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Introduction

From the plague to the ongoing coronavirus disease 2019 (COVID-19) pandemic,
infectious diseases have been a steady companion of humans throughout history. Despite
a global decline in deaths from communicable diseases as reported by the World Health
Organization (WHQO) in 2019, lower respiratory tract infections and diarrhoeal diseases
still ranked among the top 10 causes of death worldwide [1]. They also remain a leading
cause of morbidity and mortality in low- and middle-income countries, with 6 of the top
10 causes of death in low-income countries assigned to communicable diseases [1]. In
addition, infections caused by antibiotic-resistant bacteria are widely considered a major
public health concern of the 21st century [2—4]. In 2018, the WHO published a priority
list for research and development of new antibiotics for antibiotic-resistant bacteria
[5]. Apart from multidrug-resistant and extensively-resistant Mycobacterium, priority
should be given to multidrug resistance and extensively drug-resistant Gram-negative
bacteria, with carbapenem resistant Acinetobacter baumanni, Pseudomonas aeruginosa

and Enterobacteriaceae in the highest priority category.

The importance of an organized response to these challenges has been highlighted most
recently, with the emergence of the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), the virus causing the Coronavirus Disease 2019 (COVID-19) pandemic.
Public health policy makers have been confronted with the urgent need to find the most
adequate and effective intervention strategies. However, assessing their effectiveness
requires evidence-based tools to support their decision. The field of mathematical
modeling has become an essential part of epidemic response efforts for many recent
infectious disease outbreaks and achieved greater attention and appreciation in particular

during the ongoing COVID-19 pandemic.

In this thesis, we will illustrate the value and important role of mathematical models
for infectious disease control with a focus on the transmission of SARS-CoV-2 in
the community and in hospital settings, as well as the nosocomial transmission of
Pseudomonas aeruginosa. We will begin with a general introduction by providing a sum-
mary of non-pharmaceutical interventions followed by a brief overview of mathematical
models relevant for the content of this thesis. Building upon this theoretical background,

we will elaborate on the research questions addressed in this thesis and on how they
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Introduction

build on the existing literature of mathematical modeling of infectious diseases. We will

then give an outline of this thesis with a brief description of each individual chapter.

Mathematical modeling of infectious diseases in a nutshell

A mathematical model can be used as a conceptual tool to understand and to
quantify dynamic behaviour of infectious diseases. More specifically, infectious disease
models serve three aims, wunderstanding the dynamics of disease spread, predicting
the future course of an outbreak, and ultimately devising and evaluating measures
and interventions for disease control. Using these models, we are able to translate
epidemiological assumptions of biological processes into a mathematical framework
in a transparent and systematic way. As such, mathematical models allow us to test
our understanding of the epidemiology of the disease by comparing model results and
observations from the real world. They complement traditional experimental approaches,
in particular when experimental manipulation of the studied system is not feasible (as it

is the case during infectious disease outbreaks) [6].

The field of mathematical modeling of infectious disease dynamics has a long history with
the first known model presented by Daniel Bernoulli at the Royal Academy of Sciences
in Paris in 1760 and later published in 1766. He demonstrated through a mathematical
analysis that inoculation against smallpox (variolation) was beneficial for society as a
whole despite the risks of infection to individuals. By calculating the gain in life expectancy
that would be achieved if smallpox were eradicated, he argued for a universal inoculation
of smallpox. Bernoulli showed how a simple mathematical model could assess the impact
of an intervention on people’s health on a population level without the need of performing

an experiment.

“I simply wish that in a matter which so closely concerns the well-being of the human race, no

decision shall be made without all knowledge which a little analysis and calculation can provide."

Daniel Bernoulli, 1760
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Introduction

How to control infectious disease transmission

Infectious disease control can be defined as practices and programs that aim at prevent-
ing the disease by reducing the transmission of infections [7]. One of the most important
epidemiological parameters to measure transmissibility is the basic reproduction number
Ry, defined as the average number of secondary cases that an index case can generate
during its entire infectious period in a fully susceptible population. The effective repro-
duction number Rg applies to a population where some people have gained immunity
and/or control measures are implemented. Control measures aim at reducing Rg to be-
low 1 which will lead, in the long term, to the elimination of the disease. A plethora of
such measures exist but the most appropriate may depend on the disease, the host, its

routes of transmission as well as the setting.

Non-pharmaceutical interventions

In this thesis, we will focus on non-pharmaceutical interventions (NPIs), public health
measures that aim at preventing disease transmission without requiring pharmaceutical

drug treatments. Below, we provide a summary of those considered in this thesis.

Hand hygiene or specifically hand washing is a personal protective measure where hands
are cleaned with soap and water, or with alcohol-based hand sanitizers. In the 19th
century, Ignaz Philip Semmelweis, a Viennese obstetrician, discovered that infections
could be passed to patients on the hands of health-care workers. He showed that hand
washing could drastically reduce mortality rates due to puerperal fever in obstetrical
clinics. Hand hygiene is now an essential measure in hospitals, and it has also been
advocated for to be used to reduce community spread of respiratory tract infections

(such as with SARS-CoV-2) or gastrointestinal diseases.

Face masks can be worn as a personal protective measure to reduce the airborne trans-
mission of a pathogen. During the 1910 Manchurian Pneumonic Plague, Wu Lien Teh
developed a mask made of cotton and gauze to filter the air people inhaled, and pro-
moted their use as “the principal means of personal protection". He not only received
international acclaim for his contribution to controlling the epidemic but was also rec-

ognized as a public health pioneer. In East Asia, masks are commonly used to control
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the transmission of respiratory tract infections. While masks were infrequently used in
other parts of the world, a drastic shift occurred during the COVID-19 pandemic, where

community face mask use has been advocated for in nearly all regions of the world.

Physical distancing reduces the number of contacts in a population through which
a disease can spread. Governments may impose physical distancing measures through
interventions like stay-at-home orders, limiting the number of individuals at venues, or
closing of schools and work places. Individuals themselves may also choose to self-impose
distancing measures. During the COVID-19 pandemic, the term lockdown was colloquially
used to describe the restriction policies imposed by governments for people to stay at
home and reduce their contacts. Numerous countries and territories around the world

have implemented physical distancing to limit the spread of SARS-CoV-2.

Quarantine and isolation prevent (potentially) infectious individuals from mixing with
the rest of the population and hence prevent their contributions to onward transmission.
Quarantine refers to the restriction of movements of individuals who were exposed to
a contagious disease whereas isolation refers to the separation of already infected indi-
viduals from those who are not infected. These two forms of disease control are among
the oldest known control measures. For example, in the 14t century, coastal cities (such
as Venice) quarantined ships arriving at their port in order to contain diseases such as
the Bubonic plague. During the COVID-19 pandemic, quarantine and isolation have been

implemented across the world as key strategies to combat the spread of SARS-CoV-2.

Regular screening is a form of testing of individuals at certain time intervals independent
of symptoms. This measure itself does not directly impact transmission, but if detected
cases adhere to pharmaceutical or non-pharmaceutical measures, transmission chains
may be interrupted. Regular screening is critical for identifying asymptomatic cases and
is, therefore, particularly effective when asymptomatic individuals make a large contri-
bution to transmission and transmission levels of the pathogen are high. In hospitals,
screening programs have been widely implemented to prevent colonizations (and sub-
sequently infections) by multi-drug resistant bacteria. During the COVID-19 pandemic,
public health authorities have highlighted the importance of regular antigen self-testing to
detect asymptomatic SARS-CoV-2 infections, especially in occupational and educational
settings [8, 9].
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Contact tracing operates by identifying individuals who have been exposed to a disease.
Index cases (individuals identified as having the disease) represent a starting point for
the process. They are interviewed by public health staff in order to establish the source
of infection, i.e., who infected them, with whom they had contact, and who they might
have infected. Self-isolation or self-quarantine is then either imposed or advised to the
index case and the contacts, respectively. If conducted sufficiently quickly, contact tracing
can prevent secondary transmission from individuals who are likely to be infected but are
not identified otherwise (e.g., through symptoms). This intervention relies on sufficient
resources and is particularly efficient if the case numbers are low. Throughout the history
of infectious diseases, contact tracing (though often not named as such) has played a
crucial part in infection control. Contrary to popular opinion, the eradication of smallpox
was achieved not by universal vaccination alone, but in combination with contact tracing,
quarantine, and the treatment of infected individuals. During the COVID-19 pandemic,
contact tracing has regained importance in outbreak control, in particular through the

deployment of digital apps.

Other non-pharmaceutical measures exist to prevent infectious disease spread, includ-
ing travel-related measures, such as border closures or entry and exit screening, disinfec-
tion of equipment and the environment, or control of the vectors of infection. We do not

consider those in this thesis.

Role of mathematical modeling in controlling infectious
diseases

To effectively combat the spread of an infectious disease, we need to understand its
dynamics as well as the effect of interventions that are already implemented or their
potential impact if prospectively implemented. This is important for efficiently allocating
current and future resources and for designing new interventions. In this thesis, we will
illustrate how mathematical models can contribute to evaluating interventions and their
value in informing infection control policies. We will focus on transmission dynamics
and control measures in human populations and will consider only infections where the
immune system reacts relatively fast and removes the pathogen after a short period of

time (days or weeks) [10].
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Types of models

In essence, mathematical modeling of infectious diseases is about studying real world phe-
nomena by describing them, in a simplified form, in the mathematical language. In order
to evaluate the effect on infectious disease dynamics, tools are necessary 1) to trans-
late biological aspects and assumptions into the mathematical language, 2) to perform
analyses and estimate relevant parameters, and subsequently 3) to translate the results
back for interpretation of observations from the real world. The basic foundations of the
mathematical theory of epidemics were established by Kermack and McKendrick in 1927
[11]. The fundamental principle can be described by the dependence of the per capita
rate of infectivity and the rate of removal (as the sum of recovery and death rates)
on the time since infection. An important special case of Kermack and McKendrick's
general theory is the classification of individuals into compartments by their epidemio-
logical /disease status, e.g., their ability to transmit the pathogen. Here, we assume that
the pathogen causes an infection for a typically short period of time after which the host
will develop immunity (often lifelong).

While there is an infinite number of possible ways to develop models for epidemic pro-
cesses, it is possible to define some broad categories of infectious disease models based
on their commonalities and differences. Almost all epidemic models have in common
that they aim to describe the number of infected individuals as a function of time. What
follows is an overview of types of models that serve as the basis for the articles in this
thesis. While the presented list of models and their elaborations are not exhaustive and
kept deliberately short, they address important aspects in infectious disease modeling. A
general overview of mathematical tools in infectious disease modeling can be found in,
e.g., [10, 12-14].

Compartmental models

A classical example of compartmental models is the S/IR model, where for each time point
t, the population is divided into the susceptible S(t), infectious /(t), and recovered R(t)
(individuals that have cleared the disease and are not transmitting anymore) compart-
ments. One may remove or add compartments to the model, depending on the disease
and the level of detail and realism one wishes to incorporate. The essential assumption of

these models is that no difference is made between individuals within each compartment.
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Transitions between compartments are characterised by rates at which individuals move
from one compartment to another. To account for population demography (i.e., birth,
death, and migration), rates for entering and leaving the population may be added. Since
the dynamics of an epidemic are often much faster than the demographic dynamics of
population, the latter are often neglected in simple compartmental models. In this case,
the total population size, i.e., the sum of the numbers of individuals in each compart-
ment, is constant.

The transition rates may be either constant or may vary with time. For a simple SIR
model, it is assumed that the infectivity of an infected individual and the recovery rate
are constant leading to exponentially distributed sojourn times. Although for some dis-
eases this assumption is an acceptable approximation, it is unrealistic for other diseases
as demonstrated for HIV [15] or measles (e.g., [16, 17]). While alternative formulations,
such as gamma distributed infectious periods, exist, exponentially distributed sojourn
times are often used for mathematical convenience.

The rate of progression from S to / is typically assumed to be time-varying and referred
to as force of infection, and defined as the per capita rate at which susceptible individuals
become infected [12]. Another critical assumption of many compartmental models is that
contacts are made according to the mass-action principle: All individuals mix randomly,
in analogy to chemical reactions, i.e., each pair of individuals are equally likely to come
in contact and each individual can contact all other individuals. In the simplest case the
force of infection is then determined by three distinct factors: 1) the contact rate (the
number of contacts per unit of time), 2) the fraction of infectious individuals (also known

as prevalence), and 3) the transmission probability per contact.

Deterministic compartmental models

The defining property of deterministic models is that the state of the system is uniquely
determined by the values of the parameters and the initial state of the system. Usually
deterministic continuous time models consist of sets of ordinary differential equations
(ODEs), which describe the rate of change of the number of individuals in each compart-
ment. If the basic reproduction number Ry is less than 1, there is no (big) epidemic while
if Ry exceeds 1, the epidemic grows exponentially, infecting a substantial proportion of
the population. ODE models may be good approximations to reality for infectious disease

dynamics in large populations. For phenomena on a smaller scale, such as in hospitals or
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in schools, one would expect that randomness may play an important role. Deterministic
models usually cannot capture the full range of stochastic variability that may occur in

epidemics in these smaller populations.

Stochastic compartmental models

For stochastic compartmental models, chance processes play a crucial role, and con-
trary to deterministic models, model results may differ for the same initial condition and
parameter values. They provide answers to questions that cannot be addressed with de-
terministic methods such as the probability of an outbreak, the outbreak size distribution,
or the probability that a disease has been eradicated. In addition, they enable the quan-
tification of uncertainty of model parameter estimates from (epidemic) data [14, 18,
19].

Beyond compartmental models

While equation-based models as described above are simple and intuitive, they often rely
on the critical assumption of homogeneous mixing, and on fixed or exponentially dis-
tributed infectious periods. However, heterogeneity may affect the contact patterns (and
therefore infectious disease spread), and the infectiousness of infected individuals does
not necessarily follow an exponential distribution for many diseases (e.g., [15-17]). In
principle, it is possible to extend equation-based models to account for non-exponentially
distributed infectious periods, for example, by incorporating additional disease compart-
ments (also known as the linear chain trick [20, 21]) or by using a continuous time
stochastic model represented by distributed delay equations (see e.g., [11, 22]). While
these models provide more flexibility, they can also be more challenging to analyze math-

ematically, and to simulate [23].

Agent-based models

For understanding small-scale effects of epidemics as experienced in schools or hospitals,
more detailed and complex models may be much more appropriate. Agent-based models
have become a popular addition to the tool set of infectious disease modeling in recent
years [24, 25]. A defining feature is to put the individual central to the model and keep
track of their corresponding characteristics and individual interactions. This not only al-

lows to capture behaviour at the individual level but also to incorporate more realistic
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contact networks in the model. Usually agent-based models are stochastic and can take
stochastic effects, which occur in smaller populations, like schools or hospitals, or net-
work effects in large populations, into account. They provide a rich model framework
to incorporate heterogeneity that affects the contact patterns and therefore infectious

disease spread without running an experiment.

Parameterization

Results of a model analysis are only informative for interpretation in the real world if
the model is appropriately parameterized. Where possible, model parameters are set to
plausible values or ranges based on expert opinion, best available evidence from current
data or literature to generate model results [18]. For example, the infectious period can
be estimated by studying reported transmission events or by measuring the amount of
pathogens excreted by an infected individual over time. If model results cannot directly
be verified due to a lack of data, sensitivity analyses via parameter space exploration
(e.g., using Latin Hypercube Sampling [26]) can aid in identifying influential parameters

and may be used to verify model predictions qualitatively.

Model calibration and statistical inference

Model calibration is the process of identifying the set of model parameters that best ex-
plain the observed data retrieved from the underlying system that was modeled. For simple
models, parameters can be estimated by fitting model results to observed data based on
maximizing the likelihood of the model. One of the main difficulties in estimating param-
eters of infectious disease models is that the infection process is only partially observed,
and observed quantities might be aggregated (e.g., weekly) [14]. Since likelihood meth-
ods typically rely on integrating over unobserved quantities, analytical evaluations quickly
become unfeasible. Statistical inference techniques involving data imputation, such as the
expectation-maximisation (EM) algorithm [27] and Markov chain Monte Carlo (MCMC)
[28, 29] have been used to overcome this difficulty. Data-augmented MCMC methods
[30] estimate the joint posterior distribution of the parameters by imputing unobserved
data. This Bayesian approach allows a high flexibility in model choice and fitting but
could result in large computational memory requirements and slower mixing (and there-
fore convergence issues) if a large amount of data is missing [31]. Moreover, the MCMC

algorithm cannot be easily parallelized and is therefore poorly scalable [32]. Consequently,
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this approach has been mainly applied to data from small populations such as households
[33—35], schools [36], or hospital wards [37—39], for which the number of cases does not
exceed a few thousands.

Due to their complexity, agent-based models usually contain a large number of param-
eters making efficient model calibration a key challenge. Often calibration of unknown
parameters follow ad hoc and unstructured approaches [25] where parameters are ad-
Justed sequentially to match observed epidemiological statistics or data. More advanced
and systematic calibration methods exist [24, 40]. For example, the output of an ABM
may be calibrated to data by the Nelder-Mead (NM) optimization algorithm. Alterna-
tively, Bayesian calibration approaches [41] start with prior distributions over the param-
eter space (e.g., using Latin Hypercube Sampling [26]) and a Bayesian update algorithm
to obtain the posterior distribution of the parameters. Due to their required extensive
computation effort, these methods have been employed only occasionally for infectious

disease agent-based models [42].

Mathematical models to tackle nosocomial transmission of
multi-drug-resistant bacteria

Hospitals encompass a particularly vulnerable population including patients receiving
treatments that may weaken their immune system or already immunocompromized
patients. In this setting, even microorganisms that are usually not disease-causing in
the general population may become pathogenic and cause nosocomial infections. The
distinct characteristics of these infections relevant for this thesis are the following:
Firstly, many of these microorganisms may be present on or within a body without
yet causing an infection (colonization). Typically, only a small proportion of patients
who are colonized will develop an infection, and the dynamics of disease transmission
are therefore determined by individuals colonized with the microorganism rather than
those who are infected. Thus, by preventing colonization, nosocomial infections may
be effectively averted as well. Secondly, transmissions are observed in typically small
hospital units where stochastic effects are likely to play an important role. In these
settings, stochastic models are more appropriate to study the dynamics of disease
transmission. Thirdly, patients in intensive-care units typically have a short length of
stay (in the order of days) leading to a highly fluctuating hospital population with a

constant risk of importations from the community.
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The first published mathematical models for nosocomial infections used deterministic ap-
proaches [43, 44] to study the transmission dynamics in single hospital wards. However,
due to the small population size in hospitals, the importance of using stochastic models
was quickly recognized [45—47]. The first stochastic models [45, 47] quantified the effec-
tiveness of infection control interventions and were based on the Ross-Macdonald model
that described the transmission of malaria by mosquito vectors [12]. These models in-
corporated contaminated hands of healthcare workers (HCWSs) in analogy to mosquitoes
as vectors of transmission in hospitals. Cooper et al [45] studied the effect of improv-
ing hand hygiene and reducing the admission of colonized patients on the prevalence
of methicillin-resistant Staphylococcus aureus (MRSA). The results of this model sug-
gested an important role of hand hygiene on MRSA spread in hospital wards. Austin et
al [47] similarly found that hand hygiene was the most effective intervention for reduc-
ing the prevalence of vancomycin-resistant Enterococci (VRE) (VRE). In addition, staff

cohorting was found to be another powerful control measure.

Since the first employment of mathematical models as tools for assessing the effective-
ness of controlling healthcare-associated infections, they have been increasingly used
in the past years (e.g., Figure 2 in Kleef et al (2013) [48] or Assab et al (2017) [49]).
Interventions to control nosocomial infections may differ between pathogens. Thus,
pathogen specific transmission routes and their relative contributions to the overall
number of transmissions are crucial to evaluate and design effective control strategies.
Numerous models have been developed to estimate epidemiological parameters such
as transmission rates and the relative contributions of transmission routes for various
pathogens using hospital surveillance data [50-54]. To overcome the difficulties related
to missing information on, e.g., timing of events (such as of colonizations and infections)
and asymptomatic carriage, several studies employed Bayesian statistical methods
[37-39].

According to a systematic review by Kleef et al [48], most studies modeling nosocomial
transmission of bacteria between 1993 and 2011 focused on MRSA, followed by VRE. In
2020, the most common modeled pathogens were SARS-CoV-2, MRSA, and Clostrid-
ioides difficile (C. difficile). Although Pseudomonas aeruginosa (P. aeruginosa) is among

the most frequently reported pathogens for healthcare-associated infections [55], less
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than five studies modeled this pathogen in a nosocomial setting between 1993 and 2011
[48]. Even these studies have not been specifically developed for P. aeruginosa but for
nosocomial pathogens in general. While observational and experimental studies [56—60]
suggest an important role of environmmental contamination in the transmission process
of (VIM-producing) P. aeruginosa, there have been no mathematical modeling studies
that quantified this relationship. Due to its intrinsic resistance to multiple antibiotics, in
particular the emerging resistance to carbapenems, P. aeruginosa is extremely difficult to
treat. More efforts to understand the modes of nosocomial transmissions of P. aeruginosa
are therefore needed to protect immunocompromized patients at risk. In this thesis, we
present two studies that contribute to filling this gap, representing the first attempt to
model the dynamics of nosocomial transmission of P. aeruginosa and estimate the role
of environmental contamination for two different settings. Using longitudinal hospital
surveillance data, we employed a Bayesian data-augmented MCMC method as presented

in Cooper et al (2008) [39] to account for missing data.

Mathematical models to control COVID-19

The COVID-19 pandemic represents the most recent and prominent example of a
public health problem for which mathematical modeling can be a powerful tools to
inform disease control strategies. In the beginning of the outbreak, many (modeling)
studies focused on estimating biological and epidemiological basic characteristics of
SARS-CoV-2, such as the basic reproduction number [61], serial interval and incubation
time distribution [62], and forecasting the trajectory of the epidemic on short but also
longer term [63]. Concurrently, a myriad of models has been developed focusing on the
evaluation of measures and interventions to control the pandemic [64]. These studies
either focus on the impact of NPIs in the community as a whole, or in specific settings
of interest, such as hospitals, long-term care facilities, work places, or schools. The
extent to which NPIs were implemented in response to the rapid spread of SARS-CoV-2
varied across countries. Most governments implemented some sort of physical distancing
measures, such as mass gathering cancellations, closure of public spaces (including
restaurants, entertainment venues, non-essential shops, public transport etc.), closure
of educational institutions (including daycare or nursery, primary schools, and secondary
schools and higher education) [65]. In addition, self-imposed measures, such as social

distancing, hand washing, and the use of face masks were promoted to further curb
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transmission of SARS-Cov-2. This voluntary health-related behaviour is likely dependent
on the progression of the epidemic with more measures adopted if the prevalence of
the disease is high. However, most COVID-19 transmission models do not include this
type of risk perception and reactive health-related behaviour. It is thus not known what
the potential impact of these reactive self-imposed measures on the ongoing epidemic
could be and how it compares to government-imposed physical distancing measures. We
provide a theoretical basis to address these questions in Chapter 1 of this thesis. Since
we were interested in possible implications for the general population and thus on a

large-scale, we chose a deterministic compartmental model to address these questions.

While many uncertainties about SARS-CoV-2 remain to date, knowledge gaps and
the lack of reliable data have made the policy response at the start of the pandemic
especially difficult. In particular, little information was available on the predominant
transmission routes of SARS-CoV-2. The WHO reported contact, droplet, airborne,
fomite, fecal-oral, bloodborne, mother-to-child, and animal-to-human transmission
as possible modes of transmission for SARS-CoV-2 in April 2020 [66]. Motivated by
the COVID-19 pandemic, we were interested in how hand hygiene behavior could be
optimized to effectively reduce virus transmission. We developed a statistical model in
Chapter 2 to investigate the effect of different timings of hand washing and the duration
of persistence of viable virus on hands on the risk of infection of an individual. Key
results of this work were presented at the Scientific Advisory Group for Emergencies
(SAGE) to inform the policy response at the beginning of the COVID-19 epidemic in
the United Kingdom (UK). While it is now known that contaminated surfaces and thus
hand hygiene are likely to play a minor role in SARS-CoV-2 transmission (in comparison
with airborne transmission) [67—69], our work has far wider relevance to the control of

respiratory tract infections in general.

The implementation of measures that reduce the spread of COVID-19 is vital for main-
taining healthcare capacities and preventing hospitals to be overwhelmed. Nosocomial
infections have been reported in healthcare settings in many countries during the COVID-
19 pandemic [70, 71]. However, quantitative estimates of SARS-CoV-2 transmission in
hospitals are lacking and its contribution to the overall COVID-19 epidemic is unknown.

Quantification of nosocomial SARS-CoV-2 transmission is hindered by the fact that the
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exact time of infection is rarely known. The definition of a hospital-acquired infection usu-
ally relies on the time of symptom onset [72], or the first positive test [73]. If the delay is
above a pre-defined cutoff (usually the average incubation time), the infection would be
defined as hospital-acquired. This definition might miss a substantial proportion of symp-
tomatic hospital-acquired infections either because patients might be discharged before
developing symptoms or because they developed symptoms before the defined threshold.
Prepared to advise hospital policy decisions of SAGE in the UK, we used simulation mod-
eling in Chapter 3 of this thesis to estimate the proportion of identified COVID-19 cases
in English hospitals attributed to symptomatic hospital-acquired infections as well as the
contribution of the latter to the COVID-19 epidemic in England in the first half of 2020.
To help inform hospital infection control policies for subsequent COVID-19 waves, sev-
eral models were developed to study the impact of interventions to control nosocomial
transmission of SARS-CoV-2 [74-77]. Most studies investigated the use of personal pro-
tective equipment (PPE), isolation of COVID-19 patients, and asymptomatic screening
of HCWs and patients. These studies were developed in the beginning of the pandemic
and often assumed a time-invariant infectiousness of infected individuals and/or perfect
test sensitivity. Huang et al (2021) [78] accounted for a time-varying infectiousness and
imperfect test sensitivity but modeled SARS-CoV-2 transmission only in one hospital
unit in Wuhan [77]. Following up on these studies, we were interested in comparing the
impact of various hospital-based interventions targeted at HCWs on the SARS-CoV-
2 transmission in a hospital consisting of COVID-19 as well as non-COVID-19 wards
while accounting for time-varying infectiousness, and time-varying sensitivities of diag-
nostic tests. In particular, we were interested in the impact of contact-tracing of HCWs,
an intervention supported by observational evidence [79] but not investigated in other
modeling studies. To include information of contact networks and allow for time-varying
infectiousness and test sensitivities, we developed an agent-based model and compared
it to several other hospital-based interventions to investigate their effectiveness in re-
ducing nosocomial transmission and health-care worker absenteeism. For evaluating the
efficiency of testing-based interventions, we also calculated how many individuals that

were tested positive would be detected among the overall number of tested.
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Outline

The unifying theme of this thesis is the evaluation of the impact of preventive measures
on infectious disease transmission by means of mathematical modeling. This is studied
on two different levels dividing the thesis in two parts.

In Part | (Chapter 1 and 2) of the thesis, we focus on modeling types of infection pre-
vention and control measures employed in the community, aiming to reduce infection
disease spread in the general population. In Part Il (Chapters 3-6), we focus on math-
ematical models developed for hospital settings where people from the community are

blend together potentially increasing the risk of infection.

Mathematical models to control the spread of infectious diseases in
the community

In Chapter 1, a deterministic compartmental model was developed linking biological
disease progression with human health-related behaviour. We compared self-imposed
prevention measures, such as social distancing, hand washing, and the use of face masks
with a physical distancing measure that was imposed once by the government for a
short-term in mitigating, delaying, or preventing a COVID-19 epidemic. We were mainly
interested in how health-related behavior as a response to an ongoing epidemic may

affect the epidemic itself.

Chapter 2 picks up hand hygiene as one self-imposed measure from Chapter 1 and applies
a model-based statistical framework to influenza or similar respiratory tract infections.
We were interested in how the effectiveness of this protective measure could be optimized
and focused on different hand washing timings and frequencies as well as for different

durations of persistence of viable virus on hands.

Mathematical models to control the spread of infectious diseases in
hospital settings

Chapter 3 takes the reader from the general population to hospital settings where,
without any control measures, the risk of infection may be greatly increased and the host
population is highly vulnerable. For this population it is of great importance to investigate

the routes of transmission of pathogens causing health-care associated infections and
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to quantify their relative contribution to the overall number of transmissions. This will
help in evaluating intervention strategies and in deciding which hospital infection control
policies targeting the most important transmission routes need to be prioritized. We
investigated the transmission routes of P. aeruginosa, known for its intrinsic resistance
to many antibiotics, its omnipresence in moist environments, and included in the
highest category of WHQO's priority list of antibiotic-resistant bacteria. We developed a
mathematical transmission model to quantify the contributions of different transmission
routes using a Bayesian data-augmented MCMC estimation procedure. We distinguished
background transmission, cross-transmission, and environmental contamination after
the discharge of patients, and estimated their relative importance for the nosocomial
transmission of P. aeruginosa in two ICUs in a French hospital in Besancon.

Chapter 4 is an application of a similar model and method discussed in Chapter 3
to a data set from two ICU wards of the Erasmus Medical Center in Rotterdam.
Here, we focused on the role of persistent contamination in the environment in the
transmission process of Verona integron-encoded metallo-3-lactamase (VIM) producing
P. aeruginosa.

Since SARS-CoV-2 is known to spread efficiently in indoor environments, hospitals
may be an important setting in the COVID-19 pandemic and understanding the extent
of the problem is vital for hospital infection control policies. Chapter 5 presents a
quantification of symptomatic hospital-acquired infections and the contribution of
hospital settings to the overall COVID-19 epidemic in England during the first wave.
To help inform hospital infection control policies for subsequent COVID-19 waves, we
developed an agent-based model in Chapter 6 to study the impact of hospital-based
interventions aimed at HCWs to control nosocomial transmission of SARS-CoV-2. In
contrast to chapters 3 and 4, the infectiousness of an infected individual, contacts
between individuals as well as hospital-based interventions to limit the nosocomial spread
of SARS-CoV-2 are explicitly modeled.

Finally, in the last part of this thesis, we summarize the most important results, discuss

their applicability for informing infection control policies and their potential implications

thereon.
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Impact of self-imposed measures on a COVID-19 epidemic

Abstract

Background: Many countries have implemented social distancing as a measure to flatten the
curve of the ongoing COVID-19 epidemics. Evaluation of the impact of government-imposed
social distancing and of other measures to control further spread of COVID-19 is urgent, especially
because of the large societal and economic impact of the former. We aimed to compare the
effectiveness of self-imposed prevention measures and of short-term government-imposed social
distancing in mitigating, delaying, or preventing a COVID-19 epidemic.

Methods: We developed a deterministic compartmental transmission model of SARS-CoV-2 in
a population stratified by disease status (susceptible, exposed, infectious with mild or severe
disease, diagnosed and recovered) and disease awareness status (aware and unaware) due to
the spread of COVID-19. Self-imposed measures were assumed to be taken by disease-aware
individuals and included handwashing, mask-wearing, and social distancing. Government-imposed
social distancing reduced the contact rate of individuals irrespective of their disease or awareness
status.

Results: For fast awareness spread in the population, self-imposed measures can significantly
reduce the attack rate, diminish and postpone the peak number of diagnoses. We estimate that a
large epidemic can be prevented if the efficacy of these measures exceeds 50%. For slow awareness
spread, self-imposed measures reduce the peak number of diagnoses and attack rate but do not
affect the timing of the peak. Early implementation of short-term government-imposed social
distancing alone is estimated to delay (by at most 7 months for a 3-month intervention) but not
to reduce the peak. The delay can be even longer and the height of the peak can be additionally
reduced if this intervention is combined with self-imposed measures that are continued after
government-imposed social distancing has been lifted.

Conclusions: Our results suggest that information dissemination about COVID-19, which causes
voluntary adoption of handwashing, mask-wearing and social distancing can be an effective strat-
egy to mitigate and delay the epidemic. Early-initiated short-term government-imposed social
distancing can buy time for healthcare systems to prepare for an increasing COVID-19 burden.
We stress the importance of disease awareness in controlling the ongoing epidemic and recom-
mend that, in addition to policies on social distancing, governments and public health institutions
mobilize people to adopt self-imposed measures with proven efficacy in order to successfully tackle

COVID-19.
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Introduction

As of May 5, 2020, the novel coronavirus (SARS-CoV-2) has spread worldwide and only
13 countries have not reported any cases. It has caused over 3,640,835 confirmed cases
of COVID-19 and nearly 255,100 deaths since the detection of its outbreak in China
on December 31, 2019 [1]. On March 11, the World Health Organization officially
declared the COVID-19 outbreak a pandemic [1]. Several approaches aimed at the
containment of SARS-CoV-2 in China were unsuccessful. Airport screening of travelers
was hampered by a potentially large number of asymptomatic cases and the possibility
of pre-symptomatic transmission [2—4]. Quarantine of fourteen days combined with
fever surveillance was insufficient in containing the virus due to the high variability of

the incubation period [5].

Now that SARS-CoV-2 has extended its range of transmission in all parts of the
world, it is evident that many countries face a large COVID-19 epidemic [6]. Initial
policies regarding COVID-19 prevention were mainly limited to reporting cases, strict
isolation of severe symptomatic cases, home isolation of mild cases, and contact
tracing [7]. However, due to the potentially high contribution of asymptomatic and
pre-symptomatic spread [8], these case-based interventions are likely insufficient in
containing a COVID-19 epidemic unless they are highly effective [8—11]. Given the rapid
rise in cases and the risk of exceeding critical care bed capacities, many countries have
Implemented social distancing as a short-term measure aiming at reducing the contact
rate in the population and, subsequently, transmission [6, 12]. Several governments
have imposed nationwide partial or complete lockdowns by closing schools, public places
and non-essential businesses, canceling mass events, and issuing stay-at-home orders
[6]. Previous studies on the 1918 influenza pandemic showed that such mandated
interventions were effective in reducing transmission but their timing and magnitude
had a profound influence on the course of the epidemic [13-18]. These short-term
interventions were associated with a high risk of epidemic resurgence and their impact

was limited if introduced too late or lifted too early [13-16].

Self-imposed prevention measures such as handwashing, mask-wearing, and social
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distancing could also contribute to slowing down the epidemic [19, 20]. Alcohol-based
sanitizers are effective in removing the SARS coronavirus from hands [21] and
handwashing with soap may have a positive effect on reducing the transmission of
respiratory infections [22]. Surgical masks, often worn for their perceived protection,
are not designed nor certified to protect against respiratory hazards, but they can stop
droplets being spread from infectious individuals [23—25]. Information dissemination
and official recommendations about COVID-19 can create awareness and motivate
individuals to adopt such measures. Previous studies emphasized the importance of
disease awareness for changing the course of an epidemic [26—28]. Depending on
the rate and mechanism of awareness spread, the awareness process can reduce the
attack rate of an epidemic or prevent it completely [26], but it can also lead to
undesirable outcomes such as the appearance of multiple epidemic peaks [27, 28]. The
secondary epidemic waves may appear as the result of individuals relaxing adherence
to self-imposed measures prematurely in a population where the susceptible pool
following the first wave is still significantly large and disease has not been completely
eliminated. It is essential to assess under which conditions, spread of disease aware-

ness that instigates self-imposed measures can be a viable strategy for COVID-19 control.

The comparison of the effectiveness of early implemented short-term government-
imposed social distancing and self-imposed prevention measures on reducing the
transmission of SARS-CoV-2 are currently missing but are of crucial importance in the
attempt to stop its spread. If a COVID-19 epidemic cannot be prevented, it is important
to know how to effectively diminish and postpone the epidemic peak to give healthcare
professionals more time to prepare and react effectively to an increasing health care
burden. Moreover, given that several countries have peaked in cases, the importance
of evaluating the effect of self-imposed measures after lifting lockdown measures is

profound.

Using a transmission model we evaluated the impact of self-imposed measures (hand-
washing, mask-wearing, and social distancing) due to awareness of COVID-19 and of
a short-term government-imposed social distancing intervention on the peak number of
diagnoses, attack rate, and time until the peak number of diagnoses since the first case.

We provide a comparative analysis of these interventions as well as of their combinations
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and assess the range of intervention efficacies for which a COVID-19 epidemic can be
mitigated, delayed or even prevented completely. Qualitatively, these results will aid public
health professionals to compare and select a combination of interventions for designing

effective outbreak control policies.

