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ABSTRACT
Background: Polyphenols are natural compounds with anticarcino-
genic properties in cellular and animal models, but epidemiological
evidence determining the associations of these compounds with
thyroid cancer (TC) is lacking.
Objectives: The aim of this study was to evaluate the relations
between blood concentrations of 36 polyphenols and TC risk in EPIC
(the European Prospective Investigation into Cancer and Nutrition).
Methods: A nested case–control study was conducted on 273 female
cases (210 papillary, 45 follicular, and 18 not otherwise specified
TC tumors) and 512 strictly matched controls. Blood polyphenol
concentrations were analyzed by HPLC coupled to tandem MS after
enzymatic hydrolysis.

Results: Using multivariable-adjusted conditional logistic regression
models, caffeic acid (ORlog2: 0.55; 95% CI: 0.33, 0.93) and
its dehydrogenated metabolite, 3,4-dihydroxyphenylpropionic acid
(ORlog2: 0.84; 95% CI: 0.71, 0.99), were inversely associated with
differentiated TC risk. Similar results were observed for papillary
TC, but not for follicular TC. Ferulic acid was also inversely
associated only with papillary TC (ORlog2: 0.68; 95% CI: 0.51, 0.91).
However, none of these relations was significant after Bonferroni
correction for multiple testing. No association was observed for any
of the remaining polyphenols with total differentiated, papillary, or
follicular TC.
Conclusions: Blood polyphenol concentrations were mostly not
associated with differentiated TC risk in women, although our study
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raises the possibility that high blood concentrations of caffeic, 3,4-
dihydroxyphenylpropionic, and ferulic acids may be related to a
lower papillary TC risk. Am J Clin Nutr 2021;113:162–171.

Keywords: polyphenol, biomarkers, thyroid cancer, EPIC, nested
case–control study

Introduction
Thyroid cancer (TC) is the most common endocrine cancer and

is classified into 2 main groups: differentiated (mostly papillary
and follicular) and nondifferentiated (e.g., anaplastic) carcinomas
(1). TC is more frequent in women than in men, and its
incidence has been increasing over the last 3 decades (2), which
is partially attributable to overdiagnosis (3). To date, only few
risk factors have been established (i.e., benign thyroid disease,
radiation exposure, and body size) (4, 5). However, the role of
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dietary factors in TC carcinogenesis is not clearly understood
(1).

Polyphenols are bioactive phytochemicals, abundant in the
human diet and showing a high variability in their chemical
structure. Over 500 individual polyphenols have been identified
from dietary sources, almost exclusively plant-based foods
(6). Once ingested, polyphenols are partially absorbed and
conjugated in both the gut mucosa and liver. Many of the
nonabsorbed compounds reach the colon, undergo extensive
catabolism reactions by the microbiota, and finally can be
absorbed as simple phenolic acids (7, 8).

Established biological properties of polyphenols include
antioxidant, anti-inflammatory, and chemopreventive effects (9).
Polyphenols have been shown to induce apoptosis and inhibit
cell proliferation and invasion in TC cells (10). However,
epidemiological evidence on the association between polyphenol
intake and TC risk is scarce and inconclusive. In a US cohort,
dietary flavan-3-ol intake was negatively, whereas flavanones
were positively, related to TC risk (11). In a previous analysis of
dietary polyphenol intake and differentiated TC risk in the EPIC
(European Prospective Investigation into Cancer and Nutrition)
cohort the results were null, except in subjects with BMI (in
kg/m2) ≥25, where inverse associations with intake of phenolic
acids were detected (12). However, the assessment of polyphenol
exposures using dietary questionnaires and food composition
databases has well-known limitations. Polyphenol biomarkers
constitute an alternative and objective way to estimate polyphenol
exposures, taking into account interindividual variations in
bioavailability (13, 14).

We hypothesized that polyphenols may have a preventive role
in differentiated TC and polyphenol biomarkers may capture
dietary exposure better than questionnaires. Therefore, our aim
was to explore the associations between 36 blood polyphenol
concentrations and differentiated TC risk, and the difference
between TC histological subtypes, in women in a nested case–
control study within the EPIC cohort.

Methods

Study population, sample, and data collection

EPIC is an ongoing multicenter prospective cohort study that
enrolled 521,324 men and women, mainly between the ages
of 35 and 70 y, predominantly from the general population
of 10 European countries in the 1990s (15). All participants
gave written informed consent, and the study was approved by
the Ethics Review Committee of the International Agency for
Research on Cancer (IARC) and by the local ethical committees
of the individual EPIC centers.

