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Knowledge of EV biogenesis pathways and biological activi-
ties has grown rapidly in the past decade1 (Fig. 1a,b). EVs 
are membrane-enclosed structures that are released into the 

extracellular milieu by all organisms and cell types studied so far. 
EVs are a diverse family in which subtypes have been defined based 
on subcellular origin, size, and composition: endosome-derived  

vesicles (including multivesicular endosome-derived exosomes with 
a diameter of 50–150 nm and secretory autophagosome-derived 
EVs); ectosomes and other microvesicles that bud from the plasma 
membrane (PM) as small as exosomes or up to several µm in size; 
midbody remnants released by dividing cells (Box 1); migrasomes 
trailing behind migrating cells2,3; apoptotic bodies dislodged from 
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Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse bio-
logical activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the develop-
ment of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied 
on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not 
capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and 
high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new 
tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the lat-
est advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and 
therapeutic applications.

NATuRE METHoDS | VOL 18 | SEPTEMBER 2021 | 1013–1026 | www.nature.com/naturemethods 1013

mailto:frederikverweij@gmail.com
mailto:guillaume.van-niel@inserm.fr
http://orcid.org/0000-0001-8879-1174
http://orcid.org/0000-0003-0931-9715
http://orcid.org/0000-0002-3050-7633
http://orcid.org/0000-0003-3150-2241
http://orcid.org/0000-0003-2842-8116
http://orcid.org/0000-0002-8939-5664
http://orcid.org/0000-0001-7994-1185
http://orcid.org/0000-0001-8050-7060
http://orcid.org/0000-0001-7816-5145
http://orcid.org/0000-0002-4256-3413
http://orcid.org/0000-0002-7862-5727
http://orcid.org/0000-0003-3054-4175
http://orcid.org/0000-0001-8294-6884
http://orcid.org/0000-0002-8327-620X
http://orcid.org/0000-0001-9826-4132
http://orcid.org/0000-0001-8661-7594
http://orcid.org/0000-0002-8651-9705
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-021-01206-3&domain=pdf
http://www.nature.com/naturemethods


Review ARticle NATuRE METHOds

dying and disintegrating cells; and large oncosomes released by 
transformed cells with exaggerated membrane plasticity (Fig. 2a 
and Table 1). Recent discoveries reveal additional subclasses of 
microparticles and nanoparticles, such as exophers4,5, exomeres6, 
supramolecular attack particles7, and elongated particles8. Initial 
discoveries implicated EVs in cellular adherence (as ‘adherons’)9 
and clearance10 in the early 1980s, and in immune regulation in 
the mid-1990s11. EVs also play crucial roles in neurodegenerative 
diseases, cancer progression, metabolic homeostasis, angiogenesis, 
inflammation, neuronal plasticity, migration, trophic support, and 
pathogenic infections12–15. These roles are primarily supported by 
the capacity of EVs to shuttle molecules from one cell to another.

Despite the clear importance of EV biology, EV research faces 
challenges imposed by the small size and heterogeneity of EVs. 
Most studies have used bulk separation and characterization of het-
erogeneous populations of EVs from biological fluids or extended, 

large-scale in vitro cell cultures. These approaches allow robust 
characterization16 at the population level—for example, size and 
molecular profiles—but removing EVs from their context pre-
cludes insight into subcellular origin, release and uptake dynamics, 
and half-life. Separation can also disrupt fragile components such 
as branched glycans (Box 1), potentially altering EV functionality. 
Furthermore, studies in two-dimensional (2D) monocultures do 
not necessarily reflect what occurs in vivo.

Recent advances in live and high-resolution microscopy, com-
bined with novel EV labeling strategies, now allow us to interrogate 
the composition and behavior of EVs at the single-vesicle level in 
living organisms17–20 (Fig. 1a). Functional transfer of EV proteins 
and RNA can also be assessed using novel reporters in vivo21,22 
and in vitro23. These developments open new vistas in EV biology, 
providing the means to examine previously intractable issues 
such as assessing the lifespan of EVs in vivo. Here we review the 
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Fig. 1 | Timeline of EV imaging milestones and broad overview of microscopy techniques to resolve EVs at different scales. a, Timeline of imaging 
milestones in EV research. EM, electron microscopy. Refs. 2,10,17,19,22,34,38,47,63,68,128,129,131–136. b, Schematic of the resolution range of different microscopic 
approaches to resolve EVs at increasing resolution.
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state-of-the-art in EV labeling and tracking in animal model sys-
tems. We identify pitfalls and propose solutions and best practices. 
Finally, we discuss how recent advances in imaging can address 
open questions in EV biology, from biogenesis to uptake and func-
tion, thereby enhancing the development of EV therapeutics.

Tagging strategies, microscopy technology, and animal 
models
Labeling strategies that allow imaging with subcellular resolution are 
necessary for imaging EVs. In recent years, several such strategies 

or applications have been developed, ranging from novel lipid dyes 
(Box 1) to luminal dyes and genetic labeling (Table 2 and Fig. 2).

