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Abstract

The Isolation Lemma of Mulmuley, Vazirani and Vazirani [Combinatorica’87] provides a self-reduction

scheme that allows one to assume that a given instance of a problem has a unique solution, provided

a solution exists at all. Since its introduction, much e�ort has been dedicated towards derandomiza-

tion of the Isolation Lemma for speci�c classes of problems. So far, the focus was mainly on problems

solvable in polynomial time.

In this paper, we study a setting that is more typical for NP-complete problems, and obtain partial

derandomizations in the form of signi�cantly decreasing the number of required random bits. In partic-

ular, motivated by the advances in parameterized algorithms, we focus on problems on decomposable

graphs. For example, for the problem of detecting a Hamiltonian cycle, we build upon the rank-based

approach from [Bodlaender et al., Inf. Comput.’15] and design isolation schemes that use

• O(t log n+ log2 n) random bits on graphs of treewidth at most t;
• O(

√
n) random bits on planar or H-minor free graphs; and

• O(n)-random bits on general graphs.

In all these schemes, the weights are bounded exponentially in the number of random bits used. As

a corollary, for every �xed H we obtain an algorithm for detecting a Hamiltonian cycle in an H-

minor-free graph that runs in deterministic time 2O(
√
n)

and uses polynomial space; this is the �rst

algorithm to achieve such complexity guarantees. For problems of more local nature, such as �nding

an independent set of maximum size, we obtain isolation schemes on graphs of treedepth at most d
that use O(d) random bits and assign polynomially-bounded weights.

We also complement our �ndings with several unconditional and conditional lower bounds, which

show that many of the results cannot be signi�cantly improved.
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1 Introduction

Isolation is a procedure that allows to single out a unique solution to a given problem within a possibly

larger solution space, thus e�ectively reducing the original problem to a variant where one may assume

that if a solution exists, then there is a unique one. The classic Isolation Lemma of Mulmuley, Vazirani

and Vazirani [43] can be used to achieve this at the cost of allowing randomization. In complexity theory,

isolation is used to show that hard problems are not easier to solve on instances with unique solutions [54].

This idea has found numerous applications ranging from structural results in complexity theory (e.g.

NL/poly ⊆ ⊕L/poly [57] or NL/poly = UL/poly [49]) to the design of parallel algorithms [43, 32, 25, 51].

Since obtaining a general derandomization of the Isolation Lemma is impossible by counting argu-

ments [6, 11, 1], it is natural to ask whether the isolation step can be derandomized for speci�c problems

with explicit representation. In this context, there has recently been an exciting progress in isolation for

perfect matchings [2, 9, 18, 31, 5, 32], which culminated in an isolation scheme that usesO(log3 n) random

bits, implying a quasi-NC algorithm for detecting a perfect matching [51].

In contrast to this, derandomization of isolation procedures for NP-complete problems is relatively less

studied, and not because of a lack of motivation: Many contemporary �xed-parameter algorithms rely on

the Isolation Lemma [39, 44, 7, 34, 35, 16, 58]. Usually, the isolation procedure is the only subroutine re-

quiring randomness. Many of the algorithms mentioned above apply the Isolation Lemma in combination

with a decomposition-based method such as Divide&Conquer or dynamic programming. This motivates

us to study the following:

Main Question. How much randomness is required for isolating problems with decomposable structure?

More concretely, we focus on graph problems where the underlying graph is decomposable, in the sense

that it can be decomposed using small separators. Examples of such graphs are planar graphs or graphs

of bounded treewidth. It is well-known that for many NP-complete problems, the nice structure of such

graphs can be leveraged to solve these problems faster than in general graphs. We show that a similar

phenomenon occurs when one considers the amount of randomness needed to isolate a single solution.

The model for isolation schemes. Suppose U is a �nite set and ω : U → N is a weight function.

For X ⊆ U we write ω(X) :=
∑

e∈X ω(e). For a set family F ⊆ 2U we say that ω isolates F if there

is exactly one set S ∈ F such that ω(S) is the minimum possible among the weights of the sets in F .

The classic Isolation Lemma of Mulmuley et al. [43] states that a weight function ω : U → {1, . . . , 2|U |}
chosen uniformly at random isolates any family F ⊆ 2U with probability at least

1
2 . Note that sampling

such ω requires O(|U | log |U |) random bits.

Most of our isolation schemes work in a very restricted model inspired by the discussion above, which

we explain now. Intuitively, the scheme is not aware of the graph or its decomposition, but is only aware

of the vertex count of the graph and the relevant width parameter, such as the treewidth or treedepth.

Formally, a vertex selection problem is a function P that maps every graphG to a family P(G) ⊆ 2V (G)

consisting of subsets of the vertex set ofG. Edge selection problems are de�ned analogously: P(G) consists

of subsets ofE(G). For example, we could de�ne a vertex selection problem MIS(·) that maps every graph

G to the family MIS(G) comprising all maximum-size independent sets inG, or an edge selection problem

HC(·) that maps every graphG to the family HC(G) comprising all (edge sets of) Hamiltonian cycles inG.

Further, let C be a class of graphs, that is, a set of graphs that is invariant under isomorphism. For instance,

C could be the class of planar graphs, or the class of graphs of treewidth at most k, for any �xed k. Then

our de�nition of an isolation scheme reads as follows (here, we write [n] := {1, . . . , n}):

De�nition 1.1. For a graph class C, we say that a vertex selection problem P admits an isolation scheme on

C if for every n ∈ N there exist weight functions ω1, . . . , ω` : [n]→ N such that for every G ∈ C with vertex

set [n], ωi isolates P(G) for at least half of the indices i ∈ [`].
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Isolation schemes for edge selection problems are de�ned analogously: the weight functionsω1, . . . , ω`
have domain [m] and should assign weights to all the edges in m-edge graphs in C, where the edges are

assumed to be enumerated with numbers in [m].
The two main parameters of interest for isolation schemes will be the number of random bits, which

is de�ned as log `, and the maximum weight, de�ned as the maximum value that any of the functions ωi
may take. Although De�nition 1.1 only assumes the existence of suitable weight functions, all the isolation

schemes proposed in this paper are extremely simple and can be use as an e�ective derandomization tool.

1.1 Our contribution

In the following discussion we restrict attention to Hamiltonian cycles and maximum-size independent

sets for concreteness, that is, to the edge- and vertex-selection problems HC(·) and MIS(·) described above.

However, our techniques have a wider applicability, which we comment on throughout the presentation.

On a very high level, the natural idea that permeates all our arguments is to reduce the randomness using

Divide&Conquer along small separators: If a separatorX splits the given graphG in a balanced way, then

the same random bits can be reused in each part of G−X .

Isolation schemes for Hamiltonian cycles. We �rst consider the problem of detecting a Hamiltonian

cycle, since it represents an important class of connectivity problems such as Steiner Tree or k-Path.

For these problems, the Isolation Lemma has been particularly useful in the design of parameterized algo-

rithms [39, 44, 7, 34, 35, 16, 58]. Our �rst results concerns general graphs.

Theorem 1.2. There is an isolation scheme for Hamiltonian cycles in undirected graphs that uses O(n)
random bits and assigns weights upper bounded by 2O(n)

.

Observe that in an n-vertex graph there can be as many as n! di�erent Hamiltonian cycles. Hence, the

application of the general-usage isolation scheme of Chari et al. [11] would give an isolation scheme for

Hamiltonian cycles in general graphs that usesO(log(n!)) = O(n log n) random bits. Note that as proved

in [11], isolating a family F over a universe of size n requires Ω(log |F| + log n) random bits in general,

hence the shaving of the log n factor reported in Theorem 1.2 required a problem-speci�c insight into the

family of Hamiltonian cycles in a graph. This insight is provided by the rank-based approach, a technique

introduced in the context of detecting Hamiltonian cycles in graphs of bounded treewidth [8]. The fact

that this works is unexpected because all known methods for derandomizing Hamiltonian cycle require at

least exponential space (see [8] for overview).

Let us note that isolation of Hamiltonian cycles was used by Björklund [7] in his O(1.657n)-time

algorithm for detecting a Hamiltonian cycle in an undirected graph. This algorithm is randomized due to

the usage of the Isolation Lemma, and derandomizing it, even within time complexityO((2− ε)n) for any

ε > 0, is a major open problem. While the constant hidden in theO(·) notation used in Theorem 1.2 is too

large to allow exploring the whole space of random bits within time O((2 − ε)n), in principle we show

that the amount of randomness needed is of the same magnitude as would be required for an e�cient

derandomization of the algorithm of Björklund.

Next, we show that in the setting of graphs of bounded treewidth the amount of randomness can be

reduced dramatically, to a polylogarithm in n.

Theorem 1.3. For every t ∈ N, there is an isolation scheme for Hamiltonian cycles in graphs of treewidth at

most t that uses O(t log n+ log2(n)) random bits and assigns weights upper bounded by 2O(t logn+log2 n)
.

The proof of Theorem 1.3 fully exploits the idea of using small separators to save on randomness. It

also uses the rank-based approach to shave o� a log t factor in the number of random bits.

Finally, we use the separator properties of H-minor free graphs to prove the following.

2



Theorem 1.4. For every �xedH , there is an isolation scheme for Hamiltonian cycles inH-minor-free graphs

that uses O(
√
n) random bits and assigns weights upper bounded by 2O(

√
n)
.

Recently, in [44] the authors presented a randomized algorithm for detecting a Hamiltonian cycle in

a graph of treedepth at most d that works in time 2O(d) · (W + n)O(1)
time and uses polynomial space;

here, W is the maximum weight assigned by isolation scheme
1
. The only source of randomness in the

algorithm of [44] is the Isolation Lemma. Since H-minor free graphs have treedepth O(
√
n), we can use

the isolation scheme of Theorem 1.4 to derandomize this algorithm, thus obtaining the following result.

Theorem 1.5. For every �xed H , there is a deterministic algorithm for detecting a Hamiltonian cycle in an

H-minor-free graph that runs in time 2O(
√
n)

and uses polynomial space.

To the best of our knowledge, this is the �rst application of a randomness-e�cient isolation scheme for

a full derandomization of an exponential-time algorithm without a signi�cant loss on complexity guaran-

tees. Further, we are not aware of any previous algorithms that would simultaneously achieve determinism,

running time 2O(
√
n)

, and polynomial space complexity, even in the setting of planar graphs
2
. Finally, let

us note that the algorithm of Theorem 1.5 does not rely on any topological properties of H-minor-free

graphs: the existence of balanced separators of size O(
√
n) is the only property we use.

MSO-de�nable problems on graphs of bounded treewidth. We observe that the approach used in

the proof of Theorem 1.3 relies only on �nite-state properties of the Hamiltonian Cycle problem on

graphs of bounded treewidth. The range of problems enjoying such properties is much wider and encom-

passes all problems de�nable in CMSO2: the Monadic Second-Order logic with modular counting predi-

cates. Consequently, we can lift the proof of Theorem 1.3 to a generic reasoning that yields an analogous

result for every CMSO2-de�nable problem. This proves the following (see Section 6 for de�nitions).

Theorem 1.6. Let P be a CMSO2-de�nable edge selection problem. There exists a computable function

f such that for every k ∈ N, P admits an isolation scheme on graphs of treewidth at most k that uses

R := f(k) · log n+O(log2 n) random bits and assigns weights upper bounded by 2R.

Lower bounds. We show that a signi�cant improvement of the parameters in the isolation schemes

presented above is unlikely. First, a counting argument shows that the log n factor is necessary.

Theorem 1.7. There does not exist an isolation scheme for Hamiltonian cycles on graphs of treewidth at

most 4 that uses o(log n) random bits and polynomially bounded weights.

Using similar constructions we also provide analogous Ω(log n) lower bounds for isolating other fam-

ilies of combinatorial objects related to NP-hard problems, such as maximum independent sets, minimum

Steiner trees, and minimum maximal matchings. These lower bounds hold even in graphs of bounded

treedepth, which is a more restrictive setting than bounded treewidth.

We also show using existing reductions that a signi�cant improvement over the scheme of Theorem 1.2

would imply a surprising partial derandomization of isolation schemes for SAT.

Theorem 1.8. Suppose there is an isolation scheme for Hamiltonian cycles in undirected graphs that uses

o(n) random bits and polynomially bounded weights. Then there is a randomized polynomial-time reduction

from SAT to Uniqe SAT that uses o(n) random bits, where n is the number of variables.

1

They did not consider the weighted case, but the statement is implied by a standard extension, see Section 5 for details.

2

Deterministic 2O(
√
n)

-time algorithms were previously known, but all of these use exponential space [8, 26].
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Observe that since an n-vertex graph has treewidth at most n − 1, Theorem 1.8 also implies that in

Theorem 1.3 one cannot expect reducing the number of random bits to o(t). However, we stress that

the lower bounds of Theorems 1.7 and 1.8 are not completely tight with respect to the upper bounds of

Theorems 1.2 and 1.3, because the latter allow superpolynomial weights. It remains open whether the

weights used by the schemes of Theorems 1.2, 1.3, and 1.4 can be reduced to polynomial.

In Section 7 we further discuss consequences of the hypothetical existence of a polynomial-time re-

duction from SAT to Uniqe SAT that would use o(n) random bits.

Level-aware isolation schemes for independent sets. In the light of the Ω(log n) lower bound of

Theorem 1.7, we consider a relaxation of the model from De�nition 1.1, where the graph is provided

together with an elimination forest (a decomposition notion suited for the graph parameter treedepth), and

the weight of a vertex may depend both on the vertex’ identi�er and its level in the elimination forest. We

demonstrate that in this relaxed model, the Ω(log n) lower bound can be circumvented.

De�nition 1.9. We say that vertex selection problem P admits a level-aware isolation scheme if for all

n, d ∈ N there exist functions ω1, . . . , ω` : [n] × [d] → N such that for every graph G on vertex set [n] and
elimination forest F of G of height at most d, at least half of the functions ω1, . . . , ω` isolate P(G). Here,
when evaluating ωi on a vertex u ∈ [n], we apply ωi to u and the index of the level of u in F .

Theorem 1.10. For every d ∈ N, there is a level-aware isolation scheme for maximum-size independent sets

in graphs of treedepth at most d that uses O(d) random bits and assigns weights bounded by O(n6).

In the proof of Theorem 1.10 we describe an abstract condition, dubbed the exchange property, which is

su�cient for the argument to go through. This property is enjoyed also by other families of combinatorial

objects de�ned through constraints of local nature, such as minimum dominating sets or minimum vertex

covers. Therefore, we can prove analogous isolation results for those families as well.

Also, in Section 9 we discuss a similar reasoning for edge-selection problems on the example of max-

imum matchings, achieving a level-aware isolation scheme that uses O(d log n) random bits and assigns

weights bounded by nO(logn)
. This provides another natural class of graphs where isolation-based algo-

rithms for �nding a maximum matching can be derandomized (see [2, 9, 18, 31]).

We summarize our results with Table 1.

Table 1: Summary of our results based on Theorems 1.2-1.10.

Problem Random Bits Max Weight Graph Class

Hamiltonian Cycle O(n) 2O(n)

General Graphs

Ω(n) poly(n)

O(
√
n) 2O(

√
n)

H-minor free graphs

Ω(
√
n) poly(n)

O(t log(n) + log2(n)) nO(t+log(n))

Treewidth t graphs

Ω(t+ log(n)) poly(n)

CMSO2 f(t) log(n) +O(log2(n)) nf(t)+O(log(n))
Treewidth t graphs

Max Independent Set O(d) poly(n)
Treedepth d graphs

Ω(d) poly(n)
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Figure 1: Top �gure presents an example graph with bounded pathwidth. Figure below presents a de�nition

of a path decomposition of width k, with bags Sa, Sb and interval Ia,b.

1.2 Organization

In Section 2 we introduce the main techniques behind our isolation schemes in an informal way. In Sec-

tion 3 we provide preliminaries. Section 4 is dedicated to the formal proofs of Theorems 1.2, 1.3 and 1.4. The

derandomized algorithm from Theorem 1.5 is subsequently proved in Section 5, and the general CMSO2-

result of Theorem 1.6 is formally supported in Section 6. The lower bounds from Theorem 1.7 and The-

orem 1.8 are proved in 7. Finally, the level-aware isolation schemes for local vertex (respectively, edge)

selection problems are given in Sections 8 (respectively, Section 9), and we �nish the paper with possible

directions for further research in Section 10.

2 An informal introduction to our techniques

In this section we present an isolation scheme for Hamiltonian cycle on graphs of bounded pathwidth at

most k that usesO(k log k log n+log2 n) random bits. The arguments in this section are informal in order

to convey the underlying intuition, and merely serve as a preliminary overview of the general framework

that we formalize and further develop in the subsequent sections.

Throughout the paper we heavily build upon the approach proposed by Kallampally et al. [36], who

showed an isolation scheme for shortest paths that uses O(log2(n)) random bits assigns weights upper

bounded by nO(logn)
(see e.g., [32] for a more recent application). In fact, our isolation schemes are almost

identical to Kallampally et al. [36] except for a di�erent selection of prime numbers. Our contribution

comes with the new insight for NP-complete problems. To achieve this we use a modern toolset from

parameterized algorithms.

Let G = (V,E) be the given graph. Informally, the pathwidth of G is parameter that measures how

wellG can be represented as a thickened path, which formalized through the notion of a path decomposition

of width k. The reader is invited to think about a path decomposition of G of width k as a sequence of

bags S1, . . . , Sq ⊆ V , each of size at most k, that traverse the whole graph, i.e., S1 ∪ . . . ∪ Sq = V and

subsequent bags di�er by exactly one vertex |Si4Si+1| 6 1 (see Figure 1 for an example of a graph with

bounded pathwidth and a schematic view of path decomposition). We may assume that q 6 n. Each bag

is a separator in the sense that vertices present only in the bags to the left of it are pairwise non-adjacent

to the vertices present only in the bags to the right of it. In this section we focus on pathwidth in order to

avoid several technical di�culties that arise when dealing with treewidth.

We �rst describe our isolation scheme for Hamiltonian cycles. The crucial ingredient in our methods

is a well-known hashing scheme due to Fredman, Komlós and Szemerédi [27] (the FKS hashing lemma, see

Section 3 for a proof): For any set A of n-bits integers with |A| = nO(1)
, for most of the primes p of order

|A|O(1)
it holds that x 6≡ y mod p for all distinct x, y ∈ A. An important property that is guaranteed by

this lemma is that after hashing modulo a prime p, every element of the set A is given a di�erent value.

5



Isolation scheme. Assume without loss of generality that log n is an integer. Our isolation scheme for

n-vertex graphs of pathwidth k reads as follows. Let id : E(G) → {1, . . . , |E(G)|} be any bijection that

assigns to each edge e ∈ E(G) its unique identi�er id(e). First we select the range M := kO(k) ·nO(1)
and

log n random prime numbers p1, . . . , plogn ∈ {1, . . . ,M}. Note that we need O(k log k log n + log2 n)
random bits to sample these prime numbers.

Next, we inductively de�ne weights functions ω1, . . . , ωlogn on E(G) as follows:

• Set ω1(e) := 2id(e) mod p1 for all e ∈ E(G).

• For each e ∈ E(G) and i = 1, . . . , log n, set

ωi(e) := Mn · ωi−1(e) +
(

2id(e) mod pi

)
.

Let ω := ωlogn and observe that ω assigns weights bounded by 2O(k log k+log2 n)
. Note that the path

decomposition (S1, . . . , Sq) of G is not used at all in the isolation scheme. We will use it only in the

analysis, that is, the proof that the sampled weight function ω isolates the family of Hamiltonian cycles in

G with probability at least
1
2 .

