detector separation
distance is fixed atd = 5 um.

consequences for the spin transport. The thermally averaged
spin current pumped into the right interface is obtained from
the continuity equation as j; = sA(n x d,n)|,.

The nonlocal spin current pumped to the right metal is
depicted in Fig. 3 as a function of external magnetic field
with MEC strength B, /2mr = 0.1 THz. While the sublat-
tice symmetry breaking term at the interface, &', leads to
a nonzero current even at the zero magnetic field, however,
here @ = 0. Without MEC, the spin current shows a strong
enhancement (a divergence in the ideal case) as the magnetic
field approaches the spin-flop transition point, i.e., H = H.,.
The MEC, however, renders the magnetic field at which the
nonlocal spin signal diverges to a lower magnetic field, i.e.,
H = HMEC, given by Eq. (5). This behavior can be intu-
itively explained by the fact that, at low temperatures, only
the MP formed by the coupling of magnons with acoustic
phonons gives a significant contribution to the nonlocal spin
signal. By sweeping the magnetic field, the nonlocal spin
current may show an anomaly as one approaches the touch-
ing field Hr, where the phase space formation for MP is
maximized. Depending on the quality factor of the phonon
transport channel, as determined by the 7, this anomaly man-
ifests itself as a peak (dip) in a high-quality (deteriorated)
acoustics.

The MEC contributions to the nonlocal magnon spin cur-
rent §j; = jVith MEC _ jNoMEC a9 3 function of the applied
magnetic field for varying the injector-detector distances d are
depicted in Fig. 4 at T = 10 K. Varying the injector-detector
distance in this nonlocal magnon spin transport setup allows
us to extract a length scale for the MP transport. The peak
indicates the touching field where the MEC contribution is
maximized. By shrinking the injector-detector distances the
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FIG. 4. The nonlocal spin current, due to the MEC, as a function
of applied magnetic field for different values of injector-detector
separation distance d at T = 10 K. The peak at the touching field
decreases for the short separation distances indicating a length scale
for the MP formation. The MEC strength is fixed at B, /27 = 0.1
THz.

peak decreases and finally disappears, revealing a length scale
associated with the MP transport. The MP formation length
scale below which the MEC does not affect the magnon spin
transport is determined by dephasing of the MP and its group
velocity. The length scale is thus given by &émec ~ fivg/ Amec,
where v, is the group velocity of MP and Aygc denotes the
gap between the magnons and phonons [11]. With our model
parameter, &ypc ~ 1 um, which is in good agreement with
the numerical results. At short lengths d < &vigc, the lattice
distortion does not influence the nonlocal spin signal and
magnons need to propagate over this length scale to integrate
with the acoustic transport channel.

IV. CONCLUSIONS

We studied the coupled dynamics of the magnetization
and lattice vibrations in AFs. At low energies, the hybridized
states between magnons and acoustic phonons can render the
spin-flop transition point to a lower magnetic field. We pro-
pose the nonlocal spin transport to probe the MP formation,
and have shown that MEC engenders an enhancement of the
spin current. The dependence of the spin current signal on
the injector-detector distance uncovers a length scale below
which the MP formation cannot alter the spin current. The
proposed system not only provides a deeper insight into the
complete physics governing the magnon transport in AFs but
also offers another platform to explore the length scale for MP
formation.
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