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Abstract

Hepatocellular carcinoma (HCC) development entails changes in liver metabolism.

Current knowledge on metabolic perturbations in HCC is derived mostly from case-

control designs, with sparse information from prospective cohorts. Our objective

was to apply comprehensive metabolite profiling to detect metabolites whose

serum concentrations are associated with HCC development, using biological sam-

ples from within the prospective European Prospective Investigation into Cancer

and Nutrition (EPIC) cohort (>520 000 participants), where we identified 129 HCC

cases matched 1:1 to controls. We conducted high-resolution untargeted liquid

chromatography-mass spectrometry-based metabolomics on serum samples col-

lected at recruitment prior to cancer diagnosis. Multivariable conditional logistic

regression was applied controlling for dietary habits, alcohol consumption, smoking,

body size, hepatitis infection and liver dysfunction. Corrections for multiple compar-

isons were applied. Of 9206 molecular features detected, 220 discriminated HCC

cases from controls. Detailed feature annotation revealed 92 metabolites associated
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with HCC risk, of which 14 were unambiguously identified using pure reference

standards. Positive HCC-risk associations were observed for N1-acetylspermidine,

isatin, p-hydroxyphenyllactic acid, tyrosine, sphingosine, L,L-cyclo(leucylprolyl),

glycochenodeoxycholic acid, glycocholic acid and 7-methylguanine. Inverse risk

associations were observed for retinol, dehydroepiandrosterone sulfate,

glycerophosphocholine, γ-carboxyethyl hydroxychroman and creatine. Discernible

differences for these metabolites were observed between cases and controls up to

10 years prior to diagnosis. Our observations highlight the diversity of metabolic

perturbations involved in HCC development and replicate previous observations

(metabolism of bile acids, amino acids and phospholipids) made in Asian and Scandi-

navian populations. These findings emphasize the role of metabolic pathways

associated with steroid metabolism and immunity and specific dietary and environ-

mental exposures in HCC development.

K E YWORD S

hepatocellular carcinoma, prospective observational cohort, untargeted metabolomics

1 | INTRODUCTION

Primary liver cancer is the second most common cause of death from

cancer worldwide.1 Established risk factors for hepatocellular carci-

noma (HCC), the major histology of primary liver cancers, are chronic

hepatitis infection, aflatoxin exposure, smoking and alcohol abuse,2

but obesity, diabetes and unhealthy dietary and lifestyle habits are

also becoming increasingly recognized as important HCC-risk factors,

particularly in regions where hepatitis infection and aflatoxin expo-

sures are less predominant.3 HCC cases are often diagnosed at late

stages and have limited treatment options, which is worrisome owing

to the growing incidence of this highly fatal disease in many

populations.4 It has been suggested that high obesity and diabetes

rates in some populations are major contributors to the observed inci-

dence rate increases.5 Most HCC cases are considered to develop

within a background of inflammation, liver damage and cirrhosis.

However, a sizeable proportion is thought to develop in the absence

of underlying cirrhosis, hence escaping traditional clinical surveillance

particularly in populations with lower prevalence of hepatitis infection

and alcohol abuse, and higher prevalence of metabolic syndrome and

nonalcoholic fatty liver disease (NAFLD), which are largely obesity

related.6,7 Obesity may also impair the detection of cirrhosis or HCC

by reducing the sensitivity of abdominal ultrasound, a primary tool for

HCC surveillance in high-risk populations.8 Thus, effective HCC con-

trol will need to rely on strategies for both primary prevention and

early detection, necessitating additional research into HCC etiology.