Lipid dyes. Lipid dyes (for example, PKH67, DiR/DiD, MemGlow) 
have been widely applied to label EVs with various excitation and 
emission wavelengths24, including the infrared range for greater 
penetration through tissues for in vivo studies. However, the appli-
cation of lipophilic dyes to study EVs is complicated by unbound 
dye, aggregate and micelle formation, promiscuous labeling of 
non-EV particles, and the long half-life25. Labeling protocols should 
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Fig. 2 | Tagging strategies to image EV production. a, EVs are diverse double-leaflet membrane-enclosed structures generated from the PM (microvesicles, 
apoptotic bodies, oncosomes, exophers, enveloped viruses, and migrasomes), from endosomal compartments (exosomes and enveloped retroviruses), and 
from autophagic compartments (secretory autophagosomes). The origin of exomeres is still uncertain. b–d, Tagging strategies to image EVs. Cytoplasmic 
labeling facilitates pan-EV tagging by labeling the cell cytosol and the lumen of any EVs (b). Right, large EVs released from MDA-MB-231 cells expressing 
Dendra2 in mice mammary glands22. Arrows, EVs. Scale bars: 10 mm (left image), 1 mm (right image). Membrane labeling tags multiple EV subtypes (c). Right, 
confocal microscopy of live PalmGFP-expressing 293 T cells releasing EVs34. Arrows, bud-like structure from the surface; arrowheads, processes extending 
from cells. Expressing tagged cargo proteins allows the tracking of EV subtypes (d). Right, live imaging of a burst of CD63-pHluorin fluorescence at the HeLa 
cell surface (arrows, fusion event), overlaid using CLEM (top right image) to observe an MVB fusing with the PM to release exosomes (bottom right image)49. 
e, Expression of degron-tagged fluorescent proteins allows EV tagging while cytosolic fluorescence in the source cell is degraded. Right, PH::CTPD-labeled EVs 
released from the unlabeled PM in C. elegans51. Scale bar, 10 μm. f, Targeting of EV surface proteins by antibodies. Right, optical-EM correlation of M. musculus 
T cell that released EVs (red)53. Arrowhead, released microvesicles. Single EV imaging by dSTORM analysis of antibody staining54 (right image and insets).
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therefore limit dye concentrations during labeling, remove free dye 
after labeling, include appropriate controls (for example, ‘dye only’ 
control in EV solvent), and consider using multiple differentially 
stained EV populations to demonstrate absence of dye transfer or 
vesicle aggregation after co-isolation26. Recently, MemGlow27 was 
reported to be brighter and less prone to aggregate formation com-
pared with traditional lipid dyes19.

Lipid dyes can be applied directly to producer cells followed by 
EV isolation19. However, it is unknown whether cell labeling affects 
EV release or function, or equally labels EV subtypes. Lipid dyes 
might also affect membrane–membrane fusion, fluidity of mem-
brane proteins, membrane stiffness and EV size28. As the half-life 
of lipid dyes greatly exceeds that of EVs29,30, EV degradation after 
cellular uptake can be masked by recycling and redistribution of 
fluorescent dye. Therefore, lipophilic dye labeling of EVs may be 
best suited for short-term studies31.

Dye labeling of the EV lumen. Dyes such as carboxyfluorescein 
diacetate succinimidyl ester (CFDA-SE) and calcein-AM label 
proteins in the EV lumen30,32. Their dependence on luminal ester-
ases for conversion into a fluorescent product may produce fewer 

false-positive EV signals than lipophilic dyes but probably restricts 
labeling to a subpopulation of esterase-containing EVs33.

Fluorescent and bioluminescent protein EV reporters. Various 
genetically encoded reporters have been developed to label all 
EVs or subtypes (Box 1) using fluorescence or bioluminescence. 
Labeled proteins expressed in the cytosol can be shuttled into the 
lumen of both exosomes and ectosomes (Fig. 2b)22. Addition of a 
palmitoylation signal associates the reporter with the inner leaflet  
(Box 1) of PM-derived EVs in vivo (Fig. 2c)34. For labeling of spe-
cific EV subtypes, reporters (including GFPs, RFPs, and the biolu-
minescent ThermoLuc) can be attached to EV cargos (for example, 
syntenin or tetraspanin (TSPAN; Box 1) family members (TSPAN4, 
CD63, CD81 and CD9)2,17,19,26,35, of which CD63 is most widely used). 
Alternative scaffolds and double labeling strategies36 can be consid-
ered to permit subtype detection. In contrast to fluorescent pro-
teins, bioluminescent proteins emit signal after substrate addition 
with a high signal-to-noise ratio but comparatively lower spatio-
temporal resolution37. Therefore, bioluminescence-based reporters 
(gLuc-lactadherin, GlucB) are predominantly used in small animal 
models to track EV biodistribution at whole-animal and organ 

Table 1 | EVs and particles

Name Size Acronyms and other 
names

origin Features

Exosomes 30 nm–150 nm Tolerosomes, 
prostasomes

MVBs, late or recycling 
endosomes, amphisomes

Lipid bilayer; contains proteins, 
genetic material, metabolites

Microvesicles 50 nm–5 μm MVs; ectosomes, 
microparticles, 
synaptosomes, 
myelosomes, 
prostasomes, 
prominosomes

PM, microvilli Lipid bilayer; contains proteins, 
genetic material, metabolites

Apoptotic bodies 1 μm–5 μm Apoptotic blebs PM Lipid bilayer; contains proteins, 
cytosolic components, organelles, 
nuclear fragments

Oncosomes 100 nm–400 nm None PM Lipid bilayer; contains oncoproteins, 
genetic material, oncometabolites

Large oncosomes 1 μm–>10 μm LO PM Lipid bilayer; contains peculiar 
cancer cell metabolism related 
enzymes

Enveloped viruses 40 nm–400 nm Miscellaneous Endosomes, PM Lipid bilayer, virion, viral proteins, 
viral genetic material

Exomeres <50 nm None ND Might lack a lipid bilayer; contains 
proteins such as argonaute and 
APP, lipids, and nucleic acids

Exophers 1.5–15 μm None PM Lipid bilayer; contains metabolic 
waste, protein aggregates, 
organelles

Secretory autophagosomes 300 nm–1.5 μm Mitovesicles? Autophagic pathway Lipid bilayer; contains 
cytoplasmic contents, excess or 
damaged proteins, organelles, 
microorganisms

Migrasomes 500 nm–3 μm None PM-derived retraction fibers Lipid bilayer; cytoplasmic content

Supramolecular attack particles 120 nm SMAPs ND, cytotoxic granules No lipid bilayer; cytotoxic core 
surrounded by thrombospondin-1 
shell

Elongated particles 1.9 μm–112 μm Shear-derived particles, 
SDP

PM Lipid bilayer; shear-derived particle, 
observed in rolling neutrophils

EVs comprise a heterogeneous population of membrane vesicles. Their sizes vary between <50 nm and >5 μm. They can originate from the PM, or the endosomal or autophagic pathways. ND, not 
determined.
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scales38,39 (Table 2). More recently, a third category of EV reporter 
using bioluminescence resonance energy transfer (BRET) has been 
described (PalmGRET), allowing EV biodistribution analysis and 
in vivo quantification from whole animal to super-resolution with-
out requiring multiple reporters40.

