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Abstract 

Soil flooding creates low-oxygen environments in root zones and thus severely affects plant growth and product-
ivity. Plants adapt to low-oxygen environments by a suite of orchestrated metabolic and anatomical alterations. Of 
these, formation of aerenchyma and development of adventitious roots are considered very critical to enable plant 
performance in waterlogged soils. Both traits have been firmly associated with stress-induced increases in ethylene 
levels in root tissues that operate upstream of signalling pathways. Recently, we used a bioinformatic approach to 
demonstrate that several Ca2+ and K+ -permeable channels from KCO, AKT, and TPC families could also operate in 
low oxygen sensing in Arabidopsis. Here we argue that low-oxygen-induced changes to cellular ion homeostasis and 
operation of membrane transporters may be critical for cell fate determination and formation of the lysigenous aeren-
chyma in plant roots and shaping the root architecture and adventitious root development in grasses. We summarize 
the existing evidence for a causal link between tissue-specific changes in oxygen concentration, intracellular Ca2+ 
and K+ homeostasis, and reactive oxygen species levels, and their role in conferring those two major traits enabling 
plant adaptation to a low-oxygen environment. We conclude that, for efficient operation, plants may rely on several 
complementary signalling pathway mechanisms that operate in concert and ‘fine-tune’ each other. A better under-
standing of this interaction may create additional and previously unexplored opportunities to crop breeders to im-
prove cereal crop yield losses to soil flooding.

Keywords:   Adventitious roots, aerenchyma, ethylene, hypoxia, NADPH oxidase, potassium, programmed cell death, reactive 
oxygen species.
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Introduction

Soil flooding as a major constraint for agricultural 
sustainability and food security

The Sustainable Development Goals formulated by the United 
Nations aim to boost agricultural crop production to meet de-
mands for global food security under current climate change. 
Of all natural hazards, floods and droughts have the biggest 
impact on the agriculture sector (FAO, 2015). Soil flooding 
creates low-oxygen (hypoxic) conditions in the root zone 
and severely hinders plant performance, resulting in substan-
tial losses in crop production and even plant death. Urgency 
is enormous as global climate change is expected to increase 
the frequency and severity of flooding events in many regions 
worldwide (Tanoue et al., 2016; Paprotny et al., 2018; Box 1).

With the exception of rice, crops do not tolerate floods and 
are severely damaged when soil waterlogging occurs (Bailey-
Serres and Voesenek, 2008). On a global scale, floods were the 

cause of almost two-thirds of all damage and loss to crops in 
the period between 2006 and 2016 (Fukao et al., 2019). Over 
1.7 billion ha of land is affected by soil flooding annually, with 
an estimated cost to the industry exceeding US$80 billion 
year–1 (Voesenek and Sasidharan, 2013). In Australia, the annual 
yield loss due to waterlogging ranges between 20% and 70% 
(depending on crop species and location; Shaw et al., 2013); 
the same is true for other major crop production areas. Thus, 
the sustainability and profitability of agriculture in the 21st 
century is critically dependent on our ability to develop crop 
varieties that can maintain productivity when affected by soil 
hypoxia imposed by excessive water.

Plant adaptation to waterlogging

The key constraint affecting plant performance in waterlogged 
soils is a lack of oxygen that creates hypoxic (or even anoxic—
depending on duration and tissue type) conditions in plant 

Box 1. Flooding occurrence and effect in the context of global climate change.

A heatmap showing the trend of global occurrence of climate-driven flooding events in different 
continents over the last 70 years (A). The colour scale indicates the number of flood events during 
corresponding periods. The presented information is extracted from the Emergency Events Database, 
EM-DAT (https://public.emdat.be/) provided by the Centre for Research on the Epidemiology of Disasters 
(CRED). The search terms are picked up as ‘Natural’, ‘Hydrological’, and ‘Flood’ for the corresponding 
disaster measure and time span.