Methods

Baseline transmission model

We developed a deterministic compartmental model describing SARS-CoV-2 transmis-
sion in a population stratified by disease status (Fig 1). In this baseline model, individuals
are classified as susceptible (S), latently infected (E), infectious with mild disease (/),
infectious with severe disease (/s), diagnosed and isolated (/p), and recovered after mild
or severe disease (Ry and Rs, respectively). Susceptible individuals (S) can become la-
tently infected (E) through contact with infectious individuals (/), and Is) with the force
of infection dependent on the fractions of the population in /s and /s compartments. A
proportion of the latently infected individuals (E) will go to the /), compartment, and the
remaining E individuals will go to the /s compartment. We assume that infectious indi-
viduals with mild disease (/)s) do not require medical attention and recover (R)y,) without
being conscious of having contracted COVID-19. Infectious individuals with severe dis-
ease (/s) are unable to recover without medical help, and subsequently get diagnosed
and isolated (/p) (in e.g. hospitals, long-term care facilities, nursing homes) and know
or suspect they have COVID-19 when they are detected. Therefore, the diagnosed com-
partment /p contains infectious individuals with severe disease who are both officially
diagnosed and get treatment in healthcare institutions and those who are not officially
diagnosed but have disease severe enough to suspect they have COVID-19 and require
isolation. For simplicity, isolation of these individuals is assumed to be perfect until recov-
ery (Rs), and, hence, they neither contribute to transmission nor to the contact process.
Given the timescale of the epidemic and the lack of reliable reports on reinfections, we
assume that recovered individuals (R, and Rs) cannot be reinfected. The infectivity of
infectious individuals with mild disease is lower than the infectivity of infectious individuals
with severe disease [29]. Natural birth and death processes are neglected as the time scale
of the epidemic is short compared to the mean life span of individuals. However, isolated

infectious individuals with severe disease (/p) may be removed from the population due
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to disease-associated mortality.

A
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Figure 1: Schematic of the baseline transmission model. Black arrows show epidemiological
transitions. Red dashed arrows indicate the compartments contributing to the force of infection.
Susceptible persons (S) become latently infected (E) with the force of infection Aj¢ via contact
with infectious individuals in two infectious classes (/p; and /s). Individuals leave the E com-
partment at rate a. A proportion p of the latently infected individuals (E) will go to the Iy,
compartment, and the proportion (1 — p) of E individuals will go to the /s compartment. In-
fectious individuals with mild disease (/) recover without being conscious of having contracted
COVID-19 (Ry) at rate yp. Infectious individuals with severe disease (/s) are diagnosed and kept
in isolation (/p) at rate v until they recover (Rs) at rate ys or die at rate n. Table 1 provides
the description and values of all parameters.

Transmission model with disease awareness

In the extended model with disease awareness, the population is stratified not only by
the disease status but also by the awareness status into disease-aware (S?, E?, /3,
2, 13, and Rj,) and disease-unaware (S, E, Iy, Is, Ip, and Ry) (Fig 2 A). Disease
awareness is a state that can be acquired as well as lost. Disease-aware individuals are
distinguished from unaware individuals in two essential ways. First, infectious individuals
with severe disease who are disease-aware (/2) get diagnosed and isolated faster
(13), stay in isolation for a shorter period of time and have lower disease-associated
mortality than the same category of unaware individuals. The assumption we make
here is that disease-aware individuals (/Z) recognize they may have COVID-19 on
average faster than disease-unaware individuals (/s) and get medical help earlier which
leads to a better prognosis of /3 individuals as compared to /p individuals. Second,
disease-aware individuals are assumed to use self-imposed measures such as handwashing,

mask-wearing and self-imposed social distancing that can lower their susceptibility,
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infectivity and/or contact rate. Individuals who know or suspect their disease status
(Ip, 13 and Rs) do not adapt any such measures since they assume that they cannot
contract the disease again. Hence, they are excluded from the awareness transition pro-

cess and their behaviour in the contact process is identical to disease-unaware individuals.

Similarly to Perra et al [27], disease-unaware individuals acquire disease awareness at a
rate proportional to the rate of awareness spread and to the current number of diagnosed
individuals (/p and /2) in the population (Fig 2 B). We assume that awareness fades and
individuals return to the unaware state at a constant rate. The latter means that they no
longer use self-imposed measures. For simplicity, we assume that awareness acquisition
and fading rates are the same for individuals of type S, E, I, and Ry,. However, the rate
of awareness acquisition is faster and the fading rate is slower for infectious individuals

with severe disease (/s) than for the remaining disease-aware population.

Table 1: Parameter values for the transmission model with and without awareness

Value* Source
Epidemiological parameters
Basic reproduction number Ro 25 (2-3) Li et al [5], Park et al [30], sensitivity analyses
Probability of transmission per contact with /s € 0.048 From Ro = B [po/ym + (1 —p)/v]
Transmission rate of infection via contact with /s B 0.66 per day B = ce
Average contact rate (unique persons) c 13.85 persons per day Mossong et al [31]
Relative infectivity of infectious with mild disease (/) o 50% (25-75%) Assumed, see e.g. Liu et al [29], sensitivity analyses
Proportion of infectious with mild disease (/1) P 82% (82-90%) Wu et al [32], Anderson at al [20], sensitivity analyses
Delay between infection and onset of infectiousness (latent period) 1/a 4 days Shorter than incubation period [5, 30, 33]
Delay from onset of infectiousness to diagnosis for /s 1/v 5 (3-7) days Li et al [5], sensitivity analyses
Recovery period of infectious with mild disease (/u) 1/ym 7 (5-9) days Li Xingwang', sensitivity analyses
Delay from diagnosis to recovery for unaware diagnosed (/p) 1/vs 14 days WHO [34]
Relative infectivity of isolated (/p) 0% Assuming perfect isolation
Case fatality rate of unaware diagnosed (/p) f 1.6% Althaus et al[35] Park et al[30]
Disease-associated death rate of unaware diagnosed (/p) n 0.0011 per day n="sf/(1—f)
Awareness parameters
Rate of awareness spread (slow, fast and range) 0 5x 107° 1 (107°-1) per year Assumed, sensitivity analyses
Relative susceptibility to awareness acquisition for S, E, Iy, and Ry k 50% (0-100%) Assumed, sensitivity analyses
Duration of awareness for S?, E2, I3, and R}, 1/p 30 (7-365) days Assumed, sensitivity analyses
Duration of awareness for /2 1/us 60 (7-365) days Longer than 1/pu, sensitivity analyses
Delay from onset of infectiousness to diagnosis for /2 1/v? 3 (1-5) days Shorter than 1/v, sensitivity analyses
Delay from diagnosis to recovery of aware diagnosed (/3) 1/42 12 days Shorter than 1/vs
Case fatality rate of aware diagnosed (/) o 1% Smaller than f
Disease-associated death rate of aware diagnosed (/) m?  0.0008 per day n=72f/(1-f?)
Prevention measure parameters
Efficacy of mask-wearing (reduction in infectivity) 0-100% Varied
Efficacy of handwashing (reduction in susceptibility) 0-100% Varied
Efficacy of self-imposed contact rate reduction 0-100% Varied
Efficacy of government-imposed contact rate reduction 0-100% Varied
Duration of government-imposed social distancing 3 (1-13) months Assumed, sensitivity analyses
Threshold for initiation of government-imposed social distancing 10 (1-1000) diagnoses Assumed, sensitivity analyses

*Mean or median values were used from literature; range was used in the sensitivity analyses.
TExpert at China's National Health Commission

Prevention measures

We considered short-term government intervention aimed at fostering social distancing

in the population and a suite of measures that may be self-imposed by disease-aware
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Figure 2: Schematic of the transmission model with disease awareness. (A) shows epidemi-
ological transitions in the transmission model with awareness (black arrows). The orange dashed
lines indicate the compartments that participate in the awareness dynamics. The red dashed ar-
rows indicate the compartments contributing to the force of infection. Disease-aware susceptible
individuals (57) become latently infected (E?) through contact with infectious individuals (/p,
Is. 1§, and I2) with the force of infection A7 .. Infectious individuals with severe disease who
are disease-aware (/2) get diagnosed and isolated (/3) at rate v?, recover at rate ¥2 and die
from disease at rate n?. (B) shows awareness dynamics. Infectious individuals with severe disease
(Is) acquire disease awareness (/2) at rate Aaware Proportional to the rate of awareness spread
and to the current number of diagnosed individuals (/p and /3) in the population. As awareness
fades, these individuals return to the unaware state at rate us. The acquisition rate of awareness
(kXaware) and the rate of awareness fading (u) are the same for individuals of type S, E, Iy,
and Ry, where k is the reduction in susceptibility to the awareness acquisition compared to /g
individuals. Table 1 provides the description and values of all parameters.
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individuals, i.e., mask-wearing, handwashing, and self-imposed social distancing.

Mask-wearing

Mask-wearing, while often adapted as a protective measure, may be ineffective in re-
ducing the individual’s susceptibility because laypersons, i.e., not medical professionals,
are unfamiliar with correct procedures for its use (e.g. often engage in face-touching
and mask adjustment) [36]. However, mask-wearing reduces infectious output [25] and,
therefore, we assume that this measure lowers only the infectivity of disease-aware infec-
tious individuals (/3, and /2) with an efficacy ranging from 0% (zero efficacy) to 100%

(full efficacy).

Handwashing

Since infectious individuals may transmit the virus to others without direct physical con-
tact, we assume that handwashing only reduces one'’s susceptibility. The efficacy of hand-
washing is described by the reduction in susceptibility (i.e., probability of transmission per
single contact) of susceptible disease-aware individuals (5?) which ranges from 0% (zero
efficacy) to 100% (full efficacy). Since transmission can possibly occur through routes
other than physical contact, hand washing may not provide 100% protection to those

who practice It.

Self-imposed social distancing

Disease-aware individuals, who consider themselves susceptible, may also practice social
distancing, i.e., maintaining distance to others and avoiding congregate settings. As a
consequence, this measure leads to a change in mixing patterns in the population. The
efficacy of social distancing of disease-aware individuals is described by the reduction in
their contact rate which is varied from 0% (no social distancing or zero efficacy) to 100%
(complete self-isolation or full efficacy). Since contacts might not be eliminated entirely
(e.g. household contacts remain), realistic values of the efficacy of self-imposed social

distancing can be close to but may never reach 100%.
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Short-term government-imposed social distancing

Governments may decide to promote social distancing policies through interventions such
as school and workplace closures or by issuing stay-at-home orders and bans on large
gatherings. These lockdown policies will cause a community-wide contact rate reduction,
regardless of the awareness status. Here, we assume that the government-imposed social
distancing is initiated if the number of diagnosed individuals exceeds a certain threshold
(10-1000 persons) and terminates after a fixed period of time (1-3 months). As such,
the intervention is implemented early into the epidemic. Government-imposed social dis-
tancing may be partial or complete depending on its efficacy, i.e., the reduction of the
average contact rate in the population which ranges from 0% (no distancing) to 100%
(complete lockdown). Since during a lockdown, some contacts in the population cannot
be eliminated (e.g. household contacts), realistic values of the efficacy of government-
imposed social distancing can be close to but never reach 100%. For example, a 73%
reduction in the average daily number of contacts was observed during the lockdown in
the UK [37] but the reduction could be different in countries with more or less stringent

lockdown.

Model output

The model outputs are the peak number of diagnoses, attack rate (a proportion of the
population that recovered or died after severe infection), the time to the peak number
of diagnoses since the first case, and the probability of infection during the course of
an epidemic (see S2 Text for a more detailed description of the latter). We compared
the impact of different prevention measures and their combinations on these outputs by
varying the reduction in infectivity of disease-aware infectious individuals (mask-wearing),
the reduction in susceptibility of disease-aware susceptible individuals (handwashing),
the reduction in contact rate of disease-aware individuals only (self-imposed social
distancing) and of all individuals (government-imposed social distancing). We refer to
these quantities as the efficacy of a prevention measure and vary it from 0% (zero
efficacy) to 100% (full efficacy) (Table 1). The main analyses were performed for two
values of the rate of awareness spread that corresponded to scenarios of slow and fast
spread of awareness in the population (Table 1). For these scenarios, the proportion of

the aware population at the peak of the epidemic was 40% and 90%, respectively. In the
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main analyses, government-imposed social distancing was initiated when 10 individuals

got diagnosed and was lifted after 3 months.

Estimates of epidemiological parameters were obtained from the most recent literature
(Table 1). We used contact rates for the Netherlands, but the model is appropriate
for other Western countries with similar contact patterns. A detailed mathematical de-
scription of the model can be found in the S1 Text. The model was implemented in
Mathematica 10.0.2.0. The code reproducing the results of this study is available at
https://github.com/lynxgav/COVID19-mitigation.

Sensitivity analyses

To allow for the uncertainty in the parameters of the baseline transmission model, we
conducted sensitivity analyses with respect to the proportion of infectious individuals with
mild disease, the relative infectivity of infectious individuals with mild disease, the recovery
period of infectious individuals with mild disease, the delay from onset of infectiousness
to diagnosis for infectious individuals with severe disease, and the basic reproduction
number (see S3 Text). We also conducted sensitivity analyses for the model with disease
awareness with respect to changes in the delay from the onset of infectiousness to diag-
nosis and isolation for disease-aware individuals, the rate of awareness spread, the relative
susceptibility to awareness, and the duration of awareness (see S3 Fig). Parameter ranges
used in these sensitivity analyses are specified in Table 1.

In addition, we present results for the impact on the model outcomes of all combinations
of self-imposed prevention measures as their efficacy was varied from 0% to 100% and
of the government-imposed social distancing with efficacy ranging from 0% to 100%,
different thresholds for initiating the intervention (1 to 1000 diagnoses), and different
durations of the intervention (3, 8 and 13 months) (see S1 Fig and S2 Fig for details).

Results

Our analyses show that disease awareness spread has a significant effect on the model
predictions. We first considered the epidemic dynamics in a disease-aware population

where handwashing is promoted, as an example of self-imposed measures (Fig 3). Then,
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Figure 3: lllustrative simulations of the transmission model. (A) and (B) show the number
of diagnoses and the attack rate during the first 12 months after the first case under three
model scenarios. The red lines correspond to the baseline transmission model. The orange lines
correspond to the model with a fast rate of awareness spread and no interventions. The blue lines
correspond to the latter model where disease awareness induces the uptake of handwashing with
an efficacy of 30%.
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we performed a systematic comparison of the impact of different prevention measures

on the model output for slow (Fig 4) and fast (Fig 5) rate of awareness spread.

Epidemic dynamics

All self-imposed measures and government-imposed social distancing have an effect on
the COVID-19 epidemic dynamics. The qualitative and quantitative impact, however,
depends strongly on the prevention measure and the rate of awareness spread. The
baseline model predicts 46 diagnoses per 1000 individuals at the peak of the epidemic,
an attack rate of about 16% and the time to the peak of about 5.2 months (red
line, Fig 3 A and B). In the absence of prevention measures, a fast spread of disease
awareness reduces the peak number of diagnoses by 20% but has only a minor effect
on the attack rate and peak timing (orange line, Fig 3 A and B). This is expected, as
disease-aware individuals with severe disease seek medical care sooner and therefore
get diagnosed faster causing fewer new infections as compared to the baseline model.
Awareness dynamics coupled with the use of self-imposed prevention measures has
an even larger impact on the epidemic. The blue line in Fig 3 A shows the epidemic
curve for the scenario when disease-aware individuals use handwashing as self-imposed
prevention measure. Even if the efficacy of handwashing is modest (i.e., 30% as in Fig 3
A) the impact on the epidemic can be significant, namely we predicted a 65% reduction
in the peak number of diagnoses, a 29% decrease in the attack rate, and a delay in peak
timing of 2.7 months (Fig 3 A and B).

The effect of awareness on the disease dynamics can also be observed in the probability
of infection during the course of the epidemic. In the model with awareness and no
measures, the probability of infection is reduced by 4% for all individuals. Handwashing
with an efficacy of 30% reduces the respective probability by 14% for unaware individuals
and by 29% for aware individuals. Note that the probability of infection is highly dependent

on the type of prevention measure. The detailed analysis is given in the S2 Text.
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Figure 4: Impact of prevention measures on the epidemic for a slow rate of awareness
spread.

(A), (B) and (C) show the relative reduction in the peak number of diagnoses, the attack rate
(proportion of the population that recovered or died after severe infection) and the time until the
peak number of diagnoses. The efficacy of prevention measures was varied between 0% and 100%.
In the context of this study, the efficacy of social distancing denotes the reduction in the contact
rate. The efficacy of handwashing and mask-wearing are given by the reduction in susceptibility
and infectivity, respectively. The simulations were started with one case. Government-imposed
social distancing was initiated after 10 diagnoses and lifted after 3 months. For parameter values,
see Table 1. Please note that the blue line corresponding to handwashing is not visible in (C) since
it almost completely overlaps with lines for mask-wearing and self-imposed social distancing.
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A comparison of prevention measures
Slow spread of awareness

Fig 4 shows the impact of all considered self-imposed measures as well as of the
government-imposed social distancing on the peak number of diagnoses, attack rate,
and the time to the peak for a slow rate of awareness spread. In this scenario, the
model predicts progressively larger reductions in the peak number of diagnoses and in
the attack rate as the efficacy of the self-imposed measures increases. In the limit of
100% efficacy, the reduction in the peak number of diagnoses is 23% to 30% (Fig 4
A) and the attack rate decreases from 16% to 12-13% (Fig 4 B). The efficacy of the
self-imposed measures has very little impact on the peak timing when compared to
the baseline, i.e., no awareness in the population (Fig 4 C). Since the proportion of
aware individuals who change their behavior is too small to make a significant impact on

transmission, self-imposed measures can only mitigate but not prevent an epidemic.

When awareness spreads at a slow rate, a 3-month government intervention has a con-
trasting impact to the self-imposed measure scenario. The time to the peak number of
diagnoses is longer for more stringent contact rate reductions. For example, a complete
lockdown (government-imposed social distancing with 100% efficacy) can postpone the
peak by almost 7 months but its magnitude and attack rate are unaffected (with respect
to the baseline model without measures and awareness). Similar predictions are expected,
as long as government-imposed social distancing starts early (e.g, after tens to hundreds
of cases) and is lifted a few weeks to few months later. This type of intervention halts
the epidemic for the duration of intervention, but, because of a large pool of susceptible
individuals, epidemic resurgence is expected as soon as social distancing measures are
lifted.

Fast spread of awareness

Since the government intervention reduces the contact rate of all individuals irrespec-
tive of their awareness status, it has a comparable impact on transmission for scenarios
with fast and slow rate of awareness spread (compare Fig 4 and Fig 5). However, the
impact of self-imposed measures is drastically different when awareness spreads fast. All

self-imposed measures are more effective than the short-term government intervention.

54



Impact of self-imposed measures on a COVID-19 epidemic

Fast spread of awareness

100k, = geme=eeesesescse=e=-
A »~
80| /
60+ V4
40¢ /‘ no large epidemic

204Z

Relative reduction in
peak number of diagnoses (%)
N\,

baseline (no awareness)
T n

0 : : ‘
0 20 40 60 80 100

Efficacy of prevention measure (%)

Fast spread of awareness

20 B
baseline (no awareness)
—~ 1573
X ~.~b
Q .~o
© 10! *
o N no large epidemic
< 5| Y
Ot . . Sermmman

0 20 40 60 80 100
Efficacy of prevention measure (%)

Fast spread of awareness

24/C

—
x 2
© = » %
o <€
o O
g é Mask-wearing
= % - Handwashing
=}
g 8 - Self-imposed social distancing
g % - Government-imposed social distancing
=5
l_ Y n

o baseline (no awareness) ‘. Y

. )

0 20 40 60 80 100
Efficacy of prevention measure (%)

Figure 5: Impact of prevention measures on the epidemic for a fast rate of awareness
spread. (A), (B) and (C) show the relative reduction in the peak number of diagnoses, the at-
tack rate (proportion of the population that recovered or died after severe infection) and the
time until the peak number of diagnoses. The efficacy of prevention measures was varied be-
tween 0% and 100%. In the context of this study, the efficacy of social distancing denotes the
reduction in the contact rate. The efficacy of handwashing and mask-wearing are given by the
reduction in susceptibility and infectivity, respectively. The simulations were started with one case.
Government-imposed social distancing was initiated after 10 diagnoses and lifted after 3 months.
For parameter values, see Table 1. Please note that the blue line corresponding to handwashing is
not visible in (A) since it almost completely overlaps with lines for mask-wearing and self-imposed
social distancing.
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These measures not only reduce the attack rate (Fig 5 B), diminish and postpone the
peak number of diagnoses (Fig 5 A and C), but they can also prevent a large epidemic
altogether when their efficacy is sufficiently high (about 50%). Note that when the rate
of awareness is fast, as the number of diagnoses grows, the population becomes almost
homogeneous, with most individuals being disease-aware. It can be shown that in such

populations prevention measures yield comparable results if they have the same efficacy.

Combinations of prevention measures

If government-imposed social distancing is combined with a self-imposed prevention
measure, the model predicts that the relative reduction in the peak number of diagnoses
and attack rate are determined by the efficacy of the self-imposed measure, while the
timing of the peak is determined by the efficacies of both the self-imposed measure and
the government intervention. This is demonstrated in Fig 6, where we used a combina-
tion of handwashing with efficacies of 30%, 45% and 60% and government-imposed
social distancing with efficacy ranging from 0% to 100% for slow and fast spread of
awareness. Our results show that the effect of the combined intervention highly depends
on the rate of awareness spread. Fast awareness spread is crucial for a large reduction in
the peak number of diagnoses (Fig 6 A) and in the attack rate (Fig 6 B). Note, that
for fast spread of awareness, a combination of a complete lockdown and handwashing
with an efficacy of 30% could postpone the time to the peak number of diagnoses by
nearly 10 months (Fig 6 C). Thus, when combined with short-term government-imposed
social distancing, handwashing can contribute to mitigating and delaying the epidemic
in particular after the lockdown is relaxed. The second wave of the epidemic could be
prevented completely if the efficacy of handwashing exceeds 50% (Fig 6 A). The results
for the combination of mask-wearing and government-imposed social distancing are

similar.

The effect of combinations of self-imposed measures (e.g. handwashing and mask-
wearing) is additive (see S1 Fig). This means that, for fast spread of awareness, a
large outbreak can be prevented by, for example, a combination of handwashing and
self-imposed social distancing each with an efficacy of around 25% (or other efficacies
adding up to 50%).
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Figure 6: Impact on the epidemic of a combination of government-imposed social dis-
tancing and handwashing (A), (B) and (C) show the relative reduction in the peak number of
diagnoses, the attack rate (proportion of the population that recovered or died after severe in-
fection) and the time until the peak number of diagnoses. The efficacy of handwashing was 30%,
45% and 60%. In the context of this study, the efficacy of social distancing denotes the reduction
in the contact rate. The efficacy of handwashing is given by the reduction in susceptibility. The
simulations were started with one case. Government-imposed social distancing was initiated after
10 diagnoses and lifted after 3 months. For parameter values, see Table 1.
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Discussion

For many countries around the world, the focus of public health officers in the context
of COVID-19 epidemic has shifted from containment to mitigation and delay. Our study
provides new insights for designing effective outbreak control strategies. Based on our
results, we conclude that handwashing, mask-wearing, and social distancing adopted by
disease-aware individuals can delay the epidemic peak, flatten the epidemic curve and
reduce the attack rate. We show that the rate at which disease awareness spreads has
a strong impact on how self-imposed measures affect the epidemic. For a slow rate of
awareness spread, self-imposed measures have less impact on transmission, as not many
individuals adopt them. However, for a fast rate of awareness spread, their impact on
the magnitude and timing of the peak increases with increasing efficacy of the respective
measure. For all measures, a large epidemic can be prevented when the efficacy exceeds
50%. Moreover, the effect of combinations of self-imposed measures is additive. In
practical terms, it means that SARS-CoV-2 will not cause a large outbreak in a country
where 90% of the population adopt handwashing and social distancing that are 25%

efficacious (i.e., reduce susceptibility and contact rate by 25%, respectively).

Although our analyses indicate that the effects of self-imposed measures on mitigating
and delaying the epidemic for the same efficacies are similar (see Fig 4 and Fig 5), not all
explored efficacy values may be achieved for each measure. Wong et al [22] and Cowling
et al [24] performed a systematic review and meta-analysis on the effect of handwashing
and face masks on the risk of influenza virus infections in the community. While the
authors highlight the potential importance of both hand hygiene and face masks, only
modest effects could be ascertained with a pooled risk ratio of 0.73 (95% CI: [0.6,
0.89]) for a combination of these two measures. However, the authors also highlight
the small number of randomized-controlled trials and the heterogeneity of the studies
as notable limitations which may have led to these results. Given the high uncertainty
around the efficacies of hand hygiene and mask-wearing on their own, the promotion of a
combination of these measures might become preferable to recommending handwashing
or mask-only measures. For self-imposed social distancing, contacts might not be
eliminated entirely (e.g. household contacts remain) and therefore realistic values of the

efficacy of self-imposed social distancing can be close to but may never reach 100%.
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Thus, for a fair comparison between measures, realistic efficacy values of a specific

measure should be taken into consideration.

We contrasted self-imposed measures stimulated by disease awareness with mandated
social distancing. Our analyses show that short-term government-imposed social
distancing that is implemented early into the epidemic, can delay the epidemic peak but
does not affect its magnitude nor the attack rate. For example, a complete lockdown
of 3 months imposing a community-wide contact rate reduction that starts after tens
to thousands diagnoses in the country can postpone the peak by about 7 months. Such
an intervention is highly desirable, when a vaccine is being developed or when healthcare
systems require more time to treat cases or increase capacity. If this intervention is
implemented in a population which exercises a self-imposed measure that is continued
being practiced even after the lockdown is over, then the delay can be even longer
(e.g. up to 10 months for handwashing with 30% efficacy). In the context of countries
that implemented social distancing as a measure to ‘flatten the curve' of the ongoing
epidemics, peaked in cases and now are now planning or have already started gradual
lifting of social distancing, it means that governments and public health institutions
should intensify the promotion of self-imposed measures to diminish and postpone
the peak of the potential second epidemic wave. The potential second wave could be
prevented altogether if the coverage of a self-imposed measure in the population and its
efficacy are sufficiently high (e.g. 90% and 50%, respectively). Our sensitivity analyses
showed that lower or higher efficacies can be required to prevent a large epidemic for

countries with smaller or larger basic reproduction numbers (see S3 Text).

Since for many countries the COVID-19 epidemic is still in its early stages, government-
iImposed social distancing was modeled as a short-term intervention initiated when the
number of diagnosed individuals was relatively low. Our sensitivity analyses showed
that government interventions introduced later into the epidemic (at 100—1000
diagnoses) and imposed for a longer period of time (3—13 months) not only delay
the peak of the epidemic but also reduce it for intermediate efficacy values (see S2
Fig). Previous studies suggested that the timing of mandated social distancing is
crucial for its viability in controlling a large disease outbreak [13, 14, 16, 38]. As

discussed by Hollingsworth et al [16] and Anderson et al [20], a late introduction
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of such interventions may have a significant impact on the epidemic peak and
attack rate. However, the authors also showed that the optimal strategy is highly
dependent on the desired outcome. A detailed analysis of government intervention with
different timings and durations that also takes into account the economic and soci-

etal consequences, and the cost of SARS-CoV-2 transmission is a subject for future work.

To our knowledge, our study is the first to provide comparative analysis of a suite of
self-imposed measures, government-imposed social distancing and their combinations
as strategies for mitigating and delaying a COVID-19 epidemic. Several studies (e.g.,
[39-42]) looked at the effect of different forms of social distancing but they did not
include self-imposed measures such as handwashing and mask-wearing. Some of these
studies concluded that one-time social-distancing interventions will be insufficient to
maintain COVID-19 prevalence within the critical care capacity [40, 42]. In our analyses,
we explored the full efficacy range for all self-imposed prevention measures and different
durations and thresholds for initiation of government intervention. Our results allow to
draw conclusions on which combination of prevention measures can be most effective
in diminishing and postponing the epidemic peak when realistic values for the measure’s
efficacy are taken into account. We showed that spreading disease awareness such that
highly efficacious preventive measures are quickly adopted by individuals can be cru-

cial in reducing SARS-CoV-2 transmission and preventing a large epidemics of COVID-19.

Our model has several limitations. It does not account for stochasticity, demographics,
heterogeneities in contact patterns, spatial effects, inhomogeneous mixing, imperfect
isolation of individuals with severe disease, and reinfection with COVID-19. Our
conclusions can, therefore, be drawn on a qualitative level. Detailed models will have
to be developed to design and tailor effective strategies in particular settings. The
impact of the duration of immunity has been explored by Kissler et al [43]. The effect
of non-permanent immunity on the results of our model would be an interesting subject
for future work. To take into account the uncertainty in SARS-CoV-19 epidemiological
parameters, we performed sensitivity analyses to test the robustness of the model
predictions. As more data become available, our model can be easily updated. In
addition, our study assumes that individuals become disease-aware with a rate of

awareness acquisition proportional to the number of currently diagnosed individuals.
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Other forms for the awareness acquisition rate that incorporate, e.g., the saturation of
awareness, may be more realistic and would be interesting to explore in future studies.
Furthermore, we assume that handwashing may reduce the susceptibility of an individual
down to 0% and therefore neglect aerosol transmission of SARS-CoV-2. Thus, the
impact of handwashing on the epidemic may be an overestimation. However, while there
is preliminary evidence on SARS-CoV-2 RNA detection in aerosols [44], there is still
uncertainty about the level of infectiousness of the detected aerosols and the significance
of potential airborne transmission. Current recommendations by the WHO are still
focused on droplet and contact precautions [45]. Our model may be adapted as more

information on the relative contribution of the transmission routes of COVID-19 emerges.

In conclusion, we provide the first empirical basis of how stimulating the uptake of
effective prevention measures, such as handwashing or mask-wearing, combined with
government-imposed social distancing intervention, can be pivotal to achieve control over
a COVID-19 epidemic. While information on the rising number of COVID-19 diagnoses
reported by the media may fuel anxiety in the population, wide and intensive promotion of
self-imposed measures with proven efficacy by governments or public health institutions
may be a key ingredient to tackle COVID-19.
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Impact of self-imposed measures on a COVID-19 epidemic: Supplement

S1: Mathematical description of the model

Baseline transmission model

We developed a deterministic compartmental model describing SARS-CoV-2 transmis-
sion in a population stratified by disease status (see Figure 1 in the main text). In
the baseline model, individuals are classified as susceptible (S), latently infected (E),
infectious with mild disease (/j), infectious with severe disease (/s), diagnosed and
isolated (/p), and recovered (R and Rs after mild or severe disease, respectively).
Susceptible individuals (S) become latently infected (E) through contact with infectious
individuals (/py and Is) with the force of infection \i,; dependent on the fractions of
the population in /), and /s compartments. Latently infected individuals (E) become
infectious at a rate «; a proportion p of the latently infected individuals will go to
the /)y compartment, a proportion (1 — p) to the /s compartment. We assume that
infectious individuals with mild disease (/) do not require medical attention and recover
(Ry) with rate vy, without being conscious of having contracted COVID-19. Infectious
individuals with severe disease (/s) are unable to recover without medical help, and
subsequently get diagnosed and isolated (/p) with rate v (in e.g. hospitals, long-term
care facilities, nursing homes) and know or suspect they have COVID-19 when they
are detected. Therefore, the diagnosed compartment /5 contains infectious individuals
with severe disease who are both officially diagnosed and get treatment in healthcare
institutions and are not officially diagnosed but have a disease severe enough to suspect
they have COVID-19 and require treatment as well as isolation. For simplicity, isolation
of these individuals is assumed to be perfect until recovery (Rs) which occurs at rate
vYs, and, hence, they neither contribute to transmission nor to the contact process.
Given the timescale of the epidemic and the lack of reliable reports on reinfections, we
assume that recovered individuals (R, and Rs) cannot be reinfected. The infectivity of
infectious individuals with mild disease is lower by a factor 0 < ¢ < 1 than the infectivity
of infectious individuals with severe disease [29]. Natural birth and death processes are
neglected as the time scale of the epidemic is short compared to the mean life span
of individuals. However, isolated infectious individuals with severe disease (/p) may be

removed from the population due to disease-associated mortality at rate 7.
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The transmission model without awareness is given by the following system of ordinary

differential equations

di(t_” = —S(E) ()
%Ef) = S(t)Nine(t) — aE(1)
dim(t)
ek poE(t) — Ymlm(t)
d/jgt) = (1 - p)aE(t) — vis(t) (1.1)
dlgit) — U/s(t) _ ’YS/D(t) - n/D(t)
dRm(t)
iz = Ymlm(t)
deSt(t) = vslp(t),
where
\ B
(1) = gy om0 + 15 ()] (12)

is the force of infection and N(t) = S(t) + E(t) + In(t) + Is(t) + Rm(t) + Rs(t) is the

total number of individuals who participate in the contact process.

Transmission model with disease awareness

In the extended model with awareness, the population is stratified not only by
the disease status but also by the awareness status into disease-aware (57, E?,
I8, 12, 13, and R3,) and disease-unaware (S, E, Iy, Is, and Ry) (Figure 2 A in
the main text). Disease awareness is a state that can be acquires as well as lost.
Disease-aware individuals are distinguished from unaware individuals in two essential
ways. First, infectious individuals with severe disease who are disease-aware (/2) get
diagnosed and isolated faster (/3) with rate v?, stay in isolation for a shorter period
of time (recovery rate v2) and have lower disease-associated mortality (rate n?) than
the same category of unaware individuals. The assumption we make here is that
disease-aware individuals (/2) recognize they may have COVID-19 on average faster
than disease-unaware individuals (/s) and get medical help earlier which leads to a

better prognosis of /3 individuals as compared to /p individuals. Second, disease-
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aware individuals are assumed to use self-imposed measures such as handwashing,
mask-wearing and self-imposed social distancing that can lower their susceptibility,
infectivity and/or contact rate. Individuals who know or suspect their disease status
(Ip, 13 and Rs) do not adapt any such measures since they assume that they cannot
contract the disease again. Hence, they are excluded from the awareness transition pro-

cess and their behaviour in the contact process is identical to disease-unaware individuals.

A schematic representation of the awareness dynamics is given in Figure 2 B in the
main text. Individuals of type S, E, Iy, Is, and Ry, become aware of the disease with
the awareness acquisition rate Aaware(t) proportional to the current number of diagnosed

individuals via information shared by the government or media
>\aware(t) =0- [/D(t) + /E)(t)] '

where 9 is a constant which describes how fast unaware individuals become aware per

unit of time. This formulation is based on Eq. (7) in Perra et al. [27].

We assume that awareness fades and individuals return to the unaware state at a constant
rate. The latter means that they no longer use self-imposed measures. We propose that
awareness acquisition and fading rates are the same for individuals who are susceptible
(S), latently infected (E), infectious with mild disease (/) and recovered after mild
disease (Ry). The rate of awareness acquisition for these individuals is a factor 0 < k <1
lower than the rate of awareness acquisition for infectious individuals with severe disease
(Is). Also, infectious individuals with severe disease are more cautious and, therefore, lose
awareness at a slower rate than other individuals. Thus, we use u to denote the decay

rate in compartments 5S¢, E?, [7,, and R}, and us for compartment /2, such that u > us.

The difference in disease severity and state of awareness affects the transmission rates

and we define the following matrix to summarize transmission rates between different
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types of susceptible and infectious individuals

unaware Iy, unaware ls aware Iy aware Ig
unaware S Mll(t) Ml2(t) M13(t) M14(t)

M(t) =
aware S M21(t) MQQ(t) M23(t) M24(t)

(1.3)
Here [M];; captures transmission of infection from unaware /, to unaware S, [M];5 from
unaware /s to unaware S, [M];3 from aware [, to unaware S, [M]14 from from aware /),
to unaware S. Similarly, the second row of the matrix captures transmission of infection

to susceptible individuals who are aware, S2. To sum up,

S+ly™Ms ey, sy Mep

S+ Mep e g™y ey

sy, My payysay Mgl

say 3 Mz pa e gay ja Mz pa e

NS

The transmission model with awareness is given by the following system of ordinary
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differential equations

%(tt) = —=S()Ninf(t) = kS(t) Maware(t) + uS7(t)
%(tt) = S(E)Ninf(t) = @E(t) = KE(E)Naware(t) + HE(t)
dlﬂcﬁt) = paE(t) — Yl (t) — kip(t) Xaware(t) + wlZ, (1)
dljgt) = (1 — p)aE(t) — vis(t) — Is(t) Aaware(t) + ws/2(t)
d/SEt) = vls(t) —vslo(t) — nlp(t)
%ﬁt) = =S (O)A(t) + kS() Naware(t) — uS?(t)
di(t) = S (OA2(t) — aE(t) + kE(t) Aaware(t) — LE?(2) (1.4)
d/ﬁd/,gt) = paE2(t) — yml2,(t) + kipg(t) Aaware () — wlZ,(1)
%&t) = (1= p)aE(t) — V712 + Is(t) Aaware (t) — s /2(2)
dlé’it) = v7I5(t) = 5l (t) = n7lp(1)
deMt(t) = YmlIm(t) = kR () Xaware () + w3, (1)
de”t(t) = Y lig(t) + kRu(t) Navare(t) — LR (1)
PR — siot) +v213(2).
where
Aaware(t) = 8 - [Io(t) + Ip(t)] (1.53)

Ainf(t) = [M(O)]11lm(t) + [M(8)]12ls(t) + [M(8)]1sl 5y (t) + [M(8)]14lE(t)  (1.5b)
Ane(£) = [M()]21lm(t) + [M(8)]22ls(t) + [M(8)]sl iy (8) + [M(8)]24lE(2).  (1.5¢)

For the population where disease-aware individuals do not use self-imposed measures

matrix M takes the following form

B

N7 (t) (1.6)

Mo(t) =

0'101]

cl o1
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with Np(t) = S(t) + E(t) + Im(t) + Is(t) + S2(t) + E(t) + 15,(t) + 12(t) + Rum(t) +
Rﬁ/,(t)—f— Rs(t).

