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Abstract
People’s causal judgments exhibit substantial variability, but
the processes that lead to this variability are not currently un-
derstood. In this paper, we studied the within-participant vari-
ability of conditional probability judgments in common-cause
networks by asking participants to respond to the same causal
query multiple times. We establish that these judgments indeed
exhibit substantial within-participant variability. This variabil-
ity differs by inference type and is related to the extent to which
participants commit Markov violations. The consistency and
systematicity of this variability suggests that it may be an im-
portant source of evidence for the cognitive processes that lead
to causal judgments. The systematic study of both within- and
between-person variability broadens the scope of behavior that
can be studied in causal cognition and promotes the evalua-
tion of formal models of the underlying process. The data and
methods provided in this paper provide tools to enable the fur-
ther study of within-participant variability in causal judgment.
Keywords: causal reasoning; process models; variability;
Markov violations

Introduction
Causal relationships are a central way in which humans ex-
perience the world. Causal knowledge affects what decisions
we make, how we categorize objects, and what counts as
a good explanation (for summaries, see Sloman, 2005; Slo-
man & Lagnado, 2015; Waldmann, 2017). One of the main
tools in studying causal cognition has been the theoretical
framework known as causal graphical models (CGMs) (Pearl,
2000). CGMs have been shown to provide a generally good
account of the causal judgments that people make. However,
causal graphical models provide a computational level ac-
count that specifies what causal judgements are made, but not
necessarily how people make them. Given the importance of
causal knowledge to higher-level cognition, surprisingly lit-
tle attention has been given to the processes by which people
make such sophisticated judgments. In addition, recent em-
pirical investigations have identified multiple systematic de-
viations from CGM predictions in human data (Rehder, 2014;
Rehder & Waldmann, 2017; Davis & Rehder, 2020; Rottman
& Hastie, 2016; Davis & Rehder, 2017). To account for these
deviations, researchers have developed multiple, mostly de-
scriptive, theories (Rehder, 2014, 2018; Rottman & Hastie,
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2016; Trueblood et al., 2017). These theories have been hard
to distinguish as they have been developed to account for the
same data, and they vary in how much light they shed on the
process by which people generate causal judgments.

How can we evaluate which process generated a judgment?
The predominant approach is to assess the predictions of mul-
tiple models against the average judgments of participants.
This approach is principled and effective, but in a field as rich
as causal cognition, utilizing only averaged data has not been
able to convincingly identify the best model out of the multi-
tude that have been proposed (Rehder, 2014, 2018; Rottman
& Hastie, 2016). Other data can help with this underdeter-
mination problem. For example, in judgment and decision
making the popular diffusion decision model has exhibited
considerable success in not merely accounting for mean judg-
ments, but also explaining full distributions of response vari-
ables (Ratcliff et al., 2016). In this project, we use the full
distribution of causal judgments as a new source of informa-
tion about underlying cognitive processes involved.

A few studies have remarked on the considerable variabil-
ity in human causal judgments (Davis & Rehder, 2020; Re-
hder, 2014; Rottman & Hastie, 2016). However, it is hitherto
unclear to what extent that variability represents within- or
between-participant variability. Measuring within-participant
variability requires a large number of independent measure-
ments of the same type of judgment from the same partici-
pant. Whereas some studies have measured the same judg-
ment type more than once, practical concerns have prevented
them from being gathered on a scale large enough to estimate
a full response distribution.

The major difficulty is that asking subjects to make the
same judgment repeatedly is likely to yield measures that are
not independent. Other areas that commonly elicit repeated
measurements often have stimuli such as random-dot motion
arrays that can be presented repeatedly without participants’
awareness. Typical causal judgments do not have this prop-
erty. Stimuli like ours that are composed of discrete symbols
(such as states of causal variables) are susceptible to be rec-
ognized and memorized. This can be a problem particularly
for studying higher order cognition, such as causal reasoning,
due to its more deliberative and conscious nature. In fact,
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storing previous judgments for future use has been proposed
to be an important source of computational savings for lim-
ited agents (Dasgupta & Gershman, 2021). Our challenge
was to design an experiment that elicits independent judg-
ments for repeated causal queries by reducing the likelihood
that participants’ judgments are informed by prior computa-
tions or memory. We attempt to do so by using a symmetri-
cal causal structure, querying participants regarding both the
absence and presence of causal factors, and using the same
parametrization across different domains in order to obtain
multiple measures.