Excitingly, genetic labeling allows access to the entire fluores-
cent protein toolbox, including photoswitching and photoactiva-
tion, biosensors and bimolecular fluorescent complementation 
(Box 1). However, genetic labeling also comes with challenges. 
Labeling transmembrane proteins might disrupt conformation or 
cause steric hindrance (Box 1) of ligand–receptor interaction and 
organotropism41–43. EV surface-associated reporters may also be 
prone to proteolytic cleavage44, removing the signal45. Reporter 
overexpression may affect cellular signaling, EV cargo loading, 
or endogenous EV production and trafficking. Although a recent 
study demonstrated that CD63-GFP labeling of EVs only minimally 
perturbed the EV proteome26, other studies reported alterations 
in endolysosomal trafficking46, suggesting context-specific effects. 
Overexpression may also misdirect the reporter protein to unin-
tended EV subtypes. Moreover, the amount of fluorescence emit-
ted by the producing cell will ordinarily overpower the fluorescent 
signal of small EVs (approximately one millionth of the cell volume) 
in the immediate vicinity. One solution is the use of pH-sensitive 
fluorophores (for example, pHluorin), which are quenched in 
acidic cellular organelles but detected upon EV release, as success-
fully applied in vitro47–50 and in vivo17 (Fig. 2d). A second strategy 
is degron tagging, whereby cytosolic signal in the producing cell is 
degraded, while the signal in EVs persists51 (Fig. 2e).

Epitope targeting of EV surface proteins. EV-enriched surface 
proteins and glycans can be targeted to visualize and character-
ize EVs in live and fixed cells (Fig. 2f). Pre-labeling of glycans 
on the PM with fluorescent hyaluronic acid binding complex 
(fHABC) allows live visualization of EV budding and fission from 
the cell surface52. Fluorescently labelled antibody fragments, such 
as nanobodies or fragment antigen-binding (Fab) domains, can 

also target EV-enriched proteins, with the advantages of eliminat-
ing the need for a secondary antibody and their smaller size com-
pared to intact immunoglobulins. These strategies are compatible 
with most microscopy approaches53 and allow imaging at single-EV 
resolution54. With these tags, imaging EVs near the producing cells 
can be difficult if the epitope is present on both EVs and the PM. 
Depending on the resolving power of the imaging modality, the use 
of EV capture55 or immobilization strategies56 may be necessary.

A ‘one size fits all’ EV reporter does not exist (yet), and a par-
ticular reporter should be chosen based on the biological question 
and available imaging equipment. The specificity of the strategies to 
label EVs should preferably be validated with super-resolution and/
or ultrastructural techniques. Along these lines, several recent stud-
ies have used combinations of correlative light and electron micros-
copy (CLEM; Box 1), immuno-electron microscopy (IEM), and/or 
scanning electron microscopy (SEM) to validate in vitro and in vivo 
approaches17,19,48,49 (Table 2).

Microscopy. Apart from successful labeling, live imaging of EVs 
in vivo also requires a dedicated imaging set-up. Ideally, the set-up 
is suitable for deep tissue imaging while being resolutive and sen-
sitive enough to observe EVs without inducing phototoxicity  
(Fig. 1b). This means relying on fast but often diffraction-limited 
systems (Box 1). Super-resolution microscopy (SRM)—for exam-
ple, stochastic optical reconstruction microscopy (STORM) and 
photoactivated localization microscopy (PALM)—improve reso-
lution to the nanometer scale, but often require fixation and are 
time-consuming. Other SRM approaches better suited for live-cell 
imaging of EV uptake and processing are structured illumination 
microscopy (SIM) and stimulated emission depletion microscopy 
(STED). All SRM techniques depend on high photon intensities, 
complicating detection of smaller EVs and increasing the risk of 
photobleaching and phototoxicity (Box 1), especially when imag-
ing larger volumes in vivo over time. This renders some of the 
current SRM techniques incompatible with robust live imaging 
of EVs in vivo.

Box 1 | Glossary

Glycan extended trees. Protein modification involving attached 
polymerized glycans that possess structural and/or modulatory 
function (for example, ligand binding).
Lipid membrane dye. Lipophilic fluorescent dye that integrates in 
lipid membranes.
EV subtype. EV with specific subcellular origin, size, and/or 
composition (Table 1).
Tetraspanin. Family of membrane proteins with four 
transmembrane domains enriched in EVs.
Inner leaflet. Cytosol- or EV-lumen-facing layer of a lipid  
bilayer.
Fluorescent complementation. A technology used to validate 
protein interactions through the association of complementary 
fluorescent protein fragments attached to components of the same 
macromolecular complex.
Steric hindrance. Here, spatial extent of an exogenous label 
preventing native interaction(s) of the labeled protein.
EV cargo. Any molecule (lipid, protein, metabolite, genetic 
material) shuttled within or on EVs.
CLEM. Imaging technique to correlate (live) light microscopy 
with ultrastructural information obtained on the same sample 
after fixation.