Estimates of epidemiological parameters were obtained from previous studies and are

shown in Table 1 in the main text.

Prevention measures

We considered short-term government intervention aimed at fostering social distancing
in the population and a suite of measures self-imposed by disease-aware individuals, i.e.,

mask-wearing, handwashing, and self-imposed social distancing.

Mask-wearing

Mask-wearing does not reduce the individual’s susceptibility because laypersons, i.e., not
medical professionals, are unfamiliar with correct procedures for its use and may often
engage in face-touching and mask adjustment.[36] The efficacy of mask wearing is de-
scribed by a reduction in infectivity of disease-aware infectious individuals (/2 and /)

and is represented by a factor r;, 0 < r; < 1. The respective transmission matrix is given

by

B

Y W ®

(1.7)

c 1 no r1]

o 1 no n

with N7(t) = S(t) + E(t) 4+ Iu(t) + Is(t) + Rm(t) + Rs(t) + S2(t) + E(t) + 13,(t) +
12(t) + Riy(¢).

Handwashing

Since infectious individuals may transmit the virus to others without direct physical con-
tact, we assume that handwashing only reduces one'’s susceptibility. The efficacy of hand-
washing is described by a reduction in susceptibility (i.e., probability of transmission of
infection per single contact) of susceptible disease-aware individuals (S?) and is repre-

sented by a factor r,, 0 < b, < 1. The respective transmission matrix is given by

B

Y2 = N

(1.8)

0101]

o h ho
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with Np(t) = S(t) + E(t) 4+ Iu(t) + Is(t) + Rm(t) + Rs(t) + S2(t) + E2(t) + 17,(t) +
15(t) + Ry (t).

Self-imposed social distancing

Disease awareness may also lead individuals to practice social distancing, I.e., maintaining
distance to others and avoiding congregate settings. Social distancing of disease-aware
individuals is modeled as a reduction in their contact rate. As a consequence, this measure
leads to a change in mixing patterns in the population. We model the reduction in contact
rate of aware individuals by using the parameter r3, 0 < r; < 1. Recall that individuals
who recovered from a mild infection may still think of themselves as susceptible, which
implies that they are affected by the awareness contagion process. They can, therefore,
practice social distancing after they recover. The respective transmission matrix is given

by
c 1 o n

6]
N(t) 4+ sNa(t)

1o 3 r;o ri

where N(t) = S(t) + E(t) + Iu(t) + Is(t) + Ru(t) + Rs(t) and N(t) =
Sa(t) + E2(t) + 13,(t) + 12(t) + R3, ().

Short-term government-imposed social distancing

Governments may decide to promote social distancing policies through interventions such
as school and workplace closures, or by issuing a ban on large gatherings and issuing stay-
at-home orders [12, 17, 18, 46], if the number of diagnosed individuals exceeds a certain
threshold. Such a policy will cause a community-wide contact rate reduction, regardless
of the awareness status. We model government-imposed social distancing by reducing
the average contact rate in the population by a factor ry, 0 < r; < 1. This intervention
is initiated if the number of diagnosed individuals is above a certain threshold / (e.q.,
10 — 1000 individuals) and terminates after a fixed period of time, denoted tntervention
(e.g., 1 — 13 months). As such, we assume that the intervention is implemented early

in the epidemic. If tsan is the time for which Ip(t) + 13(t) > 1, then the transmission
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matrix is given by

6] _lo1l o1
M5(t)=NT(t)-r-L . 1], (1.10)

where

Iy, if /D(t) + /E(t) Z 7 and t S tstart T tintervention

~?
I

1, otherwise

and N7(t) = S(t) + E(t) + Im(t) + Is(t) + Ru(t) + Rs(t) + S2(t) + E2(t) + I5,(t) +
15(t) + Riy(t).
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S2: Impact of awareness process on the probability of
infection

We compared changes in the probability of infection for individuals who are aware and
who are unaware over the studied period of T,.x = 2.5 years for various scenarios of
self-imposed measures and government-imposed social distancing (Figure S1). The prob-

abilities were calculated using the following equations

Tmax
Probability of infection of aware individuals =1 — exp {—/ Ainf(t) dt} (1.11a)
0

Tmax
Probability of infection of unaware individuals =1 — exp {—/ 26(1) dt] , (1.11b)
0

where A\in¢(t) and A2(t) are given by Eq. (5b) and (5c).

We observe that when aware individuals adapt mask wearing, the probability of infection
is equally reduced for aware and unaware individuals, as it reduces the infectivity of a part
of the population. This measure is most efficient when the rate of awareness spread is
fast and infectivity reduction due to mask use is above 40%.

In the case of handwashing, the probability is reduced for both aware and unaware in-
dividuals. However, aware individuals experience a larger reduction. Handwashing yields
direct protection to aware individuals, while unaware individuals benefit indirectly from
the overall reduced infection level. Similar to mask-wearing, the infection probabilities for
both aware and unaware individuals decrease drastically when the efficacy of handwashing
exceeds 40% and the rate of awareness spread is fast.

Effects of self-imposed social distancing depend on the rate of awareness spread as well.
While aware individuals have reduced probability of infection regardless of the rate of
awareness spread, the unaware individuals will only benefit from it when the rate of
awareness spread is fast. This is due to modified mixing patterns that emerge as a result
of heterogeneous contact rates.

Finally, government-imposed short-term social distancing which lasts for 3 months has no
effect on acquisition rates for aware and unaware individuals. The respective probability

of infection is marked with dashed red line in Figure S1.
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Impact of awareness process on the probability of infection. TOP panels were ob-
tained for a slow rate of awareness spread. BOTTOM panels were obtained for a fast
rate of awareness spread. The dashed red line indicates probability of infection in the
model with awareness and no prevention measures.
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S3: Sensitivity analyses of the baseline transmission model

To allow for the uncertainty in the parameters of the baseline transmission model, we
conducted sensitivity analyses with respect to the proportion of infectious individuals
with mild disease (Figure S2), relative infectivity of infectious individuals with mild dis-
ease (Figure S3), recovery period of infectious individuals with mild disease (Figure S4),
delay from onset of infectiousness to diagnosis for infectious individuals with severe dis-
ease (Figure S5), and basic reproduction number (Figure S6). Since our findings in the
main text demonstrate that the impact of self-imposed measures is similar across all
measures that we considered, we present here only sensitivity analyses for mask-wearing
and government-imposed social distancing. All fig/chapterl/ were made for a fast rate
of awareness spread. In each figure, the panels show the relative reduction in the peak
number of diagnoses, the attack rate (proportion of the population that recovered or died
after severe infection) and the time until the peak number of diagnoses. In the top row
of panels, the efficacy of mask-wearing was varied between 0% and 100%. In the bottom
row of panels, the efficacy of government-imposed social distancing was varied between
0% and 100%. In the context of this study, the efficacy of social distancing denotes the
reduction in the contact rate. The efficacy of mask-wearing is given by the reduction
in infectivity. The simulations were started with one case. Government-imposed social
distancing was initiated after 10 diagnoses and lifted after 3 months. For fixed parameter
values, see Table 1 in the main text. The parameter which was varied in the sensitivity
analyses and the respective range is indicated in each figure.

The main findings of the sensitivity analyses for government-imposed social distancing

are

e the time until the peak number of diagnoses does not depend much on any of the

explored parameters, except for the basic reproduction number

e the relative reduction in the peak number of diagnoses increases and the attack
rate decreases with increasing proportion of infectious individuals with mild disease,
decreasing relative infectivity of infectious individuals with mild disease, shorter
recovery period of individuals with mild disease and shorter delay from onset of

infectiousness to diagnosis for individuals with severe symptoms
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The main findings of the sensitivity analyses for mask-wearing are

e for all explored parameter ranges there is a value of efficacy of mask-wearing for

which a large epidemic can be prevented

e this critical value of efficacy is very sensitive to the basic reproduction number;

smaller value of efficacy is required to prevent a large epidemic for smaller Rq

e the critical value decreases with decreasing relative infectivity of infectious individu-
als with mild disease and shorter delay from onset of infectiousness to diagnosis for

individuals with severe symptoms and is not sensitive to the remaining parameters
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Sensitivity analyses of the baseline transmission model with respect to the
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Figure S1: Impact of combinations of self-imposed prevention measures.
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Impact of community hand hygiene interventions on respiratory tract infections

Abstract

Background: Hand hygiene is amongst the most fundamental and widely-used
behavioural measures to reduce the person-to-person spread of human pathogens and
its effectiveness as a community intervention is supported by evidence from randomised
trials. However, a theoretical understanding of the relationship between hand hygiene
frequency and change in risk of infection is lacking.

Methods and Findings: Using a simple model-based framework for understanding the
determinants of hand hygiene effectiveness in preventing viral respiratory tract infections
we show that a crucial, but overlooked, determinant of the relationship between hand
hygiene frequency and risk of infection via indirect transmission is persistence of viable
virus on hands. If persistence is short, as has been reported for influenza, hand-washing
needs to be performed very frequently or immediately after hand contamination to
substantially reduce the probability of infection. When viable virus survival is longer
(e.g., in the presence of mucus or for some enveloped viruses) less frequent hand
washing can substantially reduce the infection probability. Immediate hand washing after
contamination is consistently more effective than at fixed-time intervals.

Conclusions: Our study highlights that recommendations on hand hygiene should
be tailored to persistence of viable virus on hands and that more detailed empirical

investigations are needed to help optimise this key intervention.

Keywords: hand hygiene, respiratory infections, community, influenza, modelling
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Introduction

Promotion of hand hygiene is a key public health intervention in preventing the spread of
infectious diseases. Since the mid-1800s, when Ignaz Philip Semmelweis demonstrated
that hand washing could dramatically reduce maternal mortality due to puerperal fever
[1], hand hygiene has been the cornerstone of infection prevention and control policies. In
hospital settings, hand hygiene has played a major role in successfully controlling hospital-
acquired infections, especially those caused by methicillin-resistant Staphylococcus aureus
[2]. In the community, there is evidence from randomized controlled trials that hand
hygiene interventions can be effective in reducing both the risk of diarrhoeal disease [3]
and respiratory tract infections [4—6].

Hand hygiene is simple, low-cost, minimally disruptive and, when widely adopted, may
lead to substantial population-level effects [5, 7]. While randomized controlled trials of
hand hygiene interventions in the community provide evidence that such interventions
are effective in reducing the incidence of respiratory tract infections, reported effect
sizes are highly variable [4, 6]. It is unclear to what extent this variability is explained
by success in achieving substantial changes in hand hygiene behaviour in these trials.
Understanding how the effectiveness of hand hygiene in reducing transmission scales
with hand hygiene frequency is important for assessing the extent to which interventions
that aim at achieving a large and sustained increase in community hand hygiene can
contribute to infection suppression.

In this study, we took a theory-based approach and developed a simple mechanistic
mathematical model to understand the relationships between the various components
of respiratory tract infection transmission pathways involving hand contamination. We
aimed to quantify the expected impact of different hand hygiene behaviours on risks of
respiratory tract infections. Our work is motivated by published data on the survival of
influenza A on human fingers. We therefore focus on viral respiratory tract infections
but our model also applies to pathogens for which similar assumptions apply. Finally, we
consider the implications of the outcomes of these analyses for the potential contribution

of intensifying community hand hygiene to the suppression of respiratory tract infections.
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Methods

Overview

We consider human pathogens where transmission is mediated by contaminated hands.
We neglect direct droplet and aerosol transmission. Hands are assumed to become con-
taminated with infectious material via contact with contaminated surfaces or an infected
person. In the absence of hand washing, hands do not remain contaminated indefinitely;
instead, as has been shown experimentally, the probability of remaining contaminated
and capable of transmitting infection declines over time (Figure 1, top panel) [8, 9]. If
contaminated hands of a susceptible host make contact with the host's mucous mem-
branes in the eyes, nose or mouth there is some probability of the host becoming infected.
Effective hand washing interrupts this process by removing viable virus from the hands.

An immediate consequence of this conceptualisation is that the time interval between

Probability of infection

Time

Hand : : : :
contamination H : . .

— ~— —

= RRART R AR A

Potential infection I I I I I
from hands via {% % ﬁ%’? %? ﬁ%?
face-touching

----- X Potential infection event prevented by hand washing
- - - - -@ Potential infection event (not prevented)

—

Figure 1: Hand hygiene model. lllustration of potential infection events from hands via
face-touching, hand contamination events, and hand washing events. Hand contamina-
tion events cause a stepwise increase in the probability of infection resulting from face-
touching events, which then decreases exponentially with time. Effective hand washing
reduces the probability of infection to zero during subsequent face-touching if no further
hand contamination events occur. An infection may occur between a hand contamina-
tion event and hand washing, depending on the probability of infection at the moment
of face-touching.
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the hands becoming contaminated and the potential transmission to the host can have
a critical impact on how effective a given frequency of hand washing will be at inter-
rupting transmission (Figure 2). Given a certain probability of infection, the time interval
between hand contamination and transmission to the host's mucosa tends to be longer
if pathogen persistence on hands is long and vice versa. If this time interval is relatively
long, i.e., the virus survives on hands for a long time, regular effective hand hygiene will
have a high chance of blocking potential transmission events (red squares in Figure 2
panel A) in the absence of hand hygiene. In contrast, if this time interval is short, i.e.
the pathogen persists for only a short amount of time, much more frequent hand hygiene
will be needed to block an appreciable proportion of transmission events (Figure 2 panel
B).

Potential transmission from ---® Transmission

%?Hand contamination event hands via face touching ---@ Transmission blocked

A AAARA . A AAA .
P B0 1!

et {] W) |f]
{

#/0--H

N L

$ee0 ¢ $e00  f
)

f s 1

Long time interval between hand contamination Short time interval between hand contamination
and transmission via face touching and transmission via face touching

Figure 2: Long versus short time interval between hand contamination and infec-
tion with regular hand washing. A) When there are long time intervals between hand
contamination and potential infection from hands via face-touching, hand washing can
block many infection events and substantially reduce the risk of infection. B) When there
are short time intervals between hand contamination and face-touching, it is likely that
hand washing can disrupt only a few infections.
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Hand hygiene scenarios

We explored the effect of hand hygiene on the probability of infection and considered

two hand washing schemes that are distinguished by different timings of hand washing:
1. fixed-time hand washing (uniformly at fixed time intervals)

2. event-prompted hand washing (with a delay after hand contamination events).

Mathematical model

We assumed that hands of susceptible individuals become contaminated at random.
These contamination events are assumed to occur independently of each other, and to
follow a Poisson distribution with a mean of A, events per hour. Once contaminated, we
assumed that in the absence of hand washing there is a constant rate at which hands get
decontaminated. Thus, the probability of the virus persisting on hands at time t after
contamination, P(t), is assumed to decay exponentially with a half-life of T7,,. This is
consistent with experimental data for influenza A [9]. We further assumed that, in a
given time interval [0, T], individuals touch their face at random times ty, ..., te leading
to potential self-infection events that are assumed to occur independently of each other,
and follow a Poisson distribution with a mean of Ar events per hour. The probability that
a single face-touching contact with contaminated hands actually leads to transmission
is denoted by €. The force of infection that a susceptible individual at time t becomes
infected is \i,s(t) = €P(t). The cumulative probability of infection over a given time
period T is then given by: 1 — e~ X1€P(t8) \We assumed that when hand washing is
performed after the last hand contamination event and before a face-touching event at
time t;, the respective probability of pathogen persistence P(t;) is reduced to zero. Thus,
hand washing is assumed to remove all virus on contaminated hands completely after one
wash, regardless of the number of hand contamination events that took place between
hand washing events. A more detailed mathematical description of the model is included

in the supplementary material (pp. 15).

Parameters

When available, parameter estimates were obtained from the literature. Otherwise, we

performed sensitivity analyses where parameters were varied within plausible ranges (see
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Table 1).

The probability of transmission per face-touching event, €, was constrained to meet a
fixed probability of infection. In our main analysis, we assumed a cumulative probability of
infection of 10% over a time period of 12 hours. This is roughly based on secondary at-
tack rates for Influenza, influenza-like-illnesses and acute respiratory illness in household
studies [10—13]. In sensitivity analyses, we examine the results for cumulative probabilities
of infection of 30% and 50%.

In the fixed-time hand washing scheme, we varied time intervals between hand washing
to be 5 min to 6 hours. For event-prompted hand washing, the delay of hand washing
after hand contamination events was varied from 1 min to 6 hours.

There is little published data on the rate of hand contamination events susceptible individ-
uals are exposed to when in contact with infected individuals who are shedding respiratory
viruses. In a direct observation study conducted by Zhang et al [14], surface touching be-
haviour in a graduate student office was recorded. Approximately 112 surface touches per
hour were registered. Another study by Boone et al [15] found that the influenza virus was
detected on 53% of commonly touched surfaces in homes with infected children (using
reverse transcriptase-polymerase chain reaction (RT-PCR)). Informed by these values,
we took 60 events per hour as the upper bound for the rate of hand contamination events
Mc. We chose 1 event per hour as the lower bound. In our main analyses, we used a rate
of 4 hand contamination events per hour.

In [9], the survival of influenza A on human fingers was experimentally investigated. We
fitted exponential decay curves to these results in order to determine the half-life of
the probability of persistence of H3N2 for two viral volumes, 2 uL and 30 ulL (Table 1
and supplementary material). We use these values as examples for the half-life of the
probability of pathogen persistence. In addition, we vary the half-life of the probability of

persistence from 1 to 60 min in our analysis.

Model analyses and outcomes

The model output is the cumulative probability of a susceptible person becoming infected
in twelve hours and we will refer to it subsequently as simply the probability of infection.
We investigated the impact of hand washing on the probability of infection for different
hand contamination rates. In addition, we compared the two hand washing schemes

(fixed-time vs. event-prompted) to find the optimal hand washing strategy that will lead
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Table 1: Parameter values

Value Source
Time period 12 hours Assumed
Rate of infection events through face-touching (per hour) A 10 [16]"
Cumulative probability of infection (in 12 hours) 10% (30 %, 50 %)" Assumed
Probability of transmission per face-touching event € Computed from cumulative probability of infection
Rate of hand contamination events (per hour) Ac 4 hour? (1-60 hour!)t [14, 15]
Time between hand washing events (fixed-time) tr 5,15, 30 min, 1 hour, 2, 6 hours Assumed
Delay of hand washing after hand contamination events tp 1,5, 15, 45 min, 1 hour, 2, 6 hours Assumed
Half-life of virus persistence Ti2  1-60 min Varied
Half-life of H3N2 persistence for 2 uL of viral inoculum 5.4 min [9]
Half-life of H3N2 persistene for 30 ulL of viral inoculum 36.1 min [9]

* Mean face-touching frequency involving mucous membranes (eyes, mouth, nose)

T Sensitivity analyses

to the greatest reduction of the probability of infection. The model was implemented in
R version 3.6.3 [17]. The code reproducing the results of this study is available at
https://github.com/tm-pham/covid-19_handhygiene.

Results

Impact of half-life of pathogen persistence on probability of infection

Viral persistence on hands plays a key role on the effect of increasing hand hygiene fre-
quency. The longer the virus survives on the hands, the larger the impact of increasing
hand washing uptake on the probability of infection. For example, when the half-life of
viral persistence is 1 min, hand washing every 15 min reduces the probability of infection
from 10 % to 9.2% (Figure 3 A). When the half-lives increase to 5.4 min and 36.1 min
(equivalent to the half-lives of H3N2 persistence of 2 L and 30 pL viral inoculum, respec-
tively), the same hand washing frequency decreases the probability of infection to 6.9 %
and to 4.6 %, respectively. Consequently, fewer hand washes are necessary to reduce the
probability of infection by 50 % for long compared to short durations of viral persistence
(see Figure S2). This observation can be explained by the fact that the shorter the virus
persists on hands, the shorter the intervals between hand contamination and transmis-
sion events tend to be (with a higher transmission probability per contact needed for the
same cumulative probability of infection, see Figure S4) and, therefore, the less likely
hand washing is able to interrupt infection events. Figure S3 shows that delay between
hand contamination and hand washing needed to prevent 50% of transmissions is shorter
when the half-life of viral persistence on the hands is shorter, confirming the hypothesis

that timely hand washing is especially crucial if the virus survives only a short time on
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hands. Furthermore, the effect of hand washing on reducing the probability of infection
plateaus with increasing duration of virus persistence (Figure 3). This can be attributed

to the hand contamination rate, i.e. new events occur before the virus decays.

A B

0.10 | ; 0.10

Probability of infection
2

0.05
{HBN2 (2 L) | H3N2 (30 L) {HBN2 (2 L) | H3N2 (30 L)
0.00 : : 0.00 : :
10 20 30 40 50 60 10 20 30 40 50 60
Half life of probability of persistence (minutes) Half life of probability of persistence (minutes)
Hand washing 5min — 30min — 2 hours Hand washing delay 1min — 15min — 1hour — 4 hours
time interval 15 min = 1 hour 6 hours after contamination — 5min — 45min — 2 hours

Figure 3: Impact of half-life of viral persistence on probability of infection for differ-
ent hand washing schemes and frequencies. (A) Fixed-time hand washing (B) Event-
prompted hand washing. In this graph, we assumed that a susceptible individual is exposed
to a baseline probability of infection of 10% if no hand washing is performed within the
time period of twelve hours. The dashed lines represent the half-life of viral persistence
for H3N2 inoculum volumes of 2 plL and 30 uL (calculated from [9]). For each half-life
value, the probability of transmission per face-touching event € was determined for a
probability of infection of 10% in the case of no hand washing. The probability of infec-
tion for the different hand washing frequencies/delays was then computed using this €
value. Hand contamination events are assumed to occur on average 4 times per hour.
Sensitivity analyses with different values for baseline probabilities of infection as well as
the half-life calculations are presented in the supplementary material.

Comparison of hand washing schemes

The second notable finding from the model is that event-prompted hand washing is
more effective than fixed-time hand washing in reducing the probability of infection. We
illustrate this in Figure 4 by comparing both schemes using four different hand washing
frequencies/delays, each with approximately the same average number of hand washing
events performed per hour. For example, hand washing regularly every fifteen minutes is

compared to event-prompted hand washing one minute after each hand contamination
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event (set at four per hour). If the half-life of viral persistence is similar to 2 uL of H3N2
inoculum (71,2 = 5.4 min), the baseline probability of infection of 10%(no hand washing)
is reduced to about 6% and 2% when hand washing is performed every 15 min and one
minute after hand contamination events, respectively. The differences between the two
hand washing schemes are less pronounced if hand washing is performed less frequently
or with a longer delay after hand contamination events since the two hand washing
schemes become more similar. It follows that delays between hand contamination and

hand washing decrease the effect of hand washing on reducing the probability of infection.

Comparison of hand washing schemes

The second notable finding from the model is that event-prompted hand washing is
more effective than fixed-time hand washing in reducing the probability of infection. We
illustrate this in Figure 4 by comparing both schemes using four different hand washing
frequencies/delays, each with approximately the same average number of hand washing
events performed per hour. For example, hand washing regularly every fifteen minutes is
compared to event-prompted hand washing one minute after each hand contamination
event (set at four per hour). If the half-life of viral persistence is similar to 2 uL of H3N2
inoculum (77,2 = 5.4 min), the baseline probability of infection of 10%(no hand washing)
is reduced to about 6% and 2% when hand washing is performed every 15 min and one
minute after hand contamination events, respectively. The differences between the two
hand washing schemes are less pronounced if hand washing is performed less frequently
or with a longer delay after hand contamination events since the two hand washing
schemes become more similar. It follows that delays between hand contamination and

hand washing decrease the effect of hand washing on reducing the probability of infection.

Another important parameter that affects the effect of hand hygiene is the hand
contamination rate. Figure 5 shows the increase in hand hygiene frequency required to
halve the probability of infection from 10% (no hand wash) to 5%. When the hand
contamination rate is relatively low (i.e., less than 10 contamination events per hour),
fewer hand washes are needed to reduce the probability of infection if hand washing
Is event-prompted. In addition, the longer the virus persists on hands, the smaller the

number of hand washing events are necessary to reduce the probability of infection.
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Figure 4: Comparison of the impact of the two hand washing schemes on the
cumulative probability of infection. Hand washing at fixed time intervals and event-
prompted hand washing (with a time delay) with similar average number of hand washing
events per hour are compared for a hand contamination rate of A = 4 hour™. A baseline
probability of infection of 10% is assumed when there is no hand washing. The dashed
lines represent the half-life values of H3N2 persistence for 2 ulL and 30 wlL inoculum
volumes [9].
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This effect is less pronounced for event-prompted than for time-fixed hand washing,
re-emphasizing the finding that when hand contamination events occur very frequently,
hand washing would need to be very frequent to have a substantial impact on reducing
the probability of infection (e.g., at least five times per hour to prevent 50% of
transmission in the case of a half-life of 36.1 min). In this case, susceptible individuals
are exposed to a continuous risk of hand contamination and hand washing has only a

limited impact on reducing the risk of infection.

Our qualitative conclusions do not change with respect to different baseline probabilities
of infection and hand contamination rates (see supplementary material for sensitivity

analyses with respect to these parameters).

Baseline probability of infection: 10%

12

—_
o

oo

Number of hand washes per hour
to prevent 50% of transmission
N S »
IEEX)

Hand washing

time—fixed (H3N2 half-life = 5.4 min)
time—fixed (H3N2 half-life = 36.1 min
event—prompted (H3N2 half-life = 5.4 min)
event-prompted (H3N2 half-life = 36.1 min)

2 3 4 5 6 7 8 9 10
Hand contamination rate (per hour)

—_

Figure 5: Number of hand washes necessary to prevent 50% of transmissions. For
a baseline probability of infection of 10%, the number of hand washing events necessary
to reduce the probability of infection to 5% was computed for time-fixed and event-
prompted hand washing and a range of hand contamination rates. We used the half-life
of H3N2 persistence for viral inoculum volumes of 2 ulL and 30 uL (calculated from [9]).
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Discussion

Our study provides new insights into factors that affect the effectiveness of hand hygiene
behaviour in reducing the probability of infection. Firstly, we found that the shorter the
virus survives on hands, the less effective increasing hand washing frequency is in reduc-
ing infection. The logic behind this is that when the virus dies off quickly before hand
washing is performed, the time intervals between hand contamination and transmission
tend to be shorter and the respective transmission probability per contact needs to be
higher for the same cumulative probability of infection. Secondly, the contact frequency
with contaminated surfaces is crucial for the effect of hand washing. The more often
hands become contaminated, the more frequently hands need to be washed to reduce
infection risk. Lastly, when hands are not constantly contaminated, event-prompted hand
washing is more efficient than fixed-time hand washing given the same hand washing fre-
quency. This is because delays in hand washing after contamination of hands in fixed-time
compared to event-prompted hand washing tend to be longer, and, during this delay, sus-
ceptible hosts may become infected through face-touching.

These findings provide additional insights into the modest and heterogeneous effects of
hand hygiene reported by hand hygiene trials aimed at reducing respiratory tract infec-
tions in the community [4, 6, 18], and also provide pointers to potentially more effective
hand hygiene interventions. These trials are challenging to conduct due to the diffi-
culties in implementing behaviour change, including poor adherence to hand washing
recommendations [19], and loss to follow-up [20, 21]. However, given the low-cost and
minimally-disruptive nature of the intervention we believe there would be considerable
value in building on this experimental work and the theory outlined above to develop
improved hand-hygiene interventions. This could offer considerable public health benefit
both in interpandemic and pandemic periods.

Since the hand contamination rate directly impacts the effect of hand hygiene, specific
hand hygiene advice should cater for different situations where surface contamination
differs markedly. For example, contacts in the community and in a household with an in-
fectious person would likely result in very different hand contamination rates. In the first
case, where hand contamination events occur at a moderate rate, hand washing needs
to be performed frequently or immediately after hand contamination events in order to

substantially reduce the probability of infection. While individuals may not always be
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aware of all hand contamination events, event-prompted hand washing can be facilitated
by installing or providing hand sanitisers in public areas with high-touch surface areas,
such as public transportation and supermarkets, to reduce the delay in hand cleansing.
Furthermore, in the second case, where hands become contaminated very frequently, a
substantial reduction in the probability of infection is unlikely to be attained unless hand
washing frequency is increased drastically, i.e., every one to five minutes. Because hand
washing at such a high rate is not practical, the recommendation in this scenario is to
regularly clean the environment and/or isolate infected individuals to reduce hand con-
tamination events.

We performed sensitivity analyses with varying parameter values and distributions to
ensure our conclusions are robust on a qualitative level. Nevertheless, our results have
several limitations. Firstly, we specifically modelled indirect transmission routes via hands
and did not consider direct droplet and aerosol transmission. To date, there is little known
about the relative importance of the various transmission routes of respiratory pathogens
[22]. When other routes are considered, the effect of hand hygiene will be reduced. Sec-
ondly, there is limited literature on many parameters used in the model, which prevents
us from making more precise quantitative conclusions. These include the probability of
infection with contaminated hands, the survival of pathogens on contaminated hands
and infective dose. Furthermore, we modelled all infection events with the same rate of
decay, i.e., the same probability of pathogen persistence on the hands. In reality, hand
contamination events are likely to be heterogeneous with small droplets persisting only
a short amount of time and heavy contamination with mucus decaying at a slower rate.
In addition, we specifically focus on viral respiratory infections and assumed an exponen-
tial decay for the probability of viral persistence. While our model can be applied to all
pathogens where hand hygiene is relevant for reducing respiratory tract infections, our
results are only applicable for pathogens with a similar persistence behaviour. However,
our model can be easily adapted if information on the persistence behaviour of specific

pathogens is available.

Conclusion

To conclude, in this study we highlight the important considerations in hand hygiene

behaviour to improve its effect in stopping the community spread of respiratory tract
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infections. Recommendations on hand hygiene should be tailored to the expected hand

contamination rate and the half-life of virus persistence on hands.
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Impact of community hand hygiene interventions on respiratory tract infections:
Supplement

S1 Model

We assumed that hands of susceptible individuals get contaminated at random. These
contamination events are assumed to occur independently of each other, and follow a
Poisson distribution with a mean of A, events per hour. The probability of the virus to
persist on hands at time t after contamination, P(t), is assumed to decay exponentially
with a half-life of T;,,. This is consistent with experimental data for influenza A [9].
We further assumed that, in a given time interval [0, T] individuals touch their face at
random times ty, ..., tr leading to potential infection events that are assumed to occur
independently of each other, and follow a Poisson distribution with a mean of Ar events
per hour. The probability that a single face-touching contact with contaminated hands
actually leads to transmission is denoted by €. Thus, the probability that a single face-
touching contact leads to transmission accounting for the probability of virus persistence

is €P(t;) The cumulative probability of infection over the time period T is given by:

1 — e ZiaeP(t)

We assume that when hand washing is performed after the last hand contamination event
and before a face-touching event at time t;, the respective probability of virus persistence

P(t;) is reduced to zero.

Probability of viral persistence on contaminated hands

The decay of the probability of viral persistence on contaminated hands is modeled as an

exponential decay with probability distribution:
faecay () = Age 4" (2.1)

where X4 is the decay constant. The probability that virus will die off within time t is

given by the integral of the decay distribution function from 0 to t:

t t
/ ﬁjecay(t) == / Adeixdt
0 0
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The probability that the virus will persist at time t is one minus the probability that it

will die off within the same period:

P(t)=1— / freen(8)

t
=1 —/ )\de_xdt
0

— e—>\dt

The average survival time (or mean lifetime) is given by:

T:i:T1/2

S2 Estimation of virus half-life

We estimated the half-life of viral survival on contaminated hands using experiments con-
ducted by Thomas et al,[9] where 2 uL and 30 uL of influenza A (H3N2) viral suspension
mixed with respiratory secretions were deposited on finger tips. The half-lives were cal-
culated using data from both the 2 uL ([9] Figure 2) and 30 uL ([9] Figure 3) H3N2 viral

inoculum experiments with an exponential decay model:

n(t) = ng- et
where Ay is the decay rate. The decaying quantity, n(t), represents the number of
fingers with recoverable infectious viral particles and is assumed to have an initial value

of ng at time zero.

In the experiment with 2l inoculum, 18 contaminated fingers from six individ-
uals were tested for the presence of infectious virus at 1, 3, 5, 15 and 30 min after initial
contamination. Figure S1 depicts the data and the fitted curve for the 2 uL inoculum.
The decay rate was estimated to be >\E,1) ~ 0.1279. The half-life is therefore given by

7—1(/1; = ';éf)) = 5.4 min.

For 30 uL of viral inoculum, a total of 12 fingers were contaminated and the

presence of H3N2 was tested after 15 min. We estimated the half-life by using these
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two data points (see Figure 3 in [9]). Thus, Aff) = —% ~ 0.0192. Therefore,
78) = "3 — 36.1 min.
1/2 = 3@

—_ —_
o ()]

Fingers with positive virus culture (n)
o

1 3 5 10 15 30
Time (min)

Figure S1: Influenza A(H3N2) virus survival on fingers over time. Data was retrieved
from [9]. A 2 uL drop of influenza A (H3N2) viral suspension mixed with respiratory
secretions was deposited on fingertips. Bars represent the absolute number of fingers
from which infectious virus was recovered. The red line represents the exponential decay
curve n(t) = 15.65e79127% fitted to this data .

S3 Hand washing and half-life of virus persistence

The shorter the half-life of virus persistence, the higher the frequency of hand washing
necessary in order to prevent 50% of infections (see Figure S2). In addition, the time
intervals between hand contamination and hand washes have to be shorter in order to

prevent 50% of the infections (see Figure S3.
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Number of hand washes
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Figure S2: Number of fixed-time hand washes necessary to prevent 50% of trans-
missions. For each half-life value of virus persistence, the number of hand washes that
is necessary to prevent 50% of transmission was computed for a baseline probability of
infection of 10%. Hand contamination events are assumed to occur on average 4 times
per hour.

w

N

Time between hand contaminatoin and hand washing
to block 50% of transmission (hours)

o

10 20 30 40
Half-life of probability of persistence (minutes)

Figure S3: Cumulative time between hand contamination events and fixed-time
hand washes to prevent 50% of transmissions. For each half-life value of virus per-
sistence, the cumulative time between hand contamination events and hand washes for

preventing 50% of transmission was computed for a baseline probability of infection of
10%. Hand contamination events are assumed to occur on average 4 times per hour.
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S4 Transmission probability per contact and half-life of virus
persistence

Figure S4 shows that the shorter the virus persists on hands, the higher the probability of
transmission per face-touching contact has to be if the cumulative probability of infection

is assumed to be fixed.

0.0020

0.0016

0.0012

Probability of transmission per contact (g)

10 20 30 40
Half-life of probability of persistence (minutes)

Figure S4: Probability of transmission per face-touching contact for different half-
lives of virus persistence. For a baseline cumulative probability of infection of 10% and
each half-life value of virus persistence, the probability of transmission per single face-
touching contact was cmputed. Hand contamination events are assumed to occur on
average 4 times per hour.

S5 Sensitivity analyses
Cumulative probability of infection

We performed sensitivity analyses for different probabilities of infection and present here
the results for probability of infection = 30% and probability of infection = 50% (see
Figure S5-56).

Figure S7 shows the impact of hand contamination rate on the number of hand washes
that are necessary to prevent 50% of transmissions. A baseline probability of infection of

30% was used.
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Figure S5: Impact of half-life of probability of virus persistence on probability of
infection for different hand washing schemes and frequencies. (A) Fixed-time hand
washing (B) Event-prompted hand washing. The dashed lines represent the half-life of
probability of persistence for H3N2 for viral inoculum volumes of 2 ulL and 30 uL (cal-
culated from [9]). For each half-life value of the virus, the probability of transmission
per face-touching event € was determined for a probability of infection = 30% in the
case of no hand washing. The probability of infection for the different hand washing fre-
quencies/delays was then computed using this € value. Hand contamination events are
assumed to occur on average 4 times per hour.
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Figure S6: Impact of half-life of probability of virus persistence on probability of
infection for different hand washing schemes and frequencies. (A) Fixed-time hand
washing (B) Event-prompted hand washing. The dashed lines represent the half-life of
probability of persistence for H3N2 for viral inoculum volumes of 2 ulL and 30 uL (cal-
culated from [9]). For each half-life value of the virus, the probability of transmission
per face-touching event € was determined for a probability of infection = 50% in the
case of no hand washing. The probability of infection for the different hand washing fre-
quencies/delays was then computed using this € value. Hand contamination events are
assumed to occur on average 4 times per hour.
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Figure S7: Number of hand washes necessary to decrease the cumulative probability
of infection by 50%.

