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Abstract

The spatial structure of natural populations is key to many of their evolutionary processes. Formal

theories analysing the interplay between natural selection and spatial structure have mostly focused on

populations divided into distinct, non-overlapping groups. Most populations, however, are not structured

in this way, but rather (self-)organise into dynamic patterns unfolding at various spatial scales. Here,

we present a mathematical framework that quanti�es how patterns and processes at di�erent spatial

scales contribute to natural selection in such populations. To that end, we de�ne the Local Selection

Di�erential (LSD): a measure of the selection acting on a trait within a given local environment. Based

on the LSD, natural selection in a population can be decomposed into two parts: the contribution of local

selection, acting within local environments, and the contribution of interlocal selection, acting among

them. Varying the size of the local environments subsequently allows one to measure the contribution

of each length scale. To illustrate the use of this new multiscale selection framework, we apply it to

two simulation models of the evolution of traits known to be a�ected by spatial population structure:

altruism and pathogen transmissibility. In both models, the spatial decomposition of selection reveals
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that local and interlocal selection can have opposite signs, thus providing a mathematically rigorous

underpinning to intuitive explanations of how processes at di�erent spatial scales may compete. It

furthermore identi�es which length scales—and hence which patterns—are relevant for natural selection.

The multiscale selection framework can thus be used to address complex questions on evolution in

spatially structured populations.

Introduction1

Spatial structure is the rule, rather than the exception, in biological populations. Examples span a2

large range of scales. Many bacteria live in bio�lms that are highly heterogeneous [1–3] and in which3

interactions between bacteria are often limited to a range of a few microns [4–6]. At the same time, bushes4

growing in semi-arid areas form intricate vegetation patterns that span tens to hundreds of meters [7,5

8]. Spatial population structure may re�ect heterogeneities in the abiotic environment, such as resource6

availability, but can also arise from self-organisation through ecological interactions between individuals7

[9].8

Because spatial population structure determines with whom organisms interact and compete, it is9

a key factor shaping evolution. A classical example of this is the evolution of altruism: behaviour that10

negatively a�ects an individual’s own �tness, but increases the �tness of its interaction partners [10, 11].11

It has long been recognised that a non-arbitrary interaction structure is necessary for altruism to evolve,12

so that the behaviour of altruistic individuals preferentially bene�ts other altruists [10, 12–14]. A natural13

way for such interaction structure to arise is through local interactions and local reproduction, which14

leads to spatial assortment with altruistic individuals generally being close to other altruists [2, 15–19].15

Most formal theoretical work on how spatial structure a�ects evolution has focused on populations16

that are divided in distinct groups, e.g., trait-groups in which selection is compartmentalised for periods17

of time [20–22]. Selection is then considered to act at two levels, within and between groups, and the18

selection pressures at these two levels can be quanti�ed [20]. Selection pressures within and between19

groups are not necessarily aligned. In the case of altruism, for example, selection within groups tends to20

favour sel�sh behaviour (also called cheating or defecting), while selection between groups promotes21

altruism [12, 23, 24]. Many biological populations, however, are not subdivided into distinct groups,22
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but are nevertheless structured in space. In such populations, selection can depend on spatial scale,23

because local selection pressures may di�er from those observed at the level of the whole population24

[25, 26]. Returning to the example of altruism: locally cheaters might out-compete altruists even if25

altruism is favoured in the population as a whole due to emergent spatial patterning [15, 16, 19]. A26

formal treatment of selection pressures in such multiscale (rather than multilevel) populations, however,27

is currently lacking.28

Here, we present a mathematically rigorous way to quantify natural selection at di�erent spatial scales.29

A spatial decomposition of selection is derived which splits global selection into a local component, which30

describes the average selection within local environments, and an interlocal component, which describes31

the selection among these environments. To illustrate the use of this new framework, we apply it to two32

computational models of the evolution of traits known to be a�ected by spatial structure: altruism and33

pathogen transmissibility. We show how the spatial decomposition of selection captures the contribution34

to selection of processes and patterns at di�erent scales. The multiscale selection framework furthermore35

allows us to identify which spatial scales are relevant to natural selection, rather than de�ning those36

scales a priori.37

Results38

A spatial decomposition of selection39

Consider a spatially structured population of individuals that di�er with respect to some phenotypic40

value, �. This could be a quantitative trait value (e.g., an individual’s investment in altruistic behaviour)41

or an indicator variable that is 1 for individuals that display a certain phenotype (e.g., altruism) or possess42

a certain gene, and 0 for those who do not. We are interested in the evolution of the mean value of43

� over time. Over �fty years ago, George R. Price derived a highly general mathematical description44

of evolutionary change, showing that the change in mean value of � over a given time interval due to45

selection is equal to the covariance between the phenotypic value and the relative �tness, w , of individuals46

[27]. This covariance, called the selection di�erential and denoted by S, provides a general measure of the47

strength and direction of natural selection.48

The selection di�erential of Price’s equation describes the e�ect of selection at the level of the whole49

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.21.473617doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.21.473617
http://creativecommons.org/licenses/by-nc/4.0/


Fig 1. Illustration of the spatial decomposition of selection. (a) Spatially structured population of
individuals that di�er in some phenotypic characteristic. Local environments are de�ned as circular
areas with a given radius. (b) Example of global and local selection pointing in di�erent directions. The
covariance between phenotype and �tness within all local environments is negative (i.e., local selection is
negative), as evident from the negative slopes of the red regression lines; nevertheless, the global
covariance between phenotype and �tness is positive (i.e., global selection is positive), as apparent from
the positive slope of the black regression line. This is an example of Simpson’s paradox. (c) The negative
local selection is counteracted by a positive covariance between the mean phenotype and mean �tness of
local environments (see the blue regression line). Local environments are weighted by their population
density and mean �tness (size of points). This covariance represents the selection among environments,
i.e., the interlocal selection.

