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Introduction

From the plague to the ongoing coronavirus disease 2019 (COVID-19) pandemic,

infectious diseases have been a steady companion of humans throughout history. Despite

a global decline in deaths from communicable diseases as reported by the World Health

Organization (WHO) in 2019, lower respiratory tract infections and diarrhoeal diseases

still ranked among the top 10 causes of death worldwide [1]. They also remain a leading

cause of morbidity and mortality in low- and middle-income countries, with 6 of the top

10 causes of death in low-income countries assigned to communicable diseases [1]. In

addition, infections caused by antibiotic-resistant bacteria are widely considered a major

public health concern of the 21st century [2ś4]. In 2018, the WHO published a priority

list for research and development of new antibiotics for antibiotic-resistant bacteria

[5]. Apart from multidrug-resistant and extensively-resistant Mycobacterium, priority

should be given to multidrug resistance and extensively drug-resistant Gram-negative

bacteria, with carbapenem resistant Acinetobacter baumanni, Pseudomonas aeruginosa

and Enterobacteriaceae in the highest priority category.

The importance of an organized response to these challenges has been highlighted most

recently, with the emergence of the severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), the virus causing the Coronavirus Disease 2019 (COVID-19) pandemic.

Public health policy makers have been confronted with the urgent need to őnd the most

adequate and effective intervention strategies. However, assessing their effectiveness

requires evidence-based tools to support their decision. The őeld of mathematical

modeling has become an essential part of epidemic response efforts for many recent

infectious disease outbreaks and achieved greater attention and appreciation in particular

during the ongoing COVID-19 pandemic.

In this thesis, we will illustrate the value and important role of mathematical models

for infectious disease control with a focus on the transmission of SARS-CoV-2 in

the community and in hospital settings, as well as the nosocomial transmission of

Pseudomonas aeruginosa. We will begin with a general introduction by providing a sum-

mary of non-pharmaceutical interventions followed by a brief overview of mathematical

models relevant for the content of this thesis. Building upon this theoretical background,

we will elaborate on the research questions addressed in this thesis and on how they

13



Introduction

build on the existing literature of mathematical modeling of infectious diseases. We will

then give an outline of this thesis with a brief description of each individual chapter.

Mathematical modeling of infectious diseases in a nutshell

A mathematical model can be used as a conceptual tool to understand and to

quantify dynamic behaviour of infectious diseases. More speciőcally, infectious disease

models serve three aims, understanding the dynamics of disease spread, predicting

the future course of an outbreak, and ultimately devising and evaluating measures

and interventions for disease control. Using these models, we are able to translate

epidemiological assumptions of biological processes into a mathematical framework

in a transparent and systematic way. As such, mathematical models allow us to test

our understanding of the epidemiology of the disease by comparing model results and

observations from the real world. They complement traditional experimental approaches,

in particular when experimental manipulation of the studied system is not feasible (as it

is the case during infectious disease outbreaks) [6].

The őeld of mathematical modeling of infectious disease dynamics has a long history with

the őrst known model presented by Daniel Bernoulli at the Royal Academy of Sciences

in Paris in 1760 and later published in 1766. He demonstrated through a mathematical

analysis that inoculation against smallpox (variolation) was beneőcial for society as a

whole despite the risks of infection to individuals. By calculating the gain in life expectancy

that would be achieved if smallpox were eradicated, he argued for a universal inoculation

of smallpox. Bernoulli showed how a simple mathematical model could assess the impact

of an intervention on people’s health on a population level without the need of performing

an experiment.

“I simply wish that in a matter which so closely concerns the well-being of the human race, no

decision shall be made without all knowledge which a little analysis and calculation can provide."

Daniel Bernoulli, 1760
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How to control infectious disease transmission

Infectious disease control can be deőned as practices and programs that aim at prevent-

ing the disease by reducing the transmission of infections [7]. One of the most important

epidemiological parameters to measure transmissibility is the basic reproduction number

R0, deőned as the average number of secondary cases that an index case can generate

during its entire infectious period in a fully susceptible population. The effective repro-

duction number RE applies to a population where some people have gained immunity

and/or control measures are implemented. Control measures aim at reducing RE to be-

low 1 which will lead, in the long term, to the elimination of the disease. A plethora of

such measures exist but the most appropriate may depend on the disease, the host, its

routes of transmission as well as the setting.

Non-pharmaceutical interventions

In this thesis, we will focus on non-pharmaceutical interventions (NPIs), public health

measures that aim at preventing disease transmission without requiring pharmaceutical

drug treatments. Below, we provide a summary of those considered in this thesis.

Hand hygiene or speciőcally hand washing is a personal protective measure where hands

are cleaned with soap and water, or with alcohol-based hand sanitizers. In the 19th

century, Ignaz Philip Semmelweis, a Viennese obstetrician, discovered that infections

could be passed to patients on the hands of health-care workers. He showed that hand

washing could drastically reduce mortality rates due to puerperal fever in obstetrical

clinics. Hand hygiene is now an essential measure in hospitals, and it has also been

advocated for to be used to reduce community spread of respiratory tract infections

(such as with SARS-CoV-2) or gastrointestinal diseases.

Face masks can be worn as a personal protective measure to reduce the airborne trans-

mission of a pathogen. During the 1910 Manchurian Pneumonic Plague, Wu Lien Teh

developed a mask made of cotton and gauze to őlter the air people inhaled, and pro-

moted their use as łthe principal means of personal protection". He not only received

international acclaim for his contribution to controlling the epidemic but was also rec-

ognized as a public health pioneer. In East Asia, masks are commonly used to control
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the transmission of respiratory tract infections. While masks were infrequently used in

other parts of the world, a drastic shift occurred during the COVID-19 pandemic, where

community face mask use has been advocated for in nearly all regions of the world.

Physical distancing reduces the number of contacts in a population through which

a disease can spread. Governments may impose physical distancing measures through

interventions like stay-at-home orders, limiting the number of individuals at venues, or

closing of schools and work places. Individuals themselves may also choose to self-impose

distancing measures. During the COVID-19 pandemic, the term lockdown was colloquially

used to describe the restriction policies imposed by governments for people to stay at

home and reduce their contacts. Numerous countries and territories around the world

have implemented physical distancing to limit the spread of SARS-CoV-2.

Quarantine and isolation prevent (potentially) infectious individuals from mixing with

the rest of the population and hence prevent their contributions to onward transmission.

Quarantine refers to the restriction of movements of individuals who were exposed to

a contagious disease whereas isolation refers to the separation of already infected indi-

viduals from those who are not infected. These two forms of disease control are among

the oldest known control measures. For example, in the 14th century, coastal cities (such

as Venice) quarantined ships arriving at their port in order to contain diseases such as

the Bubonic plague. During the COVID-19 pandemic, quarantine and isolation have been

implemented across the world as key strategies to combat the spread of SARS-CoV-2.

Regular screening is a form of testing of individuals at certain time intervals independent

of symptoms. This measure itself does not directly impact transmission, but if detected

cases adhere to pharmaceutical or non-pharmaceutical measures, transmission chains

may be interrupted. Regular screening is critical for identifying asymptomatic cases and

is, therefore, particularly effective when asymptomatic individuals make a large contri-

bution to transmission and transmission levels of the pathogen are high. In hospitals,

screening programs have been widely implemented to prevent colonizations (and sub-

sequently infections) by multi-drug resistant bacteria. During the COVID-19 pandemic,

public health authorities have highlighted the importance of regular antigen self-testing to

detect asymptomatic SARS-CoV-2 infections, especially in occupational and educational

settings [8, 9].

16



Introduction

Contact tracing operates by identifying individuals who have been exposed to a disease.

Index cases (individuals identiőed as having the disease) represent a starting point for

the process. They are interviewed by public health staff in order to establish the source

of infection, i.e., who infected them, with whom they had contact, and who they might

have infected. Self-isolation or self-quarantine is then either imposed or advised to the

index case and the contacts, respectively. If conducted sufficiently quickly, contact tracing

can prevent secondary transmission from individuals who are likely to be infected but are

not identiőed otherwise (e.g., through symptoms). This intervention relies on sufficient

resources and is particularly efficient if the case numbers are low. Throughout the history

of infectious diseases, contact tracing (though often not named as such) has played a

crucial part in infection control. Contrary to popular opinion, the eradication of smallpox

was achieved not by universal vaccination alone, but in combination with contact tracing,

quarantine, and the treatment of infected individuals. During the COVID-19 pandemic,

contact tracing has regained importance in outbreak control, in particular through the

deployment of digital apps.

Other non-pharmaceutical measures exist to prevent infectious disease spread, includ-

ing travel-related measures, such as border closures or entry and exit screening, disinfec-

tion of equipment and the environment, or control of the vectors of infection. We do not

consider those in this thesis.

Role of mathematical modeling in controlling infectious

diseases

To effectively combat the spread of an infectious disease, we need to understand its

dynamics as well as the effect of interventions that are already implemented or their

potential impact if prospectively implemented. This is important for efficiently allocating

current and future resources and for designing new interventions. In this thesis, we will

illustrate how mathematical models can contribute to evaluating interventions and their

value in informing infection control policies. We will focus on transmission dynamics

and control measures in human populations and will consider only infections where the

immune system reacts relatively fast and removes the pathogen after a short period of

time (days or weeks) [10].
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Types of models

In essence, mathematical modeling of infectious diseases is about studying real world phe-

nomena by describing them, in a simpliőed form, in the mathematical language. In order

to evaluate the effect on infectious disease dynamics, tools are necessary 1) to trans-

late biological aspects and assumptions into the mathematical language, 2) to perform

analyses and estimate relevant parameters, and subsequently 3) to translate the results

back for interpretation of observations from the real world. The basic foundations of the

mathematical theory of epidemics were established by Kermack and McKendrick in 1927

[11]. The fundamental principle can be described by the dependence of the per capita

rate of infectivity and the rate of removal (as the sum of recovery and death rates)

on the time since infection. An important special case of Kermack and McKendrick’s

general theory is the classiőcation of individuals into compartments by their epidemio-

logical/disease status, e.g., their ability to transmit the pathogen. Here, we assume that

the pathogen causes an infection for a typically short period of time after which the host

will develop immunity (often lifelong).

While there is an inőnite number of possible ways to develop models for epidemic pro-

cesses, it is possible to deőne some broad categories of infectious disease models based

on their commonalities and differences. Almost all epidemic models have in common

that they aim to describe the number of infected individuals as a function of time. What

follows is an overview of types of models that serve as the basis for the articles in this

thesis. While the presented list of models and their elaborations are not exhaustive and

kept deliberately short, they address important aspects in infectious disease modeling. A

general overview of mathematical tools in infectious disease modeling can be found in,

e.g., [10, 12ś14].

Compartmental models

A classical example of compartmental models is the SIR model, where for each time point

t, the population is divided into the susceptible S(t), infectious I(t), and recovered R(t)

(individuals that have cleared the disease and are not transmitting anymore) compart-

ments. One may remove or add compartments to the model, depending on the disease

and the level of detail and realism one wishes to incorporate. The essential assumption of

these models is that no difference is made between individuals within each compartment.
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Transitions between compartments are characterised by rates at which individuals move

from one compartment to another. To account for population demography (i.e., birth,

death, and migration), rates for entering and leaving the population may be added. Since

the dynamics of an epidemic are often much faster than the demographic dynamics of

population, the latter are often neglected in simple compartmental models. In this case,

the total population size, i.e., the sum of the numbers of individuals in each compart-

ment, is constant.

The transition rates may be either constant or may vary with time. For a simple SIR

model, it is assumed that the infectivity of an infected individual and the recovery rate

are constant leading to exponentially distributed sojourn times. Although for some dis-

eases this assumption is an acceptable approximation, it is unrealistic for other diseases

as demonstrated for HIV [15] or measles (e.g., [16, 17]). While alternative formulations,

such as gamma distributed infectious periods, exist, exponentially distributed sojourn

times are often used for mathematical convenience.

The rate of progression from S to I is typically assumed to be time-varying and referred

to as force of infection, and deőned as the per capita rate at which susceptible individuals

become infected [12]. Another critical assumption of many compartmental models is that

contacts are made according to the mass-action principle: All individuals mix randomly,

in analogy to chemical reactions, i.e., each pair of individuals are equally likely to come

in contact and each individual can contact all other individuals. In the simplest case the

force of infection is then determined by three distinct factors: 1) the contact rate (the

number of contacts per unit of time), 2) the fraction of infectious individuals (also known

as prevalence), and 3) the transmission probability per contact.

Deterministic compartmental models

The deőning property of deterministic models is that the state of the system is uniquely

determined by the values of the parameters and the initial state of the system. Usually

deterministic continuous time models consist of sets of ordinary differential equations

(ODEs), which describe the rate of change of the number of individuals in each compart-

ment. If the basic reproduction number R0 is less than 1, there is no (big) epidemic while

if R0 exceeds 1, the epidemic grows exponentially, infecting a substantial proportion of

the population. ODE models may be good approximations to reality for infectious disease

dynamics in large populations. For phenomena on a smaller scale, such as in hospitals or
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in schools, one would expect that randomness may play an important role. Deterministic

models usually cannot capture the full range of stochastic variability that may occur in

epidemics in these smaller populations.

Stochastic compartmental models

For stochastic compartmental models, chance processes play a crucial role, and con-

trary to deterministic models, model results may differ for the same initial condition and

parameter values. They provide answers to questions that cannot be addressed with de-

terministic methods such as the probability of an outbreak, the outbreak size distribution,

or the probability that a disease has been eradicated. In addition, they enable the quan-

tiőcation of uncertainty of model parameter estimates from (epidemic) data [14, 18,

19].

Beyond compartmental models

While equation-based models as described above are simple and intuitive, they often rely

on the critical assumption of homogeneous mixing, and on őxed or exponentially dis-

tributed infectious periods. However, heterogeneity may affect the contact patterns (and

therefore infectious disease spread), and the infectiousness of infected individuals does

not necessarily follow an exponential distribution for many diseases (e.g., [15ś17]). In

principle, it is possible to extend equation-based models to account for non-exponentially

distributed infectious periods, for example, by incorporating additional disease compart-

ments (also known as the linear chain trick [20, 21]) or by using a continuous time

stochastic model represented by distributed delay equations (see e.g., [11, 22]). While

these models provide more ŕexibility, they can also be more challenging to analyze math-

ematically, and to simulate [23].

Agent-based models

For understanding small-scale effects of epidemics as experienced in schools or hospitals,

more detailed and complex models may be much more appropriate. Agent-based models

have become a popular addition to the tool set of infectious disease modeling in recent

years [24, 25]. A deőning feature is to put the individual central to the model and keep

track of their corresponding characteristics and individual interactions. This not only al-

lows to capture behaviour at the individual level but also to incorporate more realistic

20



Introduction

contact networks in the model. Usually agent-based models are stochastic and can take

stochastic effects, which occur in smaller populations, like schools or hospitals, or net-

work effects in large populations, into account. They provide a rich model framework

to incorporate heterogeneity that affects the contact patterns and therefore infectious

disease spread without running an experiment.

Parameterization

Results of a model analysis are only informative for interpretation in the real world if

the model is appropriately parameterized. Where possible, model parameters are set to

plausible values or ranges based on expert opinion, best available evidence from current

data or literature to generate model results [18]. For example, the infectious period can

be estimated by studying reported transmission events or by measuring the amount of

pathogens excreted by an infected individual over time. If model results cannot directly

be veriőed due to a lack of data, sensitivity analyses via parameter space exploration

(e.g., using Latin Hypercube Sampling [26]) can aid in identifying inŕuential parameters

and may be used to verify model predictions qualitatively.

Model calibration and statistical inference

Model calibration is the process of identifying the set of model parameters that best ex-

plain the observed data retrieved from the underlying system that was modeled. For simple

models, parameters can be estimated by őtting model results to observed data based on

maximizing the likelihood of the model. One of the main difficulties in estimating param-

eters of infectious disease models is that the infection process is only partially observed,

and observed quantities might be aggregated (e.g., weekly) [14]. Since likelihood meth-

ods typically rely on integrating over unobserved quantities, analytical evaluations quickly

become unfeasible. Statistical inference techniques involving data imputation, such as the

expectation-maximisation (EM) algorithm [27] and Markov chain Monte Carlo (MCMC)

[28, 29] have been used to overcome this difficulty. Data-augmented MCMC methods

[30] estimate the joint posterior distribution of the parameters by imputing unobserved

data. This Bayesian approach allows a high ŕexibility in model choice and őtting but

could result in large computational memory requirements and slower mixing (and there-

fore convergence issues) if a large amount of data is missing [31]. Moreover, the MCMC

algorithm cannot be easily parallelized and is therefore poorly scalable [32]. Consequently,
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this approach has been mainly applied to data from small populations such as households

[33ś35], schools [36], or hospital wards [37ś39], for which the number of cases does not

exceed a few thousands.

Due to their complexity, agent-based models usually contain a large number of param-

eters making efficient model calibration a key challenge. Often calibration of unknown

parameters follow ad hoc and unstructured approaches [25] where parameters are ad-

justed sequentially to match observed epidemiological statistics or data. More advanced

and systematic calibration methods exist [24, 40]. For example, the output of an ABM

may be calibrated to data by the Nelder-Mead (NM) optimization algorithm. Alterna-

tively, Bayesian calibration approaches [41] start with prior distributions over the param-

eter space (e.g., using Latin Hypercube Sampling [26]) and a Bayesian update algorithm

to obtain the posterior distribution of the parameters. Due to their required extensive

computation effort, these methods have been employed only occasionally for infectious

disease agent-based models [42].

Mathematical models to tackle nosocomial transmission of

multi-drug-resistant bacteria

Hospitals encompass a particularly vulnerable population including patients receiving

treatments that may weaken their immune system or already immunocompromized

patients. In this setting, even microorganisms that are usually not disease-causing in

the general population may become pathogenic and cause nosocomial infections. The

distinct characteristics of these infections relevant for this thesis are the following:

Firstly, many of these microorganisms may be present on or within a body without

yet causing an infection (colonization). Typically, only a small proportion of patients

who are colonized will develop an infection, and the dynamics of disease transmission

are therefore determined by individuals colonized with the microorganism rather than

those who are infected. Thus, by preventing colonization, nosocomial infections may

be effectively averted as well. Secondly, transmissions are observed in typically small

hospital units where stochastic effects are likely to play an important role. In these

settings, stochastic models are more appropriate to study the dynamics of disease

transmission. Thirdly, patients in intensive-care units typically have a short length of

stay (in the order of days) leading to a highly ŕuctuating hospital population with a

constant risk of importations from the community.
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The őrst published mathematical models for nosocomial infections used deterministic ap-

proaches [43, 44] to study the transmission dynamics in single hospital wards. However,

due to the small population size in hospitals, the importance of using stochastic models

was quickly recognized [45ś47]. The őrst stochastic models [45, 47] quantiőed the effec-

tiveness of infection control interventions and were based on the Ross-Macdonald model

that described the transmission of malaria by mosquito vectors [12]. These models in-

corporated contaminated hands of healthcare workers (HCWs) in analogy to mosquitoes

as vectors of transmission in hospitals. Cooper et al [45] studied the effect of improv-

ing hand hygiene and reducing the admission of colonized patients on the prevalence

of methicillin-resistant Staphylococcus aureus (MRSA). The results of this model sug-

gested an important role of hand hygiene on MRSA spread in hospital wards. Austin et

al [47] similarly found that hand hygiene was the most effective intervention for reduc-

ing the prevalence of vancomycin-resistant Enterococci (VRE) (VRE). In addition, staff

cohorting was found to be another powerful control measure.

Since the őrst employment of mathematical models as tools for assessing the effective-

ness of controlling healthcare-associated infections, they have been increasingly used

in the past years (e.g., Figure 2 in Kleef et al (2013) [48] or Assab et al (2017) [49]).

Interventions to control nosocomial infections may differ between pathogens. Thus,

pathogen speciőc transmission routes and their relative contributions to the overall

number of transmissions are crucial to evaluate and design effective control strategies.

Numerous models have been developed to estimate epidemiological parameters such

as transmission rates and the relative contributions of transmission routes for various

pathogens using hospital surveillance data [50ś54]. To overcome the difficulties related

to missing information on, e.g., timing of events (such as of colonizations and infections)

and asymptomatic carriage, several studies employed Bayesian statistical methods

[37ś39].

According to a systematic review by Kleef et al [48], most studies modeling nosocomial

transmission of bacteria between 1993 and 2011 focused on MRSA, followed by VRE. In

2020, the most common modeled pathogens were SARS-CoV-2, MRSA, and Clostrid-

ioides difficile (C. difficile). Although Pseudomonas aeruginosa (P. aeruginosa) is among

the most frequently reported pathogens for healthcare-associated infections [55], less
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than őve studies modeled this pathogen in a nosocomial setting between 1993 and 2011

[48]. Even these studies have not been speciőcally developed for P. aeruginosa but for

nosocomial pathogens in general. While observational and experimental studies [56ś60]

suggest an important role of environmmental contamination in the transmission process

of (VIM-producing) P. aeruginosa, there have been no mathematical modeling studies

that quantiőed this relationship. Due to its intrinsic resistance to multiple antibiotics, in

particular the emerging resistance to carbapenems, P. aeruginosa is extremely difficult to

treat. More efforts to understand the modes of nosocomial transmissions of P. aeruginosa

are therefore needed to protect immunocompromized patients at risk. In this thesis, we

present two studies that contribute to őlling this gap, representing the őrst attempt to

model the dynamics of nosocomial transmission of P. aeruginosa and estimate the role

of environmental contamination for two different settings. Using longitudinal hospital

surveillance data, we employed a Bayesian data-augmented MCMC method as presented

in Cooper et al (2008) [39] to account for missing data.

Mathematical models to control COVID-19

The COVID-19 pandemic represents the most recent and prominent example of a

public health problem for which mathematical modeling can be a powerful tools to

inform disease control strategies. In the beginning of the outbreak, many (modeling)

studies focused on estimating biological and epidemiological basic characteristics of

SARS-CoV-2, such as the basic reproduction number [61], serial interval and incubation

time distribution [62], and forecasting the trajectory of the epidemic on short but also

longer term [63]. Concurrently, a myriad of models has been developed focusing on the

evaluation of measures and interventions to control the pandemic [64]. These studies

either focus on the impact of NPIs in the community as a whole, or in speciőc settings

of interest, such as hospitals, long-term care facilities, work places, or schools. The

extent to which NPIs were implemented in response to the rapid spread of SARS-CoV-2

varied across countries. Most governments implemented some sort of physical distancing

measures, such as mass gathering cancellations, closure of public spaces (including

restaurants, entertainment venues, non-essential shops, public transport etc.), closure

of educational institutions (including daycare or nursery, primary schools, and secondary

schools and higher education) [65]. In addition, self-imposed measures, such as social

distancing, hand washing, and the use of face masks were promoted to further curb
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transmission of SARS-Cov-2. This voluntary health-related behaviour is likely dependent

on the progression of the epidemic with more measures adopted if the prevalence of

the disease is high. However, most COVID-19 transmission models do not include this

type of risk perception and reactive health-related behaviour. It is thus not known what

the potential impact of these reactive self-imposed measures on the ongoing epidemic

could be and how it compares to government-imposed physical distancing measures. We

provide a theoretical basis to address these questions in Chapter 1 of this thesis. Since

we were interested in possible implications for the general population and thus on a

large-scale, we chose a deterministic compartmental model to address these questions.

While many uncertainties about SARS-CoV-2 remain to date, knowledge gaps and

the lack of reliable data have made the policy response at the start of the pandemic

especially difficult. In particular, little information was available on the predominant

transmission routes of SARS-CoV-2. The WHO reported contact, droplet, airborne,

fomite, fecal-oral, bloodborne, mother-to-child, and animal-to-human transmission

as possible modes of transmission for SARS-CoV-2 in April 2020 [66]. Motivated by

the COVID-19 pandemic, we were interested in how hand hygiene behavior could be

optimized to effectively reduce virus transmission. We developed a statistical model in

Chapter 2 to investigate the effect of different timings of hand washing and the duration

of persistence of viable virus on hands on the risk of infection of an individual. Key

results of this work were presented at the Scientiőc Advisory Group for Emergencies

(SAGE) to inform the policy response at the beginning of the COVID-19 epidemic in

the United Kingdom (UK). While it is now known that contaminated surfaces and thus

hand hygiene are likely to play a minor role in SARS-CoV-2 transmission (in comparison

with airborne transmission) [67ś69], our work has far wider relevance to the control of

respiratory tract infections in general.

The implementation of measures that reduce the spread of COVID-19 is vital for main-

taining healthcare capacities and preventing hospitals to be overwhelmed. Nosocomial

infections have been reported in healthcare settings in many countries during the COVID-

19 pandemic [70, 71]. However, quantitative estimates of SARS-CoV-2 transmission in

hospitals are lacking and its contribution to the overall COVID-19 epidemic is unknown.

Quantiőcation of nosocomial SARS-CoV-2 transmission is hindered by the fact that the
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exact time of infection is rarely known. The deőnition of a hospital-acquired infection usu-

ally relies on the time of symptom onset [72], or the őrst positive test [73]. If the delay is

above a pre-deőned cutoff (usually the average incubation time), the infection would be

deőned as hospital-acquired. This deőnition might miss a substantial proportion of symp-

tomatic hospital-acquired infections either because patients might be discharged before

developing symptoms or because they developed symptoms before the deőned threshold.

Prepared to advise hospital policy decisions of SAGE in the UK, we used simulation mod-

eling in Chapter 3 of this thesis to estimate the proportion of identiőed COVID-19 cases

in English hospitals attributed to symptomatic hospital-acquired infections as well as the

contribution of the latter to the COVID-19 epidemic in England in the őrst half of 2020.

To help inform hospital infection control policies for subsequent COVID-19 waves, sev-

eral models were developed to study the impact of interventions to control nosocomial

transmission of SARS-CoV-2 [74ś77]. Most studies investigated the use of personal pro-

tective equipment (PPE), isolation of COVID-19 patients, and asymptomatic screening

of HCWs and patients. These studies were developed in the beginning of the pandemic

and often assumed a time-invariant infectiousness of infected individuals and/or perfect

test sensitivity. Huang et al (2021) [78] accounted for a time-varying infectiousness and

imperfect test sensitivity but modeled SARS-CoV-2 transmission only in one hospital

unit in Wuhan [77]. Following up on these studies, we were interested in comparing the

impact of various hospital-based interventions targeted at HCWs on the SARS-CoV-

2 transmission in a hospital consisting of COVID-19 as well as non-COVID-19 wards

while accounting for time-varying infectiousness, and time-varying sensitivities of diag-

nostic tests. In particular, we were interested in the impact of contact-tracing of HCWs,

an intervention supported by observational evidence [79] but not investigated in other

modeling studies. To include information of contact networks and allow for time-varying

infectiousness and test sensitivities, we developed an agent-based model and compared

it to several other hospital-based interventions to investigate their effectiveness in re-

ducing nosocomial transmission and health-care worker absenteeism. For evaluating the

efficiency of testing-based interventions, we also calculated how many individuals that

were tested positive would be detected among the overall number of tested.
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Outline

The unifying theme of this thesis is the evaluation of the impact of preventive measures

on infectious disease transmission by means of mathematical modeling. This is studied

on two different levels dividing the thesis in two parts.

In Part I (Chapter 1 and 2) of the thesis, we focus on modeling types of infection pre-

vention and control measures employed in the community, aiming to reduce infection

disease spread in the general population. In Part II (Chapters 3-6), we focus on math-

ematical models developed for hospital settings where people from the community are

blend together potentially increasing the risk of infection.

Mathematical models to control the spread of infectious diseases in

the community

In Chapter 1, a deterministic compartmental model was developed linking biological

disease progression with human health-related behaviour. We compared self-imposed

prevention measures, such as social distancing, hand washing, and the use of face masks

with a physical distancing measure that was imposed once by the government for a

short-term in mitigating, delaying, or preventing a COVID-19 epidemic. We were mainly

interested in how health-related behavior as a response to an ongoing epidemic may

affect the epidemic itself.

Chapter 2 picks up hand hygiene as one self-imposed measure from Chapter 1 and applies

a model-based statistical framework to inŕuenza or similar respiratory tract infections.

We were interested in how the effectiveness of this protective measure could be optimized

and focused on different hand washing timings and frequencies as well as for different

durations of persistence of viable virus on hands.

Mathematical models to control the spread of infectious diseases in

hospital settings

Chapter 3 takes the reader from the general population to hospital settings where,

without any control measures, the risk of infection may be greatly increased and the host

population is highly vulnerable. For this population it is of great importance to investigate

the routes of transmission of pathogens causing health-care associated infections and
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to quantify their relative contribution to the overall number of transmissions. This will

help in evaluating intervention strategies and in deciding which hospital infection control

policies targeting the most important transmission routes need to be prioritized. We

investigated the transmission routes of P. aeruginosa, known for its intrinsic resistance

to many antibiotics, its omnipresence in moist environments, and included in the

highest category of WHO’s priority list of antibiotic-resistant bacteria. We developed a

mathematical transmission model to quantify the contributions of different transmission

routes using a Bayesian data-augmented MCMC estimation procedure. We distinguished

background transmission, cross-transmission, and environmental contamination after

the discharge of patients, and estimated their relative importance for the nosocomial

transmission of P. aeruginosa in two ICUs in a French hospital in Besançon.

Chapter 4 is an application of a similar model and method discussed in Chapter 3

to a data set from two ICU wards of the Erasmus Medical Center in Rotterdam.

Here, we focused on the role of persistent contamination in the environment in the

transmission process of Verona integron-encoded metallo-β-lactamase (VIM) producing

P. aeruginosa.

Since SARS-CoV-2 is known to spread efficiently in indoor environments, hospitals

may be an important setting in the COVID-19 pandemic and understanding the extent

of the problem is vital for hospital infection control policies. Chapter 5 presents a

quantiőcation of symptomatic hospital-acquired infections and the contribution of

hospital settings to the overall COVID-19 epidemic in England during the őrst wave.

To help inform hospital infection control policies for subsequent COVID-19 waves, we

developed an agent-based model in Chapter 6 to study the impact of hospital-based

interventions aimed at HCWs to control nosocomial transmission of SARS-CoV-2. In

contrast to chapters 3 and 4, the infectiousness of an infected individual, contacts

between individuals as well as hospital-based interventions to limit the nosocomial spread

of SARS-CoV-2 are explicitly modeled.

Finally, in the last part of this thesis, we summarize the most important results, discuss

their applicability for informing infection control policies and their potential implications

thereon.
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Impact of self-imposed measures on a COVID-19 epidemic

Abstract

Background: Many countries have implemented social distancing as a measure to flatten the

curve of the ongoing COVID-19 epidemics. Evaluation of the impact of government-imposed

social distancing and of other measures to control further spread of COVID-19 is urgent, especially

because of the large societal and economic impact of the former. We aimed to compare the

effectiveness of self-imposed prevention measures and of short-term government-imposed social

distancing in mitigating, delaying, or preventing a COVID-19 epidemic.

Methods: We developed a deterministic compartmental transmission model of SARS-CoV-2 in

a population stratiőed by disease status (susceptible, exposed, infectious with mild or severe

disease, diagnosed and recovered) and disease awareness status (aware and unaware) due to

the spread of COVID-19. Self-imposed measures were assumed to be taken by disease-aware

individuals and included handwashing, mask-wearing, and social distancing. Government-imposed

social distancing reduced the contact rate of individuals irrespective of their disease or awareness

status.

Results: For fast awareness spread in the population, self-imposed measures can signiőcantly

reduce the attack rate, diminish and postpone the peak number of diagnoses. We estimate that a

large epidemic can be prevented if the efficacy of these measures exceeds 50%. For slow awareness

spread, self-imposed measures reduce the peak number of diagnoses and attack rate but do not

affect the timing of the peak. Early implementation of short-term government-imposed social

distancing alone is estimated to delay (by at most 7 months for a 3-month intervention) but not

to reduce the peak. The delay can be even longer and the height of the peak can be additionally

reduced if this intervention is combined with self-imposed measures that are continued after

government-imposed social distancing has been lifted.

Conclusions: Our results suggest that information dissemination about COVID-19, which causes

voluntary adoption of handwashing, mask-wearing and social distancing can be an effective strat-

egy to mitigate and delay the epidemic. Early-initiated short-term government-imposed social

distancing can buy time for healthcare systems to prepare for an increasing COVID-19 burden.

We stress the importance of disease awareness in controlling the ongoing epidemic and recom-

mend that, in addition to policies on social distancing, governments and public health institutions

mobilize people to adopt self-imposed measures with proven efficacy in order to successfully tackle

COVID-19.
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Introduction

As of May 5, 2020, the novel coronavirus (SARS-CoV-2) has spread worldwide and only

13 countries have not reported any cases. It has caused over 3,640,835 conőrmed cases

of COVID-19 and nearly 255,100 deaths since the detection of its outbreak in China

on December 31, 2019 [1]. On March 11, the World Health Organization officially

declared the COVID-19 outbreak a pandemic [1]. Several approaches aimed at the

containment of SARS-CoV-2 in China were unsuccessful. Airport screening of travelers

was hampered by a potentially large number of asymptomatic cases and the possibility

of pre-symptomatic transmission [2ś4]. Quarantine of fourteen days combined with

fever surveillance was insufficient in containing the virus due to the high variability of

the incubation period [5].

Now that SARS-CoV-2 has extended its range of transmission in all parts of the

world, it is evident that many countries face a large COVID-19 epidemic [6]. Initial

policies regarding COVID-19 prevention were mainly limited to reporting cases, strict

isolation of severe symptomatic cases, home isolation of mild cases, and contact

tracing [7]. However, due to the potentially high contribution of asymptomatic and

pre-symptomatic spread [8], these case-based interventions are likely insufficient in

containing a COVID-19 epidemic unless they are highly effective [8ś11]. Given the rapid

rise in cases and the risk of exceeding critical care bed capacities, many countries have

implemented social distancing as a short-term measure aiming at reducing the contact

rate in the population and, subsequently, transmission [6, 12]. Several governments

have imposed nationwide partial or complete lockdowns by closing schools, public places

and non-essential businesses, canceling mass events, and issuing stay-at-home orders

[6]. Previous studies on the 1918 inŕuenza pandemic showed that such mandated

interventions were effective in reducing transmission but their timing and magnitude

had a profound inŕuence on the course of the epidemic [13ś18]. These short-term

interventions were associated with a high risk of epidemic resurgence and their impact

was limited if introduced too late or lifted too early [13ś16].

Self-imposed prevention measures such as handwashing, mask-wearing, and social
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distancing could also contribute to slowing down the epidemic [19, 20]. Alcohol-based

sanitizers are effective in removing the SARS coronavirus from hands [21] and

handwashing with soap may have a positive effect on reducing the transmission of

respiratory infections [22]. Surgical masks, often worn for their perceived protection,

are not designed nor certiőed to protect against respiratory hazards, but they can stop

droplets being spread from infectious individuals [23ś25]. Information dissemination

and official recommendations about COVID-19 can create awareness and motivate

individuals to adopt such measures. Previous studies emphasized the importance of

disease awareness for changing the course of an epidemic [26ś28]. Depending on

the rate and mechanism of awareness spread, the awareness process can reduce the

attack rate of an epidemic or prevent it completely [26], but it can also lead to

undesirable outcomes such as the appearance of multiple epidemic peaks [27, 28]. The

secondary epidemic waves may appear as the result of individuals relaxing adherence

to self-imposed measures prematurely in a population where the susceptible pool

following the őrst wave is still signiőcantly large and disease has not been completely

eliminated. It is essential to assess under which conditions, spread of disease aware-

ness that instigates self-imposed measures can be a viable strategy for COVID-19 control.

The comparison of the effectiveness of early implemented short-term government-

imposed social distancing and self-imposed prevention measures on reducing the

transmission of SARS-CoV-2 are currently missing but are of crucial importance in the

attempt to stop its spread. If a COVID-19 epidemic cannot be prevented, it is important

to know how to effectively diminish and postpone the epidemic peak to give healthcare

professionals more time to prepare and react effectively to an increasing health care

burden. Moreover, given that several countries have peaked in cases, the importance

of evaluating the effect of self-imposed measures after lifting lockdown measures is

profound.

Using a transmission model we evaluated the impact of self-imposed measures (hand-

washing, mask-wearing, and social distancing) due to awareness of COVID-19 and of

a short-term government-imposed social distancing intervention on the peak number of

diagnoses, attack rate, and time until the peak number of diagnoses since the őrst case.

We provide a comparative analysis of these interventions as well as of their combinations
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and assess the range of intervention efficacies for which a COVID-19 epidemic can be

mitigated, delayed or even prevented completely. Qualitatively, these results will aid public

health professionals to compare and select a combination of interventions for designing

effective outbreak control policies.

Methods

Baseline transmission model

We developed a deterministic compartmental model describing SARS-CoV-2 transmis-

sion in a population stratiőed by disease status (Fig 1). In this baseline model, individuals

are classiőed as susceptible (S), latently infected (E), infectious with mild disease (IM),

infectious with severe disease (IS), diagnosed and isolated (ID), and recovered after mild

or severe disease (RM and RS, respectively). Susceptible individuals (S) can become la-

tently infected (E) through contact with infectious individuals (IM and IS) with the force

of infection dependent on the fractions of the population in IM and IS compartments. A

proportion of the latently infected individuals (E) will go to the IM compartment, and the

remaining E individuals will go to the IS compartment. We assume that infectious indi-

viduals with mild disease (IM) do not require medical attention and recover (RM) without

being conscious of having contracted COVID-19. Infectious individuals with severe dis-

ease (IS) are unable to recover without medical help, and subsequently get diagnosed

and isolated (ID) (in e.g. hospitals, long-term care facilities, nursing homes) and know

or suspect they have COVID-19 when they are detected. Therefore, the diagnosed com-

partment ID contains infectious individuals with severe disease who are both officially

diagnosed and get treatment in healthcare institutions and those who are not officially

diagnosed but have disease severe enough to suspect they have COVID-19 and require

isolation. For simplicity, isolation of these individuals is assumed to be perfect until recov-

ery (RS), and, hence, they neither contribute to transmission nor to the contact process.

Given the timescale of the epidemic and the lack of reliable reports on reinfections, we

assume that recovered individuals (RM and RS) cannot be reinfected. The infectivity of

infectious individuals with mild disease is lower than the infectivity of infectious individuals

with severe disease [29]. Natural birth and death processes are neglected as the time scale

of the epidemic is short compared to the mean life span of individuals. However, isolated

infectious individuals with severe disease (ID) may be removed from the population due
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to disease-associated mortality.

�✁✂✄☎✆✝✞✟✠

✡☛✝☞✌ ✌✝✠✄✍✠✄✎

✏✍✆✄✁✆✑✟✠☎✄✒✆✝✓☞✄

�✁✂✄☎✆✝✞✟✠

✡✠✄✔✄✕✄ ✌✝✠✄✍✠✄✎

✖✝✍✗✁✞✠✄✌

✍✁✌ ✝✠✞☞✍✆✄✌
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✘✄☎✞✔✄✕✄✌
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Figure 1: Schematic of the baseline transmission model. Black arrows show epidemiological
transitions. Red dashed arrows indicate the compartments contributing to the force of infection.
Susceptible persons (S) become latently infected (E) with the force of infection λinf via contact
with infectious individuals in two infectious classes (IM and IS). Individuals leave the E com-
partment at rate α. A proportion p of the latently infected individuals (E) will go to the IM
compartment, and the proportion (1 − p) of E individuals will go to the IS compartment. In-
fectious individuals with mild disease (IM) recover without being conscious of having contracted
COVID-19 (RM) at rate γM . Infectious individuals with severe disease (IS) are diagnosed and kept
in isolation (ID) at rate ν until they recover (RS) at rate γS or die at rate η. Table 1 provides
the description and values of all parameters.

Transmission model with disease awareness

In the extended model with disease awareness, the population is stratiőed not only by

the disease status but also by the awareness status into disease-aware (Sa, Ea, IaM,

IaS, I
a
D, and RaM) and disease-unaware (S, E, IM, IS, ID, and RM) (Fig 2 A). Disease

awareness is a state that can be acquired as well as lost. Disease-aware individuals are

distinguished from unaware individuals in two essential ways. First, infectious individuals

with severe disease who are disease-aware (IaS) get diagnosed and isolated faster

(IaD), stay in isolation for a shorter period of time and have lower disease-associated

mortality than the same category of unaware individuals. The assumption we make

here is that disease-aware individuals (IaS) recognize they may have COVID-19 on

average faster than disease-unaware individuals (IS) and get medical help earlier which

leads to a better prognosis of IaD individuals as compared to ID individuals. Second,

disease-aware individuals are assumed to use self-imposed measures such as handwashing,

mask-wearing and self-imposed social distancing that can lower their susceptibility,
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infectivity and/or contact rate. Individuals who know or suspect their disease status

(ID, IaD and RS) do not adapt any such measures since they assume that they cannot

contract the disease again. Hence, they are excluded from the awareness transition pro-

cess and their behaviour in the contact process is identical to disease-unaware individuals.

Similarly to Perra et al [27], disease-unaware individuals acquire disease awareness at a

rate proportional to the rate of awareness spread and to the current number of diagnosed

individuals (ID and IaD) in the population (Fig 2 B). We assume that awareness fades and

individuals return to the unaware state at a constant rate. The latter means that they no

longer use self-imposed measures. For simplicity, we assume that awareness acquisition

and fading rates are the same for individuals of type S, E, IM, and RM. However, the rate

of awareness acquisition is faster and the fading rate is slower for infectious individuals

with severe disease (IS) than for the remaining disease-aware population.

Table 1: Parameter values for the transmission model with and without awareness

Value∗ Source

Epidemiological parameters
Basic reproduction number R0 2.5 (2ś3) Li et al [5], Park et al [30], sensitivity analyses
Probability of transmission per contact with IS ϵ 0.048 From R0 = β [pσ/γM + (1− p)/ν]
Transmission rate of infection via contact with IS β 0.66 per day β = cϵ
Average contact rate (unique persons) c 13.85 persons per day Mossong et al [31]
Relative infectivity of infectious with mild disease (IM) σ 50% (25ś75%) Assumed, see e.g. Liu et al [29], sensitivity analyses
Proportion of infectious with mild disease (IM) p 82% (82ś90%) Wu et al [32], Anderson at al [20], sensitivity analyses
Delay between infection and onset of infectiousness (latent period) 1/α 4 days Shorter than incubation period [5, 30, 33]
Delay from onset of infectiousness to diagnosis for IS 1/ν 5 (3ś7) days Li et al [5], sensitivity analyses
Recovery period of infectious with mild disease (IM) 1/γM 7 (5ś9) days Li Xingwang†, sensitivity analyses
Delay from diagnosis to recovery for unaware diagnosed (ID) 1/γS 14 days WHO [34]
Relative infectivity of isolated (ID) 0% Assuming perfect isolation
Case fatality rate of unaware diagnosed (ID) f 1.6% Althaus et al[35] Park et al[30]
Disease-associated death rate of unaware diagnosed (ID) η 0.0011 per day η = γSf /(1− f )
Awareness parameters
Rate of awareness spread (slow, fast and range) δ 5× 10−5, 1 (10−6ś1) per year Assumed, sensitivity analyses
Relative susceptibility to awareness acquisition for S, E, IM, and RM k 50% (0ś100%) Assumed, sensitivity analyses
Duration of awareness for Sa, Ea, IaM, and RaM 1/µ 30 (7ś365) days Assumed, sensitivity analyses
Duration of awareness for IaS 1/µS 60 (7ś365) days Longer than 1/µ, sensitivity analyses
Delay from onset of infectiousness to diagnosis for IaS 1/νa 3 (1ś5) days Shorter than 1/ν, sensitivity analyses
Delay from diagnosis to recovery of aware diagnosed (IaD) 1/γaS 12 days Shorter than 1/γS
Case fatality rate of aware diagnosed (IaD) f a 1% Smaller than f
Disease-associated death rate of aware diagnosed (IaD) ηa 0.0008 per day η = γaSf

a/(1− f a)
Prevention measure parameters
Efficacy of mask-wearing (reduction in infectivity) 0ś100% Varied
Efficacy of handwashing (reduction in susceptibility) 0ś100% Varied
Efficacy of self-imposed contact rate reduction 0ś100% Varied
Efficacy of government-imposed contact rate reduction 0ś100% Varied
Duration of government-imposed social distancing 3 (1ś13) months Assumed, sensitivity analyses
Threshold for initiation of government-imposed social distancing 10 (1ś1000) diagnoses Assumed, sensitivity analyses

∗Mean or median values were used from literature; range was used in the sensitivity analyses.
†Expert at China’s National Health Commission

Prevention measures

We considered short-term government intervention aimed at fostering social distancing

in the population and a suite of measures that may be self-imposed by disease-aware
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� ✁

✂✄☎✆✝✞✟✠✡☛✝ ☞✌✟✝✍✟

✎✠✌✏✍✑☎✝✒
✌✍✒ ✠☎✑☛✌✟✝✒

✎✠✌✏✍✑☎✝✒
✌✍✒ ✠☎✑☛✌✟✝✒

✓✌✔✌✕✝✖

✗✝✆✑✘✝✕✝✒
✓✙✠☛✒ ✒✠☎✝✌☎✝✖ ✂✄☎✆✝✞✟✠✡☛✝

✚✛✜✢✜✣✤ ✜✢✜✣✤

☞✌✟✝✍✟

✚✛✜✢✜✣✤ ✜✢✜✣✤

✥✍✦✝✆✟✠✑✄☎
✓✙✠☛✒ ✒✠☎✝✌☎✝✖

✚✛✜✢✜✣✤ ✜✢✜✣✤
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✓☎✝✘✝✕✝ ✒✠☎✝✌☎✝✖

✚✛✜✢✜✣✤ ✜✢✜✣✤

✥✍✦✝✆✟✠✑✄☎
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✥✍✦✝✆✟✠✑✄☎
✓☎✝✘✝✕✝ ✒✠☎✝✌☎✝✖
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✓☎✝✘✝✕✝ ✒✠☎✝✌☎✝✖

✚✛✜✢✜✣✤ ✜✢✜✣✤

✗✝✆✑✘✝✕✝✒
✓✙✠☛✒ ✒✠☎✝✌☎✝✖

Figure 2: Schematic of the transmission model with disease awareness. (A) shows epidemi-
ological transitions in the transmission model with awareness (black arrows). The orange dashed
lines indicate the compartments that participate in the awareness dynamics. The red dashed ar-
rows indicate the compartments contributing to the force of infection. Disease-aware susceptible
individuals (Sa) become latently infected (Ea) through contact with infectious individuals (IM ,
IS, IaM , and IaS) with the force of infection λainf. Infectious individuals with severe disease who
are disease-aware (IaS) get diagnosed and isolated (IaD) at rate νa, recover at rate γaS and die
from disease at rate ηa. (B) shows awareness dynamics. Infectious individuals with severe disease
(IS) acquire disease awareness (IaS) at rate λaware proportional to the rate of awareness spread
and to the current number of diagnosed individuals (ID and IaD) in the population. As awareness
fades, these individuals return to the unaware state at rate µS. The acquisition rate of awareness
(kλaware) and the rate of awareness fading (µ) are the same for individuals of type S, E, IM ,
and RM , where k is the reduction in susceptibility to the awareness acquisition compared to IS
individuals. Table 1 provides the description and values of all parameters.
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individuals, i.e., mask-wearing, handwashing, and self-imposed social distancing.

Mask-wearing

Mask-wearing, while often adapted as a protective measure, may be ineffective in re-

ducing the individual’s susceptibility because laypersons, i.e., not medical professionals,

are unfamiliar with correct procedures for its use (e.g. often engage in face-touching

and mask adjustment) [36]. However, mask-wearing reduces infectious output [25] and,

therefore, we assume that this measure lowers only the infectivity of disease-aware infec-

tious individuals (IaM and IaS) with an efficacy ranging from 0% (zero efficacy) to 100%

(full efficacy).

Handwashing

Since infectious individuals may transmit the virus to others without direct physical con-

tact, we assume that handwashing only reduces one’s susceptibility. The efficacy of hand-

washing is described by the reduction in susceptibility (i.e., probability of transmission per

single contact) of susceptible disease-aware individuals (Sa) which ranges from 0% (zero

efficacy) to 100% (full efficacy). Since transmission can possibly occur through routes

other than physical contact, hand washing may not provide 100% protection to those

who practice it.

Self-imposed social distancing

Disease-aware individuals, who consider themselves susceptible, may also practice social

distancing, i.e., maintaining distance to others and avoiding congregate settings. As a

consequence, this measure leads to a change in mixing patterns in the population. The

efficacy of social distancing of disease-aware individuals is described by the reduction in

their contact rate which is varied from 0% (no social distancing or zero efficacy) to 100%

(complete self-isolation or full efficacy). Since contacts might not be eliminated entirely

(e.g. household contacts remain), realistic values of the efficacy of self-imposed social

distancing can be close to but may never reach 100%.
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Short-term government-imposed social distancing

Governments may decide to promote social distancing policies through interventions such

as school and workplace closures or by issuing stay-at-home orders and bans on large

gatherings. These lockdown policies will cause a community-wide contact rate reduction,

regardless of the awareness status. Here, we assume that the government-imposed social

distancing is initiated if the number of diagnosed individuals exceeds a certain threshold

(10ś1000 persons) and terminates after a őxed period of time (1ś3 months). As such,

the intervention is implemented early into the epidemic. Government-imposed social dis-

tancing may be partial or complete depending on its efficacy, i.e., the reduction of the

average contact rate in the population which ranges from 0% (no distancing) to 100%

(complete lockdown). Since during a lockdown, some contacts in the population cannot

be eliminated (e.g. household contacts), realistic values of the efficacy of government-

imposed social distancing can be close to but never reach 100%. For example, a 73%

reduction in the average daily number of contacts was observed during the lockdown in

the UK [37] but the reduction could be different in countries with more or less stringent

lockdown.

Model output

The model outputs are the peak number of diagnoses, attack rate (a proportion of the

population that recovered or died after severe infection), the time to the peak number

of diagnoses since the őrst case, and the probability of infection during the course of

an epidemic (see S2 Text for a more detailed description of the latter). We compared

the impact of different prevention measures and their combinations on these outputs by

varying the reduction in infectivity of disease-aware infectious individuals (mask-wearing),

the reduction in susceptibility of disease-aware susceptible individuals (handwashing),

the reduction in contact rate of disease-aware individuals only (self-imposed social

distancing) and of all individuals (government-imposed social distancing). We refer to

these quantities as the efficacy of a prevention measure and vary it from 0% (zero

efficacy) to 100% (full efficacy) (Table 1). The main analyses were performed for two

values of the rate of awareness spread that corresponded to scenarios of slow and fast

spread of awareness in the population (Table 1). For these scenarios, the proportion of

the aware population at the peak of the epidemic was 40% and 90%, respectively. In the
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main analyses, government-imposed social distancing was initiated when 10 individuals

got diagnosed and was lifted after 3 months.

Estimates of epidemiological parameters were obtained from the most recent literature

(Table 1). We used contact rates for the Netherlands, but the model is appropriate

for other Western countries with similar contact patterns. A detailed mathematical de-

scription of the model can be found in the S1 Text. The model was implemented in

Mathematica 10.0.2.0. The code reproducing the results of this study is available at

https://github.com/lynxgav/COVID19-mitigation.

Sensitivity analyses

To allow for the uncertainty in the parameters of the baseline transmission model, we

conducted sensitivity analyses with respect to the proportion of infectious individuals with

mild disease, the relative infectivity of infectious individuals with mild disease, the recovery

period of infectious individuals with mild disease, the delay from onset of infectiousness

to diagnosis for infectious individuals with severe disease, and the basic reproduction

number (see S3 Text). We also conducted sensitivity analyses for the model with disease

awareness with respect to changes in the delay from the onset of infectiousness to diag-

nosis and isolation for disease-aware individuals, the rate of awareness spread, the relative

susceptibility to awareness, and the duration of awareness (see S3 Fig). Parameter ranges

used in these sensitivity analyses are speciőed in Table 1.

In addition, we present results for the impact on the model outcomes of all combinations

of self-imposed prevention measures as their efficacy was varied from 0% to 100% and

of the government-imposed social distancing with efficacy ranging from 0% to 100%,

different thresholds for initiating the intervention (1 to 1000 diagnoses), and different

durations of the intervention (3, 8 and 13 months) (see S1 Fig and S2 Fig for details).

Results

Our analyses show that disease awareness spread has a signiőcant effect on the model

predictions. We őrst considered the epidemic dynamics in a disease-aware population

where handwashing is promoted, as an example of self-imposed measures (Fig 3). Then,
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Figure 3: Illustrative simulations of the transmission model. (A) and (B) show the number
of diagnoses and the attack rate during the őrst 12 months after the őrst case under three
model scenarios. The red lines correspond to the baseline transmission model. The orange lines
correspond to the model with a fast rate of awareness spread and no interventions. The blue lines
correspond to the latter model where disease awareness induces the uptake of handwashing with
an efficacy of 30%.
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we performed a systematic comparison of the impact of different prevention measures

on the model output for slow (Fig 4) and fast (Fig 5) rate of awareness spread.

Epidemic dynamics

All self-imposed measures and government-imposed social distancing have an effect on

the COVID-19 epidemic dynamics. The qualitative and quantitative impact, however,

depends strongly on the prevention measure and the rate of awareness spread. The

baseline model predicts 46 diagnoses per 1000 individuals at the peak of the epidemic,

an attack rate of about 16% and the time to the peak of about 5.2 months (red

line, Fig 3 A and B). In the absence of prevention measures, a fast spread of disease

awareness reduces the peak number of diagnoses by 20% but has only a minor effect

on the attack rate and peak timing (orange line, Fig 3 A and B). This is expected, as

disease-aware individuals with severe disease seek medical care sooner and therefore

get diagnosed faster causing fewer new infections as compared to the baseline model.