Decreased liver functionality is considered an early event in liver

cancer development and given the central metabolic role of the liver

various metabolic perturbations are very likely to be observed in

blood. In addition, circulating biomarkers indicative of various lifestyle

or environmental exposures that may affect HCC risk are also likely

observable.9 Such metabolic signatures can be identified via various

metabolomic techniques, such as those based on high-resolution liq-

uid chromatography mass spectrometry (LC-MS), which may be

applied to blood samples to observe a broad spectrum of low-molecu-

lar-weight compounds, which may be reflective of various exogenous

exposures and associated with normal endogenous processes or

perturbed metabolic functionality. In fact, several animal and human

studies have already shown that metabolomics can provide novel

insights into pathological processes during development of various

liver diseases,10,11 and provide potentially novel diagnostic biomarkers

of HCC for screening in high-risk populations.12-14 Most of the studies

that have applied metabolic profiling in HCC have been either based

on case-control designs, or conducted on high-risk patient groups (eg,

viral hepatitis, cirrhosis or other chronic liver diseases), or in

populations where more traditional HCC-risk factors predominate.15

However, comparatively very little information is available from pro-

spective, observational cohorts about possible metabolic alterations

What's new?

Changes in liver function precede the development of hepa-

tocellular carcinoma (HCC). Many of these changes can be

detected in the blood, as can biomarkers related to lifestyle

or environmental exposures that may affect HCC risk. In this

study, based on a large, prospective observational cohort,

the authors used high resolution mass spectrometry-based

metabolomics to identify alterations in circulating levels of

92 metabolites associated with HCC risk, 14 of which could

be annotated with high confidence and some of which were

observed up to 10 years prior to diagnosis. These results

offer insight into early metabolic perturbations and mecha-

nisms leading to this deadly cancer.
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related to HCC development, particularly from European or Western

populations.16-18 Information derived from prospective observational

cohorts is important because data and biological samples have been

collected from healthy participants before diagnosis, thus reducing

the biases of recall and reverse causality and allowing considerable

insight into the complex processes of cancer development. For exam-

ple, within the European Prospective Investigation on Cancer and

Nutrition (EPIC) cohort, a number of targeted metabolomic studies (ie,

the measurement of defined groups of characterized and annotated

metabolites; about 150 metabolites measured) have been conducted

to assess metabolite patterns associated with risk of several cancers

such as the breast19 and prostate,20,21 as well as with various lifestyle

factors, such as body mass index22 and select dietary components.23

They have revealed important insights on development processes and

exogenous exposures associated with these cancers. Similar met-

abolomics techniques have also been applied in other prospective

studies to explore cancer development at various anatomical sites,

including HCC.18,24-26 We have also previously conducted two other

metabolomics studies on HCC-risk factors in the EPIC cohort using

nuclear magnetic resonance (NMR) spectroscopy17 and a targeted kit-

based LC-MS assay.16 We observed alterations in amino acid, lipid

and carbohydrate metabolism associated with HCC development, but

our findings provided little new insight into HCC etiology or specific

environmental exposures potentially linked to HCC development, due

in large part to the low sensitivity of NMR17 and the limited number

of metabolites measured with the kit-based assay.16

In the present study, our objective was to delve more deeply into

an exploration of metabolic perturbations in HCC development

through application of untargeted metabolomics (ie, the comprehen-

sive analysis of all measurable analytes, but requiring intensive efforts

toward metabolite annotation) using a highly sensitive LC-MS tech-

nique able to detect thousands of metabolites in typical blood sam-

ples27 using a case-control design nested within the prospective EPIC

cohort.

2 | MATERIALS AND METHODS

2.1 | Study design

The rationale and study design of the large multicenter prospective,

observational EPIC cohort have been previously described.28 Briefly,

between 1991 and 2000, more than 520 000 apparently healthy men

and women aged 20 to 85 years were recruited in 23 centers

throughout 10 countries (Denmark, France, Germany, Greece, Italy,

the Netherlands, Norway, Spain, Sweden, and the United Kingdom).

At recruitment, standardized dietary, lifestyle and socio-demographic

questionnaires, blood samples and anthropometric measurements

were collected from most participants.29 Blood samples are stored at

the International Agency for Research on Cancer (IARC-WHO, Lyon,

France) in −196�C liquid nitrogen for all countries except Denmark

(−150�C, nitrogen vapor) and Sweden (−80�C, freezers), where they

are stored locally.

