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Universal field dependence of magnetic resonance near zero frequency
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Magnetic resonance is a widely established phenomenon that probes magnetic properties such as magnetic
damping and anisotropy. Even though the typical resonance frequency of a magnet ranges from gigahertz to
terahertz, experiments also report the resonance near zero frequency in a large class of magnets. Here we revisit
this phenomenon by analyzing the symmetry of the system and find that the resonance frequency ω follows
a universal power law ω ∝ |H − Hc|p, where Hc is the critical field at which the resonance frequency is zero.
When the magnet preserves the rotational symmetry around the external field H , p = 1. Otherwise, p = 1/2. The
magnon excitations are gapped above Hc, gapless at Hc, and gapped again below Hc. The zero frequency is often
accompanied by a reorientation transition in the magnetization. For the case in which p = 1/2, this transition is
described by a Landau theory for second-order phase transitions. We further show that the spin current driven by
thermal gradient and spin-orbit effects can be significantly enhanced when the resonance frequency is close to
zero, which can be measured electrically by converting the spin current into electric signals. This may provide
an experimentally accessible way to characterize the critical field. Our findings provide a unified understanding
of the magnetization dynamics near the critical field and may, furthermore, inspire the study of magnon transport
near magnetic transitions.

DOI: 10.1103/PhysRevB.103.134440

I. INTRODUCTION

Magnetic resonance is the resonant response of a magnetic
medium to a driving microwave [1], and it is an important
knob to manipulate the spin dynamics and spin transport. The
resonance frequency of a ferromagnet (FM) is determined by
the external field and anisotropy of the system and is usually
on the order of a few gigahertz. In an antiferromagnet (AFM),
the resonance frequency can reach the terahertz regime due
to the strong exchange coupling between the two or more
magnetic sublattices. On the other hand, experiments have
observed that the resonant signals can range from megahertz
down to the kilohertz regime [2–6], and it may be lowered
further close to zero, resulting in the excitation of a soft spin
mode (as shown in Fig. 1). This usually happens when the
magnetization reorients itself to find new equilibrium states
[7,8]. For example, the antiferromagnetic spin flops from an
easy axis to a hard plane when the applied field is strong
enough, and this gives rise to the zero resonance frequency
at the transition point [9]. According to the modern theory
of phase transitions [10], the change in the ground state of
a system in the thermodynamic limit may be accompanied
by critical phenomena, and there exists a set of critical ex-
ponents characterizing the scaling behavior of the physical
quantities near the transition point. A well-known example is
the ferromagnetic phase transition from a paramagnetic state
to a ferromagnetic state at the Curie temperature, at which the
scaling law of the spin wave dispersion versus temperature
has been well studied [11]. However, it is not clear whether

the magnetic resonance frequency generally follows a univer-
sal power law near zero frequency. Some pioneering works
in both theory and experiments have addressed this issue in
special geometries, including elliptical nanodots [8], magnetic
nanostrips [12,13], and magnetic monolayers [14], while a
unified picture is lacking.

In this paper, we derive a generalized power law of the
magnetic resonance near the zero resonance frequency, i.e.,
ω ∝ |H − Hc|p, where H is the external applied field and Hc is
the critical field. Here the exponent p can be fully determined
by the symmetry properties of the magnetic system, and it
is independent of values of magnetic parameters. When the
magnetization reorients itself continuously near the critical
field, a second-order phase transition is identified, which is
well described by the Landau theory for second-order phase
transitions. In samples in the thermodynamic limit and at finite
temperature or when quantum fluctuations are important, we
therefore expect the exponent p to become zν, with z being
the dynamical critical exponent and ν being the exponent
that characterizes the divergence of the correlation length
[15]. Furthermore, such a phase transition can enhance the
spin current transport at cryogenic conditions driven by ei-
ther thermal gradient or spin-orbit effects and thus can be
measured electrically by transforming the spin current into
charge current. These findings may provide a unified picture
to understand the transition behaviors in magnetic resonance
and may further benefit its usage in studying magnon transport
properties.