Awareness dynamics coupled with the use of self-imposed prevention measures has

an even larger impact on the epidemic. The blue line in Fig 3 A shows the epidemic

curve for the scenario when disease-aware individuals use handwashing as self-imposed

prevention measure. Even if the efficacy of handwashing is modest (i.e., 30% as in Fig 3

A) the impact on the epidemic can be signiőcant, namely we predicted a 65% reduction

in the peak number of diagnoses, a 29% decrease in the attack rate, and a delay in peak

timing of 2.7 months (Fig 3 A and B).

The effect of awareness on the disease dynamics can also be observed in the probability

of infection during the course of the epidemic. In the model with awareness and no

measures, the probability of infection is reduced by 4% for all individuals. Handwashing

with an efficacy of 30% reduces the respective probability by 14% for unaware individuals

and by 29% for aware individuals. Note that the probability of infection is highly dependent

on the type of prevention measure. The detailed analysis is given in the S2 Text.
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Figure 4: Impact of prevention measures on the epidemic for a slow rate of awareness

spread.

(A), (B) and (C) show the relative reduction in the peak number of diagnoses, the attack rate
(proportion of the population that recovered or died after severe infection) and the time until the
peak number of diagnoses. The efficacy of prevention measures was varied between 0% and 100%.
In the context of this study, the efficacy of social distancing denotes the reduction in the contact
rate. The efficacy of handwashing and mask-wearing are given by the reduction in susceptibility
and infectivity, respectively. The simulations were started with one case. Government-imposed
social distancing was initiated after 10 diagnoses and lifted after 3 months. For parameter values,
see Table 1. Please note that the blue line corresponding to handwashing is not visible in (C) since
it almost completely overlaps with lines for mask-wearing and self-imposed social distancing.
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A comparison of prevention measures

Slow spread of awareness

Fig 4 shows the impact of all considered self-imposed measures as well as of the

government-imposed social distancing on the peak number of diagnoses, attack rate,

and the time to the peak for a slow rate of awareness spread. In this scenario, the

model predicts progressively larger reductions in the peak number of diagnoses and in

the attack rate as the efficacy of the self-imposed measures increases. In the limit of

100% efficacy, the reduction in the peak number of diagnoses is 23% to 30% (Fig 4

A) and the attack rate decreases from 16% to 12-13% (Fig 4 B). The efficacy of the

self-imposed measures has very little impact on the peak timing when compared to

the baseline, i.e., no awareness in the population (Fig 4 C). Since the proportion of

aware individuals who change their behavior is too small to make a signiőcant impact on

transmission, self-imposed measures can only mitigate but not prevent an epidemic.

When awareness spreads at a slow rate, a 3-month government intervention has a con-

trasting impact to the self-imposed measure scenario. The time to the peak number of

diagnoses is longer for more stringent contact rate reductions. For example, a complete

lockdown (government-imposed social distancing with 100% efficacy) can postpone the

peak by almost 7 months but its magnitude and attack rate are unaffected (with respect

to the baseline model without measures and awareness). Similar predictions are expected,

as long as government-imposed social distancing starts early (e.g, after tens to hundreds

of cases) and is lifted a few weeks to few months later. This type of intervention halts

the epidemic for the duration of intervention, but, because of a large pool of susceptible

individuals, epidemic resurgence is expected as soon as social distancing measures are

lifted.

Fast spread of awareness

Since the government intervention reduces the contact rate of all individuals irrespec-

tive of their awareness status, it has a comparable impact on transmission for scenarios

with fast and slow rate of awareness spread (compare Fig 4 and Fig 5). However, the

impact of self-imposed measures is drastically different when awareness spreads fast. All

self-imposed measures are more effective than the short-term government intervention.
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Figure 5: Impact of prevention measures on the epidemic for a fast rate of awareness

spread. (A), (B) and (C) show the relative reduction in the peak number of diagnoses, the at-
tack rate (proportion of the population that recovered or died after severe infection) and the
time until the peak number of diagnoses. The efficacy of prevention measures was varied be-
tween 0% and 100%. In the context of this study, the efficacy of social distancing denotes the
reduction in the contact rate. The efficacy of handwashing and mask-wearing are given by the
reduction in susceptibility and infectivity, respectively. The simulations were started with one case.
Government-imposed social distancing was initiated after 10 diagnoses and lifted after 3 months.
For parameter values, see Table 1. Please note that the blue line corresponding to handwashing is
not visible in (A) since it almost completely overlaps with lines for mask-wearing and self-imposed
social distancing.
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These measures not only reduce the attack rate (Fig 5 B), diminish and postpone the

peak number of diagnoses (Fig 5 A and C), but they can also prevent a large epidemic

altogether when their efficacy is sufficiently high (about 50%). Note that when the rate

of awareness is fast, as the number of diagnoses grows, the population becomes almost

homogeneous, with most individuals being disease-aware. It can be shown that in such

populations prevention measures yield comparable results if they have the same efficacy.

Combinations of prevention measures

If government-imposed social distancing is combined with a self-imposed prevention

measure, the model predicts that the relative reduction in the peak number of diagnoses

and attack rate are determined by the efficacy of the self-imposed measure, while the

timing of the peak is determined by the efficacies of both the self-imposed measure and

the government intervention. This is demonstrated in Fig 6, where we used a combina-

tion of handwashing with efficacies of 30%, 45% and 60% and government-imposed

social distancing with efficacy ranging from 0% to 100% for slow and fast spread of

awareness. Our results show that the effect of the combined intervention highly depends

on the rate of awareness spread. Fast awareness spread is crucial for a large reduction in

the peak number of diagnoses (Fig 6 A) and in the attack rate (Fig 6 B). Note, that

for fast spread of awareness, a combination of a complete lockdown and handwashing

with an efficacy of 30% could postpone the time to the peak number of diagnoses by

nearly 10 months (Fig 6 C). Thus, when combined with short-term government-imposed

social distancing, handwashing can contribute to mitigating and delaying the epidemic

in particular after the lockdown is relaxed. The second wave of the epidemic could be

prevented completely if the efficacy of handwashing exceeds 50% (Fig 6 A). The results

for the combination of mask-wearing and government-imposed social distancing are

similar.

The effect of combinations of self-imposed measures (e.g. handwashing and mask-

wearing) is additive (see S1 Fig). This means that, for fast spread of awareness, a

large outbreak can be prevented by, for example, a combination of handwashing and

self-imposed social distancing each with an efficacy of around 25% (or other efficacies

adding up to 50%).
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Figure 6: Impact on the epidemic of a combination of government-imposed social dis-

tancing and handwashing (A), (B) and (C) show the relative reduction in the peak number of
diagnoses, the attack rate (proportion of the population that recovered or died after severe in-
fection) and the time until the peak number of diagnoses. The efficacy of handwashing was 30%,
45% and 60%. In the context of this study, the efficacy of social distancing denotes the reduction
in the contact rate. The efficacy of handwashing is given by the reduction in susceptibility. The
simulations were started with one case. Government-imposed social distancing was initiated after
10 diagnoses and lifted after 3 months. For parameter values, see Table 1.
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Discussion

For many countries around the world, the focus of public health officers in the context

of COVID-19 epidemic has shifted from containment to mitigation and delay. Our study

provides new insights for designing effective outbreak control strategies. Based on our

results, we conclude that handwashing, mask-wearing, and social distancing adopted by

disease-aware individuals can delay the epidemic peak, ŕatten the epidemic curve and

reduce the attack rate. We show that the rate at which disease awareness spreads has

a strong impact on how self-imposed measures affect the epidemic. For a slow rate of

awareness spread, self-imposed measures have less impact on transmission, as not many

individuals adopt them. However, for a fast rate of awareness spread, their impact on

the magnitude and timing of the peak increases with increasing efficacy of the respective

measure. For all measures, a large epidemic can be prevented when the efficacy exceeds

50%. Moreover, the effect of combinations of self-imposed measures is additive. In

practical terms, it means that SARS-CoV-2 will not cause a large outbreak in a country

where 90% of the population adopt handwashing and social distancing that are 25%

efficacious (i.e., reduce susceptibility and contact rate by 25%, respectively).

Although our analyses indicate that the effects of self-imposed measures on mitigating

and delaying the epidemic for the same efficacies are similar (see Fig 4 and Fig 5), not all

explored efficacy values may be achieved for each measure. Wong et al [22] and Cowling

et al [24] performed a systematic review and meta-analysis on the effect of handwashing

and face masks on the risk of inŕuenza virus infections in the community. While the

authors highlight the potential importance of both hand hygiene and face masks, only

modest effects could be ascertained with a pooled risk ratio of 0.73 (95% CI: [0.6,

0.89]) for a combination of these two measures. However, the authors also highlight

the small number of randomized-controlled trials and the heterogeneity of the studies

as notable limitations which may have led to these results. Given the high uncertainty

around the efficacies of hand hygiene and mask-wearing on their own, the promotion of a

combination of these measures might become preferable to recommending handwashing

or mask-only measures. For self-imposed social distancing, contacts might not be

eliminated entirely (e.g. household contacts remain) and therefore realistic values of the

efficacy of self-imposed social distancing can be close to but may never reach 100%.
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Thus, for a fair comparison between measures, realistic efficacy values of a speciőc

measure should be taken into consideration.

We contrasted self-imposed measures stimulated by disease awareness with mandated

social distancing. Our analyses show that short-term government-imposed social

distancing that is implemented early into the epidemic, can delay the epidemic peak but

does not affect its magnitude nor the attack rate. For example, a complete lockdown

of 3 months imposing a community-wide contact rate reduction that starts after tens

to thousands diagnoses in the country can postpone the peak by about 7 months. Such

an intervention is highly desirable, when a vaccine is being developed or when healthcare

systems require more time to treat cases or increase capacity. If this intervention is

implemented in a population which exercises a self-imposed measure that is continued

being practiced even after the lockdown is over, then the delay can be even longer

(e.g. up to 10 months for handwashing with 30% efficacy). In the context of countries

that implemented social distancing as a measure to ‘ŕatten the curve’ of the ongoing

epidemics, peaked in cases and now are now planning or have already started gradual

lifting of social distancing, it means that governments and public health institutions

should intensify the promotion of self-imposed measures to diminish and postpone

the peak of the potential second epidemic wave. The potential second wave could be

prevented altogether if the coverage of a self-imposed measure in the population and its

efficacy are sufficiently high (e.g. 90% and 50%, respectively). Our sensitivity analyses

showed that lower or higher efficacies can be required to prevent a large epidemic for

countries with smaller or larger basic reproduction numbers (see S3 Text).

Since for many countries the COVID-19 epidemic is still in its early stages, government-

imposed social distancing was modeled as a short-term intervention initiated when the

number of diagnosed individuals was relatively low. Our sensitivity analyses showed

that government interventions introduced later into the epidemic (at 100Ð1000

diagnoses) and imposed for a longer period of time (3Ð13 months) not only delay

the peak of the epidemic but also reduce it for intermediate efficacy values (see S2

Fig). Previous studies suggested that the timing of mandated social distancing is

crucial for its viability in controlling a large disease outbreak [13, 14, 16, 38]. As

discussed by Hollingsworth et al [16] and Anderson et al [20], a late introduction
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of such interventions may have a signiőcant impact on the epidemic peak and

attack rate. However, the authors also showed that the optimal strategy is highly

dependent on the desired outcome. A detailed analysis of government intervention with

different timings and durations that also takes into account the economic and soci-

etal consequences, and the cost of SARS-CoV-2 transmission is a subject for future work.

To our knowledge, our study is the őrst to provide comparative analysis of a suite of

self-imposed measures, government-imposed social distancing and their combinations

as strategies for mitigating and delaying a COVID-19 epidemic. Several studies (e.g.,

[39ś42]) looked at the effect of different forms of social distancing but they did not

include self-imposed measures such as handwashing and mask-wearing. Some of these

studies concluded that one-time social-distancing interventions will be insufficient to

maintain COVID-19 prevalence within the critical care capacity [40, 42]. In our analyses,

we explored the full efficacy range for all self-imposed prevention measures and different

durations and thresholds for initiation of government intervention. Our results allow to

draw conclusions on which combination of prevention measures can be most effective

in diminishing and postponing the epidemic peak when realistic values for the measure’s

efficacy are taken into account. We showed that spreading disease awareness such that

highly efficacious preventive measures are quickly adopted by individuals can be cru-

cial in reducing SARS-CoV-2 transmission and preventing a large epidemics of COVID-19.

Our model has several limitations. It does not account for stochasticity, demographics,

heterogeneities in contact patterns, spatial effects, inhomogeneous mixing, imperfect

isolation of individuals with severe disease, and reinfection with COVID-19. Our

conclusions can, therefore, be drawn on a qualitative level. Detailed models will have

to be developed to design and tailor effective strategies in particular settings. The

impact of the duration of immunity has been explored by Kissler et al [43]. The effect

of non-permanent immunity on the results of our model would be an interesting subject

for future work. To take into account the uncertainty in SARS-CoV-19 epidemiological

parameters, we performed sensitivity analyses to test the robustness of the model

predictions. As more data become available, our model can be easily updated. In

addition, our study assumes that individuals become disease-aware with a rate of

awareness acquisition proportional to the number of currently diagnosed individuals.
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Other forms for the awareness acquisition rate that incorporate, e.g., the saturation of

awareness, may be more realistic and would be interesting to explore in future studies.

Furthermore, we assume that handwashing may reduce the susceptibility of an individual

down to 0% and therefore neglect aerosol transmission of SARS-CoV-2. Thus, the

impact of handwashing on the epidemic may be an overestimation. However, while there

is preliminary evidence on SARS-CoV-2 RNA detection in aerosols [44], there is still

uncertainty about the level of infectiousness of the detected aerosols and the signiőcance

of potential airborne transmission. Current recommendations by the WHO are still

focused on droplet and contact precautions [45]. Our model may be adapted as more

information on the relative contribution of the transmission routes of COVID-19 emerges.

In conclusion, we provide the őrst empirical basis of how stimulating the uptake of

effective prevention measures, such as handwashing or mask-wearing, combined with

government-imposed social distancing intervention, can be pivotal to achieve control over

a COVID-19 epidemic. While information on the rising number of COVID-19 diagnoses

reported by the media may fuel anxiety in the population, wide and intensive promotion of

self-imposed measures with proven efficacy by governments or public health institutions

may be a key ingredient to tackle COVID-19.
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Impact of self-imposed measures on a COVID-19 epidemic: Supplement

S1: Mathematical description of the model

Baseline transmission model

We developed a deterministic compartmental model describing SARS-CoV-2 transmis-

sion in a population stratiőed by disease status (see Figure 1 in the main text). In

the baseline model, individuals are classiőed as susceptible (S), latently infected (E),

infectious with mild disease (IM), infectious with severe disease (IS), diagnosed and

isolated (ID), and recovered (RM and RS after mild or severe disease, respectively).

Susceptible individuals (S) become latently infected (E) through contact with infectious

individuals (IM and IS) with the force of infection λinf dependent on the fractions of

the population in IM and IS compartments. Latently infected individuals (E) become

infectious at a rate α; a proportion p of the latently infected individuals will go to

the IM compartment, a proportion (1 − p) to the IS compartment. We assume that

infectious individuals with mild disease (IM) do not require medical attention and recover

(RM) with rate γM without being conscious of having contracted COVID-19. Infectious

individuals with severe disease (IS) are unable to recover without medical help, and

subsequently get diagnosed and isolated (ID) with rate ν (in e.g. hospitals, long-term

care facilities, nursing homes) and know or suspect they have COVID-19 when they

are detected. Therefore, the diagnosed compartment ID contains infectious individuals

with severe disease who are both officially diagnosed and get treatment in healthcare

institutions and are not officially diagnosed but have a disease severe enough to suspect

they have COVID-19 and require treatment as well as isolation. For simplicity, isolation

of these individuals is assumed to be perfect until recovery (RS) which occurs at rate

γS, and, hence, they neither contribute to transmission nor to the contact process.

Given the timescale of the epidemic and the lack of reliable reports on reinfections, we

assume that recovered individuals (RM and RS) cannot be reinfected. The infectivity of

infectious individuals with mild disease is lower by a factor 0 ≤ σ ≤ 1 than the infectivity

of infectious individuals with severe disease [29]. Natural birth and death processes are

neglected as the time scale of the epidemic is short compared to the mean life span

of individuals. However, isolated infectious individuals with severe disease (ID) may be

removed from the population due to disease-associated mortality at rate η.

69



Chapter 1

The transmission model without awareness is given by the following system of ordinary

differential equations

dS(t)

dt
= −S(t)λinf(t)

dE(t)

dt
= S(t)λinf(t)− αE(t)

dIM(t)

dt
= pαE(t)− γMIM(t)

dIS(t)

dt
= (1− p)αE(t)− νIS(t)

dID(t)

dt
= νIS(t)− γSID(t)− ηID(t)

dRM(t)

dt
= γMIM(t)

dRS(t)

dt
= γSID(t),

(1.1)

where

λinf(t) =
β

N(t)
[σIM(t) + IS(t)] (1.2)

is the force of infection and N(t) = S(t) +E(t) + IM(t) + IS(t) +RM(t) +RS(t) is the

total number of individuals who participate in the contact process.

Transmission model with disease awareness

In the extended model with awareness, the population is stratiőed not only by

the disease status but also by the awareness status into disease-aware (Sa, Ea,

IaM, IaS, I
a
D, and RaM) and disease-unaware (S, E, IM, IS, and RM) (Figure 2 A in

the main text). Disease awareness is a state that can be acquires as well as lost.

Disease-aware individuals are distinguished from unaware individuals in two essential

ways. First, infectious individuals with severe disease who are disease-aware (IaS) get

diagnosed and isolated faster (IaD) with rate νa, stay in isolation for a shorter period

of time (recovery rate γaS) and have lower disease-associated mortality (rate ηa) than

the same category of unaware individuals. The assumption we make here is that

disease-aware individuals (IaS) recognize they may have COVID-19 on average faster

than disease-unaware individuals (IS) and get medical help earlier which leads to a

better prognosis of IaD individuals as compared to ID individuals. Second, disease-
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aware individuals are assumed to use self-imposed measures such as handwashing,

mask-wearing and self-imposed social distancing that can lower their susceptibility,

infectivity and/or contact rate. Individuals who know or suspect their disease status

(ID, IaD and RS) do not adapt any such measures since they assume that they cannot

contract the disease again. Hence, they are excluded from the awareness transition pro-

cess and their behaviour in the contact process is identical to disease-unaware individuals.

A schematic representation of the awareness dynamics is given in Figure 2 B in the

main text. Individuals of type S, E, IM, IS, and RM become aware of the disease with

the awareness acquisition rate λaware(t) proportional to the current number of diagnosed

individuals via information shared by the government or media

λaware(t) = δ · [ID(t) + I
a
D(t)] ,

where δ is a constant which describes how fast unaware individuals become aware per

unit of time. This formulation is based on Eq. (7) in Perra et al. [27].

We assume that awareness fades and individuals return to the unaware state at a constant

rate. The latter means that they no longer use self-imposed measures. We propose that

awareness acquisition and fading rates are the same for individuals who are susceptible

(S), latently infected (E), infectious with mild disease (IM) and recovered after mild

disease (RM). The rate of awareness acquisition for these individuals is a factor 0 ≤ k ≤ 1

lower than the rate of awareness acquisition for infectious individuals with severe disease

(IS). Also, infectious individuals with severe disease are more cautious and, therefore, lose

awareness at a slower rate than other individuals. Thus, we use µ to denote the decay

rate in compartments Sa, Ea, IaM, and RaM and µS for compartment IaS, such that µ > µS.

The difference in disease severity and state of awareness affects the transmission rates

and we deőne the following matrix to summarize transmission rates between different
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types of susceptible and infectious individuals

M(t) =

[︄
unaware IM unaware IS aware IM aware IS

unaware S M11(t) M12(t) M13(t) M14(t)

aware S M21(t) M22(t) M23(t) M24(t)

]︄

. (1.3)

Here [M]11 captures transmission of infection from unaware IM to unaware S, [M]12 from

unaware IS to unaware S, [M]13 from aware IM to unaware S, [M]14 from from aware IM

to unaware S. Similarly, the second row of the matrix captures transmission of infection

to susceptible individuals who are aware, Sa. To sum up,

S + IM
[M]11
−→ E + IM , S + IS

[M]12
−→ E + IS

S + IaM
[M]13
−→ E + IaM , S + I

a
S

[M]14
−→ E + IaS

Sa + IM
[M]21
−→ Ea + IM , S

a + IS
[M]22
−→ Ea + IS

Sa + IaM
[M]23
−→ Ea + IaM , S

a + IaS
[M]24
−→ Ea + IaS.

The transmission model with awareness is given by the following system of ordinary
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differential equations

dS(t)

dt
= −S(t)λinf(t)− kS(t)λaware(t) + µS

a(t)

dE(t)

dt
= S(t)λinf(t)− αE(t)− kE(t)λaware(t) + µE

a(t)

dIM(t)

dt
= pαE(t)− γMIM(t)− kIM(t)λaware(t) + µI

a
M(t)

dIS(t)

dt
= (1− p)αE(t)− νIS(t)− IS(t)λaware(t) + µSI

a
S(t)

dID(t)

dt
= νIS(t)− γSID(t)− ηID(t)

dSa(t)

dt
= −Sa(t)λainf(t) + kS(t)λaware(t)− µS

a(t)

dEa(t)

dt
= Sa(t)λainf(t)− αE

a(t) + kE(t)λaware(t)− µE
a(t)

dIaM(t)

dt
= pαEa(t)− γMI

a
M(t) + kIM(t)λaware(t)− µI

a
M(t)

dIaS(t)

dt
= (1− p)αEa(t)− νaIaS + IS(t)λaware(t)− µSI

a
S(t)

dIaD(t)

dt
= νaIaS(t)− γ

a
SI
a
D(t)− η

aIaD(t)

dRM(t)

dt
= γMIM(t)− kRM(t)λaware(t) + µR

a
M(t)

dRaM(t)

dt
= γMI

a
M(t) + kRM(t)λaware(t)− µR

a
M(t)

dRS(t)

dt
= γSID(t) + γ

a
SI
a
D(t),

(1.4)

where

λaware(t) = δ · [ID(t) + I
a
D(t)] (1.5a)

λinf(t) = [M(t)]11IM(t) + [M(t)]12IS(t) + [M(t)]13I
a
M(t) + [M(t)]14I

a
S(t) (1.5b)

λainf(t) = [M(t)]21IM(t) + [M(t)]22IS(t) + [M(t)]23I
a
M(t) + [M(t)]24I

a
S(t). (1.5c)

For the population where disease-aware individuals do not use self-imposed measures

matrix M takes the following form

M0(t) =
β

NT (t)

[︄

σ 1 σ 1

σ 1 σ 1

]︄

(1.6)
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with NT (t) = S(t) + E(t) + IM(t) + IS(t) + Sa(t) + Ea(t) + IaM(t) + I
a
S(t) + RM(t) +

RaM(t) + RS(t).

Estimates of epidemiological parameters were obtained from previous studies and are

shown in Table 1 in the main text.

Prevention measures

We considered short-term government intervention aimed at fostering social distancing

in the population and a suite of measures self-imposed by disease-aware individuals, i.e.,

mask-wearing, handwashing, and self-imposed social distancing.

Mask-wearing

Mask-wearing does not reduce the individual’s susceptibility because laypersons, i.e., not

medical professionals, are unfamiliar with correct procedures for its use and may often

engage in face-touching and mask adjustment.[36] The efficacy of mask wearing is de-

scribed by a reduction in infectivity of disease-aware infectious individuals (IaS and IaM)

and is represented by a factor r1, 0 ≤ r1 ≤ 1. The respective transmission matrix is given

by

M1 =
β

NT (t)

[︄

σ 1 r1σ r1

σ 1 r1σ r1

]︄

(1.7)

with NT (t) = S(t) + E(t) + IM(t) + IS(t) +RM(t) +RS(t) + Sa(t) + Ea(t) + IaM(t) +

IaS(t) + R
a
M(t).

Handwashing

Since infectious individuals may transmit the virus to others without direct physical con-

tact, we assume that handwashing only reduces one’s susceptibility. The efficacy of hand-

washing is described by a reduction in susceptibility (i.e., probability of transmission of

infection per single contact) of susceptible disease-aware individuals (Sa) and is repre-

sented by a factor r2, 0 ≤ r2 ≤ 1. The respective transmission matrix is given by

M2 =
β

NT (t)

[︄

σ 1 σ 1

r2σ r2 r2σ r2

]︄

(1.8)
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with NT (t) = S(t) + E(t) + IM(t) + IS(t) +RM(t) +RS(t) + Sa(t) + Ea(t) + IaM(t) +

IaS(t) + R
a
M(t).

Self-imposed social distancing

Disease awareness may also lead individuals to practice social distancing, i.e., maintaining

distance to others and avoiding congregate settings. Social distancing of disease-aware

individuals is modeled as a reduction in their contact rate. As a consequence, this measure

leads to a change in mixing patterns in the population. We model the reduction in contact

rate of aware individuals by using the parameter r3, 0 ≤ r3 ≤ 1. Recall that individuals

who recovered from a mild infection may still think of themselves as susceptible, which

implies that they are affected by the awareness contagion process. They can, therefore,

practice social distancing after they recover. The respective transmission matrix is given

by

M4 =
β

N(t) + r3Na(t)

[︄

σ 1 r3σ r3

r3σ r3 r
2
3σ r

2
3

]︄

, (1.9)

where N(t) = S(t) + E(t) + IM(t) + IS(t) + RM(t) + RS(t) and Na(t) =

Sa(t) + Ea(t) + IaM(t) + I
a
S(t) + R

a
M(t).

Short-term government-imposed social distancing

Governments may decide to promote social distancing policies through interventions such

as school and workplace closures, or by issuing a ban on large gatherings and issuing stay-

at-home orders [12, 17, 18, 46], if the number of diagnosed individuals exceeds a certain

threshold. Such a policy will cause a community-wide contact rate reduction, regardless

of the awareness status. We model government-imposed social distancing by reducing

the average contact rate in the population by a factor r4, 0 ≤ r4 < 1. This intervention

is initiated if the number of diagnosed individuals is above a certain threshold Ĩ (e.g.,

10 − 1000 individuals) and terminates after a őxed period of time, denoted tintervention

(e.g., 1 − 13 months). As such, we assume that the intervention is implemented early

in the epidemic. If tstart is the time for which ID(t) + IaD(t) ≥ Ĩ, then the transmission
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matrix is given by

M5(t) =
β

NT (t)
· r̃ ·

[︄

σ 1 σ 1

σ 1 σ 1

]︄

, (1.10)

where

r̃ =

⎧

⎨

⎩

r4, if ID(t) + IaD(t) ≥ Ĩ and t ≤ tstart + tintervention

1, otherwise

and NT (t) = S(t) + E(t) + IM(t) + IS(t) + RM(t) + RS(t) + Sa(t) + Ea(t) + IaM(t) +

IaS(t) + R
a
M(t).

76



Impact of self-imposed measures on a COVID-19 epidemic: Supplement

S2: Impact of awareness process on the probability of

infection

We compared changes in the probability of infection for individuals who are aware and

who are unaware over the studied period of Tmax = 2.5 years for various scenarios of

self-imposed measures and government-imposed social distancing (Figure S1). The prob-

abilities were calculated using the following equations

Probability of infection of aware individuals =1− exp
[︃

−

∫︂ Tmax

0

λinf(t) dt

]︃

(1.11a)

Probability of infection of unaware individuals =1− exp
[︃

−

∫︂ Tmax

0

λainf(t) dt

]︃

, (1.11b)

where λinf(t) and λainf(t) are given by Eq. (5b) and (5c).

We observe that when aware individuals adapt mask wearing, the probability of infection

is equally reduced for aware and unaware individuals, as it reduces the infectivity of a part

of the population. This measure is most efficient when the rate of awareness spread is

fast and infectivity reduction due to mask use is above 40%.

In the case of handwashing, the probability is reduced for both aware and unaware in-

dividuals. However, aware individuals experience a larger reduction. Handwashing yields

direct protection to aware individuals, while unaware individuals beneőt indirectly from

the overall reduced infection level. Similar to mask-wearing, the infection probabilities for

both aware and unaware individuals decrease drastically when the efficacy of handwashing

exceeds 40% and the rate of awareness spread is fast.

Effects of self-imposed social distancing depend on the rate of awareness spread as well.

While aware individuals have reduced probability of infection regardless of the rate of

awareness spread, the unaware individuals will only beneőt from it when the rate of

awareness spread is fast. This is due to modiőed mixing patterns that emerge as a result

of heterogeneous contact rates.

Finally, government-imposed short-term social distancing which lasts for 3 months has no

effect on acquisition rates for aware and unaware individuals. The respective probability

of infection is marked with dashed red line in Figure S1.

77



Chapter 1
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Impact of awareness process on the probability of infection. TOP panels were ob-
tained for a slow rate of awareness spread. BOTTOM panels were obtained for a fast
rate of awareness spread. The dashed red line indicates probability of infection in the
model with awareness and no prevention measures.
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S3: Sensitivity analyses of the baseline transmission model

To allow for the uncertainty in the parameters of the baseline transmission model, we

conducted sensitivity analyses with respect to the proportion of infectious individuals

with mild disease (Figure S2), relative infectivity of infectious individuals with mild dis-

ease (Figure S3), recovery period of infectious individuals with mild disease (Figure S4),

delay from onset of infectiousness to diagnosis for infectious individuals with severe dis-

ease (Figure S5), and basic reproduction number (Figure S6). Since our őndings in the

main text demonstrate that the impact of self-imposed measures is similar across all

measures that we considered, we present here only sensitivity analyses for mask-wearing

and government-imposed social distancing. All őg/chapter1/ were made for a fast rate

of awareness spread. In each őgure, the panels show the relative reduction in the peak

number of diagnoses, the attack rate (proportion of the population that recovered or died

after severe infection) and the time until the peak number of diagnoses. In the top row

of panels, the efficacy of mask-wearing was varied between 0% and 100%. In the bottom

row of panels, the efficacy of government-imposed social distancing was varied between

0% and 100%. In the context of this study, the efficacy of social distancing denotes the

reduction in the contact rate. The efficacy of mask-wearing is given by the reduction

in infectivity. The simulations were started with one case. Government-imposed social

distancing was initiated after 10 diagnoses and lifted after 3 months. For őxed parameter

values, see Table 1 in the main text. The parameter which was varied in the sensitivity

analyses and the respective range is indicated in each őgure.

The main őndings of the sensitivity analyses for government-imposed social distancing

are

• the time until the peak number of diagnoses does not depend much on any of the

explored parameters, except for the basic reproduction number

• the relative reduction in the peak number of diagnoses increases and the attack

rate decreases with increasing proportion of infectious individuals with mild disease,

decreasing relative infectivity of infectious individuals with mild disease, shorter

recovery period of individuals with mild disease and shorter delay from onset of

infectiousness to diagnosis for individuals with severe symptoms
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The main őndings of the sensitivity analyses for mask-wearing are

• for all explored parameter ranges there is a value of efficacy of mask-wearing for

which a large epidemic can be prevented

• this critical value of efficacy is very sensitive to the basic reproduction number;

smaller value of efficacy is required to prevent a large epidemic for smaller R0

• the critical value decreases with decreasing relative infectivity of infectious individu-

als with mild disease and shorter delay from onset of infectiousness to diagnosis for

individuals with severe symptoms and is not sensitive to the remaining parameters
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Sensitivity analyses of the baseline transmission model with respect to the propor-
tion of infectious individuals with mild disease.
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Sensitivity analyses of the baseline transmission model with respect to the relative
infectivity of infectious individuals with mild disease.
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Sensitivity analyses of the baseline transmission model with respect to the recovery
period of infectious individuals with mild disease.
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Sensitivity analyses of the baseline transmission model with respect to the delay
from onset of infectiousness to diagnosis for infectious individuals with severe dis-
ease.
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Sensitivity analyses of the baseline transmission model with respect to the basic
reproduction number.
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Figure S3: Sensitivity analyses of the transmission model with disease awareness.
Part 1.
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Part 2.
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Impact of community hand hygiene interventions on respiratory tract infections

Abstract

Background: Hand hygiene is amongst the most fundamental and widely-used

behavioural measures to reduce the person-to-person spread of human pathogens and

its effectiveness as a community intervention is supported by evidence from randomised

trials. However, a theoretical understanding of the relationship between hand hygiene

frequency and change in risk of infection is lacking.

Methods and Findings: Using a simple model-based framework for understanding the

determinants of hand hygiene effectiveness in preventing viral respiratory tract infections

we show that a crucial, but overlooked, determinant of the relationship between hand

hygiene frequency and risk of infection via indirect transmission is persistence of viable

virus on hands. If persistence is short, as has been reported for inŕuenza, hand-washing

needs to be performed very frequently or immediately after hand contamination to

substantially reduce the probability of infection. When viable virus survival is longer

(e.g., in the presence of mucus or for some enveloped viruses) less frequent hand

washing can substantially reduce the infection probability. Immediate hand washing after

contamination is consistently more effective than at őxed-time intervals.

Conclusions: Our study highlights that recommendations on hand hygiene should

be tailored to persistence of viable virus on hands and that more detailed empirical

investigations are needed to help optimise this key intervention.

Keywords: hand hygiene, respiratory infections, community, inŕuenza, modelling
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Introduction

Promotion of hand hygiene is a key public health intervention in preventing the spread of

infectious diseases. Since the mid-1800s, when Ignaz Philip Semmelweis demonstrated

that hand washing could dramatically reduce maternal mortality due to puerperal fever

[1], hand hygiene has been the cornerstone of infection prevention and control policies. In

hospital settings, hand hygiene has played a major role in successfully controlling hospital-

acquired infections, especially those caused by methicillin-resistant Staphylococcus aureus

[2]. In the community, there is evidence from randomized controlled trials that hand

hygiene interventions can be effective in reducing both the risk of diarrhoeal disease [3]

and respiratory tract infections [4ś6].

Hand hygiene is simple, low-cost, minimally disruptive and, when widely adopted, may

lead to substantial population-level effects [5, 7]. While randomized controlled trials of

hand hygiene interventions in the community provide evidence that such interventions

are effective in reducing the incidence of respiratory tract infections, reported effect

sizes are highly variable [4, 6]. It is unclear to what extent this variability is explained

by success in achieving substantial changes in hand hygiene behaviour in these trials.

Understanding how the effectiveness of hand hygiene in reducing transmission scales

with hand hygiene frequency is important for assessing the extent to which interventions

that aim at achieving a large and sustained increase in community hand hygiene can

contribute to infection suppression.

In this study, we took a theory-based approach and developed a simple mechanistic

mathematical model to understand the relationships between the various components

of respiratory tract infection transmission pathways involving hand contamination. We

aimed to quantify the expected impact of different hand hygiene behaviours on risks of

respiratory tract infections. Our work is motivated by published data on the survival of

inŕuenza A on human őngers. We therefore focus on viral respiratory tract infections

but our model also applies to pathogens for which similar assumptions apply. Finally, we

consider the implications of the outcomes of these analyses for the potential contribution

of intensifying community hand hygiene to the suppression of respiratory tract infections.
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Methods

Overview

We consider human pathogens where transmission is mediated by contaminated hands.

We neglect direct droplet and aerosol transmission. Hands are assumed to become con-

taminated with infectious material via contact with contaminated surfaces or an infected

person. In the absence of hand washing, hands do not remain contaminated indefinitely;

instead, as has been shown experimentally, the probability of remaining contaminated

and capable of transmitting infection declines over time (Figure 1, top panel) [8, 9]. If

contaminated hands of a susceptible host make contact with the host’s mucous mem-

branes in the eyes, nose or mouth there is some probability of the host becoming infected.

Effective hand washing interrupts this process by removing viable virus from the hands.

An immediate consequence of this conceptualisation is that the time interval between

Time

Potential infection 
from hands via 
face-touching

Pr
ob

ab
ili

ty
 o

f i
nf

ec
tio

n

Hand 
contamination

Hand wash

Potential infection event prevented by hand washing
Potential infection event (not prevented)

Figure 1: Hand hygiene model. Illustration of potential infection events from hands via
face-touching, hand contamination events, and hand washing events. Hand contamina-
tion events cause a stepwise increase in the probability of infection resulting from face-
touching events, which then decreases exponentially with time. Effective hand washing
reduces the probability of infection to zero during subsequent face-touching if no further
hand contamination events occur. An infection may occur between a hand contamina-
tion event and hand washing, depending on the probability of infection at the moment
of face-touching.
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the hands becoming contaminated and the potential transmission to the host can have

a critical impact on how effective a given frequency of hand washing will be at inter-

rupting transmission (Figure 2). Given a certain probability of infection, the time interval

between hand contamination and transmission to the host’s mucosa tends to be longer

if pathogen persistence on hands is long and vice versa. If this time interval is relatively

long, i.e., the virus survives on hands for a long time, regular effective hand hygiene will

have a high chance of blocking potential transmission events (red squares in Figure 2

panel A) in the absence of hand hygiene. In contrast, if this time interval is short, i.e.

the pathogen persists for only a short amount of time, much more frequent hand hygiene

will be needed to block an appreciable proportion of transmission events (Figure 2 panel

B).


















Figure 2: Long versus short time interval between hand contamination and infec-
tion with regular hand washing. A) When there are long time intervals between hand
contamination and potential infection from hands via face-touching, hand washing can
block many infection events and substantially reduce the risk of infection. B) When there
are short time intervals between hand contamination and face-touching, it is likely that
hand washing can disrupt only a few infections.
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Hand hygiene scenarios

We explored the effect of hand hygiene on the probability of infection and considered

two hand washing schemes that are distinguished by different timings of hand washing:

1. őxed-time hand washing (uniformly at őxed time intervals)

2. event-prompted hand washing (with a delay after hand contamination events).

Mathematical model

We assumed that hands of susceptible individuals become contaminated at random.

These contamination events are assumed to occur independently of each other, and to

follow a Poisson distribution with a mean of λc events per hour. Once contaminated, we

assumed that in the absence of hand washing there is a constant rate at which hands get

decontaminated. Thus, the probability of the virus persisting on hands at time t after

contamination, P (t), is assumed to decay exponentially with a half-life of T1/2. This is

consistent with experimental data for inŕuenza A [9]. We further assumed that, in a

given time interval [0, T ], individuals touch their face at random times t1, . . . , tF leading

to potential self-infection events that are assumed to occur independently of each other,

and follow a Poisson distribution with a mean of λf events per hour. The probability that

a single face-touching contact with contaminated hands actually leads to transmission

is denoted by ϵ. The force of infection that a susceptible individual at time t becomes

infected is λinf(t) = ϵP (t). The cumulative probability of infection over a given time

period T is then given by: 1 − e−
∑︁F
i=1 ϵP (ti ). We assumed that when hand washing is

performed after the last hand contamination event and before a face-touching event at

time ti , the respective probability of pathogen persistence P (ti) is reduced to zero. Thus,

hand washing is assumed to remove all virus on contaminated hands completely after one

wash, regardless of the number of hand contamination events that took place between

hand washing events. A more detailed mathematical description of the model is included

in the supplementary material (pp. 15).

Parameters

When available, parameter estimates were obtained from the literature. Otherwise, we

performed sensitivity analyses where parameters were varied within plausible ranges (see
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Table 1).

The probability of transmission per face-touching event, ϵ, was constrained to meet a

őxed probability of infection. In our main analysis, we assumed a cumulative probability of

infection of 10% over a time period of 12 hours. This is roughly based on secondary at-

tack rates for Inŕuenza, inŕuenza-like-illnesses and acute respiratory illness in household

studies [10ś13]. In sensitivity analyses, we examine the results for cumulative probabilities

of infection of 30% and 50%.

In the őxed-time hand washing scheme, we varied time intervals between hand washing

to be 5 min to 6 hours. For event-prompted hand washing, the delay of hand washing

after hand contamination events was varied from 1 min to 6 hours.

There is little published data on the rate of hand contamination events susceptible individ-

uals are exposed to when in contact with infected individuals who are shedding respiratory

viruses. In a direct observation study conducted by Zhang et al [14], surface touching be-

haviour in a graduate student office was recorded. Approximately 112 surface touches per

hour were registered. Another study by Boone et al [15] found that the inŕuenza virus was

detected on 53% of commonly touched surfaces in homes with infected children (using

reverse transcriptase-polymerase chain reaction (RT-PCR)). Informed by these values,

we took 60 events per hour as the upper bound for the rate of hand contamination events

λc . We chose 1 event per hour as the lower bound. In our main analyses, we used a rate

of 4 hand contamination events per hour.

In [9], the survival of inŕuenza A on human őngers was experimentally investigated. We

őtted exponential decay curves to these results in order to determine the half-life of

the probability of persistence of H3N2 for two viral volumes, 2 µL and 30 µL (Table 1

and supplementary material). We use these values as examples for the half-life of the

probability of pathogen persistence. In addition, we vary the half-life of the probability of

persistence from 1 to 60 min in our analysis.

Model analyses and outcomes

The model output is the cumulative probability of a susceptible person becoming infected

in twelve hours and we will refer to it subsequently as simply the probability of infection.

We investigated the impact of hand washing on the probability of infection for different

hand contamination rates. In addition, we compared the two hand washing schemes

(őxed-time vs. event-prompted) to őnd the optimal hand washing strategy that will lead
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Table 1: Parameter values

Value Source

Time period 12 hours Assumed
Rate of infection events through face-touching (per hour) λf 10 [16]*

Cumulative probability of infection (in 12 hours) 10 % (30 %, 50 %)† Assumed
Probability of transmission per face-touching event ϵ Computed from cumulative probability of infection
Rate of hand contamination events (per hour) λc 4 hour-1 (1ś60 hour-1)† [14, 15]
Time between hand washing events (őxed-time) tF 5, 15, 30 min, 1 hour, 2, 6 hours Assumed
Delay of hand washing after hand contamination events tD 1, 5, 15, 45 min, 1 hour, 2, 6 hours Assumed
Half-life of virus persistence T1/2 1ś60 min Varied
Half-life of H3N2 persistence for 2 µL of viral inoculum 5.4 min [9]
Half-life of H3N2 persistene for 30 µL of viral inoculum 36.1 min [9]

* Mean face-touching frequency involving mucous membranes (eyes, mouth, nose)
† Sensitivity analyses

to the greatest reduction of the probability of infection. The model was implemented in

R version 3.6.3 [17]. The code reproducing the results of this study is available at

https://github.com/tm-pham/covid-19_handhygiene.

Results

Impact of half-life of pathogen persistence on probability of infection

Viral persistence on hands plays a key role on the effect of increasing hand hygiene fre-

quency. The longer the virus survives on the hands, the larger the impact of increasing

hand washing uptake on the probability of infection. For example, when the half-life of

viral persistence is 1 min, hand washing every 15 min reduces the probability of infection

from 10 % to 9.2 % (Figure 3 A). When the half-lives increase to 5.4 min and 36.1 min

(equivalent to the half-lives of H3N2 persistence of 2µL and 30µL viral inoculum, respec-

tively), the same hand washing frequency decreases the probability of infection to 6.9 %

and to 4.6 %, respectively. Consequently, fewer hand washes are necessary to reduce the

probability of infection by 50 % for long compared to short durations of viral persistence

(see Figure S2). This observation can be explained by the fact that the shorter the virus

persists on hands, the shorter the intervals between hand contamination and transmis-

sion events tend to be (with a higher transmission probability per contact needed for the

same cumulative probability of infection, see Figure S4) and, therefore, the less likely

hand washing is able to interrupt infection events. Figure S3 shows that delay between

hand contamination and hand washing needed to prevent 50% of transmissions is shorter

when the half-life of viral persistence on the hands is shorter, conőrming the hypothesis

that timely hand washing is especially crucial if the virus survives only a short time on
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hands. Furthermore, the effect of hand washing on reducing the probability of infection

plateaus with increasing duration of virus persistence (Figure 3). This can be attributed

to the hand contamination rate, i.e. new events occur before the virus decays.
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Figure 3: Impact of half-life of viral persistence on probability of infection for differ-
ent hand washing schemes and frequencies. (A) Fixed-time hand washing (B) Event-
prompted hand washing. In this graph, we assumed that a susceptible individual is exposed
to a baseline probability of infection of 10% if no hand washing is performed within the
time period of twelve hours. The dashed lines represent the half-life of viral persistence
for H3N2 inoculum volumes of 2 µL and 30 µL (calculated from [9]). For each half-life
value, the probability of transmission per face-touching event ϵ was determined for a
probability of infection of 10% in the case of no hand washing. The probability of infec-
tion for the different hand washing frequencies/delays was then computed using this ϵ
value. Hand contamination events are assumed to occur on average 4 times per hour.
Sensitivity analyses with different values for baseline probabilities of infection as well as
the half-life calculations are presented in the supplementary material.

Comparison of hand washing schemes

The second notable őnding from the model is that event-prompted hand washing is

more effective than őxed-time hand washing in reducing the probability of infection. We

illustrate this in Figure 4 by comparing both schemes using four different hand washing

frequencies/delays, each with approximately the same average number of hand washing

events performed per hour. For example, hand washing regularly every őfteen minutes is

compared to event-prompted hand washing one minute after each hand contamination
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event (set at four per hour). If the half-life of viral persistence is similar to 2 µL of H3N2

inoculum (T1/2 = 5.4min), the baseline probability of infection of 10%(no hand washing)

is reduced to about 6% and 2% when hand washing is performed every 15 min and one

minute after hand contamination events, respectively. The differences between the two

hand washing schemes are less pronounced if hand washing is performed less frequently

or with a longer delay after hand contamination events since the two hand washing

schemes become more similar. It follows that delays between hand contamination and

hand washing decrease the effect of hand washing on reducing the probability of infection.

Comparison of hand washing schemes

The second notable őnding from the model is that event-prompted hand washing is

more effective than őxed-time hand washing in reducing the probability of infection. We

illustrate this in Figure 4 by comparing both schemes using four different hand washing

frequencies/delays, each with approximately the same average number of hand washing

events performed per hour. For example, hand washing regularly every őfteen minutes is

compared to event-prompted hand washing one minute after each hand contamination

event (set at four per hour). If the half-life of viral persistence is similar to 2 µL of H3N2

inoculum (T1/2 = 5.4min), the baseline probability of infection of 10%(no hand washing)

is reduced to about 6% and 2% when hand washing is performed every 15 min and one

minute after hand contamination events, respectively. The differences between the two

hand washing schemes are less pronounced if hand washing is performed less frequently

or with a longer delay after hand contamination events since the two hand washing

schemes become more similar. It follows that delays between hand contamination and

hand washing decrease the effect of hand washing on reducing the probability of infection.

Another important parameter that affects the effect of hand hygiene is the hand

contamination rate. Figure 5 shows the increase in hand hygiene frequency required to

halve the probability of infection from 10% (no hand wash) to 5%. When the hand

contamination rate is relatively low (i.e., less than 10 contamination events per hour),

fewer hand washes are needed to reduce the probability of infection if hand washing

is event-prompted. In addition, the longer the virus persists on hands, the smaller the

number of hand washing events are necessary to reduce the probability of infection.
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Figure 4: Comparison of the impact of the two hand washing schemes on the
cumulative probability of infection. Hand washing at őxed time intervals and event-
prompted hand washing (with a time delay) with similar average number of hand washing
events per hour are compared for a hand contamination rate of λc = 4 hour-1. A baseline
probability of infection of 10% is assumed when there is no hand washing. The dashed
lines represent the half-life values of H3N2 persistence for 2 µL and 30 µL inoculum
volumes [9].
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This effect is less pronounced for event-prompted than for time-őxed hand washing,

re-emphasizing the őnding that when hand contamination events occur very frequently,

hand washing would need to be very frequent to have a substantial impact on reducing

the probability of infection (e.g., at least őve times per hour to prevent 50% of

transmission in the case of a half-life of 36.1 min). In this case, susceptible individuals

are exposed to a continuous risk of hand contamination and hand washing has only a

limited impact on reducing the risk of infection.

Our qualitative conclusions do not change with respect to different baseline probabilities

of infection and hand contamination rates (see supplementary material for sensitivity

analyses with respect to these parameters).
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Figure 5: Number of hand washes necessary to prevent 50% of transmissions. For
a baseline probability of infection of 10%, the number of hand washing events necessary
to reduce the probability of infection to 5% was computed for time-őxed and event-
prompted hand washing and a range of hand contamination rates. We used the half-life
of H3N2 persistence for viral inoculum volumes of 2 µL and 30 µL (calculated from [9]).
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Discussion

Our study provides new insights into factors that affect the effectiveness of hand hygiene

behaviour in reducing the probability of infection. Firstly, we found that the shorter the

virus survives on hands, the less effective increasing hand washing frequency is in reduc-

ing infection. The logic behind this is that when the virus dies off quickly before hand

washing is performed, the time intervals between hand contamination and transmission

tend to be shorter and the respective transmission probability per contact needs to be

higher for the same cumulative probability of infection. Secondly, the contact frequency

with contaminated surfaces is crucial for the effect of hand washing. The more often

hands become contaminated, the more frequently hands need to be washed to reduce

infection risk. Lastly, when hands are not constantly contaminated, event-prompted hand

washing is more efficient than őxed-time hand washing given the same hand washing fre-

quency. This is because delays in hand washing after contamination of hands in őxed-time

compared to event-prompted hand washing tend to be longer, and, during this delay, sus-

ceptible hosts may become infected through face-touching.

These őndings provide additional insights into the modest and heterogeneous effects of

hand hygiene reported by hand hygiene trials aimed at reducing respiratory tract infec-

tions in the community [4, 6, 18], and also provide pointers to potentially more effective

hand hygiene interventions. These trials are challenging to conduct due to the diffi-

culties in implementing behaviour change, including poor adherence to hand washing

recommendations [19], and loss to follow-up [20, 21]. However, given the low-cost and

minimally-disruptive nature of the intervention we believe there would be considerable

value in building on this experimental work and the theory outlined above to develop

improved hand-hygiene interventions. This could offer considerable public health beneőt

both in interpandemic and pandemic periods.

Since the hand contamination rate directly impacts the effect of hand hygiene, speciőc

hand hygiene advice should cater for different situations where surface contamination

differs markedly. For example, contacts in the community and in a household with an in-

fectious person would likely result in very different hand contamination rates. In the őrst

case, where hand contamination events occur at a moderate rate, hand washing needs

to be performed frequently or immediately after hand contamination events in order to

substantially reduce the probability of infection. While individuals may not always be
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aware of all hand contamination events, event-prompted hand washing can be facilitated

by installing or providing hand sanitisers in public areas with high-touch surface areas,

such as public transportation and supermarkets, to reduce the delay in hand cleansing.

Furthermore, in the second case, where hands become contaminated very frequently, a

substantial reduction in the probability of infection is unlikely to be attained unless hand

washing frequency is increased drastically, i.e., every one to őve minutes. Because hand

washing at such a high rate is not practical, the recommendation in this scenario is to

regularly clean the environment and/or isolate infected individuals to reduce hand con-

tamination events.

We performed sensitivity analyses with varying parameter values and distributions to

ensure our conclusions are robust on a qualitative level. Nevertheless, our results have

several limitations. Firstly, we speciőcally modelled indirect transmission routes via hands

and did not consider direct droplet and aerosol transmission. To date, there is little known

about the relative importance of the various transmission routes of respiratory pathogens

[22]. When other routes are considered, the effect of hand hygiene will be reduced. Sec-

ondly, there is limited literature on many parameters used in the model, which prevents

us from making more precise quantitative conclusions. These include the probability of

infection with contaminated hands, the survival of pathogens on contaminated hands

and infective dose. Furthermore, we modelled all infection events with the same rate of

decay, i.e., the same probability of pathogen persistence on the hands. In reality, hand

contamination events are likely to be heterogeneous with small droplets persisting only

a short amount of time and heavy contamination with mucus decaying at a slower rate.

In addition, we speciőcally focus on viral respiratory infections and assumed an exponen-

tial decay for the probability of viral persistence. While our model can be applied to all

pathogens where hand hygiene is relevant for reducing respiratory tract infections, our

results are only applicable for pathogens with a similar persistence behaviour. However,

our model can be easily adapted if information on the persistence behaviour of speciőc

pathogens is available.

Conclusion

To conclude, in this study we highlight the important considerations in hand hygiene

behaviour to improve its effect in stopping the community spread of respiratory tract
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infections. Recommendations on hand hygiene should be tailored to the expected hand

contamination rate and the half-life of virus persistence on hands.
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S1 Model

We assumed that hands of susceptible individuals get contaminated at random. These

contamination events are assumed to occur independently of each other, and follow a

Poisson distribution with a mean of λc events per hour. The probability of the virus to

persist on hands at time t after contamination, P (t), is assumed to decay exponentially

with a half-life of T1/2. This is consistent with experimental data for inŕuenza A [9].

We further assumed that, in a given time interval [0, T ] individuals touch their face at

random times t1, . . . , tF leading to potential infection events that are assumed to occur

independently of each other, and follow a Poisson distribution with a mean of λf events

per hour. The probability that a single face-touching contact with contaminated hands

actually leads to transmission is denoted by ϵ. Thus, the probability that a single face-

touching contact leads to transmission accounting for the probability of virus persistence

is ϵP (ti) The cumulative probability of infection over the time period T is given by:

1− e−
∑︁F
i=1 ϵP (ti )

We assume that when hand washing is performed after the last hand contamination event

and before a face-touching event at time ti , the respective probability of virus persistence

P (ti) is reduced to zero.