Diffraction limit. Theoretical limit of optical microscopes to 
distinguish objects separated by a lateral distance less than half of 
the wavelength used.
Photobleaching. Photon-induced alteration of a fluorophore that 
causes it to permanently lose its ability to fluoresce.
Phototoxicity. Photon-induced damage to cellular macromolecules 
that impairs sample physiology.
Intraluminal vesicles. Vesicles formed inside endosomes and 
precursors of canonical exosomes (Table 1).
3D microenvironment. Local environment surrounding a cell, 
consisting of ECM, soluble factors, and other cells.
Gene traps. Here, insertion of fluorescent tag such that the labelled 
protein is expressed under its endogenous promoter.
Lectins. Saccharide binding proteins.
Midbody remnants. Condensed membrane structure derived 
from the intercellular bridge that is left over after cell division.
V-ATPase. Transmembrane proton pump functioning to acidify 
intracellular compartments.
Back-fusion. Process in which ILVs or internalized EVs fuse with 
the late-endosomal limiting membrane, exposing their lumen to 
the cytosol and delivering their luminal content to the cytoplasm 
of recipient cells.
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What is the best fluorescence microscopy system to study EV 
biology in vivo? The answer depends on the specific research 
question and the physiological and pathological context (Table 
3). Confocal laser scanning microscopy (CLSM) can detect EVs 
in the sub-200-nm range, track their uptake by living cells, and 
their dynamic intracellular distribution on a time scale of seconds. 
However, EVs will appear as a small set of pixels by light micros-
copy and insufficient structural detail is attained to determine EV 
diameter and distinguish single EVs from EV clusters, dye aggre-
gates, or dye-labeled protein aggregates and other particles. In 
addition, tracking of rapidly moving EVs (for example, in circula-
tion17,19) and/or longer time-lapses require high-speed imaging with 
systems such as spinning disk microscopy and selective plane illu-
mination microscopy (SPIM). These set-ups allow fast acquisition 
of EV movement, image larger volumes in vivo, and limit photo-
bleaching and phototoxicity57. However, cells might be negatively 
affected by illumination even before they start to display morpho-
logical changes such as membrane blebbing57,58. Subtle impacts of 
prolonged imaging (for example, on cellular metabolic state) must 
be kept in mind, as they may affect EV release quantitatively and/
or qualitatively. Emerging techniques, including lattice light-sheet 
microscopy (LLSM), could prove instrumental to enable sustained 
high-resolution live imaging with minimal photobleaching and 
phototoxicity59.

IEM and CLEM allow validation of EV-labeling approaches; for 
example, to confirm proper association with intraluminal vesicles 
(ILVs; Box 1)17,19,48,49. These approaches can be used in in vitro cul-
tures and in vivo models to study aspects of the EV lifespan like 
extracellular fate post-secretion or subcellular distribution in 
receiving cells17,19,60. Importantly, EM provides ultrastructural reso-
lution and label-free visualization of EVs in their native environ-
ment. In addition, immunolabeling detects proteins at the single-EV 

or single-ILV level. However, IEM with CLEM is restricted to 
a posteriori imaging of fixed samples.

Model organisms. Molecular processes involved in EV biogenesis, 
secretion, and uptake can be studied as isolated processes using 
in vitro approaches. However, the physiological quantities, content, 
release dynamics, natural targets, and stability of EVs are likely to 
be affected by the 3D microenvironment (Box 1). Particularly when 
studying EVs in the context of intercellular communication, one of 
the main paradigms in the field, a relevant context is essential. The 
use of primary cell sources and 3D models is therefore arguably a 
much-needed step to provide more physiological relevance com-
pared to 2D monocultures of immortalized cell lines in vitro.

Drosophila melanogaster is an attractive model system for study-
ing EVs in tissue organization, development, and systemic cross-
talk61,62. Wnt and Hh-containing EVs have been observed ex vivo 
in D. melanogaster wing imaginal discs63–65. In addition, D. mela-
nogaster has been used to study EV biology during mating behav-
ior and in adaptive immunity66. Recently, an EV subpopulation 
from Rab11-positive multivesicular bodies (MVBs) was shown to 
be evolutionarily conserved in flies and human cells46. The worm 
Caenorhabditis elegans is also an interesting model organism to 
study inter-animal EV communication with fluorescently labeled 
EVs67 and EV biogenesis mechanisms using the ultrastructural reso-
lution of EM68,69.

Imaging of more complex tissues, like those from vertebrates, 
comes with additional restraints (Table 4 and Fig. 3). The smaller 
the observed particle, the more important optical accessibility of 
the surrounding tissue becomes to reduce noise. For instance, a 
chorioallantoic membrane (CAM) model system allows the visu-
alization of CD63-positive and CD44-positive EVs in vivo48,70. The 
zebrafish (Danio rerio), as a transparent vertebrate model, allows 

Table 2 | Tagging strategies for EVs

Strategy Biogenesis Secretion Transfer Biodistribution uptake Functional 
transfer

Subcellular 
resolution

Body-wide 
resolution

Microscopy 
techniques

Modality

Lipid dyes

 PKH, 
MemBright, DiI, 
DiO, DiR

− −/+ + + + − + −/+ CM, SDM, 
BFM

Live, fixed

Radiolabels and metabolic labels

 Radioisotopes 
(that is, 99mTc)

− − − ++ − − − ++ SPECT, PET Live

 Metabolic 
labeling (for 
example, glycan)

− − − ++ + − −/+ ++ CM, SDM, 
BFM

Live

Genetic labeling strategies

 Protein fused 
to fluorescent 
protein (for 
example, 
TSPAN–XFP)