At baseline, habitual food and nutrient intake over the previous
year was assessed via a validated center/country-specific dietary
questionnaire (15) and the standardized EPIC Nutrient Database
(16). Anthropometric data were measured, except in EPIC-
Oxford, Norway, and France, where they were self-reported (15).
Blood samples, from ∼80% of the EPIC cohort, were collected
at recruitment according to standardized procedures and stored
at the IARC under liquid-nitrogen (−196◦C) for all countries,
except in Denmark where they were stored under nitrogen-vapor
(−150◦C) (15).
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Endpoint assessments

Primary incident TC cases were identified through record
linkage with regional cancer registries in most of the cen-
ters, except in France, Germany, Greece, and Naples (Italy),
where follow-up was based on a combination of methods,
including health insurance records, cancer and pathology reg-
istries, and active follow-up evaluation of study participants
and their next-of-kin. TC was defined as code C73 in the
10th Revision of the International Classification of Diseases
(ICD-10). This analysis focused on differentiated TC, i.e.,
papillary (morphologic codes: 8050, 8130, 8260, 8340–8344,
and 8350) and follicular carcinomas (morphologic codes: 8290
and 8330–8335), and not otherwise specified, which are likely
to also be papillary carcinomas (8000, 8010, 8140). TC cases
with rare or missing histological types (medullary, anaplastic,
lymphoma, other morphologies) were not included. For each
EPIC center, closure dates of the study period were defined
as the latest dates of complete follow-up for both cancer
incidence and vital status (between February 2011 and December
2015).

Nested case–control design

Only incident female TC cases were selected among partic-
ipants with available blood samples at baseline, because the
number of TC cases in men is very low in EPIC (n = 76) (17).
Female controls were selected by incidence density sampling
from all cohort members alive and free of cancer (except
nonmelanoma skin cancer) at the time of diagnosis of the
corresponding case and were also matched by study center,
duration of follow-up, age (±1 y), date of blood collection (±3
mo), time of blood collection (±1 h), and fasting status at the
time of blood collection [<3 h (not fasting), 3–6 h (in between),
or >6 h (fasting)]. For every case, 2 matched controls were
identified. For some controls, there was not sample available as
they were leftovers from a previous study (17).

Laboratory measurements

Samples—cases and matched controls—were leftovers of a
previous EPIC study (17). No samples from Sweden remained
for the analysis. Therefore, all samples experienced 1 freeze–
thaw cycle before polyphenol analyses at the IARC. Polyphenol
concentrations in biological samples are generally stable after
freeze–thaw cycles (18, 19). Citrated plasma was used for
the laboratory analyses except for the samples from Denmark
(serum). Table 1 lists the 36 polyphenols measured. Blood
polyphenols were measured by differential isotope labeling and
LC electrospray ionization tandem MS. Detailed information
on the method has been published elsewhere (20). Limits
of quantification (LOQs) for the polyphenols varied between
0.11 nmol/L for daidzein and 44.4 nmol/L for quercetin and
isorhamnetin. Blood polyphenol concentrations that fell below
the LOQ were set to values corresponding to half the LOQ.
All intrabatch CVs were <10%; whereas, all interbatch CVs
were <20% (except for phloretin and enterodiol, for which the
CVs were 22.0% and 21.5%, respectively). Samples from cases
and matched controls were analyzed together, within the same
analytical batch.

Statistical analyses

Medians [IQRs] of blood polyphenol concentrations of cases
and controls were calculated and compared using the Wilcoxon
Signed Rank test. Spearman rank correlation coefficients were
calculated to assess the correlations among blood polyphenol
concentrations in the controls. Means ± SDs, medians [IQRs], or
frequencies (where appropriate) of baseline characteristics were
computed and compared between cases and controls. Baseline
characteristic differences between cases and controls were tested
by conditional logistic regression.

According to our power analysis calculations, a total of 273
cases and matched controls (1:2) will allow us to detect an
exposure–disease association with a β = 0.80 for an OR of 0.6
for the highest compared with lowest quartiles of exposure in
the control population, assuming α = 0.05 (21). The estimated
disease prevalence is 0.2% (12).

Multivariable conditional logistic regression, stratified by
case–control set, was used to compute ORs and the corresponding
95% CIs for the associations between blood polyphenol concen-
trations and differentiated TC risk. The quality of the models
was checked using graphical methods and a goodness-of-fit test.
Blood polyphenol concentrations were categorized into quartiles
based on the distribution of blood concentrations in controls.
Tests for linear trend were performed by assigning the medians of
each quartile as scores and entering this variable as a continuous
term in the logistic regression models. Blood polyphenol concen-
trations were also analyzed as continuous variables, after log2

transformation. ORlog2 estimates can be interpreted as the RR
associated with a doubling in the blood polyphenol concentration.
Possible nonlinear associations were tested using restricted cubic
spline models. The basic model was conditioned on matching fac-
tors only, whereas the multivariable model was further adjusted
for BMI, alcohol consumption (g/d), and age of menarche (y).
Other lifestyle, anthropometric, and reproductive variables such
as smoking status (never, current, former, unknown), physical
activity using the Cambridge index (inactive and moderately
inactive, moderately active and active, unknown) (22), education
level (none, primary, technical/professional, secondary, higher
education, unknown), menopausal status [premenopausal, post-
menopausal, perimenopausal, surgical postmenopausal (bilateral
oophorectomy)], parity (no, yes, unknown), number of full-term
pregnancies (nulliparous, 1, 2, 3, ≥4, unknown), breastfeeding
(no, yes, unknown), ever oral contraceptives use (no, yes,
unknown), ever hormonal replacement therapy use (no, yes,
unknown), and prevalent diabetes (no, yes, unknown) were
evaluated as potential confounders, but were not included in the
final model because they were not different (P value > 0.1)
between cases and controls in the logistic regressions conditional
on matching variables. Missing values were retained by creating
a separate category (unknown) for categorical variables.