Hand contamination event rate

We performed sensitivity analyses for different rates of hand contamination events
and present the results for hand contamination rates of 1, 10 and 60 times per hour.
The less frequently hands get contaminated, the larger the impact of increasing hand
washing frequencies or reducing the delay of hand washing after hand contamination
events and the larger the impact of the half-life of the probability of persistence of
the virus on the actual probability of infection reduction. Figure S8 shows the results
for a hand contamination rate of A, = 1 hour!. The conclusions drawn from the
Results section are applicable in this scenario as well. Figure S9-S10 depict the results
for a hand contamination rate of 10 and 60 times per hour, respectively. When hand
contamination occurs very frequently, fixed-time and event-prompted hand washing have
almost identical effects. For both hand washing schemes, increasing the hand washing
uptake has only a small impact on the probability of infection unless hand washing is
performed every 5 minutes or the time delay of hand washing after hand contamination
events is decreased to one or five minutes. However, due to the the high rate of

hand contamination events of every 4 minutes or every minute, respectively, such an
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Figure S8: Impact of half-life of probability of virus persistence on probability of
infection for different hand washing schemes and frequencies. (A) Fixed-time hand
washing (B) Event-prompted hand washing. The dashed lines represent the half-life of
probability of persistence for H3N2 for viral inoculum volumes of 2 ulL and 30 uL (cal-
culated from [9]). For each half-life value of the virus, the probability of transmission
per face-touching event € was determined for a probability of infection = 30% in the
case of no hand washing. The probability of infection for the different hand washing fre-
quencies/delays was then computed using this € value. Hand contamination events are
assumed to occur on average once per hour.
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uptake seems infeasible. Hence, when susceptible individuals are exposed to continuous
contamination, the best strategy would be to wash their hands as frequently as possible,
especially after touching potentially contaminated surfaces, and to reduce the rate of

contamination by, e.g., cleaning surfaces in their environment or isolating the infectious

person.
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Figure S9: Impact of half-life of probability of virus persistence on probability of
infection for different hand washing schemes and frequencies. (A) Fixed-time hand
washing (B) Event-prompted hand washing. The dashed lines represent the half-life of
probability of persistence for H3N2 for viral inoculum volumes of 2 plL and 30 uplL (cal-
culated from [9]). For each half-life value of the virus, the probability of transmission
per face-touching event € was determined for a probability of infection = 50% in the
case of no hand washing. The probability of infection for the different hand washing fre-
quencies/delays was then computed using this € value. Hand contamination events are
assumed to occur on average 10 times per hour.
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Figure S10: Impact of half-life of probability of virus persistence on probability
of infection for different hand washing schemes and frequencies. (A) Fixed-time
hand washing (B) Event-prompted hand washing. The dashed lines represent the half-life
of probability of persistence for H3N2 for viral inoculum volumes of 2 ulL and 30 ulL
(calculated from [9]). For each half-life value of the virus, the probability of transmission
per face-touching event € was determined for a probability of infection = 50% in the
case of no hand washing. The probability of infection for the different hand washing
frequencies/delays was then computed using this € value. Hand contamination events are
assumed to occur on average 60 times per hour.
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Modeling Pseudomonas aeruginosa transmission in 1CUs

Abstract

Background: Pseudomonas aeruginosa (P. aeruginosa) Pseudomonas aeruginosa (P.
aeruginosa) is an important cause of healthcare-associated infections, particularly in
Immunocompromised patients. Understanding how this multi-drug resistant pathogen
is transmitted within intensive care units (ICUs) is crucial for devising and evaluating
successful control strategies. While it is known that moist environments serve as
natural reservoirs for P. aeruginosa, there is little quantitative evidence regarding
the contribution of environmental contamination to its transmission within |CUs.
Previous studies on other nosocomial pathogens rely on deploying specific values for
environmental parameters derived from costly and laborious genotyping. Using solely
longitudinal surveillance data, we estimated the relative importance of P. aeruginosa
transmission routes by exploiting the fact that different routes cause different pattern
of fluctuations in the prevalence.

Methods: We developed a mathematical model including background transmission,
cross-transmission and environmental contamination. Patients contribute to a pool of
pathogens by shedding bacteria to the environment. Natural decay and cleaning of
the environment lead to a reduction of that pool. By assigning the bacterial load shed
during an ICU stay to cross-transmission, we were able to disentangle environmental
contamination during and after a patient’s stay. Based on a data-augmented Markov
Chain Monte Carlo method the relative importance of the considered acquisition routes
is determined for two ICUs of the University hospital in Besancon (France). We used
information about the admission and discharge days, screening days and screening
results of the ICU patients.

Results: Both background and cross-transmission play a significant role in the
transmission process in both ICUs. In contrast, only about 1% of the total transmissions
were due to environmental contamination after discharge.

Conclusions: Based on longitudinal surveillance data, we conclude that cleaning
improvement of the environment after discharge might have only a limited impact
regarding the prevention of P.A. infections in the two considered ICUs of the University
hospital in Besancon. Our model was developed for P.aeruginosa but can be easily

applied to other pathogens as well.
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Introduction

Hospital-acquired infections are a major cause of morbidity and mortality worldwide [1].
In industrialized countries, about 5 — 10% of admitted acute-care patients are affected
whereas the risk is even higher in developing countries [2].

Due to its intrinsic resistance to multiple antibiotics, Pseudomonas aeruginosa (short
P. aeruginosa or P. A.) is an important contributor to nosocomial infections [3-5]. The
most serious P. aeruginosa infections lead to bacteremia, pneumonia, urosepsis, wound
infection as well as secondary infection of burns [6]. In 2018, the World Health Organi-
zation has recognized P. aeruginosa as a serious health-care threat by including it in the
list of antibiotic-resistant highest priority pathogens [7].

Given the severe consequences of P.aeruginosa infections, in particular for critically-ill
patients, it is clear that strategies preventing infections are seen as a key priority. How-
ever, infections are recognized as only the tip of the iceberg, while colonizations represent
the true load of pathogens carried by patients in the intensive-care unit (ICU). Under-
standing the dynamics of P. aeruginosa colonizations is therefore crucial for developing
and evaluating infection control policies.

There are several modes of transmission for colonizations. An overview of the reservoirs
and modes of P. aeruginosa transmission can be found, e. g. in [8]. Potential sources of
colonization can be categorized into those with endogenous and exogenous origin. Col-
onization from endogenous sources is due to e. g. antibiotic selection pressure and was
regarded as the most important route of P. aeruginosa [9—13]. However, more and more
evidence has emerged on the importance of exogenous sources: Cross-transmission usu-
ally caused by temporarily contaminated hands of health-care workers (HCWs) has been
identified as an additional source of transmission [14—19]. It is furthermore known that
moist environments (e. g. soil and water) may serve as natural reservoirs of P. aeruginosa
and that it can persist for months on dry inanimate surfaces [20]. Several studies have
been performed to asses the sources of environmental contamination leading to cross-
colonization. A rapid systematic review is given by [21].

Quantifying the relative importance of routes of transmission may serve as an essen-
tial tool in designing effective and tailored control strategies. There is little quantitative

evidence in the scientific literature regarding the relative contribution of environmen-
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tal contamination within the transmission dynamics of P. aeruginosa especially for non-
epidemic situations. Prior investigations for P. aeruginosa are molecular epidemiological
rather than modeling studies. Others have been modeling the importance of contaminated
surfaces on the transmission of other nosocomial pathogens, e. g., for Methicillin-resistant
Staphylococcus aureus (MRSA) and Vancomycin-Resistant Enterococci (VRE) [22-26].
However, they rely on deploying specific values for model parameters corresponding to
the environment. Such information was obtained from previous studies that conducted
extensive epidemiological surveillance in combination with costly, laborious as well as
time-consuming methods of genotyping. Thus, these methods cannot be easily applied
to other nosocomial pathogens without this cumbersome preliminary work. Therefore,
an important question emerged: Can we quantify the impact of environmental contami-
nation of P. aeruginosa on the transmissions within |CUs after the discharge of patients,
using only longitudinal data?

In this paper, we present a mathematical transmission model that differentiates between
three modes of transmission based only on longitudinal routine surveillance data. In par-
ticular, we are interested in estimating the relative contribution of environmental con-
tamination after discharge. We used data from two ICUs of the University hospital in
Besancon to estimate the parameters that characterize the transmission routes. The es-
timation procedure is based on a data-augmented Markov chain Monte Carlo simulation
[27]. To our knowledge, this is the first quantitative analysis of the impact of environ-
mental contamination after discharge on P. aeruginosa transmissions in ICUs using solely

routine surveillance data.

Materials and methods

In this section, we present our framework for modeling the transmission routes of P.
aeruginosa including environmental contamination, as well as the method for computing
the relative contributions of the routes. We further elaborate on the procedure that we
used to estimate the relevant transmission parameters. A brief introduction to the data
used for the analysis is given. We describe the model selection as well as model assessment
procedures that are used to compare the developed models and to assess the model fit
to the data.
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Transmission models

The underlying model for our algorithm is a SI-model (e.g. [28]). All patients are admitted
to an ICU and either belong to the susceptible (P. aeruginosa negative) or colonized
(P. aeruginosa positive) compartment at any given time. The latter includes patients

with asymptotic carriage and those with P. aeruginosa infection.

A susceptible patient may become colonized at a certain transmission rate, which
depends on the colonization pressure in the ward at the time. The corresponding
transmission process is modeled by three different modes of transmission through which
colonization can be acquired. They are distinguished based on the different patterns
in the prevalence time series induced by each of them. Background transmission is
independent of other patients and is represented as a constant rate. Sources may
be antibiotic selection pressure as well as the introduction by visitors or permanently
contaminated environments, such as sinks or air-conditioning. Consequently, this
route comprises endogenous and exogenous sources that lead to a prevalence which
fluctuates around the mean value. The corresponding probability of acquisition
for an uncolonized patient is therefore assumed to be constant during the time
period. Cross-transmission, usually occurring via temporarily contaminated hands of
health-care workers, is proportional to the fraction of colonized patients in the wards.
The probability of colonization due to cross-transmission is high if the number of
colonized patients is high and vice versa. Environmental contamination is modeled on
a ward-level represented as a general pool of bacteria linked to objects contaminated
by colonized patients. We focus on the bacterial load that may persist in the
environment even after the discharge of patients. This leads to higher probabilities of

acquiring colonization after outbreaks, even when the number of colonized patients is low.

The force of infection \(t), i.e. the probability per unit of time t for a susceptible patient

to become colonized, is modeled as

A(t):a+ﬁ%+eE(t) (3.1)

where [(t) is the number of colonized patients, N(t) the total number of patients and

E(t) is a compartment tracking the overall bacterial load present in the ward at time
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t. The parameters a,3 and € are transmission parameters linked to the background
transmission term, fraction of colonized patients and the environmental bacterial load,
respectively. Under the assumption of a force of infection A(x) at time x, the cumulative
probability of any given susceptible person of becoming colonized in [0, t] is 1 — elo Ax)dx

(see e.g. [29]). A schematic of the transmission model is presented in Fig 1.
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Figure 1: Schematic of the full transmission model. It represents the three different
routes, i.e. background transmission, cross-transmission and environmental contamina-
tion.

The described model is subject to the following further assumptions:

e Once colonized, patients remain colonized during the rest of the stay. This assump-

tion is appropriate when the average length of stay of patients does not exceed the
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duration of colonization, as is the case for P. aeruginosa.

e Colonization is assumed to be undetectable until a certain detectable bacterial level
is reached. We do not distinguish between several levels of colonization. Further-
more, the detection of carriage in specimen is assumed to be the same for each

screening separately.

e Assuming that HCWs are contaminated for a short period of time (typically until the
next disinfection) in comparison with the length of carriage for patients, we use a
quasi-steady state approximation [28]. This means that contact patterns between
patients and HCWs are not explicitly modeled and we assume direct patient-to-

patient transmission.

e All strains of P. aeruginosa are assumed to have the same transmission character-
istics. We therefore assume that all colonized patients may be a source of trans-

mission and contribute equally to the colonization pressure.

e All susceptible patients are assumed to be equally susceptible.

In order to analyze the impact of environmental contamination after the discharge of col-
onized patients, we model the underlying mechanism leading to the presence of pathogens
in the environment after discharge. Patients contribute to the overall bacterial load by
shedding P. aeruginosa at a rate v during their stay. Furthermore, natural clearance and
cleaning lead to a reduction of P. aeruginosa bacteria in the environment at a rate u.
The change of environmental contamination can be described by

dE 1)

i N (D) — kE(t). (3.2)

The differential equation (3.2) is solved by assuming /(t) = /; and N(t) = N; are
known piece-wise constant functions with steps at times tg, t1, ..., ty. Solving (3.2)

using separation of variables leads to the overall bacterial load in the ward at time t:

/
E(t) = Et,__le_ﬂ(ti_ti—l) T Yl (1 _ e—u(tf—t,_l)) (3.3)
N’ Nt/*l
for t; € {to, ce ey t/\/} and
v
E(t) = E,, e rt=lth 2L (1 -u(t-1t) 34
(t) = Epy) + LN ( ) (3.4)
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for |t] :=max{x € {to,... . ta}|[x <t} and t € R\ {ty, t1,..., ty}. Theinitial amount
of bacterial load is denoted by Eqy := E(tp). The full details of deriving Eq. (3.3) and
(3.4) from (3.2) are given in S1 Text.

Given the number of colonized patients at a certain time t, the bacterial load E(t) is
deterministic. The acquisitions are stochastic based on the force of infection in (3.1).
Our developed transmission model is therefore a hybrid of a stochastic and deterministic

model.

All parameters, namely a, 3, €, u, v and Eq are assumed to be non-negative. By setting
certain transmission parameters (o, 3 or €) to zero, model variants may be defined.
In this paper, we additionally consider a submodel with ¢ = 0, where environmental
contamination is not explicitly modeled and therefore only two transmission routes are
considered. The force of infection for this transmission model with two acquisition routes

is then given by A\(t) = +6%.

Relative contributions of transmission routes

For the prevention of colonization or infection with P. aeruginosa, specific intervention
control strategies can be designed dependent on the relative importance of the trans-
mission routes. However, for each observed acquisition of colonization, the responsible
transmission route is unknown. And yet, for every acquisition, the probability that the
colonization was due to a certain route can be estimated given that parameter values, the
level of environmental contamination and the number of colonized patients are known.
Thus, by estimating the transmission parameters o, (3, €, u and v, we were able to ap-
proximate the relative contributions of each transmission route to the total number of
acquisitions.

The probability of acquisition can be approximated by the force of infection. It consists
of different terms that can be assigned to the transmission routes under consideration,

l.e.
>\( t) = >\background ( t) + >\cross—transmission ( t) + >\environment ( t)
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The primary aim of this paper is to estimate the relative contribution of environmental
contamination after discharge in order to estimate the role of terminal environmental
cleaning among ICU patients. According to our full model, bacterial load is produced
by a colonized patient currently present. The cumulative bacterial load increases
over time until the respective patient is discharged. After discharge, shedding of that
particular patient stops and decreases over time. The bacterial load shed during a
patient’s stay (which may then be transmitted via HCWs to other patients) is assigned
to cross-transmission as in practice, it may not be distinguished from the classical
definition of cross-transmission. The bacterial load persisting after discharge is the
variable of interest and represents the impact of already discharged patients on the
current transmissions in the ICU. A schematic of the bacterial load of a single pa-

tient over time and its attribution to the different transmission routes is visualized in Fig 2.
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Figure 2: Schematic of the bacterial load shed by a patient developing over time.
The bacterial load that is shed during a patient’s stay Is assigned to cross-transmission.
Environmental contamination after discharge accounts only for the bacterial load persist-
ing after the discharge of that patient.
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The previous explanation leads to the following attribution of the terms to the different

acquisition routes

I(t)
ANt)=a+0- N(t)+€ E(t)
(1) Ei, (1) —ut
- @ 18w+ Z N(t) Z N+ Eoe ] (3.5)

~~

>\environment ( t)

-~

Xcross—transmisswon ( t)

where i, indicates a colonized patient that is present at time t and iy a colonized patient
that has been colonized prior to t but was already discharged. The bacterial load produced

by patient / at time t is given by

0 for t < tf
Ei(t) =92 (1—e™tt) fortf <t <tf

Ei(t)e #t=t)  for t > t¢

where t¢ is the time of colonization and t¢ the time of discharge of patient /.

In continuous time, the relative contribution of a specific route to the overall number of
acquired colonizations is determined by the ratio of the probability of colonization due to

that route and the probability of colonization:

ZI P(colonization at time t¢ due to route j)
=1 P(colonization at time t£)
Number of acquisitions
Z/ Ai(t)
B i=1 A(t°)
Number of acquisitions

Contribution of route j = R; =

(3.6)

where / is the number of colonized patients, t5, ..., tf represent the times of colonization
and j can be either of the three considered routes. The relative contributions are then
given by:

Yo pXGia)

Number of acquisitions

e Contribution of background transmission = Rpyackground =

I(tf) Ejp (tF)
. ﬁN(tC) +eXip N(tf,)
=1 A(tD)
Number of acquisitions

e Contribution of cross-transmission = R¢rossT =
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)
€ Z’d W+ oe

/
Z/:l >\(tl_C)

Number of acquisitions

c
Kt;

e Contribution of environmental contamination = Re,y =

For the submodel including only background and cross-transmission, the computation of
the relative contribution is derived from above by setting € = 0.

More details on the calculations can be found in S3 Text. In practice, colonization events
are observed only in discrete times. The formulas for the transmission model and the rela-
tive contribution are adapted for this discrete time assumption and are elaborated in S2-S3
Texts. Since the calculations for the relative contributions of the transmission routes in
the discrete-time scenario require the use of the gamma function and therefore become
computationally intensive, we use the continuous-time formulas as approximations. Since
values of the force of infection A(t) are typically small (< 0.25), the force of infection
itself is a good approximation of the probability of infection as 1 — e~ Jo A(99x ~ \(¢) for
small values of \(t). Hence, the discrete-time formulas for the relative contributions can

be approximated by the continuous-time formulas evaluated at discrete time steps.

Estimation procedure

We assume that a patient is admitted to the ICU at time t7 and discharged at time
t,d. The probability that a patient is admitted already colonized is described by the
importation probability f. The rate at which a susceptible patient transitions to being
colonized is given by Eq. (3.1). The colonization state of an individual patient is
determined from screening information. We suppose that for each patient / a set of
screening results X; = (X,-(l), o ,X,-(m)), taken on days t,-(l), e t,-(m) is available. The
set of all screening results is denoted by X = {Xq, ..., X,} where n is the total number
of patients. Since screening tests are typically intermittent and imperfect, we define the

test sensitivity ¢, i.e. probability that a colonized patient has a positive result.

The aim is to estimate the model parameters a, 3, €, 4, v and Eq as well as the sensitivity
of the screening test ¢ and the importation rate f based on longitudinal data. The
relative contributions of the transmission routes can then be estimated following the
description in (3.6). The key idea of the estimation procedure is to fit a stochastic trans-

mission model to the observed data. It is based on certain patterns of fluctuations in the
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prevalence linked to the different transmission routes (as previously described in section ).

In the analysis, we use the following input data for each patient:
e day of admission
e day of discharge
e screening days and results.

Thus, we use a day as the smallest time unit in our model and assume that events
occur in daily intervals. In principle, other time units may be chosen for an analysis if the
required information on admission, discharge and culturing is available. However, smaller

units may increase the computational time.

If transmission dynamics were perfectly observed, it would be straightforward to calculate
the likelihood of the data given parameters 6 = {a, (3, €, u, v, p, f}. However, the true
colonization time of a patient is typically unobserved which leads to uncertainty about
the true prevalence at any given time. Hence, the likelihood is analytically intractable.
The method developed by [27] overcomes this problem by augmenting the parameter
space with the unobserved colonization times and sampling over this space using an
Markov-chain Monte Carlo (MCMC) algorithm. We adapted this method for our purposes
to estimate the posterior distributions of the model parameters. The joint likelihood is
determined using three models: an observation model, a transmission and importation
model, and a prior model. The observation model describes the imperfect observation of
the transmission dynamics for given the (augmented) colonization times. The transmis-
sion and importation model describe the probabilities of the realizations given the model
parameters. The prior model determines the distribution of the parameters a priori.

The augmented data consists of a set of colonization statuses and times as well as
importation markers. At each iteration, imperfectly observed colonization times are
imputed and model parameters 6 sampled that are consistent with the observed culture
data. This approach accounts for imperfect and infrequent screening, missing admission
and discharge swabs and leads to an estimation of the true (rather than the observed)
prevalence on admission. Precise details of the analysis can be found in S5 Text. The

algorithm was implemented in C++ and was tested using simulated data. Convergence
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of the MCMC chains were verified using visual inspection.

We used uninformative exponential priors Exp(0.001) for the transmission parameters
a,B,€ and . Parameters for the proposal distribution were tuned in order to ensure
rapid convergence. Similar to [30], we estimated the sensitivity ¢ and importation
parameter f using uninformative beta prior distributions Beta(1, 1). The initial bacterial
load Ey was approximated by ﬁ7 with / being the mean prevalence in the ward. A
discussion concerning the choice of parameters for the prior distribution is left to the
supplementary section S8.

The MCMC algorithm was run for 500, 000 iterations following a burn-in of 30, 000
iterations. The MCMC iterations were then thinned by a factor of 10, leaving 50, 000
iterations for inference. In each iteration, 20 data-augmentation steps were performed

with each augmentation chosen at random.

During the estimation process, several assumptions are made.

e Incorporating both sensitivity and specificity parameters in a model may cause iden-
tifiability issues. Thus, test specificity was assumed to be 100%, meaning that pos-
itive results were assumed to be true positive. Experimental results indicate the

specificity of screening tests to be close to 100% [31].

e The initial bacterial load Ej is assumed to be the environmental contamination
at the beginning of the study period. The effect of Ey diminishes proportionally
to exp(—u) per day. It is therefore sufficient to use an approximation rather than
including it as a parameter in the estimation process. We use the equilibrium state
of (3.2) as an approximation, i.e.

Eoz 7

T

where | represents the mean prevalence in the ward.

e The environmental contribution to the force of infection at time t is € - E(t). As

the total amount of environmental contamination E(t) is unobserved, it is only
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possible to estimate the product € - E(t). For t =0,1,2,... it holds

. /; B el
e E(t) :eEoe_“t+TZN/(l—e RDICED i

The parameter v is always integrated in the product € - v. Hence, instead of esti-

mating € and v separately, it is sufficient to estimate the product € - v.

Colonization was defined as the presence of bacteria at the screening sites as re-
ported in the available data. Admission and screening are assumed to occur at

12:00 pm and discharge at 11:59 am.

Re-admissions are not accounted for. Instead every new admission is treated as a
new patient. The probability to be positive on admission is therefore identical for
all patients, irrespective whether it is a readmission or not. Since we are interested
in the overall prevalence and overall relative contribution of the acquisition routes
rather than individual predictions, we do not expect this to have a major influence

on our results.

Since the smallest time unit is one day, colonization events occurring on a particular

day are assumed to be independent.

A negative result on the day of colonization is considered to be a false negative

result.

It is assumed that colonized patients contributed to the total colonized population
from the day after colonization onwards, or for importations, from the day of ad-
mission. This assumption leads to an underestimation of the number of acquisitions
for colonization times at the beginning of the day (but just after screening). On the
other hand, since pathogenic bacteria such as P. aeruginosa undergo a lag phase
during their growth cycle, in which the bacteria adapt to the new environment and
are not yet able to divide, onward transmission events are likely to be rare during
the early stages of colonization. Therefore, the number of onward transmissions

are likely to be overestimated for colonizations occurring at the end of the day.
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Data

The data used in the current analysis were collected from two ICUs, denoted by A and
B, between 1999 and 2016 at University Hospital of Besancon, eastern France, in the
framework of a systematic screening for P.aeruginosa. The data sets include admission
and discharge dates as well as dates, sites and results of culturing of adult patients. ICU
A is a surgical ICU that comprised 15 beds in the time period 1999-2008 and 20 from
2010 till 2016. The ICU was renovated between 2008 and 2009 and the number of beds
was increased after completion of the renovation work. ICU B, a non-surgical ICU, had
15 beds from 2000 till 2011 and increased to 20 beds afterwards. Rectal and nose swabs
were obtained upon admission (during the first 48 hours) and once a week thereafter. A
positive result on one of the swabs was counted as a positive culture. A negative culture
resulted from a negative culture on both swabs taken at the specific day. More than
84% of admitted patients were screened. As HCWs, including physicians, were (with
minor exceptions) working only in one of the ICUs during the whole study period, the
two |CUs can be treated independently in the analysis.

Since 2000, the hand hygiene procedures recommended in both ICUs is rubbing with
alcohol-based gels, or solutions (ABS). Cleaning of the rooms is done daily by using
the detergent-disinfectant Aniosurf®. The sinks were cleaned daily before pouring the
detergent-disinfectant Aniosurf® into the U-bends. Plumbing fittings were descaled

weekly.

In our main analysis, data for each ICU and each time period (before and after renovation)
was treated as distinctive data sets, resulting in four different analyses. No pooling of the
results were performed. In a second analysis, the data for the different time periods and
different ICUs were combined. The results are compared with the main analysis and are

presented in S1-S2 Tables. Each data set was analyzed using

e the full model including background transmission, cross-transmission and environ-

mental contamination after discharge,
e the submodel with only background and cross-transmission.

Patient data were anonymized and de-identified prior to analysis.

141



Chapter 3

Model selection

To assess the relative performance of a given model, we used a version of the deviance
information criterion (DIC) based on [32]. For an estimated parameter set 6 and ob-
served data set x it is computed as the expected deviance plus the effective number of
parameters: DIC = m—l— pp- A lower value indicates a better fit. The effective number
of parameters pp represents a complexity measure and is calculated by the difference of
the posterior mean deviance and the deviance at the posterior mean: m — Dx(é). In
this paper, we use the approximation pp = 2var(D,(6)) introduced by [32].

The DIC is a simple measure that can be used to compare hierarchical models. Further-
more, it allows determining whether two data sets may be concatenated or should be
treated separate. The idea is to distinguish two models: one that includes one parameter
set for both ICUs (and therefore treats them as concatenated) and one that includes
different parameter sets for each ICU (and thus treats them as separate). The first sce-
nario leads to one analysis and one DIC value whereas the second model results in two
independent analyses and hence two DIC values. The sum of the DICs of the latter may
be compared to the DIC value of the first scenario. A smaller DIC value is preferred.
More details can be found in S6 Text.

Model assessment

We chose to check the adequacy of the models using the following approach. The ability of
the model to predict the probability of acquisition based on the predicted force of infection
was assessed. The computed numerical values for the force of infection are assigned to
a bin representing the segment covering the numerical value. For a given value A of the
force of infection, the theoretical probability of acquisition p,.q per susceptible patient
is computed by 1 — exp(—X). The predicted fraction of acquisitions f..q is computed
by dividing the number of acquisitions N, by the number of susceptible patients Ngsc.
We compute 95% confidence intervals assuming that the number of acquisitions follows
a binomial distribution of Bin(Nsysc, facq). The described method is performed for 100
MCMC updates. Coverage probabilities are computed to determine the actual proportion
of updates for which the interval contains the theoretical probability of acquisition. We
set the nominal confidence level to 0.95. A good fit is given when the actual coverage

probability is (more or less) equal to the nominal confidence level. In order to avoid

142



Modeling Pseudomonas aeruginosa transmission in 1CUs

the coverage probability tending to zero when p,q tends to 0 or 1, Jeffreys confidence
intervals are used (as recommended in [33]). When N, = 0 the lower limit is set to 0,

and when N,cq = Ngysc the upper limit is set to 1.

Results

Descriptive analysis of data

The descriptive statistics of the data sets corresponding to ICU A and B with respect
to the number of admissions, lengths of stay and colonization characteristics are shown
in Table 1. The time period referred to as before renovation (short before) is defined as
20/04/1999 —23/01/2008 (approx. 8.8 years) for ICU A and 11/01/2000—12/01/2011
(approx. 11 years) for ICU B. The time period referred to as after renovation (short
after) is defined as 31/05/2008 — 30/12/2016 (approx. 6.4 years) for ICU A and
13/01/2011 —13/09/2016 (approx. 5.7 years) for ICU B. In ICU A, the number of beds
decreased during the renovation. Hence, we decided to remove the renovation period

from the analysis for ICU A.

In total, 13,065 patients (6,061 admitted to ICU A and 7,004 to ICU B) and 37,738
screening results (14,631 in ICU A and 23,107 in ICU B) were included in the analysis.
The number of readmissions is higher for ICU B than for ICU A. In our analysis, every
admission was treated separately (as a new patient) resulting in 14,403 admissions (6,659
admitted to ICU A and 7,744 to ICU B).

The corresponding median length of stay was 8.0 days for both ICUs before and after
renovation, respectively. Hence, there is hardly any difference between the ICUs, nor be-
tween the two time periods regarding the median length of stay.

The fraction of patients who were positive on admission was slightly higher after reno-
vation in ICU A. The reverse is true for ICU B. The observed fraction of patients who
acquired colonization slightly decreased after renovation in both ICUs. There were 1,519
patients (620 in ICU A and 899 in ICU B) observed to be colonized during their stay
and 388 patients (137 in ICU A and 251 in ICU B) observed to be colonized on ad-
mission. The percentage of patients admitted positively on admission and with acquired
colonization is higher in ICU B than in ICU A.
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The total number of patients per ICU and the number of positive cultures are visualized
in Figs 3 and 4.
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Figure 3: Number of occupied beds and positive isolates cultured from patients
per swab day for ICU A. The red dotted lines indicate the time points that splits the
study period into before renovation (20/04/1999 — 23/01/2008) and after renovation
(31/05/2009—30/12/2016). Since the number of beds decreased during the renovation,
the period is removed from the analysis.

Estimated model parameters

Two model variants were fitted to the Besancon ICU data aiming to estimate the set of
parameters 6; = {a, B, ¢, f} and 6, = {a,B,€, u, ¢, f} corresponding to the submodel

with only two and the full model with all three transmission routes, respectively.

Submodel: Two transmission routes

Posterior estimates of the model parameters for each ICU and each time period are
reported in Table 2. Acceptance probabilities for proposed updates to the augmented
data ranged from 3.2% (ICU B after renovation) to 11.1% (ICU A before renovation).
Pairwise scatter plots indicated little correlation between parameter values, with the

exception of a negative correlation between o and B (see S1). Histogram and trace
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Figure 4: Number of occupied beds and positive isolates cultured from patients
per swab day for ICU B. The red dotted line indicates the time point that splits the
study period into before renovation (11/01/2000 — 12/01/2011) and after renovation
(13/01/2011 — 13/09/2016).

plots of the posterior estimates are given in S2-S5 Figs and show that the MCMC
chains rapidly mix and quickly converge to their stationary distribution. We found our

estimates to be robust to the choice of priors for transmission parameters.

The probability of being colonized with P. aeruginosa on admission and the screening
test sensitivity varied between the two |CUs and the time periods. For both ICUs,
the median estimates of the importation probability f is higher in the data set after
renovation than before, i.e. 4.5% and 6.2% for ICU A and 6.0% and 9.9% for ICU B.
The difference between the time periods is only significant for ICU B. We estimated the
median of the prevalence of P.A. to be 24.4% and 19.9% for ICU A and 22.3% and
24.4% for ICU B before and after renovation, respectively. Median estimates for the
screening test sensitivity were 50.9% and 50.2% for ICU A and 61.8% and 58.6% for
ICU B. Since the credibility intervals of the sensitivity estimates do not overlap with
respect to the two |CUs, we can conclude that there is a 95% probability that the test
sensitivity is higher in ICU B than in ICU A. Our possible explanation is based on the
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Table 1: Descriptive statistics for the P. aeruginosa carriage data collected from
two ICUs at University Hospital Besancon, France, 1999-2016

No. Median (IQR)T %

Before?  After® Total Before After Before After
ICU A
Study length, days 3200 2340 5540
Readmissions 320 278 598 9.8 8.2
Admissions* 3261 3398 6659
Length of stay, days 8.0 (3.0-19.0) 8.0 (3.0-16.0)
ImportationsY 50 87 137 1.5 2.6
Observed P.A. acquisitions! 350 270 620 10.7 7.9
ICUB
Study length, days 4020 2079 6099
Readmissions 406 334 740 9.3 9.9
Admissions 4360 3384 7744
Length of stay, days 8.0 (3.0-18.0) 8.0 (3.0-15.0)
Importations 127 124 251 3.7 2.9
Observed P.A. acquisitions 504 395 899 11.6 11.7

*Each ICU stay was counted separately, even in case of a multiple ICU stay within a given hospitalization.
T Interquartile range

120/04,/1999 — 23/01/2008 for ICU A and 11/01/2000 — 12/01/2011 ICU B.

§31/05/2009 — 30/12/2016 for ICU A and 13/01/2011 — 13/09/2016 for ICU B.

T Patients positive on admission; false negative results are not taken into account.

I An acquisition is when a patient test negative on admission and had a postive result before discharge;
false negative results are not taken into account.

Table 2: Summary statistics of the marginal posterior distributions for parameters
of the submodel based on the analysis of the Besancon data

Parameter Symbol Median (95% credibility interval)*
ICUA ICUB

Beforel After? Before After
Background
coefficient a 0.0110.006,0.016)  0.01%0.009,0.016)  0.0070.005,0.01)  0.0140.009, 0.018)
chzfsfsijgi:sm'ss'on B 0.0430.021,0.064)  0.0040, 0.026) 0.0460.032,0.06)  0.0110, 0.029)
Sensitivity ® (%) 50.9 (47.8,54.2) 50.2(46.0, 54.4) 61.8(59.6,64.0)  58.6(56.1,61.1)
Importation o
probability (%) 45 (3.1,6.1) 6.2 (4.8,7.8) 6.0 (4.8,7.1) 9.9 (82,11.6)
Fraction colonized  peoi (%) 24.4(23.1,25.8) 19.9(18.7,21.2) 22.3(21.6,23.0)  24.4(23.7,25.1)
Contributions
Background Rbackground (%) 53.6 (32.8,75.9) 89.3(67.9, 100) 43.4(29.1,58.7)  84.5(60.9,100)
Cross-transmission  Reoss (%) 46.4 (24.1,67.2) 10.7(0,32.1) 56.6(41.3,70.9) 15.5(0,39.1)

*Highest posterior density interval
120/04/1999 — 23/01,/2008 for ICU A and 11/01/2000 — 12/01/2011 ICU B.
§31/05/2009 — 30/12/2016 for ICU A and 13/01/2011 — 13/09/2016 for ICU B.

fact that the ICUs differ in their patient population. As a medical ward, ICU B contains
patients with longer lengths of stay and more readmissions. Patients who are exposed

to an ICU environment for a longer period of time may have a higher probability to get
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colonized at a detectable level. However, our explanation is only hypothetical and the

true reason for the difference is not known.

The relative importance of the two considered transmission routes per ICU and time
period is depicted in Fig 5 (a) and (b). For ICU A, the median relative contribution
of background transmission is 53.6% (95% Crl : 32.8 — 75.9%) and 89.3% (95% Crl :
67.9—100%) leaving 46.4% (95% Crl : 24.1—-67.2%) and 10.7 (95% Crl : 0—32.1%) of
the acquisitions assigned to cross-transmission before and after renovation, respectively.
For ICU B, 43.4% (95% Crl : 29.1 — 58.7%) and 84.5% (95% Crl : 60.9 — 100%) of
the acquisitions were due to the background and cross-transmission accounted for 56.6%
(95% Crl : 41.3 — 70.9%) and 15.5% (95% Crl : 0 — 39.1%) of the acquisitions before
and after renovation, respectively.

@ BEFORE AFTER (b) BEFORE AFTER

100%- 100%-

[l BACKGROUND
50%- [ CROSS-TRANSMISSION
25%-
0%-

Figure 5: Relative contributions of background and cross-transmission. (a) ICU A
before and after renovation, (b) ICU B before and after renovation.

25%-

0%-

The results suggest that both routes have an important impact on the acquisitions in
both ICUs. The median estimates of the relative contribution of background transmission
are higher after than before renovation in both ICUs. Thus, there is a tendency for
lower contribution of cross-transmission route after renovation in both ICUs. Possibly,
hygiene was improved after renovating the ICUs. However, since the credibility interval
for background transmission overlap before and after renovation, there is no evidence
that the relative contributions differ between the time periods. Before renovation, the

credibility intervals of the relative contributions for background and cross-transmission
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overlap. Thus, we conclude that no route considerably predominates the transmissions
before renovation. On the other hand, the respective credibility intervals do not overlap
after renovation. Hence, background transmission predominates the transmissions after
renovation. Comparing the results across |CUs, we can see that the credibility intervals
of the relative contributions overlap leading to the conclusion that the two ICUs do not

seem to be different regarding the relative importance of the transmission routes.