2469-9950/2021/103(13)/134440(7) 134440-1 ©2021 American Physical Society

https://orcid.org/0000-0003-0617-9489
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.134440&domain=pdf&date_stamp=2021-04-28
https://doi.org/10.1103/PhysRevB.103.134440


H. Y. YUAN AND REMBERT A. DUINE PHYSICAL REVIEW B 103, 134440 (2021)

FIG. 1. Schematic of the magnetic resonance near zero fre-
quency. Depending on the symmetry of the system, the exponent can
be either 1 or 1/2.

II. RESONANCE NEAR ZERO FREQUENCY

A. Universal power law

We consider a magnet with the equilibrium magnetization
direction m along the z axis. The magnetization dynamics un-
der perturbation is described by the Landau-Lifshitz-Gilbert
(LLG) equation,

∂m
∂t

= −m × Heff + αm × ∂m
∂t

, (1)

where Heff = −δH/δm is the effective field acting on the
magnetization, with H being the Hamiltonian of the system,
and α is the Gilbert damping [16]. To obtain the resonance
frequency, we consider a small fluctuation around the equilib-

rium magnetization, i.e., m = ez + (mxex + myey)e−iωt , and
linearize the LLG equation as(

iω − Exy −Eyy + iαω

Exx − iαω iω + Exy

)(
mx

my

)
= 0, (2)

where Ei j = ∂H/∂mi∂mj . Around the equilibrium magne-
tization, the total energy can be expanded as H = H0 +
1/2

∑
Ei jmimj , where H0 is the ground state energy, and the

first-order derivatives vanish (∂H/∂mi = 0) to minimize the
total energy. By solving the secular equation (2), we derive
the resonance frequency in the absence of damping as [17]

ω =
√

ExxEyy − E2
xy. (3)

Here we shall focus on the resonance behavior close to zero
frequency, i.e., ω ∼ 0.

If the magnetic system obeys rotational symmetry around
the equilibrium magnetization ez, then H = H(mz ) = H[1 −
(m2

x + m2
y )/2]. This implies that the expansion of H with re-

spect to mx and my should be symmetric and have no crossing
terms Exy, i.e., Exy = 0, Exx = Eyy. A further Taylor expansion
of Eii at the critical field suggests that the leading-order con-
tribution is Exx = Eyy ∝ (H − Hc). Then we immediately see
that ω ∝ |H − Hc|. One example is the resonance of a uniform
magnetic sphere under the external field. From the Hamilto-
nian H = −mzH , it is straightforward to find Exx = Eyy = H
and thus ω = |H |.

If the system breaks the rotational symmetry with respect
to the equilibrium magnetization, the anisotropy energy will
generate nonzero Exx, Eyy, and Exy, in principle. However,
we can always choose two principal axes (x′y′) by rotating
the xy coordinates to eliminate the term Exy. Now the energy
landscape in the x′ and y′ directions will differ. When Ex′x′

TABLE I. Summary of the resonance frequency and critical exponent in the magnetic systems without (top) and with (bottom) crystalline
anisotropy. Ms is saturation magnetization. HE is the exchange field, and Hsp is the spin-flop field for antiferromagnets. Y and N refer to systems
which have and do not have rotational symmetry around the equilibrium magnetization. Demag is short for demagnetization.