Similar conditional logistic regression models were conducted
for polyphenols (caffeic acid and 3,4-dihydroxyphenylpropionic
acid) which were significantly associated with differentiated
TC risk by tumor-node-metastasis (TNM) stage (low: T1–T2
compared with high: T3–T4) and histological type (papillary
compared with follicular), and heterogeneity by subgroups was
tested using the Wald test assessed with the SAS macro %subtype
(23). Moreover, modification of the ORs by age at blood
collection (<48, 48–55, >55 y), education level (primary or
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TABLE 1 Median [IQR] plasma polyphenol concentrations and numbers of samples with concentrations below the LOQ among differentiated thyroid
cancer cases and controls1

Cases (n = 273) Controls (n = 512)
P for

differences2Plasma concentrations, nmol/L n (%) < LOQ Median [IQR] n (%) < LOQ Median [IQR]

Flavonoids
Apigenin 1 (0.2) 10.9 [10.1–12.4] 0 11.2 [10.0–12.7] 0.26
Catechin 112 (41) 12.0 [5.6–18.2] 215 (41) 12.2 [5.6–16.9] 0.61
Daidzein 0 7.9 [5.2–17.5] 2 (0.4) 8.0 [5.6–16.9] 0.61
Epicatechin 132 (48) 11.4 [5.6–15.4] 292 (55) 5.6 [5.6–15.0] 0.11
Epigallocatechin3 252 (91) — 496 (94) — —
Equol 41 (15) 0.4 [0.2–0.7] 58 (11) 0.4 [0.2–0.7] 0.61
Gallocatechin3 271 (99) — 523 (99) — —
Genistein 0 4.3 [2.0–11.4] 3 (1.1) 4.1 [2.2–10.3] 0.97
Hesperetin 68 (25) 2.3 [1.1–19.3] 142 (27) 2.2 [1.1–15.2] 0.67
Kaempferol 0 84.0 [73.0–97.0] 0 84.0 [74.0–94.5] 0.91
Naringenin 8 (1.6) 3.1 [1.3–11.9] 6 (2.2) 3.4 [1.6–9.4] 0.84
Phloretin 179 (65) 1.1 [1.1–2.6] 334 (63) 1.1 [1.1–2.8] 0.59
Quercetin 0 142.0 [123.0–161.0] 0 142.0 [123.0–165.0] 0.61

Phenolic acids
3-Hydroxybenzoic acid 2 (0.4) 17.3 [10.8–30.9] 2 (0.7) 16.7 [10.9–26.3] 0.53
4-Hydroxybenzoic acid 0 348.0 [313.0–399.0] 0 346.0 [314.5–392.5] 0.71
3,5-Dihydroxybenzoic acid 3 (0.6) 21.2 [12.3–40.7] 1 (0.4) 19.1 [11.6–41.3] 0.70
3-Hydroxyphenylacetic acid 17 (3.3) 53.0 [20.8–101.8] 35 (13) 56.5 [21.5–108.3] 0.67
4-Hydroxyphenylacetic acid 3 (0.6) 249.0 [178.0–341.0] 27 (10) 233.5 [182.0–306.0] 0.22
3,4-Dihydroxyphenylacetic acid 1 (0.2) 21.8 [16.8–28.4] 2 (0.4) 21.9 [16.9–28.0] 0.75
3,4-Dihydroxyphenylpropionic acid 13 (2.5) 18.0 [14.3–26.4] 17 (6.2) 19.3 [14.6–30.4] 0.053
3,5-Dihydroxyphenylpropionic acid 2 (0.4) 27.1 [17.0–48.8] 7 (2.6) 26.5 [17.0–53.5] 0.73
Caffeic acid 0 131.0 [116.0–151.0] 0 135.0 [118.0–157.0] 0.054
m-Coumaric acid 40 (15) 5.7 [2.6–10.9] 77 (15) 5.0 [2.1–12.2] 0.63
p-Coumaric acid 0 25.4 [21.2–31.1] 1 (0.4) 25.6 [21.5–31.5] 0.50
Ferulic acid 0 104.0 [71.0–183.0] 0 110.5 [71.0–206.5] 0.38
Gallic acid 16 (3.1) 16.2 [13.7–20.3] 26 (9.5) 16.1 [13.6–19.9] 0.76
Gallic acid ethyl ester3 235 (85) — 415 (79) — —
Homovanillic acid 0 82.0 [65.0–106.0] 1 (0.4) 79.0 [64.0–106.0] 0.59
Isorhamnetin 4 (0.8) 65.0 [57.0–76.0] 1 (0.4) 66.0 [57.0–76.0] 0.77
Protocatechuic acid 0 232.0 [215.0–255.0] 2 (0.7) 230.5 [214.0–257.0] 0.88
Vanillic acid 0 197.0 [178.0–225.0] 2 (0.4) 195.0 [176.0–230.0] 0.97