Probability of viral persistence on contaminated hands

The decay of the probability of viral persistence on contaminated hands is modeled as an

exponential decay with probability distribution:

fdecay(t) = λde
−λd t (2.1)

where λd is the decay constant. The probability that virus will die off within time t is

given by the integral of the decay distribution function from 0 to t:

∫︂ t

0

fdecay(t) =

∫︂ t

0

λde
−λd t
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The probability that the virus will persist at time t is one minus the probability that it

will die off within the same period:

P (t) = 1−

∫︂ t

0

fdecay(t)

= 1−

∫︂ t

0

λde
−λd t

= e−λd t

The average survival time (or mean lifetime) is given by:

τ =
1

λd
=
T1/2

ln 2
(2.2)

S2 Estimation of virus half-life

We estimated the half-life of viral survival on contaminated hands using experiments con-

ducted by Thomas et al,[9] where 2µL and 30µL of inŕuenza A (H3N2) viral suspension

mixed with respiratory secretions were deposited on őnger tips. The half-lives were cal-

culated using data from both the 2µL ([9] Figure 2) and 30µL ([9] Figure 3) H3N2 viral

inoculum experiments with an exponential decay model:

n(t) = n0 · e
−λd t

where λd is the decay rate. The decaying quantity, n(t), represents the number of

őngers with recoverable infectious viral particles and is assumed to have an initial value

of n0 at time zero.

In the experiment with 2µL inoculum, 18 contaminated őngers from six individ-

uals were tested for the presence of infectious virus at 1, 3, 5, 15 and 30 min after initial

contamination. Figure S1 depicts the data and the őtted curve for the 2µL inoculum.

The decay rate was estimated to be λ(1)d ≈ 0.1279. The half-life is therefore given by

T
(1)
1/2 =

ln(2)

λ
(1)
d

= 5.4min.

For 30µL of viral inoculum, a total of 12 őngers were contaminated and the

presence of H3N2 was tested after 15 min. We estimated the half-life by using these
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two data points (see Figure 3 in [9]). Thus, λ(2)d = − ln(9/12)
15

≈ 0.0192. Therefore,

T
(2)
1/2 =

ln(2)

λ
(2)
d

= 36.1min.
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Figure S1: Influenza A(H3N2) virus survival on fingers over time. Data was retrieved
from [9]. A 2 µL drop of inŕuenza A (H3N2) viral suspension mixed with respiratory
secretions was deposited on őngertips. Bars represent the absolute number of őngers
from which infectious virus was recovered. The red line represents the exponential decay
curve n(t) = 15.65e−0.1279t őtted to this data .

S3 Hand washing and half-life of virus persistence

The shorter the half-life of virus persistence, the higher the frequency of hand washing

necessary in order to prevent 50% of infections (see Figure S2). In addition, the time

intervals between hand contamination and hand washes have to be shorter in order to

prevent 50% of the infections (see Figure S3.
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Figure S2: Number of fixed-time hand washes necessary to prevent 50% of trans-
missions. For each half-life value of virus persistence, the number of hand washes that
is necessary to prevent 50% of transmission was computed for a baseline probability of
infection of 10%. Hand contamination events are assumed to occur on average 4 times
per hour.
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Figure S3: Cumulative time between hand contamination events and fixed-time
hand washes to prevent 50% of transmissions. For each half-life value of virus per-
sistence, the cumulative time between hand contamination events and hand washes for
preventing 50% of transmission was computed for a baseline probability of infection of
10%. Hand contamination events are assumed to occur on average 4 times per hour.
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S4 Transmission probability per contact and half-life of virus

persistence

Figure S4 shows that the shorter the virus persists on hands, the higher the probability of

transmission per face-touching contact has to be if the cumulative probability of infection

is assumed to be őxed.
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Figure S4: Probability of transmission per face-touching contact for different half-
lives of virus persistence. For a baseline cumulative probability of infection of 10% and
each half-life value of virus persistence, the probability of transmission per single face-
touching contact was cmputed. Hand contamination events are assumed to occur on
average 4 times per hour.

S5 Sensitivity analyses

Cumulative probability of infection

We performed sensitivity analyses for different probabilities of infection and present here

the results for probability of infection = 30% and probability of infection = 50% (see

Figure S5śS6).

Figure S7 shows the impact of hand contamination rate on the number of hand washes

that are necessary to prevent 50% of transmissions. A baseline probability of infection of

30% was used.
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Figure S5: Impact of half-life of probability of virus persistence on probability of
infection for different hand washing schemes and frequencies. (A) Fixed-time hand
washing (B) Event-prompted hand washing. The dashed lines represent the half-life of
probability of persistence for H3N2 for viral inoculum volumes of 2 µL and 30 µL (cal-
culated from [9]). For each half-life value of the virus, the probability of transmission
per face-touching event ϵ was determined for a probability of infection = 30% in the
case of no hand washing. The probability of infection for the different hand washing fre-
quencies/delays was then computed using this ϵ value. Hand contamination events are
assumed to occur on average 4 times per hour.
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Figure S6: Impact of half-life of probability of virus persistence on probability of
infection for different hand washing schemes and frequencies. (A) Fixed-time hand
washing (B) Event-prompted hand washing. The dashed lines represent the half-life of
probability of persistence for H3N2 for viral inoculum volumes of 2 µL and 30 µL (cal-
culated from [9]). For each half-life value of the virus, the probability of transmission
per face-touching event ϵ was determined for a probability of infection = 50% in the
case of no hand washing. The probability of infection for the different hand washing fre-
quencies/delays was then computed using this ϵ value. Hand contamination events are
assumed to occur on average 4 times per hour.
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Figure S7: Number of hand washes necessary to decrease the cumulative probability
of infection by 50%.

Hand contamination event rate

We performed sensitivity analyses for different rates of hand contamination events

and present the results for hand contamination rates of 1, 10 and 60 times per hour.

The less frequently hands get contaminated, the larger the impact of increasing hand

washing frequencies or reducing the delay of hand washing after hand contamination

events and the larger the impact of the half-life of the probability of persistence of

the virus on the actual probability of infection reduction. Figure S8 shows the results

for a hand contamination rate of λc = 1 hour-1. The conclusions drawn from the

Results section are applicable in this scenario as well. Figure S9-S10 depict the results

for a hand contamination rate of 10 and 60 times per hour, respectively. When hand

contamination occurs very frequently, őxed-time and event-prompted hand washing have

almost identical effects. For both hand washing schemes, increasing the hand washing

uptake has only a small impact on the probability of infection unless hand washing is

performed every 5 minutes or the time delay of hand washing after hand contamination

events is decreased to one or őve minutes. However, due to the the high rate of

hand contamination events of every 4 minutes or every minute, respectively, such an
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Figure S8: Impact of half-life of probability of virus persistence on probability of
infection for different hand washing schemes and frequencies. (A) Fixed-time hand
washing (B) Event-prompted hand washing. The dashed lines represent the half-life of
probability of persistence for H3N2 for viral inoculum volumes of 2 µL and 30 µL (cal-
culated from [9]). For each half-life value of the virus, the probability of transmission
per face-touching event ϵ was determined for a probability of infection = 30% in the
case of no hand washing. The probability of infection for the different hand washing fre-
quencies/delays was then computed using this ϵ value. Hand contamination events are
assumed to occur on average once per hour.
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uptake seems infeasible. Hence, when susceptible individuals are exposed to continuous

contamination, the best strategy would be to wash their hands as frequently as possible,

especially after touching potentially contaminated surfaces, and to reduce the rate of

contamination by, e.g., cleaning surfaces in their environment or isolating the infectious

person.
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Figure S9: Impact of half-life of probability of virus persistence on probability of
infection for different hand washing schemes and frequencies. (A) Fixed-time hand
washing (B) Event-prompted hand washing. The dashed lines represent the half-life of
probability of persistence for H3N2 for viral inoculum volumes of 2 µL and 30 µL (cal-
culated from [9]). For each half-life value of the virus, the probability of transmission
per face-touching event ϵ was determined for a probability of infection = 50% in the
case of no hand washing. The probability of infection for the different hand washing fre-
quencies/delays was then computed using this ϵ value. Hand contamination events are
assumed to occur on average 10 times per hour.
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Figure S10: Impact of half-life of probability of virus persistence on probability
of infection for different hand washing schemes and frequencies. (A) Fixed-time
hand washing (B) Event-prompted hand washing. The dashed lines represent the half-life
of probability of persistence for H3N2 for viral inoculum volumes of 2 µL and 30 µL
(calculated from [9]). For each half-life value of the virus, the probability of transmission
per face-touching event ϵ was determined for a probability of infection = 50% in the
case of no hand washing. The probability of infection for the different hand washing
frequencies/delays was then computed using this ϵ value. Hand contamination events are
assumed to occur on average 60 times per hour.
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Modeling Pseudomonas aeruginosa transmission in ICUs

Abstract

Background: Pseudomonas aeruginosa (P. aeruginosa) Pseudomonas aeruginosa (P.

aeruginosa) is an important cause of healthcare-associated infections, particularly in

immunocompromised patients. Understanding how this multi-drug resistant pathogen

is transmitted within intensive care units (ICUs) is crucial for devising and evaluating

successful control strategies. While it is known that moist environments serve as

natural reservoirs for P. aeruginosa, there is little quantitative evidence regarding

the contribution of environmental contamination to its transmission within ICUs.

Previous studies on other nosocomial pathogens rely on deploying speciőc values for

environmental parameters derived from costly and laborious genotyping. Using solely

longitudinal surveillance data, we estimated the relative importance of P. aeruginosa

transmission routes by exploiting the fact that different routes cause different pattern

of ŕuctuations in the prevalence.

Methods: We developed a mathematical model including background transmission,

cross-transmission and environmental contamination. Patients contribute to a pool of

pathogens by shedding bacteria to the environment. Natural decay and cleaning of

the environment lead to a reduction of that pool. By assigning the bacterial load shed

during an ICU stay to cross-transmission, we were able to disentangle environmental

contamination during and after a patient’s stay. Based on a data-augmented Markov

Chain Monte Carlo method the relative importance of the considered acquisition routes

is determined for two ICUs of the University hospital in Besançon (France). We used

information about the admission and discharge days, screening days and screening

results of the ICU patients.

Results: Both background and cross-transmission play a signiőcant role in the

transmission process in both ICUs. In contrast, only about 1% of the total transmissions

were due to environmental contamination after discharge.

Conclusions: Based on longitudinal surveillance data, we conclude that cleaning

improvement of the environment after discharge might have only a limited impact

regarding the prevention of P.A. infections in the two considered ICUs of the University

hospital in Besançon. Our model was developed for P. aeruginosa but can be easily

applied to other pathogens as well.
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Introduction

Hospital-acquired infections are a major cause of morbidity and mortality worldwide [1].

In industrialized countries, about 5 − 10% of admitted acute-care patients are affected

whereas the risk is even higher in developing countries [2].

Due to its intrinsic resistance to multiple antibiotics, Pseudomonas aeruginosa (short

P. aeruginosa or P. A.) is an important contributor to nosocomial infections [3ś5]. The

most serious P. aeruginosa infections lead to bacteremia, pneumonia, urosepsis, wound

infection as well as secondary infection of burns [6]. In 2018, the World Health Organi-

zation has recognized P. aeruginosa as a serious health-care threat by including it in the

list of antibiotic-resistant highest priority pathogens [7].

Given the severe consequences of P. aeruginosa infections, in particular for critically-ill

patients, it is clear that strategies preventing infections are seen as a key priority. How-

ever, infections are recognized as only the tip of the iceberg, while colonizations represent

the true load of pathogens carried by patients in the intensive-care unit (ICU). Under-

standing the dynamics of P. aeruginosa colonizations is therefore crucial for developing

and evaluating infection control policies.

There are several modes of transmission for colonizations. An overview of the reservoirs

and modes of P. aeruginosa transmission can be found, e. g. in [8]. Potential sources of

colonization can be categorized into those with endogenous and exogenous origin. Col-

onization from endogenous sources is due to e. g. antibiotic selection pressure and was

regarded as the most important route of P. aeruginosa [9ś13]. However, more and more

evidence has emerged on the importance of exogenous sources: Cross-transmission usu-

ally caused by temporarily contaminated hands of health-care workers (HCWs) has been

identiőed as an additional source of transmission [14ś19]. It is furthermore known that

moist environments (e. g. soil and water) may serve as natural reservoirs of P. aeruginosa

and that it can persist for months on dry inanimate surfaces [20]. Several studies have

been performed to asses the sources of environmental contamination leading to cross-

colonization. A rapid systematic review is given by [21].

Quantifying the relative importance of routes of transmission may serve as an essen-

tial tool in designing effective and tailored control strategies. There is little quantitative

evidence in the scientiőc literature regarding the relative contribution of environmen-
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tal contamination within the transmission dynamics of P. aeruginosa especially for non-

epidemic situations. Prior investigations for P. aeruginosa are molecular epidemiological

rather than modeling studies. Others have been modeling the importance of contaminated

surfaces on the transmission of other nosocomial pathogens, e. g., for Methicillin-resistant

Staphylococcus aureus (MRSA) and Vancomycin-Resistant Enterococci (VRE) [22ś26].

However, they rely on deploying speciőc values for model parameters corresponding to

the environment. Such information was obtained from previous studies that conducted

extensive epidemiological surveillance in combination with costly, laborious as well as

time-consuming methods of genotyping. Thus, these methods cannot be easily applied

to other nosocomial pathogens without this cumbersome preliminary work. Therefore,

an important question emerged: Can we quantify the impact of environmental contami-

nation of P. aeruginosa on the transmissions within ICUs after the discharge of patients,

using only longitudinal data?

In this paper, we present a mathematical transmission model that differentiates between

three modes of transmission based only on longitudinal routine surveillance data. In par-

ticular, we are interested in estimating the relative contribution of environmental con-

tamination after discharge. We used data from two ICUs of the University hospital in

Besançon to estimate the parameters that characterize the transmission routes. The es-

timation procedure is based on a data-augmented Markov chain Monte Carlo simulation

[27]. To our knowledge, this is the őrst quantitative analysis of the impact of environ-

mental contamination after discharge on P. aeruginosa transmissions in ICUs using solely

routine surveillance data.

Materials and methods

In this section, we present our framework for modeling the transmission routes of P.

aeruginosa including environmental contamination, as well as the method for computing

the relative contributions of the routes. We further elaborate on the procedure that we

used to estimate the relevant transmission parameters. A brief introduction to the data

used for the analysis is given. We describe the model selection as well as model assessment

procedures that are used to compare the developed models and to assess the model őt

to the data.
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Transmission models

The underlying model for our algorithm is a SI-model (e.g. [28]). All patients are admitted

to an ICU and either belong to the susceptible (P. aeruginosa negative) or colonized

(P. aeruginosa positive) compartment at any given time. The latter includes patients

with asymptotic carriage and those with P. aeruginosa infection.

A susceptible patient may become colonized at a certain transmission rate, which

depends on the colonization pressure in the ward at the time. The corresponding

transmission process is modeled by three different modes of transmission through which

colonization can be acquired. They are distinguished based on the different patterns

in the prevalence time series induced by each of them. Background transmission is

independent of other patients and is represented as a constant rate. Sources may

be antibiotic selection pressure as well as the introduction by visitors or permanently

contaminated environments, such as sinks or air-conditioning. Consequently, this

route comprises endogenous and exogenous sources that lead to a prevalence which

ŕuctuates around the mean value. The corresponding probability of acquisition

for an uncolonized patient is therefore assumed to be constant during the time

period. Cross-transmission, usually occurring via temporarily contaminated hands of

health-care workers, is proportional to the fraction of colonized patients in the wards.

The probability of colonization due to cross-transmission is high if the number of

colonized patients is high and vice versa. Environmental contamination is modeled on

a ward-level represented as a general pool of bacteria linked to objects contaminated

by colonized patients. We focus on the bacterial load that may persist in the

environment even after the discharge of patients. This leads to higher probabilities of

acquiring colonization after outbreaks, even when the number of colonized patients is low.

The force of infection λ(t), i.e. the probability per unit of time t for a susceptible patient

to become colonized, is modeled as

λ(t) = α+ β
I(t)

N(t)
+ ϵE(t) (3.1)

where I(t) is the number of colonized patients, N(t) the total number of patients and

E(t) is a compartment tracking the overall bacterial load present in the ward at time
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t. The parameters α, β and ϵ are transmission parameters linked to the background

transmission term, fraction of colonized patients and the environmental bacterial load,

respectively. Under the assumption of a force of infection λ(x) at time x , the cumulative

probability of any given susceptible person of becoming colonized in [0, t] is 1− e
∫︁ t
0 λ(x)dx

(see e.g. [29]). A schematic of the transmission model is presented in Fig 1.

S I

 

BACKGROUND 

TRANSMISSION CROSS TRANSMISSION

I

BACTERIAL LOAD 

IN ENVIRONMENT

FORCE OF  

INFECTION

α

Figure 1: Schematic of the full transmission model. It represents the three different
routes, i.e. background transmission, cross-transmission and environmental contamina-
tion.

The described model is subject to the following further assumptions:

• Once colonized, patients remain colonized during the rest of the stay. This assump-

tion is appropriate when the average length of stay of patients does not exceed the
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duration of colonization, as is the case for P. aeruginosa.

• Colonization is assumed to be undetectable until a certain detectable bacterial level

is reached. We do not distinguish between several levels of colonization. Further-

more, the detection of carriage in specimen is assumed to be the same for each

screening separately.

• Assuming that HCWs are contaminated for a short period of time (typically until the

next disinfection) in comparison with the length of carriage for patients, we use a

quasi-steady state approximation [28]. This means that contact patterns between

patients and HCWs are not explicitly modeled and we assume direct patient-to-

patient transmission.

• All strains of P. aeruginosa are assumed to have the same transmission character-

istics. We therefore assume that all colonized patients may be a source of trans-

mission and contribute equally to the colonization pressure.

• All susceptible patients are assumed to be equally susceptible.

In order to analyze the impact of environmental contamination after the discharge of col-

onized patients, we model the underlying mechanism leading to the presence of pathogens

in the environment after discharge. Patients contribute to the overall bacterial load by

shedding P. aeruginosa at a rate ν during their stay. Furthermore, natural clearance and

cleaning lead to a reduction of P. aeruginosa bacteria in the environment at a rate µ.

The change of environmental contamination can be described by

dE

dt
= ν
I(t)

N(t)
− µE(t). (3.2)

The differential equation (3.2) is solved by assuming I(t) = It and N(t) = Nt are

known piece-wise constant functions with steps at times t0, t1, . . . , tN. Solving (3.2)

using separation of variables leads to the overall bacterial load in the ward at time t:

E(ti) = Eti−1e
−µ(ti−ti−1) +

ν

µ

Iti−1
Nti−1

(︁
1− e−µ(ti−ti−1)

)︁
(3.3)

for ti ∈ {t0, . . . , tN} and

E(t) = E⌊t⌋e
−µ(t−⌊t⌋) +

ν

µ

I⌊t⌋

N⌊t⌋

(︁
1− e−µ(t−⌊t⌋)

)︁
(3.4)
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for ⌊t⌋ := max{x ∈ {t0, . . . , tN} | x ≤ t} and t ∈ R \ {t0, t1, . . . , tN}. The initial amount

of bacterial load is denoted by E0 := E(t0). The full details of deriving Eq. (3.3) and

(3.4) from (3.2) are given in S1 Text.

Given the number of colonized patients at a certain time t, the bacterial load E(t) is

deterministic. The acquisitions are stochastic based on the force of infection in (3.1).

Our developed transmission model is therefore a hybrid of a stochastic and deterministic

model.

All parameters, namely α, β, ϵ, µ, ν and E0 are assumed to be non-negative. By setting

certain transmission parameters (α, β or ϵ) to zero, model variants may be deőned.

In this paper, we additionally consider a submodel with ϵ = 0, where environmental

contamination is not explicitly modeled and therefore only two transmission routes are

considered. The force of infection for this transmission model with two acquisition routes

is then given by λ(t) = α+ β I(t)
N(t)

.

Relative contributions of transmission routes

For the prevention of colonization or infection with P. aeruginosa, speciőc intervention

control strategies can be designed dependent on the relative importance of the trans-

mission routes. However, for each observed acquisition of colonization, the responsible

transmission route is unknown. And yet, for every acquisition, the probability that the

colonization was due to a certain route can be estimated given that parameter values, the

level of environmental contamination and the number of colonized patients are known.

Thus, by estimating the transmission parameters α, β, ϵ, µ and ν, we were able to ap-

proximate the relative contributions of each transmission route to the total number of

acquisitions.

The probability of acquisition can be approximated by the force of infection. It consists

of different terms that can be assigned to the transmission routes under consideration,

i.e.

λ(t) = λbackground(t) + λcross-transmission(t) + λenvironment(t)
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The primary aim of this paper is to estimate the relative contribution of environmental

contamination after discharge in order to estimate the role of terminal environmental

cleaning among ICU patients. According to our full model, bacterial load is produced

by a colonized patient currently present. The cumulative bacterial load increases

over time until the respective patient is discharged. After discharge, shedding of that

particular patient stops and decreases over time. The bacterial load shed during a

patient’s stay (which may then be transmitted via HCWs to other patients) is assigned

to cross-transmission as in practice, it may not be distinguished from the classical

deőnition of cross-transmission. The bacterial load persisting after discharge is the

variable of interest and represents the impact of already discharged patients on the

current transmissions in the ICU. A schematic of the bacterial load of a single pa-

tient over time and its attribution to the different transmission routes is visualized in Fig 2.
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Figure 2: Schematic of the bacterial load shed by a patient developing over time.
The bacterial load that is shed during a patient’s stay is assigned to cross-transmission.
Environmental contamination after discharge accounts only for the bacterial load persist-
ing after the discharge of that patient.
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The previous explanation leads to the following attribution of the terms to the different

acquisition routes

λ(t) = α+ β ·
I(t)

N(t)
+ ϵ · E(t)

= α
⏞⏟⏟⏞

λbackground

+

⎡

⎣β ·
I(t)

N(t)
+ ϵ

∑︂

ip

Eip(t)

N(t)

⎤

⎦

⏞ ⏟⏟ ⏞

λcross-transmission(t)

+ ϵ

[︄
∑︂

id

Eid (t)

N(t)
+ E0e

−µt

]︄

⏞ ⏟⏟ ⏞

λenvironment(t)

(3.5)

where ip indicates a colonized patient that is present at time t and id a colonized patient

that has been colonized prior to t but was already discharged. The bacterial load produced

by patient i at time t is given by

Ei(t) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for t < tci
ν
µ

(︁
1− e−µ(t−t

c
i )
)︁

for tci ≤ t < t
d
i

Ei(t
d
i )e

−µ(t−tci ) for t ≥ tdi

where tci is the time of colonization and tdi the time of discharge of patient i .

In continuous time, the relative contribution of a speciőc route to the overall number of

acquired colonizations is determined by the ratio of the probability of colonization due to

that route and the probability of colonization:

Contribution of route j = Rj =

∑︁l
i=1

P (colonization at time tci due to route j)

P (colonization at time tci )

Number of acquisitions

=

∑︁l
i=1

λj (t
c
i )

λ(tci )

Number of acquisitions
(3.6)

where l is the number of colonized patients, tc1 , . . . , t
c
l represent the times of colonization

and j can be either of the three considered routes. The relative contributions are then

given by:

• Contribution of background transmission = Rbackground =

∑︁l
i=1

α
λ(tc
i
)

Number of acquisitions

• Contribution of cross-transmission = RcrossT =

∑︁l
i=1

β·
I(tc
i
)

N(tc
i
)
+ϵ

∑︁

ip

Eip (t
c
i
)

N(tc
i
)

λ(tc
i
)

Number of acquisitions
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• Contribution of environmental contamination = Renv =

∑︁l
i=1

ϵ

[︄

∑︁

id

Eid
(tc
i
)

N(tc
i
)
+E0e

−µtc
i

]︄

λ(tc
i
)

Number of acquisitions

For the submodel including only background and cross-transmission, the computation of

the relative contribution is derived from above by setting ϵ = 0.

More details on the calculations can be found in S3 Text. In practice, colonization events

are observed only in discrete times. The formulas for the transmission model and the rela-

tive contribution are adapted for this discrete time assumption and are elaborated in S2-S3

Texts. Since the calculations for the relative contributions of the transmission routes in

the discrete-time scenario require the use of the gamma function and therefore become

computationally intensive, we use the continuous-time formulas as approximations. Since

values of the force of infection λ(t) are typically small (< 0.25), the force of infection

itself is a good approximation of the probability of infection as 1− e−
∫︁ t
0 λ(x)dx ≈ λ(t) for

small values of λ(t). Hence, the discrete-time formulas for the relative contributions can

be approximated by the continuous-time formulas evaluated at discrete time steps.

Estimation procedure

We assume that a patient is admitted to the ICU at time tai and discharged at time

tdi . The probability that a patient is admitted already colonized is described by the

importation probability f . The rate at which a susceptible patient transitions to being

colonized is given by Eq. (3.1). The colonization state of an individual patient is

determined from screening information. We suppose that for each patient i a set of

screening results Xi =
(︂

X
(1)
i , . . . , X

(m)
i

)︂

, taken on days t(1)i , . . . , t
(m)
i is available. The

set of all screening results is denoted by X = {X1, . . . , Xn} where n is the total number

of patients. Since screening tests are typically intermittent and imperfect, we deőne the

test sensitivity φ, i.e. probability that a colonized patient has a positive result.

The aim is to estimate the model parameters α, β, ϵ, µ, ν and E0 as well as the sensitivity

of the screening test φ and the importation rate f based on longitudinal data. The

relative contributions of the transmission routes can then be estimated following the

description in (3.6). The key idea of the estimation procedure is to őt a stochastic trans-

mission model to the observed data. It is based on certain patterns of ŕuctuations in the
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prevalence linked to the different transmission routes (as previously described in section ).

In the analysis, we use the following input data for each patient:

• day of admission

• day of discharge

• screening days and results.

Thus, we use a day as the smallest time unit in our model and assume that events

occur in daily intervals. In principle, other time units may be chosen for an analysis if the

required information on admission, discharge and culturing is available. However, smaller

units may increase the computational time.

If transmission dynamics were perfectly observed, it would be straightforward to calculate

the likelihood of the data given parameters θ = {α, β, ϵ, µ, ν, φ, f }. However, the true

colonization time of a patient is typically unobserved which leads to uncertainty about

the true prevalence at any given time. Hence, the likelihood is analytically intractable.

The method developed by [27] overcomes this problem by augmenting the parameter

space with the unobserved colonization times and sampling over this space using an

Markov-chain Monte Carlo (MCMC) algorithm. We adapted this method for our purposes

to estimate the posterior distributions of the model parameters. The joint likelihood is

determined using three models: an observation model, a transmission and importation

model, and a prior model. The observation model describes the imperfect observation of

the transmission dynamics for given the (augmented) colonization times. The transmis-

sion and importation model describe the probabilities of the realizations given the model

parameters. The prior model determines the distribution of the parameters a priori.

The augmented data consists of a set of colonization statuses and times as well as

importation markers. At each iteration, imperfectly observed colonization times are

imputed and model parameters θ sampled that are consistent with the observed culture

data. This approach accounts for imperfect and infrequent screening, missing admission

and discharge swabs and leads to an estimation of the true (rather than the observed)

prevalence on admission. Precise details of the analysis can be found in S5 Text. The

algorithm was implemented in C++ and was tested using simulated data. Convergence
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of the MCMC chains were veriőed using visual inspection.

We used uninformative exponential priors Exp(0.001) for the transmission parameters

α, β, ϵ and µ. Parameters for the proposal distribution were tuned in order to ensure

rapid convergence. Similar to [30], we estimated the sensitivity φ and importation

parameter f using uninformative beta prior distributions Beta(1, 1). The initial bacterial

load E0 was approximated by ν
µ
Ī with Ī being the mean prevalence in the ward. A

discussion concerning the choice of parameters for the prior distribution is left to the

supplementary section S8.

The MCMC algorithm was run for 500, 000 iterations following a burn-in of 30, 000

iterations. The MCMC iterations were then thinned by a factor of 10, leaving 50, 000

iterations for inference. In each iteration, 20 data-augmentation steps were performed

with each augmentation chosen at random.

During the estimation process, several assumptions are made.

• Incorporating both sensitivity and speciőcity parameters in a model may cause iden-

tiőability issues. Thus, test speciőcity was assumed to be 100%, meaning that pos-

itive results were assumed to be true positive. Experimental results indicate the

speciőcity of screening tests to be close to 100% [31].

• The initial bacterial load E0 is assumed to be the environmental contamination

at the beginning of the study period. The effect of E0 diminishes proportionally

to exp(−µ) per day. It is therefore sufficient to use an approximation rather than

including it as a parameter in the estimation process. We use the equilibrium state

of (3.2) as an approximation, i.e.

E0 ≈
ν

µ
Ī

where Ī represents the mean prevalence in the ward.

• The environmental contribution to the force of infection at time t is ϵ · E(t). As

the total amount of environmental contamination E(t) is unobserved, it is only
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possible to estimate the product ϵ · E(t). For t = 0, 1, 2, . . . it holds

ϵ · E(t) = ϵE0e
−µt +

ϵ · ν

µ

t−1∑︂

i=0

Ii
Ni
(1− e−µ)(e−µ)t−1−i .

The parameter ν is always integrated in the product ϵ · ν. Hence, instead of esti-

mating ϵ and ν separately, it is sufficient to estimate the product ϵ · ν.

• Colonization was deőned as the presence of bacteria at the screening sites as re-

ported in the available data. Admission and screening are assumed to occur at

12:00 pm and discharge at 11:59 am.

• Re-admissions are not accounted for. Instead every new admission is treated as a

new patient. The probability to be positive on admission is therefore identical for

all patients, irrespective whether it is a readmission or not. Since we are interested

in the overall prevalence and overall relative contribution of the acquisition routes

rather than individual predictions, we do not expect this to have a major inŕuence

on our results.

• Since the smallest time unit is one day, colonization events occurring on a particular

day are assumed to be independent.

• A negative result on the day of colonization is considered to be a false negative

result.

• It is assumed that colonized patients contributed to the total colonized population

from the day after colonization onwards, or for importations, from the day of ad-

mission. This assumption leads to an underestimation of the number of acquisitions

for colonization times at the beginning of the day (but just after screening). On the

other hand, since pathogenic bacteria such as P. aeruginosa undergo a lag phase

during their growth cycle, in which the bacteria adapt to the new environment and

are not yet able to divide, onward transmission events are likely to be rare during

the early stages of colonization. Therefore, the number of onward transmissions

are likely to be overestimated for colonizations occurring at the end of the day.
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Data

The data used in the current analysis were collected from two ICUs, denoted by A and

B, between 1999 and 2016 at University Hospital of Besançon, eastern France, in the

framework of a systematic screening for P.aeruginosa. The data sets include admission

and discharge dates as well as dates, sites and results of culturing of adult patients. ICU

A is a surgical ICU that comprised 15 beds in the time period 1999-2008 and 20 from

2010 till 2016. The ICU was renovated between 2008 and 2009 and the number of beds

was increased after completion of the renovation work. ICU B, a non-surgical ICU, had

15 beds from 2000 till 2011 and increased to 20 beds afterwards. Rectal and nose swabs

were obtained upon admission (during the őrst 48 hours) and once a week thereafter. A

positive result on one of the swabs was counted as a positive culture. A negative culture

resulted from a negative culture on both swabs taken at the speciőc day. More than

84% of admitted patients were screened. As HCWs, including physicians, were (with

minor exceptions) working only in one of the ICUs during the whole study period, the

two ICUs can be treated independently in the analysis.

Since 2000, the hand hygiene procedures recommended in both ICUs is rubbing with

alcohol-based gels, or solutions (ABS). Cleaning of the rooms is done daily by using

the detergent-disinfectant Aniosurf®. The sinks were cleaned daily before pouring the

detergent-disinfectant Aniosurf® into the U-bends. Plumbing őttings were descaled

weekly.

In our main analysis, data for each ICU and each time period (before and after renovation)

was treated as distinctive data sets, resulting in four different analyses. No pooling of the

results were performed. In a second analysis, the data for the different time periods and

different ICUs were combined. The results are compared with the main analysis and are

presented in S1-S2 Tables. Each data set was analyzed using

• the full model including background transmission, cross-transmission and environ-

mental contamination after discharge,

• the submodel with only background and cross-transmission.

Patient data were anonymized and de-identiőed prior to analysis.

141



Chapter 3

Model selection

To assess the relative performance of a given model, we used a version of the deviance

information criterion (DIC) based on [32]. For an estimated parameter set θ and ob-

served data set x it is computed as the expected deviance plus the effective number of

parameters: DIC = Dx(θ)+pD. A lower value indicates a better őt. The effective number

of parameters pD represents a complexity measure and is calculated by the difference of

the posterior mean deviance and the deviance at the posterior mean: Dx(θ)−Dx(θ̃). In

this paper, we use the approximation pD = 1
2
var(Dx(θ)) introduced by [32].

The DIC is a simple measure that can be used to compare hierarchical models. Further-

more, it allows determining whether two data sets may be concatenated or should be

treated separate. The idea is to distinguish two models: one that includes one parameter

set for both ICUs (and therefore treats them as concatenated) and one that includes

different parameter sets for each ICU (and thus treats them as separate). The őrst sce-

nario leads to one analysis and one DIC value whereas the second model results in two

independent analyses and hence two DIC values. The sum of the DICs of the latter may

be compared to the DIC value of the őrst scenario. A smaller DIC value is preferred.

More details can be found in S6 Text.

Model assessment

We chose to check the adequacy of the models using the following approach. The ability of

the model to predict the probability of acquisition based on the predicted force of infection

was assessed. The computed numerical values for the force of infection are assigned to

a bin representing the segment covering the numerical value. For a given value λ of the

force of infection, the theoretical probability of acquisition pacq per susceptible patient

is computed by 1 − exp(−λ). The predicted fraction of acquisitions f acq is computed

by dividing the number of acquisitions Nacq by the number of susceptible patients Nsusc.

We compute 95% conődence intervals assuming that the number of acquisitions follows

a binomial distribution of Bin(Nsusc, f acq). The described method is performed for 100

MCMC updates. Coverage probabilities are computed to determine the actual proportion

of updates for which the interval contains the theoretical probability of acquisition. We

set the nominal conődence level to 0.95. A good őt is given when the actual coverage

probability is (more or less) equal to the nominal conődence level. In order to avoid
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the coverage probability tending to zero when pacq tends to 0 or 1, Jeffreys conődence

intervals are used (as recommended in [33]). When Nacq = 0 the lower limit is set to 0,

and when Nacq = Nsusc the upper limit is set to 1.

Results

Descriptive analysis of data

The descriptive statistics of the data sets corresponding to ICU A and B with respect

to the number of admissions, lengths of stay and colonization characteristics are shown

in Table 1. The time period referred to as before renovation (short before) is deőned as

20/04/1999−23/01/2008 (approx. 8.8 years) for ICU A and 11/01/2000−12/01/2011

(approx. 11 years) for ICU B. The time period referred to as after renovation (short

after) is deőned as 31/05/2008 − 30/12/2016 (approx. 6.4 years) for ICU A and

13/01/2011− 13/09/2016 (approx. 5.7 years) for ICU B. In ICU A, the number of beds

decreased during the renovation. Hence, we decided to remove the renovation period

from the analysis for ICU A.

In total, 13,065 patients (6,061 admitted to ICU A and 7,004 to ICU B) and 37,738

screening results (14,631 in ICU A and 23,107 in ICU B) were included in the analysis.

The number of readmissions is higher for ICU B than for ICU A. In our analysis, every

admission was treated separately (as a new patient) resulting in 14,403 admissions (6,659

admitted to ICU A and 7,744 to ICU B).

The corresponding median length of stay was 8.0 days for both ICUs before and after

renovation, respectively. Hence, there is hardly any difference between the ICUs, nor be-

tween the two time periods regarding the median length of stay.

The fraction of patients who were positive on admission was slightly higher after reno-

vation in ICU A. The reverse is true for ICU B. The observed fraction of patients who

acquired colonization slightly decreased after renovation in both ICUs. There were 1,519

patients (620 in ICU A and 899 in ICU B) observed to be colonized during their stay

and 388 patients (137 in ICU A and 251 in ICU B) observed to be colonized on ad-

mission. The percentage of patients admitted positively on admission and with acquired

colonization is higher in ICU B than in ICU A.
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The total number of patients per ICU and the number of positive cultures are visualized

in Figs 3 and 4.
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Figure 3: Number of occupied beds and positive isolates cultured from patients
per swab day for ICU A. The red dotted lines indicate the time points that splits the
study period into before renovation (20/04/1999 − 23/01/2008) and after renovation
(31/05/2009−30/12/2016). Since the number of beds decreased during the renovation,
the period is removed from the analysis.

Estimated model parameters

Two model variants were őtted to the Besançon ICU data aiming to estimate the set of

parameters θ1 = {α, β, φ, f } and θ2 = {α, β, ϵ, µ, φ, f } corresponding to the submodel

with only two and the full model with all three transmission routes, respectively.

Submodel: Two transmission routes

Posterior estimates of the model parameters for each ICU and each time period are

reported in Table 2. Acceptance probabilities for proposed updates to the augmented

data ranged from 3.2% (ICU B after renovation) to 11.1% (ICU A before renovation).

Pairwise scatter plots indicated little correlation between parameter values, with the

exception of a negative correlation between α and β (see S1). Histogram and trace
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Figure 4: Number of occupied beds and positive isolates cultured from patients
per swab day for ICU B. The red dotted line indicates the time point that splits the
study period into before renovation (11/01/2000 − 12/01/2011) and after renovation
(13/01/2011− 13/09/2016).

plots of the posterior estimates are given in S2-S5 Figs and show that the MCMC

chains rapidly mix and quickly converge to their stationary distribution. We found our

estimates to be robust to the choice of priors for transmission parameters.

The probability of being colonized with P. aeruginosa on admission and the screening

test sensitivity varied between the two ICUs and the time periods. For both ICUs,

the median estimates of the importation probability f is higher in the data set after

renovation than before, i.e. 4.5% and 6.2% for ICU A and 6.0% and 9.9% for ICU B.

The difference between the time periods is only signiőcant for ICU B. We estimated the

median of the prevalence of P.A. to be 24.4% and 19.9% for ICU A and 22.3% and

24.4% for ICU B before and after renovation, respectively. Median estimates for the

screening test sensitivity were 50.9% and 50.2% for ICU A and 61.8% and 58.6% for

ICU B. Since the credibility intervals of the sensitivity estimates do not overlap with

respect to the two ICUs, we can conclude that there is a 95% probability that the test

sensitivity is higher in ICU B than in ICU A. Our possible explanation is based on the
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Table 1: Descriptive statistics for the P. aeruginosa carriage data collected from
two ICUs at University Hospital Besançon, France, 1999-2016

No. Median (IQR)† %
Before‡ After§ Total Before After Before After

ICU A
Study length, days 3200 2340 5540
Readmissions 320 278 598 9.8 8.2
Admissions* 3261 3398 6659
Length of stay, days 8.0 (3.0-19.0) 8.0 (3.0-16.0)
Importations¶ 50 87 137 1.5 2.6
Observed P.A. acquisitions∥ 350 270 620 10.7 7.9
ICU B
Study length, days 4020 2079 6099
Readmissions 406 334 740 9.3 9.9
Admissions 4360 3384 7744
Length of stay, days 8.0 (3.0-18.0) 8.0 (3.0-15.0)
Importations 127 124 251 3.7 2.9
Observed P.A. acquisitions 504 395 899 11.6 11.7

*Each ICU stay was counted separately, even in case of a multiple ICU stay within a given hospitalization.
† Interquartile range
‡ 20/04/1999− 23/01/2008 for ICU A and 11/01/2000− 12/01/2011 ICU B.
§ 31/05/2009− 30/12/2016 for ICU A and 13/01/2011− 13/09/2016 for ICU B.
¶ Patients positive on admission; false negative results are not taken into account.
∥ An acquisition is when a patient test negative on admission and had a postive result before discharge;
false negative results are not taken into account.

Table 2: Summary statistics of the marginal posterior distributions for parameters
of the submodel based on the analysis of the Besançon data

Parameter Symbol Median (95% credibility interval)*
ICU A ICU B

Before† After‡ Before After
Background

α 0.011(0.006, 0.016) 0.013(0.009, 0.016) 0.007(0.005, 0.01) 0.014(0.009, 0.018)
coefficient
Cross-transmission

β 0.043(0.021, 0.064) 0.008(0, 0.026) 0.046(0.032, 0.06) 0.011(0, 0.029)
coefficient
Sensitivity φ (%) 50.9 (47.8, 54.2) 50.2 (46.0, 54.4) 61.8 (59.6, 64.0) 58.6 (56.1, 61.1)
Importation

f (%) 4.5 (3.1, 6.1) 6.2 (4.8, 7.8) 6.0 (4.8, 7.1) 9.9 (8.2, 11.6)
probability
Fraction colonized pcol (%) 24.4 (23.1, 25.8) 19.9 (18.7, 21.2) 22.3 (21.6, 23.0) 24.4 (23.7, 25.1)

Contributions
Background Rbackground (%) 53.6 (32.8, 75.9) 89.3 (67.9, 100) 43.4 (29.1, 58.7) 84.5 (60.9, 100)
Cross-transmission RcrossT (%) 46.4 (24.1, 67.2) 10.7 (0, 32.1) 56.6 (41.3, 70.9) 15.5 (0, 39.1)

*Highest posterior density interval
‡ 20/04/1999− 23/01/2008 for ICU A and 11/01/2000− 12/01/2011 ICU B.
§ 31/05/2009− 30/12/2016 for ICU A and 13/01/2011− 13/09/2016 for ICU B.

fact that the ICUs differ in their patient population. As a medical ward, ICU B contains

patients with longer lengths of stay and more readmissions. Patients who are exposed

to an ICU environment for a longer period of time may have a higher probability to get
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colonized at a detectable level. However, our explanation is only hypothetical and the

true reason for the difference is not known.

The relative importance of the two considered transmission routes per ICU and time

period is depicted in Fig 5 (a) and (b). For ICU A, the median relative contribution

of background transmission is 53.6% (95% CrI : 32.8 − 75.9%) and 89.3% (95% CrI :

67.9−100%) leaving 46.4% (95% CrI : 24.1−67.2%) and 10.7 (95% CrI : 0−32.1%) of

the acquisitions assigned to cross-transmission before and after renovation, respectively.

For ICU B, 43.4% (95% CrI : 29.1 − 58.7%) and 84.5% (95% CrI : 60.9 − 100%) of

the acquisitions were due to the background and cross-transmission accounted for 56.6%

(95% CrI : 41.3 − 70.9%) and 15.5% (95% CrI : 0 − 39.1%) of the acquisitions before

and after renovation, respectively.
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Figure 5: Relative contributions of background and cross-transmission. (a) ICU A
before and after renovation, (b) ICU B before and after renovation.

The results suggest that both routes have an important impact on the acquisitions in

both ICUs. The median estimates of the relative contribution of background transmission

are higher after than before renovation in both ICUs. Thus, there is a tendency for

lower contribution of cross-transmission route after renovation in both ICUs. Possibly,

hygiene was improved after renovating the ICUs. However, since the credibility interval

for background transmission overlap before and after renovation, there is no evidence

that the relative contributions differ between the time periods. Before renovation, the

credibility intervals of the relative contributions for background and cross-transmission
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overlap. Thus, we conclude that no route considerably predominates the transmissions

before renovation. On the other hand, the respective credibility intervals do not overlap

after renovation. Hence, background transmission predominates the transmissions after

renovation. Comparing the results across ICUs, we can see that the credibility intervals

of the relative contributions overlap leading to the conclusion that the two ICUs do not

seem to be different regarding the relative importance of the transmission routes.

Full model: Three transmission routes

Posterior estimates of the model parameters for each ICU are reported in Table 3. The

estimates and interpretations for the importation rate f , the screening test sensitivity

φ and the mean prevalence stay roughly the same when adding environmental contam-

ination as an additional route. The same holds for the median relative contributions of

background and cross-transmission. The median relative contribution of environmental

contamination after discharge is less than 1% ranging from 0.3% to 0.5% for both ICUs

and both time periods. The relative importance of the three considered transmission

routes per ICU and time period is depicted in Fig 6 (a) and (b). Acceptance probabilities
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Figure 6: Relative contributions of background transmission, cross-transmission and
environmental contamination after discharge. (a) ICU A before and after renovation,
(b) ICU B before and after renovation.

for proposed updates to the augmented data ranged from 7.2% (ICU B after renovation)

to 90% (ICU A before renovation). Pairwise scatter plots indicated strong correlations

between α and β, β and ϵ and between ϵ and µ (see S14 Fig). The correlation coefficient

of the latter pair ranged from 0.531 to 0.561. Furthermore, it can be seen in Table 3
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that the credibility intervals for the parameters ϵ and µ are large. Nevertheless, histogram

and trace plots of the posterior estimates show that the MCMC chains rapidly mixed and

quickly converged to their stationary distribution as can be seen in S6-S13 Figs. The rapid

convergence could be achieved by tuning the parameters of the proposal distribution for

µ. In contrast, a ŕat prior for the decay rate µ in combination with a small initial standard

deviation for its proposal distribution resulted in large acceptance ratios close to 1. The

MCMC chain mixed too slowly and therefore hindered the identiőability of the likelihood.

This can be explained by the fact that our developed model is overparametrized when

colonizations of patients are not or hardly inŕuenced by environmental contamination.

Small values of the transmission parameter ϵ as well as high values of the decay rate µ

would reŕect the aforementioned situation. As a result, the respective likelihood might

not be or only weakly identiőable. Our sensitivity analyses and artiőcial data simulations

demonstrated similar pairwise scatter plots and wide credibility intervals for the param-

eters ϵ and µ in case of a small contribution of environmental contamination to the

transmissions (more details can be found in S9 Text). Hence, we can conclude that the

role of environmental contamination after discharge within the transmission process of

P. aeruginosa in the two ICUs A and B is small before as well as after renovation.

Model selection

In total, 14 analyses were performed. For each ICU, three data sets were created -

one for each time period and one combining the data sets before and after renovation.

Additionally, the ICUs and time periods were combined in one data set. Each of the seven

data sets were analyzed using the submodel and the full model. The DIC values for each

model analysis can be found in Table 4. The analysis combining both ICUs and time

periods shows smaller DIC values, i.e. 136507.8 and 130693, than the sum of the DICs

for separate analyses (152428.8 and 150914.2) for both the submodel and full model,

respectively. The full model results in a smaller DIC value for the analysis of the combined

data set. Hence, based on the DIC, it would be sufficient to analyze the combined data set

using the full model including endogenous route, cross-transmission and environmental

contamination. Nevertheless, it can be seen in S10 Text that the posterior estimates of

the different analyses are similar, especially for the relative contribution of environmental

contamination after discharge.
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Table 3: Summary statistics of the marginal posterior distributions for parameters
of the full model based on the analysis of the Besançon data

Parameter Symbol Median (95% credibility interval)*
ICU A ICU B

Before† After‡ Before After
Background

α 0.011 (0.006, 0.015) 0.012 (0.009, 0.016) 0.007 (0.004, 0.01) 0.012 (0.007, 0.017)
coefficient
Cross-
transmission

β 0.023 (0, 0.048) 0.006 (0, 0.022) 0.027 (0.0, 0.05) 0.008 (0, 0.027)

coefficient
Environmental

ϵ 187.3 (0.041, 753.4) 76.0 (0002, 436.6) 48.8 (0.009, 227.9) 90.6 (0.017, 502.4)
coefficient
Decay rate µ 1202.7(24.4, 3184.9) 1567.3(34.9, 4453.7) 319.2 (13.8, 873.3) 1514.2(44.4, 4335.1)
Sensitivity φ (%) 50.9 (47.8, 54.2) 49.5 (45.5, 53.5) 61.8 (59.5, 64.0) 58.7 (56.0, 61.3)
Importation

f (%) 4.5 (3.1, 6.1) 6.1 (4.9, 7.6) 6.0 (4.9, 7.2) 10.1 (8.4, 11.9)
probability
Fraction colo-
nized

pcol (%) 24.5 (23.1, 25.9) 20.1 (19.0, 21.4) 22.3 (21.7, 23.0) 24.4 (23.7, 25.1)

Contributions
Background Rbackgr (%) 51.8 (32.7, 73.0) 82.3 (61.0, 98.7) 42.0 (27.5, 58.0) 74.4 (48.1, 96.8)
Cross-
transmission

RcrossT (%) 47.8 (26.9, 66.9) 17.4 (1.3, 38.6) 57.5 (41.8, 72.1) 25.1 (2.9, 50.7)

Env. cont. after
Renv (%) 0.3 (0.0, 0.8) 0.2 (0, 0.7) 0.5 (0.0, 1.2) 0.4 (0.0, 1.3)

discharge

*Highest posterior density interval
‡ 20/04/1999− 23/01/2008 for ICU A and 11/01/2000− 12/01/2011 ICU B.
§ 31/05/2009− 30/12/2016 for ICU A and 13/01/2011− 13/09/2016 for ICU B.

Model assessment

For each bin of the force of infection the coverage probabilities are plotted and can be

found in S15-S16 Figs. It can be seen that the coverage probabilities are approximately

(sometimes higher, sometimes smaller) equal to the nominal conődence level of 0.95.

Thus, both the full model as well as the submodel gave adequate őts to the four data

sets. In Fig 7, the predicted fraction of acquisitions are plotted against the binned force

of infection for one exemplary MCMC update. The red lines indicate the relationship

between the probability of acquisition and force of infection assumed by our models. For

this example, it is always contained by the conődence intervals (blue lines).

Discussion

To our knowledge, our study is the őrst attempt to estimate the relative contribution of

environmental contamination after discharge for P. aeruginosa based on mathematical

modeling and using only admission, discharge and screening data. The three different

routes, background transmission, cross-transmission and environmental contamination
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Table 4: Deviance information criterion for the different models

Submodel Full model
ICU A
Before† 42961.72 }︂

∑︁
§ 86899.53

35356.31 }︂
∑︁

63057.37
After‡ 43937.81 27701.06
Combined* 88650.69 63779.12

ICU B
Before 35356.31 }︂

∑︁
63057.37

34670.46 }︂
∑︁

62568.88
After 27701.06 27898.42
Combined 63778.12 59290.73

Sum Combined∥ 152428.8
ICUs combined¶ 136507.8

‡ 20/04/1999− 23/01/2008 for ICU A and 11/01/2000− 12/01/2011 ICU B.
§ 31/05/2009− 30/12/2016 for ICU A and 13/01/2011− 13/09/2016 for ICU B.
* Combined time periods
§ Σ indicates that the sum of the respective columns in the previous row is calculated.
¶ ICUs as well as time period (before, after renovation) are combined in one data set.
∥ The sum of the DICs for ICU A (before and after renovation combined) and ICU B is
computed.

after discharge, are distinguished by the resulting patterns of the prevalence that they

induce. We estimated that environmental contamination after discharge accounts for

at most 1% of the total P. aeruginosa transmissions in the two ICUs of the University

hospital in Besançon before and after renovation. In contrast, background as well as

cross-transmission are both essential for the transmission dynamics of P. aeruginosa.

This suggests, that improvement of cleaning of the environment after discharge would

have only a limited beneőt regarding the prevention of P. aeruginosa colonization in the

two considered ICUs of the University hospital in Besançon.

Previously, studies have been conducted to investigate the role of environmental

contamination for colonizations of P. aeruginosa. For instance, Panagea et al. performed

environmental studies to determine the extent of environmental contamination with

an epidemic strain of P. aeruginosa [34]. They concluded that the transmissibility of

the epidemic strain cannot be explained solely on the basis of improved environmental

survival. Our results likewise demonstrate that the decay of P. aeruginosa is already
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Figure 7: Exemplary model assessment plot for one MCMC update using the sub-
model applied to ICU A before renovation. The predicted fraction of acquisition is
plotted against the theoretical force of infection. The red line indicates the theoretical
relation between the force of infection and the probability of acquisition. The blue lines
indicate 95% credibility intervals.

rapid enough to limit its survival in the environment.

While our approach is efficient in determining the relative contribution of environmental

contamination after discharge requiring merely longitudinal surveillance data, it has sev-

eral limitations that may restrict its practical applicability.

Our conclusions on the impact of cleaning applies only to the environment after the dis-

charge of patients. Permanently contaminated reservoirs in ICUs, such as sinks, may still

serve as sources for colonization. In our model they are assigned to background trans-

mission. Thus, while the effect of cleaning improvement after discharge might be limited
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for the two considered ICUs, general cleaning improvement of the environment might

be important to reduce permanent reservoirs for environmental contamination. Several

studies based on molecular typing techniques suggest that contaminated taps and sinks in

the environment may serve as a non-negligible source in the acquisition of P. aeruginosa

colonization (see e. g. [8, 21, 35]). Since genotyping information is not available for the

data set that we have analyzed, further studies for validation would increase the under-

standing of our conclusions.

In addition, we assume in our model that a patient’s contribution to environmental con-

tamination affects all patients present in the ward. This assumption might not be realistic

as the patient admitted to the same room after the discharge of a colonized patient might

be at a higher risk than patients in other rooms. In S11, we have investigated the possible

inŕuence of prior colonized bed occupants for the Besançon data sets. The results show

that for these data sets, the impact of prior colonized bed occupants is limited (< 6%).