Anisotropy Direction Field H Resonance frequency ω Critical field Hc Exponent p Symmetry

Sphere Isotropic Arbitrary |H | 0 1 Y
Thin disk Easy plane Normal H − Ms Ms 1 Y

In plane
√

H (H + Ms ) 0 1/2 N
Long cylinder Easy axis Axial H + Ms/2 −Ms/2 1 Y

Radial
√

H (H − Ms/2) Ms/2 1/2 N

Uniaxial Easy z z H + 2Kz 0 1 Y
x

√
(2K − H )(2K + H ), H < Hc 2K 1/2 N√

H (H − 2K ), H � Hc

Biaxial Easy z z
√

(H + 2Kz + 2Kx )(H + 2Kz ) −2Kz 1/2 N
Hard x x

√
2Kz(Hc − H 2/Hc ), H < Hc 2(Kz + Kx ) 1/2 N√

(H − Hc )(H − 2Kx ), H � Hc

Cubic (111) H − 4K1/3 4K1/3 1 Y
(001) H + 2K1 −2K1 1 Y
(110)

√
(H + K1)(H − 2K1) 2K1 1/2 N

Uniaxial AFM Easy z z −H + Hsp, H < Hc Hsp 1, H < Hc Y√
H 2 − H 2

sp, H � Hc 1/2, H � Hc N

x
√

H 2
sp − 2Kz/HcH 2, H < Hc 2HE 1/2 N√

(H − Hc )(H − Hc/2), H � Hc N
Uniaxial +Demag [17] Easy z x

√
(2K + Ms )Hc(1 − H2/H 2

c ) 2K + Ms/2 1/2 N
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(Ey′y′) approaches zero by tuning the external field, Ey′y′ (Ex′x′)
is not zero. Therefore, the resonance frequency will depend
on the field as ω ∝ |H − Hc|1/2.

Table I summarizes the resonance frequency in the com-
monly used magnetic systems without and with crystalline
anisotropy. All of them are well described by the result ω ∝
|H − Hc|p with a symmetry-dependent exponent p.

B. Phase transition

The behavior of magnetization near the critical field may
be interpreted as a phase transition. When p = 1 below or
above the critical field, the transition is first order because it is
accompanied by a sudden switching of the magnetic order. For
example, in the uniaxial case (the so-called Stoner-Wohlfarth
model), a field along the easy axis (ez) will induce the mag-
netic switching below the transition point at Hc = −2Kz.

When p = 1/2 both below and above the critical field,
the magnetization reorients continuously as the field is tuned
across the transition point; it will correspond to a second-order
phase transition. This point is justified by expanding the total
energy around the transition point as

H = H0 + a2δm2 + a4δm4 + O(δm6), (4)

where δm is a small deviation of magnetization from its
equilibrium direction. Here a2 ∝ Ex′x′ ∝ H − Hc will change
sign at the transition field, the δm3 term is absent because
the anisotropy energy of a magnet is an even function of
magnetization, and a4 > 0 to guarantee that the system has
a stable magnetization when H < Hc. One immediately sees
that the behavior of this Hamiltonian can be well described
by the Landau theory of the second-order phase transition
[10]. The explicit form of the expansion coefficients for a
uniaxial ferromagnet was first discussed by Zeng et al. [13].
To illustrate this point, let us further take a biaxial magnet
as well as an antiferromagnet as examples. The energy of the
biaxial system shown in Fig. 2(a) is

H = − Kz cos2 θ + Kx sin2 θ

− H[cos θ cos θH + sin θ sin θH cos(ϕ − ϕH )],
(5)

where Kz, Kx > 0 are, respectively, the easy- and hard-axis
anisotropies and θH and ϕH are the polar and azimuthal an-
gles of the external field, respectively. By taking ∂H/∂θ =
0, ∂H/∂ϕ = 0, the equilibrium magnetization should satisfy
ϕ0 = ϕH and

(Kz + Kx ) sin 2θ0 = H sin(θH − θ0). (6)

When the field is along the hard axis θH = π/2, ϕH = 0, the
ground state is

θ0 =
{

arcsin H/Hc, H < Hc,

π/2, H � Hc,
(7)

where the critical field Hc = 2(Kz + Kx ).
To clarify the transition behavior near Hc, we reformulate

the Hamiltonian as a polynomial of the order parameter as

H = Kx − H + 1

2
(H − Hc)δ2 + 1

24
(4Hc − H )δ4, (8)

where the magnetic orientation δ = θ − π/2 may be viewed
as the order parameter of the system. Figure 2(b) shows the