This project aims to understand some features of within-
participant variability in causal judgments. Firstly, we aim to
establish whether there is meaningful within-participant vari-
ability in causal judgments. Secondly, we look to compare
variability across different inference types. Are there differ-
ences between forward (from cause to effect) and backward
(from effect to cause) inferences? Does the information on
which a participant is to base their inference impact variabil-
ity? Thirdly, we investigate whether individual level variabil-
ity is related to a tendency to commit an important systematic
reasoning error known as Markov violations. We then de-
scribe potential models of variability in the causal reasoning
process and provide a comparison of the observed variabil-
ity against their qualitative predictions. We conclude by dis-
cussing the connections between the patterns of variation ob-
served in our study with existing findings in causal cognition
and opportunities for the use of full response distributions in
the study of how people reason with causal information.

Experiment
Materials. We tested causal judgments in five domains: bi-
ology, astronomy, economics, meteorology, and sociology.
Participants were first told that the domain they were about
to study included three binary variables. For example, in the
domain of economics they were told that interest rates could
be either low or normal, trade deficits that were small or nor-
mal, and retirement savings that were high or normal.

Participants were then presented with a description of two
causal relations that formed a common cause network in
which one variable (henceforth referred to as Y ) was a cause
of the two others (X1 and X2). Each causal relationship was
generative and included a description of the mechanism re-
sponsible for that relationship. An example in the domain
of economics is “Low interest rates cause small trade deficits.
The low cost of borrowing money leads businesses to invest in
the latest manufacturing technologies, and the resulting low-
cost products are exported around the world.” All these mate-
rials have been validated by and used in multiple other studies
(Rehder, 2014, 2018; Rehder & Waldmann, 2017).

Procedure. Subjects first studied several screens of infor-
mation about the overall task that established the domains be-
ing studied and the types of inferences that would be pre-
sented during the study. Then, for each domain, initial
screens presented a cover story and a description of the do-

main’s three variables and subsequent screens presented the
two causal links and a diagram of those links. A common
cause network was used in every domain, and participants
were informed that each variable’s baserate was 50% and that
each cause produced its effect “75% of the time”.

When ready, participants were asked three multiple-choice
questions to assess their understanding of the causal relation-
ships. This comprehension check established that they had
learned which variables were causally related, the direction of
those relationships, and that the relationships were probabilis-
tic rather than deterministic. Participants were given three at-
tempts to answer all questions correctly. Once they answered
all questions correctly or after the third attempt participants
could continue with the experiment.

Subjects were then presented with the inference test. Each
trial presented the values of one or two variables and asked
to predict the state of another. For example, a subject might
be told that an economy has low interest rates and a normal
trade deficit and be asked the probability of it having a high
level of retirement savings. Subjects entered their response by
moving a tick on a rating scale whose ends were labeled 0%
and 100%. As an attention check, participants were asked a
comprehension check question at the end of each block. The
order of the five domains, and the 24 test questions within
each domain, was randomized for each participant.

Design and Participants. We chose six particular infer-
ence types to be tested based on the relevant comparisons
they would allow. Firstly we wanted to compare diagnostic
or ‘backward’ inferences in which one has to judge the prob-
ability of a cause based on knowledge of its effects with pre-
dictive (or ‘forward’) inferences in which one reasons from
cause to effect. Second, we assessed the effect of the infor-
mation on which participants had to condition their inference:
consistent information (where the states of the known vari-
ables are in line with the stipulated causal relationships, e.g.
Xi = 1,Y = 1), inconsistent information (e.g. Xi = 1,Y = 0),
and incomplete information (e.g. Xi = 1 and Y unknown).
These factors lead to the six inference types presented in Ta-
ble 1. To obtain multiple measurements, within each domain
each inference type was queried four times by (a) varying
whether the role of Xi was filled by X1 or X2 (possible be-
cause of the symmetry of the common cause structure) and
(b) asking about both the presence and the absence of the to-
be-inferred variable (using P(Xi = 1|Y ) = 1−P(Xi = 0|Y )).
This resulted in each inference type being queried 20 times
over the five domains and a total of 120 queries per partici-
pant. In those trials where we queried the absence of a vari-
able, we flipped the responses around the midpoint of the
probability scale. Table 1 also presents the normative con-
ditional probabilities based on the 50% base rates and 75%
causal strengths.