While prior bed occupants may pose serious risks for colonization in general, this hy-

pothesis cannot be conőrmed for the data sets we have analyzed. Further models that

explore bedwise environmental contamination in more detail would constitute interesting

extensions of our methodology.

The results of our analysis build on a data-augmented MCMC algorithm [27, 30]. Markov

chain Monte Carlo sampling is a powerful tool to estimate posterior parameter distribution

whenever the likelihood is analytically intractable. And yet, the inherent disadvantage of

this sampling scheme is that it may take prohibitively many iterations to converge to the

posterior distribution. The convergence properties of MCMC sampling in high-dimensional

posterior distributions can be particularly problematic and sensitive to the choice of prior

and proposal distributions. Thus, tuning of the MCMC parameters becomes crucial for its

application. Our developed full model is overparametrized when colonizations of patients

are not or hardly inŕuenced by environmental contamination. As a result, the respec-

tive likelihood might not be identiőable or only weakly identiőable. Here, a ŕat prior for

the decay rate µ in combination with a small initial standard deviation for its proposal

distribution resulted in large acceptance ratios close to 1. The MCMC chain mixed too

slowly and therefore hindered the identiőability of the likelihood. We were able to tune

the parameters of the proposal distribution for µ such that rapid convergence to the

posterior distribution could be assessed using visual inspection of histograms and trace

plots. However, as presented in the section, pairwise scatter plots showed strong cor-
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relations in particular between ϵ and µ. Simulation studies conőrmed that this can be

explained by an absence of environmental contamination in the investigated data sets.

This supports our őnding that an impact of environmental contamination after discharge

on the transmission of P. aeruginosa may be neglected.

Moreover, colonization is assumed to remain until discharge. While this assumption is true

for P. aeurginosa it does not hold true for all antibiotic-resistant nosocomial pathogens.

However, intermittent carriage may be readily included allowing the method to be gen-

eralized to other pathogens.

We assumed no difference in transmissibility between different strains of P. aeruginosa and

that all colonized patients are equally likely to transmit the pathogen. While information

on antibiotic resistance or microbial genotyping in combination with epidemiological data

may aid in distinguishing different strains and identifying speciőc transmission events,

only the uncertainty of the estimates would be affected. In particular, the widths of the

credibility intervals are likely to be reduced, but we do not expect a large effect on the

parameter estimates.

Assessing the őt of the model to the data is crucial to model building. The true relative

importance of the different transmission routes in ICUs is generally unknown. Genotyping

data that might be used to demonstrate the source of the acquired colonization is scarce

and was not available for the data used in our analysis. While the posterior predictive p-

value is a popular method for assessing model őt, it has been increasingly criticized for its

self-fulőlling nature [36]. Furthermore, the choice of the test statistic is crucial in order to

adequately summarize discrepancies between datasets. Rather than relying on a suitable

summary statistic, we presented a model assessment method that evaluates whether

the estimated force of infection adequately represents the transmission dynamics in the

ward. However, while the corresponding coverage probabilities may depict discrepancies

per bin of the force of infection, the sample size is not controlled by choosing the number

MCMC updates. It might well occur that speciőc patients (and their acquisition events)

appear in more than one MCMC update simultaneously. Thus, the true sample size

is estimated to be smaller. In addition, both the estimated force of infection and the

number of acquisitions Nacq are obtained based on the data augmentation step. Thus,

the theoretical probability of acquisition and the predicted fraction of acquisition are not

independent. And yet, a large deviation of the model from the data would be reŕected in

the coverage probabilities since the augmented data is dependent on the observed data.
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Further improvement of the method presented here or development of other methods

would be a vital topic for assessing epidemic models.

Model selection was performed using the DIC which is known to display poor performance

(i.e. identifying the correct model) for complex likelihood functions such as those

corresponding to epidemic models. Comparing the plausibility of different models is

crucial for selecting the model that describes the dynamics of the observed system best.

Nevertheless, model choice for stochastic epidemic models is far from trivial. All known

approaches for model selection exhibit advantages as well as disadvantages [36] which

makes selecting the most suitable model comparison technique not straightforward.

We selected the well-known DIC-method that was easy to use and implement. Our

main results regarding environmental contamination after discharge do not depend on

the model choice. And yet, the development of a suitable and robust model selection

procedure in a data-augmented Bayesian framework would be an interesting and

important topic for future research.

Finally, like all models, ours is a simpliőcation of the truth as it is unlikely that all

relevant variables are already included. Adding covariates such as antibiotic use, sex or

age may improve the model őt.

Our work may be used or further extended for assessing the relative importance of dif-

ferent transmission routes within intensive-care units not only for P. aeruginosa but for

hospital pathogens in general. Based on these results, consequential decisions for tai-

lored interventions or policies may be deduced, aiding in improving infection prevention

and control and therefore reducing morbidity, mortality and related costs in hospitals.
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S1 Text. Environmental contamination.

The full model includes environmental contamination on a ward-level. The bacterial load

at any given time t is based on the differential equation

dE

dt
= ν
I(t)

N(t)
− µE(t) (3.7)

Solving the above differential equation requires discretizing over t, resulting in a őnite

number of time steps t0, t1, . . . , tN. We then assume I(t) = It and N(t) = Nt to be

constant within a time step and use it as initial conditions. Separating variables leads to

dE

ν · It
Nt
− µE(t)

= dt

and thus

∫︂
dE

ν It
Nt
− µE(t)

=

∫︂

dt

⇒−
1

µ
log

⃓
⃓
⃓
⃓
ν
It
Nt
− µE(t)

⃓
⃓
⃓
⃓
= t + C

⇒ log

⃓
⃓
⃓
⃓
ν
It
Nt
− µE(t)

⃓
⃓
⃓
⃓
= −µ(t + C)

⇒

⃓
⃓
⃓
⃓
ν
It
Nt
− µE(t)

⃓
⃓
⃓
⃓
= exp[−µ(t + C)] = exp(−µt) exp(−µC)

⏞ ⏟⏟ ⏞

At

Now, two cases have to be distinguished.

1. Case: ν It
Nt
− µE(t) ≥ 0

⇒− µE(t) = At · exp[−µt]− ν
It
Nt

⇒E(t) = −
At
µ

⏞⏟⏟⏞

Bt

exp[−µt] +
ν

µ

It
Nt

⇒E(t) = Bt · exp[−µt] +
ν

µ

It
Nt
.
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2. Case: ν It
Nt
− µE(t) < 0

⇒µE(t) = At · exp[−µt] + ν
It
Nt

⇒E(t) =
At
µ
⏞⏟⏟⏞

Bt

exp[−µt] +
ν

µ

It
Nt

⇒E(t) = Bt · exp[−µt] +
ν

µ

It
Nt
.

Determine Bt0 for initial condition E(t0) = Et0:

Et0 = E(t0) = B0 +
ν

µ

It0
Nt0

and therefore

Bt0 = Et0 −
ν

µ

It0
Nt0
. (3.8)

For t0 ≤ t ≤ t1 the environmental load can be then computed by

E(t) =

(︃

Et0 −
ν

µ

It0
Nt0

)︃

e−µt +
ν

µ

It0
Nt0

= Et0e
−µt +

ν

µ

It0
Nt0
(1− e−µt).

For t0 ≤ ti ≤ tN it holds

Bti =
Eti −

ν
µ

Iti
Nti

e−µti
(3.9)

and therefore, it holds for ⌊t⌋ := max{t0 ≤ x ≤ tN | x ≤ t} and t ∈ R \ {t0, t1, . . . , tN}

E(t) =
E⌊t⌋ −

ν
µ

I⌊t⌋
N⌊t⌋

e−µ⌊t⌋
· e−µt +

ν

µ

I⌊t⌋

N⌊t⌋

= E⌊t⌋e
−µ(t−⌊t⌋) +

ν

µ

I⌊t⌋

N⌊t⌋

(︁
1− e−µ(t−⌊t⌋)

)︁
.

and

E(ti) = Eti−1e
−µ(ti−ti−1) +

ν

µ

Iti−1
Nti−1

(︁
1− e−µ(ti−ti−1)

)︁
for0 ≤ i ≤ N.
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S2 Text. Discrete-time transmission model.

For the discrete-time transmission model, we assume that the number of colonized pa-

tients I(t), the total number of patients N(t) and the bacterial load E(t) is constant

during the day. It is assumed that admission and screening occur at 12:00 pm on each

day T determining IT and NT . Given all the information (at 12:00 pm), the environmental

contamination on day T is determined. The force of infection on day T is then given by

λ(T ) = α+ β
IT
NT
+ ϵE(T )

= α+ β
IT
NT
+ ϵ ·

[︃

ET−1e
−µ +

ν

µ

IT−1
NT−1

(1− e−µ)

]︃

.
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S3 Text. Relative contribution.

The computations in section Relative contributions of transmission routes were developed

for continuous-time models. In our discrete-time model, we assume that events such

as, admission, colonization and discharge of patients and screening occur on a daily

basis. However, we do assume that the level of environmental contamination changes

continuously. Computing the relative contributions of the different transmission routes

becomes more laborious in this scenario. Let tci be the acquisition time of patient i ∈

{1, . . . , n}. The contribution of a route j is the ratio of the probability that the acquisition

was due to route j and the total probability of acquisition:

Contribution of route j = Rj =

∑︁n
i=1

P (infection during day tci due to route j)

P (infection during day tci )

Nacq

where Nacq is the total number of occured colonizations and Rj with j ∈

{background, crossT, env} indicate the endogenous, cross-transmission or envi-

ronmental route, respectively. The route-speciőc probabilities can be determined

by

P (infection during day T by Rbackground) =

∫︂ T+1

T

P(patient still susceptible at time t) · αdt

P (infection during day T by RcrossT) =

∫︂ T+1

T

P(patient still susceptible at time t) · β
IT
NT
dt

P (infection during day T by Renv) =

∫︂ T+1

T

P(patient still susceptible at time t) · ϵE(t) dt

where environmental contamination during a patient’s stay is assigned to the environ-

mental route. In the main part of our manuscript we consider only the bacterial load

remaining after discharge as environmental contamination. All the formulas then change

according to Eq. (3) of the main text.

The results are dependent on ν IT
NT
− µE(T ) and are given by
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1. Case: ν IT
NT
− µE(T ) ≥ 0

P (infection during day T by Rbackground) = α · Ẽ ·

[︃

γ

(︃
A

µ
, B̃

)︃

− γ

(︃
A

µ
, B̃e−µ

)︃]︃

P (infection during day T by RcrossT) = ¸β
IT
NT
· Ẽ ·

[︃

γ

(︃
A

µ
, B̃

)︃

− γ

(︃
A

µ
, B̃e−µ

)︃]︃

P (infection during day T ) = 1− e−A−B̃(e
−µ−1)

2. Case: ν IT
NT
− µE(T ) < 0

P (infection during day T by Rbackground) = α · Ê ·

[︄
∞∑︂

i=0

(−B̃)i

i !
·

1

A/µ+ i
·
(︁
1− e−A−µi

)︁

]︄

P (infection during day T by RcrossT) = ¸β
IT
NT
· Ê ·

[︄
∞∑︂

i=0

(−B̃)i

i !
·

1

A/µ+ i
·
(︁
1− e−A−µi

)︁

]︄

P (infection during day T ) = 1− e−A−B̃(e
−µ−1)

and

P (infection during day T by Rbackground)

= P (infection during day T )−
∑︂

k∈{α,β}

P (infection during day T by k)

where

A = α+

(︃

β +
ϵν

µ

)︃
IT
NT
, B̃ =

ϵ

µ

(︃
ν

µ

IT
NT
− ET

)︃

Ẽ =
1

µ
· eB̃ · B̃

−A
µ , Ê =

eB̃

µ
,

G =
ϵν

µ

IT
NT

and γ(·, ·) is the lower incomplete gamma function. Note that the derivations are omitted

here but can be requested from the őrst author.
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S4 Text. Approximation of relative contribution in discrete-time.

Large values of the force of infection λ(t) are very unlikely. Under the assumption of

small λ(t), the following simpliőcations and approximations can be made:

e−
∫︁ t
0 λ(x)dx ≈ 1− λ(t)

1− e−
∫︁ t
0 λ(x)dx ≈ λ(t)

λ(t)

1− λ(t)
≈ λ(t).

Therefore, the force of infection itself may be a good approximation of the probability of

infection and the probability of acquiring colonization due to route j may be approximated

by the respective sub-term of the force of infection assigned to route j :

P (infection during day T due to route j) ≈ λj

with j ∈ {background, crossT, env}. As an approximation of the relative contribution we

compute the ratio of the transmission rate and the force of infection for each acquired

colonization:

• Contribution of endogenous route = Rbackground =

∑︁n
i=1

α
λ(tc
i
)

Nacq

• Contribution of cross-transmission = RcrossT =

∑︁n
i=1

β·
I(tc
i
)

N(tc
i
)
+ϵ

∑︁

ip

Eip (t
c
i
)

N(tc
i
)

λ(tc
i
)

Nacq

• Contribution of environmental contamination = Renv =

∑︁n
i=1

ϵ

[︄

∑︁

id

Eid
(tc
i
)

N(tc
i
)
+E0e

−µtc
i

]︄

λ(tc
i
)

Nacq

where tci is the day of colonization of patient where i ∈ {1, . . . , n} and Nacq the total

number of occured colonizations. Furthermore, ip indicates a colonized patient that is

present at time tci and id a colonized patient that has been colonized prior to tci but was

already discharged. It holds Rbackground + RcrossT + Renv = 1.
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S5 Text. Adapted data-augmented MCMC algorithm.

We model the transmission process using a two-state Markov model, where each patient

can be either susceptible (P. A. negative) or colonized (P. A. positive). A patient i

is admitted to the ICU on day tai and discharged on day tdi . The probability that a

patient is admitted already colonized is described by parameter f . The rate at which

a susceptible patient transitions to being colonized is described in section Materials

and Methods. The colonization state of an individual patient is determined from

screening information. We suppose that for each patient i a set of screening results

Xi = X
(1)
i , . . . , Xi = X

(m)
i , taken on days t(1)i , . . . , t

(m)
i is available. The set of all screen-

ing results is denoted by X = {X1, . . . , XN} where N is the total number of patients.

Since screening tests are typically intermittent and imperfect, we deőne the test sensi-

tivity φ (i.e. probability that a colonized patient has a positive result). We assume that

the speciőcity (i.e. probability that an uncolonized patient has a negative result) is 100%.

We implemented an adapted version of the data-augmented MCMC algorithm to analyze

the data. The transmission and importation model, as well as the data-augmentation

method is closely based on the approach of [27, 30] but adapted for the transmission

routes presented in this paper.

The algorithm was implemented in C++ and the analysis of the output was performed in

R (Version 3.5.1) [37].

The aim of our analysis was to estimate the set of parameters θ = {α, β, ϵ, µ, f , φ}. The

prior distribution were chosen as follows:

f , φ ∝ Beta(a, b)

α, β, ϵ, µ ∝ Exp(λ)

where Exp(λ) represents the exponential distribution with rate λ, and Beta(a, b) the

beta distribution with shape parameters a and b. Having őxed a = b = 1 and λ = 0.001,

we use uninformative priors in our analysis.

The data-augmentation procedure accounts for unobserved colonization times by aug-

menting the parameter space with A = {tc , sa}, a set comprising of the unobserved
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colonization times tc and admission states sa of all n patients. An admission state of

a patient is 1 if the patient is colonized upon admission and 0 otherwise. If the pa-

tient j becomes colonized during his/her stay, the colonization time may take an integer

value between the time of admission taj and time of discharge tdj (inclusive). If a patient

does not acquire colonization, the respective value tcj takes a dummy value of −1. The

augmented posterior density relation can be determined using Bayes’ Theorem:

P (A, θ |D) ∝ P (D,A, θ) = P (D |A, θ)P (A | θ)P (θ) (3.10)

= P (D | tc , sa, θ)P (sa | θ)P (tc | sa, θ)P (θ) (3.11)

where P (D |A, θ) is the likelihood of the observed data D, P (A | θ) is the likelihood of

the augmented data and P (θ) is the joint prior distribution of the parameter set θ. All

terms in (3.10) can be explicitly calculated. It holds

P (D | tc , sa, θ) = φTP (X)(1− φ)FN(X,t
c)

where TP (X) and FN(X,A) are the total number of true positive and false negative

swab results, given the colonization times tc , respectively. It represents the imperfect ob-

servation of the transmission dynamics. Assuming that lost colonization can be excluded,

we consider any negative result after the time of colonization as a false negative. Since

false positive results are impossible, the TP (X) is not dependent on the augmented data

and can be determined directly from the observed data. The probability of the set of

importations, given the importation probability f is given by

P (sa | θ) = f
∑︁

i s
a
i (1− f )n−

∑︁

i s
a
i .

The transmission model itself is reŕected in the probability of the colonization times given

the admission states and the parameters

P (tc | sa, θ) =

n∏︂

i=1

exp

⎛

⎝−

min(tdi ,t
c
i −1)∑︂

t=tai

λ(t)

⎞

⎠

⎛

⎝
∏︂

j :tcj ̸=−1

(1− exp(−q(tcj )))

⎞

⎠ · f
∑︁

i s
a
i (1− f )n−

∑︁

i s
a
i .

(3.12)

To update the importation rate f and the sensitivity φ, we use Gibbs sampling as we

can sample directly from the full conditional distributions. The transmission parameters
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α, β, ϵ, µ are updated using an adapted version of the Metropolis-Hastings algorithm.

Regular MCMC methods based on the Metropolis-Hastings algorithm tend to be very

slow in high dimensions as a result of slow mixing and therefore inefficient convergence

towards the target distribution. In high-dimensional spaces the volume outside is much

larger than the volume of our target distribution. Thus, traditional MCMC methods such

as the Metropolis-Hastings algorithm, spend considerable amount of time of traversing

space away from the mode of the target distribution. Our adapted MCMC algorithm

aims in exploring the target distribution more efficiently.

The Metropolis-Hastings algorithm generates a Markov chain θ(1), . . . , θ(N) which con-

verges to a target distribution π(·) if N is large enough. In each update of the Markov

chain, a candidate point, θ∗ is sampled from a proposal density q(θ∗ | θ(i)), which gives the

probability density of proposing θ∗, given the current, i th value. With a certain probability

or so-called acceptance ratio

a(θ∗, θ(i)) = min

(︃

1,
q(θ∗ | θ(i))π(θ∗)

q(θ(i) | θ∗)π(θ(i))

)︃

,

the proposed value is accepted.

The Metropolis algorithm is a special case of the Metropolis-Hastings algorithm where

the proposal function is symmetrical. Since a symmetrical proposal distribution simpliőes

the calculation of the acceptance ratio to a(θ∗, θ(i)) = min
(︁
1, π(θ∗)/π(θ(i))

)︁
, it is

often used for updating parameters. The proposal function has a great inŕuence on the

speed of convergence and hence efficiency of the algorithm. We suggest a proposal

distribution that speeds up the convergence towards the target distribution while limiting

the additional computational effort. The idea behind our method is as follows: For each

estimated parameter set θ there is a corresponding force of infection λ(t) for each

time t. It can be assumed that the mean force of infection λ is approximately constant

over the number of iterations. The rationale behind it is that there is true mean

force of infection that should be approximated by the MCMC algorithm. Proposing

new parameter candidates depending on the mean force of infection reduces the

volume that has to be traversed in order to converge to the target distribution. The

resulting proposal density is not symmetric anymore and thus the procedure requires

an adjustment of the acceptance ratio. The adapted Metropolis-Hastings algorithm to
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update the transmission parameters runs as follows:

Two transmission routes

1. Set initial values θ(0) =
(︁
α(0), β(0)

)︁
, and the number of iterations N.

2. Sample new parameter values α∗, β∗ as follows:

(a) Propose candidate α∗ by sampling from α(i) +N (0, σ2α)

(b) Propose candidate β∗ assuming λ∗
!
≈ λ(i) = α(i) + β(i) · P rev :

Sample β∗ from λ(i)−α∗

P rev
+N (0, σ2β), i.e. N

(︂
λ

P rev
− α∗

P rev
,
σ2α

P rev
2 + σ2β

)︂

(c) With probability

α(θ∗, θ(i)) = min

(︃

1,
q(θ∗ | θ(i))π(θ∗)

q(θ(i) | θ∗)π(θ(i))

)︃

where q(θ
∗ | θ(i))

q(θ(i) | θ∗)
= e

β∗2−β(i)
2
+µβ (β

(i)−β∗)

2σ2
β , accept the proposed value and set θ(i+1) =

θ∗, else set θ(i+1) = θ(i).

3. If i < N, then go to step 2.

Three transmission routes

1. Set initial values θ(0) =
(︁
α(0), β(0), ϵ(0), µ(0)

)︁
, and the number of iterations N.

2. Sample new parameters θ∗ = (α∗, β∗, ϵ∗, µ∗) from a proposal density q
(︁
θ∗ | θ(i)

)︁
as

follows:

(a) Propose candidate α∗ by sampling from α(i) +N (0, σ2α)

(b) Propose candidate β∗ by sampling from β(i) +N (0, σ2β)

(c) Propose candidate µ1 by sampling from µ(i) +N (0, σ2µ)

(d) Update E(i+1)0 to ν
µ(i)
· P rev

(e) Propose candidate ϵ∗ assuming λ∗
!
≈ λ(i) = α(i) + β(i) · P rev + ϵ(i) · E(i)0 :

Sample ϵ∗ from λ(i)−α∗−β∗·P rev
E(i+1)

+N (0, σ2ϵ ),

i.e. N

(︄

λ(i)−α∗−β∗·P rev
E(i+1

,
σ2α

E(i+1)
2 +

σ2β
(︂

E(i+1)

P rev

)︂2 + σ2ϵ

)︄

.
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(f) With probability

α(θ∗, θ(i)) = min

(︃

1,
q(θ∗ | θ(i))π(θ∗)

q(θ(i) | θ∗)π(θ(i))

)︃

where q(θ
∗ | θ(i))

q(θ(i) | θ∗)
= e

ϵ∗2−ϵ(i)
2
+2µϵ(ϵ(i)−ϵ∗)

2σ2ϵ , accept the proposed value and set θ(i+1) =

θ∗, else set θ(i+1) = θ(i).

3. If i < N, then go to step 2.
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S6 Text. Model selection.

We would like to assess whether we can concatenate the Besançon data e.g. before

and after the renovation of the ICUs in one large data set to increase the power of our

method. The idea is to compare the DICs for two different scenarios:

• Consider only one model including one parameter set θ = {α, β, f , φ} where α is

the endogenous, β the cross-transmission parameter, f the importation rate and φ

the test sensitvity. The analysis is then performed on all the data X of the two ICUs

and the two time periods (before and after renovation). The DIC is then given by

DICX,θ = DX(θ) +
1

2
Var(DX(θ)).

• Consider a model including a parameter set consisting of separate parameters for

each time period:

– θ1 = {α1, β1, f1, φ1}

– θ2 = {α2, β2, f2, φ2}

The parameter set of the model is then:

θ = θ1 ∪ θ2 = {α1, β1, f1, φ1, α2, β2, f2, φ2}.

The parameters in θ1 are updated for the data set before renovation whereas the

parameters in θ2 are updated for the data set after renovation. The deviance for

this model is determined by

DX(θ) = −2 logπ(X | θ)

= −2 logπ({X1, X2} | θ1 ∪ θ2)

= −2 log [π(X1 | θ1 ∪ θ2) · π(X2 | θ1 ∪ θ2)]

= −2 log [π(X1 | θ1) · π(X2 | θ2)]

= −2 [logπ(X1 | θ1) + logπ(X2 | θ2)]

= DX1(θ1) +DX2(θ2),
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where X1 is the data set for the time period before and X2 for the time period after

renovation. Thus, the DIC for the model including separate parameters for each

time period can be calculated as

DICX,θ = DICX1,θ1 +DICX2,θ2.
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S7 Text. Model assessment.

To assess our method’s ability to detect large discrepancies between the data and

model assumptions, we simulated a data set with a substantial contribution of

background, cross-transmission and environmental contamination after discharge

(27%, 24% and 49%). We analyzed the data set with our MCMC procedure including

only background transmission as a transmission route. Thus, the model in the MCMC

process assumed a constant force of infection. In Fig S18, we can see that the

expected coverage probabilities are not met. Hence, it can be asserted that there

is a large discrepancy between the model and the data. The data can be found on

https://github.com/tm-pham/transmissionPA.
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S8 Text. Prior distributions.

Sensitivity analyses were performed using different priors. We performed the main analyses

of the Besançon (as presented in the Results section) with uninformative exponential

priors and small intitial values for the standard deviation of the proposal distribution.

Further analyses were performed using a weakly informative exponential prior Exp(1.0)

and a uniform prior U(0, 2) for the decay rate µ. The histograms and traceplots using

Exp(1.0) show that these results are not different from results using an uninformative

exponential prior. However, for the uniform prior U(0, 2), the MCMC chain shows signs of

non-convergence. The values for µ have a strong tendency towards the upper boundary

and a strong correlation with ϵ (see S17). This behaviour was also observed when the

full model was applied to simulated data sets with no environmental contamination after

discharge (see S9) and can be explained as follows: A scenario with no environmental

contamination after discharge is indistinguishable from a scenario with environmental

contamination but very short bacterial persistence in the environment (i.e. high values of

µ). In such a case, several combinations of ϵ and µ and β reŕect the same situation. In

particular, any high value of µ may reŕect the absence of environmental contamination.

The results of our sensitivity analyses conőrm that for the two data sets of the Besançon

hospital, environmental contamination after discharge is only of minor inŕuence. Further

elaborations on the inŕuence of different values of the decay rate µ can be found in S9.
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S9 Text. Simulation studies.

Several data sets were simulated to test the algorithm’s ability to identify the correct

relative contribution. We performed two types of simulations:

1. The duration of persistence of bacterial load is varied.

2. The relative contribution of envionmental contamination after discharge is varied.

For the őrst simulation study, we őxed values for α, β and ν and varied values for µ. The

parameter ϵ is set to 0.6 · µ. Three main scenarios regarding the duration of persistence

of bacterial load in the environment are analyzed:

1. Long: µ ∈ {1/7, 1/14}

2. Medium: µ ∈ {1, 1/3}

3. Short: µ ∈ {2, 5}

For each of the three scenarios the importation rate is varied within {0.01, 0.05, 0.1}.

We observed that chain convergence cannot be attained in a reasonable amount of time

using uninformative exponential priors. For medium duration of bacterial persistence con-

vergence could be achieved using either a weakly informative prior Exp(1.0) and a uniform

prior U(0, 2). The reasons for non-convergence for long or short bacterial persistence in

the environment as well as the justiőcation of the weakly informative and uniform prior

are based on the same reasoning.

If bacterial persistence is set to be long (longer than the average length of stay of pa-

tients), then environmental contamination after discharge stays approximately at one level

and the resulting probability of colonization due to this route is approximately constant.

Thus, the induced ŕuctuations in the prevalence can be hardly distinguished from ŕuctu-

ations due to background transmission. On the other hand, a short duration of bacterial

persistence (much shorter than the average length of stay) leads to difficulties in distin-

guishing the resulting model from one with a higher contribution of cross-transmission

and smaller contribution of environmental contamination. Hence, based on the ŕuctua-

tions of the prevalence, only a medium length of bacterial persistence is meaningful and

the restriction of the parameter space or the use of more informative priors is justiőed.

For the second simulation, we varied the relative contribution of environmental contam-

ination after discharge. In particular, when environmental contamination after discharge
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was not present in the simulated data, the results resembled our analysis of the Besançon

data shown in the Results section.

The histograms and plots corresponding to the described simulation studies can be found

on https://github.com/tm-pham/transmissionPA. Further information on our sim-

ulation studies may be requested from the őrst author.
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S10 Text. Secondary analyses.

In addition to the analyses presented in Results, six further analyses were performed.

For each ICU, the time periods before and after renovation were combined. Finally, all

available data was concatenated into one big data set and analyzed at once. The results

of these analyses using the submodel as well as the full model are presented in S1 - S2

Tables. The posterior estimates of the model parameters and the corresponding relative

contributions are similar to the ones presented in the Results section.
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S11 Text. Impact of prior colonized bed occupants.

In a őrst step, we performed Fisher’s exact test to study the association between col-

onization status of current and prior bed occupants for the data sets of the University

Hospital of Besançon. The 2× 2 tables can be found in S3 and S4.

Interestingly, there is a signiőcant association for ICU B (OR: 1.54, 95% cI: (1.24, 1.91),

p-value: 0.0001) but none for ICU A (OR: 0.95, 95% cI: (0.7, 1.27), p-value: 0.7707).

However, such a simple test may be confounded. Consecutive colonized patients may be

a result due to cross-transmission rather than an increased risk of prior bed occupants.

In order to disentangle the effects of cross-transmission and prior bed occupants, we

analyzed the data sets of the University Hospital of Besançon using the following simple

model: Each bed occupant i faces a force of infection λi depending on the colonization

status of the prior bed occupant:

λi(t) = α+ β
I(t)

N(t)
+ p · ⊮(cprior

i ) (3.13)

where cprior
i is the colonization status of the prior bed occupant and ⊮(cprior

i ) = 1 if

cprior
i = 1 and 0 otherwise. It represents the increased risk that patients experience when

occupying a room/bed of a prior colonized bed occupant. The parameter estimates and

the relative contributions can be found in Table S5.

The results show that the inŕuence of prior bed occupants is only limited (< 6%) for both

ICUs of the University Hospital of Besançon. Simulation studies conőrm that a signiőcant

impact of this route would be detected by this model. The code of the MCMC procedure

for this analysis, the histogram and traceplots for the simulations studies and the data

sets of Besançon can be found on https://github.com/tm-pham/transmissionPA.
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S12 Text. COMBACTE-MAGNET membership list.

Please őnd below the list of COMBACTE-MAGNET consortium partners:

Albert Vermaas, Alex Waehry, Angela Supplitt, Anne Adams, Antonio Portolés Pérez,

Aurore Drecq, Brian Allen, Christophe Misse, Cornelia Mockwitz, Fanny Senez, Felicity

Jane Gabbay, Freek De Jong, Gabriella Monaco, Gill Wells, Heather Rogers, Henrik Land-

strom, Hermann Hayn, Holger Schmoll, Jaime Caro Aguirre, Jantine Spithoven, Josep M.

Campistol, Juergen Dreyer, Karine Clement, Karl-Heinz Müller, Lauren Fleming, Lea Pais,

Lynsey Keig, Malcolm Skingle, Maria Carol Sanjurjo, Marion Do Maria, Markus Jäger,

Michael Browne, Nicola Williams, Pascal Savary, Patricia Gizecki, Renaud Mazy, Sarah

Everett-Cox, Soőa Karakostas, Tommaso Rupolo, Ursula Theuretzbacher, Virginia Nieto

Guerrero, Wilfried Reincke, Alain Verschoren, Alexander Affeldt, Alfredo García Díaz,

Andreas Rothfuss, Carlo Giaquinto, Christine Clerici, Daniel Wyler, Denis Hochstrasser,

Dieter Kaufmann, Dirkjan Masman, Frank Miedema, Helen Steel, Holger Zimmermann,

Jaap Verweij, Jan-Olof Jacke, Jean-François Lefebre, John Graham, José Francisco Soto

Bonel, Jose Manuel Aranda Lara, Josep M. Campistol Plana, Laurence Lomme, Marcel

Levi, María Dolores Acón, Markus Müller, Maya Saïd, Nicola Sartor, Noureddine Farah,

Pastora Martinez Samper, Pierre-François Leyvraz, Renaud Mazy, Ron Scott, Yves Gey-

sels, Andreas Kümin, Anthony Latte, Clemens Lässing, Elena Ferragut Roig, Eleonora

Zuolo, Esther Bettiol, Eva Lindgren, Eveline Bielser, Gülseren Yalvac, Jenny Lawson,

José Ángel Freire Astray, Jose Soto Bonel, Julia Lloyd-Parks, Jürgen Dreyer, Malgorzata

Kielbasa, Marco Perdon, Markus Zeitlinger, Michaela Schuhmacher, Michiel Gerlagh,

Olivier Brun, Pam Neagle, Patricia Schott, Rebecca Smith, Sally Miles, Sophie Monteau,

Susanna Montalto, Thierry Borloz, Wouter Roobol, Xavier Fretille, Abdel Oualim, Alas-

dair Macgowan, Andreas Voss, Andrew Lovering, Anne Witschi, Antoni Torres, Antonio

Oliver, Bruno Francois, Craig Maclean, Cuong Vuong, David Evans, Evelina Tacconelli,

Hasan Jafri, Ingrid Klingmann, Jan Beyersmann, Jean Chastre, Jean-François Timsit,

Jesús Rodriguez Baño, Johan Mouton, Kim Gilchrist, Leonard Leibovici, Leonhard Held,

Marc Bonten, Martin Wolkewitz, Mervyn Singer, Miguel Sanchez, Mike Sharland, Miquel

Pujol Rojo, Philippe Eggimann, Philippe Montravers, Pierre-François Laterre, Richard

Bax, Richard Fitzgerald, Stephan Harbarth, Surbhi Malhotra-Kumar, Tom van der Poll,

William Hope.
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S1 Table. Summary statistics of the marginal posterior distributions for parameters

of the submodel based on the analysis of the Besançon data.

Parameter Symbol Median (95% credibility interval)*
ICU A ICU B ICUs combined

Background
α 0.011(0.008, 0.015) 0.008(0.006, 0.011) 0.009(0.007, 0.011)

coefficient
Cross-transmission

β 0.03 (0.012, 0.046) 0.038(0.006, 0.011) 0.034(0.024, 0.044)
coefficient
Sensitivity φ (%) 50.7 (48.0, 53.2) 60.5 (58.8, 62.1) 57.5 (56.2, 58.9)
Importation

f (%) 5.5 (4.5, 6.5) 7.6 (6.7, 8.6) 6.5 (5.8, 7.2)
probability
Fraction colonized pcol (%) 22.2 (21.2, 23.1) 23.2 (22.7, 23.7) 22.4 (21.9, 22.8)
Contributions

Background
Rbackgr (%) 65.1 (46.4, 84.6) 51.1 (35.5, 66.9) 57.6 (46.0, 68.9)

contribution
Cross-transmission

RcrossT (%) 34.9 (15.4, 53.6) 48.9 (33.1, 64.5) 42.4 (31.1, 54.0)
contribution

*Highest posterior density interval
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S2 Table. Summary statistics of the marginal posterior distributions for parameters

of the full model based on the analysis the Besançon data.

Parameter Symbol Median (95% credibility interval)*
ICU A ICU B ICUs combined

Background
α 0.011 (0.008, 0.014) 0.008 (0.006, 0.011) 0.009 (0.007, 0.011)

coefficient
Cross-transmission

β 0.013 (0, 0.033) 0.022 (0, 0.011) 0.018 (0, 0.034)
coefficient
Environmental

ϵ 201.1 (0.018, 832.829) 176.7 (0.009, 811.6) 209.0 (0.02, 784.5)
coefficient
Decay rate µ 1415.8(65.6, 4273.8) 1396.9(26.4, 3992.2) 1419.2 (43.7, 4524.0)
Sensitivity φ (%) 50.6 (48.0, 53.1) 60.5 (58.9, 62.1) 57.6 (56.2, 58.9)
Importation

f (%) 5.5 (4.5, 6.6) 7.5 (6.6, 8.4) 6.4 (5.7, 7.2)
probability
Fraction colonized pcol (%) 22.2 (21.3, 23.1) 23.2 (22.7, 23.6) 22.4 (21.9, 22.8)

Contributions
Background Rbackgr (%) 62.2 (44.8, 79.7) 50.4 (35.6, 65.2) 57.6 (45.5, 67.9)
Cross-transmission RcrossT (%) 37.2 (20.4, 54.9) 49.0 (34.0, 63.1) 42.7 (31.9, 54.0)
Env. cont. after

Renv (%) 0.006 (0, 0.013) 0.005 (0, 0.013) 0.006 (0, 0.012)
discharge

*Highest posterior density interval
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S3 Table. Association of colonization statuses of consecutive bed occupants in ICU

A of the University Hospital of Besançon.

Current bed occupant
Colonized Non-colonized

Prior bed occupant
Colonized 57 478
Non-colonized 481 3826
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S4 Table. Association of colonization statuses of consecutive bed occupants in ICU

B of the University Hospital of Besançon.

Current bed occupant
Colonized Non-colonized

Prior bed occupant
Colonized 123 586
Non-colonized 610 4479
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S5 Table. Summary statistics of the marginal posterior distributions for parameters

of model (3.13) based on the analysis of the Besançon data.

Parameter Symbol Median (95% credibility interval)*
ICU A ICU B

Background
α 0.011 (0.008, 0.014) 0.008 (0.006, 0.011)

coefficient
Cross-transmission

β 0.027 (0.013, 0.041) 0.036 (0.023, 0.048)
coefficient
Prior bed occupant

p 0.004 (0, 0.007) 0.003 (0, 0.006)
coefficient
Sensitivity φ (%) 50.6 (48.0, 53.1) 60.5 (58.9, 62.1)
Importation

f (%) 5.5 (4.5, 6.6) 7.5 (6.6, 8.4)
probability
Fraction colonized pcol (%) 22.2 (21.3, 23.1) 23.2 (22.7, 23.6)
Contributions
Background Rbackgr (%) 65.1 (48.8, 81.7) 50.4 (35.7, 66.6)
Cross-transmission RcrossT (%) 31.8 (14.6, 47.2) 46.8 (31.3, 62.1)
Prior bed occupants

Rprior (%) 3.1 (0, 6) 2.6 (0, 5.6)
discharge

*Highest posterior density interval
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S1 Fig. Pairwise plots of samples from the posterior distribution for the transmission

parameters of the submodel. The plots were generated from the data of ICU A before

renovation using the submodel with background and cross-transmission.
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S2 Fig. Histograms for ICU A after renovation using the submodel with background

and cross-transmission.
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S3 Fig. Traceplots for ICU A before renovation using the submodel with background

and cross-transmission.
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S4 Fig. Histograms for ICU A after renovation using the submodel with background

and cross-transmission.
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S5 Fig. Traceplots for ICU A after renovation using the submodel with background

and cross-transmission.
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S6 Fig. Histograms for ICU A before renovation using the full model with back-

ground, cross-transmission and environmental contamination. The results are dis-

played for transmission parameters α, β, ϵ and µ.
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S7 Fig. Histograms for ICU A before renovation using the full model with back-

ground, cross-transmission and environmental contamination. The results are dis-

played for the importation probability f , sensitivity parameter φ, log-likelihood and relative

contributions Ri , where i ∈ {background, cross-transmission, environment}.
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S8 Fig. Traceplots for ICU A before renovation using the full model with back-

ground, cross-transmission and environmental contamination. The results are dis-

played for transmission parameters α, β, ϵ and µ.
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S9 Fig. Traceplots for ICU A before renovation using the full model with back-

ground, cross-transmission and environmental contamination. The results are dis-

played for the importation probability f , sensitivity parameter φ, log-likelihood and relative

contributions Ri , where i ∈ {background, cross-transmission, environment}.
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S10 Fig. Histograms for ICU A after renovation using the full model with back-

ground, cross-transmission and environmental contamination. The results are dis-

played for transmission parameters α, β, ϵ and µ.
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S11 Fig. Histograms for ICU A after renovation using the full model with back-

ground, cross-transmission and environmental contamination. The results are dis-

played for the importation probability f , sensitivity parameter φ, log-likelihood and relative

contributions Ri , where i ∈ {background, cross-transmission, environment}.
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S12 Fig. Traceplots for ICU A after renovation using the full model with back-

ground, cross-transmission and environmental contamination. The results are dis-

played for transmission parameters α, β, ϵ and µ.
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S13 Fig. Traceplots for ICU A after renovation using the full model with back-

ground, cross-transmission and environmental contamination. The results are dis-

played for the importation probability f , sensitivity parameter φ, log-likelihood and relative

contributions Ri , where i ∈ {background, cross-transmission, environment}.
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S14 Fig. Pairwise plots of samples from the posterior distribution for the trans-

mission parameters of the full model. The plots were generated from the data of

ICU A before renovation using Exp(0.001) prior and the full model with background,

cross-transmission and environmental contamination.
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S15 Fig. Coverage probabilities for the submodel using Jeffreys prior. (a) - (b) ICU

A before and after renovation, respectively. (c) - (d) ICU B before and after renovation,

respectively.
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S16 Fig. Coverage probabilities for the full model using Jeffreys prior. (a) - (b) ICU

A before and after renovation, respectively. (c) - (d) ICU B before and after renovation,

respectively.
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S17 Fig. Pairwise plots of samples from the posterior distribution for the trans-

mission parameters of the full model. The plots were generated from the data of

ICU A using U(0,2) prior and the full model with background, cross-transmission and

environmental contamination after discharge.
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S18 Fig. Coverage probabilities for simulated data set using Jeffreys prior. The data

was simulated using α = 0.015, β = 0.055, µ = 1/7, ϵ = 0.15, f = 0.05, φ = 1.

The analysis assumed only one route, i.e. background transmission. The plot shows large

discrepancies between the expected and the computed coverage probabilities, pointing to

a misspeciőed model.





Chapter 4

Modes of transmission of VIM-positive Pseudomonas

aeruginosa in adult intensive care units - analysis of 9 years

of surveillance at a university hospital using a mathematical

model

Thi Mui Pham*, Andrea C. Büchler*, Anne F. Voor in ‘t holt, Juliëtte A. Severin,

Martin C. J. Bootsma, Mirjam E. Kretzschmar†, Margreet C. Vos†

* These authors contributed equally to this work.

† These authors contributed equally to this work and are cosenior authors.

Manuscript under review.





Modes of transmission of VIM-Pseudomonas aeruginosa in ICUs

Abstract

Background: Hospital outbreaks of multidrug resistant Pseudomonas aeruginosa (P.

aeruginosa) are often caused by Pseudomonas aeruginosa (P. aeruginosa) clones which

produce metallo-β-lactamases, such as Verona Integron-encoded Metallo-β-lactamase

(VIM). Although different sources have been identiőed, the exact transmission routes

often remain unknown. However, quantifying the role of different transmission routes of

VIM-PA is important for tailoring infection prevention and control measures. The aim

of this study is to quantify the relative importance of different transmission routes by

applying a mathematical transmission model using admission and discharge dates as well

as surveillance culture data of patients.

Methods: We analyzed VIM-PA surveillance data collected between 2010 and 2018

of two intensive-care unit (ICU) wards for adult patients of the Erasmus University

Medical Center Rotterdam using a mathematical transmission model. We distinguished

two transmission routes: Direct cross-transmission and a persistent environmental

route. Based on admission, discharge dates, and surveillance cultures, we estimated the

proportion of transmissions assigned to each of the routes.

Results: Our study shows that only 13.7% (95% credibility interval: 1.4%, 29%)

of the transmissions that occurred in these two ICU wards were likely caused by

cross-transmission, leaving the vast majority of transmissions (86.3%, 95% credibility

interval: 71%, 98.6%) due to persistent environmental contamination.

Conclusions: Our results emphasize that persistent contamination of the environment

may be an important driver of nosocomial transmissions of VIM-PA in ICUs. To minimize

the transmission risk from the environment, potential reservoirs should be regularly and

thoroughly cleaned and disinfected, or redesigned.

Keywords: Drug Resistance, Multiple; Pseudomonas aeruginosa (P. aeruginosa); Critical

Care; Epidemiological monitoring; Models, Statistical.
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Introduction

Multidrug resistant (MDR) microorganisms are an emerging problem worldwide. The

most emerging threat is the spread of carbapenem-resistant Enterobacterales and

carbapenem-resistant non-fermenting microorganisms, such as Acinetobacter baumannii

(A. baumannii) and Pseudomonas aeruginosa (P. aeruginosa) [1]. P. aeruginosa is one

of the most common nosocomial pathogens [2, 3]. It can cause serious infections in

patients with underlying conditions, such as immunosuppression, cystic őbrosis, and

patients admitted to the intensive care unit (ICU). The morbidity and mortality of P.

aeruginosa bloodstream infections is high, especially in immunocompromised patients

[4ś6]. Due to its intrinsic and acquired resistance to multiple antibiotics, P. aeruginosa is

not only a common cause of nosocomial infections but also diffcult to treat. Multidrug

resistance mechanisms in P. aeruginosa are loss or alteration of outer membrane

porins, increased efflux pump activity and carbapenemase production [2] with the latter

being the most common underlying mechanism of MDR P. aeruginosa involved in

in-hospital outbreaks [7]. Among the carbapenemases, the Verona Integron-encoded

Metallo-beta-lactamase (VIM) is most dominant, and most widely disseminated [8].

Identifying the pathways of transmission of P. aeruginosa in hospital outbreaks is key

for targeted and timely infection prevention and control (IPC) measures. Although the

exact transmission route often remains unknown, different modes of transmission are

described in the literature. For P. aeruginosa, water-related devices such as sinks are

the most common environmental source [9, 10]. Quantifying the relative importance of

transmission routes may serve as an essential tool in outbreak investigation as well as in

designing effective and tailored IPC strategies.

Models for inference of transmission parameters for different transmission routes

have been developed for various MDR bacteria [11ś14]. Pham et al [14] developed a

mathematical transmission model including three different routes of transmission for P.

aeruginosa using ICU data from two ICUs of a French hospital in Besançon. The authors

estimated the relative contribution of background transmission, cross-transmission and

environmental contamination after discharge using an extensive surveillance data set. It
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was shown that environmental contamination due to colonized patients that persisted

after their discharge likely had a small contribution (< 1%) to the overall number of

transmissions. Persistent environmental contamination was included in łbackground

transmissionž for which the relative contribution was signiőcantly higher. While this

route could have played an important role in the transmission process, it could not

be distinguished from other routes that could have caused a similar constant risk of

colonization.

In this paper, we present the application of a similar mathematical transmission

model to surveillance data of VIM-producing P. aeruginosa (VIM-PA) at the Erasmus

University Medical Center Rotterdam (Erasmus MC), the Netherlands. In this hospital,

since 2003, VIM-PA colonized and infected over 150 patients, with most patients

being identiőed at the ICU [15]. Multiple sources and transmission routes have been

identiőed since; with sinks as main source [15, 16]. However, the contribution of each

transmission route remains unknown. Therefore, the aim of this study is to quantify the

relative importance of each route at the ICU by applying a mathematical transmission

model using admission and discharge dates as well as surveillance culture data of patients.

Methods

Setting

This retrospective study was conducted at the adult ICU wards of the Erasmus

MC in Rotterdam, the Netherlands, using data from January 1st, 2010 until May

18th, 2018. The end date of this period was due to the move to a new hospital. In

this 1200-bed university hospital, all medical specialties are available. The adult ICU

comprised two high-level ICU wards located on the third and the tenth ŕoor of the

adults’ hospital building, and consisted of a total of 34 single-occupancy rooms, of

which 7 with anteroom (i.e., isolation rooms). At the ICU, patients expected to be on a

mechanical ventilator for > 48 hours or anticipated to be admitted to the ICU for > 72

hours received selective digestive tract decontamination (SDD) [17]. During the study

period, the SDD regimen did not change, nor did the empirical antibiotic therapy regimen.
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General IPC measures were installed after each VIM-PA case was identiőed (e.g.,

contact isolation; using gloves and gowns when entering the patient room). However,

in 2011 these measures were intensiőed, and twice-weekly screening for VIM-PA was

implemented. An overview of all IPC measures implemented or executed during the

study period is available in Supplement 1.

Written approval to conduct this study was received from the medical ethical research

committee from the Erasmus MC University Medical Center (Erasmus MC), Rotterdam,

the Netherlands (MEC-2015-306). All data were anonymized before analysis.

Data

We included all admission data and surveillance cultures from two distinct ICU wards

in the time period 01/01/2010 till 18/05/2018. Since HCWs were not shared between

wards and no movement of patients were recoded between them, these ICU wards were

treated as separate entities with no transmission between them. If the admission date

of a patient preceded the study period, it was set to the beginning of the study period.

If the discharge date of a patient lied outside the study period, it was set to the end of

the study period. We included all results from throat and rectum cultures that were part

of regular VIM-PA surveillance. Non-surveillance, clinical cultures were excluded to avoid

the introduction of selection bias. All data were de-identiőed and anonymized prior to

the analysis.

Mathematical model

The underlying model is a Susceptible-Infected (SI) model (e.g., [18]). We assumed

that all patients admitted to an ICU ward either belong to the susceptible (VIM-PA

negative) or colonized (VIM-PA positive) compartment at any given time. The latter

includes patients with asymptotic carriage as well as those with a VIM-PA infection. As

such, we did not distinguish colonization and infection. In addition, we assumed that

every admission is a new patient and once colonized, patients remained colonized with

the same level of infectiousness throughout their stay. Events were assumed to occur in

daily intervals.
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A susceptible patient may enter the ICU already colonized (with probability φ), or may

become colonized at a certain transmission rate . We assumed two different modes of

transmission through which colonization can be acquired. The schematic illustration of

the model and the transmission routes is given in Figure 1. Each route induces different

patterns in the prevalence time series on the basis of which they may be distinguished

statistically. Cross-transmission, i.e., colonization caused by (direct) transmissions from

other colonized patients present at the same time on the same ward, is dependent on

the fraction of colonized patients in the ward. The probability of colonization due to

cross-transmission is therefore proportional to the number of colonized patients present

in the ward. Since the mobility of patients in ICUs is usually restricted (due to their

health status), cross-transmission typically occurs via temporarily contaminated hands of

health-care workers (HCWs). We did not model the population of HCWs explicitly but

rather assumed direct patient-to-patient transmission with HCWs representing vectors of

transmission. Next to cross-transmission, patients may become colonized at a constant

per capita rate α. In general, this transmission route may be due to, persistent environ-

mental contamination, or introductions from other parts of the hospital, or rarely long

term HCW carriers. For VIM-PA the main sources of this transmission route are persis-

tently contaminated environments, such as sinks. We will therefore refer to this route as

environmental route. The force of infection, i.e., the per capita rate of colonization, is

modeled as

λ(t)− α+ β
I(t)

N(t)

where I(t) is the number of colonized patients, N(t) is the total number of patients

currently present in the ward at time t, and α and β are the transmission rates for the

environmental route and cross-transmission, respectively. Based on these parameters, the

proportion of acquired colonizations assigned to each route, i.e., the relative contribu-

tion of the transmission routes to the overall number of acquired colonizations can be

estimated (e.g., [14]).

Estimation procedure

In the analysis, we used the day of admission and discharge, and the day and result of

surveillance cultures as input data for the model. Patients may be admitted to the ward
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CROSS-TRANSMISSIONENVIRONMENT

Force of infection

Figure 1: Illustration of the considered transmission routes and the basic transmission
model. Patients are assumed to be either susceptible (S) or colonized (I) with VIM-PA.
The rate at which susceptible patients may become colonized is represented by the force
of infection and dependent on the routes of transmission. Two transmission routes are
distinguished: Environmental route (green), mainly caused by transmissions from per-
sistent environmental sources and cross-transmission (orange), i.e., transmissions from
other colonized patients. In both routes, HCWs represent vectors of transmission.

either uncolonized or already colonized. The probability of the latter is defined as the

importation probability f . The rate at which a susceptible patient may transition to

being colonized is given by Eq. (1). The colonization state of a patient is determined by

the surveillance cultures provided to the model. Since these culture results are typically

intermittent and imperfect, we allow false negative results and colonization results to

be imputed in our model. We define the test sensitivity φ, i.e., the probability that a

colonized patient has a positive result.

We estimated the transmission parameters, the relative contribution of the corresponding

transmission routes as well as the importation probability and test sensitivity based on a

Bayesian framework using a data-augmented Markov chain Monte Carlo (MCMC) simu-

lation method [11]. The parameters are estimated by fitting the stochastic transmission

model to observed data. The main idea is to fit the prevalence pattern resulting from the

model to the observed timeseries patterns of the prevalence.
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Implementation

The MCMC algorithm was run for 1,000,000 iterations. A thinning factor of 10 and a

burn-in of 30,000 iterations were used. In each iteration, 20 data-augmentation steps

were performed with each augmentation chosen at random. The MCMC algorithm was

implemented in C++ and the analysis of the output was performed in R (Version 4.0.1)

[19]. The data and code are publicly available from:

https://github.com/tm-pham/transmission_routes_erasmusMC.

Results

Descriptive data analysis

An overview of the data used in the analysis can be found in Table 1. Since the two

considered ICU wards do not differ from each other in terms of admitted patients (i.e.,

patients were allocated randomly to one of the two ICU wards), we used a combined data

set comprising data of both ICU wards for the estimation. The ICU wards were treated

as distinct wards with no transmission between them. Data was collected over a study

period of 3058 days. In total, 8814 patients were included in the analysis. There were 62

patients with at least one positive culture and 7487 patients with only negative cultures.

In total, 829 patients who were admitted to one of the two ICU wards did not have a

culture result. The overall median length of stay was 3.0 days. Patients with an observed

colonization had a median length of stay of 13.0 days whereas patients that only had

negative culture results had a median length of stay of 3.0 days. The number of patients

with positive cultures over time are shown in Figure 2.

Inference results

The estimated parameters are reported in Table 2. We estimated that the majority of

the VIM-PA colonizations occurred as acquisitions on the wards and that the majority

of these transmissions were due to persistent environmental contamination (Figure 3).