FIG. 2. (a) Schematic of the biaxial magnetic system with an
easy axis x and a hard axis z. (b) Energy landscape as a function
of the order parameter δ. 
E is defined as the energy difference be-
tween the canted state and aligned state (δ = 0). Kx = Kz. (c) Order
parameter δ as a function of external field. (d) Phase diagram of a
biaxial magnet in the (T/Tc, H/Hc(T = 0)) plane. FM: ferromagnet,
PM: paramagnet.

energy profile as a function of δ. Below Hc, there are two
energy minima of the system (θ0 and π − θ0). Since the ex-
ternal field breaks the Z2 symmetry of the system (mx →
−mx, my → −my), the magnet will stabilize at one particular
minimum (θ0 for H > 0). As the external field increases above
Hc, the two minima merge into a single minimum at θ0 = π/2
where the Z2 symmetry is recovered, as shown in Fig. 2(c).
This is a clear feature of the second-order phase transition
associated with Z2 symmetry breaking, but the driving force is
an external field instead of temperature. Note that a simplified
version of this formalism (Kx = 0) resembles the mean-field
approach of the disorder-order phase transition in a transverse
Ising model [18]. The difference is that here we have the
transition between the two ordered phases, while the quantum
fluctuation generates a disordered phase in the Ising model.

When nonzero temperatures are considered, both the
anisotropy strength K and saturation magnetization Ms will
decrease with temperature. Considering the well-known
power law K ∝ m3, Ms ∝ m [19], the critical field scales as
Hc ∝ m2, where m = Ms(T )/Ms(T = 0) is a normalized mag-
netization. Here m can be obtained from the mean-field theory
by solving the equation m = tanh(mTc/T ) in a self-consistent
way, where Tc is the Curie temperature. Figure 2(d) shows
the phase diagram of the system in the (T/Tc, H/Hc(T = 0))
plane. As the temperature increases above Tc, the system has
a second-order phase transition to become a paramagnetic
state. Below the Curie temperature, there is a continuous
phase boundary (red line) which separates the system into two
phases according to the Z2 symmetry of their ground states.
As a comparison, for an easy-plane magnet (Kz = 0, Kx �= 0),
the corresponding phase diagram is similar. However, we will
have U (1) symmetry breaking below the phase boundary,
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where the resulting dynamics of the in-plane magnetization
gives rise to spin superfluidity [20].

Another example is the two-sublattice uniaxial AFM sub-
ject to a transverse field; the Hamiltonian is H = HE m1 ·
m2 − Kz(m2

1z + m2
2z ) − H (m1x + m2x ), where HE is the ex-

change field and m1 and m2 are the magnetizations on the
two sublattices. Close to the critical field Hc = 2HE (as in-
dicated in Table I), the Hamiltonian can be expanded as
H = −2H + HE + (H − Hc)δ2 + (4HE − H )/12δ4, which is
similar to the biaxial case, and thus also hosts a second-
order phase transition. Recently, this transition was observed
in an antiferromagnetic CrI3 bilayer [21] and synthetic an-
tiferromagnet [22]. How magnons manifest their quantum
correlations near this phase transition will be published else-
where [23].

III. IMPLICATIONS FOR MAGNON TRANSPORT

Modern spintronics, among other subjects, concerns the
transport properties of magnons for information processing
[24,25]. Hence, it may be meaningful to study whether the
magnon spin current can be manipulated at the transition
point. To address this issue, we shall consider the magnon
transport driven by the spin Seebeck effect and spin-orbit
effect, respectively.

A. Spin injection by the spin Seebeck effect

We consider a ferromagnet|normal magnet (FM|NM) bi-
layer subject to a thermal gradient as sketched in Fig. 3(a).