The occurrence of flood events per year coincides with a simultaneous rise in the annual global 
temperature since 1980 (plotted on the x-axis in B). More frequent and intense flood events are likely to 
contribute to more severe damage and loss related to climate change. The presented analysis is based 
on the database from EM-DAT CRED, and the changes of temperature are reported in FAOSTAT.
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cells. Hypoxia affects root metabolism, hampers aerobic res-
piration and ATP synthesis, and therefore has a severe impact 
on plant growth and yield (Gibbs and Greenway, 2003; Bailey-
Serres and Colmer, 2014; Loreti et al., 2016). Consequently, 
hypoxia also limits the availability of required energy to fuel 
the H+-ATPase pumps and severely hinders the plant’s ability 
to deliver water and nutrients to the shoot (Bailey-Serres and 
Voesenek, 2008; Elzenga and van Veen, 2010; Gill et al., 2018). 
Many plant species try to avoid hypoxic conditions by sev-
eral means; two important traits found in grasses are forma-
tion of aerenchyma (Evans, 2003; Abiko et al., 2012; Loreti and 
Perata, 2020; Yamauchi et al., 2021) and development of ad-
ventitious roots (Steffens and Rasmussen, 2016; Lin and Sauter, 
2020). Other key traits include formation of a barrier against 
radial oxygen loss and enhanced shoot elongation to over-
grow deeper water layers to avoid hypoxia. These two traits 
are discussed extensively in other publications (Voesenek and 
Bailey-Serres, 2015; Mustroph, 2018; Pedersen et al., 2021) and 
therefore are not covered here.

Formation of lysigenous aerenchyma in roots facilitates fast 
air diffusion between the atmosphere and the root tip, and al-
lows the plant to function normally under flooded conditions 
(Jackson and Armstrong, 1999). This process requires the se-
lective cell death and lysis of the cortical cells (Evans, 2003). 
Aerenchyma formation is constitutive in wetland species and 
in rice (the most flood-tolerant crop; Shiono et al., 2011), and 
is inducible in other species upon onset of hypoxia (Colmer 
and Voesenek, 2009). Cell collapse during lysigenous aeren-
chyma formation resembles the canonical apoptotic pathway 
in animal cells (Evans, 2003; Yamauchi et al., 2017; Ni et al., 
2019), and ethylene-mediated reactive oxygen species (ROS) 
signalling plays a critical role in this process (Colmer et al., 
2006; Rajhi et al., 2011; Yamauchi et al., 2014).

Formation of adventitious roots is considered as another 
key adaptive mechanism enabling plant adaptative responses to 
hypoxic conditions during waterlogging (Fukao and Bailey-
Serres, 2004). The development of adventitious roots has been 
shown to play a very important role in water and nutrient up-
take from the upper surface of the soil (Sauter, 2013; Steffens 
and Rasmussen, 2016) and is considered as the leading trait 
contributing to flood tolerance at the morphological level 
(Colmer and Voesenek, 2009; Manzur et al., 2014). To emerge 
from their native organ, secondary roots must penetrate inner 
cell layers and the epidermis, which acts as a physical barrier 
to protect the organ (Steffens et al., 2012). Thus, emergence of 
adventitious roots requires the cell death of epidermal cells that 
overlie adventitious root primordia. This process is known to 
be controlled by ethylene (Lorbiecke and Sauter, 1999; Steffens 
et al., 2006; Dawood et al., 2016), as ethylene insensitivity re-
sults in the formation of fewer adventitious roots (McDonald 
and Visser, 2003). The process also involves genes coding for 
cell wall-loosening enzymes, such as expansin and pectate 
lyase that are specifically expressed in front of emerging lateral 
root primordia (Neuteboom et al., 1999). Adventitious root 

formation is also controlled by GNOM, a guanine-nucleotide 
exchange factor which encodes a GDP/GTP exchange factor 
for small G proteins of the ADP-ribosylation factor class 
(ARF-GEF; Liu et al., 2009).

Can ethylene do it all on its own?

While most canonical models consider ethylene entrapment 
and signalling upstream of lysigenous aerenchyma formation 
(Yamauchi et al., 2020), this is not necessarily true for all cases 
(e.g. aerenchyma formation in the root of the wetland plant 
Juncus effusus; Visser and Bögemann, 2006). Underwater growth 
of petioles/stems of Nasturtium officinale (watercress) also did not 
require ethylene (Muller et al., 2021). Also, Parlanti et al. (2011) 
showed that in some rice genotypes, submergence led to an in-
crease in the formation of aerenchyma without any noticeable 
increase in ethylene production; instead, it was causally related 
to hypoxia-induced elevation in H2O2 levels. However, given 
the correlative nature of this study, to convincingly demonstrate 
the possibility of aerenchyma formation without involvement 
of ethylene signalling, experiments using available ethylene-
insensitive rice mutants are required (Pandey et al., 2021).