Analysis. We �rst introduce the notion of an interval in a path decomposition. This is just a graph

induced by all the bags present between two given ones. More precisely, for 1 6 a 6 b 6 q, we de�ne

Ia,b :=
⋃

i∈[a,b]

Si ⊆ V

to be the interval between bags Sa and Sb (see Figure 1). The length of this interval is |b − a| For an

interval Ia,b we say that Pa,b ⊆ E(Ia,b) is a partial solution if it is a collection of vertex-disjoint paths

with endpoints in Sa ∪ Sb that together visit all vertices of Ia,b. Note that if we want to extend Pa,b to a

Hamiltonian cycle with another edge set P ′, in order to check the feasibility of this extension we only need

to know the pattern of connections induced by Pa,b on Sa and on Sb. More precisely, we only need to know

the con�guration of Pa,b on its boundary: such a con�guration is represented by a matchingM on Sa∪Sb,
which indicates which vertices of Sa ∪ Sb are corresponding endpoints of a path in Pa,b, and information

on how many edges of Pa,b are incident on every vertex of Sa ∪Sb. Then Pa,b ∪P ′ is a Hamiltonian cycle

if and only if P ′ ∪M is a Hamiltonian cycle on the vertices of G− (Ia+1,b−1 ∪ V2), where V2 are vertices

of Sa ∪ Sb incident on two edges of Pa,b.
For an example of a realization of a con�guration on Ia,b, see Figure 2.

Since a con�guration is composed of an information about a matching and a partition of vertices in

Sa ∪ Sb, the number of possible con�gurations within each interval Ia,b is at most 2O(k log k)
.

To prove that the weight functionω isolates the family of Hamiltonian cycles inGwith high probability,

we prove the following claim by induction on `.

Induction hypothesis. For every ` ∈ {1, . . . , log n}, the following event happens with a su�ciently

high probability: for every interval Ia,b of length at most 2` and a con�guration σ on Ia,b, the weight

function ω` isolates the family of all partial solutions in Ia,b whose con�guration is σ.

This induction hypothesis for ` = log n immediately shows that ω = ωlogn isolates all Hamiltonian

cycles with a su�ciently high probability.

To prove the base case (` = 1), we look at intervals of length at most 2, that is, we look at the subgraphs

G[Si] and G[Si ∪ Si+1], for i ∈ {1, . . . , q}. Each of these subgraphs has at most 2k vertices, hence also at

most kO(k)
di�erent partial solutions. Also, there are at most 2n such subgraphs in total. Hence, the total

number of di�erent partial solution in intervals of length 2 is at mostn·kO(k)
. We �nd from the FKS hashing

6



Figure 2: The top �gure represents a realization of con�guration σa,b in the interval Ia,b (green stroked) and

a complementary con�guration for the rest of the graph (dashed lines). The �gure below gives intuition

for the induction argument. For a �xed σa,b we know that ω`−1 isolates all realizations in Ia,c and Ic,b and

there are at most 2O(k log k)
possible con�gurations σa,c, σb,c that combined give σa,b.

lemma (see Lemma 3.1) that if we choose the prime p1 uniformly at random from the interval {1, . . . ,M},
with a high probability all those partial solutions will be assigned pairwise di�erent weights by the weight

function ω1. Indeed, takeψ(e) = 2id(e)
andW = {ψ(X) : X a partial solution in interval of length at most

2}. Note that all the ψ(X) in W for di�erent X are unique. Then FKS says that ψ(X) 6≡ ψ(X ′) mod p1

for any two such solutions X and X ′ with a high probability. This implies that with a high probability,

ω1(X) 6= ω1(X ′). The base case follows.

Now assume the induction hypothesis to be true for all i < `. Fix an interval Ia,b for some 1 6 a 6
b 6 n of length 6 2`. Observe that if Ia,b has length at most 2`−1

, then it is already appropriately taken

care of by function ω`−1, and hence also by ω`.
Therefore, we can assume that the length of Ia,b belongs to [2`−1 + 1, 2`]. Fix some con�guration σa,b

on Sa ∪ Sb, the boundary of Ia,b. Observe that there exists c ∈ (a, b), such that Ia,c ∪ Ic,b = Ia,b and both

Ia,c and Ic,b have length at most 2`−1
. Further, there are at most 2O(k log k)

di�erent pairs of con�gurations

σa,c and σc,b that, when naturally combined, give a con�guration σa,b. See Figure 2 for a visualization.

The crucial observation is that by the induction hypothesis, for every pair of con�gurations σa,c, σc,b
as above, the weight function ω`−1 already isolates the family of partial solutions in Ia,c with con�guration

σa,c, as well as the family of partial solutions in Ic,b with con�guration σc,b. Therefore, for a �xed interval

Ia,b there can be at most 2O(k log k)
di�erent partial solution with con�guration σa,b that have minimum

weight w.r.t. ω`−1. This is because they must be composed from partial solutions in Ia,c and Ic,b that have

minimum weights for their con�gurations. Moreover, there are at mostO(n2) di�erent intervals of length

in [2`−1 + 1, 2`]. This means that in total, there can be at most 2O(k log k) · n2
di�erent partial solutions

in intervals Ia,b of length at most 2` that are minimum-weight realizations (w.r.t. ω`−1) of their respective

con�gurations. Now moving from ω`−1 to ω`, we can argue using the FKS Lemma that all of these partial

solutions will receive pairwise di�erent values in ω`, with high probability.

This concludes the intuitive sketch of the proof of the induction hypothesis. For a formal argument,

see Section 4.

Extensions of the method. All our isolation schemes for Hamiltonian cycle follow the same blueprint

sketched above. The main di�erence, however, is that we select our primes to be of the order 2O(k) ·nO(1)
.

To argue that this is su�cient, we employ the rank-based approach to argue that the set of partial solutions

that are “representative enough” is much smaller than 2O(k log k)
: it is actually of size 2O(k)

. In the above

sketch, this reduces the number of random bits from O(k log k log n+ log2 n) to O(k log n+ log2 n).
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To complete the proof of Theorem 1.3 it remains to lift the reasoning from graphs of bounded path-

width to graphs of bounded treewidth. We do this by carefully generalizing the notion of an interval in

a path decomposition to a notion of a segment in a tree decomposition. In particular, a segment of a tree

decomposition can be always partitioned into at most �ve segments of twice smaller sizes, similarly we

partitioned an interval into two intervals of at most half the length.

If we directly applied our analysis to the problem of isolating Hamiltonian cycles in H-minor-free

graphs, then even with the rank-based approach employed we would only obtain an isolation scheme that

uses O(
√
n log n) random bits. To shave o� the additional O(log n) factor, we use certain properties of

the decompositions of H-minor-free graphs that guarantee that size of separator decreases geometrically.

In a nutshell, these properties will allow us to selectO(log n) primes, but each prime will be selected using

a number of random bits that follows a geometric progression (see Section 4.5 for details).

In Section 6 we generalize the ideas to prove a meta-statement about all problems de�nable in Monadic

Second-Order logic, CMSO2. The idea is that in the sketch above, we almost did not use any particular

combinatorial properties of Hamiltonian cycles. The only property we relied on is that the behavior of a

partial solution within an interval can be subsumed in a con�guration on the interval’s boundary, and the

number of con�gurations is bounded by a function of k only. Such a “�nite-state” property is enjoyed by

all problems de�nable in CMSO2, which allows us to perform the whole reasoning on the meta-level.

Methods presented in Section 8 for isolating local problems follow a completely di�erent framework

that uses additional information about a graph. The analysis in this section is arguably simpler. There,

we use a technical contribution of Chari et al. [11] and extend it with new observations regarding pivotal

vertices in treedepth bounded graphs.

3 Preliminaries

Notation. For an integer k, we write [k] := {1, . . . , k}. We use standard graph notation: V (G) andE(G)
respectively denote the vertex set and the edge set of a graph G, for X ⊆ V (G) the closed neighborhood

NG[X] is X plus all the neighbors of vertices of X , and the open neighborhood is NG(X) := NG[X] \X .

Hashing modulo primes. The following standard hashing lemma that dates back to the work of Fred-

man, Komlós, and Szemerédi [27], will be the main source of randomness in our isolation schemes.

Lemma3.1 (FKS hashing lemma [27]). LetS ⊆ {0, 1, . . . , 2n} be a set of k integers, wheren, k > 1. Suppose
that p is a prime number chosen uniformly at random among prime numbers in the range {1, . . . ,M}, where
M > 2. Then

P [x 6≡ y mod p for all x, y ∈ S, x 6= y] > 1− nk2

√
M
.

Proof. Let

R :=
∏

x,y∈S,x6=y
|x− y|.

Note that R 6 2n·(
k
2). This implies that R may have at most n ·

(
k
2

)
di�erent prime divisors. On the other

hand, from the prime number theorem it follows that π(M) ∈ Ω( M
logM ), where π(M) denotes the number

of primes in the range {1, . . . ,M}. In fact, using a more precise estimate of Rosser [50], for M > 17 we

have π(M) > M
lnM . For 2 6 M 6 17 a direct check shows that π(M) >

√
M/2. Since

M
lnM >

√
M/2

for all M > 2, we conclude that the probability that a random prime in the range {1, . . .M} is not among

the at most n ·
(
k
2

)
prime divisors of R is at least

1−
n ·
(
k
2

)
√
M/2

> 1− nk2

√
M
.

8



Graph decompositions. A rooted forest is directed acyclic graph F where every node x has at most one

outneighbor, called the parent of x. A root is a node with no parent. If a node y is reachable from x by a

directed path, then we write y �F x and say that y is an ancestor of x and x is a descendant of y. Note that

every vertex is considered its own ancestor and descendant. For x ∈ V (F ), we write

tailF [x] := {y : y �F x}, subtreeF [x] := {z : z �F x},
tailF (x) := tailF [x] \ {x}, subtreeF (x) := subtreeF [x] \ {x}.

The level of a node x in F , denoted lvlF (x), is the number of its strict ancestors, that is, |tailF (x)|. Note

that roots have level 0. The height of a forest F is the maximum level among its nodes, plus 1. If the forest

F is clear from the context, then we may omit it in the above notation.

An elimination forest of a graphG is a rooted forest F with V (F ) = V (G) such that for every edge uv
ofG, either u is an ancestor of v in F or vice versa. The treedepth of a graphG is the least possible height of

an elimination forest of G. Treedepth as a graph parameter plays a central role in the structural theory of

sparse graphs, see [45, Chapters 6 and 7]. It also has several applications in parameterized complexity and

algorithm design [12, 22, 28, 44, 46, 47], as well as exhibits interesting combinatorial properties [12, 17, 21]

and connections to descriptive complexity theory [23]. We refer to the introductory sections of the above

works for a wider discussion.

A tree decomposition of a graph G is a pair T = (T, β), where T is an (unrooted) tree and β : V (T )→
2V (G)

is a function that assigns to each node x ∈ V (T ) its bag β(x) ⊆ V (G) so that the following two

conditions are satis�ed:

• for each u ∈ V (G), the set {x : u ∈ β(x)} induces a nonempty and connected subtree of T ; and

• for each uv ∈ E(G), there exists x ∈ V (T ) such that {u, v} ⊆ β(x).

The width of T is maxx∈V (T ) |β(x)| − 1 and the treewidth of G is the minimum possible width of a tree

decomposition of G. It is easy to see that the treedepth of a graph is at most its treewidth plus one.

Conversely, the treewidth is upper bounded by the treedepth times the logarithm of the vertex count [45].

For surgery on tree decompositions we will use the following de�nition and standard lemma.

De�nition 3.2 (Segment of a tree). For an unrooted tree T , a segment of T is a nonempty and connected

subtree I of T such that there are at most two vertices of I that have a neighbor outside of I . The set of those
at most two vertices is the boundary of I , and is denoted by ∂I . The size of I is equal to |E(I)|.

Lemma 3.3. Let T be an unrooted tree and let I be a segment of T of size ` > 2. Then there are at most 5
segments I1, . . . , It of T (t 6 5), each of size at most `/2, such that segments I1, . . . , It have pairwise disjoint
edge sets and E(I1) ∪ . . . ∪ E(It) = E(I).

Proof. For each edge xy ∈ E(I), let Iy,x and Ix,y be the connected components of I − xy that contain x

and y, respectively. Let
~I be the orientation of I where each edge xy is oriented towards x if |E(Iy,x)| >

|E(Ix,y)| and towards y if |E(Iy,x)| < |E(Ix,y)|; in case |E(Iy,x)| = |E(Ix,y)|, the edge xy is oriented in

any way. Since I has ` edges and `+ 1 nodes, there is a node z of I that has outdegree 0 in
~I . This means

that for every neighbor x of z, we have |E(Iz,x)| 6 |E(Ix,z)|, implying |E(Iz,x)| < `/2. Denote Ix := Iz,x
and let Îx be Ix with the edge xz added.

We �rst argue that I can be edge-partitioned into at most 3 subtrees (not necessarily segments), each

with at most `/2 edges. Consider �rst the corner case when there exists a neighbor x of z such that Îx has

more than `/2 edges. Then both Ix = Iz,x and Ix,z have exactly
`−1

2 edges each, so we can partition I into

Iz,x, Ix,z , and a separate subtree consisting only of the edge xz. This case being resolved, we can assume

that each tree Îx has at most `/2 edges. Starting with the set of trees T := {Îx : x is a neighbor of z},
iteratively apply the following procedure: take two trees from T with the smallest edge counts, and replace

them with their union, provided this union has at most `/2 edges. The procedure stops when this assertion
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fails to be satis�ed. Observe that the procedure can be carried out as long as |T | > 4, for then the two

trees from T that have the smallest edge counts together include at most half of the edges of I . Therefore,

at the end we obtain the desired edge-partition of I into at most three subtrees.

All in all, in both cases we edge-partitioned I into at most three subtrees, each having at most `/2
edges. Since |∂I| 6 2, it is easy to see that all of those subtrees are already segments (i.e. have boundaries

of size at most 2) apart from at most one, say J , which may have a boundary of size 3. Supposing that J
exists, let ∂J = {a, b, c}. Then there exists a node d of J such that every connected component of J − d
contains at most one of the vertices a, b, c. It is now straightforward to edge-partition J into three trees so

that the boundary of each of them consists of d and one of the vertices a, b, c. Thus, replacing J with those

three segments yields an edge-partition of I into at most 5 segments, each with at most `/2 edges.

4 Isolating Hamiltonian cycles

In this section we prove Theorems 1.3, 1.2, and 1.4. We begin by de�ning con�gurations for Hamiltonian

cycles, which re�ect the states of a natural dynamic programming algorithm for detection of a Hamilto-

nian cycle in a bounded-treewidth graph. Then we use the rank-based approach to bound the number

of minimum weight compliant edge sets (see Theorem 4.6). This technical result captures the essence of

the rank-based approach and will be used in all subsections that follow. Next, we prove Theorem 1.2 in

Section 4.3. Then Theorem 1.3 is proved in Section 4.4. Finally, in Section 4.5 we �rst recall basic de�ni-

tions and facts about separable graph classes, then we give a decomposition theorem (Theorem 4.16) for

such classes that produces a low-depth elimination forest with several important technical properties, and

�nally we use this decomposition theorem to prove Theorem 1.4.

4.1 Con�gurations for Hamiltonian cycles

Let us �x a graphG. An edge set S ⊆ E(G) is called a partial solution if every vertex of G is incident to at

most two edges of S and S has no cycles. The following notion of a con�guration describes the behavior

of a partial solution with respect to a set of vertices.

De�nition 4.1 (Con�gurations). For X ⊆ V (G), we de�ne the set of con�gurations on X as:

conf(X) := { (V0, V1, V2,M) : (V0, V1, V2) is a partition of X andM is a perfect matching on V1 }.

Given a subgraph H of G, one can view the con�gurations on X ⊆ V (H) as all possible di�erent

ways that a partial solution may behave on X . A vertex is then in the set Vi if it is incident to exactly i
edges of the partial solution. The matching M on V1 describes the endpoints of each path in the partial

solution. This intuition is formalized in the following de�nition.

De�nition 4.2. LetX ⊆ V (G) be a set of vertices ofG and let S ⊆ E(G) be a partial solution. Then de�ne
the con�guration of S on X as cX(S) := (V0, V1, V2,M) ∈ conf(X), where

• V0 := {v ∈ X : v is not incident to any edge of S},
• V1 := {v ∈ X : v is incident to exactly one edge of S},
• V2 := {v ∈ X : v is incident to exactly two edges of S},
• M := {{u, v} ∈

(
V1
2

)
: there is a path with edges from S connecting u and v},

We omit X in the notation and write c(S) when X is clear from context.

Note that in the above de�nition M is indeed a matching, because each v ∈ V1 is connected to exactly

one u ∈ V1 through S, as any partial solution covers each vertex at most twice. For an example of deriving

cX(S) from a partial solution S, see Figure 3.
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X X

M

V0

V1

V2

S

cX(S)

Figure 3: Example partial solutionS and its con-

�guration cX(S) = (V0, V1, V2,M) on a set X .

X V (H)

M

V0

V1

V2

S

Figure 4: Example compliant partial

solution S for a con�guration c =
(V0, V1, V2,M) ∈ conf(X).

We can use con�gurations to tell whether two partial solutions together form a Hamiltonian cycle. Let

H be a subgraph of G and let X ⊆ V (H). Assume that there exists a partial solution S that visits only

vertices from (V (G) \ V (H)) ∪ X , where every vertex of V (G) \ V (H) is visited exactly twice. Then

we only need to know cX(S) to determine which partial solutions S′ ⊆ E(H) would combine with S to

a Hamiltonian cycle in G. We say that any such partial solution is compliant with cX(S), as expressed

formally in the next de�nition.

De�nition 4.3 (Compliant partial solution). LetH be a subgraph ofG and letX ⊆ V (H). A con�guration

c = (V0, V1, V2,M) ∈ conf(X) and a partial solution S ⊆ E(H) are compliant if S ∩M = ∅ and S ∪M
forms a Hamiltonian cycle on V (H) \ V2.

See Figure 4 for an example of a compliant partial solution.

In the sequel we will be trying to argue that some weight function ω is isolating the family of Hamil-

tonian cycles in the given graph G with high probability. In all cases this will be done by induction on

larger and larger subgraphs of G, where at each point we argue that a suitable family of partial solutions

is isolated with high probability. The following de�nition facilitates this discussion.

De�nition 4.4 (Minimum weight compliant partial solution). LetH be a subgraph of G, X ⊆ V (H), c ∈
conf(X), and let ω : E(G)→ N be a weight function on the edges ofG. Then we de�ne the setMin(ω,H, c)
of minimum weight partial solutions compliant with c as the set of those partial solutions S ⊆ E(H) that

• are compliant with c, and
• subject to the above, have the smallest possible weight ω(S).

4.2 Rank-based approach

We will use the rank-based approach, introduced by Cygan et al. in [15], as a tool in our analysis of isolation

schemes. Let X be a set of vertices. Then de�ne the compatibility matrix HX as the matrix with entries

indexed byHX [M1,M2] for M1,M2 perfect matchings on X , where

HX [M1,M2] =

{
1 if M1 ∪M2 is a simple cycle,

0 otherwise.

Note that HX [M1,M2] has 2O(|X| log |X|)
rows and columns. The crux of the rank-based approach is that

in spite of that, this matrix has a small rank over the two-element �eld F2.

11



Theorem 4.5 (Rank-based approach,[15]). For any set X , the rank ofHX over F2 is equal to 2|X|/2−1
.

We use Theorem 4.5 to prove that the total number of minimum weight compliant solutions is always

relatively small, no matter what the weight function is. The following statement will be reused several

times in the sequel. Note that a trivial cardinality argument would yield an upper bound of the form

2O(|X| log |X|)
; the point of the rank-based approach is to reduce this to 2O(|X|)

.

Theorem 4.6. Let G be a graph, X ⊆ V (G), and ω : V (G) → N be a weight function such that for all

c ∈ conf(X), we have |Min(ω,G, c)| 6 1. Then∣∣∣∣∣∣
⋃

c∈conf(X)

Min(ω,G, c)

∣∣∣∣∣∣ 6 2O(|X|).