In particular, of the estimated 58 (95% credibility interval: 45, 72) acquisitions, approx-

imately 50 acquisitions (86.3%, 95% credibility interval: 71%, 98.6%) occurred via this

route leaving 8 (13.7%, 95% credibility interval: 1.4%, 29%) acquisitions due to cross-

transmission.
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Table 1: Descriptive statistics for VIM-PA colonization data collected at Erasmus MC,
2010-2018

No./Median (IQR) Percentage (%)

Study period, days 3058
Admissions 10408
Number of included patients 8814
Number of patients with readmissions 1128
Observed number of patients with positive
culture(s) for VIM-PA

62 0.7%

Number of patients with only negative cul-
tures for VIM-PA

7487 84.9%

Number of patients with no cultures 1265 14.4%
Length of stay, days 3.0 (2.0-7.0)
Observed colonized patients 13.0 (5.0-31.0)
Observed uncolonized patients 3.0 (2.0-7.0)
Number of cultures per included patient 6.0 (4.0-15.0)
Number of cultures per admission 2.0 (1.0-3.0)

Abbreviations: VIM-PA; Verona Integron-encoded Metallo-beta-lactamase (VIM)-
producing Pseudomonas aeruginosa (P. aeruginosa), IQR; interquartile range.
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Figure 2: Number of VIM-PA positive patients in the ICU for adults at Erasmus MC,
2010-2018. The date of őrst positive culture was used. Data for the two ICUs were
combined.

Discussion

Our results show that the minority of the transmissions that occurred in the two consid-

ered ICU wards was due to cross-transmission. By exclusion, most of the transmissions

are estimated to have occurred through persistent environmental contamination. To our
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Table 2: Summary statistics of the estimated parameters.

Parameter Symbol Mean (95% credibility interval)

Environmental contamination coefficient α 6.4 · 10−4(4.1 · 10−4, 9.2 · 10−4)
Cross-transmission coefficient β 7.1 · 10−3(5.6 · 10−4, 1.7 · 10−2)
Probability to be colonized on admission (%) f 0.3 (0.2, 0.5)
Fraction colonized (%) 1.7 (1.6, 1.9)
Test sensitivity (%) φ 98.8 (95.6, 100)
Number of acquisitions 58 (45, 72)
Number of importations* 32 (24, 41)
Contributions

Environmental route (%) Rα 86.3 (71, 98.6)
Cross-transmission (%) Rβ 13.7 (1.4, 29)

*Colonizations prior to admission
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Figure 3: Estimated relative contributions of transmission routes. The height of the bar
shows the mean value, the error bars represent the corresponding 95% credibility intervals
for the relative contributions of the transmission routes.
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knowledge, this is the őrst study that quantiőes the relative contributions of different

transmission routes for VIM-PA and conőrms the assumption expressed in Voor in ‘t

holt et al [15], that persistent sources in the hospital environment were the main cause

of VIM-PA colonizations.

VIM-PA colonizations have been linked to environmental reservoirs such as sinks in other

ICUs (e.g., [20ś23]). Kizny Gordon et al [24] summarized studies reporting outbreaks

with carbapenem-resistant organisms with a link to the hospital water environment in a

systematic review. The authors found that such outbreaks usually involved intensive care

settings, the majority of these were caused by P. aeruginosa, and that drains, sinks, and

faucets were most frequently colonized. Focusing speciőcally on carbapenem-resistant

P. aeruginosa outbreaks and all reported sources, Voor in ‘t holt et al. [9] also showed

an over-representation of sinks as reservoirs. While our method is not able to pinpoint

to the exact source of colonizations, we were able to show that cross-transmission, and

therefore direct transmission from other patients, was an unlikely cause for the majority

of transmissions. In fact, we showed that most transmissions were due to sources that

caused a constant risk of colonization independent from other colonized patients. HCW

themselves may be such risk as was shown by Foca et al [25] who described three HCWs

with persistent carriage of P. aeruginosa on their hands. However, this was associated

with nail extenders, candida onychomycosis and an active otitis externa [25]. In the

Erasmus MC, we cultured the hands of ICU HCW on two moments (Supplement 1;

February 2010 and May 2011). VIM-PA was not detected in any of these. Furthermore,

artiőcial nails and nail extenders are forbidden in our hospital and were also not observed

during the culturing of hands. Therefore, long-term HCW carriers are an unlikely cause

and transmissions due to (temporarily) contaminated hands of HCWs have to be linked

to other colonized patients present in the respective ward. Visitors may introduce and

transmit microorganisms. However, for VIM-PA, we consider this an unlikely cause.

VIM-PA among hospitalized patients is already < 1%, among non-hospitalized persons

this would be even rarer [26]. Thus, by exclusion, the majority of transmissions are

assumed to have occurred by persistent environmental sources, conőrming the likely role

of environmental contamination in the transmission process of VIM-PA in ICUs. These

results may be used in the investigation for outbreaks. In fact, environmental sampling

of sinks during this study period revealed that many sinks were found to be persistently
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contaminated [16].

Our study encompasses several simplifying assumptions. Firstly, we assumed that every

new admission is a new patient. Secondly, while we distinguish two different transmission

routes, it is possible that other transmission routes exist that are not included in the

model. As explained above, other routes than the environment, such as persistent

colonization of HCWs, are highly unlikely. The environment as an exclusion-per-

deőnition-category includes a broad range of sources including equipment and inventory.

Microbial genotyping data of surveillance samples would allow the identiőcation of

speciőc transmission routes and more detailed quantiőcation of the relative contribution

of the transmission routes. Thirdly, we assumed that the environmental route affects all

patients in the ICU ward equally. In reality, patients located close to an environmental

reservoir may have an increased risk of colonization that will also depend on the microbial

load present in the reservoir. Fourthly, non-surveillance or clinical cultures were excluded

from our analysis to avoid selection bias. While this excludes potential information, this

would likely only affect the uncertainty of our estimates as the data-augmented MCMC

method we used imputes missing colonization times. Finally, we did not include risk

factors of different patients and assumed that all patients are equally susceptible to

colonization. While the model could be extended to account for the simpliőcations, this

would likely only affect the uncertainty of our estimates but not the main results and

conclusions regarding the relative contribution of the transmission routes. We, thus,

opted for the simpler model to answer our research question.

In conclusion, using a large longitudinal data set on admission and discharge times as

well as surveillance cultures of patients in two ICUs of the Erasmus MC, we were able

to quantify the relative importance of cross-transmission and persistent environmental

contamination. Our study contributes to the evidence that persistently contaminated

environments in hospital wards may be a major cause of VIM-PA outbreaks. To min-

imize the transmission risk in wards, reservoirs in the environment should be regularly

cultured, thoroughly cleaned, and disinfected. In addition, well-designed sinks and taps

may minimize the risk of contamination and consequently spill-over from the environment

to patients.
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Pseudomonas aeruginosa (VIM-PA) at the 2 included
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Table S1: ICP measures implemented for a period of time at the ICU.

IPC measure Start date (month-year) End date (month-year)

General use of re-usable gowns by HCW Jan-10 Sep-11
General use of gloves and gowns by HCW and visitors (preemptive contact isolation) of
all patients admitted at the ICUs

Oct-11 Mar-12

General use of gloves and gowns by HCW when having physical patient contact (i.e., not
when changing an intravenous fluid bag)

Apr-12 May-18

The patient room of every patient identified with VIM-PA: daily cleaning, and disinfection
with 250 ppm chlorine after discharge

Aug-10 May-18

Emphasis (communication by the IPC team) on separation of clean materials from dirty
sinks

Feb-11 May-18

VIM-PA screening (throat and rectum) of patients on admission and at discharge Aug-11 May-18
VIM-PA screening (throat and rectum) of patients during hospitalization (twice weekly) Aug-11 Sep-14
VIM-PA screening (throat and rectum) of patients during hospitalization (weekly) Oct-14 Dec-14
VIM-PA screening (throat and rectum) of patients during hospitalization (twice weekly) Jan-15 May-18
Electronic flagging in the electronic patient fil of all VIM-PA positive patients Sep-11 May-18
Only allowed to use single-use wash gloves at the ICU. Dec-11 May -18 Discontinuation
usage of tap water at the ICU, only usage of bottled water allowed.

Dec-11 May-18

Installation of sink drain plugs as physical barriers against splashing to prevent transmission of VIM-PA from drain reservoirs to the surrounding sink environment
Pre-intervention phase Jan-13 Aug-13
Intervention phase Jul-13 Sep-13
Post-intervention phase Aug-13 Jun-14

Abbreviations: HCW; healthcare workers, ICU; intensive care unit, VIM-PA; Verona Integron-encoded metallo-beta-lactamase (VIM)-producing Pseudomonas aerug-
inosa, OMT; outbreak management team, CVVH; Continuous Veno-Venous Hemofiltration, ppm; parts per million, IPC; infection prevention and control, H2O2;
hydrogen peroxide.

Figure S1: Sink drain plugs as physical barriers against splashing to prevent transmission
of VIM-PA from drain reservoirs to the surrounding sink environment.
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Table S2: ICP measures implemented for a period of time at the ICU.

IPC measure Month-year

VIM-PA screening of the ICU environment Jan-10, Apr-10, Aug-10, Sep-10,
Oct-10, May-11, Aug-11, Sep-11,
Oct-11, Nov-11, Dec-11, Jan-12,
Jan-13, Jun-13, Dec-13, Feb-14,
Jun-15, Nov-15, Jan-16, Feb-16,
Mar-16, Apr-16, Jul-17, Aug-17

OMT meetings Sep-10, Jan-11, Feb-11, Mar-11,
Apr-11, May-11, Jul-11, Aug-11,
Sep-11, Oct-11, Nov-11, Dec-11,
Feb-12, Mar-12, Jun-12, Aug-12,
Sep-12, Jan-13, Mar-14, Aug-14,
Sep-14, Oct-14, Apr-15

VIM-PA screening of hands of healthcare workers (all HCW employed at one
ICU)

Feb-10

Sampling of CVVH machines Feb-10, Aug 12
Replacement of all siphons and drains, including cleaning and disinfection of
patient rooms afterwards.

Oct-10

VIM-PA screening (throat and rectum) of all admitted ICU patients Apr-11
VIM-PA screening of enteral feeding Aug-11
H2O2 disinfection of patient rooms of one ICU ward Aug-11
VIM-PA screening of throat and rectum of all employed HCW at both ICUs Oct-11, Nov-11
International expert meeting Dec-11
Regional feedback meeting Dec-14

Abbreviations: HCW; healthcare workers, ICU; intensive care unit, VIM-PA; Verona Integron-encoded metallo-beta-
lactamase (VIM)-producing Pseudomonas aeruginosa, OMT; outbreak management team, CVVH; Continuous Veno-
Venous Hemoőltration, ppm; parts per million, IPC; infection prevention and control, H2O2; hydrogen peroxide.
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Nosocomial infections in the COVID-19 epidemic in England

Abstract

Background: SARS-CoV-2 spreads in hospitals, but the contribution of infections

acquired in hospitals to the total burden at a national level is unknown.

Methods: We used comprehensive national English datasets to determine the number

of COVID-19 patients with identiőed hospital-acquired infections (with symptom onset

>7 days after admission and before discharge) in acute English hospital facilities up to

August 2020. As patients may leave the hospital prior to detection of infection or have

rapid symptom onset, we combined measures of the length of stay and estimates of the

incubation period distribution, to estimate how many hospital-acquired infections could

be missed. Combining these two measures, we used simulations to estimate the total

number (identiőed and unidentiőed) of symptomatic hospital-acquired infections, as well

as infections due to onward transmissions from missed hospital-acquired infections, to

31st July 2020.

Results: In our dataset of hospitalized COVID-19 patients in acute English Trusts with

a recorded symptom onset date (n = 65,028), 7% were classiőed as hospital-acquired.

We estimated that only 30% (range across weeks and 200 simulations: 20-41%) of

symptomatic hospital-acquired infections would be identiőed, with up to 15% (mean, 95%

range over 200 simulations: 14.1%-15.8%) of cases currently classiőed as community-

acquired COVID-19 potentially linked to hospital transmission.

We estimated that 26,600 (25,900 to 27,700) individuals acquired a symptomatic SARS-

CoV-2 infection in an acute Trust in England before 31st July 2020, resulting in 15,900

(15,200-16,400) or 20.1% (19.2%-20.7%) of all identiőed hospitalized COVID-19 cases.

Conclusions: Transmission of SARS-CoV-2 to hospitalized patients likely caused

approximately a őfth of identiőed cases of hospitalized COVID-19 in the łőrst wave" in

England, but less than 1% of all infections in England. Using symptom onset as a detec-

tion method likely misses a substantial proportion (>60%) of hospital-acquired infections.

Keywords: COVID-19, SARS-CoV-2, nosocomial transmission, mathematical modelling
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Introduction

The SARS-CoV-2 pandemic is a global public health priority [1]. Based on experience

with other highly pathogenic coronaviruses within-hospital transmission can occur and

hospitals may play an important role in amplifying transmission [2]. Moreover, many

patients acquiring SARS-CoV-2 in hospitals are at high risk for severe outcomes and

subsequent mortality [3]. Quantifying hospital-acquired transmission of SARS-CoV-2 is

thus important both for prioritising control efforts and for understanding the contribution

of hospitals to sustaining the community epidemic.

SARS-CoV-2 transmission in healthcare settings has been reported in many countries [3ś

6]. As the precise time of infection is rarely known, establishing whether an infection is

hospital-acquired remains a challenge. For SARS-CoV-2, hospital-acquired infections are

usually deőned by comparing the time of admission and subsequent symptom onset [7] or

őrst positive test [8]. If the delay is much longer than the incubation time, then it is likely

that an infection is hospital-acquired. Thus, the proportion of patients with a hospital-

acquired SARS-CoV-2 infection will depend on the deőnition used, with uncertainty driven

by the unobservable nature of infection and the incubation period distribution. Records

for all hospitals in England, using testing data and standard deőnitions (of őrst positive

test more than 14 days from admission), indicate that 15% of detected SARS-CoV-2

infections in hospitalized patients could be attributed to hospital-acquired transmission

[8] with analysis of data from single hospitals suggesting a similar level [3, 9].

In the absence of frequent universal testing of all inpatients, many hospital-acquired

SARS-CoV-2 infections will not be identiőed by hospitals prior to discharge. Even with

regular PCR testing of all inpatients regardless of symptoms we would expect to miss

many infections because of short patient stays and potentially low PCR sensitivity 1-2

days after infection [10].

In the spring of 2020 in England, the majority of inpatient testing only occurred in those

with symptoms, either on admission or during hospital stay [11]. Many patients who de-

velop a symptomatic infection will do so after discharge (Figure 1) as hospital stays are

typically shorter than the interval from infection to symptom onset (median length of

stay = 2.4 days, standard deviation = 0.4 days, for non-COVID patients in England vs.

incubation period average of 5.1 days [12]). Thus, there may be a considerable propor-
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tion of hospital-acquired infections that remained unidentified. Its magnitude and further

transmission to the community has been difficult to quantify. Additionally, a substantial

proportion of infected individuals never progress to be symptomatic [13].

In this analysis, we used national, patient-level data sets of patients hospitalized with

COVID-19 to estimate the contribution of hospital settings to the first wave of COVID-

19 in England. We estimated the proportion of symptomatic hospital-acquired infections

that have not been identified as hospital-acquired and modelled onward transmission from

these unidentified infections to the community. We hence quantified the likely contribution

of hospital-acquired infections to the first wave of SARS-CoV-2 infections in England.
























 











Figure 1: How might we underestimate hospital-acquired (HA) infections? With no
asymptomatic screening in hospitals, detection of a hospital-acquired case relies on symp-
tom onset prior to patient discharge. In the schematic a “+" above the bed denotes a
hospital-acquired infection, and a red patient denotes one with symptoms. A patient with
COVID-19 identified as being due to a hospital-acquired infection is one with symptom
onset after a defined cut-off (e.g. > 7 days from admission to symptom onset but prior
to discharge, bottom row patient). Patients with unidentified hospital-acquired infections
are those with a symptom onset after discharge (top row patient, “missed”) or those with
symptom onset prior to the defined cut-off (middle row patient, “misclassified"). We focus
on symptomatic infections: there will also be unidentified asymptomatic hospital-acquired
infection which we do not include. We estimated that fewer than 1% of individuals with
symptom onset > 7 days from admission will have been infected in the community.
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Methods

Our primary aim was to estimate the total number of symptomatic hospital-acquired

SARS-CoV-2 infections in England from 1st January to 31st July 2020. For each

identiőed hospital-acquired infection, we estimated how many were unidentiőed. Our

secondary aim was to estimate the contribution of these unidentiőed hospital-acquired

infections to the community epidemic.

All analyses were conducted in R version 4.0.3 (14) with code available on Github [14].

The steps in the analysis (a - e) are outlined below and illustrated in Figure 2.

Data sources

The healthcare system in the UK is represented by the National Health System

(NHS). NHS services are mainly provided by NHS Trusts, i.e., collections of hospitals

(departments, buildings and facilities) that function as a single administrative unit.

Acute medical care Trusts are deőned as an NHS Trust with only acute hospitals (as

opposed to Community or Mental Health facilities). In this study, we used two data

sources on COVID-19 patients admitted to NHS Trusts (Supplementary 2). The őrst

is the ISARIC4C UK COVID-19 Clinical Information Network (CO-CIN) study [15],

a national cohort of COVID-19 patients collected in 208 acute Trusts in England,

Scotland, and Wales up to 3rd December 2020, representing approximately two thirds

of COVID-19 UK admissions during the őrst wave of SARS-CoV-2 infection. While

not all NHS Trusts are represented in the data (as some have specialist roles that do

not involve inpatient acute medical care), our CO-CIN extract comprised 208 of 223

acute medical care Trusts [16, 17]. We included 126 English Trusts and őltered the

dataset for patients with a symptom onset before 1st August 2020. CO-CIN recorded

admission date, discharge date, and earliest date of symptom onset for patients. We

excluded CO-CIN participants without a recorded admission and symptom onset date

(Supplementary 2).

The second is the SUS dataset [18] which contains data on all patient admissions and

discharges for all Trusts in England. The SUS data were linked with testing data (Second
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Generation Surveillance System (SGSS)) [18] to derive length of stay distributions for

non-COVID-19 patients and total COVID-19 hospital admissions by week and NHS Trust.

These two data sources have their respective strengths and limitations. The CO-CIN data

include information on the date of symptom onset [19] but is only a subset, albeit the

majority, of all hospitalized COVID-19 patients, while the linked SUS/SGSS data include

all known hospitalized COVID-19 patients but lack information on symptom onset date.

Symptom onset dates do not rely on knowledge of testing regimens which vary over time

and between Trusts. To address these different shortcomings, we decided to use SUS

data to adjust CO-CIN information to account for enrolment variation between settings,

resulting in a database combining the best features of both.

Setting

Our baseline population is all acute English Trusts in CO-CIN. These are aggregated as

a single łEngland" population for our main analysis. A sensitivity analysis modelled the

individual acute Trust level prior to aggregation (Supplementary 12).

Length of stay distribution

We used empirical length of stay (LoS) estimates for non-COVID-19 patient stays from

SUS for each English acute Trust in CO-CIN for patients admitted each week (Supple-

mentary 2). For a LoS distribution for England, LoS estimates across all including Trusts

were pooled by week. The average length of stay was between 1.5 and 2.5 days.

Analysis steps

a. Identifying COVID-19 cases as infected in a hospital

The number of hospital-acquired COVID-19 cases per day in each Trust was estimated by

comparing the dates of symptom onset and hospital admission for each patient provided

by CO-CIN. Our analysis used a 7 day cut-off: we deőned an identified hospital-acquired

infection as an inpatient with symptoms onset more than 7 days after admission (Ta-

ble 1) aligned with English deőnitions and the ECDC deőnition for a Probable (8-14) and

Deőnite (> 14 days) healthcare-associated COVID-19 case [7, 20]. In sensitivity analyses

we explored cut-offs of 4 and 14 days.
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b. Accounting for enrolment into CO-CIN

We accounted for the fact that only a subset of all hospitalized COVID-19 patients

was enrolled in CO-CIN as follows: We calculated the proportion of COVID-19 patients

recorded in SUS in a given week that were included in the corresponding CO-CIN data.

We then weighted the weekly estimates of the number of hospital-acquired infections

from the CO-CIN data using the inverse of these weekly proportions to obtain estimates

of identiőed hospital-acquired COVID-19 cases corrected for under-reporting in CO-CIN

(Supplementary 4). Our method assumes that there is no bias in enrolment of hospital

versus community-onset cases.

c. Proportion of hospital-acquired infections that are identified

Not all cases of COVID-19 are identiőed (e.g., some individuals are infected with

SARS-CoV-2 in a hospital and subsequently have symptoms that are not conőrmed

to be COVID-19). All identiőed cases of COVID-19 with symptom onset in a hospital

setting are classiőed as either hospital- or community-acquired. However, some are

misclassified (e.g., those that are infected in a hospital but have a symptom onset prior

to the cut-off threshold for deőning hospital-acquired cases). Our aim was to estimate

both overlooked symptomatic SARS-CoV-2 infections that were not identiőed and

that were misclassiőed (Figure 1, Table 1). We did not consider those who acquire an

infection but remain asymptomatic.

To calculate the proportion of symptomatic hospital-acquired infections that were

identiőed as such, we calculated the probability that a patient with a hospital-acquired

infection has a symptom onset that falls within the deőnition period, i.e., before

discharge and after the cut-off threshold (Figure 1). The calculations were based

on the incubation period of SARS-CoV-2 (Table 2), length of stay distribution of

non-COVID-19 patients and assumed that all infections led to a symptom onset:

hence it is the proportion of hospital-acquired infected individuals that will ever have

symptoms and are identiőed (Supplementary 5). Uncertainty was included by sampling

from parameter distributions (Table 2, Supplementary 10).

We estimated that fewer than 1% of inpatients with symptom onset 5 or more days
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after admission were latently infected when admitted i.e., hospital-onset, community-

acquired (Table 1, Supplementary 3). In short, this low number is due to relatively low

prevalence in non-COVID-19 admissions during the őrst wave of the COVID-19 epidemic

in the UK, the short length of stay and the fact that, in this work, we are only concerned

with symptomatic infections. Hence, our deőnition of łmisclassiőed" only considers those

infections that are hospital-acquired and misclassiőed as community-acquired.

d. Reclassifying community-acquired COVID-19 cases as

hospital-acquired

The number of patients with unidentiőed hospital-acquired infections was calculated by

multiplying the number of identiőed hospital-acquired cases by the inverse of the pro-

portion that were estimated to be identiőed (Figure 2). To determine the contribution

of these unidentiőed hospital-acquired infections to the hospital burden of COVID-19

cases, we simulated their return as a COVID-19 hospital admission: We estimated the

entire disease progression trajectory for each unidentiőed łmissed" hospital-acquired in-

fection by sampling from known natural history distributions (Figure 2). For each patient

estimated to have had an unidentiőed łmissed" hospital-acquired infection, we sampled

a time from infection to discharge using the length of stay distribution of non-COVID

patients (Supplementary 8) and assumed a date of discharge of őve days before the de-

tection date of the associated identiőed COVID-19 case (Figure 2c). This corresponds

to the difference in the average length of stay of identiőed SARS-CoV-2 positive cases

(approx. 7 days) and those thought to be SARS-CoV-2 negative (approx. 2 days) in

SUS. In a sensitivity analysis, we explored the impact of this parameter by setting it to

one day. From this date of discharge, we estimated what proportion of these unidentiőed

łmissed" infections would have been expected to return as a hospitalized COVID-19 case

and when this would be. The proportion expected to return varied for each simulation

(Figure 2, Supplementary 6). Recalling exact dates of symptom onset is difficult, hence

we used a scenario analysis to explore three different distributions for the symptom onset

to hospitalisation parameter (Table 2, Supplementary 7).

e. Hospital-linked cases

We deőned a łhospital-linked infection" as an infection that occurred in the community

but caused by a patient that was estimated to have had an unidentiőed łmissed"
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hospital-acquired infection. This time series of community infections was calculated by

estimating four generations of onward infections under varying assumptions about the

reproduction number (Supplementary 6). This is approximately the number of infections

caused within one month after discharge (approx 6.7-day serial interval, Supplementary

6).

We explored three reproduction number values: 1) a constant value of 0.8, 2) a constant

value of 1.2 both with a range generated as +/- 5% of the constant value, and 3) a

time-varying estimate łRt" for which we used upper/lower bounds for the 50% credible

interval from a publicly available repository [21] (Supplementary 9).
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Nosocomial infections in the COVID-19 epidemic in England

Results

Identified and classified hospital-acquired cases

In CO-CIN, using a symptom onset-based deőnition, we found 7% of COVID-19 symp-

tomatic cases (i.e., 4552 of n = 65,028) in acute English Trusts were identiőed and

classiőed as hospital-acquired (having a symptom onset 8 or more days after admission

and before discharge) before 31st July 2020. By adjusting for enrolment in CO-CIN (Fig-

ure 2b), we estimated that with this same cut-off, there were 6,640 łhospital-onset,

hospital-acquired" identiőed cases across acute English Trusts up to the 31st July 2020.

Proportion of infections identified

We estimated 30% (20-41%, range across weeks and sampling, Supplementary 10) of

symptomatic hospital-acquired infections (using a 7 day cut-off) were identiőed using a

symptom onset based deőnition for England. Across all acute English Trusts the range was

0-82% (Figure 3). The proportion identiőed decreased with increasing cut-off day from

admission (Figure 3c). The estimates are highly sensitive to LoS distributions (Supple-

mentary 2). These results imply that for every single identiőed hospital-acquired COVID-

19 case (using a 7 day cut-off) there were, on average, two unidentiőed symptomatic

hospital-acquired infections (Figure 1 and 2).

Contribution of missed infections

We estimated that across England, 20,000 (mean; 95% range over 200 simulations:

19,200, 21,100) hospital-acquired infections were unidentiőed from acute Trusts if a

7 day symptom-based cut-off was used to identify hospital-acquired cases (C + D in

Figure 5). The majority of patients with unidentiőed hospital-acquired infections were

not identiőed due to the discharge of the infected patient prior to symptom onset

(łmissed") (Figure 1 and 3c): 12,300 (11,400, 13,400) in total.

A proportion of the patients with unidentiőed hospital-acquired infections that have

symptom onset after discharge will return as hospitalized cases: we found 1,500

(1,200, 1,900) or 2.1% (1.7%, 2.6%) of cases originally classiőed as łcommunity-onset,
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Chapter 5

Figure 3: Proportion of symptomatic hospital-acquired infections identiőed, (A) given
by week and (B) over all weeks using a 7 day cut-off, for all acute English Trusts. Each
datapoint is the value from a single Trust for each of 200 samples. The boxplot highlights
the median and 25th-75th quantile. (C) For England (the aggregate setting) the propor-
tion of patients with hospital acquired infections split by those that are identiőed (blue)
due to a symptom onset starting at a set number of days from admission (grey box) and
before discharge, and those unidentiőed with symptom onset after discharge (łmissed",
red) or before the cut-off (łmisclassiőed", green). The coloured lines represent the mean,
and the shaded areas the 95% percentiles over the 200 samples.
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Nosocomial infections in the COVID-19 epidemic in England

community-acquired" should be classiőed as łcommunity-onset, hospital-acquired" when

a 7 day cut-off is used.

We found that there could have been 47,400 (mean; 95% range over 600 simulations:

45,000, 50,000 for the time varying R value) infections of individuals in the community

secondary to patients with unidentiőed infections acquired in the hospital which had

symptom onset after discharge (łmissed") over the őrst wave. We estimated that these

would result in 1,600 (1,600, 1,700) łcommunity-onset, hospital-linkedž cases with

a 7 day cut-off. The values are reduced by one-third with a constant reproduction

number of R = 0.8 (Supplementary 11). These contribute 2.3% (2.1%, 2.4%) of

łcommunity-onset, community-acquiredž cases over the őrst wave with a 7 day cut-off

and under both scenario 1 or 2 (Supplementary 11).

This contribution of community-linked cases to hospital admissions with COVID-19

varied depending on the timing of hospital admission post symptom onset (captured here

by Scenarios 1-3, Table 2, Figure 4). The proportion of COVID-19 hospital admissions

due to hospital-transmission was greatest when total case numbers őrst declined (peak

in COHL in Figure 4D at approx. 4% in late April).

The number of unidentiőed hospital-acquired infections and hence reclassiőcation levels

increased or decreased under a 14- or 4-day cut-off, respectively (Supplementary 11).

Contribution of hospital settings to cases, infections and onward

transmission

To summarise, we estimated that there have been a total of 26,600 (mean, 95%

range over 200 simulations: 25,900, 27,700) hospital-acquired SARS-CoV-2 infections

in acute English Trusts (E, Figure 5) with a 7 day cut-off prior to August 2020.

Of these, a total of 15,900 (15,200, 16,400) infections correspond to patients with

COVID-19 that were identiőed as symptomatic cases in hospitals (B+C, Figure 5):

as such 60% of hospital-acquired infections were identiőed (but a proportion of the

identiőed were misclassiőed). Over the whole őrst wave, 15% (14·1%, 15·8%) of cases

originally classiőed as community-acquired were estimated to be hospital-acquired or
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Chapter 5

Figure 4: (A) Total COVID-19 admissions with model-adjusted deőnitions from
łcommunity-onset, community-acquired" (COCA) for Scenario 1 for the whole study
period (January - 31st July 2020) and (B) for the end of the study period (May - 31st
July 2020). The counterfactual of no hospital transmission (łNo HA", orange) is com-
pared to the adjusted model estimate of COCA (purple) and total admissions (black) for
a time-varying R estimate. (C) The number of hospital-onset, hospital-acquired (HOHA)
cases (black) is similar in magnitude to the number of community-onset hospital-linked
(coloured lines, COHL) under the three scenarios for hospital admission after symptom
onset. (D) The proportion of all hospital admissions in England that were estimated to
be HOHA (green), community-onset, hospital-acquired (COHA, yellow), COCA (purple)
and COHL (red) under two example R values (constant: 0.8 and time-varying Rt) and
Scenario 1. All outputs take a threshold cut-off value for deőning hospital-acquired as a
symptom onset more than 7 days from admission. All outputs are the rolling 7-day mean
for the mean over 200 simulations with 5-95% ranges in shaded areas in (C).

hospital-linked ((C + F) / (A - B), Figure 5).
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The estimated percentage of identiőed COVID-19 cases in hospitals that were hospital-

acquired is then 20.1% (19.2%, 20.7%) ((B + C)/ A, Figure 5). Accounting for onward

transmission from unidentiőed łmissed" hospital-acquired infections, we estimated that

22.1% (21.2%, 22.9%) of hospitalized COVID-19 cases were hospital-acquired or

hospital-linked ((B + C + F)/A, Figure 5) using the median time-varying R value.

If 20.1% of COVID-19 cases identiőed in hospitals were hospital-acquired then, assuming

that 3% of symptomatic cases were hospitalized, we estimated that hospital-acquired

infections likely contributed to fewer than 1% of infections of the overall English

epidemic of COVID-19 in wave 1.

Assuming similar levels of hospital transmission in non-acute English trusts suggests

approximately 31,100 (30,300, 32,400) symptomatic infections could have been caused

in total by hospital-acquired transmission in England.

Trust level and Sensitivity analysis

When aggregated, the results from the individual Trust level predicted a slightly higher

proportion of cases to be hospital-acquired (25% vs 20%) (Supplementary 12). Varying

the day of discharge of the unidentiőed łmissedž infections had little impact on total

case numbers, but did affect hospital-linked cases (Supplementary 11).

Discussion

We estimated that before 31st July 2020 20.1% (19·2%, 20·7%) of identiőed

COVID-19 cases in hospitals were likely to have been hospital-acquired infections and

that within-hospital transmission likely contributed directly to 26,600 (mean, 95% range

over 200 simulations: 25,900, 27,700) symptomatic infections, and a further 47,400

(45,000, 50,000) hospital-linked infections. These results are based on a 7 day cut-off

for symptom onset from admission and prior to discharge for deőning an identiőed

hospital-acquired case.
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Figure 5: Summary figure of estimated values for patients with hospital-acquired symp-
tomatic infections and onward community transmission with a 7 day cut-off for symptom
onset after admission and prior to discharge for defining a patient with hospital-acquired
infection. Note here that the “misclassified" (C) includes those “missed” unidentified in-
fections that return to hospital later as a hospitalized COVID-19 case (1,500 “community-
onset, hospital-acquired” cases).

Despite these levels of infection, we estimated hospital transmission to patients caused

fewer than 1% of all infections in England in the first wave (prior to 31st July 2020). To

some extent this reflects effective infection prevention within hospital settings with over

4 million non-COVID-19 patients being cared for in hospital settings during this period.

However, the high proportion of hospital cases that were due to hospital-acquired

infections is worrying as these are the most vulnerable members of our society and

hence may have the most severe consequences. In addition, we did not account for

the substantial proportion of asymptomatic infections in our analysis and thus, the

impact of hospital transmission on the community epidemic is likely an underestimate [13].

This is the first study to estimate the total number of symptomatic hospital-acquired

infections (not just the percentage of known cases that are hospital-acquired) and their
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wider contribution to community transmission prior to 31st July 2020. In particular,

we found that the contribution of symptomatic hospital-acquired infections to the

epidemic likely varied over time, increasing in importance as community infections

initially dropped, emphasizing the need to determine where most infections are occurring

at any time during an epidemic.

Our results show that relying on symptom onset as a detection method for hospital-

acquired SARS-CoV-2 may miss a substantial proportion (> 60%) of hospital-acquired

infections even when asymptomatic infections are not accounted for. This depends

on the length of stay for non-COVID admissions but suggests that in many settings

estimates of the number of infections due to transmission in hospital settings will be

substantial underestimates. For example, Read et al (2021) [26] acknowledged that

the estimated proportion of nosocomial infections during the őrst epidemic wave of

COVID-19 in the UK that was based on symptom onset data, is likely to be higher if

accounted for unidentiőed cases. This is particularly relevant for low-resource settings

with short lengths of stay for non-COVID patients and that rely on symptom onset

screening for SARS-CoV-2 infection.

An alternative detection method is routine testing of patients, which will conőrm

symptomatic as well as detect pre-symptomatic and asymptomatic SARS-CoV-2

infections. However, even with screening on admission, independent of symptoms, and

retesting three days after admission, a proportion of infections will likely not be detected

due to short lengths of stay. Our estimates of the proportion of hospital cases that are

due to hospital-acquired infection are higher than those from an England wide study

[8] and those from single hospital settings in the UK [3, 9, 27ś29], as we estimated all

symptomatic hospital-acquired infections whether identiőed or not during their hospital

stay. Our estimates of all infections are similar to previous modelling work using an SEIR

model which estimates that nosocomial transmission was responsible for 20% (IQR

14.4, 27.1%) of infections in inpatients [30].

Our work implies that it may be effective to screen patients upon hospital discharge

to detect infection, or to quarantine hospital patients on discharge to prevent further

transmissions into the community: we estimated this would detect approximately 40%
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of hospital-acquired infections that would become symptomatic (that would otherwise

be łmissed" in Figure 3c). Hence, depending on the test sensitivity by time from

infection, up to 70% of symptomatic hospital-acquired infections could be detected.

Onward community transmission from these infections may be especially important as

community prevalence of SARS-CoV-2 infection decreases.

Currently, much more routine screening and testing is implemented in English hospitals

contributing to the detection of infections prior to symptom onset or discharge [31].

However, screening will need to be conducted with high frequency to avoid missing those

infected prior to discharge, or to screen on discharge. Our work is directly linked to the

situation prior to August 2020 where little routine testing was in place and our estimates

would be affected substantially by the new pandemic situation with new variants and

vaccination. However, our conclusion that symptomatic screening has limited efficacy in

detecting nosocomial transmission is still highly relevant to support the need for ongoing

regular screening of non-symptomatic hospital patients and to emphasize potential

missing infections.

Further work is needed to determine the precise risk of returning as a hospital case for

those infected in hospitals. If our values (10-15%) are found to be conservative, then

this percentage could increase substantially. If it were found to be higher, reŕecting

the poorer health of hospitalized patients and hence potentially increased susceptibility,

then the proportion of hospital cases that are hospital-acquired could increase to 30-40%.

The interpretation of our results is limited by several simpliőcations. Firstly, we did

not explicitly capture disease and hospital attendance variation by age. Future work

could stratify our estimates to account for an older and more vulnerable hospital

population. Secondly, we likely underestimated the total number of hospital-acquired

infections as we modelled only those that progress to symptoms since these are the ones

contributing directly to hospital burden. This decision was made as our deőnition of

what was a hospital-acquired case was dependent on symptom onset and asymptomatic

proportion estimates are highly variable [13]. Thirdly, we assumed a őxed number of

four generations for onward transmission in the community, and did not account for

infections in healthcare workers, nor in the setting to which hospitalized patients were
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discharged to, such as long-term care facilities. The impact of onward transmission from

hospital-acquired infections may be underestimated in this work since these settings

may have high levels and large heterogeneity in onward transmission or overestimated if

four generations is longer than the average chain from recently hospitalized individuals.

Fourthly, we assumed that equal levels of infection control policies were in place in all

NHS Trusts during this time period as we had no data to inform variation. Moreover,

some of the łmissed" cases may have been detected by community screening although

there was little in place in England during this time (prior to August 2020).

Finally, identiőcation of hospital infection using CO-CIN relied on symptom onset date,

which may be unreliably recorded potentially leading to bias in the patient population.

While we cannot assess the biases, it is reasonable to expect that symptoms were

recorded well in a clinical setting, and frequently (approx. 65,000 patients included). An

alternative deőnition of hospital-acquired infection reliant on the date of őrst positive

swab would have its own limitations: patients could enter with symptoms and not test

positive until more than a week into their stay for example [27].

Conclusions

Due to the delay from infection to symptom onset, hospital-acquired transmission of

SARS-CoV-2 may be missed under common deőnitions of a hospital-acquired infection.

We estimated that nearly 20% of symptomatic COVID-19 patients in hospitals in England

in the őrst wave acquired their infection in hospital settings. Whilst this is likely to have

contributed little to the overall number of infections in England, the vulnerability of the

hospital community means that this is an important area for further focus. Increased

awareness and testing, especially of patients at discharge, as is now commonly in place in

the UK, is needed to prevent hospitals becoming vehicles for SARS-CoV-2 transmission.
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Supplementary 1: Definitions

Table S1: Common deőnitions

Term Definition Specifics for this analysis

Case An individual that has

COVID-19 (the disease due

to SARS-CoV-2 infection)

Identiőed hospital

acquired infection

An individual with a SARS-

CoV-2 infection that has

been identiőed as hospital-

acquired

In this work SARS-CoV-2 infec-

tion is detected by a case with

symptom onset prior to 5, 8 or 15

days from admission in line with

the ECDC deőnition [15]

unidentiőed hospi-

tal acquired infec-

tion

An individual with a SARS-

CoV-2 infection that has

not been identiőed as

hospital-acquired

Some of these will be misclassiőed

as community-acquired, some will

be łmissedž as the patient is dis-

charged before symptom onset.

Symptom onset The self-reported start date

of COVID-19 symptoms

Here we mostly use the CO-CIN

data which has a symptom onset

deőned by the ISARIC protocol.

Community-

acquired

A patient with an infection

with SARS-CoV-2 that is

classiőed as being acquired

outside of the hospital in the

community setting

Individuals with a symptom onset

before the cutoff date, including

before admission, are classiőed as

community-acquired in CO-CIN.
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Hospital-linked A patient with an infection

that was acquired by trans-

mission in the community

from a four-generation

chain of transmission origi-

nating with an unidentiőed

łmissedž hospital-acquired

infection

We assume that every hospital-

acquired infection that is łmissedž

is discharged into the community

and can cause onward transmis-

sion. We calculated the number

over approximately one month af-

ter discharge (4 x 6.7 days).

Classiőed The assignation of

łcommunity-acquiredž

or łhospital-acquiredž to

the infection within a

hospitalized patient with

COVID-19

We use this to specify the

current classiőcation of a

symptomatic infection. Hence

a case could be classiőed as

łcommunity-acquiredž but actu-

ally be łhospital-acquired". We

chose to use classiőed as well

as łidentiőed" as some hospital

acquired infections would not

have been classiőed whilst some

would.

Identiőed The detection of hospital-

acquired infection

Detection date the most recent of (1) date

of symptom onset or (2)

date of admission if this oc-

curred after symptom onset

for a patient with COVID-

19, censored at date of dis-

charge

For any łcommunity-onsetž case

this was their admission date.

For łhospital-onset, hospital-

acquiredž cases this was their

date of symptom onset (Table

1).
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Supplementary 2: Datasets

Trust and case number differences

For COCIN, we included 123 Trusts and 3 super-Trusts in the őnal data analysis (see

Supplementary 4 for deőnition of super-Trusts, basically pooled Trusts to account for

frequent transfers). SUS covers 589 Trusts in England. 319 of these reported a total of

91,319 COVID-19 cases up to 31st July 2020. 13,415 of these cases were not included

in COCIN: suggesting that COCIN has a coverage of 85% of the total.

CO-CIN data inclusion

Using the 3rd December CO-CIN data extraction, there were 104,672 unique subject

IDs. Of these 78% had a symptom onset and admission date. 62%, or 65,028/104,672

unique subject IDs were included in the őnal dataset. The included cases were those

with (i) a symptom onset date, (ii) an admission date, (iii) a symptom onset date after

the 12st January 2020 and (iv) a symptom onset date before the 31st July 2020. Most

patients had a symptom onset before admission (Figure S1).

Figure S1: Data from CO-CIN on time between admission to hospital and symptom
onset.
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We defined a date of “detection" as the most recent of (1) date of symptom onset or

(2) date of admission if this occurred after symptom onset for a patient with COVID-19,

censored at date of discharge. For any “community-onset” case this was their admission

date. For “hospital-onset, hospital-acquired" cases this was their date of symptom onset

(Table 1).

LoS distributions

The length of stay (LoS) for non-COVID-19 positive patients is shown by week (in

Figure S2) and over time (in Figure S3).

Figure S2: Length of stay variation by week (facet) and example Trusts (colour).
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Figure S3: Average length of stay over time for England in top panel to compare to pro-
portion identiőed for England (equivalent to Figure 3A from main text, bottom panel)).
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Supplementary 3: Admission with infection levels

What proportion of hospitalized patients with symptom onset after the cut-off day

T had been infected in the community and admitted to hospital for a non-covid

reason while latently infected?

Data

The maximum prevalence of infection from seroprevalence surveys in the UK prior to

September 2020 has been approximately:

0.5% from ONS (modelled, smoothed) [32]

0.3% from REACT1 [33]

Between the 27th April 10th May, ONS estimated prevalence of infection to be: 0.27

(0.17-0.41)%.

Model

The percentage of people at day T with COVID that acquired it in the community =

Prevalence of infection at entry × probability still in hospital at day T × probability

symptoms developed after day T =

(prev × (1-pexp(T,1/los)) × (1-plnorm(T,1.621, 0.418))×100.

Baseline measures

For example, using the ONS data for early May:

0.0027 × (1-pexp(T,1/los)) × (1-plnorm(T,1.621, 0.418))×100

For T > 10 this is zero due to very few patients remaining in hospital past this point

(even assuming los for non-COVID of 7 days, which is an overestimate).

For T = 5, the value is 0.03 (0.02,0.04)%, 0.05 (0.03,0.08)% 0.07 (0.04,0.1)% for

mean length of stays of 3, 5 or 7 days respectively. In conclusion < 0.1% of cases past
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day 5 are likely to be acquired in the community currently.

At the maximum prevalence: 0.0054 × (1-pexp(T,1/los)) × (1-plnorm(T,1.621,

0.418))*100

For T > 10 this is zero due to very few patients remaining in hospital past this point

(even assuming los for non-COVID of 7 days, which is an overestimate).

For T = 5, the value is 0.05 (0.04,0.07)%, 0.1 (0.08,0.13)% 0.14 (0.1,0.17)% for

mean length of stays of 3, 5 or 7 days respectively. In conclusion < 0.2% of cases past

day 5 are likely to be acquired in the community currently.

Conclusion: The prevalence was likely to be higher at the peak of the epidemic, but

even at 10x higher this would be less than 1% of cases past day 5 being attributable to

non-recent hospital transmission.
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Supplementary 4: Comparing COCIN and SUS by week

There are several discrepancies between the Trusts enrolled in COCIN and SUS. The

steps to calculate how to go from non-complete enrolment in CO-CIN to SUS (national

COVID-19 case total data) are given below.

For each Trust in CO-CIN and each week (aggregated using lubridate::week (Grolemund

and Wickham 2011)), the proportion of CO-CIN cases in SUS was calculated.

When the proportion of SUS in CO-CIN was less than 1 (expected as CO-CIN enrolment

based)

The algorithm for a single Trust or England, for a set cutoff was

1. Calculate the weekly proportion of CO-CIN cases in SUS

2. Inverse this weekly proportion to give a multiplier

3. In the cleaned (removed those with no subject onset or admission date), one row

per subject CO-CIN, enter the multiplier for the week of the admission date for

each subject

4. Multiply each single hospital-acquired deőned case by the multiplier for their week

of admission to inŕate the hospital-acquired case numbers. These were rounded to

the nearest number.

5. Aggregate over individual case data to get total number of

(a) hospital-acquired cases (by summing over the inŕated case numbers at the

individual level)

(b) Total cases (by summing over the multipliers: each single entry needs inŕating)

Code in: trust_number_noso_all.R in https://github.com/gwenknight/hai_

first_wave.git [14].

When the proportion of SUS in CO-CIN was greater than 1 (unexpected as SUS should

have all cases)

If this proportion was greater than 1 (i.e. unexpected more cases in CO-CIN than SUS),
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then we explored the actual numerical difference in case numbers that was seen. If this

difference in numbers was greater than 20% of the original total numbers in CO-CIN

then we explored the difference further: 20 Trusts. The idea here is that especially in May

/ June there is a small number of cases admitted per week (< 5). It may be that a pro-

portion >1 is then 2 in CO-CIN but only 1 in SUS. If their relative difference is not so big

(< 20%) of the original CO-CIN data then we ignore this issue and set the proportion to 1.

For those to be explored further, we looked at the impact of capping the proportion at 1

and multiplying through the CO-CIN data to match the SUS data. If the total number

of cases was greater than 150% of SUS then explored these further: this was the case

for 5 Trusts.

In closer investigation we found that several of these Trusts had frequent transfers

with other Trusts, for example three Trusts in one county, meaning that cases

may be differently labelled as being in one Trust or the other in COCIN and SUS.

This may be as SUS is based on test date and COCIN on symptom onset which

may occur for a patient in different Trusts. To tackle this we aggregated Trusts

with frequent transfers into super-Trusts. This results in three super-Trusts (R13,

RR0, ESX) which included 2 (RT3, R1K), 2 (RRF, 02H), or 3 (RDD, RQ8,

RAJ) Trusts and covered four of these problem Trusts. The őfth Trust (RBA) we

removed from analysis as the discrepancy was substantial: more than 20 cases in

COCIN than SUS at the peak and a secondary SUS peak that was not present in CO-CIN.

The resulting proportion of CO-CIN cases in SUS over time is shown in Figure S4.
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Figure S4: Proportion of CO-CIN cases in SUS over time for acute English Trusts
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Supplementary 5: Calculations for the proportion of

undetected hospital-acquired SARS-CoV-2 infections

Hospital-acquired infections are here deőned as patients who have symptom onset after

a certain cut-off value X after hospital admission. In particular, if Tinf is the time of

infection, Tinc is the time from infection till symptom onset and X is number of days

after hospital admission of a hospitalized patient, then the patient is classiőed/detected

as a nosocomial case if Tinf + Tinc ≥ X. Only a subset of all hospital-acquired infections

will be detected by this method. We estimated the proportion of hospital-acquired cases

that get detected in the hospital based on information available from the CO-CIN and

SUS data set. From that we could deduce the proportion of hospital-acquired infections

that would be missed by this method. We assumed that the cut-off value X is chosen

large enough such that community-acquired cases can be excluded.

We implemented R functions for the calculations of the proportions of missed hospital-

acquired infections based on the theoretical calculations below. The full code is available

from: https://github.com/tm-pham/covid-19_nosocomialdetection.

CO-CIN Analysis

CO-CIN includes information on date of symptom onset of hospitalized patients. Let LoS

be the random variable representing the length of stay of hospitalized (non-COVID-19)

patients and estimated from empirical data from SUS. Three types of hospital-acquired

cases can be distinguished:

1. Patients with symptom onset before the cut-off X days after admission, i.e. {Tinf+

Tinc < X}

2. Patients with a symptom onset after discharge, i.e. {Tinf + Tinc > LoS}

3. Patients with a symptom onset after X days after admission but before discharge,

and with a length of stay of at least X days, i.e. {Tinf+Tinc ≥ X}∩{LoS ≥ Tinf+Tinc}

Only the last category of hospitsal-acquired cases will be detected by the method de-

scribed above. On a given day, the probability that a hospital-acquired case is detected
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(using a cut-off of X days) is given by

P (randomly selected patient is detected on a given day | patient is a nosocomial case)

= P (randomly selected patient fulőlls 3.) (5.1)

= P (X ≤ Tinf + Tinc ≤ LoS) (5.2)

=

∞∑︂

l=X

plP (X ≤ Tinf + Tinc ≤ l) (5.3)

=

∞∑︂

l=X

l−1∑︂

t=1

plP (X ≤ t + Tinc ≤ l) · P (Tinf = t) (5.4)

=

∞∑︂

l=X

l−1∑︂

t=1

plP (X ≤ t + Tinc ≤ l) ·
1

l
(5.5)

=

∞∑︂

l=X

l−1∑︂

t=1

pl
l
P (X − t ≤ Tinc ≤ l − t) (5.6)

We adjusted for the fact that over a given period of time, patients with longer length of

stays are more likely to be encountered and to be infected in the hospital than patients

with short length of stays. Hence, the probability that on a given day, a randomly selected

hospital-acquired case has LoS = l is given by

pl =
P (LoS = l) · l

∑︁∞
l=1 l · P (LoS = l)

We, further, assumed a constant force of infection on each day, i.e., a non-COVID-19

patient is equally likely to get infected on each day and therefore P (Tinf = t) =
1
l
. This

assumption was veriőed using data from Oxford (see below).

Probability of infection per day

In the above calculation, we assumed that a non-COVID-19 patient is equally likely to

get infected on each day and therefore P (Tinf = t) =
1
l
. This assumption was based on

hospital data from Oxfordshire. We őtted a generalised additive model with the proba-

bility of being tested positive for SARS-CoV-2 dependent on the day of hospitalisation

accounting for age, gender, ward type, and ethnicity, using a logit link.
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Figure S5: Daily probability of being tested positive for SARS-CoV-2 while hospitalized
based on generalized additive model fitted to hospital data from Oxfordshire.
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Supplementary 6: Parameterization and additional methods

Serial interval:

Latency period: mean of 5.1 days

Infectious period: mean of 3.4 days

Subsequent infection" mean of 5.1 + uniform(0,1) * 3.4 = mean of 6.8 days

For each infection, a latency period, infectious period and uniform random number were

sampled. An łRž number of subsequent infections were then generated at a time latency

period plus the uniform random number times the infectious period.

We chose to look at approximately the őrst month of transmission after discharge to

limit the number of onward cases. It is likely that chains of transmission are short: 4

generations in China [34], and suggested to be short from genomic data in the UK and

New Zealand [35, 36].

Additional methods

d. Reclassifying community-acquired as hospital-acquired

To determine the contribution of unidentiőed hospital-acquired infections to hospitalized

patient burden, we estimated when an unidentiőed łmissedž hospital-acquired infection

would return as a hospital admission by generating the entire disease progression

trajectory for each unidentiőed łmissedž hospital-acquired infection (Figure 2).

For the disease progression trajectory, the proportion returning to hospital was sampled

using a Bernouilli trial and varied for each simulation (Table 2). For each individual

that was expected to become a hospitalized case we sampled a time (i) from infection

until discharge (ii) from infection to symptoms and (iii) from symptoms to potential

hospitalisation (Figure 2, Table 2). The time since infection was subtracted from the

time to hospitalisation (the sum of time to symptoms from infection and time from

symptoms to hospitalisation) to calculate the time at which the unidentiőed łmissedž
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hospital-acquired infected individuals would be identiőed but currently misclassiőed as

a łcommunityž case at hospital admission (new łcommunity onset, hospital-acquiredž

cases, Figure 2, Table 1).

e. Hospital-linked cases

To account for onward transmission in the community from patients with unidentiőed

łmissedž hospital-acquired infections (due to symptom onset after discharge) we

estimated "hospital-linked infectionsž: calculated as őrst-, second-, third- and fourth-

generation infections. This is approximately the number of infections caused within one

month after discharge ( 6.7 day serial interval, Supplementary 6) and assumes that

most onward transmission chains are relatively short [34ś36].

The time series for these was calculated by sampling a certain time to infection (a sum

of a sample from the latency distribution and a sample from a uniform distribution on

0-1 multiplied by a sample from the distribution for the duration of clinical infectiousness

(∼ 3 days)), a number of secondary infections (using estimates for the reproduction

number, R), a sampled proportion which progress to disease, a sampled proportion of

infections that become hospitalized and a sampled time to hospitalisation (with differ-

ent distributions for each symptom onset to hospitalisation scenario) (Figure 2, Table 2).