population. In spatially structured populations, however, this may fail to capture the whole story. For50

example, consider the hypothetical population in Fig 1a. Here, at the global scale the covariance between51

phenotype and �tness is positive (black regression line in Fig 1b), yet if the analysis is restricted to52

individuals within smaller-scale local environments (circles in Fig 1a) it is invariably negative (red lines53

in Fig 1b). Counter-intuitively, the e�ect of natural selection can thus be to reduce the mean of � in every54

local environment, while driving it up globally; a spatial Simpson’s paradox [23, 28].55

To quantify selection at these smaller scales, we �rst need a mathematically rigorous de�nition of56

local environments. In this paper, we simply de�ne local environments as circular areas (disks) with57

a given radius r (see Methods for a more general de�nition based on a kernel function). For any point58

in space, the local selection at scale r can now be measured as the covariance between phenotype and59

relative �tness of the individuals found within the local environment centred on this point; we call this60
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the Local Selection Di�erential (LSD; see Methods). Note that local environments may overlap and that61

they are not necessarily centred on individuals (Fig 1a).62

Using this de�nition of local selection, for any scale r we can derive the following spatial decomposition

of the selection di�erential:

S = mean(LSD) + Cov(local mean(�), local mean(w))

≡ Slocal(r) + Sinterlocal(r), (1)

which is the central result of this article (see Fig 1). To properly calculate the mean and the covariance in63

Eq 1, local environments have to be weighted according to the local density of individuals. A detailed64

derivation is provided in the Methods; here, we focus on the interpretation of the terms of Eq 1. As65

the average of the LSDs over all local envrionments, Slocal(r) describes the local component of selection,66

measuring the selectionwithin local environments. The second term Sinterlocal(r), the (weighted) covariance67

between local mean phenotype and local mean �tness, can be interpreted as the interlocal component of68

selection and represents selection among environments.69

The measure of local selection, Slocal(r), captures the e�ect of anything that happens within local70

environments of size r . In other words, it incorporates all mechanisms operating at length scales smaller71

than or equal to r . To identify how a speci�c length scale r contributes to selection, we should ask how72

the local selection component changes if we slightly expand the scale of the local environments from r to73

r + dr . That is, the contribution to selection of scale r is captured by the derivative of Slocal(r) with respect74

to r , which we denote by s(r). Assuming that no two individuals can be at the exact same position in75

space, so that Slocal(0) = 0, we can then write76

S = ∫
∞

0
s(r ′) dr ′, Slocal(r) = ∫

r

0
s(r ′) dr ′, and Sinterlocal(r) = ∫

∞

r
s(r ′) dr ′, (2)

which decomposes S, Slocal(r) and Sinterlocal(r) into contributions of di�erent scales.77

From Eq 2 we can derive several general insight about the local and interlocal selection components. If78

local environments become larger and larger, then Slocal(r) approaches S. This makes sense: large “local”79

environments should capture the global population dynamics. At the same time Sinterlocal(r) approaches 0,80

which can be understood by noting that as environments become larger and larger, the local mean values81
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of phenotype and �tness approach the global mean values, eliminating variation between environments.82

If the environments are made ever smaller (r → 0), Slocal(r) approaches 0 and Sinterlocal(r) approaches S.83

This also makes sense: very small local environments lack variation in phenotype and �tness, and hence84

local selection must vanish.85

To illustrate the use of the multiscale selection framework (Eq 1–2), we apply it to two models of86

classical examples of multiscale selection: (i) the evolution of altruism, and (ii) the evolution of pathogen87

transmissibility.88

Example I: Evolution of altruism aided by self-organising colonies89

We model a population of individuals in two-dimensional space that reproduce, die, move around slowly90

and locally compete for resources (Fig 2a; Supplementary Text). Individuals are characterised by a91

continuous trait that represents their investment in altruism. Upon reproduction, this trait value is passed92

on from parent to o�spring, at which time mutations are introduced with small probability. Altruistic93

behaviour directly reduces an individual’s reproduction rate, but bene�ts all individuals in the local social94

environment of the altruist. The e�ects of altruism and resource competition both depend on the distance95

between organisms, such that an individual that is close to others bene�ts more from their altruistic96

action, but also experiences stronger competition (see Supplementary Text for details). The distances97

beyond which the e�ects of altruism or resource competition become weak – the “interaction scales” –98

are denoted by �a and �rc.99

If the interaction scale of altruism, �a, is su�ciently smaller than the scale of resource competition,100

�rc, the model population shows intriguing self-organisation (Fig 2b, S1 Movie): a Turing-like instability101

results in a hexagonal pattern of distinct colonies that display Darwinian dynamics of their own. In102

colonies with a high mean level of altruism, the density of individuals is high because they all bene�t103

from the altruism of colony members. Over time, however, the level of altruism within a colony declines104

because mutants with lower levels of altruism are selected (“defectors” or “cheaters”). This decline105

eventually results in the demise of the colony, after which it is replaced by a newly-formed colony that106

originates from the binary �ssion of one of the surrounding colonies (see arrow in Fig 2b, S1 Movie).107

Crucially, colonies with a higher mean level of altruism are more likely to reproduce. These emergent108

colony dynamics are studied in depth in a companion paper [29].109
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Fig 2. Evolution of altruism. (a) Model illustration. Both resource competition and altruism are local
processes. The range of resource competition, �rc, is larger than the range of altruism, �a. (b) Snapshot of
part of the simulation plane (see S1 Movie for dynamics). The hexagonal lattice constant of the emerged
colony pattern is a = 8.4 �a. The green arrow indicates a colony �ssion event. (c) Mean level of altruism
over time, in a population that is well-mixed (grey) or spatially structured (blue). (d) Spatial
decomposition of selection di�erential S at evolutionary equilibrium for varying length scales of the local
environments. Space was scaled such that the range of altruism �a = 1. Slocal(r) and Sinterlocal(r) were
calculated as averages over 10 000 instances of the simulation plane obtained between Time = 36 000 and
40 000 generations (shaded area in panel c). (e) Contribution to selection of di�erent length scales. Red
areas indicate a negative contribution to selection, green a positive contribution.