+ ++ + + + − +  –/+ IEM, CM, 
SDM, TIRFM, 
BFM

Live, fixed

 Degron tagging − + + + + − +  –/+ CM, SDM, 
BFM

Live, fixed

 Cre/loxP − − − −/+ −/+ ++ –  + CM, SDM, 
BFM

Live, fixed

 APEX + − − − + + + – EM Fixed

 Nanoluciferase − + − + + − + ++ BLIM, IEM Live, fixed

Different labeling strategies are suitable for visualizing EV (subtype) biogenesis, secretion, transfer, biodistribution, uptake, and functional (cargo) transfer, as well as for live or fixed imaging at subcellular 
or body-wide resolution. −, unsuitable; −/+, low suitability; +, suitable; ++, highly suitable. BFM, bright-field microscopy; BLIM, bioluminescence imaging microscopy; CM, confocal microscopy; IEM, 
immuno-electron microscopy; PET, positron emission tomography; SDM, spinning disk microscopy; SPECT, single-photon emission computed tomography; TIRFM, total internal reflection fluorescence 
microscopy.
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continuous live imaging of the blood flow of endogenous EVs and 
EVs exogenously administered throughout the embryo17,19. This 
model has permitted the exploration of EV biology in unprece-
dented detail71 (Fig. 3c,d), revealing correlates of EV characteristics 
and function43. In mice, functional EV cargo transfer from immune 
to neuronal cells and between tumor cells has been observed21,22, 
as well as stroma–glioblastoma interactions, including microRNA 
(miRNA) transfer18,72. Still, live imaging of EVs in mice is currently 
restricted to tissues immediately adjacent to the imaging window 
or to larger EVs, as small EVs probably escape detection in these 
models18,22,73 (Fig. 3b). Imaging less accessible areas or across organs 

often requires organ extraction and ex vivo (post-fixation) analy-
sis74, and is possible only with sufficient EV accumulation over time. 
Moreover, sites of accumulation might not equate with sites of func-
tion. These considerations have complicated efforts to understand 
EV physiology in mammalian models.

Thus, each model organism has its own strengths and weak-
nesses. Live imaging of single EVs in D. rerio, CAM, D. melanogaster, 
and C. elegans is highly realistic (Fig. 3e,f) in contrast with murine 
models. Although mice models display a higher degree of relevance 
to human physiology, the applicability of non-mammalian model 
systems to study human pathologies remains considerable: 82% of 

Table 3 | Microscopy methods

Modalities Resolution (XY) Resolution (Z) Illumination Probes Acquisition 
time

Post-acquisition 
processing

Live or fixed

Standard 
fluorescence 
microscopy

250 nm 500 nm Epi, confocal, 
TIRF

Conventional 
fluorescent probes

Seconds Live, fixed

SIM, airyscan 80 nm–150 nm 250 nm–350 nm Widefield (epi 
and TIRF)

Conventional 
fluorescent probes

Seconds Yes, FTT Live, fixed

STED 30 nm–80 nm 150 nm Laser scanning Limited selection 
of probes (match 
depletion laser)

Seconds No Live, fixed; 
optimal for 
fixed

Cryo-soft X-ray 
tomography

25 nm–40 nm 30 nm Widefield none No Fixed 
(near-native 
state 
vitrification)

PALM 20 nm 50 nm Widefield (epi 
and TIRF)

Photoactivatible 
fluorescent proteins

Minutes Yes (PSF mapping) Live, fixed

STORM 20 nm 50 nm Widefield (epi 
and TIRF)

Photoswitchable dyes Minutes Yes (PSF mapping) Live, fixed

LLSM 100 nm–200 nm 400 nm Multi-Bessel 
beam plane 
illumination

Conventional 
fluorescent probes

Seconds, 
minutes or 
hours

Not necessary, 
but often tracking 
dynamic processes

Live, fixed; 
optimal for live

TEM <1 nm 70 nma Electron beam Contrast reagent, 
immunochemistry

Seconds Yes Fixed

CLEM <1 nm/150 nmb 5 nmc Electron beam, 
widefield

Contrast reagent, 
nanodots, and 
fluorescent proteins

Minutes Yes (aligning) Live and/or 
fixed

Characteristics of imaging methods used to visualize EVs. epi, epifluorescence; FTT, fast Fourier transform; PSF, point spread function; TEM, transmission electron microscopy. aResolution corresponding to 
the thickness of the section. bResolution gap between electron microscopy and light microscopy data, respectively. cTomography from double-tilted 250 nm sections.

Table 4 | Model systems for EV imaging

Model system Biogenesis Secretion Transfer Biodistribution uptake Functional 
cargo 
transfer

Subcellular 
resolution

Relevance 
to human 
physiology

Cost Throughput

In vitro (2D) ++ ++ − − + + ++ −/+ Low High

In vitro (3D; for 
example, organoids)

+ + −/+ − + + ++ ++ Low High

G. gallus CAM47,70 + + + −/+ + ++ ++ + Low Medium or low

C. elegans67–69,128 + + + + ++ ++ ++ −/+ Low Medium

D. melanogaster63–65,129,130 + + + + ++ ++ ++ −/+ Low Medium

D. rerio2,17,19 + + ++ ++ ++ ++ ++ + Medium Medium

M. musculus, Rattus 
norvegicus21,22,34,118

− −/+ + ++ + ++ –/+ ++ High Low

The suitability and relevance of different model systems for EV imaging to visualize disparate aspects of EV biology at different scales. −, unsuitable; −/+, low suitability; +, suitable; ++, highly suitable.
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all disease-related genes are conserved in D. rerio, 75% in D. mela-
nogaster, and >65% in C. elegans75–77. For example, disease-related 
models of neurodegenerative pathologies and tumor development 
have been introduced over the past decade77,78. Therefore, while 
considerations regarding relevance to human pathophysiology 
are important for any model system, these considerations should 
not block the access to a superior level of insight in smaller model 
organisms or preclude important questions from being addressed. 
D. melanogaster, C. elegans and D. rerio allow fundamental investi-
gations in cell biology and development and are often vastly supe-
rior to murine models with regard to optical accessibility, genetic 
amenability, costs, and suitability for medium- or high-throughput 
approaches (Table 4). For example, exogenous tagging of proteins 
and tissue-specific expression using gene traps (Box 1) is well 
established using the GAL4–UAS system79. Various CRISPR–Cas9 
and CRISPR–Cas12a systems are available for functional studies 
in vivo80,81, allowing loss- and gain-of-function studies and endoge-
nous tagging and live imaging of proteins at endogenous expression 

levels (although these levels may not be sufficient to reliably follow 
small-sized particles such as EVs). Additionally, these models can be 
used as ‘pre-mouse’ models, where mice are subsequently deployed 
for key validation steps. Such strategies are consistent with the ‘3R’ 
principles in animal research. The choice of model system should 
therefore depend on the research question, the necessary level of 
resolution (single versus bulk EVs), and the required throughput 
(Table 4).