Full model: Three transmission routes

Posterior estimates of the model parameters for each ICU are reported in Table 3. The
estimates and interpretations for the importation rate f, the screening test sensitivity
¢ and the mean prevalence stay roughly the same when adding environmental contam-
ination as an additional route. The same holds for the median relative contributions of
background and cross-transmission. The median relative contribution of environmental
contamination after discharge is less than 1% ranging from 0.3% to 0.5% for both ICUs
and both time periods. The relative importance of the three considered transmission

routes per ICU and time period is depicted in Fig 6 (a) and (b). Acceptance probabilities

@ BEFORE AFTER (b) BEFORE AFTER

100%- 100%-

CROSS-TRANSMISSION
ENVIRONMENT AFTER DISCHARGE

l E BACKGROUND

—

25%- 25%-

0%- 0%- =

Figure 6: Relative contributions of background transmission, cross-transmission and
environmental contamination after discharge. (a) ICU A before and after renovation,
(b) ICU B before and after renovation.,

for proposed updates to the augmented data ranged from 7.2% (ICU B after renovation)
to 90% (ICU A before renovation). Pairwise scatter plots indicated strong correlations
between o and B, 3 and € and between € and  (see S14 Fig). The correlation coefficient

of the latter pair ranged from 0.531 to 0.561. Furthermore, it can be seen in Table 3
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that the credibility intervals for the parameters € and u are large. Nevertheless, histogram
and trace plots of the posterior estimates show that the MCMC chains rapidly mixed and
quickly converged to their stationary distribution as can be seen in S6-513 Figs. The rapid
convergence could be achieved by tuning the parameters of the proposal distribution for
. In contrast, a flat prior for the decay rate u in combination with a small initial standard
deviation for its proposal distribution resulted in large acceptance ratios close to 1. The
MCMC chain mixed too slowly and therefore hindered the identifiability of the likelihood.
This can be explained by the fact that our developed model is overparametrized when
colonizations of patients are not or hardly influenced by environmental contamination.
Small values of the transmission parameter € as well as high values of the decay rate u
would reflect the aforementioned situation. As a result, the respective likelihood might
not be or only weakly identifiable. Our sensitivity analyses and artificial data simulations
demonstrated similar pairwise scatter plots and wide credibility intervals for the param-
eters € and u in case of a small contribution of environmental contamination to the
transmissions (more details can be found in S9 Text). Hence, we can conclude that the
role of environmental contamination after discharge within the transmission process of

P. aeruginosa in the two ICUs A and B is small before as well as after renovation.

Model selection

In total, 14 analyses were performed. For each ICU, three data sets were created -
one for each time period and one combining the data sets before and after renovation.
Additionally, the ICUs and time periods were combined in one data set. Each of the seven
data sets were analyzed using the submodel and the full model. The DIC values for each
model analysis can be found in Table 4. The analysis combining both ICUs and time
periods shows smaller DIC values, i.e. 136507.8 and 130693, than the sum of the DICs
for separate analyses (152428.8 and 150914.2) for both the submodel and full model,
respectively. The full model results in a smaller DIC value for the analysis of the combined
data set. Hence, based on the DIC, it would be sufficient to analyze the combined data set
using the full model including endogenous route, cross-transmission and environmental
contamination. Nevertheless, it can be seen in S10 Text that the posterior estimates of
the different analyses are similar, especially for the relative contribution of environmental

contamination after discharge.
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Table 3: Summary statistics of the marginal posterior distributions for parameters
of the full model based on the analysis of the Besancon data

Parameter Symbol Median (95% credibility interval)*
ICU A ICUB

Beforef After? Before After
Background a 0.011 (0.006,0.015) 0.012 (0.009,0.016) 0.007 (0.004,0.01)  0.012 (0.007,0.017)
coefficient
Cross-
o ion B 0.023 (0, 0.048) 0.006 (0, 0.022) 0.027 (0.0, 0.05) 0.008 (0,0.027)
coefficient
Eg‘;’;;i‘é?e”;te”ta' € 187.3 (0.041,753.4) 76.0 (0002,436.6) 48.8 (0.009,227.9) 90.6 (0.017,502.4)
Decay rate m 1202.7(24.4,3184.9)  1567.334.9,4453.7) 319.2 (13.8,873.3)  1514.44.4,4335.1)
Sensitivity & (%) 50.9 (47.8,54.2)  49.5 (45.5,535)  61.8 (59.5,64.0)  58.7 (56.0,61.3)
Importation o
orobability f (%) 45 (3.1,6.1) 6.1 (4.9,7.6) 6.0 (4.9,7.2) 10.1 (8.4,11.9)
Fraction colo- pei(%) 245 (23.1,25.9)  20.1 (19.0,21.4) 223 (21.7,23.0)  24.4 (23.7,25.1)
nized

Contributions
Background Rbackgr (%) 51.8 (32.7,73.0) 82.3 (61.0,98.7) 42.0 (27.5,58.0) 74.4 (48.1,96.8)
Cross- RerossT (%) 47.8 (26.9,66.9) 17.4 (1.3,38.6) 57.5 (41.8,72.1) 25.1 (2.9,50.7)
transmission

Env. cont. after

0,
discharge Rew (%) 0.3 (0.0,0.8) 0.2 (0,0.7) 05 (0.0,1.2) 04 (0.0,1.3)

*Highest posterior density interval
£20/04/1999 — 23/01/2008 for ICU A and 11/01/2000 — 12/01/2011 ICU B.
§31/05/2009 — 30/12/2016 for ICU A and 13/01/2011 — 13/09/2016 for ICU B.

Model assessment

For each bin of the force of infection the coverage probabilities are plotted and can be
found in S15-S16 Figs. It can be seen that the coverage probabilities are approximately
(sometimes higher, sometimes smaller) equal to the nominal confidence level of 0.95.
Thus, both the full model as well as the submodel gave adequate fits to the four data
sets. In Fig 7, the predicted fraction of acquisitions are plotted against the binned force
of infection for one exemplary MCMC update. The red lines indicate the relationship
between the probability of acquisition and force of infection assumed by our models. For

this example, it is always contained by the confidence intervals (blue lines).

Discussion

To our knowledge, our study is the first attempt to estimate the relative contribution of
environmental contamination after discharge for P. aeruginosa based on mathematical
modeling and using only admission, discharge and screening data. The three different

routes, background transmission, cross-transmission and environmental contamination
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Table 4: Deviance information criterion for the different models

Submodel Full model
ICUA
Beforef 42961.72 35356.31

§

Aftert 43937.81 } 2.’ 86899.53 27701.06 } 2. 63057.37
Combined* 88650.69 63779.12
ICUB
Before 35356.31 34670.46
After 27701.06 }Z 03057:37  »7898.42 }Z 62568.88
Combined 63778.12 59290.73
Sum Combined! 152428.8
ICUs combined? 136507.8

120/04/1999 — 23/01/2008 for ICU A and 11/01/2000 — 12/01/2011 ICU B.
§31/05/2009 — 30/12/2016 for ICU A and 13/01/2011 — 13/09/2016 for ICU B.

* Combined time periods

§ Y indicates that the sum of the respective columns in the previous row is calculated.
91CUs as well as time period (before, after renovation) are combined in one data set.

' The sum of the DICs for ICU A (before and after renovation combined) and ICU B is
computed.

after discharge, are distinguished by the resulting patterns of the prevalence that they
induce. We estimated that environmental contamination after discharge accounts for
at most 1% of the total P. aeruginosa transmissions in the two ICUs of the University
hospital in Besancon before and after renovation. In contrast, background as well as
cross-transmission are both essential for the transmission dynamics of P. aeruginosa.
This suggests, that improvement of cleaning of the environment after discharge would
have only a limited benefit regarding the prevention of P. aeruginosa colonization in the

two considered |CUs of the University hospital in Besancon.

Previously, studies have been conducted to investigate the role of environmental
contamination for colonizations of P. aeruginosa. For instance, Panagea et al. performed
environmental studies to determine the extent of environmental contamination with
an epidemic strain of P. aeruginosa [34]. They concluded that the transmissibility of
the epidemic strain cannot be explained solely on the basis of improved environmental

survival. Our results likewise demonstrate that the decay of P. aeruginosa is already
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Figure 7: Exemplary model assessment plot for one MCMC update using the sub-
model applied to ICU A before renovation. The predicted fraction of acquisition is
plotted against the theoretical force of infection. The red line indicates the theoretical
relation between the force of infection and the probability of acquisition. The blue lines
indicate 95% credibility intervals.
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rapid enough to limit its survival in the environment.

While our approach is efficient in determining the relative contribution of environmental
contamination after discharge requiring merely longitudinal surveillance data, it has sev-
eral limitations that may restrict its practical applicability.

Our conclusions on the impact of cleaning applies only to the environment after the dis-
charge of patients. Permanently contaminated reservoirs in |CUs, such as sinks, may still
serve as sources for colonization. In our model they are assigned to background trans-

mission. Thus, while the effect of cleaning improvement after discharge might be limited
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for the two considered ICUs, general cleaning improvement of the environment might
be important to reduce permanent reservoirs for environmental contamination. Several
studies based on molecular typing techniques suggest that contaminated taps and sinks in
the environment may serve as a non-negligible source in the acquisition of P. aeruginosa
colonization (see e.g. [8, 21, 35]). Since genotyping information is not available for the
data set that we have analyzed, further studies for validation would increase the under-
standing of our conclusions.

In addition, we assume in our model that a patient’'s contribution to environmental con-
tamination affects all patients present in the ward. This assumption might not be realistic
as the patient admitted to the same room after the discharge of a colonized patient might
be at a higher risk than patients in other rooms. In S11, we have investigated the possible
influence of prior colonized bed occupants for the Besancon data sets. The results show
that for these data sets, the impact of prior colonized bed occupants is limited (< 6%).
While prior bed occupants may pose serious risks for colonization in general, this hy-
pothesis cannot be confirmed for the data sets we have analyzed. Further models that
explore bedwise environmental contamination in more detail would constitute interesting

extensions of our methodology.

The results of our analysis build on a data-augmented MCMC algorithm [27, 30]. Markov
chain Monte Carlo sampling is a powerful tool to estimate posterior parameter distribution
whenever the likelihood is analytically intractable. And yet, the inherent disadvantage of
this sampling scheme is that it may take prohibitively many iterations to converge to the
posterior distribution. The convergence properties of MCMC sampling in high-dimensional
posterior distributions can be particularly problematic and sensitive to the choice of prior
and proposal distributions. Thus, tuning of the MCMC parameters becomes crucial for its
application. Our developed full model is overparametrized when colonizations of patients
are not or hardly influenced by environmental contamination. As a result, the respec-
tive likelihood might not be identifiable or only weakly identifiable. Here, a flat prior for
the decay rate w in combination with a small initial standard deviation for its proposal
distribution resulted in large acceptance ratios close to 1. The MCMC chain mixed too
slowly and therefore hindered the identifiability of the likelihood. We were able to tune
the parameters of the proposal distribution for w such that rapid convergence to the
posterior distribution could be assessed using visual inspection of histograms and trace

plots. However, as presented in the section, pairwise scatter plots showed strong cor-
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relations in particular between € and w. Simulation studies confirmed that this can be
explained by an absence of environmental contamination in the investigated data sets.
This supports our finding that an impact of environmental contamination after discharge
on the transmission of P. aeruginosa may be neglected.

Moreover, colonization is assumed to remain until discharge. While this assumption is true
for P. aeurginosa it does not hold true for all antibiotic-resistant nosocomial pathogens.
However, intermittent carriage may be readily included allowing the method to be gen-

eralized to other pathogens.

We assumed no difference in transmissibility between different strains of P. aeruginosa and
that all colonized patients are equally likely to transmit the pathogen. While information
on antibiotic resistance or microbial genotyping in combination with epidemiological data
may aid in distinguishing different strains and identifying specific transmission events,
only the uncertainty of the estimates would be affected. In particular, the widths of the
credibility intervals are likely to be reduced, but we do not expect a large effect on the
parameter estimates.

Assessing the fit of the model to the data is crucial to model building. The true relative
importance of the different transmission routes in ICUs is generally unknown. Genotyping
data that might be used to demonstrate the source of the acquired colonization is scarce
and was not available for the data used in our analysis. While the posterior predictive p-
value is a popular method for assessing model fit, it has been increasingly criticized for its
self-fulfilling nature [36]. Furthermore, the choice of the test statistic is crucial in order to
adequately summarize discrepancies between datasets. Rather than relying on a suitable
summary statistic, we presented a model assessment method that evaluates whether
the estimated force of infection adequately represents the transmission dynamics in the
ward. However, while the corresponding coverage probabilities may depict discrepancies
per bin of the force of infection, the sample size is not controlled by choosing the number
MCMC updates. It might well occur that specific patients (and their acquisition events)
appear in more than one MCMC update simultaneously. Thus, the true sample size
is estimated to be smaller. In addition, both the estimated force of infection and the
number of acquisitions N, are obtained based on the data augmentation step. Thus,
the theoretical probability of acquisition and the predicted fraction of acquisition are not
independent. And yet, a large deviation of the model from the data would be reflected in

the coverage probabilities since the augmented data is dependent on the observed data.
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Further improvement of the method presented here or development of other methods
would be a vital topic for assessing epidemic models.

Model selection was performed using the DIC which is known to display poor performance
(i.e. identifying the correct model) for complex likelihood functions such as those
corresponding to epidemic models. Comparing the plausibility of different models is
crucial for selecting the model that describes the dynamics of the observed system best.
Nevertheless, model choice for stochastic epidemic models is far from trivial. All known
approaches for model selection exhibit advantages as well as disadvantages [36] which
makes selecting the most suitable model comparison technique not straightforward.
We selected the well-known DIC-method that was easy to use and implement. Our
main results regarding environmental contamination after discharge do not depend on
the model choice. And yet, the development of a suitable and robust model selection
procedure in a data-augmented Bayesian framework would be an interesting and
important topic for future research.

Finally, like all models, ours is a simplification of the truth as it is unlikely that all
relevant variables are already included. Adding covariates such as antibiotic use, sex or

age may improve the model fit.

Our work may be used or further extended for assessing the relative importance of dif-
ferent transmission routes within intensive-care units not only for P. aeruginosa but for
hospital pathogens in general. Based on these results, consequential decisions for tai-
lored interventions or policies may be deduced, aiding in improving infection prevention

and control and therefore reducing morbidity, mortality and related costs in hospitals.
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Pseudomonas aeruginosa transmission in ICUs: Supplement

S1 Text. Environmental contamination.

The full model includes environmental contamination on a ward-level. The bacterial load

at any given time t is based on the differential equation

% = u% — wE(t) (3.7)

Solving the above differential equation requires discretizing over t, resulting in a finite
number of time steps tg, t1,..., ty. We then assume /(t) = /; and N(t) = N; to be

constant within a time step and use it as initial conditions. Separating variables leads to

dE

—MEU):dt

and thus

1 I
= — Zlog|lv— —pE(t)|=t+C
L log vt — wE(e)
/
= log uﬁt—uE(t)‘ =—u(t+C)
t

. uEm] — expl—p(t + C)] = exp(—ut) exp(—4C)
t \‘f—’At

Now, two cases have to be distinguished.

1. Case: vt — uE(t) >0

I
= — RE(t) = A¢ - exp[— N«f]—l/ﬁ
t
As vl
SE(t) = — L exp[—pt] + 2+
(1) =~ explont] + 23
——
By
14 /t
=E(t) = B; - exp[— ’u,t]+ﬁﬁt
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2. Case: //

Determine By, for initial condition E(tp)

—uE(t) <0

and therefore

1% /t
BtO = tO - ;N_to_o (3
For ty < t < t; the environmental load can be then computed by
l; ) 3 vl
E(t)=E, — ——> | e Mt 4 -2
( ) ( o 1% Nfo K Nto
v
=E, e H 4 — 2 (1 —e ).
tOe + ,U, Nto( )
For to <t <ty it holds
vy
B, — Etf IJ' Nt
& e (234

and therefore, it holds for |t] ;= max{ty < x <ty|x<t}and t e R\ {tp, t1

and
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S2 Text. Discrete-time transmission model.

For the discrete-time transmission model, we assume that the number of colonized pa-
tients /(t), the total number of patients N(t) and the bacterial load E(t) is constant
during the day. It is assumed that admission and screening occur at 12:00 pm on each
day T determining /- and Nt . Given all the information (at 12:00 pm), the environmental

contamination on day T is determined. The force of infection on day T is then given by

XNT)=«a +5/<I_Z +€eE(T)

/ Ir—
:a—l—ﬁN—TT+e- ETle“+£NTT 11

(1—e™)].
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S3 Text. Relative contribution.

The computations in section Relative contributions of transmission routes were developed
for continuous-time models. In our discrete-time model, we assume that events such
as, admission, colonization and discharge of patients and screening occur on a daily
basis. However, we do assume that the level of environmental contamination changes
continuously. Computing the relative contributions of the different transmission routes
becomes more laborious in this scenario. Let ¢ be the acquisition time of patient / €
{1,..., n}. The contribution of a route J is the ratio of the probability that the acquisition

was due to route j and the total probability of acquisition:

En P(infection during day t¢ due to route )
=1 P(infection during day tf)

Contribution of route j = R; = N
acq

where N, is the total number of occured colonizations and R; with ; €
{background, crossT, env} indicate the endogenous, cross-transmission or envi-

ronmental route, respectively. The route-specific probabilities can be determined

by
T+1
P(infection during day T by Rbackground) = / P(patient still susceptible at time t) - a dt
T
T+1 /T
P(infection during day T by RgessT) = / P(patient still susceptible at time t) -6/\/— dt
T T
T+1
P(infection during day T by Rey) = / P(patient still susceptible at time t) - eE(t) dt
T

where environmental contamination during a patient’s stay is assigned to the environ-
mental route. In the main part of our manuscript we consider only the bacterial load
remaining after discharge as environmental contamination. All the formulas then change

according to Eq. (3) of the main text.

The results are dependent on u,(,—TT — wE(T) and are given by
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1. Case: viE — nE(T) >0

- A - A -
P(infection during day T by Rbackground) = & - E - [’y (; B) —y (; Be‘“)]

Tlx>
Tt
N——
|
2
VRS
=I>
Tt
(b\
=
N—

/ ~
P(infection during day T by RerossT) = ,ﬁN—T -E - |y (
T

P(infection during day T) = 1 — e A B(e™-1)

2. Case: u,(,—TT —uwE(T) <0

P(infection during day T by Rbackground) = & - E -

/ -
P(infection during day T by ReressT) = "BN_T E.
N

P(infection during day T) =1 — e—A-B(e*-1)

and
P(infection during day T by Rbackground)
= P(infection during day T) — Z P(infection during day T by k)
k€{a,0}
where
A—a+<ﬁ eu) I+ é_e(ulr E)
w) Nr' w\phNr 7
. 1 s ._A .
E=-.¢c8. B E=S
m m
_ev
w Nt

and (-, -) is the lower incomplete gamma function. Note that the derivations are omitted

here but can be requested from the first author.
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S4 Text. Approximation of relative contribution in discrete-time.
Large values of the force of infection A(t) are very unlikely. Under the assumption of

small X(t), the following simplifications and approximations can be made:

e Jo 20 1 \(1)
1— e~ fotk(x)dx ~ >\(t)

At)

Y0 ~ A(t).

Therefore, the force of infection itself may be a good approximation of the probability of
infection and the probability of acquiring colonization due to route j may be approximated

by the respective sub-term of the force of infection assigned to route J:
P(infection during day T due to route j) ~ J,

with j € {background, crossT, env}. As an approximation of the relative contribution we
compute the ratio of the transmission rate and the force of infection for each acquired
colonization:

S 3

e Contribution of endogenous route = Ryackground = Nacq

I(tf) Ejp(tF)
B'N(rll.z)+5 ip I\f(t,?,)

=1 (D)

e Contribution of cross-transmission = R¢rossT =

Nacq

e Contribution of environmental contamination = Reny =

where tf is the day of colonization of patient where / € {1, ..., n} and N, the total
number of occured colonizations. Furthermore, i, indicates a colonized patient that is
present at time t© and /4 a colonized patient that has been colonized prior to tf but was

already discharged. It holds Rpackground + RerossT + Reny = 1.
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S5 Text. Adapted data-augmented MCMC algorithm.

We model the transmission process using a two-state Markov model, where each patient
can be either susceptible (P.A. negative) or colonized (P.A. positive). A patient /
is admitted to the ICU on day t? and discharged on day t?. The probability that a
patient is admitted already colonized is described by parameter f. The rate at which
a susceptible patient transitions to being colonized is described in section Materials
and Methods. The colonization state of an individual patient is determined from
screening information. We suppose that for each patient / a set of screening results
X;= XM X, = X" taken on days ™, . '™ is available. The set of all screen-
ing results is denoted by X = {Xq,..., Xn} where N is the total number of patients.
Since screening tests are typically intermittent and imperfect, we define the test sensi-
tivity ¢ (i.e. probability that a colonized patient has a positive result). We assume that

the specificity (i.e. probability that an uncolonized patient has a negative result) is 100%.

We implemented an adapted version of the data-augmented MCMC algorithm to analyze
the data. The transmission and importation model, as well as the data-augmentation
method is closely based on the approach of [27, 30] but adapted for the transmission
routes presented in this paper.

The algorithm was implemented in C++ and the analysis of the output was performed in
R (Version 3.5.1) [37].

The aim of our analysis was to estimate the set of parameters 8 = {«a, 5, ¢, u, f, ¢}. The

prior distribution were chosen as follows:

f, ¢ o< Beta(a, b)
a, B, €, 1 ox Exp(N)

where Exp(A) represents the exponential distribution with rate A, and Beta(a, b) the
beta distribution with shape parameters a and b. Having fixed a= b =1 and A = 0.001,

we use uninformative priors in our analysis.

The data-augmentation procedure accounts for unobserved colonization times by aug-

menting the parameter space with A = {t°, s?}, a set comprising of the unobserved
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colonization times t¢ and admission states s, of all n patients. An admission state of
a patient is 1 if the patient is colonized upon admission and 0 otherwise. If the pa-
tient j becomes colonized during his/her stay, the colonization time may take an integer
value between the time of admission ¢ and time of discharge t¢ (inclusive). If a patient
does not acquire colonization, the respective value tr takes a dummy value of —1. The

augmented posterior density relation can be determined using Bayes' Theorem:

P(A 0|D) x P(D,A6)=P(D|A6)P(A|0)P(6) (3.10)
= P(D|t° s 0)P(s?|0)P(t|s?, 6)P(6) (3.11)

where P(D | A, 0) is the likelihood of the observed data D, P(A|#0) is the likelihood of
the augmented data and P(0) is the joint prior distribution of the parameter set 6. All
terms in (3.10) can be explicitly calculated. It holds

P(D | tc' Sa' 0) — d)TP(X)(l . ¢)FN(X,tC)

where TP(X) and FN(X, A) are the total number of true positive and false negative
swab results, given the colonization times t¢, respectively. It represents the imperfect ob-
servation of the transmission dynamics. Assuming that lost colonization can be excluded,
we consider any negative result after the time of colonization as a false negative. Since
false positive results are impossible, the T P(X) is not dependent on the augmented data
and can be determined directly from the observed data. The probability of the set of

importations, given the importation probability f is given by
P(s?]6) = f=is (1 — )"~ 2%,

The transmission model itself is reflected in the probability of the colonization times given

the admission states and the parameters

n min(td,tf—1)
Piecls”o)=]Tewm (- > MO || 1] @—ew=a)) ] -
i=1 t=t? Jitf#—1

(3.12)

To update the importation rate f and the sensitivity ¢, we use Gibbs sampling as we

can sample directly from the full conditional distributions. The transmission parameters
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a, B, €, u are updated using an adapted version of the Metropolis-Hastings algorithm.
Regular MCMC methods based on the Metropolis-Hastings algorithm tend to be very
slow in high dimensions as a result of slow mixing and therefore inefficient convergence
towards the target distribution. In high-dimensional spaces the volume outside is much
larger than the volume of our target distribution. Thus, traditional MCMC methods such
as the Metropolis-Hastings algorithm, spend considerable amount of time of traversing
space away from the mode of the target distribution. Our adapted MCMC algorithm

aims in exploring the target distribution more efficiently.

The Metropolis-Hastings algorithm generates a Markov chain 8, .. ., 6™ which con-
verges to a target distribution 7(-) if N is large enough. In each update of the Markov
chain, a candidate point, 6* is sampled from a proposal density q(6* | 9(’)), which gives the
probability density of proposing 8%, given the current, /™ value. With a certain probability

or so-called acceptance ratio

a(6*,0%) = min (1 a(o" |00)m(6") ) :

" q(00) [6+)m(61)

the proposed value is accepted.

The Metropolis algorithm is a special case of the Metropolis-Hastings algorithm where
the proposal function is symmetrical. Since a symmetrical proposal distribution simplifies
the calculation of the acceptance ratio to a(6*,6") = min (1, 7(6")/m(61)), it is
often used for updating parameters. The proposal function has a great influence on the
speed of convergence and hence efficiency of the algorithm. We suggest a proposal
distribution that speeds up the convergence towards the target distribution while limiting
the additional computational effort. The idea behind our method is as follows: For each
estimated parameter set 6 there is a corresponding force of infection \(t) for each
time t. It can be assumed that the mean force of infection X is approximately constant
over the number of iterations. The rationale behind it is that there is true mean
force of infection that should be approximated by the MCMC algorithm. Proposing
new parameter candidates depending on the mean force of infection reduces the
volume that has to be traversed in order to converge to the target distribution. The
resulting proposal density is not symmetric anymore and thus the procedure requires

an adjustment of the acceptance ratio. The adapted Metropolis-Hastings algorithm to

171



Chapter 3

update the transmission parameters runs as follows:

Two transmission routes

1. Set initial values 6 = (a®,3®), and the number of iterations N.
2. Sample new parameter values a*, B* as follows:

(a) Propose candidate a* by sampling from a¥ + A/(0, 02)
| . . . [
(b) Propose candidate 8* assuming \* ~ \() = o) + 8() . Prev:

Sample B* from 2= +N(0,03), i.e. N( A _ o % +U§>

Prev Prev Prev' Prey
(c) With probability

o ae 160)m(e)
a(6*,0%) = min (1' (60| 9*)7r(9<’)))

2% 15 (60D )

% =e 25 , accept the proposed value and set 80+1) =

6*, else set 9U+1) = (1)

where

3. If i < N, then go to step 2.

Three transmission routes

1. Set initial values 61 = (a(®, 3 e, 1)) and the number of iterations N.

2. Sample new parameters 6* = (a*, 3*, €*, u*) from a proposal density g (6*[6) as
follows:
(a) Propose candidate a* by sampling from o) + N(0, 02)
(b) Propose candidate 8* by sampling from ) + A/(0, 03)
(c) Propose candidate wu; by sampling from u() 4+ A/(0, ai)
(d) Update EéiH) to i - Prev
(e) Propose candidate €* assuming \* ~ A0 = o) + B0 . Prev + 0 . ESD:

2D —o*—B*-Prev 2
Sample €* from ~—%an— + N(0, 07),

: 2D —a*—p* - Prev o2 Ué 2
Le. N ( EG+T ' EGi+1)? + E(i+1))2 +oe |

< Prev
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(f) With probability

(1 a@ 189w
a(6*,0%) = min (1' (60| 9*)7r(9<’)))

5*2*5(/)2‘#2}1«6(5([)75*) ]
207 , accept the proposed value and set 80+1) =

a(e*169) _
a(6]es)

6*, else set 9U+1) = (1)

where

3. If i < N, then go to step 2.
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S6 Text. Model selection.
We would like to assess whether we can concatenate the Besancon data e.g. before
and after the renovation of the ICUs in one large data set to increase the power of our

method. The idea is to compare the DICs for two different scenarios:

e Consider only one model including one parameter set 8 = {a, 3, f, ¢} where a is
the endogenous, B the cross-transmission parameter, f the importation rate and ¢
the test sensitvity. The analysis is then performed on all the data X of the two ICUs

and the two time periods (before and after renovation). The DIC is then given by
— 1
D|CX'9 = Dx(e) + §Var(DX(9))

e Consider a model including a parameter set consisting of separate parameters for

each time period:

-6 ={a1,B:1, i, 1}

- 0, = {052,52, f, ¢2}
The parameter set of the model is then:

60 =0,U0, ={a1,B1, f, 1, 00,02 o, P}

The parameters in 6; are updated for the data set before renovation whereas the
parameters in 0, are updated for the data set after renovation. The deviance for

this model is determined by

Dx(0) = —2logm(X |0)
= —2logm({X1, X2} |61 UBy)
= —2log [m(X1]60; UB) - m(X2]6; UBb)]
= —2log [m(X1]61) - m(X2[62)]
= —2[logm(X;1|61) + logm(X>|65)]
= Dx,(61) + Dx,(62),
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where X7 is the data set for the time period before and X, for the time period after
renovation. Thus, the DIC for the model including separate parameters for each

time period can be calculated as

DICx¢ = DICx, 6, + DICx, 6,.
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S7 Text. Model assessment.

To assess our method's ability to detect large discrepancies between the data and
model assumptions, we simulated a data set with a substantial contribution of
background, cross-transmission and environmental contamination after discharge
(27%,24% and 49%). We analyzed the data set with our MCMC procedure including
only background transmission as a transmission route. Thus, the model in the MCMC
process assumed a constant force of infection. In Fig S18, we can see that the
expected coverage probabilities are not met. Hence, it can be asserted that there
is a large discrepancy between the model and the data. The data can be found on

https://github.com/tm-pham/transmissionPA.
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S8 Text. Prior distributions.

Sensitivity analyses were performed using different priors. We performed the main analyses
of the Besancon (as presented in the Results section) with uninformative exponential
priors and small intitial values for the standard deviation of the proposal distribution.
Further analyses were performed using a weakly informative exponential prior Exp(1.0)
and a uniform prior U(0, 2) for the decay rate u. The histograms and traceplots using
Exp(1.0) show that these results are not different from results using an uninformative
exponential prior. However, for the uniform prior U(0, 2), the MCMC chain shows signs of
non-convergence. The values for u have a strong tendency towards the upper boundary
and a strong correlation with € (see S17). This behaviour was also observed when the
full model was applied to simulated data sets with no environmental contamination after
discharge (see S9) and can be explained as follows: A scenario with no environmental
contamination after discharge is indistinguishable from a scenario with environmental
contamination but very short bacterial persistence in the environment (i.e. high values of
w). In such a case, several combinations of € and w and B reflect the same situation. In
particular, any high value of u may reflect the absence of environmental contamination.
The results of our sensitivity analyses confirm that for the two data sets of the Besancon
hospital, environmental contamination after discharge is only of minor influence. Further

elaborations on the influence of different values of the decay rate u can be found in S9.
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S9 Text. Simulation studies.
Several data sets were simulated to test the algorithm’s ability to identify the correct

relative contribution. We performed two types of simulations:

1. The duration of persistence of bacterial load is varied.

2. The relative contribution of envionmental contamination after discharge is varied.

For the first simulation study, we fixed values for o, B and v and varied values for . The
parameter € is set to 0.6 - w. Three main scenarios regarding the duration of persistence

of bacterial load in the environment are analyzed:
1. Long: pe {1/7,1/14}
2. Medium: u € {1,1/3}
3. Short: € {2,5}

For each of the three scenarios the importation rate is varied within {0.01,0.05,0.1}.
We observed that chain convergence cannot be attained in a reasonable amount of time
using uninformative exponential priors. For medium duration of bacterial persistence con-
vergence could be achieved using either a weakly informative prior Exp(1.0) and a uniform
prior U(0, 2). The reasons for non-convergence for long or short bacterial persistence in
the environment as well as the justification of the weakly informative and uniform prior
are based on the same reasoning.

If bacterial persistence is set to be long (longer than the average length of stay of pa-
tients), then environmental contamination after discharge stays approximately at one level
and the resulting probability of colonization due to this route is approximately constant.
Thus, the induced fluctuations in the prevalence can be hardly distinguished from fluctu-
ations due to background transmission. On the other hand, a short duration of bacterial
persistence (much shorter than the average length of stay) leads to difficulties in distin-
guishing the resulting model from one with a higher contribution of cross-transmission
and smaller contribution of environmental contamination. Hence, based on the fluctua-
tions of the prevalence, only a medium length of bacterial persistence is meaningful and
the restriction of the parameter space or the use of more informative priors is justified.
For the second simulation, we varied the relative contribution of environmental contam-

ination after discharge. In particular, when environmental contamination after discharge
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was not present in the simulated data, the results resembled our analysis of the Besancon
data shown In the Results section.

The histograms and plots corresponding to the described simulation studies can be found
on https://github.com/tm-pham/transmissionPA. Further information on our sim-

ulation studies may be requested from the first author.
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S10 Text. Secondary analyses.

In addition to the analyses presented in Results, six further analyses were performed.
For each ICU, the time periods before and after renovation were combined. Finally, all
available data was concatenated into one big data set and analyzed at once. The results
of these analyses using the submodel as well as the full model are presented in S1 - S2
Tables. The posterior estimates of the model parameters and the corresponding relative

contributions are similar to the ones presented in the Results section.
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S11 Text. Impact of prior colonized bed occupants.

In a first step, we performed Fisher's exact test to study the association between col-
onization status of current and prior bed occupants for the data sets of the University
Hospital of Besancon. The 2 x 2 tables can be found in S3 and S4.

Interestingly, there is a significant association for ICU B (OR: 1.54, 95% cl: (1.24, 1.91),
p-value: 0.0001) but none for ICU A (OR: 0.95, 95% cl: (0.7, 1.27), p-value: 0.7707).
However, such a simple test may be confounded. Consecutive colonized patients may be
a result due to cross-transmission rather than an increased risk of prior bed occupants.

In order to disentangle the effects of cross-transmission and prior bed occupants, we
analyzed the data sets of the University Hospital of Besan¢on using the following simple
model: Each bed occupant / faces a force of infection A; depending on the colonization

status of the prior bed occupant:

Ai(t) =a+ 6% + p - HE(cP) (3.13)

where ¢

is the colonization status of the prior bed occupant and K(c™) = 1 if

rior
cP

]

=1 and 0 otherwise. It represents the increased risk that patients experience when
occupying a room/bed of a prior colonized bed occupant. The parameter estimates and
the relative contributions can be found in Table S5.

The results show that the influence of prior bed occupants is only limited (< 6%) for both
|CUs of the University Hospital of Besancon. Simulation studies confirm that a significant
impact of this route would be detected by this model. The code of the MCMC procedure
for this analysis, the histogram and traceplots for the simulations studies and the data

sets of Besangon can be found on https://github.com/tm-pham/transmissionPA.

181


https://github.com/tm-pham/transmissionPA

Chapter 3

S12 Text. COMBACTE-MAGNET membership list.

Please find below the list of COMBACTE-MAGNET consortium partners:

Albert Vermaas, Alex Waehry, Angela Supplitt, Anne Adams, Antonio Portolés Pérez,
Aurore Drecq, Brian Allen, Christophe Misse, Cornelia Mockwitz, Fanny Senez, Felicity
Jane Gabbay, Freek De Jong, Gabriella Monaco, Gill Wells, Heather Rogers, Henrik Land-
strom, Hermann Hayn, Holger Schmoll, Jaime Caro Aguirre, Jantine Spithoven, Josep M.
Campistol, Juergen Dreyer, Karine Clement, Karl-Heinz Miiller, Lauren Fleming, Lea Pais,
Lynsey Keig, Malcolm Skingle, Maria Carol Sanjurjo, Marion Do Maria, Markus Jager,
Michael Browne, Nicola Williams, Pascal Savary, Patricia Gizecki, Renaud Mazy, Sarah
Everett-Cox, Sofia Karakostas, Tommaso Rupolo, Ursula Theuretzbacher, Virginia Nieto
Guerrero, Wilfried Reincke, Alain Verschoren, Alexander Affeldt, Alfredo Garcia Diaz,
Andreas Rothfuss, Carlo Giaquinto, Christine Clerici, Daniel Wyler, Denis Hochstrasser,
Dieter Kaufmann, Dirkjan Masman, Frank Miedema, Helen Steel, Holger Zimmermann,
Jaap Verweij, Jan-Olof Jacke, Jean-Francois Lefebre, John Graham, José Francisco Soto
Bonel, Jose Manuel Aranda Lara, Josep M. Campistol Plana, Laurence Lomme, Marcel
Levi, Maria Dolores Acén, Markus Miiller, Maya Said, Nicola Sartor, Noureddine Farah,
Pastora Martinez Samper, Pierre-Francois Leyvraz, Renaud Mazy, Ron Scott, Yves Gey-
sels, Andreas Kimin, Anthony Latte, Clemens Lassing, Elena Ferragut Roig, Eleonora
Zuolo, Esther Bettiol, Eva Lindgren, Eveline Bielser, Giilseren Yalvac, Jenny Lawson,
José Angel Freire Astray, Jose Soto Bonel, Julia Lloyd-Parks, Jiirgen Dreyer, Malgorzata
Kielbasa, Marco Perdon, Markus Zeitlinger, Michaela Schuhmacher, Michiel Gerlagh,
Olivier Brun, Pam Neagle, Patricia Schott, Rebecca Smith, Sally Miles, Sophie Monteau,
Susanna Montalto, Thierry Borloz, Wouter Roobol, Xavier Fretille, Abdel Qualim, Alas-
dair Macgowan, Andreas Voss, Andrew Lovering, Anne Witschi, Antoni Torres, Antonio
Oliver, Bruno Francois, Craig Maclean, Cuong Vuong, David Evans, Evelina Tacconelli,
Hasan Jafri, Ingrid Klingmann, Jan Beyersmann, Jean Chastre, Jean-Francois Timsit,
Jests Rodriguez Bafio, Johan Mouton, Kim Gilchrist, Leonard Leibovici, Leonhard Held,
Marc Bonten, Martin Wolkewitz, Mervyn Singer, Miguel Sanchez, Mike Sharland, Miquel
Pujol Rojo, Philippe Eggimann, Philippe Montravers, Pierre-Francois Laterre, Richard
Bax, Richard Fitzgerald, Stephan Harbarth, Surbhi Malhotra-Kumar, Tom van der Poll,
William Hope.