For the onward transmission, we explored three reproduction number values: a constant

value of 0.8 or 1.2 with a range generated as +/- 5% of the constant value. For a

time-varying estimate łRtž we took upper/lower bounds for the 50% credible interval

from a publicly available repository (39) (Supplementary 9). Mean and 95% ranges for

onward transmission infections and case numbers are presented as over the 600 simula-

tions generated from 200 simulations on each R value (estimate, upper and lower bound).

f. Reclassifying community-acquired to hospital-acquired

The number of unadjusted identiőed hospital-acquired COVID-19 cases is from the

inŕated CO-CIN dataset (łhospital-onset, hospital-acquiredž cases, Figure 2, Table 1).

The unadjusted community-acquired classiőcations were then deőned as the difference

between the total number of COVID-19 hospital admissions and the unadjusted
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identiőed hospital-acquired COVID-19 cases.

We adjusted the number of hospital-acquired cases by adding our model estimates of

(1) "community-onset, hospital-acquired" and (2) any hospital-linked cases, to the

identiőed hospital-acquired case numbers ("adjusted" hospital-acquired assignations).

The "adjusted" community-acquired classiőcations are then altered accordingly. We

then calculated the proportion of community cases that were reassigned as (unadjusted

community - adjusted community ) / (unadjusted community ).

To calculate the counterfactual of no transmission in hospital settings, we compared the

original total number of hospitalized cases to the adjusted community number (i.e. those

that we did not model as being acquired-in or linked-to hospital settings).

Total English burden

Acute Trusts in CO-CIN covered approximately 85% of the COVID-19 cases recorded in

SUS. In order to give estimates for all English trusts, we multiplied our results by 1.17

and assumed similar levels of nosocomial transmission in non-acute English trusts.
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Supplementary 7: Symptom onset to hospitalization

As this was a key parameter for our estimates we chose to perform a scenario analysis

around this distribution.

Baseline scenario 1: “Best" fit to CO-CIN raw and smoothed

data

With data on 38,168 patients from CO-CIN reporting a symptom onset prior to

hospitalisation in Wave 1, we could estimate the best őt to the data. However, the data

suffered from łheapingž issues where patients preferably reported symptom onset data 1

week, 10 days, a fortnight or 3 weeks before hospital admission (Figure S6). This has

been seen for many types of participant reported data (e.g. income [40]). To account

for this we őtted to (1) the raw data (Figure S6) below using the őtdistr R package [41]

and (2) used a penalized composite link model [42, 43] to adjust for this heaping. We

then compared the model őts using the Akaike Information Criterion (AIC) [44].

For both őtting to the raw and smoothed data the distribution with the smallest AIC

value was the log-normal distribution (orange line in both Figure S6 and S7): AIC for

the gamma distribution (next smallest AIC) was 228080 and 229646 for the smoother

or raw data respectively, whilst for the log-normal distribution it was 225675 and 226842.

The values for the log-normal distribution őtted to the raw were:

Meanlog 1.662 (0.005) SDlog 0.889 (0.003)

And smoothed data:
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Meanlog 1.665 (0.005) SDlog 0.894 (0.003)

We used a lognormal(1.66, 0.89) distribution in the base case Scenario 1.

Scenario 2: previous estimates

We also took a scenario which used a previous estimate of the time from symptom onset

to hospitalisation as a gamma distribution with shape 7 and rate 1 [24] (grey line in

Figure S6). This was calculated using international data from the őrst wave [45, 46].

Scenario 3: First Few 100 (FF100) cases in Great Britain

We used data from the őrst few 100 cases data from Public Health England [25]. This

contains information on symptoms from the őrst 492 cases, 167 of which were hospital-

ized. At this time there was not a strict list of symptoms as there was later in 2020 (loss

of taste / smell, continuous cough, fever). Fitting to this data suggested a best őt of

logNormal distribution with mean log = 1.44, SD log = 0.72.
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Figure S6: What is the distribution of symptom onset before hospitalisation? (A) CO-
CIN data for 38,168 patients from Wave 1 in England with a symptom onset and hospital
admission date. Dashed lines indicate heaps in the data at 7, 14, 10 and 21 days prior
to admission. (B) Results of probability distribution őtting to the data: red = gamma,
blue = negative binomial, dark green = exponential, orange = log-normal (Scenario 1).
The grey line is the distribution from [24] (Scenario 2: ≈gamma(7,1)) and the pink line
is the distribution from the FF100 data (Scenario 3: lognormal (1.44, 0.72) (C) Zoom
in on (B) to show smaller differences in days between symptom onset and admission.
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Figure S7: What is the distribution of symptom onset before hospitalisation? (A) CO-
CIN data (dots) smoothed using a penalized composite link model to give the black line.
(B) Results of probability distribution őtting to the smoothed data (black line) (C) Zoom
in on smaller differences between symptom onset and admission.
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Supplementary 8: Infection to discharge calculations

Distribution of time from infection until hospital discharge for pre-symptomatic

and asymptomatic patients

Let Tinf,dis be the time from infection until discharge for pre-symptomatic and asymp-

tomatic patients. Aim is to determine when "missed infections" will be discharged into

the community. Thus, we assume that the time of infection is before discharge of the

patient, i.e., Tinf ≤ LoS. Given a LoS= l , we assume that infection is equally likely to

occur on any day of length-of-stay. The distribution of Tinf,dis is given by

P (Tinf,dis = t) = P (LoS− Tinf = t) (5.7)

=

∞∑︂

l=1

P (LoS− Tinf = t |LoS = l)pl (5.8)

=

∞∑︂

l=1

P (Tinf = l − t |LoS = l)
P (LoS = l) · l

∑︁∞
l=1 l · P (LoS = l)

(5.9)

=

∞∑︂

l=1

1

l
1(t ≤ l)

P (LoS = l) · l
∑︁∞
l=1 l · P (LoS = l)

(5.10)

=

∞∑︂

l=1

1(t ≤ l)
P (LoS = l)

∑︁∞
l=1 l · P (LoS = l)

(5.11)

where pl is the probability that on a given day, a randomly selected patient has LoS = l ,

i.e.

pl =
P (LoS = l) · l

∑︁∞
l=1 l · P (LoS = l)
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Supplementary 9: Rt estimates

Figure S8: Time varying estimate of Rt taken from EpiForecast team: median estimated
using hospitalized cases [34] with upper and lower bounds of the 50% credible intervals.
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Supplementary 10: Uncertainty inclusion

200 simulations were generated. Each simulation included uncertainty from three stages:

Stage 1

As we generated estimates of the proportion identiőed by place and week, we included

uncertainty from two elements each week:

(a) Length of stay distribution: bootstrap the distribution for that week from SUS.

As there are so many patients (n = 237,981) in the data there is little variation

produced by this variation (see Supplementary Figure S8 below, top left).

(b) Incubation period: sampled the parameters for the incubation period distribution

(i.e. sample from the mean and standard deviation for the lognormal distribution

from a normal distribution with the estimated mean and sd to give a different

distribution for each sample for the time to symptom onset from infection, see

Table 2).

This incubation period distribution and length of stay for non-COVID patients

was used for the entire of the simulation. This is coded in łtrustpropor-

tion_detect_by_week_all.Rž [14]. It gives the variation in the proportion of

hospital-acquired infections identiőed and is presented in Figure 3c, and shown again in

Figure S9 for a cutoff of symptom onset more than 7 days from admission.

For example, towards the end of March: 250 hospital-acquired cases were identiőed

in the inŕated CO-CIN (Figure S9, bottom). At this stage it is likely that we were

identifying between 20% and 22% of hospital-acquired cases (Figure S9, top). Hence

this corresponds to between 840 and 1,000 missed cases.

Stage 2

To accounting for binomial sampling variation, the proportion identiőed for each sample

and week (generated above) were used within a Bayesian framework as the binomial

probability of identiőcation to infer from the number of identiőed hospital-acquired
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A B

C

Figure S9: Uncertainty in the length of stay (A) and incubation period drive uncertainty
in the proportion identiőed (B and middle). The inverse of this proportion multiplies the
number of identiőed hospital-acquired cases per week (black, C) to calculate the number
of unidentiőed infections (colour, C).
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cases, the total number of hospital-acquired infections (łtrials").

In more detail - using the distributions in step 1 within our function we could generate

200 samples of the proportion of true hospital acquired infections that were identiőed

each week, i , and setting, j , from hospital data (pi ,j). Assuming the number of hospital

acquired infections were binomially distributed, we estimated the weekly number of true

hospital-acquired infections, Xi ,j ∼ Bin(Ni ,j , pi ,j). Subtracting from this the identiőed

weekly hospital-acquired infection numbers we can estimate the number of unidentiőed

hospital-acquired infections.

This used the function in łbinom_posterior.R" [14].

Stage 3

The uncertainty in the natural history trajectory for each of these unidentiőed hospital-

acquired infections was then calculated (as shown in Figure 2d) by sampling from the

relevant distributions for the probability (e.g. of returning as a hospitalized cases) and

timings (e.g. symptom onset after infection).

This is coded in łperc_contribution_function_ trust_week.R" [14].

For each unidentiőed infection, the probability of returning as a COVID-19 case to hospi-

tal is a Bernoulli trial for each missed infection with weekly randomly sampled probability

of returning taken from a uniform distribution over 10-15%. This probability of a łmissed"

unidentiőed infection returning of a community infection becoming hospitalized is őxed

across each of the 200 simulations. Each of the following timings for each returning

to hospital as a case unidentiőed hospital-acquired infection are then sampled from the

relevant distributions (Table 2):

(a) From infection to discharge

(b) From infection to symptom onset (incubation period)

(c) From symptom onset to hospitalisation (this is scenario dependent)

We decided to use 200 simulations as above approximately 150 simulations the output

for key parameters (shown in Figure S12) stabilized.
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Figure S10: Example time series with a cutoff of at least 7 days from symptom onset to
hospitalisation for deőning a hospital-acquired case: the őrst 10 simulations for key model
outputs are shown in the 10 colours in the above facets over time (detection date). The
top two rows show the variation in community-onset, hospital-linked infections (őrst row)
and subsequent cases (second row) at low, mean and high values of onward transmission
(R = 0.76, 0.8, 0.84). The third row shows the counterfactual: the number of hospitalized
cases there would be predicted to be without any hospital-acquisition of SARS-CoV-2,
alongside the community-onset, community-acquired (łCOCA") and community-onset,
hospital-acquired (łCOHA") case estimates. The őnal row shows the same variation
shown in Figure S8: the total number of unidentiőed infections and the łmissed" subset
of these (łmissed" due to discharge prior to symptom onset).

Conclusion

Uncertainty in our estimates was generated from sampling from a range of natural history

distributions and the length of stay data. As we had data from SUS on the latter for a

large number of non-COVID patients, we had little ambiguity in this key parameter for
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Figure S11: Example cumulative values as in Figure S10 for all 200 simulations (each
black line) with a cutoff of at least 7 days from symptom onset to hospitalisation for
deőning a hospital-acquired case. The top two rows show the variation in community-
onset, hospital-linked infections (őrst row) and subsequent cases (second row) at low,
mean and high values of onward transmission (R = 0.76, 0.8, 0.84). The third row
shows the counterfactual: the number of hospitalized cases there would be predicted
to be without any hospital-acquisition of SARS-CoV-2, alongside the community-onset,
community-acquired (łCOCAž) and community-onset, hospital-acquired (łCOHA) case
estimates. The őnal row shows the same variation shown in Figure S8: the total number
of unidentiőed infections and the łmissedž subset of these (łmissedž due to discharge
prior to symptom onset). Note the variation in the y axis values.
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Chapter 5

Figure S12: Boxplot of mean total value of key outcome variables over the łőrst wave"
(to 31st July 2020) against the number of simulations. Left is łcommunity onset, hospital-
acquired" cases (COHA), middle are community-linked infections and right is the number
of unidentiőed infections.

estimating the proportion of hospital-acquired infections identiőed. Moreover, much of

the uncertainty was in the timing of events (symptom onset 2 or 5 days from infection

for example), which, when aggregated over a 7-month period had little impact on the

őnal aggregated results.
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Nosocomial infections in the COVID-19 epidemic in England: Supplement

Supplementary 11: Additional results

• Figure 5 additional analysis

• Table S3: Additional reported results

• Table S4: Estimated percentage of łcommunity onset, community acquiredž infec-

tions that would be re-classiőed as łcommunity onset, hospital acquiredž infections

• Table S5: Estimated number of community onset, hospital-linked cases

• Figure S13: Impact of 1 vs 5 day discharge before associated identiőed hospital

case

• Figure S14: Impact of R value variation over time (not just aggregated)

Figure 5 additional analysis

• Of all hospital patients who had a SARS-CoV-2 infection some time during their

stay, 29.6% (28.9%, 30.5%) were hospital-acquired (E/(A+D), Figure 5).

• With the addition of hospital-linked infections, out of all hospital patients with a

SARS-CoV-2 infection, 31.5% (30.6%, 32.4%) were estimated to have acquired

their infection in hospitals or were hospital-linked ((E+F)/(A+D), Figure 5).

Table S3: Estimated additional main results for 14 and 4 day cut-offs in line with 7 day
values in main text.

Cutoff
Estimate 7 14 4 Details

łhospital-onset, hospital-
acquiredž identiőed cases
across acute English Trusts
up to the 31st July 2020

6,640 4,440 7,830 From adjusted CO-
CIN

unidentiőed hospital-
acquired infections

20,000 (19,200, 21,100) 29,000 (28,400, 29,600) 17,500 (16,000, 19,300) mean; 95% range
over 200 simula-
tions

Percentage of łcommunity-
onset, community-
acquired" that should
be classiőed as łcommunity-
onset, hospital-acquire"

2.1% (1.7%, 2.6%) 2.6% (2.1%, 3.1%) 2.1% (1.7%, 2.6%) mean; 95% range
over 200 simula-
tions

łcommunity-onset, hospital-
linked" cases

1,600 (1,600, 1,700) 2,100 (2,000, 2,200) 1,600 (1,400, 1,700) For the time varying
R value mean; 95%
range over 600 sim-
ulations
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Chapter 5

Impact of 1 - 5 day discharge

As shown in Figure S13, there is a minimal impact of varying the day of discharge of

missed cases, except for the łcommunity-onset, hospital-linked" (COHL) cases when

using the time varying R estimates (łrtž). Cumulatively, up to the end of July 2020, this

results in a less than 0.001% change in the number of łcommunity-onset, community-

acquiredž cases but a ∼ 30% higher number of łcommunity-onset, hospital-linked" cases

when using the time varying R estimates (łrt") and a 5 day discharge. This is due to

a synergistic impact of the missed infections entering the community at peak R value

(before early April).

Figure S13: The impact of discharging missed cases 5 days (solid line, baseline) or
1 day (dashed line) before the associated identiőed hospital-acquired case at a cut-off
threshold of 7 days from admission across different R values (columns) and Scenarios
(rows) of symptom onset to hospitalisation. This is for łhospital-onset, hospital-acquired"
(HOHA, blue), łcommunity-onset, hospital-acquired" (COHA, red) and łcommunity-
onset, hospital-linked" (COHL, green) cases
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Nosocomial infections in the COVID-19 epidemic in England: Supplement

Impact of R value variation

Figure S14: Time series of all hospitalized, counter-factual and community onset,
hospital-linked cases under different onward transmission (R) values (median values shown
here, colours). This is for a cutoff of 7 days from admission for the hospital-acquired def-
inition and for the three scenarios (columns) for symptom onset to hospitalisation.

297



Chapter 5

Supplementary analysis 12: Grouped Trust level analysis

Method: We applied the same analysis (shown in Figure 2) at the individual acute Trust

level (n = 126) and then aggregated the results. We performed this analysis for all three

cutoffs, three R values and for the őrst symptom onset to hospitalisation scenario with

50 simulations for each of the 126 Trusts to generate uncertainty ranges.

Results: 4 Trusts had no nosocomial cases recorded in the data over this time period.

Two Trusts had no nosocomial cases recorded when using a 14 day cutoff for deőnition

of a nosocomial case.

The proportion missed each week varied over trusts with a mean of 29% and a range

between 0 and 88% over 50 simulations and all weeks and Trusts. 0.2% of the proportion

detected estimates were zero.

Comparing the aggregated England setting (data pooled before doing analysis) to the

grouped individual Trust (analysis performed at the Trust level and then aggregated)

analysis shows similar results but the levels from the individual Trust analysis is higher

(Table S5). Some variation would be expected due to rounding e.g. of the number of

missed infections from the identiőed number of hospital-acquired cases. At the baseline

cutoff of symptom onset 8 or more days from admission, the variation is relatively small,

but it increases at a 15 or more days from admission cutoff, especially for łcommunity-

onset, hospital-linkedž cases. The similarity in key indicators is shown in Figure S15-17

below. Using the grouped individual Trust analysis predicts that 25.5% (24.6%, 26.4%)

of identiőed COVID-19 cases in hospitals were hospital-acquired, higher than the level

predicted from the aggregated England setting: 20.1% (19.2%, 20.7%).

Comparison and interpretation: The proportion identiőed is predicted to be very small

when there are few hospital-onset, hospital-acquired (HOHA) cases, as is often the case

when doing the analysis at the individual trust level. Using the Bayesian framework to

infer the total number of hospital-acquired infections (łtrialsž) results in higher numbers

(∼ 50%) for the estimated number of unidentiőed hospital-acquired infections and hence

onward case estimates (COHL / COHA). For example, 1 HOHA case, with a proportion

detected of 0.005, is predicted to be linked to 524 hospital-acquired infections. However, 7

HOHA cases, with the same proportion detected, results in a predicted 1450 infections: an

increase of 3x infections instead of 7x as might be expected from the increase in HOHA.

We believe that the analysis at the Trust level suffers from issues of small numbers and
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issues with using the empiric length of stay distributions. This leads to unrealistically

small proportions detected and hence inŕation to a greater number of missed infections.
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Nosocomial infections in the COVID-19 epidemic in England: Supplement

Figure S15: For the őrst symptom onset to hospitalisation scenario, there is little
variation in the output of key case numbers (all hospitalized (red), community-onset,
community-acquired (COCA, green) and hospital-onset, hospital-acquired (HOHA,
blue)) if the analysis is performed on the aggregated England setting level (solid line,
baseline) or at the individual Trust level and then aggregated (dashed line). The line here
is the mean over 200 simulations for the aggregated England setting (50 simulations per
Trust for the individual Trust analysis) and 95% range in shaded area.
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Figure S16: For the őrst symptom onset to hospitalisation scenario, there is some varia-
tion in the number of community-onset, hospital-linked cases if the analysis is performed
on the aggregated England setting level (solid line, baseline, red) or at the individual
Trust level and then aggregated (dashed line, blue). The line here is the mean over 200
simulations for the aggregated England setting (50 simulations per Trust for the individ-
ual Trust analysis) and 95% range given in the shaded area.
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Figure S17: For the őrst symptom onset to hospitalisation scenario, there is some vari-
ation in the number of community-onset, hospital-acquired cases if the analysis is per-
formed on the aggregated England setting level (solid line, baseline, red) or at the in-
dividual Trust level and then aggregated (dashed line, blue). The line here is the mean
over 200 simulations for the aggregated England setting (50 simulations per Trust for
the individual Trust analysis) and 95% range given in the shaded area.
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Controlling nosocomial transmission of SARS-CoV-2

Abstract

Background: Emergence of more transmissible SARS-CoV-2 variants requires more efficient con-

trol measures to limit nosocomial transmission and maintain healthcare capacities during pandemic

waves. Yet, the relative importance of different strategies is unknown.

Methods: We developed an agent-based model and compared the impact of personal protec-

tive equipment (PPE), screening of healthcare workers (HCWs), contact tracing of symptomatic

HCWs, and restricting HCWs from working in multiple units (HCW cohorting) on nosocomial

SARS-CoV-2 transmission. The model was őt on hospital data from the őrst wave in the Nether-

lands (February until August 2020) and assumed that HCWs used 90% effective PPE in COVID-19

wards and self-isolated at home for seven days immediately upon symptom onset. Intervention

effects on the effective reproduction number (RE), HCW absenteeism and the proportion of

infected individuals among tested individuals (positivity rate) were estimated for a more transmis-

sible variant.

Results: Introduction of a variant with 56% higher transmissibility increased ś all other variables

kept constant ś RE from 0.4 to 0.65 (+63%) and nosocomial transmissions by 303%, mainly

because of more transmissions caused by pre-symptomatic patients and HCWs. Compared to

baseline, PPE use in all hospital wards (assuming 90% effectiveness) reduced RE by 85% and

absenteeism by 57%. Screening HCWs every three days with perfect test sensitivity reduced RE

by 67%, yielding a maximum test positivity rate of 5%. Screening HCWs every three or seven days

assuming time-varying test sensitivities reduced RE by 9% and 3%, respectively. Contact tracing

reduced RE by at least 32% and achieved higher test positivity rates than screening interventions.

HCW cohorting reduced RE by 5%. Sensitivity analyses for 50% and 70% effectiveness of PPE

use did not change interpretation.

Conclusions: In response to the emergence of more transmissible SARS-CoV-2 variants, PPE use

in all hospital wards might still be most effective in preventing nosocomial transmission. Regular

screening and contact tracing of HCWs are also effective interventions, but critically depend on

the sensitivity of the diagnostic test used.

Keywords: COVID-19; SARS-CoV-2; nosocomial transmission; agent-based modelling; infection

control; contact tracing; healthcare worker screening; personal protective equipment; sensitivity;

cohorting
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Introduction

Effective interventions to limit nosocomial transmission of the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) are pivotal to maintain healthcare capacities

during pandemic waves [1, 2]. During the őrst epidemic wave many hospitals around

the world restricted visits and canceled non-essential medical procedures in order to

maintain adequate staffing levels for patients with COVID-19. In the Netherlands,

speciőc infection control measures were implemented but nosocomial transmission

may have been facilitated by temporary shortness of supplies of personal protective

equipment (PPE), including gloves, goggles, face shields, gowns, and (N95) masks, at

the onset of the pandemic.

Indeed, HCWs experienced a higher incidence of SARS-CoV-2 infections, compared to

other professions, during the őrst pandemic wave [3ś5]. Front-line HCWs in the UK

and USA tested three times more frequently positive during the őrst epidemic wave

than the general population after accounting for the frequency of testing [3]. Other

studies from the UK and the Netherlands found higher SARS-CoV-2 incidences after

the őrst epidemic wave among staff working in COVID-19 wards than staff working

elsewhere in the hospital [5, 6]. In addition to direct contact with infectious patients,

HCW-to-HCW transmission most likely also contributed to these elevated incidence rates.

Only a few studies incorporated modelling of SARS-CoV-2 transmission in healthcare set-

tings [7ś11]. In a stochastic within-hospital model, combined with a deterministic model

reŕecting SARS-CoV-2 transmission in the community, PPE use by HCWs and patients in

the entire hospital substantially reduced nosocomial infections, while random weekly test-

ing of asymptomatic HCWs and patients was less effective [9]. Moreover, strict cohorting

of undiagnosed patients and HCWs in small units reduced the probability that SARS-

CoV-2 introduction would lead to a large outbreak. In a deterministic within-hospital

Susceptible-Exposed-Infectious-Recovered (SEIR) model isolating COVID-19 patients in

single rooms or bays reduced infection acquisition in patients by up to 80% [8]. The model

predicted that periodic testing of HWCs would have a smaller effect on the COVID-19

patient-burden than isolating patients but could reduce HCW infections by up to 64%

and lead to a reduction of staff absenteeism. Both aforementioned models assumed a
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time-invariant SARS-CoV-2 infectiousness and diagnostic PCR test with 100% sensitiv-

ity. An individual-based modelling study assessed the impact of different interventions for

SARS-CoV-2 transmission in a non-COVID-19 hospital unit [11]. The model was cali-

brated to COVID-19 outbreak data in a neurosurgery hospital unit in Wuhan (January

until February 2020). High-efficacy face-masks were shown to be most effective for re-

ducing infection cases and workday loss. Reduction of contact rates had only a marginal

effect on mitigating the outbreak in the long run. Another model (stochastic, individual-

based, aimed at patients and HCWs in long-term care facilities (LTCF) did incorporate

a test sensitivity that varies with time since infection [7]. This model concluded that

pooled testing (combining clinical specimens from multiple individuals into a single bio-

logical sample for a single RT-PCR test) was the most effective and efficient surveillance

strategy for resource-limited LTCFs.

While these previous studies investigated interventions such as the PPE use, physical dis-

tancing among HCWs, various testing strategies, and cohorting of patients and HCWs,

the impact of contact tracing within hospital settings has not been modeled yet. Ob-

servational evidence from 5,700 HCWs in two large hospitals and 40 outpatient units in

Milan, Italy, suggested that random testing (positivity rate of 2.6%) was less efficient

than contact tracing (10%) [12].

In Dutch hospitals patients and HCWs were cohorted in COVID-wards, where HCWs used

PPE during patient care, in addition to the basic infection control measures applied. With

these measures, nosocomial transmission was considered well-controlled during the őrst

wave of the pandemic, although outbreaks have been reported sporadically [13]. Yet,

with the emergence of more transmissible variants, current infection control measures

may become less effective. While COVID-19 vaccine rollout is underway, it is still unclear

how they affect transmission and how their efficacy is affected by the new SARS-CoV-2

variants. We, therefore, explored the relative effectiveness of different infection prevention

strategies for HCWs in hospitals in the absence of vaccination using an agent-based

model of nosocomial SARS-CoV-2 transmission. First, we őtted the model to real-life

data from the University Medical Center Utrecht (UMCU) during the period February-

August 2020. Next, we evaluated the impact of various interventions on transmission,

HCW absenteeism and test positivity as a marker of intervention efficiency for a more

transmissible variant (e.g., B.1.1.7) and draw general conclusions for infection control in

hospitals with a similar structure.
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Methods

Agent-based model

We developed an agent-based model that describes the dynamics of SARS-CoV-2 trans-

mission in a hospital allowing for importations of infections from the community (Fig

1A). We modeled a hospital comprising four ward types: 1) general COVID wards, 2)

general non-COVID wards, 3) COVID intensive-care units (ICUs), and 4) non-COVID

ICUs. Within the hospital we distinguish patients, nurses, and doctors. Patients are as-

sumed to occupy a hospital bed in a single room. HCWs (nurses and doctors) work in

duty shifts. HCWs meet patients in a number of rounds per shift (Additional File 1: Table

S1), and HCWs meet other HCWs in the common staff room of each ward. Individuals

may be in one of the disease states: susceptible (S), asymptomatically infected (IA),

pre-symptomatically infected (IP ), infected with moderate symptoms (IM), infected with

severe symptoms (IS), and recovered (IR). We did not explicitly model other respiratory

tract infections with similar symptoms. Hence, all symptomatic individuals are necessarily

infected with SARS-CoV-2. We did not model death in our simulations. All infected in-

dividuals are assumed to be infectious following a time-varying infectiousness curve. We

denote infectiousness over time since infection τ by β(τ)), i.e., it is the mean rate at

which an individual infects others at time τ after its time of infection. The reproduction

number R (average number of secondary cases caused by an infected individual) is given

by integrating β(τ) over time since infection R =
∫︁∞

0
β(τ)dτ . Assuming the mean gen-

eration time () to be equivalent with the observed mean serial interval, we calculated

the infectiousness proőle by β(τ) = ω(τ)R. Based on this, the individual’s infectiousness

follows a Weibull distribution with a mean of 6 days (Fig 1C) [14] and the reproduction

number is a scaling factor of the infectiousness proőle. We assumed the infectiousness

to differ between asymptomatic and symptomatic infected individuals, deőned by βA(τ)

and βS(τ), respectively. Then β(τ) can be decomposed into

β(τ) = PAβA(τ) + (1− PA)βS(τ)

where PA represents the proportion of asymptomatic infections. Asymptomatic individuals

are assumed to have an infectiousness proportional to that of symptomatic individuals,

i.e., βA = xA · βS, xA ≤ 1. Integrating over each of the two terms leads to the respective
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contribution to the overall reproduction number:

R = RA + RS =

∫︂ ∞

0

PA · xA · βS(τ)dτ +

∫︂ ∞

0

(1− PA)βS(τ)dτ

Transmission events can occur between patients and HCWs, and among HCWs. We

assumed no patient-to-patient transmission as patients are assumed to occupy single-

bed rooms. Only HCWs in their asymptomatic or pre-symptomatic phase contribute to

transmission. We assumed that the incubation period has a Gamma distribution with

mean 5.5 days [15]. Patients may be admitted to the hospital for non-COVID reasons or

with moderate or severe COVID-19 symptoms. In the őrst case, they may be susceptible,

pre-symptomatically, or asymptomatically infected. Symptomatically infected patients are

admitted to COVID wards (moderate symptoms) or COVID ICUs (severe symptoms).

Patients in non-COVID wards that develop symptoms during their stay are immediately

transferred to COVID wards. We assumed that moderately and severely infected patients

recover after 14 and 35 days, respectively [16].

Data and parametrization

We used data from the UMCU to parametrize the number of wards and beds per ward

(Additional File 1 pp. 2). We used the number of patients admitted to the UMCU for

non-COVID reasons and their length of stay for the time period 2014-2017 and assumed

a 50% decrease in admissions during the study period (Additional File 1: Table S1). The

daily number of COVID-19 hospitalizations and their length of stay distribution was based

on UMCU data from 27 February until 24 August 2020 (Additional File 1: Figure S1-

S2). The simulations started on 30 December 2019 with a hospital at 100% occupancy

without any SARS-CoV-2-infected individuals. The őrst COVID-19 admissions occurred

on 27 February 2020. To account for admissions of patients that are infected but not

(yet) symptomatic and HCWs who were (unknowingly) infected in the community, we

used daily national numbers of SARS-CoV2 infectious individuals estimated by the Dutch

National Institute for Public Health and the Environment (RIVM) from 17 February until

24 August 2020 (Additional File 1 pp. 2) [17]. We additionally used publicly available age-

speciőc hospitalization rates in the Netherlands in 2012 and age-speciőc SARS-CoV-2

infection incidence rates in Utrecht province to scale the daily probability of being in-

fected in the community for non-COVID patients and HCWs arriving in the hospital
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Figure 1: Schematics for agent-based model. (A) Diagram of the agent-based model
including the agents in the main environment (hospital) and community importations.
The hospital population is divided into healthcare workers (nurses and doctors) and pa-
tients. Patients may be admitted from the community either with moderate (red) or
severe (dark red) COVID-19 symptoms or for non-COVID reasons. Patients may be in
a pre-symptomatic stage (light red) when hospitalized to non-COVID wards. Healthcare
workers may get infected in the community (red dashed line). (B) Disease progression
diagram. Individuals are in either of the following categories: Susceptible (S), Asymp-
tomatically Infected (IA), Pre-symptomatically infected (IP ), Moderately infected (IM),
Severely infected (IS), and Recovered (R). (C) Probability density of infectiousness of
an infected individual and incubation period over time since infection.

[CBS2019Ziekenhuisopnamen2019, 18]. Based on a published meta-analysis, we as-

sumed that a fixed percentage of 20% and 31% of SARS-CoV-2 infections in patients

and HCWs, respectively, were asymptomatic (see also Table 1) [19]. First, we chose

the basic reproduction numbers RS and RA such that the numbers of occupied beds by

COVID-19 patients predicted by our model were in good agreement with real-life UMCU

data on the number of COVID-19 patients at UMCU during the first epidemic wave by

visual inspection (Table 1 and Fig 2A). During this calibration, a change in the basic

reproduction numbers RS and RA resulted in a change of the individual’s infectiousness

per time unit and thus the probability of transmission per contact. The remaining pa-

rameters did not change. These reproduction numbers incorporated the effects of typical

(but not COVID-specific) infection prevention measures in the hospital. We will refer

to the model parameterized with these reproduction numbers as the wild-type scenario.
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This scenario also assumed that HCWs use 90% effective PPE (i.e., 90% reduction in

infectiousness) in COVID wards and isolate at home immediately upon symptom onset

for seven days, after which they return recovered to work. Next, we introduced a more

transmissible SARS-CoV-2 variant into the hospital, keeping all other parameters ś in-

cluding PPE use in COVID wards and self-isolation after symptom-onset ś the same.

Based on recent results for B.1.1.7, we assumed a 56% increase in transmissibility [20].

We will refer to the model parameterized with these higher reproduction numbers as our

baseline scenario. Various intervention scenarios were compared to this baseline scenario.

Diagnostic performance of the PCR test

We assumed a PCR test speciőcity of 100% and distinguished two scenarios for the test

sensitivity: 1) a time-invariant perfect sensitivity of 100%; and 2) a sensitivity increasing

with time since infection with a maximum sensitivity of 93.1% close to symptom onset and

declining afterward (time-varying sensitivity) [14]. We considered two sensitivity analyses

to test the impact of PCR test sensitivity assumptions on our results (Additional File

1 pp.3 and Fig S1). Hospital staff typically self-quarantine from symptom onset, get

tested and receive their test results within hours (based on UMCU data). We, therefore,

assumed no delay between testing and receiving test results, and that HCWs do not

contribute to virus transmission after symptom onset.

Infection control interventions

Baseline scenario

In the baseline scenario, HCWs were assumed to use PPE in COVID wards when

attending to patients, but not during breaks or in other parts of the hospital. The

baseline reduction factor (PPE effectiveness) was assumed to be 90%, which includes

both perfect-use PPE efficacy and expected PPE use adherence level. We assumed that

95% of the HCWs work in the same ward as during their previous shift.

All interventions described below were in addition to the baseline scenario. An overview

of all scenarios is given in Fig 2.
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Intervention: PPE in all wards

In this scenario, all HCWs used 90% effective PPE in all (non-COVID and COVID)

wards. However, no PPE was used when HCWs meet each other off-ward. We performed

sensitivity analyses assuming PPE effectiveness of 50% and 70%.

Intervention: HCW cohorting (no ward change)

This scenario restricted HCWs to work only in speciőc wards and did not allow any ward

changes. This scenario represents the most optimistic scenario where both nurses as well

as physicians are assumed to be eligible for cohorting to the same degree.

Intervention: Regular HCW screening

All HCWs were tested for SARS-CoV-2 either with a) a test with perfect sensitivity every

three days, or a test with time-varying sensitivity, b) every three days, or c) every seven

days. If tested positive, HCWs were assumed to immediately self-isolate at home for

seven days.

Intervention: HCW contact-tracing

If a HCW developed symptomatic SARS-CoV-2 infection, all contacts in the hospital

during a time window of either two or seven days before symptom onset were traced

and tested. We will refer to these scenarios as 2-day Contact tracing and 7-day contact

tracing. For 2-day contact tracing, contacts were always tested assuming a time-varying

test sensitivity. For 7-day contact tracing, we distinguished between perfect and time-

varying sensitivity sub-scenarios. In the perfect sensitivity sub-scenario, contacts were

instantaneously tested on the day of symptom onset of the index (the HCW). In the

time-varying test sensitivity sub-scenario, the test was performed on the day of symptom

onset if the contact with the index was more than őve days ago. Otherwise, it was

performed on day őve after the contact. Exposed HCWs awaiting tests were assumed to

wear PPE during contact with any patient and with other HCWs. In case of a positive

test, patients were moved to a COVID ward while infected HCWs were sent home for

self-isolation for seven days and replaced by susceptible HCW. We did not model any

absences of HCWs with disease symptoms caused by other respiratory pathogens.
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PPE use
(90% effectiveness)

PCR test sensitivityHCW cohorting

Baseline scenario

HCW cohorting

PPE in all wards

Wild-type scenario COVID wards

Virus type

Wild-type

HCW screening HCW contact tracing

more transmissible
variant COVID wards

more transmissible
variant

COVID wards
non-COVID wards

Screening 3 days
perfect sens

more transmissible
variant COVID wards

Screening 3 days more transmissible
variant COVID wards

time-invariant, 
perfect (100%)

time-varying,
imperfect

Screening 7 days more transmissible
variant COVID wards time-varying,

imperfect

7-day Contact tracing
perfect sens

more transmissible
variant COVID wards

7-day Contact tracing more transmissible
variant COVID wards time-varying,

imperfect

2-day Contact tracing more transmissible
variant COVID wards time-varying,

imperfect

No HCW ward change more transmissible
variant COVID wards

time-invariant, 
perfect (100%)

Scenarios

Figure 2: Overview of all simulated scenarios. The main characteristics of the scenarios
simulated in our agent-based model are presented.

Outcome measures

We computed the effective reproduction number RE (average number of secondary

cases caused by an infected individual) to evaluate an intervention’s effectiveness. We

calculated an overall RE for an average individual (patients and HCWs combined) but

also stratified RE by patients, HCWs, and symptom status. The reproduction numbers of

patients were calculated for those who eventually developed symptoms (Rpat
S ) and those

who remained without symptoms (Rpat
A ). Since HCWs were assumed to immediately

self-isolate upon symptom onset, we calculated R during pre-symptomatic (Rhcw
S ) and

asymptomatic states (Rhcw
A ). To evaluate the maximum demand on hospital capacity, we

considered the total number of nosocomial infections among patients and HCWs over

time. In addition, we computed the percentage of absent HCWs due to self-isolation

(because of symptom onset or detection via screening or contact-tracing) over time.

We assessed the efficiency of screening and contact-tracing interventions by their

positivity rates (percentage of detected infected individuals among tested individuals).

We did not include individuals that developed symptoms prior to being tested in the

positivity rate calculations since those were already detected and isolated in our model.
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For every scenario and outcome measure, we calculated the mean and 95% percentiles

over 100 simulation runs (95% uncertainty interval). We calculated positivity rates over

time merging data from all simulation runs and computed 95% Bayesian beta-binomial

credibility intervals.

A detailed description of the full model and the parameters can be found in the appendix.

We performed sensitivity analyses to test the robustness of our results (Table 1) and the

respective results are shown in the appendix. The data and full code are available from:

https://github.com/htahir2/covid_intra-hospital_model.git.

Results

We observed good agreement between the number of patients in COVID wards predicted

by our wild-type scenario and the real-life UMCU data during the őrst wave for RS = 1.25

and RA = 0.5. However, the model slightly overestimates hospitalizations for the second

half of the őrst wave (Fig 2A). We subsequently assumed the introduction of a SARS-

CoV-2 variant with a 56% increase in transmissibility (based on B.1.1.7 data), resulting

in RS = 1.95 and RA = 0.8. Keeping all other parameters the same, including HCWs

using PPE in COVID wards and self-isolating at symptom-onset, the total number of

nosocomial transmissions increased by 303% (Fig 2B) and the overall effective reproduc-

tion number increased by 62.5% (Fig 2C). Rhcw
S and Rpat

S increased the most to 0.94 and

0.6, respectively (Fig 2D), indicating that pre-symptomatic individuals pose the highest

risk for onward transmissions.

Intervention effects on reproduction numbers

In the context of this SARS-CoV-2 variant with higher transmissibility, the baseline sce-

nario of 90% effective PPE use in COVID wards yielded an overall RE of 0.65 (Fig 4A).

Extending PPE use to non-COVID wards reduced RE by an additional 85%, to 0.1.

Restricting HCWs to work only in speciőc wards yielded a reduction in RE of 5% (to

0.62). The effect of HCW screening on RE highly depended on the test sensitivity. With

time-varying test sensitivity, screening every three or seven days reduced RE to 0.59 and

0.63 (reductions of 9% and 3%), respectively. When perfect sensitivity was assumed,

screening every three days reduced RE by 63%, to 0.24. The impact of contact-tracing
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also depended on the test sensitivity assumptions, but to a lesser extent. For perfect

test sensitivity, 7-day contact-tracing reduced RE by 32%, to 0.44. For time-varying

test sensitivity, the 2-day and 7-day contact-tracing scenarios reduced RE to 0.41 and

0.39 (reductions of 37% and 40%), respectively. The additional reductions of RE by

the intervention scenarios over and above the baseline scenario were most prominent for

pre-symptomatic HCWs (Fig 4B).

Intervention effects on numbers of nosocomial infections

PPE use in all wards or HCW screening every three days with perfect test sensitivity

would prevent 93.7% and 82.7% of all transmissions, respectively (Fig 5), and both

interventions would also prevent outbreaks among patients and HCWs (Fig 6). Reductions

in nosocomial infections were much smaller for regular screening interventions with time-

varying test sensitivity: screening every three days would lead to a 20.4% reduction and

screening once a week to a 10.1% reduction. Testing with perfect test sensitivity followed

by 7-day contact-tracing was more effective (55.8% reduction of transmissions) than

regular screening every three or seven days. Testing with time-varying sensitivity followed

by 2-day or 7-day contact tracing were similarly effective as testing with perfect sensitivity

followed by 7-day contact tracing (reductions of 61.4% and 64.1%, respectively). HCW

cohorting would decrease the total number of nosocomial infections by 13%. Note that

our model predicted that approximately 30% of patients that either got admitted with

SARS-CoV-2 or acquired the infection in the hospital were detected either due to testing

at symptom onset or testing as part of an intervention (Additional File 2: Fig. S1). The

remaining 70% of infected patients were discharged undiagnosed and without symptoms.

Intervention effects on HCW absenteeism

Our baseline scenario predicted a maximum HCW absenteeism of 5.4%, including ab-

senteeism due to symptoms or home isolation (Fig 7). When comparing intervention

scenarios to the baseline scenario, HCW absenteeism is lowest for PPE use in all wards

(a maximum of 2.3%). The maximum absenteeism percentages were 5.2% for HCW co-

horting, 5.1% for regular screening with perfect test sensitivity, 8.6% for regular screening

with time-varying test sensitivity every seven days and 6.6% every three days, 4.0% for

7-day contact tracing with testing assuming perfect sensitivity, 3.6% for 2-day contact
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tracing with testing assuming time-varying sensitivity, and 3.9% for 7-day contact tracing

with testing assuming time-varying sensitivity.

Efficiency of screening and contact-tracing interventions

HCW screening every three days with a perfect test would lead to the lowest test

positivity rate of all testing-based interventions (Fig 8A). Screening of HCWs every

week compared to every three days yields higher positivity rates with its mean reaching a

maximum value of 5.1%. The positivity rate of screening interventions linearly increases

with increasing prevalence (Additional File 2: Figure S1).

Positivity rates for contact-tracing interventions are much higher than for screening

interventions, reaching as high as 15.1% when a perfect test sensitivity is assumed

(Fig 9A). The maximum positivity rates for 2-day and 7-day contact tracing with

time-varying test sensitivities are only slightly lower at 11.3% and 10.4%, respectively

(Fig 9B-C). Positivity rates of contact-tracing interventions are stable across prevalence

values (Additional File 1: Figure S2).

Sensitivity analyses show that our őndings do not change signiőcantly when the assumed

PPE effectiveness is reduced to 70%. When PPE effectiveness is assumed to be as low

as 50%, screening every three days with perfect sensitivity becomes more effective than

PPE use in all wards. However, PPE use in all wards is still more effective than all other

interventions (Additional File 2 p. 2).

Discussion

During the őrst epidemic wave of the wild-type SARS-CoV-2 in the Netherlands,

nosocomial transmission was considered to be of relative minor importance. Our

results suggest that a more transmissible virus variant could signiőcantly increase

the total number of nosocomial transmissions if hospital prevention measures would

not be expanded beyond those implemented during the őrst wave (HCWs using PPE

with assumed 90% effectiveness in COVID-19 wards and self-isolating at home after

symptom onset). Our őndings suggest that universal PPE use in all hospital wards is the

most effective intervention to reduce the reproduction number and absenteeism. These

results are consistent with a previous modelling study and previous őndings on signiőcant
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reductions of nosocomial-acquired SARS-CoV-2 infections after implementation of

universal masking policies [1, 11, 13, 21ś24]. In our model, HCW cohorting only had a

small impact on nosocomial transmissions, which is due to the fact that we assumed

90% effective PPE use in the COVID wards in all scenarios. Several studies have

reported elevated risks for HCWs working in COVID-19 patient care [5, 6]. Our results

suggest that maintaining sufficient PPE supplies in hospital settings may reduce the

need for implementing additional HCW cohorting strategies. Our model also suggested

that regular screening of HCWs could have a strong impact, but only if the test

sensitivity is high throughout the infectious period. Tests with imperfect time-varying

sensitivity miss many infections during the pre-symptomatic phase. Indeed, our model

identiőed pre-symptomatically infected HCWs as drivers of transmission both to patients

and to other staff. This is consistent with a descriptive study on HCWs in France where

contacts causing the transmissions took place in the pre-symptomatic phase of the

index case in 30% of all cases and in almost 50% of HCW-HCW transmissions. Our

results also agree with previous modelling studies suggesting that regular screening of

HCWs was less effective than effective PPE use.

Contact tracing was highly effective in limiting nosocomial transmissions in our model,

especially when traced contacts are tested at least őve days after their exposure

and precautionary measures are undertaken in the meantime. If traced HCWs are

immediately tested, self-isolated, and replaced by susceptible HCWs, this can lead

to increased transmission, a phenomenon that was also observed by Scarpino and

colleagues [25]. The authors used a network model and evidence from data on inŕuenza

and dengue outbreaks to show that replacing infected individuals in essential societal

roles with susceptibles may lead to accelerated transmission. Our results indicate that

allowing traced HCWs to work with PPE in all hospital wards is more effective in limiting

transmission. Finally, our model suggests that contact tracing yields higher positivity

rates than screening interventions, not only at high prevalence but also during periods of

low infection rates, making this also a potentially successful and cost-effective infection

control strategy in hospital settings. Our őndings reinforce the recommendation by

Paltansing and colleagues to test all close contacts of a SARS-CoV-2 positive case

immediately and subsequently on day 3 and 7 regardless of symptoms and to allow

HCWs to work with surgical masks while awaiting their test results [13].
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Our study has several limitations. First, we assumed that transmission occurs solely via

HCWs in the absence of a direct patient-to-patient contact pathway, as has been used

before in an individual-based model of nosocomial inŕuenza transmission [26]. Assuming

similar transmission modes for SARS-COV-2, we consider this assumption reasonable for

hospital settings in Western countries where direct patient-to-patient contact is rare.

When this assumption is violated, our estimated impact of HCW-based interventions is

likely to be overestimated. Second, we considered SARS-CoV-2 as a cause of symptoms

and neglected other respiratory tract infections. Thus, real-life positivity rates of con-

tact tracing may be lower than presented in this study. Third, while we have included

age-speciőc hospitalization rates for patients admitted with SARS-CoV-2 and different

proportions of asymptomatic infections for HCWs and patients, we have neglected age-

structure in our transmission model. A possible extension of our model would be the

inclusion of age-dependent susceptibility and infectiousness parameters. However, since

the considered interventions in our model are not differential with respect to age, we

do not expect any impact on the relative effect of the interventions. Further, our HCW

cohorting intervention scenarios assumes the same degree of cohorting both for nurses

and physicians. In reality, cohorting strategies are only feasible for nurses. As such, the

estimated effect of this intervention is likely to be overestimated. Since the estimated

effect of HCW cohorting was estimated to be small, we expect it to be even smaller

when implemented in the real world. Moreover, the duration of contacts, SARS-CoV-2

reinfections, visitors or other ancillary staff, delays between symptom onset and isolation,

or delays between test application and test result were not included. Finally, while we

identiőed one parameter set for which our model results őtted the available data well,

it is possible that other parameter sets exist that would produce a comparable őt. We

have not used formal őtting procedures to match our model results to the data given the

large number of parameters. However, qualitatively, our conclusions were robust in sen-

sitivity analyses to variation of the most important model parameters. While our model

was developed using data of a large Dutch teaching hospital and of the őrst wave of the

COVID-19 epidemic in the Netherlands, our results can be generalised to other hospitals

with a similar structure and may be relevant for subsequent waves and future infectious

disease outbreaks.
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Conclusions

In conclusion, our model demonstrates that PPE use in all wards is the most effective

measure to substantially reduce nosocomial spread of SARS-CoV-2 variants with higher

transmissibility. However, contact-tracing and regular screening using high-sensitivity

tests are also effective interventions, which might be preferred in some settings.

Availability of data and materials

The datasets used and/or analysed as well as the full code reproducing the results

in the current study are available from https://github.com/htahir2/covid_

intra-hospital_model.git.
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Table 1: Parameter values for the agent-based model.