It is noteworthy that all of the predictive inferences have
the same normative probability of 80%. These inferences
have been shown to exhibit “Markov violations”, a pattern of
responses in which, rather than adhering to the independence
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Figure 1: Per participant distributions of responses for each inference type. Rows correspond to participants, columns corre-
spond to judgment types, the x-axis indicates the responses in percentage points, and the height corresponds to kernel density
estimate of participant responding at this probability. Each density plot is based on 20 responses.

Table 1: Inference Types and Normative Answers

Diagnostic Predictive
Consistent P(Y |Xi = 1,X j = 1) P(Xi|Y = 1,X j = 1)

= 94% = 80%
Incomplete P(Y |Xi = 1) P(Xi|Y = 1)

= 80% = 80%
Inconsistent P(Y |Xi = 1,X j = 0) P(Xi|Y = 1,X j = 0)

= 50% = 80%

relations between variables stipulated by CGM theory, partic-
ipants’ responses are instead influenced by independent and
hence irrelevant variables (Rehder, 2014; Rottman & Hastie,
2016). For these inferences, the value of one effect (X j)
should not provide information regarding the other effect (Xi)
once the value of Y is known.

All participants made all judgments for all five domains.
37 participants were recruited from Prolific (www.prolific.co)
and received £5.70 for on average 47 minutes (SD = 20.1) of
participation. 8 (22%) participants were removed from anal-
yses for failing at least two attention checks, as had been es-
tablished by the authors before the running of the study.

Results
As described in the Design section, our materials utilized
multiple sources of redundancy to maximize the number of
observations of a single inference. Results were collapsed
over these factors for a total of 20 judgments per inference
types per participant.3

3Due to an error in the materials three diagnostic trials were re-
moved from the Economics domain for all participants, resulting in
19 judgments for the diagnostic inferences.

Figure 1 plots the individual response distributions per in-
ference type. This plot shows substantial between-participant
variability, as we see that some participants’ responses are
more spread out than others, and some participants exhibit
bimodality in some or most judgements whereas others do
not at all. We see similar patterns in the within-participant
variability. The first thing to note is that there is substan-
tial variability in each participant’s responses. Moreover, the
overall spread and the modality of the response distributions
differs per inference type for many participants.

Figure 2 illustrates the response distributions per inference
type over all participants. The first aspect to note is that the
distributions vary by judgment type. If the only source of
variability is unrelated to the process by which causal judg-
ments are generated (such as general response noise), we
would expect similar variability across judgments. The bi-
modality of the response distributions in Figure 2 is also note-
worthy. In particular, we observe a ”spike” of responses at
50%, which has been reported previously (Rottman & Hastie,
2016). This peak at 50% seems to vary along the Informa-
tion factor, with the largest peaks for inconsistent inferences
and smallest for inferences with consistent information. As
expected, the peak is largest for inconsistent diagnostic infer-
ences for which the normative answer is 50%.

Figure 3 shows the means of within-participant standard
deviations and mean judgments per inference type. Note
in Figure 3 that while variability differs by inference type,
it does not track with the mean, suggesting that these re-
sults are not driven by an artifact of the scoring system. We
tested whether variability differs over the inference types us-
ing an repeated measures ANOVA with the standard devia-
tion in responses as the dependent variable and Diagnostic
(yes, no) and Information (consistent, incomplete, inconsis-
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Figure 2: Overall response distributions per inference type.
Vertical grey lines indicate mean responses. Dotted vertical
black lines indicate normative response

tent) as factors. The main effect of Information is significant
(F(2,140) = 9.58, p < .001, BF > 100). This indicates that
the variability is lower for inferences with incomplete infor-
mation (Mean = 10.4, SE = 1.4), than for inferences with
complete information (consistentMean = 14.1, SE = 1.4,
inconsistentMean = 13.7, SE = 1.4). We find mixed evi-
dence of an effect of Diagnostic (F(1,140) = 4.24, p = .041,
BF = .893). Variability was marginally higher for diagnostic
inferences (Mean = 13.5, SE = 1.3) than for predictive infer-
ences (Mean = 11.9, SE = 1.3) when conducting a post-hoc
contrast (di f f erence =−1.58, SE = 0.766, t(140) =−2.01,
p = .041). There was no evidence for a Diagnostic × Infor-
mation interaction (F(2,140) = 2.52, p = .084, BF = 1.16).
That there are differences in variability over inference types
suggest that it results from some underlying process of gen-
erating causal judgements.