FIG. 3. (a) Schematic of the spin Seebeck setup in the FM/NM
bilayer. (b) Spin wave spectrum near the transition point. Kx = 0.
(c) Integrand of Eq. (14) as a function of magnon energy. (d) Thermal
spin current as a function of external field at T = 0.5 K (red line),
2 K (blue line), and 10 K (black line). The curved dashed lines are
calculated based on analytical formula (17).

The Hamiltonian of the magnetic layer is

H = −J
∑
〈i, j〉

Si · S j+Kx

∑
j

(
Sx

j

)2 −
∑

j

Kz
(
Sz

j

)2 − H
∑

j

Sx
j ,

(9)
where J is the exchange stiffness, S j is the spin vector at the
jth site with magnitude |S j | = S, and the first sum is taken
over all the nearest neighbors. We shall first solve the magnon
spectrum of the system and then apply it to calculate the
thermal spin current.

The magnon spectrum can be obtained by first transform-
ing the magnetic system to a new frame, with z′ polarized at
the equilibrium m and y′ = y, through the rotational opera-
tion, ⎛

⎜⎝
S j,x

S j,y

S j,z

⎞
⎟⎠ =

⎛
⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎠

⎛
⎜⎝

S j,x′

S j,y′

S j,z′

⎞
⎟⎠, (10)

where S j,z′ = S − a†
j a j, S j,x′ = √

2S(a j + a†
j )/2, S j,y′ =√

2S(a j − a†
j )/2i [26]. a j (a†

j ) is the magnon annihilation
(creation) operator on the jth spin site. By substituting
Eq. (10) into Eq. (9) and further transferring to the momentum
space, the Hamiltonian (9) can be recast as

H =
∑
k>0

[ωa,ka†
kak + ωa,−ka†

−ka−k + g(a†
ka†

−k + aka−k )],

(11)
where ωa,k = ωa,−k = 2ZJS(1 − γk ) + H cos θ0 +
2KzS sin2 θ0 − KzS cos2 θ0; g = (Kx − Kz )S cos2 θ0; Z
is the coordinate number; J is the exchange strength;
γk = 1/z

∑
eik·d, where the sum is taken over all the

nearest-neighboring cells; and d = |d| is the lattice constant.
By diagonalizing the Hamiltonian (11) using a Bogoliubov
transformation, similar to the spectrum calculation of
antiferromagnetic magnons [27], the low-energy magnon
spectrum is found as

ω =
√

(ZJSd2k2 + H − 2KxS)[ZJSd2k2 + (H − Hc)] (12)

for H > Hc and

ω =
√

(ZJSd2k2 + 2KzS)

(
ZJSd2k2 + H2

c − H2

Hc

)
(13)

for H < Hc, where the critical field is Hc = 2(Kz + Kx )S. One
immediately sees that the magnon excitation is gapless at the
transition point (H = Hc) and gapped both above and below
Hc, as shown in Fig. 3(b).

The thermal spin current across the interface of FM|NM
shown in Fig. 3(a) is related to the magnon excitation inside
the FM layer as [28,29]

js = −4kB
T α′
∫ ∞

εg

dεD(ε)εβ2 ∂n(βε)

∂β
, (14)

where kB is the Boltzmann constant, α′ is the reduced spin-
mixing conductance, ε = h̄ω, h̄ is Planck’s constant, 
T is
the temperature drop at the FM|NM interface, D(ε) is the
density of states (DOS) of magnons, β = 1/kBT , and n(x) =
1/(eβx − 1) is the Bose-Einstein distribution. The integration
range goes from the band bottom εg to infinity. Note that the
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magnon DOS D(ε) is a monotonically increasing function
of energy ε, while the remaining integrand εβ2∂n(βε)/∂β

rapidly decreases to zero as ε increases from zero by kBT , as
shown in Fig. 3(c). Therefore, to make the magnon occupation
near the gap εg contribute significantly to the spin current,
one has to enter into the low-temperature regime. On the
other hand, the spin current is expected to be enhanced at the
transition point because the gapless magnons are more easily
excited and contribute to the spin current.