Furthermore, knocking out RBOHH (one of the key genes 
conferring NADPH oxidase activity) by CRISPR/Cas9 re-
duced ROS accumulation and inducible aerenchyma forma-
tion in rice roots (Yamauchi et al., 2017). This suggests that (i) 
aerenchyma formation may occur independently of ethylene 
signalling in some cases (or plant species) and (ii) the latter 
process requires operation of an NADPH oxidase. So, ethylene 
per se could not do it all, and stress-induced modulation in 
ethylene production needs to be complemented by other 
signalling pathways.

Formation of the adventitious roots requires a mechan-
ical rupture of the root cortex (Steffens et al., 2012). It was 
shown that epidermal cells above root primordia that undergo 
cell death have a distinct molecular identity, with a transcrip-
tome that is greatly different from that of other nodal epi-
dermal cells (Steffens and Sauter, 2009). It was also shown 
that elevation in the ethylene content per se is not sufficient 
to trigger programmed cell death (PCD), and that reprogram-
ming of epidermal cell fate by ethylene requires two signals: (i) 
mechano-sensing for spatial resolution and (ii) ROS for cell 
death signalling (Steffens et al., 2012). According to the sug-
gested model, adventitious root primordia create a mechanical 
force that is then sensed by some mechanosensitive channels 
(with as yet unknown molecular identity; Steffens et al., 2012) 
that later regulate the cell’s redox status and, thus, determines 
its fate.

Where do membrane transporters step into the 
picture?

One of the most enigmatic questions in plant responses to 
flooding is the molecular identity of the oxygen sensors. In 
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Arabidopsis, hypoxia responses are controlled by five essen-
tial transcription factors belonging to the group VII ERFs: 
HYPOXIA RESPONSIVE ERF1 (HRE1) and HRE2, and 
RELATED TO APETALA2.2 (RAP2.2), RAP2.12, and 
RAP2.3 that are controlled by the cellular oxygen status. While 
some of the encoding genes react to hypoxic stress, RAP2.2, 
RAP2.3, and RAP2.12 are constitutively transcribed under 
normoxic conditions (Papdi et al., 2008, 2015; Hinz et al., 2010). 
In the light of this, plant low-oxygen sensing was attributed to 
the stability of these ERF-VIIs through the PROTEOLYSIS6 
(PRT6) N-degron pathway (Gibbs et al., 2011; Licausi et 
al., 2011; Weits et al., 2014; van Dongen and Licausi, 2015). 
However, more recent evidence (Gibbs et al., 2014; Hartman et 
al., 2019) suggests that the ERF-VIIs can still be stabilized in 
the presence of oxygen through other means (Hartman et al., 
2019), and that the actual oxygen sensing could be performed 
by either plant cysteine oxidases (Weits et al., 2014; White et 
al., 2017; Masson et al., 2019) or other molecules (Holdsworth, 
2017). In mammalian systems, several K+ and Ca2+ chan-
nels were proposed to operate in oxygen sensing (Kemp and 
Peers, 2007), and our bioinformatics analysis has identified six 
channels from three families as potential oxygen sensors in 
plants. These comprise (Wang et al., 2017b): four members of 

the tandem-pore K+ channel family (namely KCO1, KCO4, 
KCO5, and KCO6); an AKT2 Shaker K+ channel; and a two-
pore Ca2+-permeable (TPC1) channel. While these findings 
are waiting for experimental validation in direct patch-clamp 
experiments, they are indicative of the possible causal link be-
tween changes of intracellular Ca2+ and K+ homeostasis and 
plant adaptive responses to a low-oxygen environment (Box 2).

Anion channels also may play a critical role in plant adap-
tive responses to flooding. Soil flooding results in a signifi-
cant cytosolic acidosis (Felle, 2005), and recently Lehmann et 
al. (2021) showed that the anion channel SLAH3 can sense 
changes in cytosolic acidification by specific histidine residues, 
thereby switching from a ‘silent’ dimer into active monomers, 
triggering membrane depolarization and activating signalling 
cascades boosting the plant’s flooding stress response. Also, one 
of the most prominent biochemical alterations under flooded 
conditions is a dramatic (several orders of magnitude) increase 
in the γ-aminobutyric acid (GABA) content (Kreuzwieser et 
al., 2009). It was recently shown that hypoxia-induced eleva-
tion in the GABA level may restore membrane potential by 
pH-dependent regulation of H+-ATPase and/or by generating 
more energy through the activation of the GABA shunt pathway 
and thee tricarboxylic acid (TCA) cycle (Wu et al., 2021).