Imaging EV biogenesis, release, and distribution
In vitro studies revealed that most cells release EVs continuously 
and/or adapt release in response to triggers49,82,83. Similarly, most 
cells can take up EVs. Bulk EV isolation from culture media thereby 
neglects the subset of EVs that has been released and recaptured or 
does not spread beyond cell–cell interfaces. Moreover, culture media 
components and 2D versus 3D culture methods significantly affect 
EV release and EV composition84–89. Furthermore, little is known 
about bulk or subtype EV release dynamics or its dependence on 
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characteristics of specific tissues and conditions (growth, homeo-
stasis, pathology, specific triggers). Live imaging techniques now let 
us grasp these temporal, spatial, and conditional EV dynamics.

Imaging EV biogenesis and release. EVs have two main subcellular 
origins: intracellular compartments and the PM. Although biogen-
esis at the PM is synonymous with release, EV release from intracel-
lular compartments requires multiple steps, from ILV or autophagic 
vacuole biogenesis to organelle fusion with the cell surface (Fig. 2a).

Recent developments have enabled live visualization of 
PM-generated EVs by various approaches. Direct budding and fis-
sion of EVs into the extracellular milieu has been visualized in liv-
ing cells after PM labeling with fHABC (fluorescent hyaluronic acid 
binding complex) in various cell types52 (Fig. 2c). Lectins (Box 1) 
such as wheat germ agglutinin (WGA) have also been used to label 
the surface of migrating cells and detect the formation of migra-
somes on retraction fibers90. Alternative approaches have exploited 
migrasome-enriched transmembrane proteins such as TSPAN4 
to track migrasome formation live in migrating cultured cells 
and during embryonic development in D. rerio2,3,91. Fluorescently 
tagged cytosolic proteins enriched in PM-derived EVs, such as 
midbody remnants, can also be harnessed to track biogenesis and 
uptake20,92. Immune cell synaptic microvesicle release can be stud-
ied on planar-supported lipid bilayers containing fluorescently 
labelled triggers of cargo loading into EVs via CLEM and STORM 
techniques53,54. These approaches may allow study of the molecular 
machinery of EV generation in an ideal setting for super-resolution 
microscopy.

To visualize exosome release, one successful approach is to image 
MVB–PM fusion. The acidic late-endosomal pH underlies the reason 
that PM fusion results in a burst of fluorescence from (super eclip-
tic) CD63-pHluorin93, which can be observed by live microscopy 
approaches, including total internal reflection fluorescence (TIRF) 
and spinning-disk microscopy47,49,50. This approach depends on fast 
acquisition times or dynamic CLEM to distinguish full MVB–PM 
fusion from rapid kiss-and-run motions that are inefficient in exo-
some release49 (Fig. 2d). CD63-pHluorin provides single-cell spatial 
information of release with high temporal resolution47,49,50. But this 
approach is best suited for flat surfaces (for example, the basolateral 
side of cells) and shorter time acquisitions at single-cell level, and 
hence less suitable than luciferase-coupled CD63 for medium- and 
high-throughput screens of EV biogenesis modulators94. Dual-color 
microscopy of dual-tagged reporters (pHluorin-CD63-mScarlet) 
allows MVBs to be tracked before fusion48, while other reporter 
combinations can unravel the molecular identity of MVBs that fuse 
with the PM50. However, using CD63-pHluorin to visualize MVB–
PM fusion remains challenging in vivo due to the lack of high-speed 
and high-resolution modalities with limited phototoxicity17.

Imaging ILV formation in MVBs to study putative exosome bio-
genesis processes is equally challenging, as most live approaches 
lack single-vesicle resolution. The induction of enlarged endosomes 
by overexpressing GTPase-defective Rab5 improves resolution, but 
alters MVB maturation and function95. Moreover, MVBs may be 
destined for lysosomal degradation rather than EV secretion, lim-
iting their relevance for exosome biogenesis. The giant secretory 
MVB-like compartments from D. melanogaster accessory glands 
allow unperturbed confocal and super-resolution visualization of 
intracellular sorting events and colocalization analysis of fluores-
cently labelled cargo proteins on ILVs in vivo46, but these processes 
may be specific to specialized cells.

Future developments are needed to combine measurements of 
ILV generation, exosome release, and PM budding simultaneously; 
for example, using high-speed 3D imaging. A clever approach to 
visualize protein trafficking has already revealed differences in 
endosome- and PM-derived EV proteomes96. Understanding these 
processes in further detail will let us interfere with formation and/or 

release of EV subclasses and provide an invaluable asset in our quest 
to attribute specific functions to EV subtypes in vivo.

Imaging EV distribution. After EV release in vivo, the microenvi-
ronment plays a major role in EV distribution and function. Apart 
from EV-intrinsic factors (for example, adhesion molecules), the 
local 3D architecture, extracellular matrix (ECM)97 and biological 
barriers between organs affect EV diffusion and influence the physi-
ological role of EVs (Fig. 3a). As these constraints determine local 
retention47,98 versus distant transport and may not be fully recapitu-
lated in vitro, the need for realistic in vivo models of EV distribution 
is clear (Fig. 3).