Proof. Let K :=
⋃
c∈conf(X) Min(ω,G, c) and let C := {c(S) : S ∈ K}.

We �rst verify that |C| = |K|. By construction, we have |C| 6 |K|. Assume for contradiction

that |C| < |K|. Then there are two di�erent partial solutions S1, S2 ∈ K such that c(S1) = c(S2).

By construction and the assumptions, there are two di�erent con�gurations d1, d2 ∈ conf(X) such that

Min(ω,G, d1) = {S1} and Min(ω,G, d2) = {S2}. However, since c(S1) = c(S2), it follows that for any

con�guration d ∈ conf(X), S1 is compliant with d if and only if S2 is compliant with d. In particular, S1 is

compliant with d2 and S2 is compliant with d1. This implies that ω(S1) = ω(S2) and S2 ∈ Min(ω,G, d1)
and S1 ∈ Min(ω,G, d2), a contradiction. Hence |C| = |K|.

De�ne a matrix Ĥ with both coordinates indexed by conf(X) such that for c, c′ ∈ conf(X), where

c = (V0, V1, V2,M) and c′ = (V ′0 , V
′

1 , V
′

2 ,M
′):

Ĥ[c, c′] =

{
1 if V0 = V ′2 , V2 = V ′0 , and M ∪M ′ is a simple cycle,

0 otherwise.

Notice that if we sort the indices of Ĥ by the partitions (V0, V1, V2), then Ĥ can be seen as a block diagonal

matrix with one block for each partition, and this block is a compatibility matrix on V1. That is,

Ĥ =
⊕

V0]V1]V2=X

HV1 ,

where

⊕
denotes the operator of combining several matrices into a single block diagonal matrix. By

Theorem 4.5, the rank over F2 of each of these blocks is bounded by 2|X|/2−1
, hence the rank over F2 of

Ĥ is bounded by 2|X|/2−1 · 3|X| 6 2O(|X|)
.

Next, we claim that the set of rows of Ĥ corresponding to the con�gurations of C is linearly indepen-

dent over F2. Assume not, hence there is a nonempty set of con�gurations D ⊆ C such that∑
d∈D
Ĥ[d, ·] = 0,

where 0 is the all-zero vector (all computations are performed in F2). For each d ∈ D there is some

Sd ∈ K such that d = c(Sd). Let dmax be a con�guration of D for which ω(Sdmax) is the largest possible.

Since dmax ∈ C , we have that Min(ω,G, c) = {Sdmax} for some c ∈ conf(X) and hence Ĥ[dmax, c] = 1.

However, as

∑
d∈D Ĥ[d, ·] = 0, there must be another d′ ∈ D, d′ 6= dmax, such that also Ĥ[d′, c] = 1. This

means that d′ is compliant with c, which implies that ω(Sd′) > ω(Sdmax) by Min(ω,G, c) = {Sdmax}. This

contradicts the maximality of ω(Sdmax).

We conclude that the set of rows of Ĥ corresponding to C are indeed linearly independent over F2.

Therefore, |K| = |C| is upper bounded by the rank of Ĥ over F2, which is at most 2O(|X|)
.
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4.3 Hamiltonian cycles in general graphs using O(n) random bits

We now use the tools prepared so far to prove Theorem 1.2. The goal is to isolate all Hamiltonian cycles in

an undirected graph G = (V,E) using O(n) random bits, where n is the vertex count. First we give the

isolation procedure. Then we analyze the probability of isolating all Hamiltonian cycles using con�gura-

tions, compliant partial solutions, and the rank-based approach (through Theorem 4.6). Throughout the

subsection we assume without loss of generality that log n is an integer.

As usual with isolation schemes, we assume that the vertex set of the considered graph G is V = [n].
We will apply induction on speci�c subgraphs of G called intervals.

De�nition 4.7 (Interval of G). For integers 1 6 s 6 t 6 n and 1 6 s′ 6 t′ 6 n, the interval G〈s, t, s′, t′〉
is the graph (V ′, E′), where

V ′ := {s, . . . , t} ∪ {s′, . . . , t′} and E′ := {uv : u ∈ {s, . . . , t}, v ∈ {s′, . . . , t′}, uv ∈ E}.

By V 〈s, t, s′, t′〉 we denote the vertex set V ′ of the interval G〈s, t, s′, t′〉.

Note thatG〈s, t, s, t〉 is just the subgraph ofG induced by {s, . . . , t}. On the other hand, if {s, . . . , t}∩
{s′, . . . , t′} = ∅, then G〈s, t, s′, t′〉 is a bipartite graph, with {s, . . . , t} and {s′, . . . , t′} being the sides of

the bipartition.

Isolation scheme. We �rst present the isolation scheme. Let id : E(G) → {1, . . . , |E(G)|} be any

bijection that assigns to each edge e ∈ E(G) its unique identi�er id(e). Let C be some large enough

constant, to be chosen later. Then independently at random sample 1 + log n primes p0, p1, . . . , plogn so

that pi is sampled uniformly among primes in the range {1, . . . ,Mi}, where Mi := 2C(logn+2i)
. Note that

choosing each pi requires C(log n+ 2i) random bits, hence we have used O(n) random bits in total.

Next, we inductively de�ne weights functions ω0, . . . , ωlogn on E(G) as follows:

• Set ω0(e) := 2id(e) mod p0 for all e ∈ E(G).

• For each e ∈ E(G) and i = 1, . . . , log n, set

ωi(e) := Mi−1n · ωi−1(e) +
(

2id(e) mod pi

)
.

Let ω := ωlogn and observe that ω assigns weights bounded by 2O(n)
, as required.

Analysis. We will prove the following statement for all 0 6 i 6 log n using induction on i.

Induction hypothesis. With probability at least

(
1− 1

n2

)i+1
, for all intervalsG〈s, t, s′, t′〉 s.t. t−s 6 2i

and t′ − s′ 6 2i and for each con�guration c ∈ conf(V 〈s, t, s′, t′〉), there is at most one minimum weight

(w.r.t. ωi) compliant partial solution, i.e. |Min(ωi, G〈s, t, s′, t′〉, c)| 6 1.

For i = log n, the induction hypothesis gives us that for the complete interval G = G〈1, 1, n, n〉 and

for the con�guration c = (∅, ∅, V (G), ∅), there is at most one minimum weight compliant partial solution

w.r.t. ω. In other words, w.r.t. ω there is at most one minimum weight Hamiltonian cycle in G. This

happens with probability at least

(
1− 1

n2

)logn+1
> 1− 1

n . So it remains to perform the induction.

13



Base step. For i = 0, we have t − s 6 1 and t′ − s′ 6 1. Hence each such interval G〈s, t, s′, t′〉 has at

most 4 edges. Let

Y :=
⋃

t−s61
t′−s′61

2E(G〈s,t,s′,t′〉)

and for each S ∈ Y , let

xS :=
∑
e∈S

2id(e).

Observe that since the identi�ers assigned to the edges are unique, the numbers xS are also pairwise

di�erent. Also, note that |Y | 6 16n2
as there are at most n2

intervals considered, and for each of them

there are at most 16 possible subsets of the at most four edges. Recall that M0 = 2C(logn+1)
and p0 is

drawn uniformly at random among the primes in the range {1, . . . ,M0}. Therefore, from Lemma 3.1 we

can conclude that with probability at least(
1− (n2 + 1)(16n2)2

2(C/2)(logn+1)

)
>

(
1− 1

n2

)
all the numbers {xS : S ∈ Y } have pairwise di�erent remainders modulo p0; here the last inequality

holds for a large enough constant C . Since ω0(S) ≡ xS mod p0, this means that with probability at

least

(
1− 1

n2

)
, all S ∈ Y receive pairwise di�erent weights with respect to ω0. Therefore, the induction

hypothesis is true for i = 0.

Induction step. Assume the induction hypothesis is true for all intervalsG〈s, t, s′, t′〉 such that t− s 6
2i−1

and t′ − s′ 6 2i−1
. Let

Y ′ :=
⋃

t−s62i−1

t′−s′62i−1

⋃
c∈conf(V 〈s,t,s′,t′〉)

Min(ωi−1, G〈s, t, s′, t′〉, c)

be the set of all the minimal partial solutions for those intervals. Further, let

Y := {S1 ∪ S2 ∪ S3 ∪ S4 : S1, S2, S3, S4 ∈ Y ′}

be the set containing all combinations of four such partial solutions. The strategy is as follows. We �rst

prove in Claim 4.8 that any relevant minimum weight compliant partial solution should be in Y . Then

Claim 4.9 says that with hight probability, all partial solutions S ∈ Y have pairwise di�erent weights

with respect to ωi. Hence, proving these two claims will be su�cient to make the induction hypothesis go

through.

Claim 4.8. Let 1 6 a 6 b 6 n and 1 6 a′ 6 b′ 6 n be such that b − a 6 2i and b′ − a′ 6 2i, and let

c ∈ conf(a, b, a′, b′). ThenMin(ωi, G〈a, b, a′, b′〉, c) ⊆ Y .

Proof. Take any S ∈ Min(ωi, G〈a, b, a′, b′〉, c). Let

r = d(a+ b)/2e and r′ = d(a′ + b′)/2e

and let us select

S1 ⊆ E(G〈a, r − 1, a′, r′ − 1〉), S2 ⊆ E(G〈a, r − 1, r′, b′〉),
S3 ⊆ E(G〈r, b, a′, r′ − 1〉), S4 ⊆ E(G〈r, b, r′, b′〉)
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so that S1, S2, S3, S4 are disjoint and S = S1 ∪ S2 ∪ S3 ∪ S4. See Figure 5 for an example.

We argue that S1 ∈ Min(ωi−1, G〈a, r − 1, a′, r′ − 1〉, c1) for some c1 ∈ conf(V 〈a, r − 1, a′, r′ − 1〉).

Let c = (V0, V1, V2,M). Since S ∪M is a simple cycle that visits all vertices of V 〈a, b, a′, b′〉, we see that

R := S2 ∪S3 ∪S4 ∪M is a partial solution in the graph G〈a, b, a′, b′〉 with the edges of M added. Letting

(V ′0 , V
′

1 , V
′

2 ,M
′) := cV 〈a,r−1,b,r−1〉(R), it follows that S1 is compliant with the con�guration

c1 := (V ′0 \ (V2 ∩ V 〈a, r − 1, b, r − 1〉)), V ′1 , V ′2 ∪ (V2 ∩ V 〈a, r − 1, b, r − 1〉),M ′).

Moreover, that S ∈ Min(ωi, G〈a, b, a′, b′〉, c) implies that S1 ∈ Min(ωi, G〈a, r − 1, a′, r′ − 1〉, c1), for

otherwise S1 could be replaced in S with a smaller-weight partial solution S′1 that would be still compliant

with c1, and this would turn S into a smaller-weight partial solution S′ = S′1∪S2∪S3∪S4 that would be

still compliant with c. Finally, by the construction of ωi, S1 ∈ Min(ωi, G〈a, r − 1, a′, r′ − 1〉, c1) entails

S1 ∈ Min(ωi−1, G〈a, r − 1, a′, r′ − 1〉, c1).

Therefore S1 ∈ Y ′. Analogously we argue that S2, S3, S4 ∈ Y ′, hence we conclude that S ∈ Y .

a

b

a′

b′

∈ S

a

b

r

r − 1

a′

b′

r′
r′ − 1

∈ S1

∈ S2

∈ S3

∈ S4

Figure 5: Example of splitting a partial solution S ∈ E(G〈a, b, a′, b′〉 into four partial solutions

S1, S2, S3, S4, where S1 ⊆ E(G〈a, r−1, a′, r′−1〉), S2 ⊆ E(G〈a, r−1, r′, b′〉), S3 ⊆ E(G〈r, b, a′, r′−1〉)
and S4 ⊆ E(G〈r, b, r′, b′〉) with r = d(a+ b)/2e and r′ = d(a′ + b′)/2e.

Claim 4.9. The following event happens with probability at least

(
1− 1

n2

)i+1
: for all di�erent S, S′ ∈ Y , it

holds that ωi(S) 6= ωi(S
′).

Proof. For each S ∈ Y , let

xS :=
∑
e∈S

2id(e).

Observe that since identi�ers assigned to the edges are unique, the numbers xS are pairwise di�erent. The

induction hypothesis gives us that the following event Ai−1 happens with probability at least

(
1− 1

n2

)i
:

for all 1 6 s 6 t 6 n and 1 6 s′ 6 t′ 6 n′ with t − s 6 2i−1
and t′ − s′ 6 2i−1

, and all c ∈
conf(V 〈s, t, s′, t′〉), we have |Min(ωi−1, G〈s, t, s′, t′〉, c)| 6 1. Assuming now that Ai−1 indeed happens,

by Theorem 4.6 we conclude that for every �xed choice of s, t, s′, t′ as above, we have∣∣∣∣∣∣
⋃

c∈conf(V 〈s,t,s′,t′〉)

Min(ωi−1, G〈s, t, s′, t′〉, c)

∣∣∣∣∣∣ 6 2O(2i−1).

Since there are at most n4
choices of s, t, s′, t′, this implies that

|Y | 6 |Y ′|4 6 2O(2i−1) · n16.
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SinceMi = 2C(logn+2i)
and pi is drawn uniformly at random among the primes in the range {1, . . . ,Mi},

from Lemma 3.1 we can conclude that, for large enough C , with probability at least1−
(n2 + 1)

(
n162O(2i−1)

)2

2(C/2)(logn+2i)

 · (1− 1

n2

)i
>

(
1− 1

n2

)i+1

,

all the numbers {xS : S ∈ Y } have pairwise di�erent remainders modulo pi; here, the term (1 − 1
n2 )i

corresponds to the probability thatAi happens. As a consequence, with the same probability we have that

ωi(S) 6= ωi(S
′) for all di�erent S, S′ ∈ Y .

Now the induction step follows directly from combining Claim 4.8 with Claim 4.9.

4.4 Hamiltonian cycles in graphs of bounded treewidth

We will now use the same approach to give a proof of Theorem 1.3. More precisely, assume we are given

a graph G of treewidth at most k. Our goal is to isolate the family of Hamiltonian cycles in G using

O(k log n+ log2 n) random bits.

The proof follows the same structure as that of Theorem 1.2. We �rst describe the isolation scheme

and then analyze the scheme using a tree decomposition T = (T, β) ofG of width at most k. Note that the

actual decomposition is not needed for the isolation procedure, and is only used as a tool in the analysis.

Isolation scheme. We �rst present the isolation scheme. As before, we assume that V (G) = [n] and n
is a power of 2. Let id : E(G)→ {1, . . . , |E(G)|} be any bijection that assigns to each edge e ∈ E(G) its

unique identi�er id(e). Let C be some large enough constant, to be chosen later. Then we independently

sample 3 log n primes p1, . . . , p3 logn so that each pi is sampled uniformly among all primes in the interval

{1, . . . ,M}, where M = 2C(k logn)
. Note that choosing each pi requires C(k+ log n) random bits, hence

we have used O(k log n+ log2 n) random bits in total, as required.

Next, we inductively de�ne weights functions ω0, . . . , ω3 logn on E(G) as follows:

• Set ω0(e) := 0 for all e ∈ E(G).

• For each e ∈ E(G) and i = 1, . . . , 3 log n, set

ωi(e) := Mn · ωi−1(e) +
(

2id(e) mod pi

)
.

We let ω := ω3 logn and we observe that ω assigns weights bounded by 2O(k logn+log2 n)
.

Analysis. Let T = (T, β) be a tree decomposition of G of width at most k. It is well-known that T can

be chosen so that it has at most n nodes. Further, let η := E(G) → V (T ) be any function that assigns

to each edge e of G any node x of T such that e ⊆ β(x). In the sequel we will assume that η is injective.

This can be achieved by adding, for each node x ∈ V (T ), |η−1(x)| − 1 new nodes with the same bag and

adjacent only to x, and appropriately distributing the images of edges of η−1(x) among the new nodes.

Note that after this modi�cation, the number of nodes of T is bounded by

(
k+1

2

)
· n 6 n3

.

Compared to the proof of Theorem 1.2, instead of intervals we will use segments in the tree T underly-

ing the tree decomposition T. Recall that segments have been de�ned and discussed in Section 3. We �rst

observe that there are only few segments.

Claim 4.10. There are at most n9
segments of T .
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Proof. Note that a segment I in T can be uniquely determined by specifying the at most two vertices of

∂I and any vertex of V (I) \ ∂I , provided there exists any. Since T has at most n3
nodes, there are at most

n9
choices for such a speci�cation.

For a set of nodes Z ⊆ V (T ), we write β(Z) :=
⋃
z∈Z β(z). Further, for a segment I of T we consider

the graph

G〈I〉 :=
(
β(V (I)), η−1(V (I))

)
.

Usually when speaking about partial solutions in G〈I〉, we consider their con�gurations on the vertex

subset β(∂I). Note that G〈T 〉 = G.

We proceed to the induction. We will prove the following statement for all 0 6 i 6 log n.

Induction hypothesis. With probability at least

(
1− 1

n2

)i
, for all segments I of T of size at most 2i

and for each con�guration c ∈ conf(β(∂I)), there is at most one minimum weight (w.r.t. ωi) compliant

partial solution in G〈I〉, i.e. |Min(ωi, G〈I〉, c)| 6 1.

Note that since |V (T )| 6 n3
, for i = 3 log n the induction hypothesis gives that for G〈T 〉 = G,

there is at most one Hamiltonian cycle that has the minimum weight w.r.t. ω with probability at least(
1− 1

n2

)3 logn
>
(
1− 1

n

)
.

Base step. For i = 0, we take segments of size at most 1, i.e. we prove the induction hypothesis for every

segment I of T that has either one or two nodes. More precisely, we have to prove that (with suitably large

probability), for every such segment I and con�guration c ∈ conf(β(∂I)), we have |Min(ω0, G〈I〉, c)| 6 1.

Note that since I has at most two nodes and η is injective, the edge set E(G〈I〉) consists of at most two

edges. Moreover, it cannot be that two di�erent edge subsets E1, E2 ⊆ E(G〈I〉) are simultaneously

compliant with the same con�guration c ∈ conf(β(∂I)). It follows that sets Min(ω0, G〈I〉, c) have sizes

at most 1 always, so the induction hypothesis for i = 0 is true.

Induction step. Assume the induction hypothesis is true for all segments of size at most 2i−1
. Let

Y ′ :=
⋃

I : segment of size 62i−1

⋃
c∈conf(β(∂I))

Min(ωi−1, G〈I〉, c).

be the set of all minimum weight partial solutions for segments of size at most 2i−1
. Further, let

Y := {S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 : S1, S2, S3, S4, S5 ∈ Y ′ }

be the set comprising all combinations of �ve such partial solutions.

We �rst prove with Claim 4.11 that every relevant minimum weight compliant edge is contained in Y .

Then Claim 4.12 says that with high probability, all S ∈ Y receive pairwise di�erent weights with respect

to ωi. The induction hypothesis will follow directly from combining these two claims.

Claim 4.11. Let I be any segment of size at most 2i and let c ∈ conf(β(∂I)). ThenMin(ωi, G〈I〉, c) ⊆ Y .

Proof. Consider any S ∈ Min(ωi, G〈I〉, c). By Lemma 3.3, there exist segments I1, . . . , It (t 6 5), each of

size at most 2i−1
, such that E(I) is the disjoint union of E(I1), . . . , E(It). For each j ∈ {1, . . . , t} choose

Sj ∈ E(G〈Ij〉) so that S is the disjoint union of S1, . . . , St. The same argument as that was used in the

proof of Claim 4.8 shows that there exists cj ∈ conf(β(∂Ij)) such that Sj ∈ Min(ωi−1, G〈Ij〉, cj). Hence

Sj ∈ Y ′ for all j ∈ {1, . . . , t}, so it follows that S ∈ Y .

Claim 4.12. The probability of the following event is at least

(
1− 1

n2

)i
: for all di�erent S, S′ ∈ Y , it holds

that ωi(S) 6= ωi(S
′).
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Proof. For each S ∈ Y let us de�ne

xS =
∑
e∈S

2id(e).