Box 2. Key developments in understanding the role of membrane transporters in plant adaptive 
responses to the low oxygen environment.

	•	 Ion channels may operate as low-oxygen sensors in plants

The bioinformatics analysis has identified six cation channels from three families as potential oxygen 
sensors in plants (Wang et al., 2017b). These comprise four members of the tandem-pore K+ channel 
family (KCO1, KCO4, KCO5, and KCO6); an AKT2 Shaker K+ channel; and a two-pore Ca2+-permeable 
(TPC1) channel.

	•	 Hypoxia-induced K+ loss may trigger PCD in root cortex

The onset of hypoxia activates outward-rectifying K+ GORK channels (Gill et al., 2018), resulting 
in cytosolic K+ loss. The failure to maintain high cytosolic K+ levels can induce cell elimination via 
programmed cell death (PCD) by unblocking activities of caspase-like proteases and endonucleases 
(Rubio et al., 2020) and potentially leading to formation of a lysigenous aerenchyma.

	•	 Adventitious root development requires operation of mechano-sensitive ion channels

The emergence of adventitious roots implies a mechanical rupture of the root cortex and requires 
involvement of ROS and mechano-sensitive ion channels (Steffens et al., 2012). These channels are 
Ca2+ permeable (Frachisse et al., 2020).

	•	 NADPH oxidase and Ca2+-permeable channels form a ‘hub’ and amplify ROS signal required for 
adventitious root formation

NADPH oxidase encoded by RBOH genes shapes hypoxia-specific Ca2+ signatures via the modulation 
of apoplastic H2O2 production (Wang et al., 2017a). Ca2+-permeable mechano-sensitive ion channels 
operate in tandem with RBOH, forming a positive feedback loop (Demidchik et al., 2018), and may 
confer PCD of epidermal cells around root primordia.
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Membrane transporters and aerenchyma development

Earlier we showed that onset of hypoxia induces severe mem-
brane depolarization that activates outward-rectifying K+ 
GORK channels (Gill et al., 2018), resulting in the cytosolic 
K+ loss. We have also shown that elevation in intracellular ROS 
levels triggers massive K+ loss from the cytosol by activating 
non-selective cation channels (NSCCs) (Shabala et al., 2016). 
At the same time, when plants deal with energy crises imposed 
by hypoxia, the relative amount of ATP allocated for (defence-
related) protein synthesis is increased from 38% to 73%, while 
energy allocation to net K+ transport drops from 85 nmol ATP 
g–1 FW min–1 to almost zero (Atwell et al., 2015). The failure 
to maintain high cytosolic K+ levels can induce cell elimin-
ation via PCD by unblocking activities of caspase-like prote-
ases and endonucleases (Shabala et al., 2007; Demidchik et al., 
2010). Thus, we propose that this mechanism may operate in 
formation of lysigenous aerenchyma under low-oxygen con-
ditions (Box 3). The supporting evidence for this model comes 
from recent electrophysiological and fluorescence imaging ex-
periments on barley conducted in our laboratory. By screening 
a large number (>300) of barley accessions with contrasting 
waterlogging stress tolerance, we have revealed that tolerant 
genotypes are capable of forming aerenchyma after 4–5 d from 
hypoxia onset, while this process is started 3 d later in the sensi-
tive varieties (Zhang et al., 2015). When contrasting genotypes 
were selected and examined, it was found that most tolerant 
genotypes show early accumulation of ROS species (Box 3; 
panel B). These genotypes also possess increased sensitivity of 
K+ channels to H2O2 (Box 3; panel C). These observations 
are fully consistent with the above model (Box 3) that low-
oxygen sensing in tolerant varieties leads to early accumulation 
of ROS, following their activation of K+ efflux channels and a 
consequent decrease in the cytosolic K+ levels that then leads 
to execution of PCD by caspase-like proteases whose activity 
is suppressed by the elevated K+ level. The full validation of 
this model should come from experiments combining time-
dependent tissue-specific ROS accumulation in root cortical 
cells of contrasting genotypes/species, changes in transporter 
activity and transcript levels of key genes involved in ROS 
and ethylene signalling, and K+ and Ca2+ homeostasis and 
monitoring of PCD events. The molecular identity of NSCCs 
mediating ROS-induced K+ loss has also to be revealed.