Stilbenes
Resveratrol 106 (38) 2.5 [1.1–3.9] 199 (38) 2.5 [1.1–3.8) 0.91

Lignans
Enterodiol 62 (23) 1.0 [0.5–2.0] 110 (21) 1.0 [0.5–2.1] 0.55
Enterolactone 4 (0.8) 8.6 [3.7–15.4] 5 (1.8) 8.3 [3.8–15.8] 0.98

Tyrosols
Hydroxytyrosol 117 (42) 12.0 [5.6–15.2] 222 (42) 12.2 [5.6–15.5] 0.37
Tyrosol 0 3.5 [2.7–5.1] 3 (1.1) 3.7 [2.7–5.3] 0.25

1LOQ, limit of quantification.
2From Wilcoxon Signed Rank tests.
3LOQ = 11.1 nmol/L for epigallocatechin and gallocatechin; LOQ = 1.11 nmol/L for gallic acid ethyl ester.

lower compared with secondary or higher), smoking status (never
compared with ever), physical activity (inactive or moderately
inactive compared with moderately active or active), BMI
(<25 compared with ≥25), menopausal status (premenopausal,
perimenopausal, postmenopausal), alcohol consumption (≤5 g/d
compared with >5 g/d), time to diagnosis (<4, 4–7, >7 y), and
countries (high compared with low incidence for differentiated
TC) was evaluated using a likelihood ratio test. EPIC countries
with TC incidence rates per year of >1 in 10,000 in women
(i.e., France, Germany, Greece, Italy, and Spain) were considered
to have high TC incidence, whereas the United Kingdom,
Netherlands, Denmark, and Norway were considered to have low
TC incidence.

To account for multiple comparisons, the Bonferroni correc-
tion was applied, giving a stricter P value threshold for statistical
significance at 0.0015, based on the 33 polyphenols analyzed (P
value < 0.05/33 = 0.0015). Blood polyphenol concentrations
associated with differentiated TC risk at P values between
<0.05 and 0.0015 were selected as candidates for independent
validation studies. All analyses were performed using SAS
Software version 9.3 (SAS Institute Inc.).

Results
The current study included 273 incident differentiated TC

cases (210 papillary, 45 follicular, and 18 not otherwise specified
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TABLE 2 Baseline characteristics among differentiated thyroid cancer cases and controls1

Characteristic Cases (n = 273) Controls (n = 512) P value2

Age at blood collection, y 50.0 ± 8.6 50.0 ± 8.7 Matched
BMI, kg/m2 26.4 ± 4.7 25.6 ± 4.6 0.007
Alcohol intake, g/d 1.4 [0.1–8.1] 2.6 [0.2–11.2] 0.019
Coffee intake, g/d 120 [41–296] 129 [60–300] 0.82
Age at menarche, y 12.7 ± 1.5 12.9 ± 1.5 0.069
Physical activity 0.14

Inactive or moderately inactive 192 (70.3) 341 (66.6)
Moderately active or active 80 (29.3) 167 (32.6)

Smoking status 0.77
Never 162 (59.3) 311 (60.7)
Former 53 (19.4) 98 (19.1)
Smoker 53 (19.4) 99 (19.3)

Highest educational level 0.26
None 28 (10.3) 46 (9.0)
Primary school completed 98 (35.9) 180 (35.2)
Technical/professional school 54 (19.8) 86 (16.8)
Secondary school 38 (13.9) 92 (18.0)
Longer education 49 (18.0) 103 (20.1)

Menopausal status 0.47
Premenopausal 128 (46.9) 242 (47.3)
Postmenopausal 100 (36.6) 194 (37.9)
Perimenopausal 35 (12.8) 64 (12.5)
Surgical postmenopause 10 (3.7) 12 (2.3)

Full-term pregnancies 239 (88.5) 440 (86.4) 0.48
Full-term pregnancies, n 0.84

0 31 (11.5) 69 (13.6)
1 46 (17.1) 85 (16.8)
2 122 (45.4) 214 (42.2)
3 48 (17.8) 96 (18.9)
≥4 22 (8.2) 43 (8.5)

Breastfeeding 191 (71.3) 377 (74.8) 0.25
Ever use of OCs 127 (46.5) 242 (47.3) 0.62
Ever use of HRT 34 (12.8) 69 (13.9) 0.71
Fasting status Matched

<3 h 105 (38.5) 187 (36.5)
3–6 h 41 (15.0) 82 (16.0)
>6 h 125 (45.8) 240 (46.9)

Prevalent diabetes 10 (2.1) 5 (1.9) 1.00

1Values are means ± SDs, medians [IQRs], or n (%) unless otherwise indicated. Numbers may not sum to totals
owing to missing values. HRT, hormone replacement therapy; OC, oral contraceptive.

2From logistic regression conditional on matching variables.

TC tumors) and 512 matched controls after a median follow-up
time of 12.6 y (Supplemental Figure 1). All cases and controls
were women with a mean age at blood collection of 50 y. At
baseline, controls tended to have a lower BMI and to consume
more alcohol than cases (Table 2). Moreover, controls were
more likely to have experienced menarche at an older age than
cases, although the difference was not significant. The rest of the
baseline characteristics were comparable in cases and controls.