Symbol Description Distribution/Value* Source

Incubation

period

s(τ) Time between infection

and symptom onset

Gamma distribution

shape = 5.807

scale = 0.948

mean = 5.510

SD = 2.284

Lauer et al [15]

Generation time ω(τ) Time between becom-

ing infected and subse-

quent onward transmis-

sion events

Weibull distribution

shape = 2.826

scale = 6.839

mean = 6

Grassly et al [14]

Proportion of

asymptomatic

infections

among infected

patients

P pA 20% Buitraga-Garcia et al

[19]

Proportion of

asymptomatic

infections

among infected

HCWs

P hA 31% Buitraga-Garcia et al

[19]

Proportion

of severe

symptomatic

individuals

PS Proportion of exposed

individuals that will de-

velop severe symptoms

20% Wu et al [27]

Reproduction

number of

asymptomatic

infectees for

wild-type variant

RWA Mean number of in-

fections caused by an

individual asymptomat-

ically infected with the

wild-type SARS-CoV-2

variant

0.5 Calibrated to UMCU

data
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Reproduction

number of

symptomatic

infectees for

wild-type variant

RWS Mean number of infec-

tions caused by an indi-

vidual symptomatically

infected with the wild-

type SARS-CoV-2 vari-

ant

1.25 Calibrated to UMCU

data

Reproduction

number of

asymptomatic

infectees for new

virus variant

RA Mean number of in-

fections caused by an

individual asymptomat-

ically infected with the

SARS-CoV-2 variant

0.8 (1.95) Based on RWA with

56% higher transmis-

sibility, varied in sensi-

tivity analysis

Reproduction

number of

symptomatic in-

fectees for new

virus variant

RS Mean number of in-

fections caused by an

individual symptomati-

cally infected with the

SARS-CoV-2 variant

1.95 Based on RWA with

56% higher transmis-

sibility

Maximum sensi-

tivity of diagnos-

tic PCR test

93.1% (79%) Grassly et al [14], var-

ied in sensitivity anal-

ysis

Proportion of

HCWs that work

in the same ward

as during their

previous shift

95% (baseline)

100% (intervention)
Assumed

PPE effective-

ness

Reduction in infec-

tiousness upon contact

between an infected

and susceptible indi-

vidual (includes PPE

efficacy and adherence)

90% (50%, 70%) Suzuki et al [28], Qian

et al [29], Bessesen et

al [30], varied in sen-

sitivity analysis
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Isolation period

for HCWs

Amount of time HCWs

have to isolate after

symptom onset or af-

ter being detected by

screening or contact

tracing

7 days Assumed

Recovery time

for asymp-

tomatic infec-

tion

Mean duration of an

asymptomatic infection

14 days

Sensitivity analysis:

Unif(9, 19)

Assumed

Recovery time

for symptomatic

(moderate,

severe) infection

Mean duration of a

symptomatic infection

14 days (moderate)

35 days (severe)

Sensitivity analysis:

Unif(9, 19)

Unif(30, 40)

Liu et al [16]

LoS of non-

COVID patients

in ICU

Lognormal

meanlog = 0.37

sdlog = 0.82

mean = 1.45 days

sd = 2.27

Fitted distributions

to UMCU data from

2014-2017

LoS of non-

COVID patients

in normal ward

Weibull

shape = 0.92

scale = 4.18

mean = 4.35 days

Fitted distributions

to UMCU data from

2014-2017

LoS of moder-

ately infected

patients

Gamma

shape = 1.88

rate = 0.25

mean = 7.52 days

sd = 30.08

Fitted distributions

to UMCU data from

2020
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LoS of severely

infected patients

Gamma

shape = 1.59

rate = 0.05

mean = 31.8 days

sd = 636

Fitted distributions

to UMCU data from

2020

*Values given are őxed in the simulations. Values in brackets were used in sensitivity analyses.
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Figure 3: Comparison of the scenarios with the wild-type and a more transmissible SARS-

CoV-2 variant. Both scenarios assume 90% effective PPE use in COVID wards. For the wild-
type scenario (black), model simulations were performed with RS = 1.25 (reproduction number
of symptomatically infected individuals) and RA = 0.5(reproduction number of asymptomatically
infected individuals). For the baseline scenario (blue), model simulations were performed with
RS = 1.95 and RA = 0.8 (with 56% higher transmissibility with respect to the wild-type SARS-
CoV-2 variant). Horizontal dashed lines represent a reproduction number of 1. Summary statistics
were calculated for 100 simulations. (A) Simulated mean number of beds occupied by patients
in COVID wards per day (black curve) and 95% uncertainty interval (grey shaded area). Red
points represent real-life data on the daily number of beds occupied by COVID-19 patients at the
UMCU between 27 February and 24 August 2020. (B) Number of nosocomial transmissions as
predicted by the models. Full rectangular bar height represents the mean total number of noso-
comial transmissions during the whole study period. Grey error bars represent 95% uncertainty
intervals. Patients acquiring a SARS-CoV-2 nosocomial infection may be diagnosed in the hospi-
tal (due to symptom onset during hospital stay or detection by an intervention) or discharged to
the community in a pre-symptomatic or asymptomatic state. Rectangular bars with black borders
represent mean number of individuals (patients and HCWs) infected with SARS-CoV-2 and diag-
nosed in the hospital. Lighter rectangular bars represent the remaining mean number of patients
discharged to community undiagnosed. (C) Violin and box plots of the overall effective reprduction
numbers (RE , for pre-/symptomatic and asymptomatic patients and HCWs combined) for the
nosocomial spread in the wildtype and baseline scenario. (D) Violin and box plots of RE for the
nosocomial spread in the wildtype and baseline scenario (separate values for pre-/symptomatic and
asymptomatic individuals). Since HCWs are assumed to immediately self-isolate upon symptom
onset, the reproduction number is assigned to the pre-symptomatic state.
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Figure 4: Effective reproduction numbers for the nosocomial spread of the SARS-
CoV-2 variant for each simulation scenario. Results shown are based on RS = 1.95
and RA = 0.8 (reproduction numbers for the SARS-CoV-2 variant with 56% higher
transmissibility with respect to the wild-type SARS-CoV-2 variant). Horizontal dashed
lines represent a reproduction number of 1. Summary statistics were calculated for 100
simulations. (A) For each intervention scenario, violin and boxplots of the overall effec-
tive reproduction numbers (for pre-/symptomatic and asymptomatic patients and HCWs
combined) are shown. (B) For each intervention scenario, violin and boxplots of the
effective reproduction numbers for pre-/symptomatic and asymptomatic individuals are
shown. Since HCWs are assumed to immediately self-isolate upon symptom onset, the
reproduction number is assigned to the pre-symptomatic state. For screening every 3 days
and 7-day contact tracing prior to symptom onset of SARS-CoV-2 infected HCWs, we
considered two different test sensitivity scenarios: time-invariant perfect test sensitivity
(perfect sens) and time-varying test sensitivity.
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Baseline

0 200 400 600
Number of nosocomial transmissions

Figure 5: Number of nosocomial transmissions of the SARS-CoV-2 variant for each
simulation scenario. Results shown are based on RS = 1.95 and RA = 0.8 (reproduction
numbers for the SARS-CoV-2 variant with 56% higher transmissibility with respect to the
wild-type SARS-CoV-2 variant). Summary statistics were calculated for 100 simulations.
The full rectangular bar height represents the mean total number of nosocomial trans-
missions during the whole study period. The grey error bars represent the corresponding
95% uncertainty intervals. Patients that acquire a SARS-CoV-2 nosocomial infection
may be diagnosed in the hospital (due to symptom onset during hospital stay or due
to detection by an intervention) or discharged to the community in a pre-symptomatic
or asymptomatic state. The rectangular bars with the black border represent the mean
number of individuals (patients and HCWs) infected with SARS-CoV-2 and diagnosed
in the hospital. The lighter rectangular bars represent the remaining mean number of
patients discharged to community undiagnosed. For screening every 3 days and 7-day
contact tracing, we considered two different test sensitivity scenarios: time-invariant per-
fect test sensitivity (perfect sens) and time-varying imperfect test sensitivity.
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Figure 6: Number of nosocomial infections among patients and HCWs over time
for all simulation scenarios with the SARS-CoV-2 variant. Results shown are based
on RS = 1.95 and RA = 0.8 (reproduction numbers for the SARS-CoV-2 variant with
56% higher transmissibility with respect to the wild-type SARS-CoV-2 variant). For each
scenario, the 7-day moving average of the mean prevalence (over 100 simulation runs) is
shown. A) Number of hospital-acquired infections among patients. B) Number of hospital-
acquired infections among HCWs. For screening every 3 days and contact tracing 7 days
prior to symptom onset of SARS-CoV-2 infected HCWs, we considered two different test
sensitivity scenarios: time-invariant perfect test sensitivity (perfect sens) and time-varying
imperfect test sensitivity.
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Figure 7: Daily percentage of absent HCWs during the hospital epidemic for each
simulation scenario. Results shown are based on RS = 1.95 and RA = 0.8 (reproduction
numbers for the SARS-CoV-2 variant with 56% higher transmissibility with respect to the
wild-type SARS-CoV-2 variant). The 7-day moving average of the mean percentage (over
100 simulation runs) of HCWs absent from work due to symptom onset or a detected
SARS-CoV-2 infection screening or contact tracing is shown. For screening every 3 days
and contact tracing 7 days prior to symptom onset of SARS-CoV-2 infected HCWs, we
considered two different test sensitivity scenarios: time-invariant perfect test sensitivity
(perfect sens) and time-varying imperfect test sensitivity.
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Figure 8: Positivity rates over time for screening interventions. Results shown are based
on RS = 1.95 and RA = 0.8 (reproduction numbers for the SARS-CoV-2 variant with
56% higher transmissibility with respect to the wild-type SARS-CoV-2 variant). Positivity
rates were calculated by the number of positive detected HCWs among the number of
tested HCWs using data of all simulation runs combined (points). The shaded regions
represent the 95% Bayesian beta-binomial credibility intervals. HCWs who developed
symptoms prior to the day of testing were not included in the positivity rate as we
assume that they were already correctly identified. (A) Screening every three days with
time-invariant perfect test sensitivity. (B) Screening every three days with time-varying
imperfect test sensitivity. (C) Screening every seven days with time-varying test sensitivity.
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Figure 9: Positivity rates over time for contact tracing interventions. Results shown
are based on RS = 1.95 and RA = 0.8 (reproduction numbers for the SARS-CoV-
2 variant with 56% higher transmissibility with respect to the wild-type SARS-CoV-2
variant). The positivity rate is computed by the percentage of positive tested contacts
among all traced contacts using data of all 100 simulation runs merged. Positivity rates
are assigned to the day of symptom onset of the index case, i.e., HCW that developed
symptoms due to a SARS-CoV-2 infection. Traced contacts who developed symptoms
due to a SARS-CoV-2 infection are excluded from contact tracing as we assume that they
are always correctly identified. The plot shows the 7-day moving average (colored line) and
the 95% Bayesian beta-binomial confidence interval (shaded area). (A) Tracing contacts
of symptomatically infected HCWs of the last two days before symptom onset using
a diagnostic test with perfect test sensitivity. (B) Tracing contacts of symptomatically
infected HCWs of the last two days before symptom onset with testing five days after
contact with the index case assuming time-varying test sensitivity. (C) Tracing contacts
of symptomatically infected HCWs of the last seven days before symptom onset with
testing five days after contact with the index case assuming time-varying test sensitivity.
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We simulated nosocomial COVID-19 epidemics using an agent-based model coded in

Python. The code is available from:

https://github.com/htahir2/covid_intra-hospital_model.git.

First, we őtted the model to real-life data from the University Medical Center Utrecht

(UMCU) during the period February-August 2020. Next, we evaluated the impact of

various intervention strategies aimed at healthcare workers (HCWs) on the nosocomial

spread of a more transmissible SARS-CoV-2 variant (e.g., B.1.1.7) in a hospital.

We őrst outline the data used to inform and parameterize our model. We continue

by explaining the details of our agent-based model, the transmission model, and the

underlying assumptions. We further describe the intervention strategies implemented in

our model, the considered outcome measures, and the results of our sensitivity analyses.

Lastly, we elaborate on the algorithm of our model.

I. Data

We used data from the University Medical Center Utrecht (UMCU), The Netherlands, and

data provided by the National Institute for Public Health and the Environment (RIVM),

The Netherlands, during the őrst wave of the SARS-CoV-2 epidemic to inform and

parameterize our model.

Hospitalization data

We used unlinked anonymized hospitalization data of patients in COVID wards at

the UMCU between 27 February and 24 August 2020. The data set comprises 167

admissions of which 82 patients were admitted to an intensive care unit, and 85

patients were admitted to regular wards. Based on information of the infection control

department of the UMCU, we assumed that 95% of those admissions were COVID-19

admissions, leaving 5% of the patients admitted for non-COVID reasons but later

diagnosed with a SARS-CoV-2 infection in the hospital. The number of admissions per

day are shown in Figure S1. The data further comprises discharge dates of the respective

patients. We used the resulting number of beds occupied by COVID-19 patients to őt
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the reproduction numbers in our model. The data is available from:

https://github.com/htahir2/covid_intra-hospital_model/blob/main/data/covid_

patient_admissions_los_UMCU.csv.

Length of stay distributions

We calculated the respective length of stay (LoS) from admission and discharge times

for each of the COVID-19 patients at UMCU. Data on patient admissions to the UMCU

prior to the COVID-19 pandemic (2014-2017) were used to estimate the length of stay

distributions for non-COVID admissions to the hospital. We őtted probability distributions

to the length of stay data for admissions to regular wards and ICUs, separately for COVID

or for non-COVID related admissions. We considered exponential, log-normal, gamma,

and Weibull distribution and chose the best őt by visual inspection of the empirical vs

theoretical densities, the Q-Q plot, and the P-P plot. The length of stay data and őtted

distributions are shown in Figure S2. The respective parameters can be found in Table

S1.

Importation from community

We assume that 40 patients are admitted to the hospital for reasons unrelated to COVID-

19 per day in the time period 27 February to 24 August 2020 (Table S1). We based this

number on UMCU admission data in the time period 2014-2017 and the assumption

that admissions decreased by 50% during the őrst wave of the COVID-19 epidemic.

Those admitted patients might be infected with SARS-CoV-2 due to transmissions in the

community. We further assume that HCWs go home after each daily shift and therefore

may acquire infection in the community as well. They may be in their pre-symptomatic

phase or asymptomatically infected with SARS-CoV-2 when they arrive at work in the

hospital. These patients and HCWs do not experience any symptoms (yet), and therefore

do not know that they are infected. We approximate the probability of being infected in

the community for non-COVID patient admissions and HCWs arriving at work as follows:

We used data on the number of infectious people in the Netherlands estimated by the

National Institute for Public Health and the Environment (RIVM) from 17 February till 24

August 2020 [31]. They used data from serological surveys in the Netherlands and related

these to numbers of hospitalized cases (stratiőed by age group), leading to the number of

łactualž infections per hospitalized case. They thereby included all infections that led to
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an immunological response, not only those that were detected in real time by PCR testing.

Note that this method might be less reliable when the number of hospitalizations is low.

This estimated number of infectious individuals includes hospitalized COVID-19 patients

as well as individuals that are isolated at home (e.g., due to detection in the community via

testing or contact tracing). To roughly account for this, we subtracted the total number

of reported cases in the province of Utrecht from the estimated number of infectious

individuals (RIVM estimate described before). We hereby assume that all individuals in

Utrecht are eligible for admission at the UMCU. We additionally used publicly available

age-speciőc hospitalization rates of the Netherlands of 2012 and age-speciőc COVID-

19 incidence rates in the Netherlands to scale the daily probability of being infected

in the community for non-COVID patient admissions and HCWs arriving at work [18,

32, 33]. For HCWs, we only used age-speciőc COVID-19 incidence rates for age-groups

between 20 and 65 years. Since age-speciőc prevalence values are not available to date,

the previous calculation is based on the assumption that the distribution of age groups

is roughly the same for incidence and prevalence. Furthermore, we assumed a catchment

population size of 100,000 people for the hospital.

II. Model

Environment

We modelled a typical (Dutch) hospital comprising 28 wards which are divided as follows

• COVID ICU (4) with 17 beds each

• Normal (non-COVID) ICU (1) with 12 beds

• COVID ward (4) with 3× 23 beds and one with 22 beds

• Normal (non-COVID) ward (19) with 2× 20, 4× 19, 13× 18 beds

The total number of beds in the hospital is 521. The numbers are approximated in

accordance to the number of beds and ward distribution of the UMCU (for patients who

stayed at least one day at UMCU).

Agent-types

There are three different agents involved in the transmission process within the hospi-

tal of our model: Patients (non-COVID and COVID) and health-care workers (HCWs),
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separated into nurses, and doctors. Visitors or ancillary workers are excluded from the

model. Patients are assumed to occupy a hospital bed in a single room. This assumption

is suitable for a setting where the transmission is mainly driven by HCWs as vectors and

with no direct patient-to-patient transmission. HCWs have a number of duty shifts per

day. We assume that they meet patients in a number of rounds per shift (see Table S1)

and that HCWs meet other HCWs in the common staff room of each ward. The ratio

between HCWs and patients and the time HCWs spend with a patient are ward speciőc

and assumed. The number of HCW duty shifts per day, and the number of rounds per

shift are independent from the ward and assumed. The respective parameters can be

found in Table S1.

Disease progression

The disease progression of an infection with SARS-CoV-2 was modelled using a

Susceptible-Exposed-Infectious-Recovered (SEIR) model and is shown in Figure 1c

of the main text. Individuals who have not been infected with SARS-CoV-2 are

susceptible (S), and may transition to being exposed (E) upon contact with an infected

individual. A proportion (1 − PA) of infected individuals develop symptoms. We based

the incubation period (time between infection and appearance of symptoms) on a

Gamma distribution with mean 5.5 days as described by Lauer and colleagues [15].

Symptomatically infected individuals may develop moderate symptoms (IM) or severe

symptoms (IS). All infected individuals will eventually recover and become immune (IR).

Asymptomatically infected (IA) are assumed to recover after 14 days. We assume that

moderately and severely infected patients recover after 14 and 35 days, respectively [16].

We assumed that symptomatically infected HCWs are perfectly isolated at home for

seven days immediately upon developing symptoms, after which they return recovered

to work. Based on a meta-analysis by Buitraga-Garcia and colleagues, we assumed

the asymptomatic proportion of COVID-19 infections among patients to be 20% and

the proportion of asymptomatic infections among HCWs to be 31% (see also Table

S1) [19]. We used their overall estimate of the proportion of asymptomatic infected

individuals for the patient population in our model, and their estimates obtained from

studies with screened individuals for the HCW population in our model.
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Hospital admissions

Patients can be hospitalized either for non-COVID reasons to normal wards and ICUs,

or with moderate or severe COVID-19 symptoms to COVID wards or COVID-ICUs.

The length of stay of a patient differs according to these four categories. Probability

distributions were őtted to length of stay data of patients admitted to the UMCU. The

data and őtted distributions are shown in Figure S1-S2. The respective parameters can

be found in Table S1. Patients admitted to normal wards and ICUs who are later detected

with a SARS-CoV-2 infection are immediately transferred to COVID wards and ICUs upon

diagnosis. If they develop severe symptoms, their length of stay is prolonged according

to the length of stay distribution of admitted severe COVID-19 patients.

Accuracy of the diagnostic test

In our model, patients and HCWs are assumed to be tested using reverse transcriptase

polymerase chain reaction (RT-PCR) either when being screened or after being identiőed

as a contact of a symptomatic infected individual in contact tracing. These diagnostic

tests can be inaccurate either because of a false positive or a false negative result. The

latter are considered to be more consequential with a potential high impact on onward

transmission due to undetected cases. It has been documented that the sensitivity of

the PCR test varies with time from exposure and symptom onset [34]. We assumed a

time-varying imperfect sensitivity of the diagnostic test (Figure S3) based on the results

reported in Grassly and colleagues [14]. These authors used published data from three

meta-analyses of the test sensitivity over time since symptom onset. They assume the

pre-symptomatic sensitivity to be proportional to the infectiousness curve such that the

estimate on day 5 matched the empirical data from the day of symptom onset. We per-

formed a sensitivity analysis assuming 1) a 15% lower sensitivity, and 2) a test sensitivity

that stays at its peak value after reaching the maximum (see Figure S3). Finally, we

assessed the impact of perfect sensitivity of 100% which stays constant over time on

the results of our model. Throughout the simulations, we assume test sensitivity to be

the same for symptomatic and asymptomatic infections, and we assume a speciőcity of

100%.
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Infectiousness

We use a time-varying infectiousness proőle following Grassly and colleagues and shown

in Figure 1C of the main text [14]. Infectiousness is assumed to vary over time since

infection and to follow a Weibull distribution, with a mean of 6 days [14]. The average

duration of the infectious period is therefore assumed to be 6 days. This approximation

is consistent with published estimates of the serial interval for SARS-CoV-2 [35ś37]. We

denote infectiousness over time since infection τ by β(τ). It is the mean rate at which

an individual infects others at time after its time of infection. We use the infectiousness

proőle for calculating the probability of transmission from an infectious to a susceptible

individual (see below). The reproduction number R (average number of secondary cases

caused by an infected individual) is given by integrating β(τ) over time since infection

R =
∫︁∞

0
β(τ)dτ . The generation time distribution ω(τ) is given by unit normalisation

such that ω(τ) = β(τ)/R. Assuming the mean generation time to be equivalent with the

observed mean serial interval, we calculate the infectiousness proőle by β(τ) = ω(τ)R.

We assumed the infectiousness over time since infection to differ between asymptomatic

and symptomatic infected individuals, deőned by βA(τ) and βS(τ), respectively. Then

β(τ) can be decomposed into

β(τ) = PAβA(τ) + (1− PA)βS(τ)

where PA represents the proportion of asymptomatic infections. Asymptomatic individuals

are assumed to have an infectiousness proportional to that of symptomatic individuals,

i.e., βA = xA · βS, xA ≤ 1. Integrating over each of the two terms leads to the respective

contribution to the overall reproduction number:

R = RA + RS

First, we chose the basic reproduction numbers RS and RA (values are given in Table

S1) such that the numbers of occupied beds by COVID-19 patients predicted by our

model were in good agreement with real-life UMCU data on the number of COVID-

19 patients at UMCU during the őrst epidemic wave (Figure 1 and Figure 2A in the

main text). These reproduction numbers incorporated the effects of typical (but not

COVID-speciőc) infection prevention measures in the hospital. We will refer to the model
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parameterized with these reproduction numbers as the wild-type scenario. This scenario

also assumed that HCWs use 90% effective PPE in COVID wards and isolate at home

immediately upon symptom onset for seven days, after which they return recovered to

work. Next, we introduced a more transmissible SARS-CoV-2 variant into the hospital,

keeping all other parameters ś including PPE use in COVID wards and self-isolation

after symptom-onset ś the same. Based on recent results for B.1.1.7, we assumed a

56% increase in transmissibility [20]. We will refer to the model parameterized with these

higher reproduction numbers as our baseline scenario. Various intervention scenarios were

compared to this baseline scenario.

Transmission

Transmission events can occur between susceptible patients and HCWs, or between

(asymptomatic or pre-symptomatic) HCWs. Thus, we assumed that there is no direct

transmission between patients. Only HCWs in their pre-symptomatic stage, or HCWs

who are asymptomatically infected, contribute to transmission, since we assume that

HCWs are perfectly isolated at home for seven days immediately upon developing symp-

toms. Upon a contact between two individuals, a transmission may take place between

an infected and a susceptible individual. The probability of transmission is dependent on

the current infectiousness of the infected individual. If β(τ) is the infectiousness of the

infected individual at time since infection, the average probability of transmission per

contact with a susceptible person is given by

A(τ) =
β(τ)

c

where c is the average contact rate of the individual which can be determined by com-

puting the largest eigenvalue of the respective contact matrix

⎡

⎢
⎢
⎣

cn,n cn,p cn,d

cp,n 0 cp,d

cd,n cd,p cd,d

⎤

⎥
⎥
⎦

where ci ,j is the contact rate of an individual of type i with an individual of type j (see

Table S1). Let Nn, Nhc , and Np be the average number of nurses, doctors, and patients

in the hospital population, respectively. Since the total number of contacts of individuals
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of type i has to be the same as the total number of contacts of an individual of type j ,

cn,pNn = cp,nNp, cd,pNp = cp,dNd , and cd,n Nn = cn,dNd the contact matrix is given by

⎡

⎢
⎢
⎣

cn,n cn,p cn,d

cn,p
Np
Nn

0 cp,d

cn,d
Nd
Nn
cp,d

Nd
Np
cd,d

⎤

⎥
⎥
⎦

The values of the contact rates in the matrix are based on HCW to patient ratios and

the number of rounds per shift of HCWs and were estimated once from our simulations

assuming 100% patient occupancy in the hospital. These estimated parameters were later

used for all the simulation scenarios. The respective values can be found in Additional File

1: Table S1. We compared these values to a prospective contact survey of nurses in őve

hospitals in the German federal state of Bavaria conducted by Bernard and colleagues

[38]. The authors reported a median work-related contact rate of cn = 34 of nurses

during 24 hours. Most work-related contacts were with patients (51%) or other staff

member/other persons (49% = 40% + 9%). Thus, nurses meet approximately 17.3

patients and 16.7 other staff members per 24 hours. The contact rate of nurses with

patients per duty shift from our simulations (cn,d = 19.07) is similar to the reported

value by Bernard and colleagues. The contact rates between hospital staff are lower in

our simulation than reported in the contact survey (see values in Additional File 1: Table

S1) and based on our assumption that contacts between hospital staff decreased during

the őrst wave of the COVID-19 pandemic in the Netherlands.

Time of infection

For individuals infected in the community, the time of infection is unknown. For asymp-

tomatic individuals, we assume an infectious period of 14 days and draw the infection

time uniformly from 0 to 14 days prior to admission. For individuals that will develop

symptoms, we draw an incubation period tinc from the respective distribution (see Table

S1) and then draw the infection time uniformly from 0 to tinc prior to admission. Note

that this approach neglects the fact that in an early stage of an outbreak when the epi-

demic grows at an exponential rate, it is likely that there are many more recently infected

individuals.
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III. Calibration of parameters to data

In such a multi-dimensional parameter space, it is possible that there are multiple sets

of parameters that would produce the őt. The parameter set we presented in this work

is likely not the only one that could produce the presented őt (Figure 2A in the main

text). For many parameters we have knowledge from empirical observations about the

likely values for those parameters (e.g., incubation period, generation time, . . . ). This

already considerably limits the parameter region of the model. We then tried to identify

the parameters that would most likely change the őt to the data. For example, when we

extended the length of stay of hospital-acquired infected patients with mild symptoms,

the simulation output did not őt to the data anymore (łwidthž of the curve did not őt).

This conőrmed information we received from UMC Utrecht that in the Netherlands, the

LoS of patients who do not require intensive care would not be extended (but patients

would be sent home for isolation). Similarly, we noticed that when we changed the

reproduction number that this had a big impact on the łheightž of the curve. Thus, we

calibrated the basic reproduction numbers such that the height of the simulation curve

matched the data (and the width matched already with the remaining parameters given

in Table 1 in the main text and Additional File 1: Table S1). Fine-tuning could yield a

better őt but this is out of scope of this work.

The following parameters were involved in the calibration of the parameters to the ob-

served data on occupied beds of COVID-19 patients at UMC Utrecht:

• Reproduction numbers for asymptomatically and symptomatically infected individ-

uals

• Length of stay adjustment for patients who acquired a SARS-CoV-2 infection in

the hospital

• Isolation period of HCWs

IV. Infection control interventions

We used the model to evaluate the effect of several interventions aimed at HCWs on

the hospital epidemic using data from the őrst wave of the epidemic in the Netherlands

but assuming the introduction of a SARS-CoV-2 variant with higher transmissibility in
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the hospital. As such, our model results show the impact of the interventions on the

nosocomial spread of a new variant.

Throughout the simulations, we assume that HCWs use 90% effective PPE in COVID

wards and isolate at home immediately upon symptom onset for seven days, after which

they return recovered to work. Furthermore, we assume that there is no delay between

testing and receiving the COVID-19 test result. This assumption is in particular reasonable

for hospital staff tested in the hospital, as they receive their test result within hours

(UMCU) and have to self-isolate until they receive the result. Thus, it can be assumed

that they do not contribute to the transmission of the virus while waiting for the test

result.

Baseline scenario

We assumed that HCWs used personal protective equipment (PPE) while working in

COVID wards. PPE reduces the transfer of droplets or other body ŕuids onto HCWs’

skin and clothing or directly onto the mucous membranes of the eye or nasopharynx. We

deőne PPE efficacy as the percentage reduction of droplet transfer. Furthermore, we

deőne the effectiveness of PPE as the reduction of infectiousness by a factor upon each

contact between an infected and susceptible individual. This reduction factor includes

PPE efficacy as well as adherence to adequate PPE use. In our baseline scenario, we

assumed that all PPE use was 90% effective. We assumed HCWs do not use PPE when

meeting each other in the common room and that per day 95% of the HCWs work in

the same ward as during their previous shift.

Intervention: PPE in all hospital wards

In this intervention scenario, we assumed that all HCWs wore 90% effective PPE in all

(non-COVID and COVID) wards. Note that no PPE is worn when HCWs meet each

other. We performed sensitivity analyses assuming PPE effectiveness of 50% and 70%.

Intervention: HCW cohorting (no HCW ward change)

In this intervention scenario, we restricted HCWs to work only in speciőc wards and did

not allow any ward change.

348



Controlling nosocomial transmission of SARS-CoV-2: Supplement

Intervention: Regular HCW screening

All HCWs were tested for SARS-CoV-2 either with a) a test with perfect sensitivity every

three days, or a test with time-varying sensitivity, b) every three days, or c) every seven

days. If tested positive, HCWs were assumed to immediately self-isolate at home for

seven days.

Intervention: HCW contact tracing

If a HCW developed symptomatic SARS-CoV-2 infection, all contacts in the hospital

during a time window of either two or seven days before symptom onset were traced

and tested. We will refer to these scenarios as 2-day Contact tracing and 7-day contact

tracing. For 2-day contact tracing, contacts were always tested assuming a time-varying

test sensitivity. For 7-day contact tracing, we distinguished between perfect and time-

varying sensitivity sub-scenarios. In the perfect sensitivity sub-scenario, contacts were

instantaneously tested on the day of symptom onset of the index (the HCW). In the

time-varying test sensitivity sub-scenario, the test was performed on the day of symptom

onset if the contact with the index was more than őve days ago. Otherwise, it was

performed on day őve after the contact. Exposed HCWs awaiting tests were assumed to

wear PPE during contact with any patient and with other HCWs. In case of a positive

test, patients were moved to a COVID ward while infected HCWs were sent home for

self-isolation for seven days and replaced by susceptible HCW. We did not model any

absences of HCWs with disease symptoms caused by other respiratory pathogens.

Outcome measures

We calculated the effective reproduction number RE (average number of secondary cases

caused by an infected individual) to evaluate an intervention’s effectiveness in suppress-

ing outbreak expansion in the hospital. We approximated RE for an average individual

(patients and HCWs combined) in the hospital (overall RE) from our simulations by cal-

culating the average number of secondary cases by an infected individual in our model.

We further stratiőed this number by patients, HCWs, and symptom status. The reproduc-

tion numbers of patients were calculated for those who will eventually develop symptoms

(Rpat
S ) and those who will remain without symptoms (Rpat

A ). Since HCWs were assumed

to immediately self-isolate upon symptom onset, we calculated R during pre-symptomatic
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(Rhcw
S ) and asymptomatic states (hcw

A ) only. In order to evaluate the maximum demand

on the hospital capacity, we considered the total number of hospital-acquired infections

among patients and HCWs over time. In addition, we computed the proportion of absent

HCWs due to self-isolation (because of symptom onset or detection via screening or

contact tracing) over time. We assessed the efficiency of screening and contact tracing

interventions with respect to their positivity rates (proportion of detected infected individ-

uals among tested individuals). We did not include individuals that developed symptoms

prior to being tested in the positivity rate calculations since those were already detected

and isolated in our model. We determined the proportion of transmissions attributed to

different transmission routes (HCW-to-HCW, HCW-to-patient, patient-to-HCW). For

every scenario, we calculated the mean and 95% percentiles over 100 simulation runs

(95% uncertainty interval). We calculated positivity rates over time merging data from

all simulation runs and computed 95% Bayesian beta-binomial credibility intervals.

V. Implementation of the model

The model was built using Python (version 3.6) using the library Mesa which is an

open source agent-based modelling framework [39]. The code is available from: https:

//github.com/htahir2/covid_intra-hospital_model.git.

An overview of all processes in the implemented model is shown in Figure S4. The

individual processes are described below and in ŕowcharts in Figure S5-S12.

Initialization

The model is initialized with non-COVID patients admitted to normal ICU and normal

wards. We assume 50% of the rooms (beds) in the normal ICU and normal wards are

free at the moment of model initialization. There are three duty shifts in a day and in

these duty shifts, HCWs (nurses and doctors) are assigned to all wards in the hospitals.

We assume that the number of HCWs in the hospital remains constant throughout the

simulation period. Every patient agent has its own unique characteristics such as ID,

ward and room number, LoS, and disease state. Depending on the ward (normal ICU or

normal ward), every patient is assigned a LoS from the given distributions at the time of

admission (Table S1). HCWs also have unique characteristics such as ID, ward to which

HCW is assigned, duty shift in which HCW is working, HCW wearing PPE or not, time

being absent from work due to quarantine, and disease state. A patient or a HCW can
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only be in one of the following disease states at a particular moment: susceptible, exposed,

moderate symptomatic, severe symptomatic, asymptomatic, or recovered. However, at

the model initialization, all patients and HCWs are in susceptible state.

Study period

The simulation is run for 239 days in total, with an initial period of 59 days to get a

stable non-COVID patient population in the hospital. The őrst symptomatic COVID-19

patient is admitted to the hospital on day 60.

Scheduling

A time step in our agent-based model represents 10 minutes. The following processes

occur during the run time:

New patient arrival

Given an average daily patient arrival rate for the UMCU (Table S1), patients arrive at the

hospital following a Poisson process and are randomly admitted to normal ICU and normal

wards. The majority of these new daily patients are in a susceptible state but as mentioned

earlier in the section łImportation from community", we use a community-prevalence-

dependent, age-speciőc importation rate of exposed and asymptomatic patients into the

hospital. Therefore, some patients from the daily new patient arrivals come in an exposed

or asymptomatic state. Since the disease status of such patients is not known at the

time of admission, they are admitted to normal ICU or normal wards. Depending on

the patient ward (normal ICU or normal ward), the LOS is drawn from the appropriate

distributions (Table S1). The őrst symptomatic COVID-19 patient is admitted to the

hospital on day 60 (based on UMCU COVID-19 admission data). Known symptomatic

patients are admitted to either COVID wards or COVID ICUs depending on the severity of

their symptoms. Moderate symptomatic patients are admitted to COVID wards, whereas

severe symptomatic patients are admitted to COVID ICUs. For symptomatic COVID

patients admitted to the hospital, LOS of the individual patient is sampled directly from

the UMCU data.
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Patient discharge

The remaining LOS of every patient is decremented at every time step. When the LOS

of a patient reaches zero, the patient is discharged from the hospital. We do not model

patient deaths.

HCWs visiting patients

At each time step, HCWs (nurses and doctors) from every ward visit individual patients.

This is the moment where a contact between HCW and patient takes places. Single

HCWs visit one single patient in one time step. When a HCW and a patient meet in a

room and if one of them (patient or HCW) is infected with SARS-CoV-2, a transmission

event can take place. As explained earlier in the section łTransmission", a Bernoulli trial

using the average probability of transmission per contact with a susceptible person is

carried out. If a trial is successful, a susceptible individual acquires infection. The pa-

tient may be in an exposed state and develop symptoms after an incubation period or

be asymptomatically infected. All exposed individuals in the model follow symptomatic

route whereas asymptomatic individuals follow asymptomatic route. To decide on this

for a patient, a random number is drawn and if it is less than the speciőed proportion

of asymptomatic patients (P pA), the patient state is changed to asymptomatic, other-

wise exposed. Similarly, for a HCW if the random number is smaller than the speciőed

proportion of asymptomatic HCWs (P hA), the HCW’s state is changed to asymptomatic,

otherwise the state of the susceptible HCW is changed to exposed. Infectiousness from

symptomatic or asymptomatic individuals over time is different as explained earlier in

the section łInfectiousnessž. For exposed patients and HCWs, an incubation period tinc is

drawn from the Gamma distribution (s(τ)) with a mean of 5.5 days.

Exposed to infection

For every individual in an exposed state, the incubation period is then decremented by 1

at every time step. When the incubation time of an exposed individual (patient or HCW)

reaches zero, the individual is either moved to moderate or severe symptomatic state

depending on the proportion of individuals developing severe symptoms (Ps).

For patients who develop severe symptoms, a sample is drawn from the LoS of severely

infected patients (based on UMCU data) and the LoS of the respected patient is extended
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accordingly. If the drawn LoS is shorter than the original one, the original LoS remains

unchanged. The LoS of moderately infected patients is not extended. This is based on the

assumption that those patients do not require intensive care and they are sent home for

isolation. Severely infected patients are then moved to one of the COVID-ICUs, whereas

moderately infected patients are moved to any of the COVID wards.

A HCW who develops symptoms is sent home for an isolation period of seven days, and

a susceptible HCW is added in the same ward and shift as a replacement.

Infection to recovery

Moderately or severely infected patients are assumed to recover either at the time of

discharge or after a maximum period of 14 days or 35 days, respectively. Asymptomatically

infected patients recover at the time of discharge or after maximum period of 14 days.

Moderately or severely infected HCWs return to work as recovered after the end of the

isolation period of seven days. When a recovered HCW returns to work to a speciőc

ward, a HCW is removed from that ward as we assume a constant HCW population. To

do that, we őrst look in the list of susceptible HCWs in the same ward and duty shift.

If that list is not empty, a susceptible HCW is randomly chosen and removed from the

hospital HCWs population. If there is no susceptible HCWs in that ward and duty shift,

we look further into the list of exposed and asymptomatic HCWs in the same ward and

duty shift. If that list is not empty, then a randomly chosen exposed or asymptomatic

HCW is removed from the hospital population. If this is also not successful, we randomly

choose a recovered HCW from the same ward and duty shift and remove him from the

hospital population. These steps are required to maintain a constant HCW population.

HCWs meeting in the common areas

Every hour, two HCWs meet in the common areas of every ward. For this, we randomly

pick two HCWs from the list of HCWs working in a ward in a shift. If one of the randomly

chosen HCW is exposed or asymptomatic and the other HCW is susceptible, a transmis-

sion event can take place. As explained earlier in the section łHCWs visiting patients", a

Bernoulli trial using the average probability of transmission per contact with a susceptible

person is carried out. If the trial is successful, the susceptible HCW acquires infection

and can either enter into an exposed state or an asymptomatic state. Next, a random

number is drawn, and if smaller than the speciőed proportion of asymptomatic HCWs
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(P hA), the HCW state is changed to asymptomatic, otherwise the state of the HCW is

changed to exposed. For an exposed HCW, an incubation period tinc is drawn from the

Gamma distribution (s(τ)) with a mean of 5.5 days.

HCWs ward swap

Before the start of each day, a certain proportion of HCWs (Wh) are randomly selected

and their wards are changed (Table S1). In order to do that, we őrst loop over the list

of active HCWs (the ones that are not isolated at home). Since we change wards of two

HCW at the same time (ward swapping), we draw a random number for every HCW.

If the random number is less than Wh/2, we select that speciőc HCW (HCW-A) to be

moved to another ward. The next step is to őnd another HCW (HCW-B) in a ward

different from the ward of HCW-A. For this, we again make a list of all the active nurses

(if HCW-A was a nurse) or active doctors (if HCW-A was a doctor), and then randomly

pick a HCW (HCW-B). Once we have selected both HCW-A and HCW-B, we can now

swap the wards, duty shifts and PPE of the both HCWs. We repeat the above process

for all active HCWs.
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Table S1: Model parameters

Name Symbol Description Distribution/Value*Source

Incubation period s(τ) Time between infec-

tion and symptom

onset

Gamma distribution

shape=5.807

scale = 0.948

mean = 5.510

SD = 2.284

Lauer and

colleagues5

Generation time ω(τ) Time between be-

coming infected and

subsequent onward

transmission events

Weibull distribution

shape = 2.826

scale = 6.839

mean = 6 days

Grassly and

colleagues

[14]

Proportion of

asymptomatic

infections among

infected patients

P pA Proportion of in-

fected patients that

will experience no

symptoms

20% Buitraga-

Garcia and

colleagues

[19]

Proportion of

asymptomatic

infections among

infected HCWs

P hA Proportion of in-

fected HCWs that

will experience no

symptoms

31% Buitraga-

Garcia and

colleagues

[19]

Proportion of se-

vere symptomatic

individuals

PS Proportion of ex-

posed individuals that

will develop severe

symptoms

20% Wu and col-

leagues [27]

Reproduction

number of asymp-

tomatic infectees

for wild-type variant

RWA Mean number of

infections caused by

an individual asymp-

tomatically infected

with the wild-type

SARS-CoV-2 variant

0.5 Calibrated to

UMCU data
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Reproduction num-

ber of symptomatic

infectees for wild-

type variant

RA Mean number of

infections caused by

an individual symp-

tomatically infected

with the wild-type

SARS-CoV-2 variant

1.25 Calibrated to

UMCU data

Reproduction

number of asymp-

tomatic infectees

for new virus

variant

Mean number of

infections caused

by an individual

asymptomatically

infected with the

SARS-CoV-2 variant

0.8 (1.95) Based on

with 56%

higher trans-

missibility,

varied in

sensitivity

analysis

Reproduction num-

ber of symptomatic

infectees for new

virus variant

RS Mean number of

infections caused

by an individual

symptomatically

infected with the

SARS-CoV-2 variant

1.95 Based on

with 56%

higher trans-

missibility

Peak sensitivity of

RT-PCR test for

SARS-CoV-2

Maximum sensitivity

of the RT-PCR diag-

nostic test for SARS-

CoV-2

93.1% (79%) Grassly and

colleagues

[14], varied

in sensitivity

analyses

Proportion of

HCWs that work

in the same ward

as during their

previous shift

Wh Proportion of HCWs

that change wards

they were working in

their previous shift

95% (baseline)

100% (intervention)
Assumed
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PPE effectiveness Reduction in infec-

tiousness upon con-

tact between an in-

fected and suscep-

tible individual (in-

cludes PPE efficacy

and adherence)

90% (50%, 70%) Assumed

Isolation period for

HCWs

Amount of time

HCWs have to iso-

late after symptom

onset or after being

detected by screening

or contact tracing

7 days Assumed

Recovery time

for asymptomatic

infection

γA Mean duration of an

asymptomatic infec-

tion

14 days

Sensitivity analysis:

Uniform(9,19)

Assumed

Recovery time for

symptomatic (mod-

erate, severe) infec-

tion

γS Mean duration of

a symptomatic

infection

14 days (moderate)

35 days (severe)

Sensitivity analysis:

Uniform(9,19)

Uniform(30,40)

Liu and col-

leagues [16]

LoS of non-COVID

patients in ICU

Lognormal

meanlog = 0.37

sdlog = 0.82

mean = 1.45 days

sd = 2.27

Fitted dis-

tributions

to UMCU

data from

2014-2017
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LoS of non-COVID

patients in normal

ward

Weibull

shape = 0.92

scale = 4.18

mean = 4.35 days

Fitted dis-

tributions

to UMCU

data from

2014-2017

LoS of moderately

infected patients

Gamma

shape = 1.88

rate = 0.25

mean = 31.8 days

sd = 30.08

Fitted dis-

tributions to

UMCU data

from 2020

LoS of severely in-

fected patients

Gamma

shape = 1.59

rate = 0.05

mean = 7.52 days

sd = 636

Fitted dis-

tributions to

UMCU data

from 2020

Patient-nurse ratio

1:1 (COVID ICU),

2:1 (COVID ward),

1:1 (Normal ICU),

4:1 (Regular ward)

Assumed

Patient-doctor ra-

tio

6:1 (COVID ICU,

COVID ward,

Normal ICU),

10:1 (Regular ward)

Assumed

Frequency of

HCWs visiting

patients (ward

dependent)

Min 10 minutes,

Max 30 minutes

Duty shifts of

HCWs per day

3 shifts
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Rounds per shift
Nurses: 6

Doctors: 2

Contact rates (per

shift)

cn,n Average number of

contacts between

nurses

4·6 From simula-

tion

cn,p Average number of

contacts that a nurse

has with patients

19·07

cn,d Average number of

contacts that a nurse

has with doctors

3

cp,n Average number of

contacts that a pa-

tient has with nurses

cp,d Average number of

contacts that a pa-

tient has with doctors

2

cd,d Average number of

contacts between

doctors

0·43

cd,p Average number of

contacts a doctor has

with patients

17·4

cd,n Average number of

contacts a doctor has

with nurses

3

Daily arrival rate

of non-COVID pa-

tients

Number of patients

that arrive at the hos-

pital per day for non-

COVID related rea-

sons

40 patients per day Based on

UMCU

data from

2014-2017

assuming

50% decrease

during study

period
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HCW population Constant number of

HCWs working in the

hospital per day

870
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Figure S1: Number of patients admitted to UMCU with a SARS-CoV-2 infection
between 27 February and 2 August 2020. Patients were either admitted to an ICU or
to another ward in the hospital.
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Figure S2: Length of stay data of UMCU and fitted distributions for non-COVID
and COVID patients in the hospital. (A)-(B) Histograms show the length of stay dis-
tributions for patients admitted to the UMCU between 2014 and 2017. The bold lines
represent the őtted probability distributions. The length of stay of patients admitted for
non-COVID reasons to the ICUs and to normal wards follow a lognormal distribution
and Weibull distribution, respectively. (C)-(D) Histograms show the length of stay dis-
tributions for patients admitted with a SARS-CoV-2 infection to the UMCU between 27
February and 24 August 2020. The bold lines represent the őtted probability distributions.
The length of stay of patients admitted with a SARS-CoV-2 infection to ICUs and to
normal wards follow gamma distributions. The parameters of the probability distributions
can be found in Table S1.
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Figure S3: PCR test sensitivity over time since infection. The empirical estimate
based on published data as reported by Grassly and colleagues is shown (black dots)
Two sensitivity analyses were performed: 1) assuming the test sensitivity remains at the
maximum after reaching its peak (dark grey dashed) and 2) test sensitivity curve of the
main analysis scaled down to 85% (light grey dotted).
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time step = 10 min

HCW ward change

HCWs visiting
patients 

Transition of
disease states

Patient arrival
(Poisson process)

Patient discharge

HCW community
transmission

HCWs meeting in
common room

   PROCESS OVERVIEW

time step = 1 day

time step = 1 hour

time step = 10 min

\

Contact tracing

Screening

time step = 3 or 7 days

HCWs wear 
PPE

Figure S4: Overview of processes in the agent-based model. The dashed boxes indi-
cate processes that are only performed for the respective intervention scenario. The time
indicates when the process is called (e.g., every 10 min). The smallest time step in the
model is 10 minutes.

364



Controlling nosocomial transmission of SARS-CoV-2: Supplement

Identified as 
COVID-19 
patient on

admission?

Admit patients to
non-COVID-19
wards and ICUs

Admit patients to
COVID-19 wards

Severe 
SARS-CoV-2

infection?

Yes

No

Admit to normal
COVID-19 ward

Admit to COVID-19
ICU

Infected with 
SARS-CoV-2 but

not identified?

Draw infection time

Yes

Yes

PATIENT ARRIVAL

No

PATIENT DISCHARGE

Time to 
discharge of 

patient?

Remove patient
from the agent list

and clear all its
attributes

Yes

Assign length of
stay

Assign length of
stayDraw infection time

Draw infection time

Draw length of stay

Draw length of stayNo

Patient in pre-
symptomatic phase.

Draw incubation
period

Patient 
following

symptomatic
route?

Yes

Patient is
asymptomatic

No

time step = 10 min

time step = 10 min

Figure S5: Flowchart for patient arrival and patient discharge in the agent-based
model. The time indicates that the process is called every 10 minutes. Note that the
smallest time step in the model is 10 minutes.
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  HCW COMMUNITY TRANSMISSION

Loop over all HCWs

HCW susceptible?

Succesful 
exposure from
community?

Go to next HCW

Go to next HCW

No

No

Yes

Symptomatic 
infection?

Yes

HCW asymptomatic

HCW in pre-
symptomatic phase

Draw incubation
period

Yes

No

time step = 1 day

Figure S6: Flowchart for HCW community transmission in the agent-based model.
The time indicates that this process is called once a day. Note that the smallest time
step in the model is 10 minutes.
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HCW WARD CHANGE

Randomly pick
HCW (HCW-A) from

the hospital

HCW is a doctor?

Yes

Contact traced
HCW continue to
wear PPE in the

next ward

Swap wards and
duty shifts of 

HCW-A and HCW-B

No

Yes

Randomly select another
doctor (HCW-B) whose

ward is different from ward
of HCW-A

Randomly select another
nurse (HCW-B) whose

ward is different from ward
of HCW-A

No

HCW-A 
or HCW-B 

asked to wear 
PPE due

 to contact
tracing?

HCW-A 
or HCW-B 
working in a
COVID-19 

ward?

Is HCW-A 
or HCW-B wearing

PPE?

Swap PPE of 
HCW-A and HCW-B

No

Yes

Yes

The 
other HCW is

going to move to
COVID-19

ward?

The other HCW also
wears PPE because

of moving to
COVID-19 ward

Yes

No

No

time step = 1 day

Figure S7: Flowchart for HCW ward change in the agent-based model. The time
indicates that this process is called once a day. Note that the smallest time step in the
model is 10 minutes.
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HCWs MEETING IN COMMON ROOM

Two HCWs
randomly selected
to meet each other

from evert ward

One of 
the HCW is
infected?
(not both)

Does HCW 
wear PPE?

Yes

Yes

Draw incubation
period

Store infection time

Successful
exposure?

Individual remains
susceptible

Yes

HCWs only wear PPE in the common room if they
were in contact with another symptomatic HCW
(PPE is worn until testing moment).

Bernoulli trial based
on transmission
prob. incl. PPE

reduction.

Bernoulli trial based
on transmission
prob. excl. PPE

reduction

Symptomatic
infection?

Yes

Individual is
asymptomatic

No

Individual in pre-
symptomatic phase

Yes

No

No

time step = 1 hour

Figure S8: Flowchart for HCWs meeting in common room in the agent-based model.
The time indicates that this process is called every hour. Note that the smallest time
step in the model is 10 minutes.
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TRANSITION OF DISEASE STATES

Individual is
in exposed 

state?

Exposed to Infected state Infected to recovered state

Incubation
time

over?

Individual is
a HCW?

Severe or 
moderate 
infection?

HCW sent to
quarantine

Replacement HCW
added

Severe or
moderate
infection?

Patient length of
stay increased

Patient state is
changed to severe

Patient state is
changed to
moderate

Yes

Yes

Yes

Severe

No

Replacement
HCW was
added?

HCW state is
changed to severe

HCW state is
changed to
moderate

Moderate

Moderate

Severe

Individual in
symptomatic or
asymptomatic

state?

Individual is
a HCW?

HCW 
quarantine

over?

Yes

HCW state is
changed to
recovered

HCW is a doctor?
Randomly pick a
nurse from the

same ward and shift

Remove the
randomly selected

doctor or nurse from
the agent list

Yes

Yes

Yes

Yes

No

Patient Severe?

Infection
duration > severe

recovery
period?

Infection
duration > moderate

recovery period?

Patient state is
changed to
recovered

No

No
Yes

Patient moved to
COVID-19 ward

Patient moved to
COVID-19 ICU

Randomly pick a
doctor from the

same ward and shift

time step = 10 min

Figure S9: Flowchart for transition of disease states in agent-based model. The time
indicates that this process is called every 10 minutes. Note that the smallest time step
in the model is 10 minutes.
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HCWs VISITING PATIENTS

HCW visiting a
patient in a room

HCW or 
patient infected 

(not both)?

Does HCW 
wear PPE?

Yes

Yes

Draw incubation
period

Store infection time

Successful
exposure?

Individual remains
susceptible

Yes

HCW can wear PPE due to the following reasons:

1. HCW is working in a COVID-19 ward.
2. HCW was in contact with another symptomatic HCW

(PPE is worn until testing moment).
3. HCW is visiting a patient who was isolated due to

contact with another symptomatic HCW (PPE is
worn until testing moment of isolated patient). 

Bernoulli trial based
on transmission
prob. incl. PPE

reduction.

Bernoulli trial based
on transmission
prob. excl. PPE

reduction

Symptomatic
infection?

Yes

Individual is
asymptomatic

No

Individual in pre-
symptomatic phase

Yes

No

time step = 10 min

Figure S10: Flowchart for HCWs visiting patients in the agent-based model. The
time indicates that this process is called every 10 minutes. Note that the smallest time
step in the model is 10 minutes.
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Screening

Test all HCWs at the
screening moment

Given 
PCR 

test sensitivity, 
HCW detected

positive?

Yes

Send HCW to
quarantine

The following screening moments are considered:
1. every 3 days
2. every 7 days

This intervention is applied with perfect test sensitivity
as well as with time-varying test sensitivity.

Add replacement
HCW

Figure S11: Flowchart for contact tracing in the agent-based model.
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Contact Tracing

Trace contacts of a
symptomatic index

HCW

Time 
of contact is older

than 5 days?

Contact is a
HCW?

Yes

Yes

Remove PPE
restriction on HCW

Yes

The following scenarios are considered for this intervention:
1. Contacts of the last 2 days are traced
2. Contacts of the last 7 days are traced

This intervention is applied with perfect test sensitivity as well as
with time-varying test sensitivity.

Given 
PCR 

test sensitivity, 
HCW detected

positive?

Send HCW to
quarantine

Add replacement HCW

Contact is a
HCW?

HCW wears PPE in
the hospital until
testing moment 

(day 5)

Patient is put on
contact isolation

until testing moment
(day 5)

Given 
PCR 

test sensitivity, 
patient detected

positive?

Remove contact
isolation and move

patient to a 
COVID-19 ward

Remove contact
isolation for patient

Yes

No

No No

No

Yes

No

Figure S12: Flowchart for HCW screening in the agent-based model.
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Additional File 2: Supplementary results

I. Results on transmission routes

Our results show that for the considered simulation scenarios most of the nosocomial

transmissions of the SARS-CoV-2 variant is mainly driven by transmissions between pa-

tients and HCWs (Figure S4). This is expected as we assumed that there is no direct

contact between patients and the majority of contacts of HCWs are with patients. Fur-

thermore, for most of the intervention scenarios, over 90% of transmissions occur in

non-COVID wards where no use of PPE is assumed in the baseline scenario (Figure S6).

Since in our model infected patients are transferred to COVID wards and infected HCWs

are assumed to self-isolate immediately upon symptom onset, most transmissions take

place during the pre-symptomatic stage of an infected individual (dark-grey bars in Figure

S7). This is in line with a French study where secondary cases were exposed mainly in the

pre-symptomatic phase [40]. When PPE is used throughout the hospital or HCWs are

screened assuming a perfect test sensitivity, most transmissions are prevented (Figure 5

of the main text). In particular, transmissions that occur during non-symptomatic states

in non-COVID wards are signiőcantly reduced, decreasing their contribution to the overall

number of transmissions (Figure S6-Figure S7).

II. Results of sensitivity analyses

We evaluate the changes of our results with respect to changes in our model parameters.

The őgures for the sensitivity analyses can be found online in our publication [41] and in

https://github.com/htahir2/covid_intra-hospital_model.git

PPE effectiveness

We performed two sensitivity analyses to test the impact of PPE effectiveness values on

our results:

a) 50% effective PPE

b) 70% effective PPE
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Our sensitivity analyses show that the effective reproduction numbers and the total num-

ber of nosocomial transmissions increase with lower PPE effectiveness and decrease with

higher PPE effectiveness, in particular for the łPPE in all wardsž intervention scenario

(compare Figure S8-S7, Figures S11-S12, and Figures 4-5 of the main text). A similar

effect can be observed for the daily percentage of HCW absenteeism (compare Figure

S10, Figure S13, and Figure 6 of the main text). The relative impact of the different

interventions on the reproduction number in comparison to the baseline scenario are sim-

ilar to what we have observed in our main analysis. The only difference is that for a

low value of PPE effectives of 50%, screening every three days with time-invariant per-

fect sensitivity is more effective in reducing the effective reproduction number, especially

for pre-symptomatic HCWs. However, the use of 50% effective PPE in all wards still

decreases the effective reproduction number more than the remaining interventions.

Reproduction number

We performed a sensitivity analysis to test the impact of equal reproduction numbers of

symptomatically and asymptomatically infected individuals on our results (Figure S14-

S16). Furthermore, we show the model results for the reproduction numbers resulting

from calibrating our model to data on the number of occupied beds by COVID-19 pa-

tients at the UMCU (Figure S17-S19). Our sensitivity analyses show that the effective

reproduction numbers, the total number of nosocomial transmissions as well as the daily

percentage of HCW absenteeism increase with increasing basic reproduction number. In

particular, when the reproduction number of asymptomatically infected individuals is as

high as the one of symptomatically infected individuals, the respective effective reproduc-

tion numbers for asymptomatic patients and HCWs increase. The impact on the overall

effective reproduction number is smaller, however, still notable. Qualitatively, our conclu-

sions regarding the relative effect of the considered infection control interventions remain

unchanged. For low reproduction numbers as it was the case for the nosocomial spread of

the wild-type SARS-CoV-2 variant at UMCU, the numbers of nosocomial transmissions

are very small and hence the relative impact of the intervention scenarios in compari-

son to each other and to the baseline scenario is smaller than for higher reproduction

numbers. However, the qualitative conclusions remain unchanged.
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Increased HCW-to-HCW contact rate

In our main analysis, we assume that HCWs meet other HCWs once every hour. In this

sensitivity analysis, we relax this assumption by increasing the contact rates between

HCWs to once every 30 minutes and evaluate the impact on our results (Figure S20-

S22). The effective reproduction numbers, the total number of nosocomial transmissions,

and the daily percentage of HCW absenteeism increase when the contact rate between

HCWs is increased. In particular, the effective reproduction numbers for HCWs increase

but not those for symptomatic patients (Figure S20). Qualitatively, our conclusions with

respect to the impact of the interventions on the hospital epidemic do not change with

respect to this parameter.

Test sensitivity

We performed two sensitivity analyses:

a) assuming the test sensitivity to remain at the maximum after reaching its peak

(high test sensitivity scenario) and

b) reducing the test sensitivity curve of the main analysis by 15% (low test sensitivity

scenario).

The respective test sensitivity curves varying from time since infection are shown in

Additional File 1: Figure S1. There are only minor differences in our results for both

sensitivity scenarios (Figure S23-S25 vs Figures 4-6 of the main text).