182



Pseudomonas aeruginosa transmission in ICUs: Supplement

S1 Table. Summary statistics of the marginal posterior distributions for parameters

of the submodel based on the analysis of the Besancon data.

Parameter Symbol Median (95% credibility interval)*

ICU A ICUB ICUs combined
Background o 0.011(0.008,0.015)  0.008(0.006,0.011)  0.009(0.007,0.011)
coefficient
Cross-transmission 5 0.03 (0.012,0.046)  0.038(0.006,0.011)  0.034(0.024, 0.044)
coefficient
Sensitivity ¢ (%) 50.7 (48.0,53.2) 60.5 (58.8,62.1) 57.5 (56.2,58.9)
Importation o
orobability f (%) 55 (4.5,6.5) 7.6 (6.7,8.6) 6.5 (5.87.2)
Fraction colonized  peoi (%) 22.2 (21.2,23.1) 23.2 (22.7,23.7) 22.4 (21.9,22.8)

Contributions
Background
contribution
Cross-transmission
contribution

Rbackgr (%)

RcrossT (%)

65.1 (46.4,84.6)

34.9 (15.4,53.6)

51.1 (35.5,66.9)

48.9 (33.1,64.5)

57.6 (46.0,68.9)

424 (31.1,54.0)

*Highest posterior density interval
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S2 Table. Summary statistics of the marginal posterior distributions for parameters

of the full model based on the analysis the Besancon data.

Parameter Symbol Median (95% credibility interval)*

ICU A ICUB ICUs combined
Background o 0.011 (0.008,0.014) 0.008 (0.006,0.011) 0.009 (0.007,0.011)
coefficient
Cross-transmission
oot B 0.013 (0,0.033) 0.022 (0,0.011) 0.018 (0,0.034)
Environmental € 201.1 (0.018,832.829) 176.7 (0.009,811.6) 209.0 (0.02, 784.5)
coefficient
Decay rate m 1415.8(65.6, 4273.8) 1396.9(26.4,3992.2)  1419.2 (43.7, 4524.0)
Sensitivity ¢ (%) 50.6 (48.0,53.1) 60.5 (58.9,62.1)  57.6 (56.2,58.9)
Importation o
orobability f (%) 55 (4.56.6) 75  (6.6,8.4) 6.4 (5.7,7.2)
Fraction colonized  pco (%) 222 (21.3,23.1) 23.2 (22.7,23.6) 224 (21.9,22.8)
Contributions
Background Riackgr (%) 622 (44.8,79.7) 50.4 (35.6,65.2)  57.6 (45.5,67.9)
Cross-transmission  Rerosst (%) 37.2  (20.4,54.9) 49.0 (34.0,63.1) 427 (31.9,54.0)
Env. cont. after Ren (%) 0.006 (0,0.013) 0.005 (0,0.013) 0.006 (0,0.012)

discharge

*Highest posterior density interval
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S3 Table. Association of colonization statuses of consecutive bed occupants in ICU

A of the University Hospital of Besancon.

Current bed occupant
Colonized  Non-colonized
Colonized 57 478
Non-colonized 481 3826

Prior bed occupant
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S4 Table. Association of colonization statuses of consecutive bed occupants in ICU

B of the University Hospital of Besancon.

Current bed occupant
Colonized  Non-colonized
Colonized 123 586
Non-colonized 610 4479

Prior bed occupant
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S5 Table. Summary statistics of the marginal posterior distributions for parameters

of model (3.13) based on the analysis of the Besancon data.

Parameter Symbol Median (95% credibility interval)*

ICU A ICU B
Background o 0.011 (0.008,0.014)  0.008 (0.006,0.011)
coefficient
Cross-transmission
oottt 3 0.027 (0.013,0.041)  0.036 (0.023, 0.048)
Prior bed occupant 0.004 (0, 0.007) 0.003 (0, 0.006)
coefficient
Sensitivity ¢ (%) 50.6 (48.0,53.1)  60.5 (58.9,62.1)
Importation o
robability f (%) 55 (4.5,6.6) 7.5 (6.6,8.4)

Fraction colonized Peot (%) 22.2 (21.3,23.1) 23.2 (22.7,23.6)
Contributions

Background Rbackgr (%) 65.1 (48.8,81.7) 50.4 (35.7,66.6)
Cross-transmission RerossT (%) 31.8 (14.6,47.2) 46.8 (31.3,62.1)

Prior bed occupants o
discharge Rorior (%) 3.1 (0,6) 26 (0,5.6)

*Highest posterior density interval
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S1 Fig. Pairwise plots of samples from the posterior distribution for the transmission
parameters of the submodel. The plots were generated from the data of ICU A before

renovation using the submodel with background and cross-transmission.
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S2 Fig. Histograms for ICU A after renovation using the submodel with background

and cross-transmission.
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S3 Fig. Traceplots for ICU A before renovation using the submodel with background

and cross-transmission.
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S4 Fig. Histograms for ICU A after renovation using the submodel with background

and cross-transmission.
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S5 Fig. Traceplots for ICU A after renovation using the submodel with background

and cross-transmission.
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S6 Fig. Histograms for ICU A before renovation using the full model with back-
ground, cross-transmission and environmental contamination. The results are dis-

played for transmission parameters o, 3, € and L.
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S7 Fig. Histograms for ICU A before renovation using the full model with back-
ground, cross-transmission and environmental contamination. The results are dis-
played for the importation probability f, sensitivity parameter ¢, log-likelihood and relative

contributions R;, where / € {background, cross-transmission, environment}.
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S8 Fig. Traceplots for ICU A before renovation using the full model with back-
ground, cross-transmission and environmental contamination. The results are dis-

played for transmission parameters o, 3, € and L.
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S9 Fig. Traceplots for ICU A before renovation using the full model with back-
ground, cross-transmission and environmental contamination. The results are dis-
played for the importation probability f, sensitivity parameter ¢, log-likelihood and relative

contributions R;, where / € {background, cross-transmission, environment}.
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S10 Fig. Histograms for ICU A after renovation using the full model with back-
ground, cross-transmission and environmental contamination. The results are dis-

played for transmission parameters o, 3, € and L.
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S11 Fig. Histograms for ICU A after renovation using the full model with back-
ground, cross-transmission and environmental contamination. The results are dis-
played for the importation probability f, sensitivity parameter ¢, log-likelihood and relative

contributions R;, where / € {background, cross-transmission, environment}.
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S12 Fig. Traceplots for ICU A after renovation using the full model with back-
ground, cross-transmission and environmental contamination. The results are dis-

played for transmission parameters o, 3, € and L.
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S13 Fig. Traceplots for ICU A after renovation using the full model with back-
ground, cross-transmission and environmental contamination. The results are dis-
played for the importation probability f, sensitivity parameter ¢, log-likelihood and relative

contributions R;, where / € {background, cross-transmission, environment}.
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S14 Fig. Pairwise plots of samples from the posterior distribution for the trans-
mission parameters of the full model. The plots were generated from the data of
ICU A before renovation using Exp(0.001) prior and the full model with background,

cross-transmission and environmental contamination.

201



Chapter 3

S15 Fig. Coverage probabilities for the submodel using Jeffreys prior. (a) - (b) ICU
A before and after renovation, respectively. (c) - (d) ICU B before and after renovation,

respectively.

202



Pseudomonas aeruginosa transmission in ICUs: Supplement

S16 Fig. Coverage probabilities for the full model using Jeffreys prior. (a) - (b) ICU
A before and after renovation, respectively. (c) - (d) ICU B before and after renovation,

respectively.
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S17 Fig. Pairwise plots of samples from the posterior distribution for the trans-
mission parameters of the full model. The plots were generated from the data of
ICU A using U(0,2) prior and the full model with background, cross-transmission and

environmental contamination after discharge.
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S18 Fig. Coverage probabilities for simulated data set using Jeffreys prior. The data
was simulated using @ = 0.015, 3 = 0.055, 4 = 1/7, ¢ = 0.15, f = 0.05, ¢ = 1.
The analysis assumed only one route, i.e. background transmission. The plot shows large
discrepancies between the expected and the computed coverage probabilities, pointing to

a misspecified model.






Chapter 4

Modes of transmission of VIM-positive Pseudomonas
aeruginosa in adult intensive care units - analysis of 9 years
of surveillance at a university hospital using a mathematical

model

Thi Mui Pham™, Andrea C. Biichler”, Anne F. Voor in ‘t holt, Juliétte A. Severin,
Martin C. J. Bootsma, Mirjam E. Kretzschmar®, Margreet C. Vos'

* These authors contributed equally to this work.

1 These authors contributed equally to this work and are cosenior authors.

Manuscript under review.






Modes of transmission of VIM-Pseudomonas aeruginosa in |CUs

Abstract

Background: Hospital outbreaks of multidrug resistant Pseudomonas aeruginosa (P.
aeruginosa) are often caused by Pseudomonas aeruginosa (P. aeruginosa) clones which
produce metallo-B-lactamases, such as Verona Integron-encoded Metallo-B-lactamase
(VIM). Although different sources have been identified, the exact transmission routes
often remain unknown. However, quantifying the role of different transmission routes of
VIM-PA is important for tailoring infection prevention and control measures. The aim
of this study is to quantify the relative importance of different transmission routes by
applying a mathematical transmission model using admission and discharge dates as well
as surveillance culture data of patients.

Methods: We analyzed VIM-PA surveillance data collected between 2010 and 2018
of two intensive-care unit (ICU) wards for adult patients of the Erasmus University
Medical Center Rotterdam using a mathematical transmission model. We distinguished
two transmission routes: Direct cross-transmission and a persistent environmental
route. Based on admission, discharge dates, and surveillance cultures, we estimated the
proportion of transmissions assigned to each of the routes.

Results: Our study shows that only 13.7% (95% credibility interval: 1.4%, 29%)
of the transmissions that occurred in these two ICU wards were likely caused by
cross-transmission, leaving the vast majority of transmissions (86.3%, 95% credibility
interval: 71%, 98.6%) due to persistent environmental contamination.

Conclusions: Our results emphasize that persistent contamination of the environment
may be an important driver of nosocomial transmissions of VIM-PA in ICUs. To minimize
the transmission risk from the environment, potential reservoirs should be regularly and

thoroughly cleaned and disinfected, or redesigned.

Keywords: Drug Resistance, Multiple; Pseudomonas aeruginosa (P. aeruginosa); Critical

Care; Epidemiological monitoring; Models, Statistical.
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Introduction

Multidrug resistant (MDR) microorganisms are an emerging problem worldwide. The
most emerging threat is the spread of carbapenem-resistant Enterobacterales and
carbapenem-resistant non-fermenting microorganisms, such as Acinetobacter baumannii
(A. baumannii) and Pseudomonas aeruginosa (P. aeruginosa) [1]. P. aeruginosa is one
of the most common nosocomial pathogens [2, 3]. It can cause serious infections in
patients with underlying conditions, such as immunosuppression, cystic fibrosis, and
patients admitted to the intensive care unit (ICU). The morbidity and mortality of P.
aeruginosa bloodstream infections is high, especially in immunocompromised patients
[4-6]. Due to its intrinsic and acquired resistance to multiple antibiotics, P. aeruginosa is
not only a common cause of nosocomial infections but also diffcult to treat. Multidrug
resistance mechanisms in P. aeruginosa are loss or alteration of outer membrane
porins, increased efflux pump activity and carbapenemase production [2] with the latter
being the most common underlying mechanism of MDR P. aeruginosa involved in
in-hospital outbreaks [7]. Among the carbapenemases, the Verona Integron-encoded

Metallo-beta-lactamase (VIM) is most dominant, and most widely disseminated [8].

Identifying the pathways of transmission of P. aeruginosa in hospital outbreaks is key
for targeted and timely infection prevention and control (IPC) measures. Although the
exact transmission route often remains unknown, different modes of transmission are
described in the literature. For P. aeruginosa, water-related devices such as sinks are
the most common environmental source [9, 10]. Quantifying the relative importance of
transmission routes may serve as an essential tool in outbreak investigation as well as in

designing effective and tailored IPC strategies.

Models for inference of transmission parameters for different transmission routes
have been developed for various MDR bacteria [11-14]. Pham et al [14] developed a
mathematical transmission model including three different routes of transmission for P.
aeruginosa using ICU data from two |CUs of a French hospital in Besangon. The authors
estimated the relative contribution of background transmission, cross-transmission and

environmental contamination after discharge using an extensive surveillance data set. It
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was shown that environmental contamination due to colonized patients that persisted
after their discharge likely had a small contribution (< 1%) to the overall number of
transmissions. Persistent environmental contamination was included in “background
transmission” for which the relative contribution was significantly higher. While this
route could have played an important role in the transmission process, it could not
be distinguished from other routes that could have caused a similar constant risk of

colonization.

In this paper, we present the application of a similar mathematical transmission
model to surveillance data of VIM-producing P. aeruginosa (VIM-PA) at the Erasmus
University Medical Center Rotterdam (Erasmus MC), the Netherlands. In this hospital,
since 2003, VIM-PA colonized and infected over 150 patients, with most patients
being identified at the ICU [15]. Multiple sources and transmission routes have been
identified since; with sinks as main source [15, 16]. However, the contribution of each
transmission route remains unknown. Therefore, the aim of this study is to quantify the
relative importance of each route at the ICU by applying a mathematical transmission

model using admission and discharge dates as well as surveillance culture data of patients.

Methods

Setting

This retrospective study was conducted at the adult ICU wards of the Erasmus
MC in Rotterdam, the Netherlands, using data from January 1st, 2010 until May
18th, 2018. The end date of this period was due to the move to a new hospital. In
this 1200-bed university hospital, all medical specialties are available. The adult ICU
comprised two high-level ICU wards located on the third and the tenth floor of the
adults’ hospital building, and consisted of a total of 34 single-occupancy rooms, of
which 7 with anteroom (i.e., isolation rooms). At the ICU, patients expected to be on a
mechanical ventilator for > 48 hours or anticipated to be admitted to the ICU for > 72
hours received selective digestive tract decontamination (SDD) [17]. During the study

period, the SDD regimen did not change, nor did the empirical antibiotic therapy regimen.
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General IPC measures were installed after each VIM-PA case was identified (e.g.,
contact isolation; using gloves and gowns when entering the patient room). However,
in 2011 these measures were intensified, and twice-weekly screening for VIM-PA was
implemented. An overview of all IPC measures implemented or executed during the

study period is available in Supplement 1.

Written approval to conduct this study was received from the medical ethical research
committee from the Erasmus MC University Medical Center (Erasmus MC), Rotterdam,

the Netherlands (MEC-2015-306). All data were anonymized before analysis.

Data

We included all admission data and surveillance cultures from two distinct ICU wards
in the time period 01/01/2010 till 18/05/2018. Since HCWs were not shared between
wards and no movement of patients were recoded between them, these ICU wards were
treated as separate entities with no transmission between them. If the admission date
of a patient preceded the study period, it was set to the beginning of the study period.
If the discharge date of a patient lied outside the study period, it was set to the end of
the study period. We included all results from throat and rectum cultures that were part
of regular VIM-PA surveillance. Non-surveillance, clinical cultures were excluded to avoid
the introduction of selection bias. All data were de-identified and anonymized prior to

the analysis.

Mathematical model

The underlying model is a Susceptible-Infected (SI) model (e.g., [18]). We assumed
that all patients admitted to an ICU ward either belong to the susceptible (VIM-PA
negative) or colonized (VIM-PA positive) compartment at any given time. The latter
includes patients with asymptotic carriage as well as those with a VIM-PA infection. As
such, we did not distinguish colonization and infection. In addition, we assumed that
every admission is a new patient and once colonized, patients remained colonized with
the same level of infectiousness throughout their stay. Events were assumed to occur in

daily intervals.
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A susceptible patient may enter the ICU already colonized (with probability ¢), or may
become colonized at a certain transmission rate . We assumed two different modes of
transmission through which colonization can be acquired. The schematic illustration of
the model and the transmission routes is given in Figure 1. Each route induces different
patterns in the prevalence time series on the basis of which they may be distinguished
statistically. Cross-transmission, i.e., colonization caused by (direct) transmissions from
other colonized patients present at the same time on the same ward, is dependent on
the fraction of colonized patients in the ward. The probability of colonization due to
cross-transmission is therefore proportional to the number of colonized patients present
in the ward. Since the mobility of patients in ICUs is usually restricted (due to their
health status), cross-transmission typically occurs via temporarily contaminated hands of
health-care workers (HCWs). We did not model the population of HCWs explicitly but
rather assumed direct patient-to-patient transmission with HCWs representing vectors of
transmission. Next to cross-transmission, patients may become colonized at a constant
per capita rate a. In general, this transmission route may be due to, persistent environ-
mental contamination, or introductions from other parts of the hospital, or rarely long
term HCW carriers. For VIM-PA the main sources of this transmission route are persis-
tently contaminated environments, such as sinks. We will therefore refer to this route as
environmental route. The force of infection, i.e., the per capita rate of colonization, is

modeled as

A(t) —a+6%

where /(t) is the number of colonized patients, N(t) is the total number of patients
currently present in the ward at time t, and a and 3 are the transmission rates for the
environmental route and cross-transmission, respectively. Based on these parameters, the
proportion of acquired colonizations assigned to each route, i.e., the relative contribu-
tion of the transmission routes to the overall number of acquired colonizations can be
estimated (e.g., [14]).

Estimation procedure

In the analysis, we used the day of admission and discharge, and the day and result of

surveillance cultures as input data for the model. Patients may be admitted to the ward
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ENVIRONMENT CROSS-TRANSMISSION

2 & & 2
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Force of infection

S » ]

Figure 1: lllustration of the considered transmission routes and the basic transmission
model. Patients are assumed to be either susceptible (S) or colonized (I) with VIM-PA.
The rate at which susceptible patients may become colonized is represented by the force
of infection and dependent on the routes of transmission. Two transmission routes are
distinguished: Environmental route (green), mainly caused by transmissions from per-
sistent environmental sources and cross-transmission (orange), i.e., transmissions from
other colonized patients. In both routes, HCWs represent vectors of transmission.

either uncolonized or already colonized. The probability of the latter is defined as the
importation probability f. The rate at which a susceptible patient may transition to
being colonized is given by Eq. (1). The colonization state of a patient is determined by
the surveillance cultures provided to the model. Since these culture results are typically
intermittent and imperfect, we allow false negative results and colonization results to
be imputed in our model. We define the test sensitivity ¢, i.e., the probability that a

colonized patient has a positive result.

We estimated the transmission parameters, the relative contribution of the corresponding
transmission routes as well as the importation probability and test sensitivity based on a
Bayesian framework using a data-augmented Markov chain Monte Carlo (MCMC) simu-
lation method [11]. The parameters are estimated by fitting the stochastic transmission
model to observed data. The main idea is to fit the prevalence pattern resulting from the

model to the observed timeseries patterns of the prevalence.
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Implementation

The MCMC algorithm was run for 1,000,000 iterations. A thinning factor of 10 and a
burn-in of 30,000 iterations were used. In each iteration, 20 data-augmentation steps
were performed with each augmentation chosen at random. The MCMC algorithm was
implemented in C++ and the analysis of the output was performed in R (Version 4.0.1)
[19]. The data and code are publicly available from:

https://github.com/tm-pham/transmission_routes_erasmusMC.

Results

Descriptive data analysis

An overview of the data used in the analysis can be found in Table 1. Since the two
considered ICU wards do not differ from each other in terms of admitted patients (i.e.,
patients were allocated randomly to one of the two ICU wards), we used a combined data
set comprising data of both ICU wards for the estimation. The ICU wards were treated
as distinct wards with no transmission between them. Data was collected over a study
period of 3058 days. In total, 8814 patients were included in the analysis. There were 62
patients with at least one positive culture and 7487 patients with only negative cultures.
In total, 829 patients who were admitted to one of the two ICU wards did not have a
culture result. The overall median length of stay was 3.0 days. Patients with an observed
colonization had a median length of stay of 13.0 days whereas patients that only had
negative culture results had a median length of stay of 3.0 days. The number of patients

with positive cultures over time are shown in Figure 2.

Inference results

The estimated parameters are reported in Table 2. We estimated that the majority of
the VIM-PA colonizations occurred as acquisitions on the wards and that the majority
of these transmissions were due to persistent environmental contamination (Figure 3).
In particular, of the estimated 58 (95% credibility interval: 45, 72) acquisitions, approx-
imately 50 acquisitions (86.3%, 95% credibility interval: 71%, 98.6%) occurred via this
route leaving 8 (13.7%, 95% credibility interval: 1.4%, 29%) acquisitions due to cross-

transmission.
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Table 1: Descriptive statistics for VIM-PA colonization data collected at Erasmus MC,
2010-2018

No./Median (IQR) Percentage (%)

Study period, days 3058

Admissions 10408

Number of included patients 3814

Number of patients with readmissions 1128

Observed number of patients with positive 62 0.7%
culture(s) for VIM-PA

Number of patients with only negative cul- 7487 84.9%
tures for VIM-PA

Number of patients with no cultures 1265 14.4%
Length of stay, days 3.0 (2.0-7.0)

Observed colonized patients 13.0 (5.0-31.0)

Observed uncolonized patients 3.0 (2.0-7.0)

Number of cultures per included patient 6.0 (4.0-15.0)

Number of cultures per admission 2.0 (1.0-3.0)

Abbreviations: VIM-PA; Verona Integron-encoded Metallo-beta-lactamase (VIM)-
producing Pseudomonas aeruginosa (P. aeruginosa), |QR; interquartile range.

2010 2011 2012 2013 2014 2015 2016 2017 2018

I\J

Number of positive patients

>L) ‘-’—>F 5=>0 ! ‘-‘->F >0 (s} O ‘-‘->ﬁ >0 ! ! L‘-)ﬁ >0
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MM%M%%%«%@&%M&%M&%«%&%M1&%«%@1&%«%&%&

Figure 2: Number of VIM-PA positive patients in the ICU for adults at Erasmus MC,
2010-2018. The date of first positive culture was used. Data for the two |ICUs were
combined.

Discussion

Our results show that the minority of the transmissions that occurred in the two consid-
ered ICU wards was due to cross-transmission. By exclusion, most of the transmissions

are estimated to have occurred through persistent environmental contamination. To our
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Table 2: Summary statistics of the estimated parameters.

Parameter Symbol Mean (95% credibility interval)

Environmental contamination coefficient o 6.4-107%(4.1-1074,9.2-107%)

Cross-transmission coefficient 6} 7.1-1073(5.6-107%,1.7-1072)

Probability to be colonized on admission (%) f 0.3 (0.2, 0.5)

Fraction colonized (%) 1.7 (1.6, 1.9)

Test sensitivity (%) ) 98.8 (95.6, 100)

Number of acquisitions 58 (45, 72)

Number of importations” 32 (24, 41)
Contributions

Environmental route (%) Ro 86.3 (71, 98.6)

Cross-transmission (%) Rg 13.7 (1.4, 29)

“Colonizations prior to admission

100

75

Percentage (%)
(6a)
o

25

Environmental route Cross—transmission

Figure 3: Estimated relative contributions of transmission routes. The height of the bar
shows the mean value, the error bars represent the corresponding 95% credibility intervals
for the relative contributions of the transmission routes.

217



Chapter 4

knowledge, this is the first study that quantifies the relative contributions of different
transmission routes for VIM-PA and confirms the assumption expressed in Voor in ‘t
holt et al [15], that persistent sources in the hospital environment were the main cause

of VIM-PA colonizations.

VIM-PA colonizations have been linked to environmental reservoirs such as sinks in other
ICUs (e.g., [20-23]). Kizny Gordon et al [24] summarized studies reporting outbreaks
with carbapenem-resistant organisms with a link to the hospital water environment in a
systematic review. The authors found that such outbreaks usually involved intensive care
settings, the majority of these were caused by P. aeruginosa, and that drains, sinks, and
faucets were most frequently colonized. Focusing specifically on carbapenem-resistant
P. aeruginosa outbreaks and all reported sources, Voor in ‘t holt et al. [9] also showed
an over-representation of sinks as reservoirs. While our method is not able to pinpoint
to the exact source of colonizations, we were able to show that cross-transmission, and
therefore direct transmission from other patients, was an unlikely cause for the majority
of transmissions. In fact, we showed that most transmissions were due to sources that
caused a constant risk of colonization independent from other colonized patients. HCW
themselves may be such risk as was shown by Foca et al [25] who described three HCWs
with persistent carriage of P. aeruginosa on their hands. However, this was associated
with nail extenders, candida onychomycosis and an active otitis externa [25]. In the
Erasmus MC, we cultured the hands of ICU HCW on two moments (Supplement 1;
February 2010 and May 2011). VIM-PA was not detected in any of these. Furthermore,
artificial nails and nail extenders are forbidden in our hospital and were also not observed
during the culturing of hands. Therefore, long-term HCW carriers are an unlikely cause
and transmissions due to (temporarily) contaminated hands of HCWs have to be linked
to other colonized patients present in the respective ward. Visitors may introduce and
transmit microorganisms. However, for VIM-PA, we consider this an unlikely cause.
VIM-PA among hospitalized patients is already < 1%, among non-hospitalized persons
this would be even rarer [26]. Thus, by exclusion, the majority of transmissions are
assumed to have occurred by persistent environmental sources, confirming the likely role
of environmental contamination in the transmission process of VIM-PA in ICUs. These
results may be used in the investigation for outbreaks. In fact, environmental sampling

of sinks during this study period revealed that many sinks were found to be persistently
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contaminated [16].

Our study encompasses several simplifying assumptions. Firstly, we assumed that every
new admission is a new patient. Secondly, while we distinguish two different transmission
routes, it is possible that other transmission routes exist that are not included in the
model. As explained above, other routes than the environment, such as persistent
colonization of HCWs, are highly unlikely. The environment as an exclusion-per-
definition-category includes a broad range of sources including equipment and inventory.
Microbial genotyping data of surveillance samples would allow the identification of
specific transmission routes and more detailed quantification of the relative contribution
of the transmission routes. Thirdly, we assumed that the environmental route affects all
patients in the ICU ward equally. In reality, patients located close to an environmental
reservoir may have an increased risk of colonization that will also depend on the microbial
load present in the reservoir. Fourthly, non-surveillance or clinical cultures were excluded
from our analysis to avoid selection bias. While this excludes potential information, this
would likely only affect the uncertainty of our estimates as the data-augmented MCMC
method we used imputes missing colonization times. Finally, we did not include risk
factors of different patients and assumed that all patients are equally susceptible to
colonization. While the model could be extended to account for the simplifications, this
would likely only affect the uncertainty of our estimates but not the main results and
conclusions regarding the relative contribution of the transmission routes. We, thus,

opted for the simpler model to answer our research question.

In conclusion, using a large longitudinal data set on admission and discharge times as
well as surveillance cultures of patients in two ICUs of the Erasmus MC, we were able
to quantify the relative importance of cross-transmission and persistent environmental
contamination. Our study contributes to the evidence that persistently contaminated
environments in hospital wards may be a major cause of VIM-PA outbreaks. To min-
imize the transmission risk in wards, reservoirs in the environment should be regularly
cultured, thoroughly cleaned, and disinfected. In addition, well-designed sinks and taps
may minimize the risk of contamination and consequently spill-over from the environment

to patients.
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Pseudomonas aeruginosa (VIM-PA) at the 2 included
intensive care units (ICU); January 2010 until May 18, 2018.

Table S1: ICP measures implemented for a period of time at the ICU.

IPC measure Start date (month-year) End date (month-year)
General use of re-usable gowns by HCW Jan-10 Sep-11
General use of gloves and gowns by HCW and visitors (preemptive contact isolation) of Oct-11 Mar-12
all patients admitted at the ICUs

General use of gloves and gowns by HCW when having physical patient contact (i.e., not Apr-12 May-18
when changing an intravenous fluid bag)

The patient room of every patient identified with VIM-PA: daily cleaning, and disinfection Aug-10 May-18
with 250 ppm chlorine after discharge

Emphasis (communication by the IPC team) on separation of clean materials from dirty Feb-11 May-18
sinks

VIM-PA screening (throat and rectum) of patients on admission and at discharge Aug-11 May-18
VIM-PA screening (throat and rectum) of patients during hospitalization (twice weekly) Aug-11 Sep-14
VIM-PA screening (throat and rectum) of patients during hospitalization (weekly) Oct-14 Dec-14
VIM-PA screening (throat and rectum) of patients during hospitalization (twice weekly) Jan-15 May-18
Electronic flagging in the electronic patient fil of all VIM-PA positive patients Sep-11 May-18
Only allowed to use single-use wash gloves at the ICU. Dec-11 May -18 Discontinuation Dec-11 May-18

usage of tap water at the ICU, only usage of bottled water allowed.
Installation of sink drain plugs as physical barriers against splashing to prevent transmission of VIM-PA from drain reservoirs to the surrounding sink environment

Pre-intervention phase Jan-13 Aug-13
Intervention phase Jul-13 Sep-13
Post-intervention phase Aug-13 Jun-14

Abbreviations: HCW; healthcare workers, ICU; intensive care unit, VIM-PA; Verona Integron-encoded metallo-beta-lactamase (VIM)-producing Pseudomonas aerug-
inosa, OMT; outbreak management team, CVVH; Continuous Veno-Venous Hemofiltration, ppm; parts per million, IPC; infection prevention and control, H202;
hydrogen peroxide.

Figure S1: Sink drain plugs as physical barriers against splashing to prevent transmission
of VIM-PA from drain reservoirs to the surrounding sink environment.
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Table S2: ICP measures implemented for a period of time at the ICU.

IPC measure Month-year

VIM-PA screening of the ICU environment Jan-10, Apr-10, Aug-10, Sep-10,
Oct-10, May-11, Aug-11, Sep-11,
Oct-11, Nov-11, Dec-11, Jan-12,
Jan-13, Jun-13, Dec-13, Feb-14,
Jun-15, Nov-15, Jan-16, Feb-16,
Mar-16, Apr-16, Jul-17, Aug-17

OMT meetings Sep-10, Jan-11, Feb-11, Mar-11,
Apr-11, May-11, Jul-11, Aug-11,
Sep-11, Oct-11, Nov-11, Dec-11,
Feb-12, Mar-12, Jun-12, Aug-12,
Sep-12, Jan-13, Mar-14, Aug-14,
Sep-14, Oct-14, Apr-15

VIM-PA screening of hands of healthcare workers (all HCW employed at one Feb-10

ICU)

Sampling of CVVH machines Feb-10, Aug 12

Replacement of all siphons and drains, including cleaning and disinfection of Oct-10

patient rooms afterwards.

VIM-PA screening (throat and rectum) of all admitted ICU patients Apr-11
VIM-PA screening of enteral feeding Aug-11
H202 disinfection of patient rooms of one ICU ward Aug-11
VIM-PA screening of throat and rectum of all employed HCW at both ICUs Oct-11, Nov-11
International expert meeting Dec-11
Regional feedback meeting Dec-14

Abbreviations: HCW,; healthcare workers, ICU; intensive care unit, VIM-PA; Verona Integron-encoded metallo-beta-
lactamase (VIM)-producing Pseudomonas aeruginosa, OMT; outbreak management team, CVVH; Continuous Veno-
Venous Hemofiltration, ppm; parts per million, IPC; infection prevention and control, H202; hydrogen peroxide.
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Nosocomial infections in the COVID-19 epidemic in England

Abstract

Background: SARS-CoV-2 spreads in hospitals, but the contribution of infections

acquired in hospitals to the total burden at a national level is unknown.

Methods: We used comprehensive national English datasets to determine the number
of COVID-19 patients with identified hospital-acquired infections (with symptom onset
>7 days after admission and before discharge) in acute English hospital facilities up to
August 2020. As patients may leave the hospital prior to detection of infection or have
rapid symptom onset, we combined measures of the length of stay and estimates of the
incubation period distribution, to estimate how many hospital-acquired infections could
be missed. Combining these two measures, we used simulations to estimate the total
number (identified and unidentified) of symptomatic hospital-acquired infections, as well
as infections due to onward transmissions from missed hospital-acquired infections, to
31st July 2020.

Results: In our dataset of hospitalized COVID-19 patients in acute English Trusts with
a recorded symptom onset date (n = 65,028), 7% were classified as hospital-acquired.
We estimated that only 30% (range across weeks and 200 simulations: 20-41%) of
symptomatic hospital-acquired infections would be identified, with up to 15% (mean, 95%
range over 200 simulations: 14.1%-15.8%) of cases currently classified as community-
acquired COVID-19 potentially linked to hospital transmission.

We estimated that 26,600 (25,900 to 27,700) individuals acquired a symptomatic SARS-
CoV-2 infection in an acute Trust in England before 31st July 2020, resulting in 15,900
(15,200-16,400) or 20.1% (19.2%-20.7%) of all identified hospitalized COVID-19 cases.

Conclusions: Transmission of SARS-CoV-2 to hospitalized patients likely caused
approximately a fifth of identified cases of hospitalized COVID-19 in the “first wave" in
England, but less than 1% of all infections in England. Using symptom onset as a detec-

tion method likely misses a substantial proportion (>60%) of hospital-acquired infections.

Keywords: COVID-19, SARS-CoV-2, nosocomial transmission, mathematical modelling
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Introduction

The SARS-CoV-2 pandemic is a global public health priority [1]. Based on experience
with other highly pathogenic coronaviruses within-hospital transmission can occur and
hospitals may play an important role in amplifying transmission [2]. Moreover, many
patients acquiring SARS-CoV-2 in hospitals are at high risk for severe outcomes and
subsequent mortality [3]. Quantifying hospital-acquired transmission of SARS-CoV-2 is
thus important both for prioritising control efforts and for understanding the contribution
of hospitals to sustaining the community epidemic.

SARS-CoV-2 transmission in healthcare settings has been reported in many countries [3—
6]. As the precise time of infection is rarely known, establishing whether an infection is
hospital-acquired remains a challenge. For SARS-CoV-2, hospital-acquired infections are
usually defined by comparing the time of admission and subsequent symptom onset [7] or
first positive test [8]. If the delay is much longer than the incubation time, then it is likely
that an infection is hospital-acquired. Thus, the proportion of patients with a hospital-
acquired SARS-CoV-2 infection will depend on the definition used, with uncertainty driven
by the unobservable nature of infection and the incubation period distribution. Records
for all hospitals in England, using testing data and standard definitions (of first positive
test more than 14 days from admission), indicate that 15% of detected SARS-CoV-2
infections in hospitalized patients could be attributed to hospital-acquired transmission
[8] with analysis of data from single hospitals suggesting a similar level [3, 9].

In the absence of frequent universal testing of all inpatients, many hospital-acquired
SARS-CoV-2 infections will not be identified by hospitals prior to discharge. Even with
regular PCR testing of all inpatients regardless of symptoms we would expect to miss
many infections because of short patient stays and potentially low PCR sensitivity 1-2
days after infection [10].

In the spring of 2020 in England, the majority of inpatient testing only occurred in those
with symptoms, either on admission or during hospital stay [11]. Many patients who de-
velop a symptomatic infection will do so after discharge (Figure 1) as hospital stays are
typically shorter than the interval from infection to symptom onset (median length of
stay = 2.4 days, standard deviation = 0.4 days, for non-COVID patients in England vs.

incubation period average of 5.1 days [12]). Thus, there may be a considerable propor-
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tion of hospital-acquired infections that remained unidentified. Its magnitude and further
transmission to the community has been difficult to quantify. Additionally, a substantial
proportion of infected individuals never progress to be symptomatic [13].