Although murine studies are limited mostly to organ scale26 
and disclose only the ‘final destination’ of EVs, smaller, transpar-
ent organisms allow subcellular resolution19 and live tracking of EV 
diffusion and transport (Table 4). Bioluminescent labeling, radiola-
beling, and metabolic labeling are compatible with the former strat-
egy, whereas the latter typically employs fluorescent protein- and 
lipid-labeling strategies.

Compared with studying endogenous EVs, isolation and injec-
tion of exogenous EVs permits fine control of engineering and dosing 
for optimal half-life and functional43 studies. Such studies have sug-
gested rapid removal by tissue and cell types with sustained phagocytic 
capacity, even within 5 min after injection99. Although EV injection 
does not recapitulate the earliest aspects of the EV lifespan, two recent 
in vivo studies demonstrated that pre-labeled injected tumor EVs 
did not deviate considerably in fate from physiological EVs that are 
endogenously released in the blood flow17,19 (Fig. 3c,d).

Yet, it is not clear whether these examples are sufficient to war-
rant a generalized verdict concerning all EVs and all aspects of EV 
biology, especially regarding mRNA transfer100. Indeed, exogenous 
administration incompletely mimics physiological EV release levels 
(unless approximated by sustained delivery methods101), and physi-
ological and pathological factors that might influence endogenous 
EV subset(s) might be absent in vitro84–89. EV subtypes isolated from 
in vitro cultures, some of which would normally act locally, would 
also artificially reach non-physiological sites upon injection in vivo. 
For example, EVs involved in ECM deposition and modulation47,102 
might normally act near the cell of origin, as would EVs released 
at immunological or neurological synapses35,53,103,104. In addition, 
anatomical differences in vascular permeability (for example, liver 
versus brain), pathological conditions affecting endothelial barrier 
function, or antiviral mechanisms restricting EV diffusion could 
alter the efficiency of EV propagation and uptake99,105. Imaging 
the release and biodistribution of endogenous EV subsets in vivo 
under various conditions will reveal how EVs cross biological bar-
riers under physiological conditions, for which only indirect proof 
is currently available; for example, intravenously injected EVs in the 
brain106,107. Ultimately, comparative studies of both endogenous and 
exogenous EV administration are needed. Studying endogenous 
EVs will show physiological concentrations and dynamics of EV 
release and biodistribution that highlight the best sites and frequen-
cies of injection. This will help us to interpret exogenous EV stud-
ies and will permit finer control of certain EV-intrinsic variables. 
Together, these comparisons will inform EV targeting approaches 
for therapeutics.

Imaging interaction and uptake of EVs by recipient cells 
and related functions
The EV lifespan is often depicted as cell A releasing EVs that reach 
cell B, where endocytosis and (intraluminal) cargo delivery trigger 
a phenotypic response. Although this communication paradigm is 
exciting and supported by literature, EVs can also act in an autocrine 
fashion or have other ‘delivery-independent’ extracellular functions 
such as ECM modulation, PM receptor engagement or transfer of 
EV-resident proteins to recipient cells108–110 (Fig. 4a).
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Imaging interaction of EVs with recipient cells. EVs can function 
by engaging PM-localized receptors at the target cell membrane, such 
as in antigen presentation, as super-cytokines, or as carriers of mor-
phogens and ligands for pattern recognition receptors42,54,63,108,111–113. 
Whereas uptake of EVs has been amply demonstrated by (live) 
imaging, visualization of EV interaction with the PM has been 
reported on just a few occasions60, and only recently with live imag-
ing in vitro59,114 and in vivo17,19. Direct observation115 might currently 
be limited due to a lack of suitable reporters. Indeed, whereas most 
studies adding labeled EVs to target cells show intracellular accumu-
lation rather than PM labeling, this does not preclude previous EV–
PM interaction, especially as functional cargo delivery appears to be 
a rare event from the ‘bulk EV flow’ perspective. For certain EVs, 
uptake might indeed be a prerequisite to function, but for other EVs, 
uptake followed by degradation could instead reflect an end-of-life 
event after signaling through PM receptors. To date, most reporter 
systems for EV function have focused on cytoplasmic cargo delivery 

rather than signal induction. Understanding fusion-independent 
EV functions thus requires combined microscopy approaches, such 
as CLEM (Fig. 4b), in vitro35,60,113 and in vivo17,19,61, to cover the full 
range from whole organism to subcellular at sufficient resolution 
with light-microscopy or EM ultrastructural resolution.

Imaging cellular uptake of EVs. EVs are widely reported to deliver 
contents into the cytoplasm of recipient cells such as signaling pro-
teins, RNA binding proteins, genetic material, metabolites, and 
enzymes. However, we know little about the fusion events or trans-
porter systems necessary for such delivery. Often, studies follow 
uptake in bulk, and lack the resolution to study the fate of single 
EVs. Recently, EM has been used to examine EV uptake in vivo17,19. 
Live imaging approaches can reveal other details of EV fate, such 
as acidification of EV-containing compartments after uptake 
in vitro48 and in vivo17, distinguishing ‘storage’ from degradation 
(Fig. 4c). V-ATPase (Box 1) inhibitors might be required if uptake 
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and degradation are highly efficient in target cells or to facilitate 
detection of rare events. Note that the choice of dye (for example, 
lipid or genetic protein labeling) determines what is being followed 
after EV uptake. Over time, labels might no longer represent intact 
EVs, but rather the trafficking of the label itself or of lipid or protein 
fragments.