Observe that since the identi�ers assigned to the edges are unique, the numbers xS are pairwise di�erent.

By the induction hypothesis, the following event Ai−1 happens with probability at least

(
1− 1

n2

)i−1
: for

every segment I of size at most 2i−1
and each con�guration c ∈ conf(β(∂I)), we have |Min(ωi−1, G〈I〉, c)| 6

1. By Theorem 4.6 it follows that provided Ai−1 happens, for every �xed segment I of size at most 2i−1

we have ∣∣∣∣∣∣
⋃

c∈conf(β(∂I))

Min(ωi−1, G〈I〉, c)

∣∣∣∣∣∣ 6 2O(|β(∂I)|) 6 2O(k).

By Claim 4.10 there are at most n9
di�erent segments, hence this implies that

|Y | 6 |Y ′|5 6 2O(k) · n45.

Recall now that M = 2C(k+logn)
and pi is drawn uniformly at random among the primes in the range

{1, . . . ,M}. Hence, from Lemma 3.1 we can conclude that, for large enough C , with probability at least(
1−

(n2 + 1)
(
2O(k) · n45

)2
2(C/2)(k+logn)

)
·
(

1− 1

n2

)i−1

>

(
1− 1

n2

)i
,

all the numbers in {xS : S ∈ Y } have pairwise di�erent remainders modulo pi. Here, the factor (1− 1
n2 )i−1

corresponds to the probability that Ai−1 happens. As a consequence, with the same probability for all

di�erent S, S′ ∈ Y we have ωi(S) 6= ωi(S
′).

The induction step now follows directly from combining Claims 4.11 and 4.12.

4.5 Separable graph classes

In this section we use our understanding of isolation schemes for Hamiltonian cycles in decomposable

graphs to design such isolation schemes for separable graph classes, that is, classes of graphs that admit

small balanced separators. More precisely, we will prove a generalization of Theorem 1.4. First, we need

to establish certain terminology and decomposition results.

4.5.1 De�nitions and a decomposition theorem

A graph class is a (possibly in�nite) set of graphs that is closed under taking isomorphisms. A graph class

is hereditary if it is closed under taking induced subgraphs. The following notion of separability expresses

the condition that graphs from a given class can be broken in a balanced way using small separators.

De�nition 4.13. A graph class C is separable with degree α ∈ (0, 1) if for every graph G ∈ C, say on

n vertices, and vertex subset S ⊆ V (G), there exists a set X ⊆ V (G) such that |X| 6 O(nα) and every

connected component of G − X contains at most |S|/2 vertices of S. Class C is separable if it is separable

with some degree α ∈ (0, 1).

It is well-known that planar graphs [40] and, more generally, H-minor-free graphs [4] for every �xed

H are separable with degree
1
2 . However, this notion is more general. For instance, the class of 1-planar

graphs — graphs that admit a planar embedding where every edge has at most one crossing — is also

separable with degree
1
2 [20]. More generally, every graph class of polynomial expansion is separable [48]
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(see also the discussion in [45, Sections 16.3 and 16.4]). Examples here would include intersection graphs of

bounded-ply families of fat objects in Euclidean spaces of �xed dimension [33]. In fact, subject to technical

details, the notions of polynomial expansion and of separability coincide [48, 24].

Our isolation schemes will work on any graph class that is hereditary and separable. That is, we will

prove the following generalization of Theorem 1.4.

Theorem 4.14. Let C be a hereditary class of graphs that is separable with degree α ∈ (0, 1). Then there is

an isolation scheme for Hamiltonian cycles in graphs from C that usesO(nα) random bits and assigns weights

upper bounded by 2O(nα)
.

An important ingredient in the proof of Theorem 4.14 is a decomposition theorem for graphs from

a �xed separable class. Intuitively, the decomposition is obtained by recursively breaking the graphs by

extracting small balanced separators. The shape of the decomposition will be captured by the following

generalization of the notion of an elimination forest.

De�nition 4.15. A generalized elimination forest of a graphG is a rooted forest F together with a mapping

η : V (G) → V (F ) satisfying the following property: for every edge uv ∈ E(G), we have η(u) � η(v) or
η(u) � η(v) (note that it is possible that η(u) = η(v)). The topological height of (F, η) is simply the height

of F , while the height of (F, η) is equal to

max
x∈V (F )

∑
y�x
|η−1(y)|.

It is easy to see that if a graph G admits a generalized elimination forest (F, η) of height d, then it

also admits an elimination forest of height d: for every node x of F , replace x with a path consisting of

vertices of η−1(x), in any order. Thus, the intuition is that a generalized elimination forest is a compressed

representation of an elimination forest, where some sets of interchangable vertices — the preimages η−1(x)
for x ∈ V (F ) — are grouped together in single nodes. The quality of this compression is measured by the

parameter topological height.

In the sequel, we will use the following decomposition theorem that ties together separable graph

classes and generalized elimination forests. We are not aware of the existence of this particular formulation

in the literature, however the proof relies on rather standard techniques.

Theorem 4.16. Let C be a graph class that is hereditary and separable with degree α ∈ (0, 1). Then ev-

ery graph G ∈ C, say on n vertices, admits a generalized elimination forest (F, η) satisfying the following

conditions:

(C1) F has one root and every node of F has at most seven children.

(C2) (F, η) has topological height at most 1 + log2 n and height O(nα).

(C3) For every node x of F , if i is the depth of x in F , then

• |η−1(x)| 6 O
((
n/2i

)α)
,

• |η−1(subtree[x])| 6 n/2i, and

• |NG(η−1(subtree[x]))| 6 O
((
n/2i

)α)
.

Proof. Let K be the constant hidden in theO(·) notation in the bound on the sizes of balanced separators

in graphs from C, as prescribed by the de�nition of the separability of C. We will use the following simple

claim.
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Claim 4.17. Suppose Ω is a �nite set and there are two weight functions ω1, ω2 : Ω → R>0 satisfying the

following conditions:

• ω1(Ω) 6 1 and ω2(Ω) 6 1; and
• for each e ∈ Ω, ω1(e) 6 1/2 and ω2(e) 6 1/2.

Then there exists a partition P of Ω into at most seven parts such that for each P ∈ P , we have ω1(P ) 6 1/2
and ω2(P ) 6 1/2.

Proof. Let P0 be the partition of Ω that puts every element of Ω into a separate part. By the second

assumed condition, P0 respects the following assertion (?): for each part P , we have ω1(P ) 6 1/2 and

ω2(P ) 6 1/2. We will gradually transform P0 into a partition P consisting of at most seven parts while

preserving assertion (?).

More precisely, starting with P0 we de�ne a sequence of partitions P0,P1,P2, . . . that �nishes at the

�rst partition Pi that has at most seven parts; then we set P := Pi. Each partition Pi+1 is obtained from

Pi by merging two parts as follows. Note that Pi has at least eight parts, for otherwise the construction

should have already �nished. Call a part P of Pi bad if ω1(P ) > 1/4 or ω2(P ) > 1/4. Clearly, there can

be at most six bad parts (at most three due to the �rst reason, and at most three due to the second reason),

which leaves us with at least two parts that are not bad. Then construct Pi+1 from Pi by merging any

two not bad parts. It is clear that in this way, assertion (?) is preserved during the construction and we are

done.

We proceed to the construction of the generalized elimination forest (F, η), which will be done by

means of a recursive procedure. For a nonempty subset of vertices A ⊆ V (G), the procedure constructs a

generalized elimination forest (FA, ηA) of H := G[A] as follows.

• Let H ′ := G[NG[A]]. Note that since C is hereditary, we have H ′ ∈ C.

• By the separability of C, there are vertex subsets X,Y ⊆ V (H ′), each of size at most K · |V (H ′)|α,

such that

– every connected component of H ′ −X contains at most |A|/2 vertices of A; and

– every connected component ofH ′−Y contains at most |S|/2 vertices ofS, whereS := NG(A).

• Let Z := X ∪ Y . For every connected component C of H ′ − Z , let

ω1(C) :=
|V (C) ∩A|
|A|

and ω2(C) :=
|V (C) ∩ S|
|S|

.

In case S = ∅, we set ω2(C) := 0.

• Noting that the set of connected components ofH ′−Z with weight functions ω1 and ω2 satisfy the

prerequisites of Claim 4.17, we can group the connected components of H ′ − Z into at most seven

graphs, say with vertex sets B1, . . . , Bt (t 6 7), such that

|Bi ∩A| 6 |A|/2 and |Bi ∩ S| 6 |S|/2 for each i ∈ [t]. (1)

• Recursively apply the procedure to the sets B1 ∩ A, . . . , Bt ∩ A, thus obtaining generalized elimi-

nation forests (F1, η1), . . . , (F7, η7) of graphs G[B1 ∩A], . . . , G[Bt ∩A], respectively.

• Construct the generalized elimination forest (FA, ηA) ofH by taking the union of (Fj , ηj) for j ∈ [t],
adding a single root node r with η−1

A (r) = Z ∩ A, and making the roots of forests Fj into children

of r.
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It is clear that (FA, ηA) constructed in this manner is a generalized elimination forest ofG[A]. We construct

the generalized elimination forest (F, η) of G by applying the procedure to A = V (G). Condition (C1) is

clear from the construction, hence we need to verify conditions (C2) and (C3).

We start with condition (C3). Observe that it su�ces to prove that for every recursive call of the

construction procedure, say at recursion depth i, it holds that

|Z| 6 O
((
n/2i

)α)
, |A| 6 n/2i and |NG(A)| 6 O

((
n/2i

)α)
,

where Z is as de�ned in the construction procedure. The second bound follows from a straightforward

induction on i using the �rst part of (1). For the �rst and third bound, we shall prove by induction on i
that

|NG(A)| 6 L ·
(
n/2i

)α
, (2)

where

L := max

1,

(
8K

1− 1
21−α

) 1
1−α
 .

Note that in the base step, for i = 0, we have NG(A) = NG(V (G)) = ∅. During the proof of (2) we will

argue that in the considered recursive call of the construction procedure, it holds that

|Z| 6 4KLα ·
(
n/2i

)α
. (3)

Thus, (2) and (3) imply the �rst and the third bound of condition (C3).

Assume then that (2) holds for the call on a vertex subset A. We need to prove that, assuming the

notation from the description of the procedure, for each subsequent call on a subset Bj ∩ A, j ∈ [t], we

have |N(Bj ∩A)| 6 L ·
(
n/2i+1

)α
. Observe that

|V (H ′)| = |A|+ |NG(A)| 6 n/2i + L ·
(
n/2i

)α
6 2L ·

(
n/2i

)
,

hence

|X| 6 K · |V (H ′)|α 6 2KLα ·
(
n/2i

)α
,

and similarly

|Y | 6 2KLα ·
(
n/2i

)α
.

Therefore,

|Z| = |X ∪ Y | 6 4KLα ·
(
n/2i

)α
,

which in particular proves (3). Now observe that for each j ∈ [t], we have

NG(Bj ∩A) ⊆ Z ∪ (Bj ∩ S).

Hence, using the second part of (1), we conclude that

|NG(Bj ∩A)| 6 |Z|+ |Bj ∩ S|
6 |Z|+ |S|/2
= |Z|+ |NG(A)|/2
6 4KLα ·

(
n/2i

)α
+ L/2 ·

(
n/2i

)α
= (4KLα + L/2) ·

(
n/2i

)α
6 (8KLα + 2α−1L) ·

(
n/2i+1

)α
6 L ·

(
n/2i+1

)α
.

21



Here, the last inequality follows from the choice ofL. This concludes the inductive proof of (2) and �nishes

the proof of condition (C3).

We are left with showing condition (C2). The �rst assertion — that the topological height of (F, η) is

bounded by 1 + log2 n — follows immediately from the �rst assertion of condition (C3). For the second

assertion, observe that in the proof of condition (C3) we argued that |Z| 6 4KLα ·
(
n/2i

)α
for calls at

recursion depth i. This implies that whenever x is a node of F at depth i, we have |η−1(x)| 6 4KLα ·(
n/2i

)α
. Therefore, the height of (F, η) is bounded by

blog2 nc∑
i=0

4KLα ·
(
n/2i

)α
6 4KLα · nα ·

∞∑
i=0

1

(2α)i
6 O(nα).

Here, the last inequality is implied by the convergence of the geometric series in question.

4.5.2 Isolation scheme

With Theorem 4.16 established, we can proceed to the proof of Theorem 4.14. Let us then �x a hereditary

graph class C that is separable with degree α ∈ (0, 1), and an n-vertex graph G ∈ C. We �rst present the

isolation scheme. Let id : E(G) → {1, . . . , |E(G)|} be any bijection that assigns to each edge e ∈ E(G)
its unique identi�er id(e). Let C be some large enough constant, to be determined later. We independently

select 1 + log nα + C primes

p0, p1, . . . , plognα+C

so that each pi is sampled uniformly among primes in the range {1, . . . ,Mi}, where Mi := 2C(lognα+2i)
.

Further, we independently sample 1 + log n primes

q0, q1, . . . , qlogn

so that each qi is sampled uniformly among primes in the range {1, . . . , Ni}, whereNi := 2C(logn+(n/2i)α)
.

Note that choosing each pi requires C(log nα + 2i) random bits and choosing each qi requires C(log n+
(n/2i)α) random bits. Hence we have used O(nα) random bits in total, as required.

Next, we inductively de�ne weight functions ω0, . . . , ωlognα+C and ξ0, . . . , ξlogn on E(G) as follows:

• Set ω0(e) = 2id(e) mod p0 for all e ∈ E(G).

• For e ∈ E(G) and i = 1, . . . , log nα + C , set

ωi(e) = Mi−1n · ωi−1(e) +
(

2id(e) mod pi

)
.

• Then, let for all e ∈ E(G), set:

ξlogn(e) = Mlognα+Cn · ωlognα+C(e) +
(

2id(e) mod qlogn

)
• Finally, for all e ∈ E(G) and i = log n− 1, . . . , 0, set

ξi(e) = Ni+1n · ξi+1(e) +
(

2id(e) mod qi

)
.

Note that the weight functions ξi depend on the weight functionsωi. Furthermore, the order of de�ning the

weight functions ξi might seem inverse to what one might expect. Intuitively, this corresponds to proving

a suitable isolation property by a bottom-up induction on the generalized elimination forest provided by
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Theorem 4.16. Finally, we de�ne ω := ωlognα+C and ξ := ξ0. Then we return ξ as the output weight

function. Note that ξ assigns weights upper bounded by 2O(nα)
, as promised. Hence, it remains to prove

that ξ isolates the family of Hamiltonian cycles in G with high probability.

The proof of isolation is done in two steps. First we show that the weight function ω = ωlognα+C

isolates (with high probability) partial solutions on all graphs that intuitively correspond to single nodes

of the generalized elimination forestF provided by Theorem 4.16. The second step is to use this knowledge

to perform a bottom up induction on F , using weight functions ξlogn, . . . , ξ0 for the consecutive steps.

4.5.3 Isolation of partial solutions in single nodes

Let (F, η) be a generalized elimination forest of G provided by Theorem 4.16. We may assume that G is

connected (as otherwise there are no Hamiltonian cycles in G), hence F is a tree. We may assume that

η−1(x) 6= ∅ for every leaf x ofF (otherwise x can be disposed of), henceF has at most (1+log2 n)·n 6 n2

nodes.

We �rst show that the weight function ω, which uses the prime numbers p0, . . . , plognα+C , is enough

to isolate all relevant partial in graphs Hx for x ∈ V (F ) de�ned as follows:

De�nition 4.18 (Graph Hx). For each node x in F , de�ne Hx := (Vx, Ex), where

Vx := NG[η−1(x)] ∩ η−1(tail[x]) and Ex := {uv : uv ∈ E(G), u ∈ η−1(x), and v ∈ Vx}.

In other words, Hx is the subgraph of G whose vertex set consists of all the vertices of η−1(x) and

their neighbors that are mapped to a node of tail[x] by η. Among the edges with endpoints in this vertex

set we keep only those whose at least one endpoint belongs to η−1(x).

The following statement is a generalization of Theorem 1.2, where the identi�ers come from a larger

codomain and we assert a stronger isolation property. The proof follows from a straightforward adjustment

of the proof of Theorem 1.2, so we only sketch it.

Theorem 4.19. Let G be a graph with n vertices and let id : E(G) → {1, . . . , Z} be an injective function.

Choose prime numbers p0, . . . , plogn independently at random so that pi is chosen uniformly among the primes

in the range {1, . . . ,Mi}, whereMi = 2C(logZ+logn+2i)
for some large constant C . Then with probability

at least 1− 1
Z·ρ(n) , for all con�gurations c ∈ conf(V (G)) we have |Min(ω,G, c)| 6 1, where ω is de�ned as

in Subsection 4.3 and ρ(n) is any �xed polynomial.

Proof. The proof follows the exact same reasoning as the proof of Theorem 1.2. The induction hypothesis

then becomes:

Induction hypothesis. With probability at least

(
1− 1

Z·nρ(n)

)i+1
, for all intervals G〈s, t, s′, t′〉 such

that t − s 6 2i and t′ − s′ 6 2i and for each con�guration c ∈ conf(V 〈s, t, s′, t′〉), there is at most one

minimum weight (with respect to ωi) compliant partial solution, i.e. |Min(ωi, G〈s, t, s′, t′〉, c)| 6 1.

The only major change is that after replacing the codomain of the identi�er function with {1, . . . , Z},
we now have {xS : S ∈ Y } ⊆ {1, . . . , 2Z+1} instead of {xS : S ∈ Y } ⊆ {1, . . . , 2n2+1}, and therefore

we need to choose each prime pi among primes in the range {1, . . . , 2C(logZ+logn+2)}. Hence, the success

probability accordingly also changes. Note that the constantC will need to be larger, but will remain a con-

stant. Finally, similarly as argued in the proof of Theorem 1.2, the probability that for each con�guration

c ∈ conf(V (G) we have |Min(ω,G, c)| 6 1 is at least

(
1− 1

Z·nρ(n)

)logn
>
(

1− 1
Z·ρ(n)

)
.

We now use Theorem 4.19 to argue the following.
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Lemma 4.20. Assuming C is chosen large enough, the following event happens with probability at least

1− 1
n2 : for all x ∈ V (F ) and all c ∈ conf(Vx), we have |Min(ω,Hx, c)| 6 1.

Proof. Apply Theorem 4.19 on each graphHx for x ∈ V (F ), where each time we let the identi�er function

on Ex be the identi�er function on E(G), restricted to Ex. Note that |Vx| 6 O(nα) for each x, for large

enough C hence we can use the primes p0, p1, . . . , plognα+C in each of these applications, and therefore

obtain the weights function ω0, . . . , ωlognα de�ned in the same way on all the graphs Hx. By choosing C
appropriately large we can guarantee that for every �xed x ∈ V (F ), with probability at least 1 − 1

n4 we

have |Min(ω,Hx, c)| 6 1 for all c ∈ conf(Vx). Since |V (F )| 6 n2
, it now follows from union bound that

this assertion holds for all x ∈ F simultaneously with probability at least 1− 1
n2 .

4.5.4 Isolation partial solutions in subtrees

Our goal now is to extend the conclusion of Lemma 4.20 from graphs Hx that are associated with single

nodes x of F to graphs Gx that re�ect the whole subtree of F comprising the descendants of x.

De�nition 4.21 (Graph Gx). For each node x in F , de�ne Gx = (Vx↓, Ex↓), where

V ↓x := NG[η−1(subtree[x])] and E↓x := {uv : uv ∈ E(G), u ∈ η−1(subtree[x]), and v ∈ V ↓x }.

In other words,Gx is a subgraph ofG, but now its vertex set comprises all the vertices that are mapped

to nodes of subtree[x] by η and their neighbors. Among edges with both endpoints in this vertex set we

keep only those with at least one endpoint in η−1(subtree[x]). Observe that actually,

V ↓x =
⋃

y∈subtree[x]

Vy and E↓x =
⋃

y∈subtree[x]

Ey.