Membrane transporters and formation of adventitious 
roots 

Findings from Sauter’s lab (Steffens et al., 2012) suggested that 
reprogramming of epidermal cell fate by ethylene requires 
mechanical and ROS signals and involves mechano-sensing 
channels. While the exact molecular nature of the candi-
date mechano-sensitive channel remains unknown, earlier 
Nakagawa et al. (2007) showed that Arabidopsis MCA1 chan-
nels possess mechano-sensitivity and mediate Ca2+ uptake. At 

the same time, plants employ the so-called ‘Ca–ROS Hub’ that 
operates in amplification of ROS and Ca2+ signals (Demidchik 
et al., 2018) by forming a positive feedback loop involving Ca2+-
permeable channels and NADPH oxidase. NADPH oxidase is 
a plasma membrane-bound enzyme complex. After binding 
Ca2+ to one of its ER hands, NADPH oxidase produces the 
extracellular superoxide anion, O2·

–, that is then converted to 
H2O2 in the apoplast. The Arabidopsis genome contains 10 
NOX (NADPH oxidase) genes, and earlier we showed that in 
Arabidopsis roots, RBOHD shapes hypoxia-specific C4a2+ 
signatures via the modulation of apoplastic H2O2 production 
(Wang et al., 2017a). Thus, it is suggested that MCA1 may op-
erate in tandem with RBOH, forming the ‘ROS–Ca Hub’ and 
conferring PCD of epidermal cells about root primordia (Box 
4). Previous studies have reported very rapid (within 1–2 min) 
hypoxia-induced cytosolic Ca2+ elevation in Arabidopsis plants 
(Sedbrook et al., 1996) that was consistent with observed de-
polarization of membrane potential in the same time frame 
(Box 4). Future experiments should use accessions with con-
trasting abilities to develop adventitious roots when exposed 
to hypoxia, followed by their electrophysiological (MIFE and 
patch-clamp), biochemical, molecular, and microscopy as-
says. Another interesting possibility would be to compare 
the rice (Oryza sativa) arl1 (adventitious rootless1) mutant with 
its wild type. By matching the electrophysiological data to 
transcriptomics analysis, one will be able to understand the 
causal link between cell type-specific changes in the cytosolic 
Ca2+ and K+ levels, downstream signalling pathways, and mem-
brane effectors (mechano-sensitive channels) that participate in 
cell fate determination and elimination of epidermal root cells.

Implications and prospects

Until now, the major focus of researchers working in the 
field was on understanding the role of ethylene and ROS 
signalling in plant adaptation to soil flooding (Voesenek and 
Bailey-Serres, 2015; Pucciariello and Perata, 2017; Hartman 
et al., 2021). The role of ion transporters operating ei-
ther downstream of, or in parallel to, the above signalling 
pathways remains largely unexplored. In the Arabidopsis 
genome, 43% of all protein sequences have at least one 
transmembrane-spanning (TMS) domain, with 18% pro-
teins having at least two TMS domains and thus are associ-
ated with cellular membranes (Ward, 2001). The Arabidopsis 
genome also confers membrane transport proteins from 46 
unique families containing ~880 members (Mäser et al., 
2001). Importantly, many of them can be directly regu-
lated by ROS and low oxygen (Ward et al., 2009; Wang et 
al., 2017b; Demidchik et al., 2018). Thus, revealing the roles 
and tissue-specific regulation of key transporters and under-
standing their roles as downstream targets for low-oxygen 
signalling and their interaction with ethylene- and ROS-
mediated signalling pathways will fill the fundamental gap 
in our knowledge and reveal the fine print of one of the 
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Box 3. Membrane transporters and aerenchyma development

The proposed model for formation of lysigenous aerenchyma under low-oxygen conditions (A). Hypoxia 
stress is sensed by mitochondria and/or some plasma membrane (PM)-based sensor and results in 
a rapid (1–2 min; Sedbrook et al., 1996) elevation in cytosolic Ca2+, leading to stimulation of NADPH 
oxidase (encoded by RBOH). The H2O2 produced in the apoplast is transported across the PM via 
aquaporins (AQP). Elevated cytosolic H2O2 activates K+-permeable efflux channels (GORK in the model), 
increasing activity of caspase-like proteases and triggering PCD that results in elimination of the cortical 
cell and formation of aerenchyma.