The simulations are initialised with individuals that do not invest in altruism. But, over the course of110

the simulation, the mean level of altruism increases until it reaches a stable value (Fig 2c). In contrast,111

if we destroy the self-organised pattern by mixing the population (i.e., randomly assigning positions to112

individuals every time step), altruism does not evolve at all (Fig 2c). The emergent spatial patterns are113

hence crucial for the evolution of altruism, consistent with previous modelling work [15–17, 30, 31].114

Once the mean level of altruism has stabilised, we should expect the global selection di�erential to115

equal zero on average because no directional selection remains. To average out �uctuations arising from116

the stochastic dynamics in the �nite population, we take the mean of the selection di�erential over 4 000117

generations (shaded area in Fig 2c), and indeed �nd that over this period, S ≈ 0 (black line in Fig 2d).118
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However, the spatial decomposition of selection of Eq 1 reveals a completely di�erent picture (Fig 2d). For119

r-values up to six times the altruism interaction range, the mean local selection, as measured by Slocal(r), is120

negative. This negative local selection is compensated by positive interlocal selection, Sinterlocal(r). These121

results capture and formalise the verbal explanation given above: within local environments, individuals122

with a lower level of altruism are selected because they bene�t from the altruistic behaviour of others123

nearby while paying less costs; but local environments in which the mean level of altruism is low also124

tend to have low mean �tness, i.e., selection among local environments favours higher levels of altruism.125

Fig 2d illustrate how Slocal(r) and Sinterlocal(r) depend on the radius of the local environments, r . The126

e�ects observed for small and large r-values represent general properties of the spatial decomposition127

of selection (see Eq 2): for large r , Slocal(r) converges to the global selection di�erential (which is close128

to zero in this case) and Sinterlocal(r) converges to zero, while for small r , Slocal(r) declines because the129

variation in phenotype and �tness within the local environments is reduced.130

Intuitively, one might expect that the scale associated with negative selection on altruism is tied to131

the size of single colonies. The shortest distance between colonies is given by the lattice constant of132

the emerging hexagonal colony pattern, a = 8.4�a (see Fig 2b). Indeed, for local environments with133

radius r < a
2 (such that most disks contain individuals of one colony only), Slocal(r) is clearly negative134

(Fig 2d). However, when we consider the contribution of each length scale to selection, s(r), we see that135

only very small length scales of r < �a contribute negatively to selection, while length scales of r ' �a136

contribute positively (Fig 2e). This indicates that colonies are not homogeneous: even within a single137

colony we observe assortment of individuals with di�erent investment in altruistic behaviour, and this138

assortment contributes positively to the selection of altruism. This is understandable: individuals that are139

very close together (distance < �a) experience a similar level of altruism and competition. In very small140

local environments (r < �a), cheaters hence must have an advantage over altruists because they pay less141

costs. But once the scale of local environments become similar to the range of altruistic interactions,142

individuals within the same local environment may experience di�erent levels of altruism, and the e�ects143

of these heterogeneities start to contribute to local selection.144

Looking further into which spatial scales are relevant for selection, we see that the scale for which the145

di�erences between Slocal and Sinterlocal vanish is close to the lattice constant a (Fig 2d). This indicates146

that local environments that are large enough to contain individuals from more than one colony capture147
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the processes and patterns contributing signi�cantly to global selection are; larger-scale patterns, such as148

the clear assortment at the colony level (see Fig. 2b), appear to have a negligible e�ect.149

In conclusion, the multiscale selection framework allows us to mathematically show that local selection150

for altruism is negative, but that this is compensated by positive interlocal selection. It furthermore151

provides a way to quantify how speci�c length scales contribute to selection, thus revealing which152

patterns and processes are signi�cant for natural selection. Speci�cally, it shows that the heterogeneity153

of colonies is relevant to selection, whereas the assortment at the colony level is not.154

Example II: Evolution of pathogen transmissibility in an SI-model155

As a second example, we consider the evolution of the transmission rate of an endemic pathogen in156

a spatially structured population of host individuals. This model is rooted in a long tradition of such157

epidemiological models; see e.g., [32–36].158

In the model, host individuals live on a 2D square simulation lattice (Fig 3). They can be either159

susceptible to infection, or infected. Susceptible individuals reproduce asexually, in which case the160

o�spring is placed on a neighbouring lattice site. Each lattice site can hold at most one individual;161

susceptible individuals therefore locally compete for empty space. Infected individuals do not reproduce,162

and they die at a higher rate than susceptible individuals. The pathogen is transmitted locally at a163

rate that varies among pathogen variants. We consider the evolution of this pathogen transmissibility.164

For simplicity, each infected individual is considered to carry a single pathogen strain, and mutations165

instantaneously change the transmissibility of all pathogens within a single infected host (i.e,, newly166

arising pathogen variants rapidly sweep the within-host pathogen population). Details on the model167

implementation are provided in the Supplementary Text.168

After initialisation, the simulated population quickly self-organises into spatial patterns: the infection169

chases patches of susceptible individuals in wave-like structures (Fig 3b, S2 Movie and S3 Movie). These170

patterns strongly in�uence the evolution of pathogen transmissibility (Fig 3c): If pattern formation is171

prevented by constantly mixing the population, pathogens with ever-increasing transmissibility are172

selected because pathogens with higher transmissibility spread faster among the available susceptible173

hosts. In spatially structured populations, however, the mean transmissibility eventually stabilises (blue174

lines in Fig 3c). This is explained by a feedback between evolution and the emergent spatial patterns:175
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pathogen strains shape their local environment, and this environment in turn a�ects the strain’s local176

�tness [9, 25, 37]. Speci�cally, pathogens with very high transmissibility are a�ected by ‘self-shading’ [34,177