Also, denote

Wx := NG(η−1(subtree[x])).

As explained before, we will perform a bottom-up induction on F to prove that for each node x,

the relevant partial solutions in the graph Gx are appropriately isolated. This will be done under that

condition that the eventA described in Lemma 4.20 holds: for all x ∈ V (F ) and all c ∈ conf(Vx), we have

|Min(ω,Hx, c)| 6 1. Formally we will prove the following induction hypothesis for all i = log n, . . . , 0,

starting with i = log n and decreasing i at each step.

Induction hypothesis. Conditioned on A happening, the following event happens with probability at

least

(
1−O

(
1
n2

))logn−i
: for all nodes x at level i in F and for any con�guration c ∈ conf(Wx), we have

|Min(ξi, Gx, c)| 6 1.

Note that if the induction hypothesis is true for i = 0, that is, for the unique root node r of F , then ξ

isolates the family of all Hamiltonian cycles inGr = Gwith probability at least

(
1− 1

n2

)
·
(
1− 1

n2

)logn
>

1− 1
n ; here, the �rst factor is the lower bound on the probability ofA provided by Lemma 4.20. Therefore,

it remains to perform the induction.

Base step. For i = log n, every node x of F at level log n is a leaf with |η−1(x)| = 1, say η−1(x) = {v}.
Hence we have to prove that for any con�guration c ∈ conf(NG(v)), we have |Min(ξlogn), Gx, c)| 6
1. Notice that Gx only contains edges between v and its neighbors, hence for every con�guration c ∈
conf(NG(v)) there is at most one partial solution in Gx that is compliant with c. So for i = log n the

induction hypothesis is true.
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Induction step. Assume the induction hypothesis is true for all nodes x at level i+ 1. Let

Y ′ :=
⋃

y : node at level i+1

⋃
c∈conf(Wy)

Min(ξi+1, Gy, c)

be the set of all relevant minimum weight partial solutions in graphs Gx for x at level i+ 1. Furthermore,

let

Z :=
⋃

x : node at level i

⋃
c∈conf(Vx)

Min(ω,Hx, c)

be the set of all minimum weight compliant partial solutions for con�gurations on graphs Hx for x at

depth i. Finally, let

Y := {S0 ∪ S1 ∪ . . . ∪ S7 : S0 ∈ Z and S1, . . . , S7 ∈ Y ′ }

be the set comprising all combinations of 7 partial solutions from Y ′ and a single partial solution from Z .

We �rst prove with Claim 4.22 that every relevant minimum weight compliant partial solution is in-

cluded in Y . Then Claim 4.23 says that with high probability, all partial solutions in Y have pairwise

di�erent weights with respect to ξi. Hence, proving these two claims is su�cient to make the induction

step go through.

Claim 4.22. Let x be a node of depth i and let c ∈ conf(Wx). ThenMin(ξi, Gx, c) ⊆ Y .

Proof. Take any S ∈ Min(ξi, Gx, c). Let y1, . . . , yt (t 6 7) be the (at most) seven child nodes of x at

depth i + 1. Let S0 := S ∩ Ex and Sj := S ∩ E↓yj for j ∈ {1, . . . , t}. Note that the partial solutions

S0, S1, . . . , St are pairwise disjoint and their union is equal to S. Further, since S ∈ Min(ξ,Gx, c), an

argument analogous to the one used in the proof of Claim 4.8 shows that

• S0 ∈ Min(ω,Hx, c0) for some c0 ∈ conf(Vx); and

• for each j ∈ {1, . . . , t}, Sj ∈ Min(ξi+1, Gyj , cj) for some cj ∈ conf(Wyj ).

This means that S0 ∈ Z and S1, . . . , St ∈ Y ′, implying that S ∈ Y .

Claim 4.23. Conditioned on A, the probability of the following event is at least

(
1− 1

n2

)logn−i
: for all

di�erent S, S′ ∈ Y , we have ξi(S) 6= ξi(S
′).

Proof. For each S ∈ Y let us de�ne

xS :=
∑
e∈S

2id(e).

Observe that since the identi�ers assigned to the edges are unique, the numbers xS are pairwise dif-

ferent. The induction hypothesis gives us that conditioned on A, the probability of the following event

is at least

(
1− 1

n2

)logn−(i+1)
: for every node y of F at level i + 1 and every c ∈ conf(Wy), we have

|Min(ξi+1, Gy, c)| 6 1. We may then use Theorem 4.6 to conclude that for each such y,∣∣∣∣∣∣
⋃

c∈conf(Wy)

Min(ξi+1, Gy, c)

∣∣∣∣∣∣ 6 2O(|Wy |) 6 2O((n/2i+1)α).

Since we assume that A happens, we have |Min(ω,Hx, c)| 6 1 for each node x at level i. We can use

Theorem 4.6 again to infer that for each such x,∣∣∣∣∣∣
⋃

c∈conf(Vx)

Min(ω,Hx, c)

∣∣∣∣∣∣ 6 2O(|Vx|) 6 2O((n/2i)α).
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Since F has at most n2
nodes in total, the above bounds imply that

|Y | 6 |Z| · |Y ′|7 6 2O((n/2i)α)) · n16.

Since Ni = 2C(logn+(n/2i)α)
, and prime qi is sampled uniformly at random among the primes in the range

{1, . . . , Ni}, from Lemma 3.1 we can conclude that, provided C is chosen large enough, with probability

at least 1−
(n2 + 1)

(
2O((n/2i)α) · n16

)2

2(C/2)(logn+(n/2i)α)

 · (1− 1

n2

)logn−(i+1)

>

(
1− 1

n2

)logn−i
,

all the numbers in {xS : S ∈ Y } have pairwise di�erent remainders modulo qi. As a consequence, with at

least the same probability we have ξi(S) 6= ξi(S
′) for all distinct for S, S′ ∈ Y .

As argued, the induction step follows directly from combining Claims 4.22 and 4.23.

5 Deterministic algorithm for Hamiltonian cycle in separable classes

A graph class C shall be called e�ciently separable with degree α if it is separable with degree α in the

sense of De�nition 4.13, and moreover given G ∈ C and a vertex subset S ⊆ V (G), a suitable balanced

separator X witnessing separability can be computed in polynomial time. In this section we prove the

following result.

Theorem 5.1. Let C be a hereditary graph class that is e�ciently separable with degree α ∈ (0, 1). Then
there is an algorithm for Hamiltonian Cycle on graphs from C that runs in deterministic time 2O(nα)

and

uses polynomial space.

It is well-known that for every �xed H , the class of H-minor-free graphs is e�ciently separable with

degree
1
2 [4, 38]. Hence, Theorem 5.1 implies Theorem 1.5.

The �rst step towards the proof of Theorem 5.1 is to revisit the approach of [44] and extend it to obtain

the following result.

Lemma 5.2. There is a deterministic algorithm that takes as input an undirected graph G = (V,E) along
with an elimination forest of height at most d, a weight function ω : E → {1, . . . ,W}, and a target integer t.
The algorithm runs in time 5dW (n logW )O(1)

, uses space that is polynomial in n and logW , and detects

whether G has a Hamiltonian cycle C satisfying ω(C) = t, provided there is at most one such C .

The extension is similar to that performed by Björklund in [7], where he extended his O(1.66n)-

time algorithm for Hamiltonian Cycle to an 1.66nW (n logW )O(1)
time algorithm for the Traveling

Salesman problem on n cities. Therefore, we sketch here the extension assuming (but recalling) the basic

understanding of the approach of [44].

De�nition 5.3. Suppose F is a �nite �eld. An element ρ ∈ F is a primitive N -root of unity if ρN = 1 and

for every 0 < N ′ < N it holds that ρN
′ 6= 1.

It is well known that the multiplicative group of every �nite �eld is cyclic, that is, there is a generator

g ∈ F such that {g0, g1, . . . , g|F|−1} are all the elements of �eld. Then we must have g−1 = g|F|−1
. So

g|F | = 1, and therefore g is a primitive (|F| − 1)-root of unity. We will work with the �eld Fp, for some

prime p. First we address the issue of �nding a generator of Z∗p, the multiplicative group of Fp:
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Lemma 5.4. A generator of Z∗p can be found in O(p · polylog(p)) deterministic time and O(polylog(p))
space.

Proof. First, �nd the prime factors p1, . . . , p` using any deterministic O(p)-time algorithm. Note that we

have ` 6 log p. Next we rely on the the well-known fact that an element e is a generator of Z∗p if and

only if for every i = 1, . . . , ` it holds that e(p−1)/pi 6≡ 1 (mod p). This fact follows from Lagrange’s

theorem (see for example the discussion preceding [42, Theorem 14.16], where this fact was used in a

similar way to �nd generators probabilistically). By this fact, we can check whether e is a generator or not

in O(polylog(p)) time. Thus we can �nd a generator by simply iterating over all elements e ∈ Zp until

the check succeeds.

We will use the following well-known statement about discrete Fourier transform in �nite �elds (see

e.g. [13, Equation 30.11]).

Theorem5.5 (Discrete Fourier Inversion). LetF be a �nite �eld, let ρ ∈ F be a primitiveN -root of unity, and

let P (x) ∈ F[x] be a polynomial of degree at mostN−1 in xwith coe�cients from F. If P (x) =
∑N−1

i=0 cix
i
,

then for every 0 6 t 6 N − 1 it holds that

ct =
1

N

N−1∑
i=0

ρ−itP (ρi).

Let N := W · n · log n and consider the �eld F := Fp, where p is a prime satisfying p ∈ Θ(N).

Such a prime can be deterministically found in time O(p) and using polylog(p) space using brute-force

and the polynomial-time deterministic primality testing algorithm [3]. By the above discussion, the �eld

F has a (p − 1)-root of unity ρ ∈ F, and such a root can be found in time O(p · polylog(p)) and space

(n logW )O(1)
. Next, we continue with analysis of methods presented in [44].

Recall that we are given a graph G and an elimination forest F of G of height at most d. Since we are

interested in Hamiltonian cycles in G, we may assume that G is connected, hence F is a tree. The central

objects studied in [44] are polynomials P [u, f ], P (u, f) ∈ Z[α, β, γ], de�ned for each u ∈ V and function

f : tail[u] → {0, 1L, 1R, 2L, 2R} (or f : tail(u) → {0, 1L, 1R, 2L, 2R} in case of P (u, f)). Here, α, β, γ are

formal variables. In [44] it is shown how to compute those polynomials in a bottom-up manner over the

given elimination forest F . Further, the parity of the number of Hamiltonian cycles of total weight w
can be inferred from the coe�cient of the monomial αwβnγn in the polynomial P (r, ∅), where r is the

root of F . Therefore, the idea in [44] was to use Isolation Lemma to ensure that provided the graph is

Hamiltonian, with high probability there exists w ∈ [N ] for which there is exactly one Hamiltonian cycle

of weight w. Then one explicitly computes all the polynomials P [u, f ], P (u, f) in a bottom-up manner

over the tree F in time 5dW (n logW )O(1)
. Finally, the existence of a Hamiltonian cycle can be inferred

from the analysis of the coe�cients of P (r, ∅).

In the setting of Lemma 5.2 we can almost use the same strategy, however there is a caveat. Namely,

the expansion of each polynomial P (u, f) and P [u, f ] into a sum of monomials of the form αaβbγc may

have length as large as (N+1)(n+1)2
, because the relevant values of a, b, c are a ∈ {0, . . . , N} and b, c ∈

{0, . . . , n}. Therefore, storing the coe�cients of P [u, f ] explicitly would take at least space O(Nn2) =
O(Wn3), which is more than (n+ logW )O(1)

promised in the statement of Lemma 5.2.

Therefore, the idea is not to compute the whole polynomial P (r, ∅) explicitly, but evaluate the rele-

vant coe�cients of P (r, ∅) one by one using Theorem 5.5. Precisely, let Q =
∑N

w=0 cw,n,n · αw ∈ Z[α],
where cw,n,n is the coe�cient of αwβnγn in P (r, ∅). After casting Q as a polynomial Q′ ∈ Fp[α], we

can use the method presented in [44] to give an algorithm that evaluates Q′(e) for a given e ∈ Fp
in time 5dW (n logW )O(1)

and using (n logW )O(1)
space, because storing an element of Fp requires

(n logW )O(1)
space. This is enough to compute the formula described in Theorem 5.5 within the promised
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complexity guarantees. This concludes the description of how to compute the coe�cient c′t,n,n of Q′[α]
within the stated resource bounds.

Now we can compute the matching coe�cient ct,n,n of Q[α] by observing that c′t,n,n = ct,n,n mod p,

applying the above step Θ(n) times for di�erent primes p, and reconstructing ct,n,n with the Chinese

Remainder Theorem. Here, it is important to note that the coe�cient ct,n,n is of the order 2O(n)
, hence the

information about ct,n,n modulo Θ(n) di�erent primes is su�cient to reconstruct ct,n,n completely. This

concludes the sketch of the proof of Lemma 5.2.

We now use Lemma 5.2 to prove Theorem 5.1.

Proof of Theorem 5.1. Let G = (V,E) ∈ C be the given graph, where n := |V |. By iteratively extracting

balanced separators (cf., [44, Theorem A.1]) we can compute an elimination forest of G of height O(nα)
in polynomial time.

Next we use Theorem 4.14 that gives us a set of weight functions ω1, . . . , ω` : E → [2O(nα)] with

` = 2O(nα)
such that at least half of the functions ωi isolate the family of Hamiltonian cycles in G.

It can be easily seen by inspecting the construction of the isolation scheme of Theorem 4.14 that the

functions ω1, . . . , ω` can be enumerated one by one using polynomial working space and 2O(nα)
time.

Namely, we simply need to iterate over every tuple of log n + 1 primes p0 ∈ [M0], . . . , plogn ∈ [Mlogn].

To achieve that, we can iterate over every prime number pi ∈ [Mi] in time M
O(1)
i (just iterate through

[Mi] and deterministicaly check for primality in M
O(1)
i time with a brute-force algorithm). Therefore,

enumerating all weight functions ω1, . . . , ω` can be done in poly(M1 ·. . .·Mlogn) 6 2O(nα)
additional time

and polynomial space. Theorem 4.14 guarantees that among the enumerated weight functions ω1, . . . , ω`,
there is at least one (and even half of them) that isolates the family of Hamiltonian cycles in G.

Therefore, it remains to apply the algorithm of Lemma 5.2 to each consecutive function ωi and each

possible minimum weight t 6 2O(nα)
, and report a positive outcome if any of these applications �nds a

Hamiltonian cycle inG. The time complexity is bounded by 2O(nα)
and the space complexity is polynomial

in n and log 2O(nα) = O(n).

6 MSO-de�nable problems

6.1 De�nitions

CMSO2 Logic. We work with problems de�nable in logic CMSO2, which stands for Monadic Second-

Order logic on graphs with modular counting predicates and quanti�cation over edge subsets. Recall that

in this logic we have variables for individual vertices, individual edges, sets of vertices, and sets of edges;

the latter two kinds are called monadic variables. The basic constructs in CMSO2 are atomic formulas of

the following forms:

• Equality: x = y, checking equality of x and y;

• Membership: x ∈ X , checking that x belongs to X ;

• Incidence: inc(u, e), checking that vertex u is incident on the edge e; and

• Congruence: |X| ≡ a mod p, where a, p are constants, with the expected semantics.

CMSO2 formulas can be constructed from atomic formulas using standard boolean connectives, negation,

and quanti�cation over variables of each of the four kinds (both existential and universal). Note that

a CMSO2 formula can have free variables that are not bound by any quanti�cation. A formula can be

applied on a graph supplied with a valuation of the free variables. For example, the formula

ϕ(X) =
[
∀u∀v (u ∈ X ∧ v ∈ X ∧ u 6= v) =⇒ (¬∃e inc(u, e) ∧ inc(v, e))

]
, (4)

when applied on a graph G and a vertex subset A, checks whether A is an independent set in G. If this is

the case, we write G |= ϕ(A).
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Let ϕ(X) be a CMSO2 formula with one free vertex set variable X . For a graph G, we de�ne

selectϕ(G) := {S ⊆ V (G) | G |= ϕ(S)}.

For example, if ϕ(X) is the formula presented in (4), then selectϕ(G) consists of all independent sets inG.

If X is an edge set variable, then selectϕ(G) is de�ned analogously: it comprises all subsets S of edges

of G for which ϕ(S) is satis�ed. Thus, if ϕ(X) is a CMSO2 formula with a free monadic variable X ,

then selectϕ is a vertex or edge selection problem, depending on whether X is a vertex set or an edge

set variable. A vertex/edge selection problem is CMSO2-de�nable if it is of the form selectϕ for a formula

ϕ(X) as above.

Boundaried graphs. Throughout this section we assume that all considered graphs have vertices from

a �xed countable set Ω. The reader may think that Ω = N.

A boundaried graph is a pair consisting of a graphG and a subset of its verticesB, called the boundary.

We have two natural operations on boundaried graphs:

• Suppose G1 = (G1, B1) and G2 = (G2, B2) are boundaried graphs such that V (G1) ∩ V (G2) ⊆
B1 ∪B2. Then the sum of G1 and G2 is the boundaried graph

G1 ⊕G2 := (G1 ∪G2, B1 ∪B2),

where G1 ∪ G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). Note that the sum is not de�ned if the

condition V (G1) ∩ V (G2) ⊆ B1 ∪B2 does not hold.

• Suppose G = (G,B) is a boundaried graph and A ⊆ B. Then the operation of forgetting A in G
yields the boundaried graph

forgetA(G) := (G,A).

Note that for notational convenience, the set indicated in the subscript is the new boundary set, and

not the set B \A of vertices that get forgotten, i.e., removed from the boundary.

The following standard lemma connects the operations on boundaried graphs with the concept of treewidth.

Lemma 6.1. A graphG has treewidth at most k if and only if (G, ∅) can be obtained from graphs on at most

k + 1 vertices by a repeated use of the sum and forget operations, where at each moment in the construction

all boundaried graphs have boundaries of size at most k + 1.

Con�guration schemes. We now present the formalism of con�guration schemes for selection prob-

lems. The notational layer is directly taken from the recent work of Chen et al. [12]. However, in general,

the algebraic approach to graphs of bounded treewidth and recognizability of their properties dates back

to the foundational work of Courcelle and others done in the 90s. See the book of Courcelle and Engelfriet

for an introduction to the area [14].

For concreteness we focus on edge selection problems. Adjusting the de�nitions to vertex selection

problems is straightforward.

A con�guration scheme is a pair of functions (conf, c) with the following properties:

• conf assigns to each �nite subset B ⊆ Ω a �nite con�guration set conf(B). We require that the

cardinality of the con�guration set is uniformly and e�ectively bounded in the size of B, that is,

there exists a computable function g such that |conf(B)| 6 g(|B|) for each �nite B ⊆ Ω.

• For every boundaried graph G = (G,B) and a subset of edges S ⊆ E(G), c maps the pair (G, S)
to a con�guration c(G, S) ∈ conf(B).

We say that a con�guration scheme (conf, c) is compositional if the following two conditions hold:
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• For every pair of boundaried graphs G1 = (G1, B1) and G2 = (G2, B2) (with de�ned sum), and

subsets of edges S1 ⊆ E(G1) and S2 ⊆ E(G2), the con�guration

c(G1 ⊕G2, S1 ∪ S2)

depends only on the pair of con�gurations

c(G1, S1) and c(G2, S2).

• For every boundaried graphG = (G,B),A ⊆ B, and a subset of edgesS ⊆ E(G), the con�guration

c(forgetA(G), S)

depends only on the con�guration

c(G, S).

In other words, the �rst condition means that we can endow the set conf(B1) × conf(B2) with a sum

operation ⊕ so that the operators ⊕ and c(·, ·) commute. Similarly, the second condition means that

conf(B) can be endowed with an operation forgetA(·) so that the operators forgetA(·) and c(·, ·) commute.