To test whether variability and Markov violations are re-
lated, we first separated participants into three (low, medium,
high) equally sized groups based on the standard deviation of
their responses on predictive inferences. Figure 4 plots the
mean predictive judgments by variability group, revealing an
apparent increase in non-normative responding as variabil-
ity increases. We conducted an ANOVA on the responses
on predictive inferences with Information as factor and par-
ticipant’s standard deviation as a covariate. We find a signifi-
cant main effect of Information (F(2,1575) = 29.6, p< .001,
BF > 100), which indicates that overall participants commit-
ted Markov violations, as normatively the Information factor
should not have an effect as the normative response to all pre-
dictive inferences is 80%. We find evidence for a main effect
of each participant’s standard deviation (F(1,1575) = 51.2,
p < .001, BF > 100), indicating that participants with more
variable judgments overall give lower responses, this is also
seen in Figure 4. Most interestingly, we find very strong evi-
dence for an interaction between Information and the group-
ing variable (F(2,1575) = 12.5, p < .001, BF > 100), indi-

Figure 3: Barplot: Mean within-participant standard devi-
ations per inference type. Floating dashes: Mean responses
per inference type. Black vertical lines indicate standard er-
ror. Horizontal dotted lines indicate normative probability.

cating that high variability participants commit larger Markov
violations. This interaction is illustrated in Figure 4 by the
thick black line, which becomes steeper (larger Markov vio-
lations) for the higher variability groups.

We also asked whether the observed variability was related
to cross-domain variability or fatigue effects, rather than the
reasoning process itself. We conducted a repeated measures
ANOVA on the within-participant standard deviation using
the order of blocks as presented as a predictor. We find an
significant effect of block order (F(4,112) = 3.62, p < .001,
BF = 4.15). Post-hoc contrasts reveal that the first block is
significantly different from the latter blocks, which do not
differ from each other (Mean SDs: first block 18.5, second
16.3, third 15.6, fourth 15.4, fifth 14.6). That variability
stayed constant after the first block suggests that it is un-
likely to be due to fatigue. This result also argues against
strategy changes over the blocks, which indicates we largely
succeeded in eliciting independent repeated judgements. One
would expect an increase in variability over the latter blocks
had subjects recognized that they were repeatedly being asked
the same judgment type and so settled on a consistent re-
sponse strategy. To test whether the content domains affected
variability we conducted a repeated measure ANOVA on the
within-participant standard deviation with Inference type and
Domain as factors. We find evidence against an effect of Do-
main on variability (F(4,789) = 1.03, p = .39, BF < .01)
and against an interaction of Domain with Inference type
(F(20,789) = 1.01, p = .44, BF < .01).

Sources of variability
What processes explain the variability in responses to causal
queries? As a guide for future research, in this section we
outline a number of candidate models of the variability in
conditional probability judgments. While fitting these mod-
els against participants’ response distributions is beyond the
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Figure 4: Plots of markov violation per variability group.
Participants were first separated into three (low, medium,
high) equally sized groups based on the variability in their
responses on predictive inferences. Grey thin lines repre-
sent the mean responses of individual participants on the pre-
dictive inferences. Black thick lines represent the mean re-
sponses per group, the vertical bars indicate standard errors.
The dashed lines represent the normative response of 80%.

scope of this paper, we discuss the correspondence of their
qualitative predictions with the results of our experiment.