Recovery time

To test the impact of the recovery time of infected individuals (i.e., the time after which

infected individuals are set to non-infectious and recovered in the model), we performed

the simulations with a stochastic (instead of őxed) implementation of the recovery times.

For this sensitivity analysis we assumed the following uniform distributions for the recovery

times:

• Unif(9,19) for asymptomatic and moderately symptomatically infected individuals

• Unif(30,40) for severely symptomatically infected individuals.
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The parameters in brackets represent the time since infection and serve as lower and

upper bounds in the uniform distribution. Qualitatively, our results do not change with

respect to this parameter (Figure S29-S31).
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Figure S1: Positivity rate of screening interventions for different prevalence ranges.
Results shown are based on RS = 1.95 and RA = 0.8 (reproduction numbers for the
SARS-CoV-2 variant with 56% higher transmissibility with respect to the wild-type SARS-
CoV-2 variant). (A) Screening every three days with constant perfect test sensitivity. (B)
Screening every three days with imperfect, time-varying test sensitivity. (C) Screening
every seven days with imperfect, time-varying test sensitivity. On each day when HCWs
were screened, the number of positive tested HCWs among the total number of screened
HCWs is computed. The prevalence values on the day when HCWs were screened is
divided into categories. For each prevalence category, the positivity rate was computed
by the total number of positive tested HCWs divided by the total number of screened
HCWs (merging values of all simulations) and is shown as a point. The error bars represent
the 95% binomial proportion conődence intervals.
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Figure S2: Positivity rate of contact tracing interventions for different prevalence
ranges. Results shown are based on RS = 1.95 and RA = 0.8 (reproduction numbers for
the SARS-CoV-2 variant with 56% higher transmissibility with respect to the wild-type
SARS-CoV-2 variant). (A) Contact tracing of contacts two days prior to symptom onset
with perfect test sensitivity. (B) Contact tracing of contacts two days prior to symptom
onset with time-varying imperfect test sensitivity. (C) Contact tracing of contacts seven
days prior to symptom onset with time-varying, imperfect test sensitivity. For each index
case (symptomatically infected HCW), the number of positive contacts and total number
of contacts that are traced is computed in each simulation. The prevalence values on
the day when an index case was traced, is divided into categories. For each prevalence
category, the positivity rate is computed by the total number of positive divided by the
total number of traced contacts (all simulations merged) and is shown as a point. The
error bars represent the binomial proportion conődence interval.
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7−day contact tracing

2−day contact tracing
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Figure S3: Proportion of detected nosocomial transmissions of the SARS-CoV-2
variant for each simulation scenario. Results shown are based on RS = 1.95 and
RA = 0.8 (reproduction numbers for the SARS-CoV-2 variant with 56% higher transmis-
sibility with respect to the wild-type SARS-CoV-2 variant). The colored rectangular bars
with black borders represent the mean proportion of patients detected with a SARS-CoV-
2 infection in the hospital due to symptom onset or detection by an intervention (over
100 simulation runs). The denominator are patients either admitted with a SARS-CoV-2
infection (asymptomatic or pre-symptomatic) or acquired it in the hospital. The propor-
tions of infected patients undetected comprise patients who are discharged to community
in a pre-symptomatic or asymptomatic state. The grey error bars the respective 95% un-
certainty intervals.
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Figure S4: Transmission route contributions for nosocomial transmissions of the
SARS-CoV-2 variant for each simulation scenario. Three different transmission routes
are considered: From patient to HCW (Patient-HCW), from HCW to patient (HCW-
patient), and from HCW to HCW (HCW-HCW). The colored rectangular bars represent
the mean percentage of transmissions (averaged over 100 simulations) due to the re-
spective transmission route for each simulation scenario. The grey error bars represent
the respective 95% uncertainty intervals. For screening every 3 days and 7-day contact
tracing, we considered two different test sensitivity scenarios: time-invariant perfect test
sensitivity (perfect sens) and time-varying imperfect test sensitivity.
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Figure S5: Proportion of transmissions from HCWs and from patients for each sim-
ulation scenarios. Mean percentage of total transmissions (averaged over 100 simulation
runs) that occurred from HCWs vs from patients are shown in stacked bar plots. Results
shown are based on RS = 1.95 and RA = 0.8 (reproduction numbers for the SARS-CoV-
2 variant with 56% higher transmissibility with respect to the wild-type SARS-CoV-2
variant).
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Figure S6: Proportion of nosocomial transmissions in COVID- and non-COVID
wards for each simulation scenario. The mean percentages of nosocomial transmissions
(averaged over 100 simulation runs) in COVID and non-COVID wards are shown in
stacked bar plots. Results shown are based on RS = 1.95 and RA = 0.8 (reproduction
numbers for the SARS-CoV-2 variant with 56% higher transmissibility with respect to
the wild-type SARS-CoV-2 variant).
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Figure S7: Proportion of transmissions during different infection states for each
simulation scenario. The mean percentages of transmissions (averaged over 100 sim-
ulations) that occurred while the infected individual was in an asymptomatic, pre-
symptomatic, or symptomatic state are shown in stacked bar plots. Results shown are
based on RS = 1.95 and RA = 0.8 (reproduction numbers for the SARS-CoV-2 variant
with 56% higher transmissibility with respect to the wild-type SARS-CoV-2 variant).
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Discussion

In this thesis, we demonstrated how mathematical modeling can be a versatile and pow-

erful tool to improve our understanding about the dynamics of infectious diseases as well

as to explore a variety of methods to effectively control them. What follows is a sum-

mary of our most important őndings, a brief discussion on what can be concluded, and

suggestions for future research.

Coupling health-related preventive behavior and epidemic

spread

The spread of an infectious disease depends not only on the biological characteristics of

the pathogen, but also on the environment, and the behavior of the host population [1,

2]. In the absence of pharmaceutical interventions, the focus of public health response

strategies aiming at containing the spread of an infectious disease lies on changing the

behavioral patterns in a population. Understanding to which extent preventive behavior

can inŕuence infectious disease spread is, therefore, vital for informing public health

policies. In Chapter 1 and 2 of this thesis, we presented two different approaches for

modeling the impact of human preventive health behavior on the epidemic spread of

infectious diseases. Both studies showed that 1) changes in health-related behavior

during an epidemic can have important implications for infection control policies, 2) the

effect of interventions may depend on the precise implementation and thus should be

tailored for the situation at hand, and 3) reliable data on behavioral habits and changes

of humans are generally scarce.

Changes in behavioral patterns in a population may be either imposed by the government

or voluntarily undertaken as a reaction to an ongoing epidemic. In Chapter 1 [3], we

compared the impact of these two approaches on the epidemic spread of SARS-CoV-2

in the general population. Additionally to different disease status, we explicitly included

disease awareness and the subsequent voluntary uptake of preventive measures in the

model, and coupled this behavioral response to disease prevalence. Our results highlight

the vital role of disseminating evidence-based information about effective personal

protective measures against SARS-CoV-2 transmission. Voluntary adoption of the latter

as a reaction to high disease prevalence may be an effective strategy to mitigate and

delay the COVID-19 epidemic, in particular in situations where government-imposed
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measures are not accepted in the society or have to be avoided due to large societal and

economic consequences. Furthermore, the rate at which these self-imposed measures are

adopted determines whether a large epidemic could even be prevented rather than merely

mitigated or delayed. Although previous work has emphasized that ignoring dynamic

contact networks can lead to different predictions of the dynamics of disease spread

and may have implications for assessing the success of infection control measures [4ś8],

the framework of behavioral change is incorporated in only few models for COVID-19,

in particular in the beginning of the pandemic. Generally, (contact) behavior may be

incorporated łexogenously" as a model parameter, or łendogenously" as a model variable

[8]. In the őrst case, conducting longitudinal contact surveys and creating observed social

contact matrices, as it has been done, e.g., in the CoMix study initially for the UK [9]

and later extended to other European countries [10], are useful to inform mathematical

models for infectious disease transmission without an explicit explanation of the behavior

change. In the second case, the feedback loop between behavior itself and the disease

dynamics are explicitly modelled in a mechanistic manner. Our study contributes to

the endogenous representation of behavior change for COVID-19 transmission models.

It serves as a theoretical motivation for increasing disease awareness as a measure

of controlling the COVID-19 epidemic. Behavioral studies such as large-scale surveys

on behavioral measures conducted by the RIVM, the Netherlands Municipal Public

Health Services and Medical Assistance in Accidents and Disasters (GGD-GHOR) and

the regional public health services (GGDs) [11], tracking the compliance to preventive

measures such as quarantine and isolation, or staying 1.5 m apart as well as the change

of behavioral patterns during an epidemic are insightful for assessing their impact. Due

to the qualitative nature of such studies, direct translation of these results to inform

model parameters for reactive behavioral responses during an ongoing epidemic requires

careful consideration of the context and their generalizability remains challenging [12].

More research is needed to test crucial assumptions in behavior-disease models. For

example, quantifying how disease awareness grows and wanes over time, the role of

media on behavioral responses, and the actual interdependence on the epidemic itself

would provide additional understanding on which model assumptions need reőnement.

Behavioral data obtained from digital media such as Twitter, Facebook, mobile phones,

and search engines may be promising łnew" sources that can be incorporated in

disease-behavior models [8]. In particular, risk perception and corresponding change of
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behavior may not be directly linked to disease prevalence but to media coverage of the

epidemic [13]. However, approaches on how to overcome related challenges such as

under-representation of certain age or socioeconomic groups [12], or search behavior

triggered by widespread media coverage [14] remain an important őeld for future research.

The impact of self-imposed measures on disease spread crucially depends on their effec-

tiveness. In Chapter 1, we quantiőed the threshold of efficacy necessary for self-imposed

measures to be effective in preventing a large epidemic. Since our model was developed

in the early stage of the pandemic when reliable data on the effectiveness of speciőc

preventive measures were scarce, we explored the full range of efficacy values for all

self-imposed measures. Meanwhile, evidence suggests a dominant role of aerosols in the

spread of SARS-CoV-2 while contaminated surfaces rarely contributed to transmission

[15ś17]. In light of this new information, efficacy values for hand washing are likely to

be at the lower end whereas the efficacy of face masks and their ability to interrupt

SARS-CoV-2 transmission might be higher. However, high uncertainty around the true

efficacy values of personal protective measures remain. In fact, the protective effect of

self-imposed measures may depend not only on the efficacy of the method itself but also

on how it is applied by the user. In Chapter 2 [18] of this thesis, we explored how hand

hygiene behavior may be optimized to effectively reduce disease transmission. While the

presented model was motivated by the COVID-19 pandemic, and key results were pre-

sented at SAGE to inform the policy response in the United Kingdom, the work has far

wider relevance to the control of respiratory tract infections. We emphasized this broad

relevance in the paper. Based on our results, providing hand sanitisers at places with a

high risk of hand contamination (e.g., supermarkets, public transport, or work places)

would greatly reduce infection risks, in particular for viruses that remain viable on hands

for a long time. Thus, recommendations on hand hygiene measures should be tailored

to the relevant context. This work may also serve as an impetus to test these hypothe-

ses in empirical or experimental investigations such as clinical trials. Such empirical data

may be useful for model őtting and estimation of parameters for which we had to make

simplifying assumptions. For example, data on the rate of hand contamination events

would decrease the uncertainty in our model assumptions and the need for extensive sen-

sitivity analyses. The precise impact of personal protective measures, thus, depends on

their implementation. It is determined by the rate at which the measures are adopted (as
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shown in Chapter 1 of this thesis) and, for hand washing, by the frequency and moment

at which it is applied, and the duration of persistence of the pathogen on hands.

Mathematical modeling and statistical inference of transmis-

sion routes

Understanding and quantifying the dynamics of nosocomial transmission is crucial

for identifying and devising effective infection prevention and control measures.

Mathematical modeling allows translating biological and clinical knowledge about the

routes of transmission into a mathematical framework in which quantitative analyses can

be performed using available data. These analyses can be useful to estimate transmission

parameters and infer the relative contributions of the different transmission routes.

For P. aeruginosa, a signiőcant role of environmental contamination in the transmission

process has been suggested in several observational and experimental case studies

[19ś23]. However, the transmission dynamics of P. aeruginosa have not been modeled

and the relative importance of environmental contamination to nosocomial transmission

has not been quantiőed. In Chapter 3 and 4 of this thesis, we presented the őrst attempt

to retrospectively estimate the role of environmental contamination for two different

settings of P. aeruginosa transmission. While for both chapters we used the same

Bayesian MCMC estimation method to infer transmission parameters and the relative

contributions of the respective transmission routes, we investigated different aspects

of environmental contamination in each study. In Chapter 3 [24], we explicitly model

environmental contamination as a contribution of bacterial load to a general pool in the

environment remaining after the discharge of patients. Using an extensive data set of

P. aeruginosa surveillance from two ICUs of a French University hospital in Besançon

over a time period of 17 years, we estimated that environmental contamination after

the discharge of patients played only a minor role when compared to background

and cross-transmission. Cross-transmission contributed to approximately half of the

transmissions in these French ICUs (with background transmission making up the other

half). In contrast, cross-transmission was only of minor importance in the two wards of

the adult ICU of the Erasmus Medical Center in Rotterdam (as presented in Chapter 4).

By exclusion, we concluded that persistent contamination from the environment was the

392



Discussion

predominant route of transmission. In comparison with Chapter 3, we did not explicitly

incorporate environmental contamination into the transmission model but inferred its

contribution by exclusion. Thus, we demonstrated two different approaches on modeling

environmental contamination as a route of nosocomial transmission of P. aeruginosa in

ICUs and showed that the quantitative results for the relative importance of transmission

routes depends on the speciőc setting. These settings need to be considered when

conclusions for infection control are drawn.

While our transmission models were based on relatively simple compartmental stochastic

models, more details such as hospital-speciőc interventions, contact patterns, hetero-

geneity in patient characteristics such as their demographics, and disease history could

be included when using an agent-based modeling approach. In the absence of reliable

data, the results of such detailed models strongly depend on the model assumptions and

may not reŕect realistic patterns. Detailed data on observed healthcare worker-patient

contacts collected, e.g., via remote-based sensor networks, or on patient transfers within

and between healthcare settings have been integrated in transmission models over re-

cent years [25] and could help parameterize more complex models [25, 26]. However,

the inclusion of such information would increase computational costs. Using Bayesian

MCMC estimation methods, we inferred the relative contribution of transmission routes

of P. aeruginosa based on statistical patterns in the prevalence over time. For such a

method, we need longitudinal data over long time periods for the results to be informa-

tive but we can forego knowledge about individual transmission pathways. When exact

transmission pathways (who-infected-whom) are of interest, routine data on genotyping,

as increasingly collected in high income settings, will be highly valuable in linking trans-

mission events, improving estimates, and reducing uncertainty bounds for transmission

parameters [27, 28]. In lower income settings, these types of data and modeling studies

of nosocomial transmission are scarce [26] and hence, modeling approaches as presented

in Chapter 3 and 4 will be useful for tackling the problems of healthcare-associated in-

fections.
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Chapter 6

Mathematical modeling for data interpretation and interven-

tion strategies

The COVID-19 pandemic has highlighted challenges in infectious disease modeling

that arise around data availability and reliability in the early stages of a pandemic [29].

Data collection during an ongoing epidemic is particularly challenging for healthcare

institutions facing a high workload and the risk of being overwhelmed. Nevertheless,

existing data bases may be linked and used to inform clinical management and hospital

policy recommendations. In Chapters 5 and 6, we focus on modeling approaches

addressing the problem of hospital-acquired SARS-CoV-2 infections using hospital data

in the UK and in the Netherlands.

Based on experience with previous novel corona viruses [30], hospital-acquired infections

have been recognized early on as a serious concern in the UK and discussed at SAGE 14

on 10th March 2020 [31]. In spring 2020, identiőcation of infections acquired in English

hospital facilities mainly relied on symptomatic testing (on admission or during hospital

stay). A hospital-acquired infection was deőned by a cutoff in days of symptom onset

after admission. Symptomatic hospital-acquired infections may remain unidentiőed using

this method due to short patient stays (in comparison with the incubation period) or due

to a symptom onset prior to the cutoff. We accounted for these unidentiőed cases and

provided the őrst national-level estimates of the total burden of symptomatic hospital-

acquired infections and their contribution to the overall COVID-19 epidemic during the

őrst wave in England in Chapter 5 [32]. We showed that deőning a hospital-acquired

COVID-19 case by a symptom onset cutoff of 7 days, would likely identify only 30%

(range across 200 simulations: 20-41%) of symptomatic hospital-acquired infections.

This őnding suggests that under common deőnitions, as provided by the UK Health Se-

curity Agency [33] and the European Centre for Disease Prevention and Control (ECDC)

[34], the number of hospital-acquired infections is signiőcantly underestimated. Estimates

of the proportion of nosocomial infections, e.g. presented in Read et al (2021) [35] for

the UK that are based on symptom onset data, are therefore likely to be underestimates.

We found, however, that the contribution of symptomatic hospital-acquired infections to

the overall number of SARS-CoV-2 infections in England was likely small (less than 1%)

but varied over time with an increasing importance in time periods with low community

394



Discussion

prevalence. Our results imply that screening patients at hospital discharge, or quarantin-

ing discharged hospital patients may be effective in preventing further transmissions into

the community. In fact, we estimated that approximately 40% of those symptomatic

infections that would otherwise be missed could be detected by these measures. This

is particularly relevant for low-resource settings that rely on symptom onset screening

and where hospital stays are generally short. Our work contributed to understanding the

magnitude of symptomatic nosocomial infections of SARS-CoV-2 and the importance of

hospitals in sustaining the community epidemic, and was important for prioritizing infec-

tion control measures in the UK. The results were presented to SAGE on 22nd October

2020 [36] to inform infection control policy in hospitals in the UK for future epidemic

waves.

Our analysis also illustrates how challenges arising from data sources that were not col-

lected and hence not tailored for the data analysis itself could be addressed. To perform

our analysis, we used two complementary data sources containing information on COVID-

19 patients in NHS acute trusts (organisational units containing one or more acute care

hospitals within the National Health Services of England and Wales). While CO-CIN [37]

is an enrollment-based study including information on the date of symptom onset, it

only represents a subset (albeit the majority) of COVID-19 patients hospitalized in NHS

acute trusts. The SUS dataset [38] contains information on all patient admissions and

discharges for all NHS acute trusts, but lacks symptom onset information. To overcome

these issues, we merged the two data sets into one database integrating the best features

of both. Since none of the two data sources included sufficient information about non-

COVID-19 patients, we employed a simulation analysis rather than a full transmission

model. If data on regular inpatient testing, whole genome sequences, or HCW-patient

and patient-to-patient contact data was available, more complex models could be devel-

oped. In particular, genomic sequencing may assist hospital outbreak investigations and

provide further evidence for speciőc transmission pathways for SARS-CoV-2, but the use

of genomic data has its own limitations such as limited availability of samples, difficulty

of producing sequences for low viral loads, or insufficient genetic variation [39]. Integrat-

ing epidemiological, contact network, and genomic datasets into probabilistic inference

procedures (e.g., Bayesian data-augmented MCMC) could be used to infer the relative

contribution of hospital-acquired infections, or the transmission parameters and pathways

between HCWs and patients, or between patients, while accounting for incomplete data.
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Since SARS-CoV-2 is likely to persist as an endemic seasonal virus in coming years, it

is not only critical to understand its role in hospital transmission, but also how their

burden can be minimized. We assessed the effectiveness of various hospital-based

interventions in controlling nosocomial transmission of SARS-CoV-2 in Chapter 6 [40].

For the evaluation of interventions in hospital populations the effect of stochasticity

is often non-negligible and compartmental models may be insufficient in capturing

essential features. In these cases, contact networks and the individual’s time since

infection might inŕuence the impact of certain measures and interventions. We showed

how a detailed agent-based model can be applied to address these issues. Equipped

with data on the hospital structure of the UMC Utrecht and the number of occupied

beds of COVID-19 patients during the őrst wave in the Netherlands, we were able

to compare the effect of several hospital-based interventions targeting HCWs on

the nosocomial transmission of SARS-CoV-2. Our results showed that the use of

highly effective PPE in all hospital wards was the most effective intervention due

to a large proportion of asymptomatic and presymptomatic transmission. We also

highlighted the importance of contact tracing beyond community settings, especially

since it can achieve higher test positivity rates (proportion of infected among tested

individuals) than regular screening interventions. Our conclusions focus on the relative

effectiveness of hospital-based intervention strategies and are informative for future

waves of the COVID-19 pandemic and outbreaks of newly emerging viruses similar to

SARS-CoV-2. Our model could be improved if more detailed data were available, such

as the combination of admission and discharge, symptom onset and testing data (and

the reason for the test), genomic sequencing data, ward and ward transfer data for

patients as well as for HCWs. This would allow the application of proper model őtting

procedures and estimating transmission parameters and the within-hospital reproduction

number similarly to what has been done for a long-term care facility in Paris, France

[41]. In addition, the model would mimic the transmission dynamics in hospitals more re-

alistically and allow a more precise estimation of the impact of the modeled interventions.

Both studies emphasize the need to invest in sharing and standardizing data in a sustain-

able and scalable way to improve future epidemic response, especially in the healthcare

sector [29]. Proactively designing hospital databases that balance patient privacy and

the usability for public health data analyses, and that are standardized to be used on a
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national or international level will be crucial for effectively preparing and responding to

future epidemics [29].

Conclusion

We presented a diverse set of mathematical models addressing various research questions,

ranging from evaluating interventions and preventive measures for the newly emerged

SARS-CoV-2 to understanding the transmission dynamics of common pathogens, such

as P. aeruginosa, in hospital settings. Overall, this thesis provided new insights into how

biological and clinical research problems may be translated into a mathematical or statis-

tical framework, and how the level of detail and the model choice highly depends on the

objective, but also on the availability of data. As mathematical modelers of infectious

diseases, we face the trade-off between a simpler model that is easy to understand and to

analyze, or following a more complex approach leading to a more realistic representation

of the system, but that requires, in exchange, more intricate analysis tools and detailed

input. If problems need to be addressed on a population level, simpler models with an

aggregated structure (such as compartmental models) maybe be sufficient to capture

the relevant transmission dynamics. Simple statistical or simulation models linked with

appropriate data may provide őrst quantitative evidence without the need of a full mech-

anistic transmission model. To account for stochastic effects in smaller populations such

as hospitals, more complex models such as agent-based models may be more appropri-

ate but also need to be equipped with more detailed data. We identiőed gaps in data

collection in particular on behavioral responses and hospital patient data that need to

be addressed to improve infectious disease model building and to reduce the reliance on

arbitrary assumptions. Model-informed data collection and the synthesis of multiple data

sources will hugely improve epidemic response, but sustainable data sharing and thus the

collaboration of many different research groups, disciplines, and countries will be essential

[29]. Infectious diseases know neither boundaries nor borders. Preparing and responding

to inevitable future disease epidemics will require us to similarly transcend disciplinary

boundaries.
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Acronyms

Acronyms

A. baumannii Acinetobacter baumannii .

P. aeruginosa Pseudomonas aeruginosa.

COVID-19 Coronavirus Disease 2019.

HCWs healthcare workers.

ICU Intensive care unit.

LTCF Long-term care facilities.

MCMC Markov chain Monte Carlo.

MRSA methicillin-resistant Staphylococcus aureus.

NPIs non-pharmaceutical interventions.

RIVM Rijksinstituut voor Volksgezondheid en Milieu (Dutch National Institute for Public Health

and the Environment).

RT-PCR Reverse transcriptase polymerase chain reaction.

SAGE Scientiőc Advisory Group for Emergencies.

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2 .

SDD selective digestive tract decontamination.

VIM Verona Integron-encoded Metallo-beta-lactamase.

VRE vancomycin-resistant Enterococci (VRE).

WHO World Health Organization.
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English summary

In this thesis, we elucidate the important role of mathematical models for infectious

disease control with a focus on the transmission of SARS-CoV-2 in the community and

in hospital settings, as well as the transmission of Pseudomonas aeruginosa in intensive

care units.

Most important findings

• Self-imposed measures (hand washing, mask-wearing, physical distancing) as a re-

action to an ongoing COVID-19 epidemic can be effective in mitigating and delaying

it. They can even prevent a large epidemic if they are adopted fast and if the mea-

sure has a high efficacy.

• Hand hygiene may be optimized by the frequency and the moment at which it

is applied to reduce viral respiratory tract infections. We found that immediate

hand washing after contamination is consistently more effective than at őxed time

intervals.

• Many hospital-acquired COVID-19 cases may remain unidentiőed if their deőnition

relies on a cutoff of days after symptom onset: Patients may be discharged or have

a symptom onset prior to this cutoff. Screening or quarantining hospital patients at

discharge may be effective in preventing further transmissions into the community.

• In our simulation study, the use of highly effective personal protective equipment in

all hospital wards was the most effective intervention to limit SARS-CoV-2 trans-

mission in hospitals. We highlighted the role of contact tracing beyond community

settings since it can detect more infections among tested individuals than regular

screening interventions.

• We modeled environmental contamination as a transmission route for Pseudomonas

aeruginosa and showed that its contribution depends on the speciőc setting.
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Nederlandse samenvatting

In dit proefschrift lichten we de belangrijke rol toe van wiskundige modellen voor de

beheersing van infectieziekten, met een focus op de overdracht van SARS-CoV-2 in de

samenleving en in ziekenhuisomgevingen en van Pseudomonas aeruginosa in intensive

care-afdelingen.

Belangrijkste bevindingen

• Zelfopgelegde maatregelen (handen wassen, gezichtsmaskers dragen, fysiekafstand

houden) als reactie op een aanhoudende COVID-19-epidemie kunnen effectief zijn

om deze te verkleinen en vertragen. Ze kunnen zelfs een grote epidemie voorkomen

als de maatregelen voldoender effectiviteit zijn en snel geïmplementeerd worden.

• De frequentie en het moment van handhygiëne kan worden geoptimaliseerd om vi-

rale luchtweginfecties te verminderen. We ontdekten dat onmiddellijk handen was-

sen na besmetting consequent effectiever is dan op vaste tijdsintervallen.

• Veel in het ziekenhuis opgelopen COVID-19-gevallen kunnen ongedetecteerd blijven

als de deőnitie van nosocomiale verspreiding gebaseerd is op een cut-off van dagen

na het begin van de symptomen: patiënten kunnen voorafgaand aan de cut-off

ontslagen of symptomatisch worden. Het screenen of in quarantaine plaatsen van

ziekenhuispatiënten bij ontslag kan effectief zijn om verdere overdracht naar de

samenleving te voorkomen.

• In onze simulatiestudie was het gebruik van zeer effectieve persoonlijke bescher-

mingsmiddelen op alle ziekenhuisafdelingen de meest effectieve interventie om de

transmissiet van SARS-CoV-2 in ziekenhuizen te beperken. We benadrukken de rol

van bron- en contactonderzoek, juist ook in ziekenhuizen, omdat het meer infecties

bij geteste personen kan detecteren dan een screeningstrategie op gezette tijden.

• We hebben besmettingen vanuit de omgeving gemodelleerd als een transmissieroute

voor Pseudomonas aeruginosa en hebben aangetoond dat de bijdrage ervan afhangt

van de speciőeke setting.
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Deutsche Zusammenfassung

In dieser Arbeit beleuchten wir die wichtige Rolle mathematischer Modelle für die Kon-

trolle von Infektionskrankheiten mit einem Fokus auf die Übertragung von SARS-CoV-2

im normalen gesellschaftlichen Umgang in der Bevölkerung und im Krankenhaus sowie

die Übertragung von Pseudomonas aeruginosa auf Intensivstationen.

Wichtigste Erkenntnisse

• Selbst auferlegte Maßnahmen (Händewaschen, Tragen von Masken, soziale Dis-

tanzierung) als Reaktion auf eine anhaltende COVID-19 Epidemie können den

Höhepunkt der Epidemie verzögern, die Epidemiekurve abŕachen und die Zahl der

Neuerkrankungen verringern. Ein große Epidemie kann sogar vollständig verhindert

werden, wenn die Präventionsmaßnahmen schnell ergriffen werden und sie eine hohe

Wirksamkeit aufweisen.

• Die Effektivität von Handehygiene kann durch die Häuőgkeit und den Zeitpunkt

der Anwendung optimiert werden, um virale Atemwegsinfektionen zu reduzieren.

Wir haben festgestellt, dass sofortiges Händewaschen nach einer Kontamination

durchweg effektiver ist als das Händewaschen in festen regelmäßigen Zeitabständen.

• Infektionen werden gewöhnlich mittels eines Cut-offs (Zeitdauer von der Aufnahme

einesd Patienten in das Krankenhaus bis zum Auftreten der ersten Symptome der In-

fektion) als im Krankenhaus erworben klassiőziert (łnosokomial"). Bei SARS-CoV-2

Infektionen bleiben dadurch möglicherweise viele nosokomiale Infektionen unidenti-

őziert: Patienten könnten bereits vor Symptombeginn entlassen werden oder ihre

Symptome könnten vor dem Cut-off auftreten und dadurch falsch klassiőziert wer-

den. Das Screening oder die Quarantäne von Krankenhauspatienten bei der Entlas-

sung kann effektiv sein, um weitere Übertragungen im normalen gesellschaftlichen

Umgang zu verhindern.

• In unserer Simulationsstudie war der Einsatz von hochwirksamer persönlicher

Schutzausrüstung auf allen Krankenhausstationen die effektivste Intervention,

um die Übertragung von SARS-CoV-2 in Krankenhäusern einzudämmen. Die

umfassende Rückverfolgung von Kontakten kann speziell in Krankenhäusern
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ebenfalls eine wichtige Rolle spielen, vor allem da der Anteil der detektierten

Infektionen bei getesteten Personen höher ist als beim regelmäßigen Screening und

sie damit eine effizientere Maßnahme darstellt.

• Wir haben mathematische Modelle entwickelt um die Übertragung von Pseu-

domonas aeruginosa über Krankenhausumgebungen zu quantiőzieren. Unsere

Untersuchungen zeigten, dass Pseudomonas aeruginosa durchaus durch Er-

regerreservoire in der Krankenhausumgebung übertragen werden kann. Allerdings

hängt der exakte Beitrag von der speziőschen Umgebung des Krankhauses ab.
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Tóm tắt tiếng Việt ngắn gọn

Trong luận án này, chúng tôi phân tích vai trò quan trọng của các mô hình toán học

trong việc kiểm soát bệnh truyền nhiễm; với trọng tâm là sự lây truyền của SARS-CoV-2

trong cộng đồng và trong môi trường bệnh viện, và sự lây truyền của Pseudomonas

aeruginosa trong các đơn vị chăm sóc đặc biệt.

Những phát hiện quan trọng nhất

• Các biện pháp cá nhân (như rửa tay, đeo khẩu trang, giữ khoảng cách) để ứng

phó với dịch COVID-19 có thể có hiệu quả trong việc giảm thiểu và trì hoãn lây

truyền dịch bệnh. Các biện pháp này thậm chí có thể ngăn chặn đại dịch nếu được

áp dụng nhanh chóng và khi biện pháp có hiệu quả cao.

• Việc rửa tay (bằng nước, cồn, xà phòng, dung dịch rửa tay khô) có thể được tối ưu

hóa theo tần suất và thời điểm áp dụng để giảm thiểu nhiễm trùng đường hô hấp

do vi rút. Chúng tôi nhận thấy rằng rửa tay ngay lập tức sau mỗi lần tay nhiễm

bẩn tạo hiệu quả cao hơn so với rửa tay sau mỗi khoảng thời gian cố định.

• Nhiều trường hợp nhiễm COVID-19 từ bệnh viện khó được xác định nếu chỉ dựa

vào số ngày giữa ngày phát triệu chứng và ngày nhập viện. Bệnh nhân có thể được

xuất viện trước khi phát hiện triệu chứng hoặc có triệu chứng trước số ngày giới

hạn. Việc sàng lọc hoặc cách ly bệnh nhân ngay khi xuất viện có thể hiệu quả

trong việc ngăn ngừa lây truyền thêm vào cộng đồng.

• Trong nghiên cứu mô phỏng của chúng tôi, việc sử dụng thiết bị bảo hộ cá nhân

hiệu quả cao ở tất cả các khu bệnh viện là biện pháp can thiệp hiệu quả nhất để

hạn chế lây truyền SARS-CoV-2 trong bệnh viện. Chúng tôi nhấn mạnh vai trò của

việc theo dõi tiếp xúc ở môi trường bệnh viện vì tỷ lệ nhiễm virut trong trường hợp

này có thể cao hơn tỷ lệ nhiễm trong cộng đồng thông qua sàng lọc ngẫu nhiên.

• Khi tìm hiểu vai trò của nhiễm khuẩn dụng cụ trong bệnh viện trong việc lây truyền

của Pseudomonas aeruginosa, kết quả mô hình cho thấy rằng sự đóng góp của nó

phụ thuộc vào bối cảnh cụ thể.

410



APPENDICES: Nederlandse wetenschappelijke samenvatting

Nederlandse wetenschappelijke samenvatting

Van de zwarte dood tot de nog voortgaande coronavirus pandemie, infectieziekten zijn

altijd onder ons geweest. Ondanks een wereldwijde afname in doden door overdraagbare

aandoeningen zoals in 2019 gerapporteerd door de Wereldgezondheidsorganisatie

(WHO), behoren lagere luchtweginfecties en diarree-gerelateerde ziekten nog steeds

tot de top tien doodsoorzaken ter wereld [1]. Met name in lage- en middeninko-

menslanden blijven zij de belangrijkste oorzaak van ziekte en sterfte. Zes van de top

tien doodsoorzaken in arme landen zijn overdraagbare ziekten [1]. Bovendien worden

infecties veroorzaakt door antibioticaresistente bacteriën over het algemeen gezien

als een groot risico voor de volksgezondheid [2ś4]. In 2018 publiceerde de WHO een

prioriteitenlijst voor onderzoek naar en ontwikkeling van nieuwe antibiotica voor gebruik

tegen antibiotica-resistente bacteriën [5]. Naast dat er prioriteit gegeven moet worden

aan onderzoek naar de multiresistente Mycobacterium tuberculosis, zijn multiresistente

Gram-negatieve bacteriën, met name Acinetobacter baumanni, Pseudomonas aeruginosa

(P. aeruginosa) and Enterobacteriaceae ook erg belangrijk voor toekomstig onderzoek.

Het belang van een grootschalige georganiseerde reactie op de infectieziektenproble-

matiek is recent weer duidelijk geworden, door het ontstaan van het severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), het virus dat de coronavirus 2019

(COVID-19) pandemie veroorzaakt. Beleidsmakers op het gebied van de volksgezondheid

moesten plotseling snel de meest effectieve interventie-strategieën vinden. Echter, om

het gekozen beleid te verantwoorden zijn gevalideerde methoden nodig die de effectiviteit

van eventuele interventiestrategieën bepalen. Wiskundig modelleren is een essentieel

onderdeel geworden om de effectiviteit van interventiestrategieën te bepalen, met name

tijdens de huidige COVID-19 pandemie.

In dit proefschrift lichten wij de belangrijke rol van wiskundig modelleren toe voor het

bepalen van effectieve interventiestrategieën voor infectieziekten, met een focus op de

overdracht van zowel SARS-CoV-2 en de nosocomiale transmissie van P. aeruginosa.

Wij kijken zowel naar de transmissie in de samenleving als naar de transmissie in een

ziekenhuis. Deze samenvatting geeft een kort overzicht van de wiskundige modellen van

infectieziekten die in dit proefschrift beschreven staan alsook van de maatregelen voor
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het beheersen ervan. Tot slot laten wij zien hoe de modellen en maatregelen verbonden

zijn en geven wij een overzicht van onze belangrijkste bevindingen.

Wiskundig modelleren van infectieziekten in een notendop

Een wiskundig model kan gebruikt worden als middel om het dynamische gedrag van

infectieziekten te begrijpen en kwantiőceren. Een wiskundig model heeft drie doelen:

1. het begrijpen van de verspreiding van de ziekte; 2. het voorspellen van het vervolg

van een uitbraak; en 3. het evalueren van maatregelen om de verspreiding van de ziekte

te beheersen. Wij kunnen onze aannames over biologische processen vertalen naar een

wiskundig model door het model te vergelijken met waarnemingen uit de werkelijkheid.

Door deze vergelijking kunnen wij ons begrip van de epidemiologie van de ziekte

toetsen. Wiskundige modellen complementeren traditionele experimentele aanpakken,

in het bijzonder wanneer experimentele manipulatie van het te bestuderen systeem niet

mogelijk is, zoals het geval is gedurende de uitbraak van infectieziekten [6].

Een klassiek voorbeeld van een model van een infectieuze ziekte is het compartimenten

SIR model, waar voor elk punt in de tijd, t, de bevolking wordt verdeeld over de groepen

vatbar S(t), infectieus I(t) en hersteld R(t). Met hersteld bedoelen wij een individu die

de ziekte heeft gehad en geen verspreider meer is. Deze modellen worden vaak gebruikt

om de dynamiek van infectieziekten in een grote populatie te onderzoeken. Voor het

begrijpen van kleinschalige uitbraken zoals die voorkomen in scholen of ziekenhuizen,

denken wij dat een complexer model beter geschikt is, zeker omdat toevalsprocessen

dan relevant zijn. Zo zijn Agent-based modellen de afgelopen jaren een populaire

toevoeging geworden aan bestaande methodes [7, 8]. Een deőniërende eigenschap is

om het individu centraal in het model te zetten en hun bijbehorende eigenschappen en

interacties te volgen. Dit stelt ons niet alleen in staat om gedrag op het niveau van het

individu waar te nemen, maar ook om realistischere contact netwerken in het model te

verwerken.

Een belangrijk deel van het ontwikkelen van onze modellen is het kalibreren van de para-

meters van het model, d.w.z., het bepalen de parameters waarbij het model de waarne-

mingen uit de praktijk zo goed mogelijk reproduceert. Model parameters kunnen worden

gekozen op basis van 1) inschattingen door experts, 2) observaties of c) uit de literatuur.
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Er bestaan statistische methoden om modelresultaten te őtten op observaties uit de

praktijk. Als modelresultaten niet direct geveriőeerd kunnen worden door een tekort aan

data, dan kan een gevoeligheidsanalyses via een parameter-ruimte exploratie helpen om

de belangrijke parameters te vinden en om model-voorspellingen kwalitatief te veriőëren.

Het beheersen van de overdracht van infectieziekten

Een van de belangrijkste parameters om de overdracht van infectieuze ziekten te meten

is het basis reproductiegetal R0, gedeőnieerd als het gemiddelde aantal infecties dat een

enkel besmet persoon kan veroorzaken gedurende zijn of haar besmettelijke periode, in een

bevolking die volledig vatbar is. Het effectieve reproductie getal, RE, is van toepassing

op een bevolking die deels immuun is voor de ziekte of waar overdrachtsbeperkende

maatregelen zijn genomen. Zulke maatregelen hebben als doel om RE onder 1 te krijgen,

opdat op den duur de ziekte verdwijnt.

Niet-farmaceutische interventies

In dit proefschrift richting wij ons op niet-farmaceutische interventies: maatregelen voor

de volksgezondheid die als doel hebben de overdracht van een ziekte te verminderen

zonder medicatie te gebruiken.

Het wassen van handen met zeep en water, of met op alcohol gebaseerde handreini-

gingsmiddelen, vermindert ziekteoverdracht.

Gezichtsmaskers verminderen de transmissie door de lucht van een pathogeen.

Fysiek afstand houden vermindert het aantal contacten waardoor de ziekte zich kan

verspreiden. Overheden kunnen łsocial distancingž opleggen door maatregelen als de

bevolking verplichten thuis te blijven, het beperken van het toegestane aantal bezoekers

op een locatie, of het sluiten van scholen. Individuen kunnen er ook voor kiezen om zelf

afstand te houden tot anderen.

Quarantaine en isolatie voorkomt dat potentieel besmettelijke personen zich mengen

met de rest van de bevolking en verminderen dus hun bijdrage aan de verspreiding van de

ziekte. Quarantaine verwijst naar het beperken van de bewegingsvrijheid van potentieel
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besmettelijke personen, terwijl isolatie verwijst naar het uit elkaar houden van besmette

en niet besmette personen.

Regelmatig testen is een vorm van testen waarbij individuen op regelmatige tijdsin-

tervallen getest worden, onafhankelijk van symptomen. Deze maatregel zelf heeft niet

direct impact op transmissie, maar als gedetecteerde besmette personen gebruikmaken

van transmissie beperkende maatregelen, dan kunnen transmissieketens doorbroken

worden.

Bron- en contactonderzoek is een techniek die op basis van de geschiedenis van con-

tacten tussen mensen, en de kennis dat bepaalde personen besmet zijn, probeert te

achterhalen wie er nog meer besmet is. Besmette individuen worden geïnterviewd door

volksgezondheid medewerkers om te achterhalen door wie ze besmet zijn, en wie ze nog

meer besmet kunnen hebben. Isolatie of quarantaine wordt dan ofwel opgelegd of gead-

viseerd aan de besmette individuen. Als het bron- en contactonderzoek voldoende snel

gedaan wordt, dan kan het secundaire transmissie door waarschijnlijk besmette individuen

voorkomen.

Belangrijkste bevindingen van dit proefschrift

Het koppelen van gezondheidsgerelateerd preventief gedrag en epidemische

verspreiding

In hoofdstuk 1 ontwikkelden wij een deterministisch gecompartimentaliseerd model dat de

biologische ziekteprogressie koppelt aan het gezondheidsgerelateerd gedrag van mensen.

Wij waren benieuwd naar de vrijwillige preventie maatregelen, zoals fysiek afstand hou-

den, handen wassen, en het gebruik van gezichtsmaskers, als reactie op de voortgaande

COVID-19 epidemie, de epidemie kan beïnvloeden. Deze maatregelen werden vergeleken

met een overheidsmaatregel die eenmalig łsocial distancingž houden oplegde gedurende

een korte periode. Onze resultaten laten zien dat vrijwillige maatregelen de piek van

epidemie kunnen vertragen en verlagen, en dat deze de grootte van de uitbraak kunnen

verlagen. Echter, de impact van deze maatregelen hangt sterk af van de mate waarin ze

worden geadopteerd en hoe effectief ze zijn. Een grote epidemie kan worden voorkomen

als maatregelen uitgeoefend worden door meer dan 90% van de bevolking met een
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effectiviteit van 50%. Korte-termijn maatregelen die fysieke afstand creëren en door de

overheid worden opgelegd, kunnen de de epidemische piek vertragen, maar verminderen

de hoogte van de piek en de grootte van de uitbraak nauwelijks. Zo’n interventie is het

meest wenselijk wanneer tijdrekken zinvol is, bijvoorbeeld omdat een vaccin ontwikkeld

wordt of omdat zorginstellingen zich nog moeten voorbereiden. Wij raden overheden en

volksgezondheidsinstanties aan om, in aanvulling op opgelegde maatregelen voor fysiek

afstand houden, de bevolking te motiveren om zelf opgelegde maatregelen met bewezen

effectiviteit te adopteren, met het doel COVID-19 te beheersen.

In hoofdstuk 2 van dit proefschrift hebben wij gekeken hoe handhygiëne het beste ingezet

kan worden om de transmissie van lagere luchtweginfecties te verminderen. Wij keken

naar het effect van verschillende tijdstippen en frequenties van het wassen van handen,

zowel als naar hoe lang een virus op de handen levensvatbaar blijft. Als die periode kort

is, zoals dat voor griep is waargenomen, dan moeten de handen zeer vaak gewassen

worden of zelfs onmiddellijk na het besmetten van de handen om de kans van infectie

signiőcant te verminderen. Wanneer het virus voor langere tijd op de handen werkzaam

blijft, bijvoorbeeld in de aanwezigheid van snot of in het geval van stevigere virussen,

dan is een beperkte hoeveelheid handen wassen voldoende om de transmissiekans van

het virus aanmerkelijk te verminderen. Het onmiddellijk wassen van de handen na een

besmetting is veel effectiever dan dit met regelmatige frequentie doen. Het aanbieden

van handreinigingsmiddelen op plekken met een grote kans van transmissie door handen,

zoals supermarkten, openbaar vervoer en werkplekken, kan het risico op infectie sterk

verminderen, in het bijzonder voor virussen die voor lange tijd op de handen blijven.

Deze twee hoofdstukken illustreren dat de precieze impact van persoonlijke beschermende

maatregelen afhangt van de details. Het wordt bepaald door de snelheid waarmee de

maatregelen geadopteerd worden (Hoofdstuk 1) en, voor het wassen van handen, door

de frequentie en het moment waarop dit wordt gedaan, alswel de duur dat het pathogeen

op de handen levensvatbaar blijft (Hoofdstuk 2).

Wiskundige modellering en statistische bevindingen van transmissieroutes

In de hoofdstukken 3 en 4 hebben wij een transmissie/overdrachts model ontwikkeld voor

de verspreiding van Pseudomonas aeruginosa, een bacterie die bekend is voor zijn inhe-
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rente resistentie tegen antibiotica, zijn alomtegenwoordigheid in vochtige omgevingen,

en vermeld staat in de hoogste categorie van WHO´s prioriteitenlijst met betrekking tot

zeer antibiotica-resistente bacteriën. Verspreiding van P. aeruginosa is met name proble-

matisch in ziekenhuis omgevingen waar, zonder enige controle maatregelen, de kwetsbare

populatie een verhoogd risico loopt op besmetting. Het onderzoeken van de transmissie-

routes en het kwantiőceren van hun relatieve bijdrage aan het totaal aantal transmissies

zal helpen bij het evalueren van interventiestrategieën en bij het beslissen welk beleid voor

infectiebeheersing in ziekenhuizen prioriteit moet krijgen.

In Hoofdstuk 3 modeleren wij besmettingen vanuit de omgeving door expliciet te mo-

deleren dat patiënten hun omgeving besmetten met pathogenen en dat die pathogenen

achterblijven ook nadat de patiënt ontslagen is. Met behulp van een uitgebreide dataset

van P. aeruginosa observaties die plaats hebben gevonden in twee IC’s van een Frans

universitair ziekenhuis in Besançon over een periode van 17 jaar, schatten wij in dat om-

gevingsbesmettingen na het ontslag van patiënten slechts een ondergeschikte rol speelde

in vergelijking met achtergrond en kruistransmissie. Kruistransmissie droeg bij aan on-

geveer de helft van de transmissies in deze Franse IC’s (waarbij achtergrond transmissie

de andere helft uitmaakt). Daarentegen was kruistransmissie slechts van ondergeschikt

belang op de twee afdelingen van de IC voor volwassenen van het Erasmus Medisch Cen-

trum in Rotterdam (zoals gepresenteerd in hoofdstuk 4). Door uitsluiting concludeerden

wij dat aanhoudende besmetting vanuit de omgeving de belanrijkste transmissieroute

was. In tegenstelling tot hoofdstuk 3 hebben wij omgevingsbesmettingen niet expliciet in

het transmissiemodel opgenomen, maar de bijdrage ervan afgeleid door uitsluiting. Wij

hebben dus twee verschillende benaderingen gedemonstreerd voor het modelleren van

omgevingsbesmettingen als een route van (nosocomial) overdracht van P. aeruginosa op

IC’s en toonden aan dat de kwantitatieve resultaten voor het relatieve belang van trans-

missieroutes sterk afhangen van de situatie. Er moet dus rekening gehouden worden met

de lokale situatie wil men effectieve infectiepreventiemaatregelen nemen.

Wiskundige modellering voor de interpretatie van gegevens en

interventiestrategieën

In de hoofdstukken 5 en 6 richten wij ons op modellerings-benaderingen die het

probleem van in ziekenhuis opgelopen SARS-CoV-2-infecties aanpakken met behulp van

ziekenhuisgegevens in het Verenigde Koninkrijk en Nederland.
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In hoofdstuk 5 geven wij de eerste schattingen van de totale last van symptomatische

ziekenhuisinfecties en hun bijdrage aan de algehele COVID-19 epidemie op nationaal

niveau tijdens de eerste golf in Engeland. In het voorjaar van 2020 werd in Engelse

ziekenhuizen een COVID-19-infectie gedeőnieerd als zijnde verkregen in het ziekenhuis

als de symptomen minstens een aantal dagen na opname optraden (łcut-off"). Symp-

tomatische ziekenhuisinfecties kunnen met deze methode ongeïdentiőceerd blijven door

een kort verblijf van de patiënt (in vergelijking met de incubatieperiode) of als de eerste

symptomen optraden vóór de cut-off. Wij toonden aan dat als men aanneemt dat een

patiënt die voor de achte opnamedag symptomen van COVID-19 ontwikkelt, reeds

besmet was bij opname, dat men dan waarschijnlijk slechts 30% van de symptomatische

ziekenhuisinfecties zou identiőceren. Deze bevinding suggereert dat onder gebruikelijke

deőnities, zoals verstrekt door de UK Health Security Agency [9] en het European

Centre for Disease Prevention and Control (ECDC) [10], het aantal ziekenhuisinfecties

aanzienlijk wordt onderschat. Wij ontdekten echter dat de bijdrage van symptomatische

ziekenhuisinfecties aan het totale aantal SARS-CoV-2 infecties in Engeland waarschijnlijk

klein was (minder dan 1%) maar, in verloop van tijd, sterk varieerde met een toenemend

belang in tijdsperioden met een lage prevalentie in de samenleving. Onze resultaten

impliceren dat het screenen van patiënten bij ontslag uit het ziekenhuis, of het in qua-

rantaine plaatsen van ontslagen ziekenhuispatiënten, effectief kan zijn in het voorkomen

van verdere besmettingen binnen de gemeenschap. Wij schatten zelfs dat ongeveer 40%

van die symptomatische infecties, die onopgemerkt kunnen blijven, door deze maatre-

gelen opgespoord zouden kunnen worden. Dit is met name relevant voor instellingen

die weinig middelen tot hun beschikking hebben en afhankelijk zijn van symptoom-

screening waarbij ziekenhuisopnames relatief kort zijn. Onze resultaten werden op 22

oktober 2020 [11] aan SAGE gepresenteerd om het infectiebeheersing- beleid in zie-

kenhuizen in het Verenigd Koninkrijk te informeren voor toekomstige epidemische golven.

Wij hebben de effectiviteit beoordeeld van verschillende interventies in ziekenhuizen bij het

beheersen van nosocomiale overdracht van SARS-CoV-2 in hoofdstuk 6. Door gebruik te

maken van de gegevens over de ziekenhuisstructuur van het UMC Utrecht en het aantal

bezette bedden van COVID-19-patiënten tijdens de eerste golf in Nederland waren wij in

staat om het effect op de nosocomiale transmissie van SARS-CoV-2 te vergelijken van

verschillende interventies gericht op HCW’s. Onze resultaten toonden aan dat het gebruik
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van persoonlijke beschermingsmiddelen op alle ziekenhuisafdelingen de meest effectieve

interventie was vanwege het grote aandeel van asymptomatische en presymptomatische

overdracht. Wij benadrukten tevens het belang van bron- en contactonderzoek buiten de

algehele samenleving, vooral omdat het hogere percentages van test-positiviteit (aandeel

geïnfecteerden onder geteste personen) kan bereiken dan reguliere screening interventies.

Onze conclusies richten zich op de relatieve effectiviteit van interventiestrategieën in

ziekenhuizen en zijn informatief voor toekomstige golven van de COVID-19-pandemie en

uitbraken van nieuw opkomende varianten van het SARS-CoV-2 virus.

Conclusies van dit proefschrift

Over het algemeen presenteert dit proefschrift wiskundige modellen die verschillende on-

derzoeksvragen op het gebied van infectieziekten aanpakken, variërend van het evalueren

van interventies en preventieve maatregelen voor de nieuw opgekomen SARS-CoV-2 tot

het begrijpen van de transmissie dynamiek van veel voorkomende pathogenen in zie-

kenhuisomgevingen, zoals P. aeruginosa. Wij toonden aan hoe de mate van detail en

modelkeuze sterk afhankelijk is van de beoogde resultaten, maar tevens ook voor de be-

schikbaarheid van informatie en gegevens. Wanneer problemen moeten worden behandeld

op een populatieniveau kunnen eenvoudigere modellen met een geaggregeerde structuur

(zoals compartimenten-modellen) voldoende zijn om de relevante transmissie-dynamiek

vast te leggen. Eenvoudige statistische of simulatiemodellen gekoppeld aan geschikte ge-

gevens kunnen het eerste kwantitatieve bewijs leveren zonder dat een volledig mechanisch

transmissiemodel nodig is. Om rekening te houden met stochastische effecten in klei-

nere populaties zoals ziekenhuizen, kunnen complexere modellen zoals agent-gebaseerde

modellen geschikter zijn, maar deze zullen moeten worden gevoed met gedetailleerdere

gegevens. Wij identiőceerden hiaten in de gegevensverzameling, met name wanneer het

gaat over het gedrag en de gegevens van ziekenhuispatiënten. Dit zal moeten worden

aangepakt om de modelbouw voor infectieziekten te verbeteren en de afhankelijkheid van

slecht-onderbouwde aannames te verminderen. Model-geïnformeerde dataverzameling en

het verenigen van verschillende informatiebronnen zullen een grote invloed hebben op

hoe efficiënt er op een epidemie gereageerd kan worden, maar hiervoor is het noodzake-

lijk/essentieel dat verschillende onderzoeksgroepen, disciplines en landen hun informatie

met elkaar delen over een langere periode [12]. Infectieziektes houden tenslotte geen
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rekening met grenzen. Daarom is het noodzakelijk dat wij evenzo disciplinaire grenzen

overschrijden om ons beter voor te kunnen bereiden en adequaat te reageren op aanko-

mende ziekte-epidemieën.
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