In this analysis, we used national, patient-level data sets of patients hospitalized with
COVID-19 to estimate the contribution of hospital settings to the first wave of COVID-
19 in England. We estimated the proportion of symptomatic hospital-acquired infections
that have not been identified as hospital-acquired and modelled onward transmission from
these unidentified infections to the community. We hence quantified the likely contribution

of hospital-acquired infections to the first wave of SARS-CoV-2 infections in England.
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Figure 1: How might we underestimate hospital-acquired (HA) infections? With no
asymptomatic screening in hospitals, detection of a hospital-acquired case relies on symp-
tom onset prior to patient discharge. In the schematic a “+" above the bed denotes a
hospital-acquired infection, and a red patient denotes one with symptoms. A patient with
COVID-19 identified as being due to a hospital-acquired infection is one with symptom
onset after a defined cut-off (e.g. > 7 days from admission to symptom onset but prior
to discharge, bottom row patient). Patients with unidentified hospital-acquired infections
are those with a symptom onset after discharge (top row patient, “missed”) or those with
symptom onset prior to the defined cut-off (middle row patient, “misclassified"). We focus
on symptomatic infections: there will also be unidentified asymptomatic hospital-acquired
infection which we do not include. We estimated that fewer than 1% of individuals with
symptom onset > 7 days from admission will have been infected in the community.

235



Chapter 5

Methods

Our primary aim was to estimate the total number of symptomatic hospital-acquired
SARS-CoV-2 infections in England from 1st January to 31st July 2020. For each
identified hospital-acquired infection, we estimated how many were unidentified. Our
secondary aim was to estimate the contribution of these unidentified hospital-acquired

infections to the community epidemic.

All analyses were conducted in R version 4.0.3 (14) with code available on Github [14].

The steps in the analysis (a - e) are outlined below and illustrated in Figure 2.

Data sources

The healthcare system in the UK is represented by the National Health System
(NHS). NHS services are mainly provided by NHS Trusts, i.e., collections of hospitals
(departments, buildings and facilities) that function as a single administrative unit.
Acute medical care Trusts are defined as an NHS Trust with only acute hospitals (as
opposed to Community or Mental Health facilities). In this study, we used two data
sources on COVID-19 patients admitted to NHS Trusts (Supplementary 2). The first
is the ISARIC4C UK COVID-19 Clinical Information Network (CO-CIN) study [15],
a national cohort of COVID-19 patients collected in 208 acute Trusts in England,
Scotland, and Wales up to 3rd December 2020, representing approximately two thirds
of COVID-19 UK admissions during the first wave of SARS-CoV-2 infection. While
not all NHS Trusts are represented in the data (as some have specialist roles that do
not involve inpatient acute medical care), our CO-CIN extract comprised 208 of 223
acute medical care Trusts [16, 17]. We included 126 English Trusts and filtered the
dataset for patients with a symptom onset before 1st August 2020. CO-CIN recorded
admission date, discharge date, and earliest date of symptom onset for patients. We
excluded CO-CIN participants without a recorded admission and symptom onset date

(Supplementary 2).

The second is the SUS dataset [18] which contains data on all patient admissions and

discharges for all Trusts in England. The SUS data were linked with testing data (Second
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Generation Surveillance System (SGSS)) [18] to derive length of stay distributions for
non-COVID-19 patients and total COVID-19 hospital admissions by week and NHS Trust.

These two data sources have their respective strengths and limitations. The CO-CIN data
include information on the date of symptom onset [19] but is only a subset, albeit the
majority, of all hospitalized COVID-19 patients, while the linked SUS/SGSS data include
all known hospitalized COVID-19 patients but lack information on symptom onset date.
Symptom onset dates do not rely on knowledge of testing regimens which vary over time
and between Trusts. To address these different shortcomings, we decided to use SUS
data to adjust CO-CIN information to account for enrolment variation between settings,

resulting in a database combining the best features of both.

Setting

Our baseline population is all acute English Trusts in CO-CIN. These are aggregated as
a single “England" population for our main analysis. A sensitivity analysis modelled the

individual acute Trust level prior to aggregation (Supplementary 12).

Length of stay distribution

We used empirical length of stay (LoS) estimates for non-COVID-19 patient stays from
SUS for each English acute Trust in CO-CIN for patients admitted each week (Supple-
mentary 2). For a LoS distribution for England, LoS estimates across all including Trusts

were pooled by week. The average length of stay was between 1.5 and 2.5 days.

Analysis steps
a. ldentifying COVID-19 cases as infected in a hospital

The number of hospital-acquired COVID-19 cases per day in each Trust was estimated by
comparing the dates of symptom onset and hospital admission for each patient provided
by CO-CIN. Our analysis used a 7 day cut-off: we defined an identified hospital-acquired
infection as an inpatient with symptoms onset more than 7 days after admission (Ta-
ble 1) aligned with English definitions and the ECDC definition for a Probable (8-14) and
Definite (> 14 days) healthcare-associated COVID-19 case [7, 20]. In sensitivity analyses
we explored cut-offs of 4 and 14 days.
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b. Accounting for enrolment into CO-CIN

We accounted for the fact that only a subset of all hospitalized COVID-19 patients
was enrolled in CO-CIN as follows: We calculated the proportion of COVID-19 patients
recorded in SUS in a given week that were included in the corresponding CO-CIN data.
We then weighted the weekly estimates of the number of hospital-acquired infections
from the CO-CIN data using the inverse of these weekly proportions to obtain estimates
of identified hospital-acquired COVID-19 cases corrected for under-reporting in CO-CIN
(Supplementary 4). Our method assumes that there is no bias in enrolment of hospital

versus community-onset cases.

c. Proportion of hospital-acquired infections that are identified

Not all cases of COVID-19 are identified (e.g., some individuals are infected with
SARS-CoV-2 in a hospital and subsequently have symptoms that are not confirmed
to be COVID-19). All identified cases of COVID-19 with symptom onset in a hospital
setting are classified as either hospital- or community-acquired. However, some are
misclassified (e.g., those that are infected in a hospital but have a symptom onset prior
to the cut-off threshold for defining hospital-acquired cases). Our aim was to estimate
both overlooked symptomatic SARS-CoV-2 infections that were not identified and
that were misclassified (Figure 1, Table 1). We did not consider those who acquire an

infection but remain asymptomatic.

To calculate the proportion of symptomatic hospital-acquired infections that were
identified as such, we calculated the probability that a patient with a hospital-acquired
infection has a symptom onset that falls within the definition period, i.e., before
discharge and after the cut-off threshold (Figure 1). The calculations were based
on the incubation period of SARS-CoV-2 (Table 2), length of stay distribution of
non-COVID-19 patients and assumed that all infections led to a symptom onset:
hence it is the proportion of hospital-acquired infected individuals that will ever have
symptoms and are identified (Supplementary 5). Uncertainty was included by sampling

from parameter distributions (Table 2, Supplementary 10).

We estimated that fewer than 1% of inpatients with symptom onset 5 or more days
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after admission were latently infected when admitted i.e., hospital-onset, community-
acquired (Table 1, Supplementary 3). In short, this low number is due to relatively low
prevalence in non-COVID-19 admissions during the first wave of the COVID-19 epidemic
in the UK, the short length of stay and the fact that, in this work, we are only concerned
with symptomatic infections. Hence, our definition of “misclassified" only considers those

infections that are hospital-acquired and misclassified as community-acquired.

d. Reclassifying community-acquired COVID-19 cases as
hospital-acquired

The number of patients with unidentified hospital-acquired infections was calculated by
multiplying the number of identified hospital-acquired cases by the inverse of the pro-
portion that were estimated to be identified (Figure 2). To determine the contribution
of these unidentified hospital-acquired infections to the hospital burden of COVID-19
cases, we simulated their return as a COVID-19 hospital admission: We estimated the
entire disease progression trajectory for each unidentified “missed" hospital-acquired in-
fection by sampling from known natural history distributions (Figure 2). For each patient
estimated to have had an unidentified “missed" hospital-acquired infection, we sampled
a time from infection to discharge using the length of stay distribution of non-COVID
patients (Supplementary 8) and assumed a date of discharge of five days before the de-
tection date of the associated identified COVID-19 case (Figure 2c). This corresponds
to the difference in the average length of stay of identified SARS-CoV-2 positive cases
(approx. 7 days) and those thought to be SARS-CoV-2 negative (approx. 2 days) in
SUS. In a sensitivity analysis, we explored the impact of this parameter by setting it to
one day. From this date of discharge, we estimated what proportion of these unidentified
“missed" infections would have been expected to return as a hospitalized COVID-19 case
and when this would be. The proportion expected to return varied for each simulation
(Figure 2, Supplementary 6). Recalling exact dates of symptom onset is difficult, hence
we used a scenario analysis to explore three different distributions for the symptom onset

to hospitalisation parameter (Table 2, Supplementary 7).

e. Hospital-linked cases

We defined a “hospital-linked infection" as an infection that occurred in the community

but caused by a patient that was estimated to have had an unidentified “missed"
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hospital-acquired infection. This time series of community infections was calculated by
estimating four generations of onward infections under varying assumptions about the
reproduction number (Supplementary 6). This is approximately the number of infections
caused within one month after discharge (approx 6.7-day serial interval, Supplementary
6).

We explored three reproduction number values: 1) a constant value of 0.8, 2) a constant
value of 1.2 both with a range generated as +/- 5% of the constant value, and 3) a
time-varying estimate “R;" for which we used upper/lower bounds for the 50% credible

interval from a publicly available repository [21] (Supplementary 9).
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Figure 2: The analysis steps: (a) CO-CIN is inflated to match total COVID-19 hospi-
talized cases in SUS. (b) The same weekly adjustment is used to estimate the number
of identified hospital-onset, hospital-acquired (HOHA) cases. (c) The length of stay for
non-COVID-19 hospital patients and incubation period distribution is used to generate
estimates of the proportion of hospital-acquired infections that would be identified (Fig-
ure 1). This proportion (p) is used to estimate how many unidentified hospital-acquired
infections there would be for each identified hospital-onset hospital-acquired infection by
assuming a Binomial distribution and calculating the number of “trials" or “unidentified"
hospital-acquired infections there were. (d) The unidentified hospital-acquired infections
with symptom onset after discharge (“missed") may return to hospital as a COVID-19
case: the trajectory of their disease is calculated to determine their contribution to hos-
pitalized cases. (e) These “missed" unidentified hospital-acquired infections are assumed
to contribute to onward transmission in the community: here we capture four genera-
tions of transmission to estimate the number of hospital-linked infections and subsequent
hospitalized cases under different R estimates.
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Nosocomial infections in the COVID-19 epidemic in England

Results

Identified and classified hospital-acquired cases

In CO-CIN, using a symptom onset-based definition, we found 7% of COVID-19 symp-
tomatic cases (i.e., 4552 of n = 65,028) in acute English Trusts were identified and
classified as hospital-acquired (having a symptom onset 8 or more days after admission
and before discharge) before 31st July 2020. By adjusting for enrolment in CO-CIN (Fig-
ure 2b), we estimated that with this same cut-off, there were 6,640 “hospital-onset,

hospital-acquired" identified cases across acute English Trusts up to the 31st July 2020.

Proportion of infections identified

We estimated 30% (20-41%, range across weeks and sampling, Supplementary 10) of
symptomatic hospital-acquired infections (using a 7 day cut-off) were identified using a
symptom onset based definition for England. Across all acute English Trusts the range was
0-82% (Figure 3). The proportion identified decreased with increasing cut-off day from
admission (Figure 3c). The estimates are highly sensitive to LoS distributions (Supple-
mentary 2). These results imply that for every single identified hospital-acquired COVID-
19 case (using a 7 day cut-off) there were, on average, two unidentified symptomatic

hospital-acquired infections (Figure 1 and 2).

Contribution of missed infections

We estimated that across England, 20,000 (mean; 95% range over 200 simulations:
19,200, 21,100) hospital-acquired infections were unidentified from acute Trusts if a
7 day symptom-based cut-off was used to identify hospital-acquired cases (C + D in
Figure 5). The majority of patients with unidentified hospital-acquired infections were
not identified due to the discharge of the infected patient prior to symptom onset
("missed") (Figure 1 and 3c): 12,300 (11,400, 13,400) in total.

A proportion of the patients with unidentified hospital-acquired infections that have
symptom onset after discharge will return as hospitalized cases: we found 1,500
(1,200, 1,900) or 2.1% (1.7%, 2.6%) of cases originally classified as “community-onset,
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Chapter 5

Figure 3: Proportion of symptomatic hospital-acquired infections identified, (A) given
by week and (B) over all weeks using a 7 day cut-off, for all acute English Trusts. Each
datapoint is the value from a single Trust for each of 200 samples. The boxplot highlights
the median and 25th-75th quantile. (C) For England (the aggregate setting) the propor-
tion of patients with hospital acquired infections split by those that are identified (blue)
due to a symptom onset starting at a set number of days from admission (grey box) and
before discharge, and those unidentified with symptom onset after discharge (“missed",
red) or before the cut-off ("misclassified", green). The coloured lines represent the mean,
and the shaded areas the 95% percentiles over the 200 samples.
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Nosocomial infections in the COVID-19 epidemic in England

community-acquired" should be classified as “community-onset, hospital-acquired" when

a 7 day cut-off is used.

We found that there could have been 47,400 (mean; 95% range over 600 simulations:
45,000, 50,000 for the time varying R value) infections of individuals in the community
secondary to patients with unidentified infections acquired in the hospital which had
symptom onset after discharge (“missed") over the first wave. We estimated that these
would result in 1,600 (1,600, 1,700) “community-onset, hospital-linked” cases with
a 7 day cut-off. The values are reduced by one-third with a constant reproduction
number of R = 0.8 (Supplementary 11). These contribute 2.3% (2.1%, 2.4%) of
“community-onset, community-acquired” cases over the first wave with a 7 day cut-off

and under both scenario 1 or 2 (Supplementary 11).

This contribution of community-linked cases to hospital admissions with COVID-19
varied depending on the timing of hospital admission post symptom onset (captured here
by Scenarios 1-3, Table 2, Figure 4). The proportion of COVID-19 hospital admissions
due to hospital-transmission was greatest when total case numbers first declined (peak
in COHL in Figure 4D at approx. 4% in late April).

The number of unidentified hospital-acquired infections and hence reclassification levels

increased or decreased under a 14- or 4-day cut-off, respectively (Supplementary 11).

Contribution of hospital settings to cases, infections and onward
transmission

To summarise, we estimated that there have been a total of 26,600 (mean, 95%
range over 200 simulations: 25,900, 27,700) hospital-acquired SARS-CoV-2 infections
in acute English Trusts (E, Figure 5) with a 7 day cut-off prior to August 2020.
Of these, a total of 15,900 (15,200, 16,400) infections correspond to patients with
COVID-19 that were identified as symptomatic cases in hospitals (B+C, Figure 5):
as such 60% of hospital-acquired infections were identified (but a proportion of the
identified were misclassified). Over the whole first wave, 15% (14-1%, 15-:8%) of cases

originally classified as community-acquired were estimated to be hospital-acquired or
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Figure 4: (A) Total COVID-19 admissions with model-adjusted definitions from
“community-onset, community-acquired" (COCA) for Scenario 1 for the whole study
period (January - 31st July 2020) and (B) for the end of the study period (May - 31st
July 2020). The counterfactual of no hospital transmission (“No HA", orange) is com-
pared to the adjusted model estimate of COCA (purple) and total admissions (black) for
a time-varying R estimate. (C) The number of hospital-onset, hospital-acquired (HOHA)
cases (black) is similar in magnitude to the number of community-onset hospital-linked
(coloured lines, COHL) under the three scenarios for hospital admission after symptom
onset. (D) The proportion of all hospital admissions in England that were estimated to
be HOHA (green), community-onset, hospital-acquired (COHA, yellow), COCA (purple)
and COHL (red) under two example R values (constant: 0.8 and time-varying R;) and
Scenario 1. All outputs take a threshold cut-off value for defining hospital-acquired as a
symptom onset more than 7 days from admission. All outputs are the rolling 7-day mean
for the mean over 200 simulations with 5-95% ranges in shaded areas in (C).

hospital-linked ((C + F) / (A - B), Figure 5).
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The estimated percentage of identified COVID-19 cases in hospitals that were hospital-
acquired is then 20.1% (19.2%, 20.7%) ((B + C)/ A, Figure 5). Accounting for onward
transmission from unidentified “missed" hospital-acquired infections, we estimated that
22.1% (21.2%, 22.9%) of hospitalized COVID-19 cases were hospital-acquired or
hospital-linked ((B + C + F)/A, Figure 5) using the median time-varying R value.

If 20.1% of COVID-19 cases identified in hospitals were hospital-acquired then, assuming
that 3% of symptomatic cases were hospitalized, we estimated that hospital-acquired
infections likely contributed to fewer than 1% of infections of the overall English

epidemic of COVID-19 in wave 1.

Assuming similar levels of hospital transmission in non-acute English trusts suggests
approximately 31,100 (30,300, 32,400) symptomatic infections could have been caused

in total by hospital-acquired transmission in England.

Trust level and Sensitivity analysis

When aggregated, the results from the individual Trust level predicted a slightly higher
proportion of cases to be hospital-acquired (25% vs 20%) (Supplementary 12). Varying
the day of discharge of the unidentified “missed” infections had little impact on total

case numbers, but did affect hospital-linked cases (Supplementary 11).

Discussion

We estimated that before 31st July 2020 20.1% (192%, 20-7%) of identified
COVID-19 cases in hospitals were likely to have been hospital-acquired infections and
that within-hospital transmission likely contributed directly to 26,600 (mean, 95% range
over 200 simulations: 25,900, 27,700) symptomatic infections, and a further 47,400
(45,000, 50,000) hospital-linked infections. These results are based on a 7 day cut-off
for symptom onset from admission and prior to discharge for defining an identified

hospital-acquired case.
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Figure 5: Summary figure of estimated values for patients with hospital-acquired symp-
tomatic infections and onward community transmission with a 7 day cut-off for symptom
onset after admission and prior to discharge for defining a patient with hospital-acquired
infection. Note here that the "misclassified" (C) includes those “missed” unidentified in-
fections that return to hospital later as a hospitalized COVID-19 case (1,500 “community-
onset, hospital-acquired” cases).

Despite these levels of infection, we estimated hospital transmission to patients caused
fewer than 1% of all infections in England in the first wave (prior to 31st July 2020). To
some extent this reflects effective infection prevention within hospital settings with over
4 million non-COVID-19 patients being cared for in hospital settings during this period.
However, the high proportion of hospital cases that were due to hospital-acquired
infections is worrying as these are the most vulnerable members of our society and
hence may have the most severe consequences. In addition, we did not account for
the substantial proportion of asymptomatic infections in our analysis and thus, the

impact of hospital transmission on the community epidemic is likely an underestimate [13].

This is the first study to estimate the total number of symptomatic hospital-acquired

infections (not just the percentage of known cases that are hospital-acquired) and their
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wider contribution to community transmission prior to 31st July 2020. In particular,
we found that the contribution of symptomatic hospital-acquired infections to the
epidemic likely varied over time, increasing in importance as community infections
initially dropped, emphasizing the need to determine where most infections are occurring

at any time during an epidemic.

Our results show that relying on symptom onset as a detection method for hospital-
acquired SARS-CoV-2 may miss a substantial proportion (> 60%) of hospital-acquired
infections even when asymptomatic infections are not accounted for. This depends
on the length of stay for non-COVID admissions but suggests that in many settings
estimates of the number of infections due to transmission in hospital settings will be
substantial underestimates. For example, Read et al (2021) [26] acknowledged that
the estimated proportion of nosocomial infections during the first epidemic wave of
COVID-19 in the UK that was based on symptom onset data, is likely to be higher if
accounted for unidentified cases. This is particularly relevant for low-resource settings
with short lengths of stay for non-COVID patients and that rely on symptom onset
screening for SARS-CoV-2 infection.

An alternative detection method is routine testing of patients, which will confirm
symptomatic as well as detect pre-symptomatic and asymptomatic SARS-CoV-2
infections. However, even with screening on admission, independent of symptoms, and
retesting three days after admission, a proportion of infections will likely not be detected
due to short lengths of stay. Our estimates of the proportion of hospital cases that are
due to hospital-acquired infection are higher than those from an England wide study
[8] and those from single hospital settings in the UK [3, 9, 27-29], as we estimated all
symptomatic hospital-acquired infections whether identified or not during their hospital
stay. Our estimates of all infections are similar to previous modelling work using an SEIR
model which estimates that nosocomial transmission was responsible for 20% (IQR
14.4, 27.1%) of infections in inpatients [30].

Our work implies that it may be effective to screen patients upon hospital discharge
to detect infection, or to quarantine hospital patients on discharge to prevent further

transmissions into the community: we estimated this would detect approximately 40%
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of hospital-acquired infections that would become symptomatic (that would otherwise
be “missed" in Figure 3c). Hence, depending on the test sensitivity by time from
infection, up to 70% of symptomatic hospital-acquired infections could be detected.
Onward community transmission from these infections may be especially important as

community prevalence of SARS-CoV-2 infection decreases.

Currently, much more routine screening and testing is implemented in English hospitals
contributing to the detection of infections prior to symptom onset or discharge [31].
However, screening will need to be conducted with high frequency to avoid missing those
infected prior to discharge, or to screen on discharge. Our work is directly linked to the
situation prior to August 2020 where little routine testing was in place and our estimates
would be affected substantially by the new pandemic situation with new variants and
vaccination. However, our conclusion that symptomatic screening has limited efficacy in
detecting nosocomial transmission is still highly relevant to support the need for ongoing
regular screening of non-symptomatic hospital patients and to emphasize potential

missing infections.

Further work is needed to determine the precise risk of returning as a hospital case for
those infected in hospitals. If our values (10-15%) are found to be conservative, then
this percentage could increase substantially. If it were found to be higher, reflecting
the poorer health of hospitalized patients and hence potentially increased susceptibility,

then the proportion of hospital cases that are hospital-acquired could increase to 30-40%.

The interpretation of our results is limited by several simplifications. Firstly, we did
not explicitly capture disease and hospital attendance variation by age. Future work
could stratify our estimates to account for an older and more vulnerable hospital
population. Secondly, we likely underestimated the total number of hospital-acquired
infections as we modelled only those that progress to symptoms since these are the ones
contributing directly to hospital burden. This decision was made as our definition of
what was a hospital-acquired case was dependent on symptom onset and asymptomatic
proportion estimates are highly variable [13]. Thirdly, we assumed a fixed number of
four generations for onward transmission in the community, and did not account for

infections in healthcare workers, nor in the setting to which hospitalized patients were
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discharged to, such as long-term care facilities. The impact of onward transmission from
hospital-acquired infections may be underestimated in this work since these settings
may have high levels and large heterogeneity in onward transmission or overestimated if
four generations is longer than the average chain from recently hospitalized individuals.
Fourthly, we assumed that equal levels of infection control policies were in place in all
NHS Trusts during this time period as we had no data to inform variation. Moreover,
some of the “missed" cases may have been detected by community screening although

there was little in place in England during this time (prior to August 2020).

Finally, identification of hospital infection using CO-CIN relied on symptom onset date,
which may be unreliably recorded potentially leading to bias in the patient population.
While we cannot assess the biases, it is reasonable to expect that symptoms were
recorded well in a clinical setting, and frequently (approx. 65,000 patients included). An
alternative definition of hospital-acquired infection reliant on the date of first positive
swab would have its own limitations: patients could enter with symptoms and not test

positive until more than a week into their stay for example [27].

Conclusions

Due to the delay from infection to symptom onset, hospital-acquired transmission of
SARS-CoV-2 may be missed under common definitions of a hospital-acquired infection.
We estimated that nearly 20% of symptomatic COVID-19 patients in hospitals in England
in the first wave acquired their infection in hospital settings. Whilst this is likely to have
contributed little to the overall number of infections in England, the vulnerability of the
hospital community means that this is an important area for further focus. Increased
awareness and testing, especially of patients at discharge, as is now commonly in place in

the UK, is needed to prevent hospitals becoming vehicles for SARS-CoV-2 transmission.
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Chapter 5

Supplementary 1: Definitions

Table S1: Common definitions

Term Definition Specifics for this analysis
Case An individual that has
COVID-19 (the disease due
to SARS-CoV-2 infection)
Identified hospital | An individual with a SARS- | In this work SARS-CoV-2 infec-

acquired infection

unidentified hospi-

tal acquired infec-

tion

Symptom onset

Community-

acquired

262

CoV-2

been identified as hospital-

infection that has

acquired

An individual with a SARS-

CoV-2

not

infection that has
been identified as
hospital-acquired

The self-reported start date

of COVID-19 symptoms

A patient with an infection
with  SARS-CoV-2 that is
classified as being acquired
outside of the hospital in the

community setting

tion is detected by a case with
symptom onset prior to 5, 8 or 15
days from admission in line with
the ECDC definition [15]

Some of these will be misclassified
as community-acquired, some will
be “missed” as the patient is dis-
charged before symptom onset.
Here we mostly use the CO-CIN
data which has a symptom onset
defined by the ISARIC protocol.
Individuals with a symptom onset
before the cutoff date, including
before admission, are classified as

community-acquired in CO-CIN.
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Hospital-linked

Classified

[dentified

Detection date

A patient with an infection
that was acquired by trans-
mission in the community
from a  four-generation
chain of transmission origi-

nating with an unidentified

“missed”  hospital-acquired
infection
The assignation of

“community-acquired”

or ‘“hospital-acquired” to
the infection within a
hospitalized patient with

COVID-19

The detection of hospital-
acquired infection

the most recent of (1) date
of symptom onset or (2)
date of admission if this oc-
curred after symptom onset
for a patient with COVID-
19, censored at date of dis-

charge

We assume that every hospital-
acquired infection that is “missed”
Is discharged into the community
and can cause onward transmis-
sion. We calculated the number
over approximately one month af-
ter discharge (4 x 6.7 days).

We use this to specify the
current  classification of a

symptomatic infection. Hence
a case could be classified as
“community-acquired” but actu-
ally be “hospital-acquired". We
chose to use classified as well
as “identified" as some hospital
acquired infections would not
have been classified whilst some

would.

For any “community-onset” case
this was their admission date.
For “hospital-onset, hospital-
acquired” cases this was their

date of symptom onset (Table

1).

263



Chapter 5

Supplementary 2: Datasets

Trust and case number differences

For COCIN, we included 123 Trusts and 3 super-Trusts in the final data analysis (see
Supplementary 4 for definition of super-Trusts, basically pooled Trusts to account for
frequent transfers). SUS covers 589 Trusts in England. 319 of these reported a total of
91,319 COVID-19 cases up to 31st July 2020. 13,415 of these cases were not included
in COCIN: suggesting that COCIN has a coverage of 85% of the total.

CO-CIN data inclusion

Using the 3rd December CO-CIN data extraction, there were 104,672 unique subject
IDs. Of these 78% had a symptom onset and admission date. 62%, or 65,028/104,672
unique subject IDs were included in the final dataset. The included cases were those
with (i) a symptom onset date, (ii) an admission date, (iii) a symptom onset date after
the 12st January 2020 and (iv) a symptom onset date before the 31st July 2020. Most

patients had a symptom onset before admission (Figure S1).

Figure S1: Data from CO-CIN on time between admission to hospital and symptom
onset.
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We defined a date of “detection" as the most recent of (1) date of symptom onset or
(2) date of admission if this occurred after symptom onset for a patient with COVID-19,
censored at date of discharge. For any “community-onset” case this was their admission

date. For “hospital-onset, hospital-acquired" cases this was their date of symptom onset
(Table 1).

LoS distributions

The length of stay (LoS) for non-COVID-19 positive patients is shown by week (in
Figure S2) and over time (in Figure S3).
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Figure S2: Length of stay variation by week (facet) and example Trusts (colour).
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Figure S3: Average length of stay over time for England in top panel to compare to pro-
portion identified for England (equivalent to Figure 3A from main text, bottom panel)).
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Supplementary 3: Admission with infection levels

What proportion of hospitalized patients with symptom onset after the cut-off day
T had been infected in the community and admitted to hospital for a non-covid

reason while latently infected?

Data

The maximum prevalence of infection from seroprevalence surveys in the UK prior to

September 2020 has been approximately:

0.5% from ONS (modelled, smoothed) [32]
0.3% from REACT1 [33]

Between the 27th April 10th May, ONS estimated prevalence of infection to be: 0.27
(0.17-0.41)%.

Model

The percentage of people at day T with COVID that acquired it in the community =
Prevalence of infection at entry X probability still in hospital at day T x probability
symptoms developed after day T =

(prev x (1-pexp(T,1/los)) x (1-plnorm(T,1.621, 0.418))x100.

Baseline measures
For example, using the ONS data for early May:
0.0027 x (1-pexp(T,1/los)) x (1-plnorm(T,1.621, 0.418))x100

For T > 10 this is zero due to very few patients remaining in hospital past this point

(even assuming los for non-COVID of 7 days, which is an overestimate).

For T = 5, the value is 0.03 (0.02,0.04)%, 0.05 (0.03,0.08)% 0.07 (0.04,0.1)% for

mean length of stays of 3, 5 or 7 days respectively. In conclusion < 0.1% of cases past
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day 5 are likely to be acquired in the community currently.

At the maximum prevalence: 0.0054 x (1-pexp(T,1/los)) x (1-plnorm(T,1.621,
0.418))*100
For T > 10 this is zero due to very few patients remaining in hospital past this point

(even assuming los for non-COVID of 7 days, which is an overestimate).

For T = 5, the value is 0.05 (0.04,0.07)%, 0.1 (0.08,0.13)% 0.14 (0.1,0.17)% for
mean length of stays of 3, 5 or 7 days respectively. In conclusion < 0.2% of cases past

day 5 are likely to be acquired in the community currently.
Conclusion: The prevalence was likely to be higher at the peak of the epidemic, but

even at 10x higher this would be less than 1% of cases past day 5 being attributable to

non-recent hospital transmission.
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Supplementary 4: Comparing COCIN and SUS by week

There are several discrepancies between the Trusts enrolled in COCIN and SUS. The
steps to calculate how to go from non-complete enrolment in CO-CIN to SUS (national

COVID-19 case total data) are given below.

For each Trust in CO-CIN and each week (aggregated using lubridate::week (Grolemund
and Wickham 2011)), the proportion of CO-CIN cases in SUS was calculated.

When the proportion of SUS in CO-CIN was less than 1 (expected as CO-CIN enrolment
based)

The algorithm for a single Trust or England, for a set cutoff was
1. Calculate the weekly proportion of CO-CIN cases in SUS
2. Inverse this weekly proportion to give a multiplier

3. In the cleaned (removed those with no subject onset or admission date), one row
per subject CO-CIN, enter the multiplier for the week of the admission date for

each subject

4. Multiply each single hospital-acquired defined case by the multiplier for their week
of admission to inflate the hospital-acquired case numbers. These were rounded to

the nearest number.
5. Aggregate over individual case data to get total number of

(a) hospital-acquired cases (by summing over the inflated case numbers at the

individual level)

(b) Total cases (by summing over the multipliers: each single entry needs inflating)

Code in: trust number noso allLR in https://github.com/gwenknight/hai_
first_wave.git [14].

When the proportion of SUS in CO-CIN was greater than 1 (unexpected as SUS should
have all cases)

If this proportion was greater than 1 (i.e. unexpected more cases in CO-CIN than SUS),
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then we explored the actual numerical difference in case numbers that was seen. If this
difference in numbers was greater than 20% of the original total numbers in CO-CIN
then we explored the difference further: 20 Trusts. The idea here is that especially in May
/ June there is a small number of cases admitted per week (< 5). It may be that a pro-
portion >1 is then 2 in CO-CIN but only 1 in SUS. If their relative difference is not so big
(< 20%) of the original CO-CIN data then we ignore this issue and set the proportion to 1.

For those to be explored further, we looked at the impact of capping the proportion at 1
and multiplying through the CO-CIN data to match the SUS data. If the total number
of cases was greater than 150% of SUS then explored these further: this was the case
for 5 Trusts.

In closer investigation we found that several of these Trusts had frequent transfers
with other Trusts, for example three Trusts in one county, meaning that cases
may be differently labelled as being in one Trust or the other in COCIN and SUS.
This may be as SUS is based on test date and COCIN on symptom onset which
may occur for a patient in different Trusts. To tackle this we aggregated Trusts
with frequent transfers into super-Trusts. This results in three super-Trusts (R13,
RRO, ESX) which included 2 (RT3, R1K), 2 (RRF, 02H), or 3 (RDD, RQ8,
RAJ) Trusts and covered four of these problem Trusts. The fifth Trust (RBA) we
removed from analysis as the discrepancy was substantial: more than 20 cases in
COCIN than SUS at the peak and a secondary SUS peak that was not present in CO-CIN.

The resulting proportion of CO-CIN cases in SUS over time is shown in Figure S4.
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Figure S4: Proportion of CO-CIN cases in SUS over time for acute English Trusts
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Supplementary 5: Calculations for the proportion of
undetected hospital-acquired SARS-CoV-2 infections

Hospital-acquired infections are here defined as patients who have symptom onset after
a certain cut-off value X after hospital admission. In particular, if T is the time of
infection, Ti,c is the time from infection till symptom onset and X is number of days
after hospital admission of a hospitalized patient, then the patient is classified /detected
as a nosocomial case if Tins + Tine = X. Only a subset of all hospital-acquired infections
will be detected by this method. We estimated the proportion of hospital-acquired cases
that get detected in the hospital based on information available from the CO-CIN and
SUS data set. From that we could deduce the proportion of hospital-acquired infections
that would be missed by this method. We assumed that the cut-off value X is chosen
large enough such that community-acquired cases can be excluded.

We implemented R functions for the calculations of the proportions of missed hospital-
acquired infections based on the theoretical calculations below. The full code is available

from: https://github.com/tm-pham/covid-19_nosocomialdetection.

CO-CIN Analysis

CO-CIN includes information on date of symptom onset of hospitalized patients. Let LoS
be the random variable representing the length of stay of hospitalized (non-COVID-19)
patients and estimated from empirical data from SUS. Three types of hospital-acquired

cases can be distinguished:

1. Patients with symptom onset before the cut-off X days after admission, i.e. {Tins+
Tine < X}

2. Patients with a symptom onset after discharge, i.e. {Tins + Tinc > L0S}

3. Patients with a symptom onset after X days after admission but before discharge,

and with a length of stay of at least X days, i.e. {Tin+ Tinc = X}N{L0S > Tini+Tinc}

Only the last category of hospitsal-acquired cases will be detected by the method de-

scribed above. On a given day, the probability that a hospital-acquired case is detected
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(using a cut-off of X days) is given by

P(randomly selected patient is detected on a given day| patient is a nosocomial case)

= P(randomly selected patient fulfills 3.) (5.1)
=X
oo -1

=> > pPP(X <t 4T < 1) P(Tie = 1) (5.4)
=X t=1
oo -1 1
=X t=1
oo -1

=3 Y EPX -t < T <1 1) (5.6)
=X t=1

We adjusted for the fact that over a given period of time, patients with longer length of
stays are more likely to be encountered and to be infected in the hospital than patients
with short length of stays. Hence, the probability that on a given day, a randomly selected
hospital-acquired case has LoS =/ is given by

. P(LoS=1)-1
PI= S 17 P(LoS = 1)

We, further, assumed a constant force of infection on each day, i.e., a non-COVID-19
patient is equally likely to get infected on each day and therefore P(Tns = t) = % This

assumption was verified using data from Oxford (see below).

Probability of infection per day

In the above calculation, we assumed that a non-COVID-19 patient is equally likely to
get infected on each day and therefore P(Tiys = t) = % This assumption was based on
hospital data from Oxfordshire. We fitted a generalised additive model with the proba-
bility of being tested positive for SARS-CoV-2 dependent on the day of hospitalisation

accounting for age, gender, ward type, and ethnicity, using a logit link.
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Figure S5: Daily probability of being tested positive for SARS-CoV-2 while hospitalized
based on generalized additive model fitted to hospital data from Oxfordshire.
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Supplementary 6: Parameterization and additional methods

Serial interval:

Latency period:  mean of 5.1 days
Infectious period:  mean of 3.4 days

Subsequent infection"”  mean of 5.1 + uniform(0,1) * 3.4 = mean of 6.8 days

For each infection, a latency period, infectious period and uniform random number were
sampled. An “R" number of subsequent infections were then generated at a time latency

period plus the uniform random number times the infectious period.

We chose to look at approximately the first month of transmission after discharge to
limit the number of onward cases. It is likely that chains of transmission are short: 4
generations in China [34], and suggested to be short from genomic data in the UK and
New Zealand [35, 36].

Additional methods

d. Reclassifying community-acquired as hospital-acquired

To determine the contribution of unidentified hospital-acquired infections to hospitalized
patient burden, we estimated when an unidentified “missed” hospital-acquired infection
would return as a hospital admission by generating the entire disease progression

trajectory for each unidentified “missed” hospital-acquired infection (Figure 2).