One possibility is that the observed variability in responses
is entirely independent from the cognitive process by which a
causal judgment is generated. It could be that people have a
stable causal representation and strategy to arrive at a causal
judgment, but that the process of responding to a query re-
sults in some noise, e.g. through motor noise in using a slider
or some general task noise. In this case one would expect
response distributions that are centered at the normative an-
swer, such as predicted by the Beta inference model (Rottman
& Hastie, 2016). Our findings provide evidence against this
possibility: response distributions are often multi-modal (see
Figure 2), and variability differs by inference type and seems
to be related to patterns of non-normative responding.

Another possibility could be that the source of variability
in causal judgments stems from uncertainty about the param-
eters of the described causal network. For example, rather
than believing that the causal strength of A on B is precisely
.75, this value may have some variance. Because the CGM
framework models causal judgments as being computed from
a causal network, this would result in variation in the resul-
tant causal judgments if a participant reasoned with slightly
different parameter values for each inference. Such an ac-
count may explain increased variability in diagnostic infer-
ences, as according to the CGM framework these require the
processing of an additional parameter, the base rate of the
cause (Fernbach et al., 2011). It is unclear how this approach
would explain why judgments where two pieces of informa-
tion are given are more variable than only one piece, as the
CGM framework would predict that there is no change in the

number of parameters that need to be considered. In addition,
this CGM-based account is incompatible with our observed
Markov violations. See the General Discussion for further
discussion of these patterns of judgments.

One salient pattern in the data is the “spiking” at 50%.
This has also been observed in between-subjects data like that
from Rottman and Hastie (2016. Responses at 50% may re-
flect guessing or responding in some default manner. One
possibility is that one of the above models, in combination
with a probability of responding at 50%, can explain the ob-
served variability. While this may account for some variance,
such a model would still need to explain why the prevalence
of these 50% responses in varies by inference type. In par-
ticular, it has to provide an account of why those spikes are
largest for inconsistent inferences and smallest for consistent
inferences. One explanation could be that participants are
more likely to guess when the information provided for an
inference is more ambiguous.

Both response noise and uncertainty about parameters are
compatible with the normative CGM framework being the un-
derlying process used to generate causal judgments. Other
models of causal reasoning predict variability as a conse-
quence of the reasoning process itself. The mental model the-
ory of causation stipulates that causal judgments are rendered
from imagined concrete states, as determined by the causal
structure that is being reasoned about (Johnson-Laird et al.,
2015). A similar account from Davis & Rehder (2020) mod-
els these imagined states as being the result of a structured
mental search through the space of possible situations, in the
form of a Markov Chain Monte Carlo sampling process. The
stochastic nature of this sampling process introduces variabil-
ity. And while not explicitly designed as a process model,
quantum models of causal reasoning may make unique pre-
dictions by virtue of participants varying in the dimensional-
ity of their representations (Trueblood et al., 2017).

While all of these accounts make predictions about re-
sponse distributions, the Mutation Sampler is the only model
for which predictions about response distributions have been
explicitly reported (Davis & Rehder, 2020). One of these pre-
dictions is that of spikes at 50% (resulting in multimodal dis-
tributions), which appear to be borne out in our data. More-
over, the Mutation Sampler predicts an increase in spikes for
inconsistent trials because it incorporates a mechanism for
default responding at 50% when the sampling process does
not provide information to answer the query. This is more
likely for inferences with inconsistent information as states
with incongruous variable values are sampled less often.

Discussion
This article takes the first step in bringing the field of causal
reasoning in line with other domains of cognitive science that
take into account the variability of judgments and not just
their averages. As exemplified by the prolific use of the diffu-
sion decision model (Ratcliff et al., 2016), response distribu-
tions provide more sensitive signals to underlying cognitive
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processes. We consider the development of an experimental
design that elicits multiple measurements of the same causal
query to be a primary contribution of this project.

Our findings show, for the first time, that there is indeed
meaningful within-participant variability in causal reasoning.
That our data exhibit similar variability to that in between-
subjects studies, suggests that it largely arises from the pro-
cesses by which individuals generate causal inferences. That
it varies with the type of causal inference supports the addi-
tional conclusion that the variability at least partly reflects a
decision-making process rather than noise (e.g., noise in mo-
tor responses) or some other factor about individual partici-
pants (Rottman & Hastie, 2016).