38]: they rapidly deplete the susceptible hosts in their vicinity and are then left with little opportunity to178

spread, locally resulting in low average pathogen �tness. In contrast, more prudent pathogens shape179

their environment in such a way that su�cient susceptible hosts remain available to allow the infection180

to continue spreading [35, 39].181

Fig 3. Evolution of pathogen transmissibility. (a) Model illustration. (b) Snapshot of part of the
simulation lattice for two di�erent values of the reproduction rate of susceptible individuals, 
 .
Susceptible individuals are plotted in grey, infected individuals are coloured based on the transmissibility
of the pathogen they carry. See S2 Movie and S3 Movie for dynamics. (c) Mean transmissibility of the
pathogen over time in populations that are well-mixed (grey) or spatially structured, with di�erent initial
transmissibility values (blue) (d) Spatial decomposition of selection di�erential S at evolutionary
equilibrium for varying length scales of the local environments. For both values of 
 , Slocal and Sinterlocal
were calculated as averages over 10 000 instances of the simulation lattice obtained between Time = 9 500
and 10 000 generations. We de�ne the critical scale of selection, rC, as the length scale at which the
contribution to selection switches from positive to negative (i.e., where s(r) = dSlocal/dr switches sign).
(e) Critical scale of selection, rC, plotted against size of the emerged patterns for di�erent values of the
susceptible reproduction rate 
 . Pattern size was determined using the pairwise correlation function (see
Supplementary Text).
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We use the multiscale selection framework to quantify and formalise this self-shading. As before,182

we allow the population to reach evolutionary equilibrium and then calculate Slocal(r) and Sinterlocal(r)183

over a range of r values (Fig 3d). While the global selection di�erential S is insigni�cant as expected184

(because the global mean transmissibility no longer changes and mutations are unbiased), within local185

environments selection still favours pathogens with high transmissibility: Slocal(r) > 0 for small r (red line186

in Fig 3d). This e�ect is counteracted by negative interlocal selection: Sinterlocal(r) < 0 for small r (blue187

line). The negative interlocal selection con�rms that pathogens with higher transmissibility more often188

reside in local environments in which susceptible host availability and hence pathogen spread is limited.189

We can now further explore how the spatial patterns a�ect the evolutionary process. The size of the190

spatial patterns that emerge in the population depends on several model parameters [35] including the191

reproduction rate of the susceptible hosts: lower reproduction rates result in larger patterns (Fig 3b). To192

demonstrate how these larger patterns are re�ected in Slocal and Sinterlocal, we repeated our analysis with193

a lower susceptible reproduction rate (right panel in Fig 3b, pink and light-blue lines in Fig 3d). Evidently,194

the curves representing Slocal(r) and Sinterlocal(r) are stretched towards larger scales. This re�ects that the195

spatial scales relevant to selection depend on the size of the patterns in the population: after all, selection196

for pathogen restraint can only be observed if the local environments in which selection is measured are197

large enough to cover multiple patches.198

To explore this relationship between multiscale selection and spatial pattern size, we de�ne the critical199

scale of selection rC as the length scale at which the contribution of length scales to selection, s(r),200

switches sign (Fig 3d), such that scales smaller than rC contribute positively to selection, and scales larger201

than rC contribute negatively. This critical scale of selection is an emergent property of the dynamics. By202

repeating the analysis for a range of susceptible growth rates, we �nd that the critical scale of selection203

is proportional to the size of the emergent patterns (Fig 3e). Hence, the Slocal- and Sinterlocal−curves, and204

speci�cally the critical scale of selection rC, capture the length scale of the spatial structures that are205

relevant for natural selection.206

In conclusion, this second example illustrates that the multiscale selection framework can be used to207

measure and quantify self-shading. It furthermore allows the identi�cation of the scale(s) of population208

structures relevant to natural selection.209
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Discussion210

We have presented a new, multiscale selection framework that can be used to analyse evolution in spatially211

structured populations. The framework is based on a spatial decomposition of selection (Eq 1–2) that212

quanti�es local and interlocal selection for any spatial scale. Two example models illustrated how this213

framework can be used to measure the contribution to selection of processes and patterns at varying214

scales, and thus to identify the spatial scales relevant to natural selection.215

The spatial decomposition of selection demonstrates how natural selection in local environments can216

substantially di�er from the selection in the global population, even if an average is taken over all local217

environments. Evolutionary studies based on local observations can hence provide an incomplete picture218

of the evolutionary dynamics in the global population. The framework presented here provides a way219

of determining whether a collection of local sampling areas is representative of the whole population220

under selection. Namely, if the local sampling areas are large enough to capture all spatial structures and221

processes relevant to selection, interlocal selection vanishes and the mean local selection di�erential (i.e.,222

as measured within sampling areas) is equal to the global selection di�erential. Speci�cally, this means that223

there should be no covariance between mean phenotype and mean �tness among local environments (i.e.,224

Sinterlocal = 0). A signi�cant correlation between local mean phenotype and local mean �tness is a strong225

indication that larger structures exist in the population that contribute to natural selection. However,226

to reliably estimate Slocal and Sinterlocal, observations from many individuals are required, especially if227

selection is weak. While such data is easily obtained in simulation studies, it remains to be seen if the228

framework can also be successfully applied to observational or experimental data.229

The examples of multiscale selection studied here—the evolution of altruism and of pathogen transmissibility—230

were chosen because they are among the best-known examples of a feedback between spatial patterns231

and eco-evolutionary dynamics, and because this feedback has also been con�rmed experimentally. For232

instance, increased population viscosity facilitates the evolution of altruistic public good production in233

lab populations of Pseudomonas aeruginosa [40, 41], and several experiments have shown that increased234

host population viscosity and/or localised pathogen spread select for lower virulence in an insect larval235

virus [38] and bacterial viruses [42, 43]. The e�ect of spatial structure on natural selection is, however,236

by no means limited to these two examples. It was �rst described in models of catalytic hypercycles of237

self-replicating molecules, which give rise to self-organised rotating spirals that select for higher death238
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rates of the individuals constituting these spirals [44, 45]. Since then, many other examples have been239

described [9, 25], including anticompetitor toxin production in bacteria [46–50]. Applying the multiscale240

selection framework to such other examples could lead to new insights in these systems as well.241