Imaging EV function in recipient cells. EVs elicit phenotypic 
responses in proximally and distally located cells. Reporter systems 
have been developed to visualize transfer of mRNAs21,22,100, miR-
NAs39,116, shRNAs23, and proteins117. Cytoplasmic delivery presup-
poses endosomal escape by EV-endosome fusion to avoid lysosomal 
degradation of EV cargos. So far, detection of cargo transfer by live 
imaging is limited to induction of a global signal at the cellular 
scale (Fig. 4d). Further resolution is needed to locate and elucidate 
endosomal escape, demanding new technological developments 
for single-molecule cargo tracking and to observe potential fusion 
(Box 1) of endocytosed EVs with the host membrane. Interestingly, 
in vivo mouse studies indicate that cargo transfer occurs at low ‘effi-
ciency’ in the absence of a specific stimulus21,100. However, in certain 
pathological models, the functional uptake of EVs can be higher118, 
highlighting the need to study pathological situations in model 
organisms.

Several reports indicate a trophic support function of EVs via 
lysosomal degradation17,119. Lysosomal targeting can be studied by 
EM17,19 (Fig. 4e) or by live imaging using EV reporters with different 
acid sensitivity20,120. Live imaging in vivo revealed rapid internaliza-
tion and degradation of injected or endogenous EVs by profes-
sional phagocytes (for example, macrophages and monocytes) and 
especially pinocytes (for example, scavenger endothelial cells). 
Therefore, some EVs might function without message delivery17,19. 
Although trophic function is not strictly incompatible with ‘mes-
sage transfer’, a yet-unresolved question is whether EV-mediated 
communication is stochastic or deterministic from a donor cell 
perspective. Do cells release a large amount of EVs agnostically, let-
ting the recipient cell determine whether to respond via an ‘acti-
vation status’ that determines cytoplasmic cargo delivery118? Or do 
cells release a limited number of ‘magic bullet’ EVs that are tailored 
for specific communication? The latter is currently supported in 
the immunological synapse setting35,53,60, but is perhaps less evident 
beyond this close cell–cell contact setting. These ‘magic bullets’ 
might be present within the main flow but possess molecular traits 
that promote capture, facilitate back-fusion (Box 1), or prevent 
degradation. Thus, tracking bulk EV flow may divert our attention 
from the rare EV-target cell interactions, the ‘magic bullets’ that do 
not follow bulk flow fate.

Technological strategies are important to monitor events in the 
transfer process121, but perhaps the most pressing need is to develop 
more fundamental knowledge of rare, ‘magic-bullet’ events. When 
we know the players, we can image the co-packaging of cognate mol-
ecules and targeting molecules into ILVs and EVs to follow EV lifes-
pan events in real time, from biogenesis to target cell interactions.

Conclusion
Imaging technology has matured such that we can study most 
details of the EV lifespan in vivo using diverse tags and microscopy 
approaches, especially in optically transparent organisms. What is 
at stake is profound. Imaging biogenesis will distinguish EV sub-
populations perhaps associated with distinct functions, and enable a 
firm nomenclature. By following the biodistribution of EVs in vivo, 
we will not only assess their capacity to cross biological barriers but 
also gain insight into their range of actions and their efficiency in 
reaching target cells previously identified in vitro. In vitro technolo-
gies can then be used to dissect mechanisms in more detail, lift-
ing the veil around the important events that in vivo imaging has 
started to reveal73,106,122.

How EVs act as mediators of intercellular signaling is poorly 
understood. By following the fate of EVs in vivo, we will gain 
insight into their in vivo targets and functions. Direct imaging of 
the release of EV contents into recipient cells is needed to iden-
tify whether cargo transfer or signaling interaction (or both), is 
responsible for the effects of EVs. Although most studies focus on 
EV functions requiring EV uptake and cargo transfer into recipi-
ent cells, mounting evidence points towards extracellular roles for 
EVs involving neither uptake nor cargo delivery42,63,108,111,112,123. It 
is unclear how common extracellular roles are in vivo compared 
to intracellular functions, and whether EVs mainly act systemi-
cally rather than locally. The rapid clearance of the majority of 
injected EVs by the liver and spleen might indicate that many 
EVs function in waste disposal or trophic support. Therefore, it 
is important to determine the route taken by endogenous EVs 
in vivo and the amount of EVs necessary to impact target tissues. 
Following specific subclasses of EVs in vivo will aid in address-
ing these key questions, and reveal whether EV communication 
is stochastic and inefficient or rather relies on specialized EVs to 
transfer messages.

Knowing the in vivo characteristics of EVs, such as their half-life, 
biodistribution and targeting mechanisms, also supports their clini-
cal application as biomarkers, drug carriers, or intrinsic modulators 
of pathological and physiological processes124–126. In vivo imaging 
approaches reveal the time and location of EV-subtype release and 
the biological fluids in which they are distributed or accumulate. 
This ‘hot spot’ mapping could optimize strategies to timely har-
vest the most relevant EVs for diagnosis or disease monitoring. 
High-resolution imaging of injected EVs purposed for drug delivery 
can likewise reveal EV pharmacokinetics (half-life, biodistribution, 
clearance), fate, and effects on recipient cells in real-time. This sup-
ports the development of engineering and administration protocols 
for efficient biodistribution and targeting, minimal clearance, and 
improved drug delivery efficiency in clinical practice. Monitoring 
EV dynamics in vivo will also identify drug targets for modulating 
EV release, uptake and degradation, influencing pharmacokinetics 
and EV-intrinsic functions. Thus, in vivo imaging approaches will 
not only provide crucial insight into fundamental aspects of the EV 
lifespan but will also benefit clinical development of EV-based drug 
delivery systems127.

The future of the field critically depends on a systematic approach 
comparing the pros and cons of each EV labeling and imaging strat-
egy, in vitro and in vivo, to establish their relevance and determine 
good practices. We foresee development of important synergies 
between imaging methods and other techniques such as synthetic 
biology tools to investigate EV biology in vivo; for instance, by con-
trolling and validating EV secretion and fate in vivo and to facili-
tate downstream analysis of specific EV subpopulations ex vivo. 
Imaging is now part of the toolbox of scientists studying EVs, who 
will work with other nanoscientists to further elucidate the biology 
and therapeutic applications of EVs.
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