Thirty-six polyphenols were measured in blood samples
from cases and controls. Three of them (epigallocatechin,
gallocatechin, and gallic acid ethyl ester) were excluded from
the association analyses because >75% of samples were below
the LOQ (Table 1). Most polyphenols showed similar blood
concentrations in cases and controls, except caffeic acid was
found in slightly lower concentrations in differentiated TC
cases than in controls (Table 1). Moderate correlations were
observed between caffeic and ferulic acids (mainly originating

from coffee intake) (24) and coffee intake (r = 0.39 and r = 0.50,
respectively) and between 3,4-dihydroxyphenylpropionic acid (a
metabolite of caffeic acid formed in the gut) and coffee intake
(r = 0.38).

Several strong correlations were observed between polyphenol
concentrations in blood, such as between 3,5-dihydroxybenzoic
acid and 3,5-dihydroxyphenylpropionic acid (r = 0.85), genistein
and daidzein (r = 0.77), naringenin and hesperetin (r = 0.72),
caffeic acid and 3,4-dihydroxyphenylpropionic acid (r = 0.64),
and caffeic acid and ferulic acid (r = 0.68), reflecting co-
occurrence in their main food sources or biotransformation
(Supplemental Table 1).

In the multivariable models, blood concentrations of caf-
feic acid (ORlog2: 0.55; 95% CI: 0.33, 0.93) and 3,4-
dihydroxyphenylpropionic acid (ORlog2: 0.84; 95% CI: 0.71,
0.99) were inversely associated with differentiated TC risk
(Table 3), although they did not reach the Bonferroni threshold.

D
ow

nloaded from
 https://academ

ic.oup.com
/ajcn/article/113/1/162/5918403 by guest on 21 January 2022



Polyphenol biomarkers and thyroid cancer 167

TABLE 3 ORs and 95% CIs of differentiated thyroid cancer for log2-transformed polyphenol concentrations1

Basic model2 Multivariable model3

Polyphenols, nmol/L OR (95% CI) P value OR (95% CI) P value

Flavonoids
Apigenin 0.84 (0.59, 1.20) 0.34 0.83 (0.58, 1.19) 0.32
Catechin 1.06 (0.90, 1.26) 0.47 1.13 (0.95, 1.35) 0.17
Daidzein 0.96 (0.85, 1.09) 0.56 0.96 (0.84, 1.09) 0.54
Epicatechin 1.11 (0.93, 1.33) 0.27 1.13 (0.95, 1.36) 0.17
Epigallocatechin — — — —
Equol 0.95 (0.85, 1.05) 0.29 0.95 (0.85, 1.05) 0.32
Gallocatechin — — — —
Genistein 1.01 (0.91, 1.11) 0.92 1.00 (0.91, 1.10) 0.98
Hesperetin 1.03 (0.96, 1.09) 0.43 1.02 (0.95, 1.08) 0.62
Kaempferol 1.07 (0.57, 1.98) 0.84 1.05 (0.56, 1.96) 0.89
Naringenin 1.02 (0.95, 1.10) 0.59 1.01 (0.94, 1.10) 0.71
Phloretin 0.96 (0.82, 1.11) 0.56 0.94 (0.81, 1.09) 0.41
Quercetin 0.73 (0.40, 1.35) 0.32 0.81 (0.44, 1.51) 0.51

Phenolic acids
3-Hydroxybenzoic acid 1.05 (0.90, 1.23) 0.55 1.08 (0.92, 1.27) 0.34
4-Hydroxybenzoic acid 1.24 (0.66, 2.34) 0.50 1.25 (0.65, 2.37) 0.50
3,5-Dihydroxybenzoic acid 0.99 (0.86, 1.14) 0.87 0.99 (0.86, 1.14) 0.88
3-Hydroxyphenylacetic acid 0.99 (0.91, 1.09) 0.91 1.01 (0.92, 1.11) 0.85
4-Hydroxyphenylacetic acid 1.08 (0.86, 1.36) 0.49 1.08 (0.86, 1.36) 0.52
3,4-Dihydroxyphenylacetic acid 0.82 (0.60, 1.10) 0.19 0.83 (0.61, 1.14) 0.25
3,4-Dihydroxyphenylpropionic acid 0.84 (0.71, 0.99) 0.032 0.84 (0.71, 0.99) 0.039
3,5-Dihydroxyphenylpropionic acid 0.99 (0.85, 1.17) 0.94 1.00 (0.85, 1.18) 0.96
Caffeic acid 0.52 (0.31, 0.86) 0.011 0.55 (0.33, 0.93) 0.025
m-Coumaric acid 1.01 (0.93, 1.09) 0.89 1.01 (0.93, 1.10) 0.76
p-Coumaric acid 0.88 (0.62, 1.26) 0.49 0.93 (0.64, 1.34) 0.68
Ferulic acid 0.82 (0.64, 1.04) 0.10 0.82 (0.64, 1.04) 0.10
Gallic acid 0.98 (0.73, 1.32) 0.91 1.06 (0.79, 1.43) 0.71
Gallic acid ethyl ester — — — —
Homovanillic acid 1.02 (0.76, 1.38) 0.88 1.07 (0.79, 1.45) 0.67
Isorhamnetin 0.76 (0.37, 1.57) 0.47 0.71 (0.34, 1.47) 0.36
Protocatechuic acid 0.69 (0.20, 2.40) 0.56 0.76 (0.22, 2.66) 0.66
Vanillic acid 1.05 (0.72, 1.53) 0.81 1.02 (0.70, 1.50) 0.90