The spatial decomposition of selection in Eq 1 is analogous to the decomposition of selection into242

within- and between-group components for distinct, non-overlapping groups derived by Price in 1972243

[20]. It however provides a di�erent perspective on the e�ects of (spatial) structure on selection. The244

multilevel framework (i.e., the distinct-groups approach) requires that distinct and non-overlapping245

groups are de�ned. If the spatial structures are variable in time and space, such as the patches in the246

model of pathogen transmissibility, this is infeasible and the multiscale approach is more appropriate. If247

distinct groups can be easily recognised, such as in the altruism model, the group selection framework248

can provide important insights into the selection pressures acting at di�erent levels of organisation. This249

is explored in depth in [29]. But even in this case the multiscale approach may provide additional insights,250

for instance by showing that relevant structure exists within groups or in the spatial organisation of the251

groups themselves.252

While the multiscale decomposition of the selection di�erential is new and uniquely untangles local253

and interlocal selection in spatially structured populations, it is not the only, nor the only correct way the254

selection di�erential can be decomposed. Next to the distinct-groups multilevel approach discussed above,255

the selection di�erential can also be decomposed into terms that capture the e�ect of an individual’s own256

character on its �tness, and the e�ect of its environment (the contextual analysis approach to multilevel257

selection) [51], or in terms that capture the e�ect of an individuals behaviour on its own �tness and on the258

�tness of related interaction partners (the inclusive �tness framework) [26, 52, 53]. Each decomposition of259

the selection di�erential tells a potentially new story about the underlying mechanisms driving evolution.260

The multiscale selection framework presented here is an addition to the toolbox available to address261

complex evolutionary questions.262

Methods263

Below, we derive Eq 1. Full speci�cations of the simulation models, as well as computational details on264

the calculation of the two terms of Eq 1, are provided in the Supplementary Text.265
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Background: De�nition of the selection di�erential S266

Consider a population in space that at some time t consists of n individuals. Let �i be the phenotype of267

individual i, and Wi its �tness, de�ned as the number of o�spring at some later time t + Δt , including the268

individual itself if it survived over the time step Δt . Price’s equation [27] now states that269

Δ�
⏟⏟⏟

change in mean value of �

= Cov (�, w)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

change due to selection

+ wΔ�
⏟⏞⏞⏞⏟⏞⏞⏞⏟

change due to transmission biases

, (3)

where wi = Wi/W is the relative �tness of individual i over the time interval (we use the common270

notation c̄ to denote the population mean of characteristic c) and Δ� captures biases in the transmission271

of phenotypic values from parents to o�spring. Importantly, the �rst term of the Price’s equation reveals272

that the e�ect of selection on the mean phenotype is captured by the covariance between phenotype273

and �tness; this term is also called the selection di�erential. The analysis presented here focuses on the274

selection di�erential only; for a full version of the Price equation with overlapping generations, including275

transmission and survival-bias e�ects, see e.g., [54].276

Measuring selection in a local environment: the Local Selection Di�erential (LSD)277

For any point m in space, the local population density is de�ned as a conventional kernel density estimate:278

D(m | r) ≡
n
∑
i=1

K(m − x i | r ). (4)

Here x i is the position of individual i. Its contribution to the density at position m depends on its distance279

to position m according to the kernel function K(y|r). The parameter r is the scale parameter (or band280

width) or the kernel function. In e�ect, the kernel function de�nes the local environments: it determines281

which organisms contribute to what extent to the environment around each point in space.282

In this paper, we use disk-shaped kernel functions which include an individual in the local environment283

only if its distance to the environment’s midpoint is smaller than a given radius, r . Other reasonable284

choices for the kernel function include bi-variate normal or exponential distributions, which weigh285

individuals close to the focal point more heavily than those further away.286

A proper kernel function is normalised (i.e., the integral of K(y | r) over space is equal to one); it287
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follows that288

∫
S
D(m | r) dm = n, (5)

where ∫S represents the integral over the entire space.289

For any characteristic c of individuals, such as phenotype or �tness, we de�ne the local mean at point290

m as291

{c |m, r}l ≡
∑i K(m − x i | r )ci

D(m | r)
, (6)

which is the average of c over all individuals, weighted by the kernel function based on their position292

relative to m. We will often write {c}l as a shorthand for {c |m, r}l to avoid clutter.293

Analogous to the selection di�erential in Price’s equation, we can now de�ne the local selection

around point m as the covariance between phenotype and relative �tness within the local environment,

which we call the Local Selection Di�erential (LSD):

Sl(m | r) ≡
{� W |m, r}l − {� |m, r}l {W |m, r}l

{W |m, r}l
(7)

≡ Covl (�,W / {W}l | m, r) .

Note that the LSD is equal to the local covariance between � and local relative �tness (W / {W}l), i.e., the294

�tness of an individual relative to others in the local environment. Thus de�ned, it measures the e�ect of295

selection on the change in the local mean of � at position m, {� |m, r}l.296

Decomposing the selection di�erential into local and interlocal selection297

For any function over space g(m), we de�ne the spatial mean as

⟨g(m) | r⟩s ≡
∫S D(m | r)g(m) dm

∫S D(m | r) dm

=
1
n ∫

S
D(m | r)g(m) dm. (8)

Note that this represents the average of g(m) over the complete space, but that each position m is298

weighted by the local density D(m | r). This weighting is equivalent to the weighting by group size in299

Price’s derivation of within- and between-group selection in a population consisting of distinct groups300
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[20, 21]. For readability, we will often write ⟨g(m)⟩s for ⟨g(m) | r⟩s. Conveniently, given the de�nitions301

of Eq 6 and 8, the spatial mean of the local mean is simply the population mean, i.e., ⟨{c}l⟩s = c.302

Using these de�nitions, can now derive the desired decomposition:

S = Cov (�, w) = �w − �w

= ⟨{�w}l⟩s − ⟨{�}l⟩s ⟨{w}l⟩s

= ⟨{�w}l − {�}l {w}l⟩s + ⟨{�}l {w}l⟩s − ⟨{�}l⟩s ⟨{w}l⟩s

= ⟨Covl (�, w |m, r)⟩s + Covs ({�}l , {w}l)

≡ Slocal(r) + Sinterlocal(r). (9)

Hence, Slocal is the average of the LSD over all local environments (de�ned by their midpoints m and303

scale r ), where each environment is weighted by its local density and its local mean �tness:304

Slocal(r) = ⟨{w}l Sl(m | r)⟩s . (10)

It captures the total e�ect of selection within local environments. On the other hand, Sinterlocal(r) is the305

spatial covariance (de�ned in terms of spatial means) of the local mean phenotype and local mean �tness.306

This term captures the selection among environments.307

Code availability308

Simulation codes and analysis scripts are available from GitHub:309

https://github.com/rutgerhermsen/altruism.git (altruism model) and310

https://github.com/hiljedoekes/MultiscaleSelection_SI (SI model).311
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Supplementary Information434

Supplementary Movies435

S1 Movie. Dynamics of the altruism model. Simulation lattice points are coloured by the mean436

level of altruism of the individuals at that position, according to the colour scale shown in the movie437

and in Fig 2b. Empty lattice points are white. A high-quality version of this video is shared here:438

https://doi.org/10.5281/zenodo.5608897.439

S2 Movie. Dynamics of the SI-model if reproduction of susceptibles is fast (
 = 0.05). Empty440

lattice points are coloured black, susceptible individuals white, and infected individuals are coloured441

according to the transmissibility of the pathogen they carry (see colour scale in Fig 3b).442

S3 Movie. Dynamics of the SI-model if reproduction of susceptibles is slow (
 = 0.02). Same443

colour scheme as S2 Movie.444

Supplementary Text445

Individual-based model of the evolution of altruism446

As a �rst example of multiscale selection, we consider the evolution of altruism in a spatially explicit447

individual-based model. A full analysis of this model is provided in a companion paper [29].448

Model description449

We model a population of individuals living in a 2D space with periodic boundary conditions. Each450

individual can reproduce asexually, die, and move in an undirected fashion. Individuals di�er by one451

continuous phenotype, �, that speci�es their level of altruism. By itself, altruistic behaviour is costly: it452

directly reduces the individual’s rate of reproduction. However, an altruistic individual does improve453

the living conditions of all individuals in its local neighbourhood (including itself), irrespective of their454

phenotype. Individuals locally compete for resources: the rate of reproduction of an individual decreases455

with the density of individuals in its local neighbourhood.456
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Both altruistic interactions and competition are modelled through a bi-variate normal (Gaussian)457

interaction kernel function G(y | �), where � is the standard deviation of the kernel. In terms of this458

function, we denote the total level of altruism experienced by individuals at position y by459

A(y | �a) ≡
n
∑
i=1

�i G(x i − y | �a). (11)

Here, n is the population size. Although we do not intend to model a particular altruistic behaviour, it is460

convenient to envision A(y | �a) as the availability of a public good that is locally deposited by altruistic461

organisms. The scale �a can be interpreted as the interaction range or scale of altruism. Similarly, the462

resource competition experienced at position y is de�ned as463

Drc(y | �rc) ≡
n
∑
i=1

G(x i − y | �rc), (12)

where �rc is the range or scale of resource competition. Note that Drc(y | �rc) is a kernel density estimate464

based on a Gaussian kernel with band width �rc; in the derivation of the LSD the local population density465

was de�ned in the same way.466

In the simulations, space is discretised using a regular square lattice with lattice constant �x , and time467

proceeds in discrete steps �t . The simulation construct the state of the system at time t + �t through the468

following sequence of events:469

1. Reproduction Each individual i that exists at time t reproduces with probability gi�t , where the470

reproduction rate gi is given by471

gi = g0 max

⎡
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎜
⎝

1 − c �i⏟⏞⏟⏞⏟
cost of altruism

+
bmaxA(x i | �a)

bmax/b0 + A(x i | �a)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
bene�t from altruists nearby

⎞
⎟
⎟
⎟
⎟
⎠

(1 −
Drc(x i | �rc)

K )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

competition

, 0

⎤
⎥
⎥
⎥
⎥
⎦

. (13)

Here, g0 is the basal reproduction rate, c the reproductive de�cit per investment in altruism, x i472

the position of the individual, and K is a factor scaling the local carrying capacity. The bene�t of473

altruism is an increasing, saturating function of the local availability of “public good”: it is 0 if the474

local environment does not contain any altruists, and bmax if A(x i | �a) → ∞. When an individual475

reproduces, a new organism is born and placed at the same lattice point as its parent.476
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2. Heredity and mutation The phenotype of the child is copied from its parent, but mutated with477

probability �. The e�ect size of the mutation is drawn from an exponential probability distribution478

with mean m; its sign is chosen positive or negative with equal probability. If a mutation would479

result in a negative phenotype, the phenotype is set to zero.480

3. Death Individuals die with probability d�t . The death rate d is independent of phenotype.481

4. Motility All individuals are displaced by adding a random number to both coordinates of their482

position. These random numbers are independently drawn from a discretised normal distribution483

with standard deviation �d ≡
√
2kD�t . This approximates movement by di�usion, with di�usion484

constant kD.485

Units and parameters486

In the formulation above, we are free to choose the scaling of the phenotype �; this allows one to eliminate487

one parameter. We choose to set the cost to c = 1. We can eliminate another parameter by choosing488

suitable units of length; we choose to set �a = 1, so that all lengths become expressed in units of the489

interaction range of altruism. A last parameter can be eliminated by choosing convenient units of time;490

we set the death rate d = 1, so that time is measured in generations.491

Other parameter values used in the simulations shown in the main text are listed in Table 1. While492

some parameters were chosen arbitrarily, the following rationale was followed: To resolve the altruistic493

interactions, the spacing of the lattice needs to be smaller than the range of altruism, �a = 1. We therefore494

set the lattice spacing to �x = 0.1. Similarly, to ensure that gi and d can indeed be interpreted as rates,495

the time step should be chosen such that gi�t and d�t are considerably smaller than 1. We therefore set496