For the disease progression trajectory, the proportion returning to hospital was sampled
using a Bernouilli trial and varied for each simulation (Table 2). For each individual
that was expected to become a hospitalized case we sampled a time (i) from infection
until discharge (ii) from infection to symptoms and (iii) from symptoms to potential
hospitalisation (Figure 2, Table 2). The time since infection was subtracted from the
time to hospitalisation (the sum of time to symptoms from infection and time from

symptoms to hospitalisation) to calculate the time at which the unidentified “missed”
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hospital-acquired infected individuals would be identified but currently misclassified as
a “community” case at hospital admission (new “community onset, hospital-acquired”

cases, Figure 2, Table 1).

e. Hospital-linked cases

To account for onward transmission in the community from patients with unidentified
“missed” hospital-acquired infections (due to symptom onset after discharge) we
estimated "hospital-linked infections”: calculated as first-, second-, third- and fourth-
generation infections. This is approximately the number of infections caused within one
month after discharge ( 6.7 day serial interval, Supplementary 6) and assumes that

most onward transmission chains are relatively short [34—-36].

The time series for these was calculated by sampling a certain time to infection (a sum
of a sample from the latency distribution and a sample from a uniform distribution on
0-1 multiplied by a sample from the distribution for the duration of clinical infectiousness
(~ 3 days)), a number of secondary infections (using estimates for the reproduction
number, R), a sampled proportion which progress to disease, a sampled proportion of
infections that become hospitalized and a sampled time to hospitalisation (with differ-

ent distributions for each symptom onset to hospitalisation scenario) (Figure 2, Table 2).

For the onward transmission, we explored three reproduction number values: a constant
value of 0.8 or 1.2 with a range generated as +/- 5% of the constant value. For a
time-varying estimate “Rt" we took upper/lower bounds for the 50% credible interval
from a publicly available repository (39) (Supplementary 9). Mean and 95% ranges for
onward transmission infections and case numbers are presented as over the 600 simula-

tions generated from 200 simulations on each R value (estimate, upper and lower bound).

f. Reclassifying community-acquired to hospital-acquired

The number of unadjusted identified hospital-acquired COVID-19 cases is from the
inflated CO-CIN dataset (“hospital-onset, hospital-acquired” cases, Figure 2, Table 1).
The unadjusted community-acquired classifications were then defined as the difference

between the total number of COVID-19 hospital admissions and the unadjusted

276



Nosocomial infections in the COVID-19 epidemic in England: Supplement

identified hospital-acquired COVID-19 cases.

We adjusted the number of hospital-acquired cases by adding our model estimates of
(1) "community-onset, hospital-acquired" and (2) any hospital-linked cases, to the
identified hospital-acquired case numbers ("adjusted" hospital-acquired assignations).
The "adjusted" community-acquired classifications are then altered accordingly. We
then calculated the proportion of community cases that were reassigned as (unadjusted

community - adjusted community ) / (unadjusted community ).

To calculate the counterfactual of no transmission in hospital settings, we compared the
original total number of hospitalized cases to the adjusted community number (i.e. those

that we did not model as being acquired-in or linked-to hospital settings).

Total English burden

Acute Trusts in CO-CIN covered approximately 85% of the COVID-19 cases recorded in
SUS. In order to give estimates for all English trusts, we multiplied our results by 1.17

and assumed similar levels of nosocomial transmission in non-acute English trusts.
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Supplementary 7: Symptom onset to hospitalization

As this was a key parameter for our estimates we chose to perform a scenario analysis

around this distribution.

Baseline scenario 1: “Best" fit to CO-CIN raw and smoothed
data

With data on 38,168 patients from CO-CIN reporting a symptom onset prior to
hospitalisation in Wave 1, we could estimate the best fit to the data. However, the data
suffered from “heaping” issues where patients preferably reported symptom onset data 1
week, 10 days, a fortnight or 3 weeks before hospital admission (Figure S6). This has
been seen for many types of participant reported data (e.g. income [40]). To account
for this we fitted to (1) the raw data (Figure S6) below using the fitdistr R package [41]
and (2) used a penalized composite link model [42, 43] to adjust for this heaping. We
then compared the model fits using the Akaike Information Criterion (AIC) [44].

For both fitting to the raw and smoothed data the distribution with the smallest AIC
value was the log-normal distribution (orange line in both Figure S6 and S7): AIC for
the gamma distribution (next smallest AIC) was 228080 and 229646 for the smoother
or raw data respectively, whilst for the log-normal distribution it was 225675 and 226842.

The values for the log-normal distribution fitted to the raw were:
Meanlog 1.662 (0.005) SDlog 0.889 (0.003)
And smoothed data:
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Meanlog  1.665 (0.005) SDlog 0.894 (0.003)
We used a lognormal(1.66, 0.89) distribution in the base case Scenario 1.

Scenario 2: previous estimates

We also took a scenario which used a previous estimate of the time from symptom onset
to hospitalisation as a gamma distribution with shape 7 and rate 1 [24] (grey line in

Figure S6). This was calculated using international data from the first wave [45, 46].

Scenario 3: First Few 100 (FF100) cases in Great Britain

We used data from the first few 100 cases data from Public Health England [25]. This
contains information on symptoms from the first 492 cases, 167 of which were hospital-
ized. At this time there was not a strict list of symptoms as there was later in 2020 (loss
of taste / smell, continuous cough, fever). Fitting to this data suggested a best fit of

logNormal distribution with mean log = 1.44, SD log = 0.72.
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Figure S6: What is the distribution of symptom onset before hospitalisation? (A) CO-
CIN data for 38,168 patients from Wave 1 in England with a symptom onset and hospital
admission date. Dashed lines indicate heaps in the data at 7, 14, 10 and 21 days prior
to admission. (B) Results of probability distribution fitting to the data: red = gamma,
blue = negative binomial, dark green = exponential, orange = log-normal (Scenario 1).
The grey line is the distribution from [24] (Scenario 2: ~gamma(7,1)) and the pink line
is the distribution from the FF100 data (Scenario 3: lognormal (1.44, 0.72) (C) Zoom
in on (B) to show smaller differences in days between symptom onset and admission.
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Figure S7: What is the distribution of symptom onset before hospitalisation? (A) CO-
CIN data (dots) smoothed using a penalized composite link model to give the black line.
(B) Results of probability distribution fitting to the smoothed data (black line) (C) Zoom
in on smaller differences between symptom onset and admission.
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Supplementary 8: Infection to discharge calculations

Distribution of time from infection until hospital discharge for pre-symptomatic

and asymptomatic patients

Let Tinfqgis be the time from infection until discharge for pre-symptomatic and asymp-
tomatic patients. Aim is to determine when "missed infections" will be discharged into
the community. Thus, we assume that the time of infection is before discharge of the
patient, i.e., Tinr < L0S. Given a LoS= /, we assume that infection is equally likely to

occur on any day of length-of-stay. The distribution of Tj4is IS given by

P(Tintdis = t) = P(LoS — Tins = t) (5.7)

= f: P(LoS — Tine = t|LoS = /)p (5.8)
=1

N _ . P(LeS=1)-1
_;P(Tinf—/—t|LOS—/)Z;X>1/_P(LOS:/) (5.9)
U P(LoS = 1) -/
_;71(t§/)2701/_P(L05:/) (5.10)
N P(LoS = /)
_;1(&/)221/./3@05:/) (5.11)

where p; is the probability that on a given day, a randomly selected patient has LoS =/,

i.e.

. P(LoS=1)-1
PI= S 17 P(LoS = 1)
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Supplementary 9: Rt estimates

Figure S8: Time varying estimate of Rt taken from EpiForecast team: median estimated
using hospitalized cases [34] with upper and lower bounds of the 50% credible intervals.
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Supplementary 10: Uncertainty inclusion

200 simulations were generated. Each simulation included uncertainty from three stages:

Stage 1

As we generated estimates of the proportion identified by place and week, we included

uncertainty from two elements each week:

(a) Length of stay distribution: bootstrap the distribution for that week from SUS.
As there are so many patients (n = 237,981) in the data there is little variation

produced by this variation (see Supplementary Figure S8 below, top left).

(b) Incubation period: sampled the parameters for the incubation period distribution
(i.e. sample from the mean and standard deviation for the lognormal distribution
from a normal distribution with the estimated mean and sd to give a different
distribution for each sample for the time to symptom onset from infection, see
Table 2).

This incubation period distribution and length of stay for non-COVID patients
was used for the entire of the simulation. This is coded in “trustpropor-
tion detect by week all.R" [14]. It gives the variation in the proportion of
hospital-acquired infections identified and is presented in Figure 3c, and shown again in

Figure S9 for a cutoff of symptom onset more than 7 days from admission.

For example, towards the end of March: 250 hospital-acquired cases were identified
in the inflated CO-CIN (Figure S9, bottom). At this stage it is likely that we were
identifying between 20% and 22% of hospital-acquired cases (Figure S9, top). Hence

this corresponds to between 840 and 1,000 missed cases.

Stage 2

To accounting for binomial sampling variation, the proportion identified for each sample
and week (generated above) were used within a Bayesian framework as the binomial

probability of identification to infer from the number of identified hospital-acquired
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Figure S9: Uncertainty in the length of stay (A) and incubation period drive uncertainty
in the proportion identified (B and middle). The inverse of this proportion multiplies the
number of identified hospital-acquired cases per week (black, C) to calculate the number
of unidentified infections (colour, C).
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cases, the total number of hospital-acquired infections (“trials").

In more detail - using the distributions in step 1 within our function we could generate
200 samples of the proportion of true hospital acquired infections that were identified
each week, /, and setting, j, from hospital data (p;;). Assuming the number of hospital
acquired infections were binomially distributed, we estimated the weekly number of true
hospital-acquired infections, X;; ~ Bin(N;;, p;;). Subtracting from this the identified
weekly hospital-acquired infection numbers we can estimate the number of unidentified

hospital-acquired infections.

This used the function in "binom _posterior.R" [14].

Stage 3

The uncertainty in the natural history trajectory for each of these unidentified hospital-
acquired infections was then calculated (as shown in Figure 2d) by sampling from the
relevant distributions for the probability (e.g. of returning as a hospitalized cases) and
timings (e.g. symptom onset after infection).

This is coded in “perc__contribution _function  trust week.R" [14].

For each unidentified infection, the probability of returning as a COVID-19 case to hospi-
tal is a Bernoulli trial for each missed infection with weekly randomly sampled probability
of returning taken from a uniform distribution over 10-15%. This probability of a “missed"
unidentified infection returning of a community infection becoming hospitalized is fixed
across each of the 200 simulations. Each of the following timings for each returning
to hospital as a case unidentified hospital-acquired infection are then sampled from the
relevant distributions (Table 2):

(a) From infection to discharge
(b) From infection to symptom onset (incubation period)
(c) From symptom onset to hospitalisation (this is scenario dependent)

We decided to use 200 simulations as above approximately 150 simulations the output

for key parameters (shown in Figure S12) stabilized.
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Figure S10: Example time series with a cutoff of at least 7 days from symptom onset to
hospitalisation for defining a hospital-acquired case: the first 10 simulations for key model
outputs are shown in the 10 colours in the above facets over time (detection date). The
top two rows show the variation in community-onset, hospital-linked infections (first row)
and subsequent cases (second row) at low, mean and high values of onward transmission
(R=0.76, 0.8, 0.84). The third row shows the counterfactual: the number of hospitalized
cases there would be predicted to be without any hospital-acquisition of SARS-CoV-2,
alongside the community-onset, community-acquired (“COCA") and community-onset,
hospital-acquired (“COHA") case estimates. The final row shows the same variation
shown in Figure S8: the total number of unidentified infections and the “missed" subset
of these (“missed" due to discharge prior to symptom onset).

Conclusion

Uncertainty in our estimates was generated from sampling from a range of natural history
distributions and the length of stay data. As we had data from SUS on the latter for a
large number of non-COVID patients, we had little ambiguity in this key parameter for
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Figure S11: Example cumulative values as in Figure S10 for all 200 simulations (each
black line) with a cutoff of at least 7 days from symptom onset to hospitalisation for
defining a hospital-acquired case. The top two rows show the variation in community-
onset, hospital-linked infections (first row) and subsequent cases (second row) at low,
mean and high values of onward transmission (R = 0.76, 0.8, 0.84). The third row
shows the counterfactual: the number of hospitalized cases there would be predicted
to be without any hospital-acquisition of SARS-CoV-2, alongside the community-onset,
community-acquired ("COCA”") and community-onset, hospital-acquired (“COHA) case
estimates. The final row shows the same variation shown in Figure S8: the total number
of unidentified infections and the “missed” subset of these (“missed” due to discharge
prior to symptom onset). Note the variation in the y axis values.
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Figure S12: Boxplot of mean total value of key outcome variables over the “first wave"
(to 31st July 2020) against the number of simulations. Left is “community onset, hospital-
acquired" cases (COHA), middle are community-linked infections and right is the number
of unidentified infections.

estimating the proportion of hospital-acquired infections identified. Moreover, much of
the uncertainty was in the timing of events (symptom onset 2 or 5 days from infection
for example), which, when aggregated over a 7-month period had little impact on the

final aggregated results.
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Supplementary 11: Additional results

e Figure 5 additional analysis

e Table S3: Additional reported results

e Table S4: Estimated percentage of “community onset, community acquired” infec-

tions that would be re-classified as “community onset, hospital acquired” infections

e Table S5: Estimated number of community onset, hospital-linked cases

e Figure S13: Impact of 1 vs 5 day discharge before associated identified hospital

case

e Figure S14: Impact of R value variation over time (not just aggregated)

Figure 5 additional analysis

e Of all hospital patients who had a SARS-CoV-2 infection some time during their
stay, 29.6% (28.9%, 30.5%) were hospital-acquired (E/(A+D), Figure 5).

e With the addition of hospital-linked infections, out of all hospital patients with a
SARS-CoV-2 infection, 31.5% (30.6%, 32.4%) were estimated to have acquired
their infection in hospitals or were hospital-linked ((E+F)/(A+D), Figure 5).

Table S3: Estimated additional main results for 14 and 4 day cut-offs in line with 7 day

values in main text.

Cutoff
Estimate 7 14 4 Details
"hospital-onset, hospital- 6,640 4,440 7,830 From adjusted CO-

acquired” identified cases
across acute English Trusts
up to the 31st July 2020
unidentified hospital-
acquired infections

Percentage of “community-
onset, community-
acquired" that  should
be classified as “community-
onset, hospital-acquire"
“community-onset, hospital-
linked" cases

2.1% (1.7%, 2.6%)

1,600 (1,600, 1,700)

2.6% (2.1%, 3.1%)

2,100 (2,000, 2,200)

20,000 (19,200, 21,100) 29,000 (28,400, 29,600) 17,500 (16,000, 19,300)

2.1% (1.7%, 2.6%)

1,600 (1,400, 1,700)

CIN

mean; 95% range
over 200 simula-
tions
mean; 95% range
over 200 simula-
tions

For the time varying
R value mean; 95%
range over 600 sim-
ulations
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Chapter 5

Impact of 1 - 5 day discharge

As shown in Figure S13, there is a minimal impact of varying the day of discharge of
missed cases, except for the “community-onset, hospital-linked" (COHL) cases when
using the time varying R estimates (“rt"). Cumulatively, up to the end of July 2020, this
results in a less than 0.001% change in the number of “community-onset, community-
acquired” cases but a ~ 30% higher number of “community-onset, hospital-linked" cases
when using the time varying R estimates (“rt") and a 5 day discharge. This is due to
a synergistic impact of the missed infections entering the community at peak R value

(before early April).

Figure S13: The impact of discharging missed cases 5 days (solid line, baseline) or
1 day (dashed line) before the associated identified hospital-acquired case at a cut-off
threshold of 7 days from admission across different R values (columns) and Scenarios
(rows) of symptom onset to hospitalisation. This is for “hospital-onset, hospital-acquired"
(HOHA, blue), “community-onset, hospital-acquired" (COHA, red) and “community-
onset, hospital-linked" (COHL, green) cases
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Impact of R value variation

Figure S14: Time series of all hospitalized, counter-factual and community onset,
hospital-linked cases under different onward transmission (R) values (median values shown
here, colours). This is for a cutoff of 7 days from admission for the hospital-acquired def-
inition and for the three scenarios (columns) for symptom onset to hospitalisation.
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Supplementary analysis 12: Grouped Trust level analysis

Method: We applied the same analysis (shown in Figure 2) at the individual acute Trust
level (n = 126) and then aggregated the results. We performed this analysis for all three
cutoffs, three R values and for the first symptom onset to hospitalisation scenario with
50 simulations for each of the 126 Trusts to generate uncertainty ranges.

Results: 4 Trusts had no nosocomial cases recorded in the data over this time period.
Two Trusts had no nosocomial cases recorded when using a 14 day cutoff for definition
of a nosocomial case.

The proportion missed each week varied over trusts with a mean of 29% and a range
between 0 and 88% over 50 simulations and all weeks and Trusts. 0.2% of the proportion
detected estimates were zero.

Comparing the aggregated England setting (data pooled before doing analysis) to the
grouped individual Trust (analysis performed at the Trust level and then aggregated)
analysis shows similar results but the levels from the individual Trust analysis is higher
(Table S5). Some variation would be expected due to rounding e.g. of the number of
missed infections from the identified number of hospital-acquired cases. At the baseline
cutoff of symptom onset 8 or more days from admission, the variation is relatively small,
but it increases at a 15 or more days from admission cutoff, especially for “community-
onset, hospital-linked” cases. The similarity in key indicators is shown in Figure S15-17
below. Using the grouped individual Trust analysis predicts that 25.5% (24.6%, 26.4%)
of identified COVID-19 cases in hospitals were hospital-acquired, higher than the level
predicted from the aggregated England setting: 20.1% (19.2%, 20.7%).

Comparison and interpretation: The proportion identified is predicted to be very small
when there are few hospital-onset, hospital-acquired (HOHA) cases, as is often the case
when doing the analysis at the individual trust level. Using the Bayesian framework to
infer the total number of hospital-acquired infections (“trials”) results in higher numbers
(~ 50%) for the estimated number of unidentified hospital-acquired infections and hence
onward case estimates (COHL / COHA). For example, 1 HOHA case, with a proportion
detected of 0.005, is predicted to be linked to 524 hospital-acquired infections. However, 7
HOHA cases, with the same proportion detected, results in a predicted 1450 infections: an
increase of 3x infections instead of 7x as might be expected from the increase in HOHA.

We believe that the analysis at the Trust level suffers from issues of small numbers and
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issues with using the empiric length of stay distributions. This leads to unrealistically

small proportions detected and hence inflation to a greater number of missed infections.
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Figure S15: For the first symptom onset to hospitalisation scenario, there is little
variation in the output of key case numbers (all hospitalized (red), community-onset,
community-acquired (COCA, green) and hospital-onset, hospital-acquired (HOHA,
blue)) if the analysis is performed on the aggregated England setting level (solid line,
baseline) or at the individual Trust level and then aggregated (dashed line). The line here
is the mean over 200 simulations for the aggregated England setting (50 simulations per
Trust for the individual Trust analysis) and 95% range in shaded area.
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Figure S16: For the first symptom onset to hospitalisation scenario, there is some varia-
tion in the number of community-onset, hospital-linked cases if the analysis is performed
on the aggregated England setting level (solid line, baseline, red) or at the individual
Trust level and then aggregated (dashed line, blue). The line here is the mean over 200
simulations for the aggregated England setting (50 simulations per Trust for the individ-
ual Trust analysis) and 95% range given in the shaded area.
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Figure S17: For the first symptom onset to hospitalisation scenario, there is some vari-
ation in the number of community-onset, hospital-acquired cases if the analysis is per-
formed on the aggregated England setting level (solid line, baseline, red) or at the in-
dividual Trust level and then aggregated (dashed line, blue). The line here is the mean
over 200 simulations for the aggregated England setting (50 simulations per Trust for
the individual Trust analysis) and 95% range given in the shaded area.
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Controlling nosocomial transmission of SARS-CoV-2

Abstract

Background: Emergence of more transmissible SARS-CoV-2 variants requires more efficient con-
trol measures to limit nosocomial transmission and maintain healthcare capacities during pandemic
waves. Yet, the relative importance of different strategies is unknown.

Methods: We developed an agent-based model and compared the impact of personal protec-
tive equipment (PPE), screening of healthcare workers (HCWs), contact tracing of symptomatic
HCWs, and restricting HCWs from working in multiple units (HCW cohorting) on nosocomial
SARS-CoV-2 transmission. The model was fit on hospital data from the first wave in the Nether-
lands (February until August 2020) and assumed that HCWs used 90% effective PPE in COVID-19
wards and self-isolated at home for seven days immediately upon symptom onset. Intervention
effects on the effective reproduction number (Rg), HCW absenteeism and the proportion of
infected individuals among tested individuals (positivity rate) were estimated for a more transmis-
sible variant.

Results: Introduction of a variant with 56% higher transmissibility increased — all other variables
kept constant — Rg from 0.4 to 0.65 (+63%) and nosocomial transmissions by 303%, mainly
because of more transmissions caused by pre-symptomatic patients and HCWs. Compared to
baseline, PPE use in all hospital wards (assuming 90% effectiveness) reduced Rg by 85% and
absenteeism by 57%. Screening HCWs every three days with perfect test sensitivity reduced Rg
by 67%, yielding a maximum test positivity rate of 5%. Screening HCWs every three or seven days
assuming time-varying test sensitivities reduced Rg by 9% and 3%, respectively. Contact tracing
reduced Rg by at least 32% and achieved higher test positivity rates than screening interventions.
HCW cohorting reduced Rg by 5%. Sensitivity analyses for 50% and 70% effectiveness of PPE
use did not change interpretation.

Conclusions: In response to the emergence of more transmissible SARS-CoV-2 variants, PPE use
in all hospital wards might still be most effective in preventing nosocomial transmission. Regular
screening and contact tracing of HCWs are also effective interventions, but critically depend on
the sensitivity of the diagnostic test used.

Keywords: COVID-19; SARS-CoV-2; nosocomial transmission; agent-based modelling; infection
control; contact tracing; healthcare worker screening; personal protective equipment; sensitivity;

cohorting
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Introduction

Effective interventions to limit nosocomial transmission of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) are pivotal to maintain healthcare capacities
during pandemic waves [1, 2]. During the first epidemic wave many hospitals around
the world restricted visits and canceled non-essential medical procedures in order to
maintain adequate staffing levels for patients with COVID-19. In the Netherlands,
specific infection control measures were implemented but nosocomial transmission
may have been facilitated by temporary shortness of supplies of personal protective
equipment (PPE), including gloves, goggles, face shields, gowns, and (N95) masks, at

the onset of the pandemic.

Indeed, HCWs experienced a higher incidence of SARS-CoV-2 infections, compared to
other professions, during the first pandemic wave [3-5]. Front-line HCWs in the UK
and USA tested three times more frequently positive during the first epidemic wave
than the general population after accounting for the frequency of testing [3]. Other
studies from the UK and the Netherlands found higher SARS-CoV-2 incidences after
the first epidemic wave among staff working in COVID-19 wards than staff working
elsewhere in the hospital [5, 6]. In addition to direct contact with infectious patients,

HCW-to-HCW transmission most likely also contributed to these elevated incidence rates.

Only a few studies incorporated modelling of SARS-CoV-2 transmission in healthcare set-
tings [7—11]. In a stochastic within-hospital model, combined with a deterministic model
reflecting SARS-CoV-2 transmission in the community, PPE use by HCWs and patients in
the entire hospital substantially reduced nosocomial infections, while random weekly test-
ing of asymptomatic HCWs and patients was less effective [9]. Moreover, strict cohorting
of undiagnosed patients and HCWs in small units reduced the probability that SARS-
CoV-2 introduction would lead to a large outbreak. In a deterministic within-hospital
Susceptible-Exposed-Infectious-Recovered (SEIR) model isolating COVID-19 patients in
single rooms or bays reduced infection acquisition in patients by up to 80% [8]. The model
predicted that periodic testing of HWCs would have a smaller effect on the COVID-19
patient-burden than isolating patients but could reduce HCW infections by up to 64%

and lead to a reduction of staff absenteeism. Both aforementioned models assumed a
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time-invariant SARS-CoV-2 infectiousness and diagnostic PCR test with 100% sensitiv-
ity. An individual-based modelling study assessed the impact of different interventions for
SARS-CoV-2 transmission in a non-COVID-19 hospital unit [11]. The model was cali-
brated to COVID-19 outbreak data in a neurosurgery hospital unit in Wuhan (January
until February 2020). High-efficacy face-masks were shown to be most effective for re-
ducing infection cases and workday loss. Reduction of contact rates had only a marginal
effect on mitigating the outbreak in the long run. Another model (stochastic, individual-
based, aimed at patients and HCWs in long-term care facilities (LTCF) did incorporate
a test sensitivity that varies with time since infection [7]. This model concluded that
pooled testing (combining clinical specimens from multiple individuals into a single bio-
logical sample for a single RT-PCR test) was the most effective and efficient surveillance
strategy for resource-limited LT CFs.

While these previous studies investigated interventions such as the PPE use, physical dis-
tancing among HCWs, various testing strategies, and cohorting of patients and HCWs,
the impact of contact tracing within hospital settings has not been modeled yet. Ob-
servational evidence from 5,700 HCWs in two large hospitals and 40 outpatient units in
Milan, Italy, suggested that random testing (positivity rate of 2.6%) was less efficient
than contact tracing (10%) [12].

In Dutch hospitals patients and HCWs were cohorted in COVID-wards, where HCWs used
PPE during patient care, in addition to the basic infection control measures applied. With
these measures, nosocomial transmission was considered well-controlled during the first
wave of the pandemic, although outbreaks have been reported sporadically [13]. Vet,
with the emergence of more transmissible variants, current infection control measures
may become less effective. While COVID-19 vaccine rollout is underway, it is still unclear
how they affect transmission and how their efficacy is affected by the new SARS-CoV-2
variants. We, therefore, explored the relative effectiveness of different infection prevention
strategies for HCWs in hospitals in the absence of vaccination using an agent-based
model of nosocomial SARS-CoV-2 transmission. First, we fitted the model to real-life
data from the University Medical Center Utrecht (UMCU) during the period February-
August 2020. Next, we evaluated the impact of various interventions on transmission,
HCW absenteeism and test positivity as a marker of intervention efficiency for a more
transmissible variant (e.g., B.1.1.7) and draw general conclusions for infection control in

hospitals with a similar structure.
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Methods

Agent-based model

We developed an agent-based model that describes the dynamics of SARS-CoV-2 trans-
mission in a hospital allowing for importations of infections from the community (Fig
1A). We modeled a hospital comprising four ward types: 1) general COVID wards, 2)
general non-COVID wards, 3) COVID intensive-care units (ICUs), and 4) non-COVID
ICUs. Within the hospital we distinguish patients, nurses, and doctors. Patients are as-
sumed to occupy a hospital bed in a single room. HCWs (nurses and doctors) work in
duty shifts. HCWs meet patients in a number of rounds per shift (Additional File 1: Table
S1), and HCWs meet other HCWs in the common staff room of each ward. Individuals
may be in one of the disease states: susceptible (S), asymptomatically infected (/4),
pre-symptomatically infected (/p), infected with moderate symptoms (/,,), infected with
severe symptoms (/s), and recovered (/g). We did not explicitly model other respiratory
tract infections with similar symptoms. Hence, all symptomatic individuals are necessarily
infected with SARS-CoV-2. We did not model death in our simulations. All infected in-
dividuals are assumed to be infectious following a time-varying infectiousness curve. We
denote infectiousness over time since infection 7 by B(7)), i.e., it is the mean rate at
which an individual infects others at time 7 after its time of infection. The reproduction
number R (average number of secondary cases caused by an infected individual) is given
by integrating B(T) over time since infection R = foooﬁ(T)dT. Assuming the mean gen-
eration time () to be equivalent with the observed mean serial interval, we calculated
the infectiousness profile by 3(7) = w(T)R. Based on this, the individual’s infectiousness
follows a Weibull distribution with a mean of 6 days (Fig 1C) [14] and the reproduction
number is a scaling factor of the infectiousness profile. We assumed the infectiousness
to differ between asymptomatic and symptomatic infected individuals, defined by Ba(T)

and Bs(T), respectively. Then B(T) can be decomposed into

B(T) = PaBa(T) + (1 — Pa)Bs(T)

where P4 represents the proportion of asymptomatic infections. Asymptomatic individuals
are assumed to have an infectiousness proportional to that of symptomatic individuals,

l.e., Ba = Xxa-Bs, xa < 1. Integrating over each of the two terms leads to the respective
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contribution to the overall reproduction number:

R:RA+R5:/ PA~xA~ﬁs(T)dT+/ (1 - P)Bs(T)dT
0 0

Transmission events can occur between patients and HCWs, and among HCWs. We
assumed no patient-to-patient transmission as patients are assumed to occupy single-
bed rooms. Only HCWs in their asymptomatic or pre-symptomatic phase contribute to
transmission. We assumed that the incubation period has a Gamma distribution with
mean 5.5 days [15]. Patients may be admitted to the hospital for non-COVID reasons or
with moderate or severe COVID-19 symptoms. In the first case, they may be susceptible,
pre-symptomatically, or asymptomatically infected. Symptomatically infected patients are
admitted to COVID wards (moderate symptoms) or COVID ICUs (severe symptoms).
Patients in non-COVID wards that develop symptoms during their stay are immediately
transferred to COVID wards. We assumed that moderately and severely infected patients

recover after 14 and 35 days, respectively [16].

Data and parametrization

We used data from the UMCU to parametrize the number of wards and beds per ward
(Additional File 1 pp. 2). We used the number of patients admitted to the UMCU for
non-COVID reasons and their length of stay for the time period 2014-2017 and assumed
a 50% decrease in admissions during the study period (Additional File 1: Table S1). The
daily number of COVID-19 hospitalizations and their length of stay distribution was based
on UMCU data from 27 February until 24 August 2020 (Additional File 1: Figure S1-
S2). The simulations started on 30 December 2019 with a hospital at 100% occupancy
without any SARS-CoV-2-infected individuals. The first COVID-19 admissions occurred
on 27 February 2020. To account for admissions of patients that are infected but not
(yet) symptomatic and HCWs who were (unknowingly) infected in the community, we
used daily national numbers of SARS-CoV2 infectious individuals estimated by the Dutch
National Institute for Public Health and the Environment (RIVM) from 17 February until
24 August 2020 (Additional File 1 pp. 2) [17]. We additionally used publicly available age-
specific hospitalization rates in the Netherlands in 2012 and age-specific SARS-CoV-2
infection incidence rates in Utrecht province to scale the daily probability of being in-

fected in the community for non-COVID patients and HCWs arriving in the hospital
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Figure 1: Schematics for agent-based model. (A) Diagram of the agent-based model
including the agents in the main environment (hospital) and community importations.
The hospital population is divided into healthcare workers (nurses and doctors) and pa-
tients. Patients may be admitted from the community either with moderate (red) or
severe (dark red) COVID-19 symptoms or for non-COVID reasons. Patients may be in
a pre-symptomatic stage (light red) when hospitalized to non-COVID wards. Healthcare
workers may get infected in the community (red dashed line). (B) Disease progression
diagram. Individuals are in either of the following categories: Susceptible (S), Asymp-
tomatically Infected (/4), Pre-symptomatically infected (/p), Moderately infected (/u),
Severely infected (/s), and Recovered (R). (C) Probability density of infectiousness of
an infected individual and incubation period over time since infection.

[CBS2019Ziekenhuisopnamen2019, 18]. Based on a published meta-analysis, we as-
sumed that a fixed percentage of 20% and 31% of SARS-CoV-2 infections in patients
and HCWs, respectively, were asymptomatic (see also Table 1) [19]. First, we chose
the basic reproduction numbers Rs and R4 such that the numbers of occupied beds by
COVID-19 patients predicted by our model were in good agreement with real-life UMCU
data on the number of COVID-19 patients at UMCU during the first epidemic wave by
visual inspection (Table 1 and Fig 2A). During this calibration, a change in the basic
reproduction numbers Rs and R4 resulted in a change of the individual's infectiousness
per time unit and thus the probability of transmission per contact. The remaining pa-
rameters did not change. These reproduction numbers incorporated the effects of typical
(but not COVID-specific) infection prevention measures in the hospital. We will refer

to the model parameterized with these reproduction numbers as the wild-type scenario.
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This scenario also assumed that HCWs use 90% effective PPE (i.e., 90% reduction in
infectiousness) in COVID wards and isolate at home immediately upon symptom onset
for seven days, after which they return recovered to work. Next, we introduced a more
transmissible SARS-CoV-2 variant into the hospital, keeping all other parameters — in-
cluding PPE use in COVID wards and self-isolation after symptom-onset — the same.
Based on recent results for B.1.1.7, we assumed a 56% increase in transmissibility [20].
We will refer to the model parameterized with these higher reproduction numbers as our

baseline scenario. Various intervention scenarios were compared to this baseline scenario.

Diagnostic performance of the PCR test

We assumed a PCR test specificity of 100% and distinguished two scenarios for the test
sensitivity: 1) a time-invariant perfect sensitivity of 100%; and 2) a sensitivity increasing
with time since infection with a maximum sensitivity of 93.1% close to symptom onset and
declining afterward (time-varying sensitivity) [14]. We considered two sensitivity analyses
to test the impact of PCR test sensitivity assumptions on our results (Additional File
1 pp.3 and Fig S1). Hospital staff typically self-quarantine from symptom onset, get
tested and receive their test results within hours (based on UMCU data). We, therefore,
assumed no delay between testing and receiving test results, and that HCWs do not

contribute to virus transmission after symptom onset.

Infection control interventions
Baseline scenario

In the baseline scenario, HCWs were assumed to use PPE in COVID wards when
attending to patients, but not during breaks or in other parts of the hospital. The
baseline reduction factor (PPE effectiveness) was assumed to be 90%, which includes
both perfect-use PPE efficacy and expected PPE use adherence level. We assumed that

95% of the HCWs work in the same ward as during their previous shift.

All interventions described below were in addition to the baseline scenario. An overview

of all scenarios is given in Fig 2.
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Intervention: PPE in all wards

In this scenario, all HCWs used 90% effective PPE in all (non-COVID and COVID)
wards. However, no PPE was used when HCWs meet each other off-ward. We performed

sensitivity analyses assuming PPE effectiveness of 50% and 70%.

Intervention: HCW cohorting (no ward change)

This scenario restricted HCWSs to work only in specific wards and did not allow any ward
changes. This scenario represents the most optimistic scenario where both nurses as well

as physicians are assumed to be eligible for cohorting to the same degree.

Intervention: Regular HCW screening

All HCWs were tested for SARS-CoV-2 either with a) a test with perfect sensitivity every
three days, or a test with time-varying sensitivity, b) every three days, or c) every seven
days. If tested positive, HCWs were assumed to immediately self-isolate at home for

seven days.

Intervention: HCW contact-tracing

If a HCW developed symptomatic SARS-CoV-2 infection, all contacts in the hospital
during a time window of either two or seven days before symptom onset were traced
and tested. We will refer to these scenarios as 2-day Contact tracing and 7-day contact
tracing. For 2-day contact tracing, contacts were always tested assuming a time-varying
test sensitivity. For 7-day contact tracing, we distinguished between perfect and time-
varying sensitivity sub-scenarios. In the perfect sensitivity sub-scenario, contacts were
instantaneously tested on the day of symptom onset of the index (the HCW). In the
time-varying test sensitivity sub-scenario, the test was performed on the day of symptom
onset if the contact with the index was more than five days ago. Otherwise, it was
performed on day five after the contact. Exposed HCWSs awaiting tests were assumed to
wear PPE during contact with any patient and with other HCWs. In case of a positive
test, patients were moved to a COVID ward while infected HCWSs were sent home for
self-isolation for seven days and replaced by susceptible HCW. We did not model any

absences of HCWs with disease symptoms caused by other respiratory pathogens.
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Figure 2: Overview of all simulated scenarios. The main characteristics of the scenarios
simulated in our agent-based model are presented.

Outcome measures

We computed the effective reproduction number Rg (average number of secondary
cases caused by an infected individual) to evaluate an intervention's effectiveness. We
calculated an overall Rg for an average individual (patients and HCWSs combined) but
also stratified Rg by patients, HCWs, and symptom status. The reproduction numbers of
patients were calculated for those who eventually developed symptoms (Rgat) and those
who remained without symptoms (R%™). Since HCWs were assumed to immediately
self-isolate upon symptom onset, we calculated R during pre-symptomatic (R") and
asymptomatic states (RQCW). To evaluate the maximum demand on hospital capacity, we
considered the total number of nosocomial infections among patients and HCWs over
time. In addition, we computed the percentage of absent HCWs due to self-isolation
(because of symptom onset or detection via screening or contact-tracing) over time.
We assessed the efficiency of screening and contact-tracing interventions by their
positivity rates (percentage of detected infected individuals among tested individuals).
We did not include individual