The model is built upon findings that low oxygen stress induces accumulation of ROS in root cortical 
cells, and this accumulation occurs faster in the genotype (TAM) with a greater proportion of aerenchyma 
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Box 4. Membrane transporters and adventitious root development.

The proposed model for involvement of membrane transporters in adventitious root development. 
Hypoxia conditions in root primordia are sensed by a PM-based receptor and then signalled by ERF-
VII to elevate intracellular ROS content (Sasidharan and Voesenek, 2015). ROS signal is then amplified 
by the ROS–Ca2+ ‘hub’ composed of RBOH and a ROS-inducible Ca2+-permeable non-selective cation 
channel (NSCC) (Demidchik et al. 2018). ROS and Ca2+ signals induce appropriate transcription factors 
(TFs) in the nucleus to increase cell turgor pressure and drive expansion growth (e.g. by up-regulating 
expression and/or activity of AKT K+ uptake channels in the model). ROS activation of K+ efflux GORK 
channels is prevented by their desensitization in this tissue.

In the epidermal cell, Ca2+ channels making up the above ‘hub’ are not ROS inducible but instead 
possess mechano-sensitivity (e.g. MCA1 channel in the model; Nakagawa et al., 2007), so the RBOH–Ca2+ 
hub will operate only in the presence of a mechanical pressure exerted on the cell by expanding primordia. 
At the same time, the GORK channels in root epidermis possess high ROS sensitivity (e.g. Shabala et al., 
2016) and could be rapidly activated by ROS accumulation in the cytosol transported from the apoplast 
via aquaporins (AQP). As a result, cytosolic K+ drops to levels which allow activation of proteases, and the 
epidermal cell undergoes PCD, thus allowing developing adventitious roots to penetrate.

than the one (Yerong) with a relatively lower proportion of aerenchyma under waterlogging conditions 
(B). The sensitivity of K+ efflux channels to ROS is also increased in the genotype with ability for faster 
aerenchyma formation (C).

(B) Quantification of H2O2 accumulation in roots of two barley genotypes (TAM, left panel; Yerong, right 
panel) after 3 d of waterlogging stress. Scale bar=200 mm. ROS accumulation (marked by an arrow) 
was visualized by fluorescence imaging after staining with H2DCF-DA (see Niu et al., 2018 for details) 
and was much stronger in TAM compared with Yerong. These patterns matched faster formation of 
aerenchyma and increase sensitization of K+ efflux channels in TAM.

(C) Kinetics of net H2O2 (10 mM)-induced K+ fluxes measured from epidermal root cells of TAM and 
Yerong barley genotypes after 3 d of hypoxia treatment measured by the non-invasive microelectrode ion 
flux measuring (MIFE) technique. For all details of MIFE operation and treatments, please refer to Gill et al 
(2018). Data are means ±SE (n=6). The sign convention is ‘efflux negative’.

Box 3. Continued
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very important mechanisms evolved by plants to deal with 
flooded conditions. This fundamental knowledge may then 
be used by plant breeders to improve waterlogging tolerance 
in major staple crops. It would be naive to expect that there 
will be one single gene that can be a ‘silver bullet’ that will 
fix all the problems; however, the chances that some of these 
new traits may be gamechangers are very high. The sooner 
plants are able to embrace these anatomical adaptations the 
smaller will be the detrimental effect of hypoxia stress on 
their overall long-term performance during flooding stress.

The importance of understanding the role of membrane 
transporters in low-oxygen conditions goes well beyond 
improving plant adaptive responses to flooding. Low-oxygen 
conditions are often found in some plant tissues under non-
stressful conditions (e.g. meristems, seeds, and tubers), indicating 
that oxygen gradients play a role in the control of stem cell 
activity in shoot meristems (Meitha et al., 2018; Weits et al., 
2019). Thus, understanding mechanisms by which plants sense 
and signal low-oxygen conditions, and the role of specific ion 
transporters in this process, is of a fundamental importance to 
understanding a broad array of processes related to dormancy 
and plant organogenesis.
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