�t = 0.08. The Turing-like instability causing the colony formation occurs only if the range of competition497

is signi�cantly larger than the range of altruism (further explored in [29]); we chose �rc = 4. Since the498

evolution of altruism is favoured by positive genetic assortment (i.e., close proximity of parents and499

o�spring) [10], a low di�usion constant was chosen. Lastly, the parameter b0 was chosen to ensure that500

the direct bene�t reaped by an isolated individual from its own altruism is considerably smaller than501

the cost incurred. (Otherwise, the term altruism does not apply.) The bene�t term in Eq 13 is bounded502

by b0A(x i |�a) = b0�i/(2�); hence, by choosing b0 = 1, the bene�t is guarantied to be at least a factor 2�503
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Table 1. Parameters of altruism model

Parameter Description Value

�a Scale of altruism 1 (by de�nition)

�rc Scale of resource competition 4

g0 Basal reproduction rate 5

c Reproductive de�cit of altruism 1 (by de�nition)

b0 Basal reproductive bene�t of altruism 1

bmax Maximal reproductive bene�t of altruism 5

K Scaling factor local carrying capacity 40

d Death rate 1 (by de�nition)

kD Di�usion constant de�ning motility 0.04

� Mutation probability upon reproduction 10−3

m Mean e�ect size of mutations 5 × 10−3

�x Simulation lattice constant 0.1

�t Simulation time steps 0.08

X Linear size of the simulation lattice 1024 lattice points

smaller than the cost c�i = �i .504

SI-model of the evolution of pathogen transmissibility505

As a second example, we consider the evolution of pathogen transmissibility in a spatial SI-model. This506

model is based on several previous simulation models exploring pathogen evolution, see [32–35].507

Model description508

Consider a population of individuals living on a 2D square lattice. Each lattice point contains at most509

one individual. Individuals reproduce, die and move randomly. Individuals can be either susceptible to510

infection with a pathogen, or infected. Infected individuals no longer reproduce, and die at a higher rate511

than susceptible individuals. The infection spreads locally; the probability that an infected individual512

transmits the pathogen to a susceptible neighbour depends on the transmissibility of the pathogen that513

they carry, �. We consider the evolution of this transmissibility.514

Time in the model progresses in discrete time steps. Every time step, the following series of events515
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takes place:516

1. Reproduction Since each lattice point can be occupied by at most one individual, individuals can517

reproduce only if one or more of their neighbouring lattice points is empty. Empty lattice points are518

repopulated by a susceptible individual with probability 
 nS, where 
 is the reproduction rate per519

susceptible individual and nS is the number of susceptible individuals among the eight neighbours520

(including diagonals) surrounding the empty lattice point.521

2. Infection For each susceptible individual i, let Ii be the set of infected individuals found on any of the522

eight lattice points surrounding the susceptible individual’s position. Then individual i becomes523

infected with probability524

Pi =
∑j∈Ii �j

ℎ + ∑j∈Ii �j
. (14)

This infection probability is zero when the susceptible individual has no infected neighbours, and525

approaches 1 if many of the neighbours are infected with highly transmissible pathogens. If an526

infection takes place, one of the infected neighbours is chosen as the source of this new infection;527

the probability that a neighbour is chosen is proportional to the transmissibility of its pathogen, �j .528

The newly infected individual inherits the transmissibility value of the chosen infected neighbour;529

3. Mutation Since we consider mutation of the pathogen rather than of the host individuals, mutations530

are not coupled to reproduction events of the hosts. Instead, each time step the transmissibility of531

the pathogen within each infected individual is mutated with a small probability �. This resembles a532

within-host mutation of the pathogen that (instantly) sweeps the within-host pathogen population.533

If a mutation occurs, a new transmissibility �′i is chosen from a uniform distribution [�i − �; �i + �].534

If �′i < 0, it is set to zero.535

4. Death Susceptible individuals die with probability �S. Infected individuals die with probability �I > �S.536

5. Motility In a randomly assigned order, the contents of each lattice point are swapped with a randomly537

chosen neighbour with probability pm. Individuals can hence change position either because they538

move themselves (with probability pm) or because they are chosen in the swapping procedure539

of one of their neighbouring lattice points (empty or containing an individual). This procedure540
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Table 2. Parameters of SI model

Parameter Description Value


 Reproduction rate (per susceptible per time step) 0.05

�S Death rate of susceptible individuals (per time step) 0.05

�I Death rate of infected individuals (per time step) 0.2

ℎ Scaling factor of infection probability 20

pm Motility probability (per time step) 0.05

� Mutation rate (per time step) 0.005

� Maximal mutation step size 0.5

Simulation lattice size 1024 × 1024 lattice points

approximates movement by random walk, while ensuring that the number of individuals does not541

change and that the rate of movement per individual does not depend on local population density.542

Parameters543

An overview of all model parameters and their values is provided in Table 2. Reproduction and death544

probabilities were set to values signi�cantly smaller than 1 per time step, so that these probabilities can545

be interpreted to good approximation as rates of a Poisson process. To allow spatial patterns to arise, a546

small value was chosen for the motility probability pm.547

Scale of emergent spatial patterns548

To measure the size of the emergent spatial patterns, we determine the pair correlation function g(r) of a549

snapshot of the simulation. This function measures the mean density of individuals at distance r from a550

lattice point, given that this lattice point is occupied by some individual. It thus indicates whether the551

occupancy of a lattice point correlates with the occupancy of lattice points a distance r away. The function552

is normalised by the average density of the �eld. Hence, if g(r) = 1, the probability of �nding other553

individuals at distance r from a given focal individual is equal to the probability of �nding individuals in554

any random position; if g(r) > 1 the probability of �nding other individuals at distance r from a focal555

individual is larger than one would expect from random sampling of the population.556