We will therefore use the operators⊕ and forgetA also as operators de�ned on con�guration sets provided

by conf . Note here that since ⊕ is commutative on boundaried graphs, the corresponding operator ⊕ on

con�gurations can also be chosen to be commutative.

Suppose P is an edge selection problem, that is, a function that with each graph G associates a family

of edge subsets P(G) ⊆ 2E(G)
. We say that a con�guration scheme (conf, c) recognizes P if there exists a

set of �nal con�gurations F ⊆ conf(∅) such that for every graph G and a subset of edges S ⊆ E(G),

S ∈ P(G) if and only if c((G, ∅), S) ∈ F.

The next lemma follows from well-known compositionality properties of the CMSO2 logic. We sketch the

proof for completeness, but we remark that an essentially the same sketch was also provided in [12].

Lemma 6.2. Every CMSO2-de�nable edge selection problem is recognized by a compositional con�guration

scheme.

Proof sketch. Let P = selectϕ be the problem in question, where ϕ(X) is a CMSO2 formula with a free

edge set variable X . Let q be the quanti�er rank of ϕ, that is, the maximum number of nested quanti�ers

in ϕ.

Consider a �nite setB ⊆ Ω and all CMSO2 formulas ψ(X) of quanti�er rank at most q, whereX is an

edge set variable, which can also use the elements of B as constants (formally, the signature additionally

contains every element of B as a constant). It is well-known that there are only �nitely many pairwise

non-equivalent such formulas, in the sense that ψ and ψ′ are equivalent if for every boundaried graph

G = (G,B) and S ⊆ E(G), we have G |= ψ(S) if and only if G |= ψ′(S). Moreover, the number of

equivalence classes is bounded by a computable function of |B|. Then, let Formulasq(B) be a set comprised

of one arbitrarily selected representative from each equivalence class.

We now de�ne the con�guration scheme (conf, c) as follows:

• For each �nite B ⊆ Ω, we set

conf(B) := 2Formulasq(B),

that is, conf(B) is the powerset of Formulasq(B).
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• For each boundaried graph G = (G,B) and an edge subset S ⊆ E(G), we set

c(G, S) := {ψ(X) ∈ Formulasq(B) |G |= ψ(S)}.

A standard argument involving Ehrenfeucht-Fraïsse games shows that this con�guration scheme is com-

positional. It remains to observe that (conf, c) recognizes selectϕ by taking

F := {∆ ⊆ Formulasq(∅) | ϕ ∈ ∆}.

6.2 Isolation

The remainder of this section is devoted to the proof of Theorem 1.6. We remark that the same technique

can be used to prove the same result also for vertex selection problems. We leave the straightforward

modi�cations to the reader.

By Lemma 6.2, P is recognized by a compositional con�guration scheme (conf, c). Let F ⊆ conf(∅) be

the set of �nal con�gurations, as in the de�nition of recognizing P . Recall that there exists a computable

function g : N→ N such that

|conf(B)| 6 g(|B|) for each �nite B ⊆ Ω.

We may assume that the con�guration scheme (conf, c) satis�es the following assertion for every bound-

aried graph G = (G,B) and S, S′ ⊆ E(G):

if c(G, S) = c(G, S′), then S ∩
(
B

2

)
= S′ ∩

(
B

2

)
. (5)

Indeed, if assertion (5) is not satis�ed, then we can instead use the con�guration scheme (conf ′, c′) de�ned

as

conf ′(B) := conf(B)× 2(B2)
and c′(G, S) =

(
c(G, S), S ∩

(
B

2

))
,

which already satis�es assertion (5). Note here that (conf ′, c′) still recognizes P (by taking F ′ := F ×{∅})
and |conf ′(B)| is still bounded by a computable function of |B|. We remark, however, that the con�gura-

tion scheme provided by Lemma 6.2 actually already satis�es (5), provided the quanti�er rank q is positive.

To prove Theorem 1.6, it su�ces to give an isolation scheme for P on graphs of treewidth at most k
that uses at most O(log Γ log n+ log2 n) random bits, where

Γ := max
(
g(2k + 2)5, 2(2k+2

2 )
)
,

and assigns weights that are at most exponential in the number of random bits. From now on let us �x k,

the graph G given to the isolation scheme on input, and a tree decomposition T = (T, β) of G of width at

most k. We may assume that T has at most n nodes, where n := |V (G)| is the vertex count of G.

Isolation scheme. We �rst present the isolation scheme, which is just a general version of the scheme

for Hamiltonian Cycle presented in Section 4.4 (but without the re�nement of using the rank-based

approach). First, let id : E(G)→ {0, . . . , |E(G)|−1} be any bijection that assigns to each edge e ∈ E(G)
its unique identi�er id(e). Then choose 1 + log n primes

p0, p1, . . . , plogn ∈ {1, . . . ,M}
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uniformly and independently at random among primes in {1, . . . ,M}, where

M := Γ4 · n14.

Note that selecting one prime pi requiresO(logM) = O(log Γ + log n) random bits, hence we have used

O(log Γ log n+ log2 n) random bits in total.

Next, we inductively de�ne weight functions ω0, ω1, . . . , ωlogn on E(G) as follows:

• Set ω0(e) = 2id(e) mod p0 for all e ∈ E(G).

• For e ∈ E(G) and i = 1, 2, . . . , log n, set

ωi(e) := Mn2 · ωi−1(e) +
(

2id(e) mod pi

)
.

Let

ω := ωlogn

and observe that ω assigns weights upper bounded by 2 · (Mn2)logn = 2O(Γ logn+log2 n)
, as required.

It remains to verify that ω isolates P(G) with high probability. We do this by induction. Recall that a

segment in the tree T is a connected subtree I of T such that the boundary ∂I — the set of nodes of I with

neighbors outside of I — has size at most 2. For a segment I we de�ne the boundaried graph

G〈I〉 :=

(
G

[⋃
x∈I

β(x)

]
,
⋃
x∈∂I

β(x)

)
.

Note that this de�nition is slightly di�erent than the one used in Section 4, as G〈I〉 contains all the edges

of G with both endpoints in

⋃
x∈I β(x). We will also write ∂G〈I〉 :=

⋃
x∈∂I β(x) for the boundary of

G〈I〉. For γ ∈ conf(∂G〈I〉), let us de�ne the set of partial solutions in G〈I〉 that yield con�guration γ as:

S(I, γ) := {S ⊆ E(G〈I〉) | c(G〈I〉, S) = γ}.

We will prove the following statement by induction on i.

Claim 6.3. For each i ∈ {0, 1, 2, . . . , log n} and each segment I of T with at most 2i edges, the probability

that both of the following events happen is at least 1− 8i

n5 :

• ωi isolates S(I, γ) for each γ ∈ conf(∂G〈I〉) for which S(I, γ) 6= ∅; and

• minωi(S(I, γ)) 6= minωi(S(I, γ′)) for all γ, γ′ ∈ conf(∂G〈I〉) such that γ 6= γ′, S(I, γ) 6= ∅, and
S(I, γ′) 6= ∅.

Note that

P(G) =
⋃
γ∈F
S(T, γ).

Hence, since T has less than n = 2logn
edges, Claim 6.3 for i = log n and I = T implies that ω isolates

P(G) with probability at least 1 − 8logn

n5 = 1 − 1
n2 . So it remains to prove Claim 6.3, which we do by

induction on i.
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Base step. For i = 0 we have that segment I has at most one edge, so it has at most two nodes. Then

G〈I〉 is a boundaried graph on at most 2k + 2 vertices, hence it has at most

(
2k+2

2

)
edges. For each

S ⊆ E(G〈I〉), let

xS =
∑
e∈S

2id(e).

Observe that since the identi�ers assigned to edges are pairwise di�erent, the numbers xS for S ⊆
E(G〈I〉) are also pairwise di�erent. Since those numbers are upper bounded by 2(n2) and there are at

most 2(2k+2
2 )

of them, M > 24(2k+2
2 ) · n14

and p0 is drawn uniformly at random among primes in the

range {1, . . . ,M}, from Lemma 3.1 we can conclude that with probability at least 1− 1
n5 , all the numbers

{xS : S ⊆ E(G〈I〉)} have pairwise di�erent remainders modulo p0. Since ω0(S) ≡ xS mod p0, this

means that with probability at least 1− 1
n5 , all subsets of E(G〈I〉) receive pairwise di�erent weights with

respect to ω0. This implies the conclusion of Claim 6.3 for the segment I .

Induction step. Consider now any i > 1 and a segment I in T that has more than one but at most 2i

edges. By Lemma 3.3, segment I can be partitioned into at most �ve segments I1, . . . , It (t 6 5), each with

at most 2i−1
edges, so that

G〈I〉 = forget∂G〈I〉 (G〈I1〉 ⊕ . . .⊕G〈It〉) . (6)

By induction assumption, for each segment Ij , j ∈ {1, . . . , 5}, the property described in Claim 6.3 holds

with probability at least 1− 8i−1

n5 . By union bound, this property holds for all Ij , j ∈ {1, . . . , 5}, simulta-

neously with probability at least 1− 5·8i−1

n5 . We proceed under the assumption that this is the case; we call

this supposition (F).

We de�ne

Λ := conf(∂G〈I1〉)× . . .× conf(∂G〈It〉).

Consider any S ⊆ E(G〈I〉). We shall say that S is compatible with (γ1, . . . , γt) ∈ Λ if there exists a

partition {S1, . . . , St} of S such that

Sj ⊆ E(G〈Ij〉) and Sj ∈ S(Ij , γj) for each j ∈ {1, . . . , t}.

(Note that S can be simultaneously compatible with several elements of Λ, as edges of S that belong to

several of the graphs G〈Ij〉 may be placed in di�erent parts Sj .) For γ̄ ∈ Λ, we denote

Rγ̄ := {S ⊆ E(G〈I〉) | S is compatible with γ̄}.

We claim the following.

Claim 6.4. For each γ̄ ∈ Λ the weight function ωi−1 isolates the familyRγ̄ , provided this family is nonempty.

Proof. Let γ̄ = (γ1, . . . , γt). Suppose there exist two edge subsets S and S′ that are both compatible

with γ̄ and have the same minimum weight with respect to ωi−1. Let {S1, . . . , St} and {S′1, . . . , S′t} be

partitions of S and S′, respectively, that witness compatibility. Observe that for each j ∈ {1, . . . , t}, Sj
must be an element of minimum weight with respect to ωi−1 in the family S(Ij , γj). Indeed, otherwise we

could replace Sj with a partial solution Ŝj ∈ S(Ij , γj) with ωi−1(Ŝj) < ωi−1(Sj), thus obtaining an edge

subset Ŝ := (S \ Sj) ∪ Ŝj of weight smaller than that of S that is also compatible with γ̄. Note here that

assumption (5) implies that {S1, . . . , Sj−1, Ŝj , Sj+1, . . . , St} is still a partition of S. The same observation

applies also to S′j . Assumption (F) implies that ωi−1 isolates S(Ij , γj), which means that Sj = S′j . This

applies to each j ∈ {1, . . . , t}, hence S = S′.
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For γ ∈ conf(∂G〈I〉), let Λγ be the set of all those γ̄ = (γ1, . . . , γt) ∈ Λ for which

• forget∂G〈I〉 (γ1 ⊕ . . .⊕ γt) = γ and

• the familyRγ̄ is nonempty.

Note that sets {Λγ : γ ∈ conf(∂G〈I〉)} are pairwise disjoint. For each γ̄ ∈ Λγ , let Sγ̄ be the element of

Rγ̄ that has the minimum weight with respect to ωi−1. By Claim 6.4, there is a unique such element. Let

now

Mγ := {Sγ̄ | γ̄ ∈ Λγ and ωi−1(Sγ̄) = min{ωi−1(Sδ̄) : δ̄ ∈ Λγ}}.

In other words,Mγ comprises sets Sγ̄ of minimium weight with respect to ωi−1 among {Sδ̄ : δ̄ ∈ Λγ}.
Let us observe the following.

Claim 6.5. Suppose S ∈ S(I, γ) is such that ωi(S) = minωi(S(I, γ)). Then S ∈Mγ .

Proof. We �rst observe that ∑
e∈S

(
2id(e) mod pi

)
6 pi · |S| < Mn2. (7)

Therefore, by the de�nition of ωi, assertion ωi(S) = minωi(S(I, γ)) implies also that

ωi−1(S) = minωi−1(S(I, γ)). (8)

Consider any partition {S1, . . . , St} of S such that Sj ⊆ E(G〈Ij〉), for each j ∈ {1, . . . , t}. Let γj :=
c(G〈Ij〉, Sj). Clearly, partition {S1, . . . , St} witnesses that S is compatible with γ̄ := (γ1, . . . , γt), hence

S ∈ Rγ̄ . Further, by (6) we infer that forget∂G〈I〉 (γ1 ⊕ . . .⊕ γt) = γ. We conclude that γ̄ ∈ Λγ . As

Rγ̄ ⊆ S(I, γ), (8) implies that S = Sγ̄ . We can now use (8) again to conclude that S ∈Mγ .

Let now

M :=
⋃

γ∈conf(∂G〈I〉)

Mγ .

Note that

|M| 6 |Λ| 6 g(2k + 2)5 6 Γ.

Since pi is chosen uniformly at random among primes in the range {1, . . . ,M}, whereM = Γ4 ·n14
, from

Lemma 3.1 we infer that the following event happens with probability at least 1− 1
n5 (conditioned on (F)

happening): (∑
e∈S

2id(e)

)
mod pi 6=

(∑
e∈S′

2id(e)

)
mod pi for all S, S′ ∈M, S 6= S′. (9)

As argued in (7), we have

∑
e∈S

(
2id(e) mod pi

)
< Mn2

, hence event (9) happening entails that the map-

ping

S 7→ (ωi(S) mod Mn2) mod pi

is injective onM. In particular, the elements ofM receive pairwise di�erent weights w.r.t. ωi.
All in all, we conclude that the probability that (F) happens and that the elements of M receive

pairwise di�erent weights w.r.t. ωi is at least(
1− 5 · 8i−1

n5

)(
1− 1

n5

)
> 1− 8i

n5
.

It now su�ces to observe that Claim 6.5 together with injectivity of ωi onM directly imply the conclusion

of Claim 6.3 for segment I .
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7 Lower Bounds

7.1 Unconditional Lower Bounds

In this subsection we present several lower bounds against the existence of (oblivious) isolation schemes for

NP-hard problems on graphs with constant treedepth or pathwidth. We start with a standard information-

theoretical lower bound on the number of random bits needed for construction of a weight function. A

similar statement can be found in [11]

Lemma 7.1 (cf. proof of Theorem 1 in [11]). For every β > 0 there existsα > 0 such that the following holds.
Suppose n,W ∈ N are large enough (depending on β) and ω1, . . . , ωt : [n] → [W ] are weight assignments,

where t 6 α · n
log(nW ) . Then there exist two di�erent subsets A,B ⊆ [n] such that

• A ∪B = [n],
• |A \B| = |B \A| 6 βn, and
• for every i ∈ [t] it holds that ωi(A) = ωi(B).

Proof. We may assume that β 6 1
2 . Observe that then there exists α > 0 such that(

n

bβnc

)
> 1 + 2αn for all n ∈ N large enough. (10)

We verify that the statement of the lemma holds for α chosen as above.

Consider a function Φ: 2[n] → Nt de�ned as:

Φ(X) := (ω1(X), ω2(X), . . . , ωt(X)).

Since for every nonempty X ⊆ [n] and i ∈ [t] we have 1 6 ωi(X) 6 nW , function Φ can take at most

1 + (nW )t di�erent values. As we assumed that t 6 α · n
log(nW ) , by (10) we have

1 + (nW )t 6 1 + 2αn <

(
n

bβnc

)
.

By pigeonhole principle it follows that there exist two di�erent setsA′, B′ ⊆ [n], each of size exactly bβnc,
that have the same value assigned by Φ. This means that ωi(A

′) = ωi(B
′) for all i ∈ [t]. Let now

A := A′ ∪ ([n] \ (A′ ∪B′)) and B := B′ ∪ ([n] \ (A′ ∪B′)).

Note that for each i ∈ [t], we have

ωi(A) = ωi(A
′) + ωi([n] \ (A′ ∪B′)) = ωi(B

′) + ωi([n] \ (A′ ∪B′)) = ωi(B).

Further,

|A \B| = |A′ \B′| 6 |A′| 6 βn,

and similarly |B \A| 6 βn. Thus, sets A and B have the desired property.

We now use Lemma 7.1 to prove the following statement, which will be used for establishing a lower

bound against isolation schemes for maximum-size independent sets.

Lemma 7.2. There exists α > 0 such that the following holds. Suppose n,W ∈ N are large enough and

ω1, . . . , ωt : [n]→ [W ] are weight assignments, where t 6 α · n
log(nW ) . Then there exists a graphG on vertex

set [n] and such that

• the treedepth of G is at most 4, and
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Figure 6: The left panel presents the construction of the graph G. The vertices of the only two maximum-

size independent sets of G are marked blue and red, respectively. The right panel presents an elimination

forest of G of height 4.

• G has exactly two di�erent maximum-size independent setsA andB, which moreover satisfy ωi(A) =
ωi(B) for all i ∈ [t].

Proof. By Lemma 7.1 applied for β = 1
2 , we can choose α small enough so that the assertion t 6 α · n

log(nW )

implies the existence of two di�erent sets A,B ⊆ [n] such that |A \ B| = |B \ A|, A ∪ B = [n], and

ωi(A) = ωi(B) for all i ∈ [t]. We are going to construct a graphG on vertex sets [n] of treedepth at most 4
such that A and B are the only two maximum-size independent sets in G. Let k := |A \B|.

Let us arbitrarily enumerateA\B as {a1, . . . , ak} andB\A as {b1, . . . , bk}. The edge set ofG consists

of the following edges, see the left panel of Figure 6:

{aibi : i ∈ [k]} ∪ {aib1 : i ∈ [k] \ {1}} ∪ {a1bi : i ∈ [k] \ {1}}.

This concludes the construction of G. Note that vertices of A ∩ B are isolated in G. It is easy to see that

G admits an elimination forest of height 4, see the right panel of Figure 6.

It remains to prove thatA andB are the only two maximum-size independent sets inG. Note �rst that

A and B are indeed independent and there are no larger independent sets, because every independent set

in G contains at most one endpoint from each edge of the matching M := {aibi : i ∈ [k]}. Therefore, if I
is a maximum-size independent set inG, then I needs to contain all the (isolated) vertices fromA∩B, and

one endpoint of each edge ofM . Now if I contains the endpoint a1 of the edge a1b1, then I cannot contain

any of the vertices bi for i ∈ [k], because all these vertices are adjacent to a1. Hence I must contain all

vertices ai for i ∈ [k], implying that I = A. Analogously, if I contains b1, then I = B.

Corollary 7.3 (Lower bound for maximum-size independent sets). There does not exist an isolation scheme

for maximum-size independent sets on graphs of treedepth at most 4 that would use o(log n) random bits and

assign polynomially bounded weights.

Proof. By Lemma 7.2, such an isolation scheme would need to produce Ω(n/ log n) di�erent weight as-

signments on n-vertex graphs, for otherwise there would exist a graph of treedepth at most 4 where the

only two maximum-size independent sets receive the same weights in all possible weight assignments. It

follows that the isolation scheme in question needs to use Ω(log n) random bits.

We now present similar constructions for three other types of objects: minimum Steiner trees, min-

imum maximal matchings, and Hamiltonian cycles. In each case we �rst give a lemma presenting the

construction, which is followed by a corollary stating the lower bound. In each case, the corollary follows

from the same argument as that used in the proof of Corollary 7.3.