By performing the integral (14) numerically, we
obtain the spin current as a function of external field,
as shown in Fig. 3(d). The parameters used are MnGa
with Ms = 2.5 × 105 A/m, Hc = 9.5 T, Tc = 800 K, ZJ ≈
kBTc/h̄ = 595 T [30]. Clearly, the spin current is maximal at
the transition point, and this enhancement increases as the
temperature decreases, which are both consistent with the
expectations. In the low-temperature regime, we may also get
analytical results of the spin current by noticing that (i) mainly
long-wavelength magnons (kd → 0) are thermally excited

(i.e., the spectrum can be approximated as ε =
√

Ak2 + ε2
g )

and (ii) the integrand ∂n/∂β ≈ −εe−βε , where the effective
spin wave stiffness is

A =
{

2KzZJh̄2S2d2, H < Hc,

(H − 2KxS)ZJh̄2S2d2, H � Hc,
(15)

and spin wave gap is

εg =
{

h̄
√

2KzS(Hc − H )(Hc + H )/Hc, H < Hc,

h̄
√

(H − 2KxS)(H − Hc), H � Hc.
(16)

Now the DOS of the magnons can be derived as D(ε) =
4π/A3/2ε

√
ε2 − ε2

g , while the integral in Eq. (14) is analyti-

cally evaluated as

js = 16πkB
T α′ε2
g

βA3/2

[
3βεgK1(βεg) + (

12 + β2ε2
g

)
K2(βεg)

]
,

(17)
where Kν (x) is the modified Bessel function of the second
kind, which decays monotonically with the increase of x.
Close to the transition point (εg = 0), we can further expand
Kν (x) and approximate the spin current (17) as

js = 16πkB
T α′ 24 − β2ε2
g

β3A3/2
. (18)

Again, we can see that the spin current is maximally excited at
the transition point, and it follows a universal field dependence
near the transition as [ js(H ) − js(Hc)]/ js(Hc) ≈ |H − Hc|.
Note that these analytical results work quantitatively well
only at low temperature, as indicated in the comparisons of
analytical and numerical results in Fig. 3(d).

B. Spin injection by the spin-orbit effect

Besides applying a thermal gradient, one may also inject
spin current through the spin-orbit effect. For example, one
can pass electric current in the normal-metal layer of the
FM|NM bilayer, which may produce a transverse spin current
in the NM layer through the spin Hall effect. Such a spin cur-
rent further generates a spin accumulation μs at the interface

FIG. 4. (a) Schematic of the spin injection through the spin Hall
effect. (b) Injected spin current as a function of external field at μs =
0.2Hc (red line), 0.02Hc (blue line), and 0.002Hc (black line) with
fixed temperature T = 0.5 K. The curved dashed line is calculated
based on the analytical formula (20). All the other parameters are the
same as in Fig. 3. (c) Injected spin current as a function of external
field at T = 20 K (red line), 100 K (blue line), 200 K (black line),
and 300 K (purple line) with fixed spin accumulation μs = 0.02Hc.

and thus injects spin currents into the FM layer [see Fig. 4(a)].
The magnitude of the spin current can be formulated as [28]

js = 4α′
∫ ∞

εg

dεD(ε)(ε − μs)[n(βε) − n(β(ε − μs))]. (19)

Similar to the spin Seebeck setup, the injected spin current is
also enhanced near the transition point, as shown in Fig. 4(b).
Here the magnitude of enhancement converges as μs de-
creases. This is because the integrand in Eq. (19) can be
expanded as (ε − μs)[n(βε) − n(β(ε − μs))] ≈ βμs∂n/∂β

when μs → 0 and thus the factor μs is scaled out in calcu-
lating js/ js(Hc). Analytically, we can derive the spin current
in this regime as

js = −16πα′μsε
2
g

A3/2β
[βεgK1(βεg) + 3K2(βεg)]. (20)