Stilbenes
Resveratrol 0.98 (0.86, 1.11) 0.74 1.03 (0.90, 1.19) 0.63

Lignans
Enterodiol 0.98 (0.90, 1.08) 0.71 1.00 (0.91, 1.09) 0.93
Enterolactone 0.98 (0.89, 1.06) 0.57 0.99 (0.91, 1.09) 0.87

Tyrosols
Hydroxytyrosol 0.85 (0.67, 1.08) 0.19 0.90 (0.70, 1.14) 0.37
Tyrosol 0.88 (0.71, 1.09) 0.24 0.92 (0.74, 1.14) 0.44

1No associations exceeded the Bonferroni threshold (P < 0.05/33) = 0.0015.
2From conditional logistic regressions, conditioned on matching factors only (basic model).
3From multivariable conditional logistic regressions, conditioned on matching factors with additional adjustment for BMI, alcohol consumption, and age

of menarche.

In the restricted cubic spline model, no evidence of nonlinearity
was observed for the relations between both caffeic acid and 3,4-
dihydroxyphenylpropionic acid and differentiated TC risk (data
not shown). All other polyphenol concentrations were not related
to differentiated TC risk.

In the results divided by TC histological subtype, inverse asso-
ciations were observed between blood concentrations of caffeic
acid (ORlog2: 0.36; 95% CI: 0.19, 0.68; P-heterogeneity = 0.048),
3,4-dihydroxyphenylpropionic acid (ORlog2: 0.74; 95% CI: 0.61,
0.90; P-heterogeneity = 0.030) (Table 4), and ferulic acid
(ORlog2: 0.68; 95% CI: 0.51, 0.91; P-heterogeneity = 0.062)
and papillary TC tumors; but no associations were detected with

follicular TC tumors. None of the other blood polyphenols were
associated with either papillary or follicular TC tumors (data
not shown). In the subgroup analyses, an inverse association
was observed with blood concentrations of caffeic and 3,4-
dihydroxyphenylpropionic acids in countries with low TC
incidence, but not in countries with high TC incidence (P-
heterogeneity < 0.05). However, none of these results reached the
Bonferroni threshold (P = 0.0015). Similar inverse associations
were observed for the relation between either caffeic acid or
3,4-dihydroxyphenylpropionic acid and differentiated TC risk
across strata of age at blood collection, education level, smoking
status, physical activity, BMI, menopausal status, alcohol intake,
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TABLE 4 ORs and 95% CIs of differentiated thyroid cancer for log2-transformed caffeic acid and 3,4-dihydroxyphenylpropionic acid blood concentrations
stratified by selected variables1

Caffeic acid
3,4-dihydroxyphenylpropionic

acid

Cases, n Controls, n OR (95% CI) P value OR (95% CI) P value

Histological type
Papillary 210 396 0.36 (0.19, 0.69) 0.0482 0.74 (0.61, 0.90) 0.0302

Follicular 45 82 1.52 (0.52, 4.49) 1.26 (0.79, 2.01)
TNM stage

Low: T1–T2 118 218 0.54 (0.26, 1.10) 0.152 0.73 (0.57, 0.95) 0.0402

High: T3–T4 29 56 2.16 (0.46, 10.00) 1.44 (0.90, 2.30)
Thyroid cancer incidence

High-incidence countries3 219 415 0.86 (0.48, 1.56) 0.0104 0.92 (0.77, 1.11) 0.0404

Low-incidence countries5 54 97 0.15 (0.04, 0.54) 0.55 (0.34, 0.89)
Age at blood collection, y

<48 114 211 0.43 (0.16, 1.18) 0.574 0.78 (0.58, 1.06) 0.754

48–55 75 135 0.45 (0.13, 1.57) 0.84 (0.59, 1.20)
>55 84 166 0.64 (0.31, 1.33) 0.90 (0.69, 1.18)

Education
Primary or less 126 226 0.39 (0.14, 1.14) 0.344 0.82 (0.62, 1.10) 0.984

Secondary or more 147 286 0.59 (0.27, 1.31) 0.86 (0.64, 1.17)
Smoking

Never 162 311 0.60 (0.24, 1.50) 0.454 0.79 (0.60, 1.04) 0.994

Ever 106 197 0.48 (0.17, 1.32) 1.04 (0.74, 1.47)
Physical activity

Inactive or moderately inactive 192 341 0.40 (0.18, 0.89) 0.874 0.71 (0.56, 0.91) 0.314

Moderately active or active 80 167 0.19 (0.03, 1.12) 0.72 (0.41, 1.25)
BMI, kg/m2

<25 119 264 0.56 (0.24, 1.31) 0.284 1.02 (0.78, 1.33) 0.544

≥25 154 248 0.56 (0.24, 1.34) 0.89 (0.69, 1.16)
Menopausal status at blood collection

Premenopausal 128 242 0.31 (0.13, 0.78) 0.194 0.78 (0.58, 1.04) 0.604

Perimenopausal 35 64 1.33 (0.16, 10.76) 0.84 (0.52, 1.37)
Postmenopausal (natural and surgical) 110 206 0.69 (0.35, 1.34) 0.92 (0.72, 1.16)