For patch structures such as the emergent patterns studied here, g(r) can be approximated by an557
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exponential function558

g(r) = 1 + exp (a − br) . (15)

Eq 15 was used to �t the observed pair correlation functions using least-squares �tting. The �tted559

exponent b−1 was used as a measure of the size of the patches emerging in the �eld.560

Implementation of the calculations of Slocal(r) and Sinterlocal(r)561

In the Methods section, we gave a general analytical derivation of the spatial decomposition of the562

selection di�erential S into local and interlocal components Slocal and Sinterlocal. Below, we describe how563

these quantities were calculated in practice.564

When deriving the spatial decomposition of selection (Methods), we considered a population in565

continuous space. In the simulations, however, space is discretised. This is easily dealt with by replacing566

the integral over space in Eq 8 with a double summation over the coordinates of the 2D simulation space.567

For both models, simulations were performed using periodic boundary conditions (a common choice568

for these kinds of simulations). To calculate local population densities (Eq 4) one then must not only569

take the individuals in the simulation lattice into account, but also their periodic images. The circular570

convolution theorem provides an e�cient way to do this using Discrete Fourier Transforms (DFTs). This571

is a standard technique from signal processing; we shortly discuss it here for completeness.572

For ease of notation we here present derivations for a 1D space; the 2D case follows analogously.573

Assume that a sequence o0, o1, … , oX−1 speci�es the occupancy (number of individuals) at discrete574

positions j ∈ {0, 1, … , X − 1} in a simulation �eld, and let n = ∑X−1
j=0 oj be the total number of individuals.575

Because we assumed periodic boundary conditions, we should consider this �nite �eld to represent a576

�nite stretch taken from an in�nite �eld that is periodic with period X ; that is, the full �eld, including577

periodic images, is a sequence õj with j ∈ ℤ de�ned by õj = o(j modX).578

On the discretised space, the kernel function is represented by an in�nite non-negative sequence579

kj with j ∈ ℤ, whose sum converges to 1. Because the kernel function is a function of distance, it is580

symmetric, i.e., k−j = kj . The kernel density dj for positions j ∈ {0, 1, … , X − 1} (c.f. Eq 4) is now given by581

dj =
∞
∑
m=−∞

õmk(j−m). (16)
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Eq 16 can be rewritten as follows:

dj =
∞
∑
p=−∞

X−1
∑
l=0

õl+pX kj−l−pX

=
X−1
∑
l=0

õl
∞
∑
p=−∞

kj−l−pX

=
X−1
∑
l=0

õl k̂(j−l)modX , (17)

where we introduced the periodic summation k̂j for j ∈ {0, 1, … , X − 1} as582

k̂j ≡
∞
∑
p=−∞

kj−pX . (18)

The sequences õj and k̂j are both periodic with period X . Eq 17 is the circular convolution of these two583

sequences, which we denote by õ ∗X k̂. By the circular convolution theorem, the DFT of õ ∗X k̂ is equal to584

the element-wise product of the DFTs of õ and k̂, i.e.,585

 (dj) =  (õ ∗X k̂) =  (õj) ⋅  (k̂j). (19)

Using Eq 18 and 19, we can calculate the local density dj by586

1. calculating the periodic summation k̂j of kj ;587

2. calculating the DFTs of k̂j and oj , and calculating their element-wise product;588

3. calculating the inverse DFT of this element-wise product, which yields dj .589

Because algorithms for Fourier transformation are highly e�cient [55], this procedure allows us to590

rapidly solve local densities for varying scales r . Fourier transformations were performed using the591

fftw3-library [55].592

The local mean of a property c of individuals, {c | j, r}l (Eq 6), can be calculated in a very similar way.593

Let c̃j be the sequence of the sum of c-values of individuals at position j. In terms of this sequence, we594

can write595

{c | j, r}l =
∑X−1
l=0 c̃j k̂(j−l)modX

dj
(20)
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In other words, the total local value of c, {c | j, r}l,tot ≡ dj {c | j, r}l, is given by the circular convolution596

of the sequences c̃ an k̂, and can hence be easily calculated using Fourier transformation as described597

above. To �nd the local mean, this total local value is divided by the local density, dj . Note that, for some598

positions j, the local density might be very small or zero. To avoid numerical problems, division by local599

density is treated with caution in the calculations of Slocal(r) and Sinterlocal(r) (see below).600

By de�nition, Slocal(r) is the spatial mean of the LSDs, weighted by the local mean �tness {w}l. It is

therefore possible to calculate Slocal(r) directly from the local selection di�erential, Sl((x, y) | r):

Slocal(r) ≡ ⟨{w}l Sl(j | r )⟩s

=
1
n
∑
j
dj {w}l Sl(j | r ). (21)

However, noting that ⟨{�w}l⟩s = �w we can also calculate Slocal(r) using Eq 10:

Slocal(r) = ⟨{�w}l − {�}l {w}l⟩s

= �w − ⟨{�}l {w}l⟩s

= �w −
1
n
∑
j

{�}l,tot {w}l,tot
dj

, (22)

which is less likely to cause numerical inaccuracies (if the local density dj = 0 for some position j, the601

corresponding term in the summation is set to zero).602

Using the de�nition of Eq 9, the value of Sinterlocal(r) can be calculated directly as the covariance

between {� | j, r}l and {w | j, r}l, in which each position j is weighted by the local density dj . However,

we can again derive an expression that is numerically more stable:

Sinterlocal(r) = ⟨{�}l {w}l⟩s − �w

= ⟨({�}l − �) ({w}l − w)⟩s

=
1
n
∑
j

({�}l,tot − dj�)({w}l,tot − djw)
dj

, (23)

where again the summation term for index j is set to zero if the local density dj = 0. Eq 22 and 23 were603

used in the calculations.604
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