For a graph G and a set of terminals T ⊆ V (G), a minimum Steiner tree is a minimum-size set of

vertices S ⊆ V (G) such that T ⊆ S and G[S] is connected.
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Figure 7: Construction used in the proofs of Lemmas 7.4, 7.6, and 7.8, respectively.

Lemma 7.4. There exists α > 0 such that the following holds. Suppose n,W ∈ N are large enough and

ω1, . . . , ωt : [n]→ [W ] are weight assignments, where t 6 α · n
log(nW ) . Then there exists a graphG on vertex

set [n] and a set of terminals T ⊆ [n] such that

• the treedepth of G is at most 4, and
• there are exactly two di�erent minimum Steiner trees for G and T , say A and B, and they satisfy

ωi(A) = ωi(B) for all i ∈ [t].

Proof. As in the proof of Lemma 7.2, we can use Lemma 7.1 for β = 1
3 to make sure that provided α is

chosen small enough, there are two di�erent sets A,B ⊆ [n] such that A∪B = [n], |A \B| = |B \A| 6
n/3, and ωi(A) = ωi(B) for all i ∈ [t]. It is easy to modify the proof of Lemma 7.1 so that the following

property is also guaranteed: if k := |A\B|, then k > 2. We are going to construct a graphG on vertex set

[n] together with a set of terminals T ⊆ V (G) so that A and B are the only two minimum Steiner trees

for G and T , and G has treedepth at most 4.

Let us arbitrarily enumerate A \B as {a1, . . . , ak} and B \A as {b1, . . . , bk}. Note that k 6 n/3 and

|A ∩ B| > n/3, hence k 6 |A ∩ B|. We set T := A ∩ B to be the terminals. Further, let T ′ ⊆ T be

any subset of k − 1 terminals and let us arbitrarily enumerate T ′ as {t1, . . . , tk−1}. First, we make every

terminal in T \ T ′ adjacent to the terminal t1. Next for every i ∈ [k− 1], we add edges tiai, tibi, aiak and

bibk. This concludes the construction of G. See the left panel of Figure 7 for a visualization.

Observe that each connected component of the graph G− {ak, bk} is a star, and hence has treedepth

at most 2. It follows thatG has treedepth at most 4. ThatA andB are the only two minimum Steiner trees

for G and T is straightforward; we leave the veri�cation to the reader.

Corollary 7.5 (Lower bound for minimum Steiner trees). There does not exist an isolation scheme for min-

imum Steiner trees on graphs of treedepth at most 4 that would use o(log n) random bits and assign polyno-

mially bounded weights.

Next, recall that a matching in a graph is maximal if no strict superset of it is a matching, and it is

moreover a minimum maximal matching if it has the smallest possible size among maximal matchings.

Lemma 7.6. There exists α > 0 such that the following holds. Suppose m,W ∈ N are large enough and

ω1, . . . , ωt : [m] → [W ] are weight assignments, where t 6 α · m
log(mW ) . Then there exists a graph G with

edge set [m] such that

• the treedepth of G is at most 4, and
• there are exactly two di�erent minimum maximal matchings in G, say A and B, and they satisfy

ωi(A) = ωi(B) for all i ∈ [t].

Proof. By applying Lemma 7.1 for β = 1
5 , we can choose α small enough so that the assertion t 6 α ·

m
log(mW ) implies that there exists a pair of di�erent subsetsA,B ⊆ [m] such that |A\B| = |B\A| 6 m/5,
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A∪B = [m], and ωi(A) = ωi(B) for all i ∈ [t]. Note that then |A∩B| > 3m/5, hence |A\B| 6 3|A∩B|.
Let then K ⊆ A ∩ B be any subset of A ∩ B of size exactly 3k − 2, where k := |A \ B|, and let

K := (A ∩B) \K . As in Lemma 7.4, we may assume that k > 2.

Let Ã := (A\B)∪K and B̃ := (B \A)∪K . Note that Ã∩ B̃ = K . Further, for every i ∈ [t] we have

ωi(Ã) = ωi(A)− ωi(K) = ωi(B)− ωi(K) = ωi(B̃).

We now construct a graph G with edge set [m] and treedepth at most 4 which has exactly two di�erent

minimum maximal matching: Ã and B̃. See the center panel of Figure 7 for the construction.

Let us arbitrarily enumerate A \ B as {a1, . . . , ak} and B \ A as {b1, . . . , bk}. Further, recalling that

|K| = 3k − 2, we arbitrarily enumerate K as {d1, . . . , dk, c1, . . . , ck−1, c
′
1, . . . , c

′
k−1}. Let us create 4k

vertices: {vc1, . . . , vck},{va1 , . . . , vak},{vb1, . . . , vbk}, {vd1 , . . . , vdk}. For every i ∈ [k] we connect:

• vertices vci and vai using edge ai;
• vertices vci and vbi using edge bi; and

• vertices vci and vdi using edge di.
Next, for every i ∈ [k − 1] we connect:

• vertices vbk and vai using edge ci; and

• vertices vak and vbi using edge c′i.
In this way we have de�ned the endpoints of all the edges of [m] apart from the edges of K . To �nish the

construction, for each edge e ∈ K we add two extra vertices and connect them using e. Thus, K becomes

a matching in G consisting of isolated edges.

This concludes the construction of G. Note that if from G we remove vak and vbk, then each of the

remaining connected components is a star, and hence has treedepth at most 2. This proves that G has

treedepth at most 4.

We are left with proving that Ã and B̃ are the only two minimum maximal matchings in G. Clearly

Ã and B̃ are maximal matchings. Let M be any maximal matching of G. Since for every i ∈ [k], vertex

vdi has degree 1 and vci is its only neighbor, it follows that each vertex vci needs to be incident to an edge

of M . Clearly, M also needs to contain each edge of K , as these edges are isolated in G. Since vertices vci
are pairwise nonadjacent, we conclude that every maximal matching of G has at least k + |K| edges. As

|Ã| = |B̃| = k + |K|, this implies that both Ã and B̃ are minimum maximal matchings in G.

It remains to argue that there are no minimum maximal matchings other than Ã and B̃. Let M be any

minimum maximal matching in G. As we argued, M needs to contain K , one edge incident to vci for each

i ∈ [k], and no other edges. In particular, no edge ci or c′i, for any i ∈ [k − 1], is contained in M . By the

maximality of M this means that for each i ∈ [k − 1], at least one of the edges {ak, bi} is included in M ,

and at least one of the edges {bk, ai} is included in M . If neither ak nor bk was included in M , then this

would mean that both a1 and b1 necessarily belong to M , a contradiction. If now ak ∈ M and bk /∈ M ,

then ai ∈M for all i ∈ [k − 1] and M = Ã. Similarly, if ak /∈M and bk ∈M , then M = B̃.

Corollary 7.7 (Lower bound for minimum maximal matchings). There does not exist an isolation scheme

for minimum maximal matchings on graphs of treedepth at most 4 that would use o(log n) random bits and

assign polynomially bounded weights.

Lemma 7.8. There exists α > 0 such that the following holds. Suppose m,W ∈ N are large enough and

ω1, . . . , ωt : [m] → [W ] are weight assignments, where t 6 α · m
log(mW ) . Then there exists a graph G with

edge set [m] such that

• the pathwidth of G is at most 4, and
• there are exactly two di�erent Hamiltonian cycles in G, say with edge sets A and B, and they satisfy

ωi(A) = ωi(B) for all i ∈ [t].
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Proof. We apply Lemma 7.1 again, this time for β = 1
3 . Hence, by selecting α small enough we can ensure

that there exists di�erent sets A,B ⊆ [m] such that |A \ B| = |B \ A| 6 m/3, A ∪ B = [m], and

ωi(A) = ωi(B) for all i ∈ [t]. Note that then |A ∩B| > m/3, hence |A ∩B| > k, where k := |A \B|. As

before, we may assume that k > 3.

Let us arbitrarily enumerate A \B and B \A as {a1, . . . , ak} and {b1, . . . , bk}, respectively. Further,

let {c1, . . . , ck} be k arbitrary elements of A ∩B.

We now construct a graph G with edge set [m] as follows; see the right panel of Figure 7. First, create

2k vertices {u1, . . . , uk} and {v1, . . . , vk}. For every i ∈ [k] we connect vertices ui and ui+1 using edge

ai, where uk+1 = u1. Similarly, for every i ∈ [k] we connect vertices vi with vi+1 with edge bi, where

vk+1 = v1. Next, for every i ∈ [k] we connect vertices ui to vi with the edge ci. So far we have de�ned the

endpoints of all the edges apart from the edges of (A∩B) \ {c1, . . . , ck}. To accommodate the remaining

edges, replace the edge c1 with a path of length |A ∩ B| − k + 1 connecting u1 and v1, and let the edges

of this path be (A ∩B) \ {c2, . . . , ck}.
Note that removing u1 and v1 turnsG into the union of a path and a 2× (k− 1) grid, which is a graph

of pathwidth at most 2. It follows that G itself has pathwidth at most 4. Finally, it is easy to see that G has

exactly two Hamiltonian cycles, with edge sets A and B, respectively.

Corollary 7.9 (Lower bound for Hamiltonian cycles). There does not exist an isolation scheme for Hamil-

tonian cycles on graphs of pathwidth at most 4 that would use o(log n) random bits and assign polynomially

bounded weights.

7.2 Conditional Lower Bounds

An important result in the complexity theory is the randomized reduction from languages in NP to Uniqe

SAT due to Valiant and Vazirani [54]. This reduction is the essential procedure in plenty fundamental

results in the Computational Complexity, most notably Toda’s Theorem [52].

We would like to note, that the question of derandomization of this red was already subject to a rigorous

research. For example, [19] showed that probably we cannot hope to improve the probability of success

of Valiant and Vazirani [54] reduction to be 2/3 unless NP ⊆ P/poly. In the opposite success proba-

bility regime, Calabro et al. [10] gave a randomized polynomial time reduction from k-SAT to Uniqe

k-SAT which works with probability 2−O(n log2 k/k)
. Their bound was subsequently improved by [53] to

2−O(n log k/k)
Very recently [56] showed that if Uniqe k-SAT on n variable admits an 2n(1−f(k)/k)

time

algorithm for some unbounded f , then k-SAT is in 2n(1−f(k)(1−ε)/k)
time for every ε > 0. These reductions

work in exponential time.

The question of whether you can derandomize the reduction of Valiant and Vazirani [54] was already

subject to a rigorous research. Dell et al. [19] showed that improving the success probability of Valiant

and Vazirani [54] reduction to 2/3 is not possible unless NP ⊆ P/poly. In the opposite success prob-

ability regime, Calabro et al. [10] gave a randomized polynomial time reduction from k-SAT to Uniqe

k-SAT which works with probability 2−O(n log2 k/k)
. Their bound was subsequently improved by [53] to

2−O(n log k/k)
Very recently [56] showed that if Uniqe k-SAT on n variable admits an 2n(1−f(k)/k)

time

algorithm for some unbounded f , then k-SAT is in 2n(1−f(k)(1−ε)/k)
time for every ε > 0. These reductions

work in exponential time.

Montoya and Müller [41] considered a parameterized version of result of Valiant and Vazirani [54] and

showed that certain parameterized problems are also as hard as their unique variants.

The lower bounds in this section build on the following working assumption that these types of ran-

domized reductions cannot be derandomized in the following strong sense:

Conjecture 7.10 (Linear-Random-Bits Conjecture). There is no randomized polynomial time reduction from

SAT to Unique SAT that uses o(n) random bits, where n is the number of variables of the original instance.
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Falsifying Conjecture 7.10 would on its own contribute to great progress in computational complexity

and hopefully inspire novel ideas in derandomization.

The Conjecture 7.10 enables us to express the natural barrier in currently known techniques. We hope

to spark an interest in more randomness e�cient reduction to Uniqe SAT, as it would hopefully lead to

better Isolation Schemes. All our isolation schemes can be even implemented in the restricted NC setting.

We could even focus on weaker and more believable Conjecture 7.10 to exclude NC-reductions from SAT to

Uniqe SAT with o(n) random bits. This weaker conjecture would enable us to exclude isolation schemes

that can be computed with NC circuits only.

Moreover, note that the reductions proposed in previous work blow up the size of an instance to be

nO(1)
. We do not restrict a size of the output Uniqe SAT instance, outside the fact that reduction needs

to be in polynomial time.

In this section we prove the following theorem.

Theorem 7.11 (Conditional Lower Bound for Maximum Independent Set). No isolation scheme that can

be computed in polynomial time and uses o(td) random bits with polynomially bounded maximum weight

exists for Maximum Independent Set unless Conjecture 7.10 is false.

To prove Theorem 7.11 we use the fact that Maximum Independent Set is reducible to SAT with

a parsimonious reduction (cf., [30, Exercise 2.30 and 2.28]). Parsimonious reduction is a reduction that

preservers number of solutions [30]. In fact, all known natural reductions between NP-complete problems

are parsimonious or can be easily modi�ed to be parsimonious [30, Section 6.2.1].

Figure 8: The left scheme presents the example construction of the graph G in the reduction from SAT

to Maximum Independent Set. Doted vertices are part of the variable clauses. Note that after removing

them, the connected components are O(n) therefore treedepth of G is O(n). The right scheme presents

the schematic view of proof of Theorem 7.11. We use the fact that reductions behind black arrows are

known. In the proof we present red reductions.

Proof. First, we reduce SAT on n variables to Maximum Independent Set problem onN = nO(1)
vertices

by a standard reduction [37]. The reduction gives us graph G and number k ∈ N, such that there is

no independent set of size greater than k on G and G has maximum independent set of size exactly k
if the original formula was satis�able. Moreover graph G has treedepth O(n) because after removing

vertices responsible for variable vertices graph G has connected components of size O(n) and there are

only O(n) variable vertices. See Figure 8 for example construction of graph G in reduction. Note that the

reduction [37] is not parsimonious and we do not need it to be at this point.

Now, we assume, that there exists an isolation scheme for Maximum Independent Set on N -vertex

graphs with d bounded treedepth that use o(d) random bits and maximum weight is M = nO(1)
.

Now, we invoke our isolation scheme onN -vertices graphG and select a random integerW ∈R [NM ].
We get a graph G with weights ω1, . . . , ωN ∈ [nO(1)] of vertices and the property that with 1/nO(1)

probability there exists exactly one independent set in G of size exactly k and weight exactly W (if the

original formula was satis�able).
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We modify our graph as follows. For every vertex vi ∈ V (G) the graph G̃ have `i := 2NM + wi
vertices {vi1, . . . , vi`i}. For each edge (vi, vj) ∈ V (G) we add an edge (via, v

j
b) ∈ V (G̃) for every a ∈ [`i]

and b ∈ [`j ]. Set k̃ = 2kNM +W . The transformed graph G̃ has the property:

(i) If every independent set of G is < k, then every independent set of G̃ is < k̃, and

(ii) If G has independent set of size k, then with 1/nO(1)
probability G̃ has a unique independent set

of size k̃.

Graph G̃ is an instance of unweighted Maximum Independent Set with the property that it has a

unique independent set of size k̃ if the original formula was satis�able. Finally, we reduce our maximum

independent set instance G̃ to the SAT with parsimonious reduction [30]. This guarantees that with in-

versely polynomial probability the �nal instance of SAT has unique solution (if the original formula was

a yes-instance).

Because graph G has treedepth O(n), our isolation scheme uses o(n) random bits and therefore Con-

jecture 7.10 is false. See Figure 8 for a overall scheme of the reduction to Uniqe SAT and sizes and

parameters of the produced instances. Note, that the �nal instance of Uniqe SAT may be polynomially

larger than the original instance and it does not contradict Conjecture 7.10.

Observe that this lower-bounds framework works for many other NP-complete problems. Basically,

all we need is (1) the reduction from SAT creates a graph with O(n) treedepth/treewidth and (2) there is

a polynomial time reduction from weighted to unweighted problem. We can generalize our lower bound

to work for Hamiltonian Cycle in bounded treewidth graphs. First we reduce SAT to Hamiltonian

Cycle to the graph with t = O(n) and apply o(t)-random bits isolation scheme. We observe that we can

subdivide every edge of weight ω with a path of length ω. This way we construct an instance of Subset

TSP on unweighted graphs (where terminals are vertices of the original graphs) and use a parsimonious

reduction from Subset TSP to SAT. We sum up this observation with the following remark.

Remark 7.12. Assuming Conjecture 7.10 no isolation scheme that can be computed in polynomial time and

uses o(t) random bits with polynomially bounded maximum weight exists for Hamiltonian Cycle in graphs

of treewidth bounded by t.

For Hamiltonian Cycle in planar graphs, we can use the fact that NP-hardness reduction [29] from

SAT on m-variables produces a graph G with O(m2) vertices. Similarly, we subdivide every edge of

weight ω with a ω-length path. We arrive at the instance of Subset TSP in unweighted graphs and use

a parsimonious reduction from Subset TSP to SAT. Therefore any isolation scheme that needs o(
√
n)

random bits and uses polynomial weights would analogously contradict Conjecture 7.10.

Remark 7.13. Assuming Conjecture 7.10 no isolation scheme that can be computed in polynomial time and

uses o(
√
n) random bits with polynomially bounded maximum weight exists for Hamiltonian Cycle in

planar graphs (where n is the number of vertices of the graph).

8 Isolation of local vertex selection problems

Recall that an independent set in a graph is a set of pairwise nonadjacent vertices, and an independent set

is maximum if it has the largest possible cardinality. In this section we prove Theorem 1.10, which in plain

words can be restated as follows. For a graph G, let MIS(G) denote the set of all maximum independent

sets in G. Suppose we consider a graph G ∈ Gd, say on vertex set [n], given together with an elimination

forest F of height at most d. The isolation scheme of Theorem 1.10 is a family of ` = 2O(d)
weight
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functions ω1, . . . , ω` : [n]× [d]→ [W ], whereW = O(n6). Function ωi assigns to each v ∈ [n] the weight

ωi(v, lvlF (v)). The requirement is that for all G and F as above, at least half of the functions ω1, . . . , ω`
isolates MIS(G).

In the following, when discussing level-aware isolation schemes, we consider all weight functions as

acting on a single argument: the vertex in question. The level of this vertex is supplied implicitly, as there

is always some elimination forest of the graph �xed in the context.

In Section 9 we show how to extend the reasoning from this section to an example edge selection

problem — selection of maximum matchings.

8.1 Exchange property

In fact, we will prove a more general result than Theorem 1.10. Namely, we isolate an abstract property of

a vertex selection problem, which we call the exchange property, which is enjoyed by MIS(·) and which is

su�cient for our technique to work. There are multiple other problems of local nature that also have this

property, hence the approach is indeed more general.

We will rely on the following two de�nitions.

De�nition 8.1 (Pivotal vertex). Let G be a graph and F be an elimination forest of G. For a family F ⊆
2V (G)

and two di�erent sets of vertices A,B ∈ F , we say that a vertex u is pivotal for A and B in F if

u ∈ A4B and tailF (u) ∩A = tailF (u) ∩B.

De�nition 8.2 (Exchange property). We say that a vertex selection problem P has the exchange property

if for every graph G, elimination forest F of G, and weight function ω : V (G) → N the following holds: if

there exist two di�erentA,B ∈ P(G) that are minimizers of ω on P(G), then there also existA′, B′ ∈ P(G)
that are minimizers of ω on P(G) such that there is only one pivotal vertex for A′ and B′ in F .

Figure 9: Schematic �gure of the exchange argument used in the proof of Lemma 8.4. Both �gures present

the elimination forest F of the given graphG. Black-�lled vertices on the left are inA. Black-�lled vertices

on the right are in B. The pivotal vertices are green-stroked. Vertex u ∈ A \B is a chosen pivotal vertex.

Because A and B are both minimizers of ω, we can exchange the red subtree with the yellow one and

construct a valid minimizer with one less pivotal vertex.

In the next sections we will focus on proving the following result.

Theorem 8.3. Let P be a vertex selection problem that enjoys the exchange property. Then for every d ∈ N,
there is a level-aware isolation scheme for P on graphs of treedepth at most d that uses O(d) random bits

assigns weights bounded by O(n6).