Alcohol intake, g/d
≤5 176 300 0.90 (0.40, 2.03) 0.234 0.89 (0.70, 1.13) 0.614

>5 96 212 0.42 (0.15, 1.12) 0.83 (0.59, 1.16)
Years between blood draw and diagnosis

<4 49 86 1.14 (0.40, 3.31) 0.292 1.02 (0.69, 1.53) 0.174

4–7 56 108 0.38 (0.10, 1.43) 1.01 (0.71, 1.43)
>7 168 318 0.45 (0.23, 0.89) 0.73 (0.58, 0.91)

1TNM, tumor-node-metastasis.
2P-heterogeneity based on the Wald test.
3High-incidence countries for differentiated thyroid cancer: France, Germany, Greece, Italy, and Spain.
4P-interaction based on the likelihood ratio test.
5Low-incidence countries for differentiated thyroid cancer: United Kingdom, Netherlands, Denmark, and Norway.

and years between blood draw and diagnosis, denoting no effect
modification (Table 4).

Discussion
In the current prospective nested case–control study, in-

verse trends were observed between blood concentrations of
both caffeic acid and its dehydrogenated metabolite, 3,4-
dihydroxyphenylpropionic acid (also called dihydrocaffeic acid),
and total differentiated TC risk, but they did not reach the
Bonferroni threshold for statistically significant associations
when corrected for multiple comparisons. The remaining blood
polyphenol concentrations were not associated with total differ-
entiated TC risk. Interestingly, the 2 inverse associations were

restricted to papillary TC and were more striking in countries
with low incidence of TC. For 3,4-dihydroxyphenylpropionic
acid, the negative association was also stronger in stage T1–T2
than in stage T3–T4 carcinomas. Papillary TC and low-stage
thyroid tumors are more likely to be related to overdiagnosis than
are high-stage TCs in countries with high incidence. However,
overdiagnosis is not related with these TC tumor types in
countries with low incidence (3).

To our knowledge, this is the first study evaluating the relations
between blood polyphenol concentrations and TC risk. Although
no results were statistically significant after Bonferroni correc-
tion, concentrations of caffeic, 3,4-dihydroxyphenylpropionic,
and ferulic acids might be inversely associated with papillary
TC risk, but not with follicular TC risk. Caffeic and ferulic
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acids are abundant in human diets, and are mostly present in
an esterified form as chlorogenic and feruloylquinic acids (esters
of caffeic or ferulic acids and quinic acid) (25). They contribute
78% and 19% of total hydroxycinnamic acid intake (mean intake
in Europe = 541.2 mg/d) (26). Caffeic acid in blood mainly
originates from the hydrolysis of chlorogenic acid by the gut
microbiota and from the absorption in the gut of the free form
of caffeic acid (27). Ferulic acid in blood results from both the
hydrolysis of feruloylquinic acid and the O-methylation of caffeic
acid in the liver. Dihydrocaffeic acid is only present in the diet in
very low amounts (26). Dihydrocaffeic acid in blood is mainly
formed by microbial hydrogenation of caffeic acid in the gut
(27). All 3 compounds in both blood, in the current study, and
urine, in a previous analysis including 475 subjects from the EPIC
study (24), showed moderate-to-high correlations with coffee
intake and poor or no correlations with any other tested food
groups, except for ferulic acid and cereals (24). Indeed, a urinary
metabolite of caffeic acid (caffeic acid sulfate) was correlated
to whole-grain rye intake (r = 0.58) in a free-living Swedish
population (28), whereas urinary ferulic concentrations were
increased after an intervention with rye bran bread in humans
(29) and with rye bran in mice (30). Unfortunately, data on
coffee consumption were not available in these analyses, so the
potential confounding effect of coffee on whole-grain cereal was
not measured.

In 3 previous EPIC studies, intakes of phenolic acids (mainly
hydroxycinnamic acids) (12), coffee (31), or total fiber (32)
were not related to the risk of either overall TC or its
histological subtypes (papillary and follicular tumors). Moreover,
no differences in coffee consumption between differentiated
TC cases and controls were observed in our study (Table 2).
Furthermore, the consumption of either whole-grain cereals or
total grains was not associated with TC risk in a series of
hospital-based case–control studies (33) or in a meta-analysis
(34). Differences between results obtained with the measurement
of intake, and those obtained here with biomarkers might be
explained by a more limited accuracy of exposure measurements
when relying on intake data rather than biomarker data (9,
13). In fact, it is difficult to accurately estimate polyphenol
intake via dietary questionnaires owing to the variability of
polyphenol content within the same or similar foods, such as the
heterogeneity of polyphenol composition in the different coffee
types according to brewing methods (espresso compared with
diluted coffee) and cultivars (arabica compared with robusta)
(35, 36). Thus, dietary biomarkers should be more accurate and
objective measurements than dietary questionnaires, accounting
for interindividual variability in phenolic acid bioavailability
(14).