Near the transition point, the spin current can be further
approximated as

js = −8πα′μs

A3/2β3
[12 − (βεg)2]. (21)

Here the spin current follows a power law near the transition
point similar to that of the spin Seebeck case as [ js(H ) −
js(Hc)]/ js(Hc) ≈ |H − Hc|. Note that the absolute value of
spin current injected into the FM layer will be very small
when spin accumulation at the interface is small because
js ∝ μs, which will make it difficult to measure. Moreover, for
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a given spin accumulation, the enhancement decreases with
the increase of temperature, as shown in Fig. 4(c). Therefore,
a moderate value of spin accumulation at low temperature is
preferred to observe this enhancement in experiments.

IV. DISCUSSION AND CONCLUSION

In conclusion, we have derived a universal power law of the
magnetic resonance frequency near zero resonance frequency,
and the exponents depend on the symmetry of the system.
When the magnetization reorients continuously around the
transition point, it can be viewed as a second-order phase
transition. This transition can significantly enhance the spin
current injected by a thermal gradient or spin-orbit effects and
thus be measured in an electrical way by transforming the spin
current into charge current through the inverse spin Hall effect
or spin Hall magnetoresistance.

Our result is, in principle, valid for a finite system de-
scribed as a classical spin. In the thermodynamic limit, the
exponent 1/2 will become zν in the case in which the tran-
sition is of second order. On the other hand, even though we
derive the power law based on the macrospin approach, the
multidomain magnetic structure may form at nearly zero reso-
nance frequency. Suppose there are only two types of domains
inside the magnet; this power law still works. For example, in
a single crystal of hexagonal BaFe12O10 with the coexistence
of uniaxial and shape anisotropies, there are two antiparallel
domains separated by domain walls [17]. Since the rotational
symmetry is broken in such a structure, the critical exponent is
1/2, as summarized in Table I. Another similar example is the
uniaxial antiferromagnet; it preserves (breaks) the rotational
symmetry below (above) the spin-flop transition field Hsp and
thus acquires the critical exponent p = 1 (1/2). It has been
shown that when the number of domains increases above
two, the critical exponent is 1/2 for an in-plane magnetized
multidomain state [13], but the validity of the power law in the
general case with multidomains separated by various types of

domain walls, such as transverse walls and vortex walls, has
yet to be studied.

Furthermore, the field dependence of the magnon fre-
quency can go beyond the magnetic resonance and apply to
a wide class of quantum optical systems that involve the ef-
fective spin degree of freedom. For example, the Dicke model
describes the interaction of a collection of two-level atoms and
the electromagnetic wave as H = ωaa†a + ωmSz + gam(a +
a†)(S+ + S−), where a is the photon field; S+ (S−) is the
spin raising (lowering) operator, defined as the sum of spin
operators on each atom; and ωa, ωm, and gam are, respectively,
the frequencies of photons and magnons and their coupling
strength [31–33]. The frequency of the lower eigenmode will
approach zero as ω ∝ √

ωm − ωc at the critical frequency
ωc = 4g2

am/ωa, which can be understood within our picture.
Here the photon field plays a role similar to a transverse field
in the uniaxial model, and thus, it can induce a continuous
transition that follows the power law of p = 1/2.

Last, spin current transport near the AFM spin-flop transi-
tion has already been reported [34–38]. All these works show
the enhancement of spin current transport near the transition
point, which is consistent with the ferromagnetic case we
discussed here. The difference is that two types of magnons
with opposite polarizations coexist in an AFM, and they will
interplay near the transition to make the sign of the spin
current tunable. For an FM, only one type of magnon exists,
and the sign of the spin current does not change.
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