Therefore, Theorem 1.10 follows by combining Theorem 8.3 with the following result.

Lemma 8.4. The vertex selection problemMIS(·) has the exchange property.
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Proof. LetG be a graph, F be an elimination forest ofG, and ω : V (G)→ N be a weight function. Assume

that there exist two di�erent A,B ∈ MIS(G) that are minimizers for ω and have more than one pivotal

vertex. We will construct two di�erent sets A′ and B′ that are also maximum independent sets in G and

have the same weight as A and B, but have one less pivotal vertex. This is su�cient to prove the lemma,

since we can repeat the construction to get a pair of minimizers with exactly one pivotal vertex, as required.

Let u ∈ V (G) be a pivotal vertex for A and B. By symmetry, assume that u ∈ B \A. We consider

A′ := A and B′ := (B \ subtree[u]) ∪ (subtree[u] ∩A).

It is easy to see that A′ and B′ have exactly one less pivotal vertex than A and B: u is pivotal for A and B
but not for A′ and B′, and all other pivotal vertices are the same. Because A′ = A, we only need to prove

that B′ ∈ MIS(G) and that B′ is a minimizer of ω on MIS(G).

First, note that tail(u) ∩ A = tail(u) ∩ B because u is pivotal of A and B. Since the vertices of

subtree[u] have only neighbors in tail(u), this implies that B′ is an independent set, and analogously the

set A′′ := (A \ subtree[u])∪ (subtree[u]∩B) is an independent set as well. Since |B′|+ |A′′| = |A|+ |B|,
bothB′ andA′′ are independent sets, whileA andB are maximum independent sets, it follows that bothB′

and A′′ must be maximum independent sets as well. Similarly, we have ω(B′) + ω(A′′) = ω(A) + ω(B),

so the assumption that A and B are both minimizers of ω on MIS(G) implies that A′′ and B′ are also

minimizers of ω on MIS(G).

The same argument as the one used in the proof of Lemma 8.4 can be also applied to other combinatorial

objects in graphs, where validity of an object depends on checking the neighborhood of every vertex.

For instance, it is easy to prove in this way that minimum vertex covers and minimum dominating sets

also have the exchange property. Thus, Theorem 8.3 also applies to the corresponding vertex selection

problems.

In the next sections we will work towards the proof of Theorem 8.3. Therefore, let us �x a vertex

selection problem P that has the exchange property.

8.2 Warm-up: a deterministic isolation scheme

Before commencing to the proof of Theorem 1.10, we will show a simple deterministic level-aware isolation

scheme. Observe that the Isolation Lemma in its most general form can be trivially derandomized provided

we allow the maximum weight to be 2n, where n is the size of the universe. Namely, it is enough to select

the weight function ω(i) := 2i. In general, allowing exponential weights is prohibitively expensive and

not algorithmically useful, however considering this idea explains some intuition behind our techniques.

As a warm-up, we now present a level-aware isolation scheme for the considered problem P on graphs of

treedepth at most d that is deterministic, but may use weights as large as 2d. The scheme is captured by

the following lemma.

Lemma 8.5 (Exponential-weight deterministic isolation). For every graph G and an elimination forest F
of G, function ωdet(v) := 2lvlF (v)

isolates the family P(G).

Note that as Lemma 8.5 involves only one weight function ωdet, it provides a deterministic isolation

scheme. Also, provided the height of F is at most d, the assigned weights are upper bounded by 2d.

Further, this is a level-aware isolation scheme, because ωdet is also supplied with the level of the vertex in

the given elimination forest. In Section 7 we showed that this additional information is really necessary,

since without it any isolation scheme for maximum independent sets needs to use Ω(log(n)) random bits,

even on graphs of treedepth at most 4.
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Proof of Lemma 8.5. Assume for contradiction that there exist two di�erent sets in P(G) that are both

minimizers of ωdet(v) := 2lvlF (v)
on P(G). By Lemma 8.4 we know that there also exist A,B ∈ P(G)

that are also minimizers of ωdet and have exactly one pivotal vertex.

Let u be the only pivotal vertex of A and B in F . Without loss of generality we may assume that

u ∈ A \B. Let

R := A \ subtree[u] = B \ subtree[u], SA := A ∩ subtree(u), and SB := B ∩ subtree(u).

We know that ωdet(A) = ωdet(B). Therefore,

ωdet(R) + ωdet(u) + ωdet(SA) = ωdet(R) + ωdet(SB),

hence

ωdet(u) + ωdet(SA) = ωdet(SB). (11)

Let ` be the level of vertex u. We know that ωdet(u) = 2`. Moreover, the level of every vertex in SA and

SB is greater than `. Therefore ωdet(SA) and ωdet(SB) are divisible by 2`+1
. We conclude that the right

hand side of (11) is divisible by 2`+1
, while the left hand side is not. This is a contradiction, hence ωdet

must have a unique minimizer on P(G).

8.3 Warm-up continued: a randomized isolation scheme

There is also a relatively simple level-aware isolation scheme for P on graphs of treedepth at most d that

usesO(d log(n)) random bits and assigns weights bounded byO(n). Namely, for every level i ∈ [d] chose

uniformly at random a number ri ∈ [Cn] for some constant C large enough, and let ωrnd(v) := rlvlF (v),

where F is the given elimination forest. Clearly, this scheme uses O(d log n) random bits. It is not hard

to prove that the function ωrnd isolates P(G) with high probability. We leave the details to the reader, as

the isolation scheme presented in the next section will supersede this one.

The idea behind our proof of Theorem 8.3 is to combine the deterministic isolation scheme ωdet, pre-

sented in Lemma 8.5, the with randomized scheme sketched above. This approach is inspired by the shifting

idea presented in [55, 11], but the technique is adapted to the setting of problems on graphs of bounded

treedepth.

8.4 Proof of Theorem 8.3

Fix the considered graph G = (V,E) and elimination forest F of height at most d, where V = [n]. We

may assume that d > 5 dlog ne, for otherwise the deterministic isolation scheme from Lemma 8.5 isolates

P(G) and assigns weights upper bounded by 2d 6 O(n6).

Isolation Procedure. We start with the de�nition of the isolation scheme. Similarly to the scheme

considered in Lemma 8.5, the weight assigned to a vertex will only depend on its level in F (and the

random bits).

For every i ∈ [d], we can uniquely encode i as a pair of integers (e(i), f(i)) so that

i = dlog ne · e(i) + f(i), where 0 6 f < dlog ne .

Note that then e(i) 6 κ, where κ :=
⌊

d
dlogne

⌋
. As d > 5 dlog ne, we have κ > 0.

Next, for every e ∈ {0, 1 . . . , κ} choose an integer re ∈ [32n5] independently and uniformly at random.

Then r := (r0, r1, . . . , rκ) is the vector of random integers used by our weight function. Note that choosing
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r requires (κ + 1) · O(log n) = O(d) random bits, as promised. In the following, we treat r0, . . . , rκ as

random variables, thus r is a random vector that is uniformly distributed in Ω := [32n5]κ+1
.

Finally, for a vertex v and ρ ∈ Ω, we de�ne

ωρ(v) := ρe(i) · 2f(i), where i = lvl(v).

With this de�nition in place, our isolation scheme simply samples r as above and outputs the weight

function ωr . We are left with arguing that ωr isolates P(G) with probability at least
1
2 .

Analysis. For a vertex v, we write e(v) := e(i) and f(v) := f(i), where i is the level of v in F . For

every set X ⊆ V , let us de�ne a linear form φX : Ω→ N as follows:

φX(ρ) :=
∑
v∈X

ρe(v) · 2f(v).

Intuitively, we can think of ϕX as a compressed version of X from which we can compute ωρ(X) once it

is �xed. Indeed, ϕX can be thought of as a compressed version of X since |Ω| 6 2O(d)
. In particular, note

that we actually have

φX(ρ) = ωρ(X). (12)

Further, let

Φ := {φX : X ∈ P(G)}.
The following lemma is the key step in the proof.

Lemma 8.6. Suppose ρ ∈ Ω is such that ωρ does not isolate P(G). Then there are two di�erent linear forms

α, β ∈ Φ such that

α(ρ) = β(ρ) = min
γ∈Φ

γ(ρ).

Proof. Since ωρ does not isolate P(G), there are two di�erent minimizers of ωρ on P(G). By the exchange

property, there are also two di�erent minimizersA andB such that there exists exactly one pivotal vertex

forA andB, say u. Without loss of generality suppose that u ∈ A\B. SinceA andB are both minimizers,

by (12) we have

φA(ρ) = φB(ρ) = min
γ∈Φ

γ(ρ).

Hence, it su�ces to prove that φA 6= φB .

Let (e, f) := (e(u), f(u)). We claim that the coe�cients of φA and φB standing by the variable ρe are

di�erent. Letting L := {v | e(v) = e}, we see that these coe�cients are respectively equal to∑
v∈A∩L

2f(v)
and

∑
v∈B∩L

2f(v).

Suppose for contradiction that these coe�cients are actually equal, that is,∑
v∈A∩L

2f(v) =
∑

v∈B∩L
2f(v). (13)

Recall that u is the only pivotal vertex for A and B, hence A \ subtree[u] = B \ subtree[u]. Therefore,

from (13) we infer that ∑
v∈A∩L∩subtree[u]

2f(v) =
∑

v∈B∩L∩subtree[u]

2f(v). (14)

Now observe that u ∈ A ∩ L ∩ subtree[u], u /∈ B ∩ L ∩ subtree[u], and f(v) > f(u) for each v ∈
L ∩ subtree(u). From this it follows that the right hand side of (14) is divisible by 2f(u)+1

, while the left

hand side is not. This is a contradiction.
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We now combine Lemma 8.6 with the following result of Chari et al. [11].

Lemma 8.7 (Proposition 2 of [11]). Let Φ be a set of linear forms over t < N variables with coe�cients

belonging to {0, . . . , N2 − 1}. Let r be chosen from [N5]t uniformly at random. Then the probability that

there exist two di�erent α, β ∈ Φ such that α(r) = β(r) = minγ∈Φ γ(r) is at most
1
2 .

Now observe that the coe�cients in the forms appearing in Φ are bounded by n · 2dlogne < (2n)2
,

because each coe�cient is a sum of at most n summands of the form 2f(v)
, and each of these is bounded by

2dlogne
. Since r is chosen uniformly at random from [(2n)5]κ+1

, by combining Lemmas 8.6 and 8.7, where

the latter is applied for N := 2n, we conclude that ωr isolates P(G) with probability at least
1
2 .

9 Isolation of local edge selection problems

In the Section 8, we designed level-aware isolation schemes exclusively for vertex selection problems.

In this section we demonstrate that our techniques can be also applied to edge-selection problems on the

example of maximum matchings: formally, we consider the edge selection problem MM(·) that maps every

graph G to the family MM(G) consisting of all maximum-size matchings in G.

Suppose we are given a graph G = (V,E) and an elimination forest F of G. The level of an edge

e = uv ∈ E in F is de�ned as

lvl(e) := min{lvl(u), lvl(v)}.

In our level-aware isolation scheme, the weight function will be supplied with two parameters: an edge

and its level.

We now introduce the analogues of pivotal vertices and the exchange property.

De�nition 9.1 (Edge-pivotal vertex). For a family F ⊆ 2E and two di�erent sets of vertices A,B ∈ F , we
say that a vertex u is edge-pivotal for A and B if:

• for every vertex x ∈ tail(u) it holds that ux ∈ A if and only if ux ∈ B;

• there exists x ∈ subtree(u), such that ux ∈ A4B;

• no vertex u′ ∈ tail(u) has the two properties above.

De�nition 9.2 (Exchange property). We say that an edge selection problem P has the exchange property

if for every graph G = (V,E), elimination forest F of G, and weight function ω : E → N, if there exist two
di�erent minimizers of ω on P(G), then there also exist two di�erent minimizers of ω on P(G) for which

there is exactly one edge-pivotal vertex.

Using a reasoning similar to that from the proof of Lemma 8.4, we get the following.

Lemma 9.3. The edge selection problemMM(·) has the exchange property.

Proof. Let G = (V,E) be a graph, F be an elimination forest of G, and ω : E → N be a weight function

such that there are two di�erent minimizers A,B of ω on MM(G). Let e be any edge of A4B with the

minimum possible level. Say that e = uv, where u is an ancestor of v. Let us de�ne

B′ :=

(
B ∩

(
subtree[u]

2

))
∪
(
A \

(
subtree[u]

2

))
.

As in the proof of Lemma 8.4, using the assumptions thatA,B are maximum matching that are minimizers

of ω on MM(G), and that e is an edge ofA4B of minimum possible level, we can easily see thatB′ is also

a maximum matching that is a minimizer of ω on MM(G). It now follows that u is the only pivotal vertex

for A and B′.
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The remainder of this section is devoted to the

Theorem 9.4. For every d ∈ N, there is a level-aware isolation scheme for maximum matchings on graphs

of treedepth at most d that uses O(d log n) random bits assigns weights bounded by nO(1)
.

Note that contrary to the situation in Section 8, we will conduct our reasoning only for the edge

selection problem MM(·), as we will use some additional combinatorial properties of maximum matchings.

While strong Isolation Lemma’s already exist for the case of maximum matchings [51], our approach uses

less random bits and seems extendable to other edge selection problems.

For the rest of this section, let us �x the graphG = (V,E), and enumeration of its edges id : E → [m],
and an elimination forest F of G. Mirroring the structure from Section 8, we �rst give a deterministic

isolation scheme, which will be subsequently randomized in order to reduce the weights at the cost of

random bits.

Recall that our weight functions take two parameters: an edge and its level. Similarly as in Section 8,

we think of weight functions as acting only on edges, while the level of an edge is inferred implicitly from

the forest F .

9.1 Deterministic isolation scheme

Let us introduce the weight function

ωdet(e) := id(e) · n2lvl(e).

We observe the following.

Lemma 9.5 (Exponential weight isolation ). Function ωdet isolates the familyMM(G).

Proof. Assume for the contrary, that there exists two di�erent maximum matchings A,B ∈ MM(G) that

are both minimizers of ωdet. Because MM(·) has the edge-exchange property, we can assume that A and

B have exactly one edge-pivotal vertex. Let u be such a vertex and let ` be its level in the elimination

forest F .

Let

R := A \
(
subtree[u]

2

)
be the set of edges from A that have at least one endpoint outside of subtree[u]. Note that since u is the

only edge-pivotal vertex for A and B, it holds that

R = B \
(
subtree[u]

2

)
.

For a vertex v ∈ V , let E[v] be the set of edges with at least one endpoint in v. Finally, let

SA := A \ (R ∪ E[u]) = A ∩
(
subtree(u)

2

)
and SB := B \ (R ∪ E[u]) = B ∩

(
subtree(u)

2

)
.

We assumed that ωdet(A) = ωdet(B). Therefore,

ωdet(R) + ωdet(SA) + ωdet(E[u] ∩A) = ωdet(R) + ωdet(SB) + ωdet(E[u] ∩B),

implying that

ωdet(SA) + ωdet(E[u] ∩A) = ωdet(SB) + ωdet(E[u] ∩B) (15)
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Every vertex in the maximum matching has degree 1. Since u is pivotal for A and B, u is incident in

A to an edge eA and incident in B to a di�erent edge eB such that lvl(eA) = lvl(eB) = `. Therefore,

ωdet(E[u] ∩A) = id(eA)n2`
and ωdet(E[u] ∩B) = id(eB)n2`.

Note that lvl(e) > ` for each edge e ∈ SA ∪ SB , hence both ωdet(SA) and ωdet(SB) is divisible by n2`+2
.

Since id(eA) 6= id(eB), we conclude that the two sides of (15) give di�erent remainders modulo n2`+2
, a

contradiction.

9.2 Randomized isolation scheme

We now proceed to the proof of Theorem 9.4. We begin with the construction of the weight function.

First, for every i ∈ [d] we choose a number ri ∈ [n10] independently and uniformly at random. Thus

r := (r1, . . . , rd) is a random vector, distributed uniformly in Ω := [n10]d. For ρ ∈ Ω, we de�ne the

weight function ωρ as follows:

ωρ(e) := id(e) · ρlvl(e).

Our isolation scheme simply samples r as above and returns the weight function ωr . Note that ωr assigns

weights upper bounded by O(n10id(e)) = O(n12) and uses O(d log n) random bits, as promised, so it

remains to prove that ωr isolates MM(G) with probability at least
1
2 .

Analysis. The argument is similar to that used in the proof of Theorem 8.3. For each X ⊆ E, we de�ne

a linear form φX : Ω→ N as

φX(ρ) :=
∑
e∈X

id(e) · ρlvl(e).

Thus, we have

φX(ρ) = ωρ(X). (16)

Let

Φ := {φX : X ∈ MM(G)}.
Again, the key step is captured by the following lemma.

Lemma 9.6. Suppose ρ ∈ Ω is such that ωρ does not isolate P(G). Then there are two di�erent linear forms

α, β ∈ Φ such that

α(ρ) = β(ρ) = min
γ∈Φ

γ(ρ).

Proof. Since ωρ does not isolate MM(G), there are two di�erent minimizers of ωρ on MM(G). By the

exchange property, there are also two di�erent minimizers A and B such that there exists exactly one

pivotal vertex for A and B, say u. Since A and B are both minimizers, by (16) we have

φA(ρ) = φB(ρ) = min
γ∈Φ

γ(ρ).

Hence, it su�ces to prove that φA 6= φB .

Let i := lvl(u). We claim that the coe�cients of φA and φB standing by the variable ρi are di�erent.

Letting L := {e | lvl(e) = i}, we see that these coe�cients are respectively equal to∑
e∈A∩L

id(e) and

∑
e∈B∩L

id(e).

Now recall that u is the only pivotal vertex of A and B. Hence, as both A and B are matchings, we

observe that A ∩ L and B ∩ L di�er only in the edge that is incident to u (or lack thereof). Since the two

edges incident to u in A ∩ L and B ∩ L have di�erent identi�ers (or one is non-existent), it follows that∑
e∈A∩L id(e) 6=

∑
e∈B∩L id(e). This concludes the proof.
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Now observe that linear forms from Φ have coe�cients upper bounded by m · n < n4
. Hence, we

can again combine Lemma 9.6 with Lemma 8.7 (applied for N = n2
) to infer that ωr isolates MM(G) with

probability at least
1
2 .

10 Directions for further research

In this paper we presented several isolation schemes for NP-complete problems, and we showed that

analogues of decomposition-based methods such as Divide&Conquer can also be used to design more

randomness-e�cient isolation schemes. While we provide nearly matching lower bounds for all our re-

sults, at least as far as the number of random bits is concerned, we still leave open a number of interesting

open questions:

1. Can we improve our isolation schemes to have weights that are only polynomial in n, while not

increasing the number of used random bits? Note that in our approach, the use of large weights

is crucial for the application of Lemma 3.1 that deals with interactions between di�erent partial

solutions in our isolation schemes.
3

2. Can we shave o� the log factors in the number of used random bits in our results? While some of

the log n factors seem to be inherent in our ideas, there still might be a little room. For example,

Melkebeek and Prakriya [55] presented an isolation scheme for reachability that usesO(log1.5(n))-

random bits. Perhaps with their ideas one can get the same guarantees for isolating Hamiltonian

cycles in constant treewidth graphs.

3. Does the (even more) natural isolation scheme work as well? Many of our isolation schemes draw

several random prime numbers and assign a weight that is obtained by concatenating the congruence

class of the vertex/edge identi�er with respect to the di�erent primes. A more natural, but possibly

harder to analyse, scheme would be to sample a single (larger) prime number and de�ne the weights

to be the congruence classes of the identi�ers with respect to that single prime.

4. Our methods allowed us to derandomize polynomial-space algorithms for H-minor free graphs

without signi�cantly increase the running time. Can our methods be used to derandomize other

algorithms likewise?
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