Although the associations were not statistically significant
after Bonferroni correction, they were biologically plausible. The
underlying potential mechanisms of action of caffeic, ferulic, and
3,4-dihydroxyphenylpropionic acids in thyroid carcinogenesis
could be directly associated with their anticarcinogenic properties
(37). In particular, ferulic acid has been shown to modulate cell
cycle arrest, apoptosis, invasion, migration, and colony formation
on TT medullary TC cells (38). Moreover, they have been
indirectly associated with antidiabetic, antiobesity, antioxidant,
and anti-inflammatory properties (9). It is important to bear in
mind that obesity (5), type 2 diabetes (39), and inflammation
(17) are potential risk factors for TC. Plasma concentrations

of total and several individual polyphenols (i.e., daidzein, 3,5-
dihydroxyphenylpropionic acid, 3,4-dihydroxyphenylpropionic
acid, ferulic acid, caffeic acid, and hydroxytyrosol) were
inversely associated with concentrations of high-sensitivity C-
reactive protein in a previous cross-sectional analysis in an EPIC
subsample (40), suggesting that these polyphenols may protect
against harmful health effects related to inflammation. Moreover,
plasma and urinary concentrations of caffeic acid and other coffee
polyphenols were associated with a lower risk of type 2 diabetes
in 2 cohorts (41, 42). Indeed, caffeic and dihydrocaffeic acids
inhibit amyloid formation of human islet amyloid polypeptide
in vitro (43), and decrease glucose uptake and the detrimental
effects of high glucose concentrations in endothelial cells (44).
In addition, caffeic and ferulic acids modulate the activity of
several transcriptional regulatory factors (e.g., AMP-activated
protein kinase, peroxisome proliferator–activated receptor-γ , and
peroxisome proliferator–activated receptor-γ co-activator-1α)
and enzymatic pathways (e.g., fatty acid synthase, 3-hydroxy-
3-methylglutaryl CoA reductase, and acyl-CoA cholesterol
acyltransferase) to control obesity (45).

Caffeic, ferulic, and 3,4-dihydroxyphenylpropionic acids are
compounds of food origin, but they also come from catabolism
by the microbiota (27). Polyphenols can modulate the gut
microbiota toward a more healthy composition (46). Indeed,
dietary chlorogenic acid supplementation improves gut health
in weaned piglets (47). Dysbiosis, an alteration of the gut
microbiota, is associated with intestinal and extraintestinal
diseases, including cancer and metabolic disorders such as
obesity and type 2 diabetes (48, 49). Both TC and thyroid nodules
were associated with the composition of the gut microbiome in 2
observational studies in Chinese populations (50, 51).

Major strengths of this study are its prospective design,
its long follow-up, its relatively large size for a TC study,
and the coverage of several European countries with a wide
heterogeneity in polyphenol exposure. Moreover, the direct
analysis of 36 polyphenols in blood provides a valid measurement
of the endogenous exposure. However, several limitations of
this study also warrant mention. 1) Half-lives of polyphenols
are short to moderate, suggesting that a single measurement of
these biomarkers is more likely to reflect relatively short-term
concentrations, except for polyphenols regularly consumed that
tend to maintain relatively similar concentrations in blood during
the entire day. The 3 phenolic acids inversely associated with TC
risk in the present work mainly originate from coffee, a beverage
most often consumed on a daily basis. 2) Fasting status affects
blood concentrations of polyphenols, particularly polyphenols
coming from food and quickly absorbed. However, TC cases
were matched with controls by fasting status and time of blood
collection to minimize this limitation. 3) We measured blood
polyphenols only once for each individual, so we cannot account
for intraindividual variability and changes in the exposure along
the study follow-up. This issue could be particularly relevant
for a few polyphenols, because they have a relatively poor
intraclass correlation coefficient (ICC) (0.3–0.4), but not for
others (ICC > 0.5) (http://exposome-explorer.iarc.fr/reproducib
ilities). Therefore, our results on a few blood flavonoids may
have been attenuated by partial misclassification. 4) Information
on history of benign thyroid diseases, thyroidectomy among
control subjects, and use of drugs that could interfere with
thyroid function was not available in the EPIC study. 5) Although
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we controlled for a wide range of established TC risk factors,
the possibility of residual confounding still exists, although the
findings were all little affected by adjustment in our study. 6)
We cannot exclude the possibility that our findings were due
to chance, because they did not reach the Bonferroni threshold.
However, it is often considered to be overly conservative and
might have overcorrected the model. Moreover, the findings were
similar in both the general and subgroup analyses (except for
the risk of follicular TC and high TNM stage differentiated
TC) and are biologically plausible. 7) Generalization of the
results should be done cautiously, because our study only
analyzed European women and other populations may show
different genetic backgrounds (e.g., non-European ancestry) and
microbiota composition with possible consequences for phenolic
acid bioavailability.

In summary, this prospective investigation conducted in a
relatively large nested case–control study in women within
the EPIC, a European multicountry cohort, shows that blood
polyphenol concentrations are mostly not associated with TC
risk. However, our study raises the possibility that high blood
concentrations of caffeic, 3,4-dihydroxyphenylpropionic, and
ferulic acids may be related to a lower risk of papillary TC. These
3 compounds are, therefore, interesting candidates for validation
in independent studies on papillary TC.
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