We found mixed evidence that the direction of reasoning
might matter: Diagnostic (from effect to cause) inferences
were overall more variable than predictive (cause to effect)
inferences. This squares nicely with the often repeated claim
is that it is easier to think in the direction from cause to effect
(Tversky & Kahneman, 1982). This finding adds to the ex-
isting empirical literature on differences between diagnostic
and predictive reasoning, which has reported that people take
longer to respond to diagnostic queries (Fernbach & Darlow,
2010) and that they do not neglect possible alternative causes
(which they tend to do for predictive inferences) (Fernbach et
al., 2010). It has also been argued that diagnostic reasoning is
more comparative (Fernbach et al., 2011), and CGM theory
stipulates that diagnostic reasoning requires the incorporation
of additional information, namely the prior probability of the
cause. That the more variable diagnostic judgments have also
been found to be more difficult suggests that the observed re-
sponse distributions reflect the processes by which these judg-
ments are rendered.

The information provided to participants in conditional in-
ferences also matters: knowledge of all non-queried variables
leads to an increase in variability, while incomplete informa-
tion seems to reduce it. These findings are somewhat sur-
prising. One might expect that additional information would
result in less uncertainty over the possible values of an un-
known variable. We find the opposite. It might be that more
pieces of information result in more variability by virtue of
there being more ways to process two pieces of information
versus one. A related explanation appeals to stimulus encod-
ing. When more pieces of information are provided as part
of the stimulus, it might be more probable that there is more
variation in whether one or more pieces of the stimulus are
encoded incorrectly on a portion of the trials.

We also found a relationship between violations of the
causal Markov condition and variability over participants.
Participants who are more variable tended to exhibit stronger
Markov violations. This finding squares with a large liter-
ature suggesting that Markov violations are a key source of
evidence for the claim that the normative CGM framework
is not an accurate model of the true underlying process that
people use to draw causal judgments (Rehder, 2014; Rottman
& Hastie, 2016; Trueblood et al., 2017). Importantly, Markov

violations are by definition incompatible with any model that
uses the CGM framework as its core representation, and
therefore defies simple interpretations of the observed vari-
ability as response noise or uncertainty about the parameters
of the causal model. Instead, it appears to signal that a com-
mon underlying process drives both Markov violations and
part of the observed variability. This underlying process may
be related to individual factors. One such factor might be a
difference in reasoning strategy or style, which would be in
line with findings relating Markov violations to tendency to
engage less in reflective thought (Trueblood et al., 2017). An-
other possible factor may be limitations in working memory
capacity, as proposed by Davis and Rehder (2020).

The experimental design used in this study has limitations.
A major experimental obstacle was eliciting 24 unique judg-
ments for identical causal queries. Variability in judgments
may have resulted from variability in interpretation of exper-
imental materials, rather than in the causal reasoning process
itself. For example, people may have different beliefs about
the causal relationships between societal factors than between
features of stars. We believe this possibility cannot account
for all the observed variability, as we found no differences in
variability over domains and our usage of the same parame-
ters for all domains reduces this possibility further (see also
earlier discussion of uncertainty in parameters as a source
of variability). Another limitation is our use standard devi-
ation as an index of variability. Since the distributions are
not unimodal this measure does not necessarily capture all
relevant information in the response distributions. Lastly, we
only tested a subset of the possible inferences in one partic-
ular causal inference task. The extent to which our findings
apply to other inferences or tasks is an open question.

We discussed the correspondence between our findings and
the qualitative patterns of variability in potential models of
the causal reasoning process. Fitting full response distribu-
tions is a challenging computational and statistical problem
that goes beyond the scope of this paper. We do wish to em-
phasize that future efforts should focus on this challenge, as
modeling more than just averaged judgments will help im-
prove our understanding of the cognitive processes underly-
ing causal reasoning.

Conclusion
Causal reasoning is a core cognitive activity. Understand-
ing the processes by which people generate causal judgments
will help us better understand a range of cognitive activi-
ties from decision-making to categorization. In this paper
we presented the first investigation of within-participant vari-
ability in causal judgments. This variability differs by infer-
ence type, is related to systematic reasoning errors, and is not
easily explained by simple additions to the dominant CGM
framework for causal inference. We hope that the data and
methods presented in this paper will be useful in broadening
the scope of behavioral signals used to study how people draw
causal inferences.
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