2.2 | Nested case-control study

From 477 206 eligible participants, we included 129 HCC cases (diag-

nosed postrecruitment into the cohort and identified up to December

2010) with available baseline (ie, prediagnostic) blood samples. The

cases were followed up for a median of 6.2 years/mean of 5.9 years

from baseline recruitment until HCC diagnosis. For each case, we

selected one control (n = 129) by incidence density sampling from all

eligible cohort participants alive and matched by age at blood collec-

tion (±1 year), sex, study center, time of the day at blood collection

(±3 hours), fasting status at blood collection (<3, 3-6 and >6 hours),

and additionally among women by menopausal status (pre-, peri- and

postmenopausal) and hormone replacement therapy use at time of

blood collection (yes/no). Incidence density sampling for control selec-

tion is a common method of choice for unbiased results in case-

control studies nested within a prospective cohort.30 The method

involves matching each case to a sample of those who are at risk from

within the cohort population at the time of case occurrence.

HCC was defined as C22.0 according to the 10th revision of the

International Statistical Classification of Diseases, Injury and Causes

of Death (ICD10), with morphology codes “8170/3” or “8180/3”

according to the second edition of the International Classification of

Diseases for Oncology (ICD-O-2). For each case identified, the histol-

ogy and diagnostic methods were reviewed by a trained pathologist

to exclude metastatic cases or other types of primary liver cancers.

Details on participant exclusion criteria and cancer incidence determi-

nation are described in the Supplementary Materials and Methods.

2.3 | Untargeted metabolomics

Detailed methods for the metabolomics analyses (ie, sample prepara-

tion and analysis, data preprocessing and feature identification) are

provided in the Supplementary Materials and Methods. Briefly,

samples were analyzed with a ultra-high performance liquid

chromatography-quadrupole time-of-flight mass spectrometry

(UHPLC-QTOF-MS) system (Agilent Technologies, Santa Clara, CA)

using four different analytical configurations with reversed phase

(RP) or hydrophilic interaction chromatography (HILIC) columns and

positive or negative MS ionization modes (ie, RP +/−, HILIC +/−).

Peak areas were used as a measurement of feature intensity. For iden-

tification, mass-to-charge ratios (m/z) were searched against the

Human Metabolome Database31 and METLIN,32 using ions [M + H]+,

[M + Na]+, [M − H]− and [M + FA − H]−, with 8 ppm molecular

weight tolerance. Where pure chemical standards were commercially

available, identification was confirmed by reanalysis of representative

samples and pure chemical standards comparing retention times and

MS/MS spectra. When standards were not available, MS/MS spectra

were acquired when possible and compared against those in mzCloud

(www.mzcloud.org) or METLIN. The level of identification was deter-

mined as proposed by Sumner et al33 in line with recommendations of

the Metabolomics Standards Initiative which ranks metabolites into

four distinct categories: unambiguous identification using pure
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standards (Level 1), identified with a high level of confidence based on

chemical features and characteristics (Level 2), identified to a known

chemical class (Level 3) and unknown/unidentifiable compounds

(Level 4). For the purposes of this analysis, Levels 1 to 3 are consid-

ered identified metabolites, but with varying levels of certainty

(ie, unambiguous, highly likely and chemical class only).

TABLE 1 Characteristics of HCC cases and matched control subjects, nested within the EPIC cohort

Variables HCC cases (jn = 129) Matched controls (n = 129) P valuea

Women (n, %) 41 31.8 41 31.8

Age at recruitment (years), mean (SD) 60.0 7.3 60.1 7.4 .717

BMI (kg/m2), mean (SD) 28.4 4.6 27.4 4.3 .062

Waist circumference (cm), mean (SD) 97.5 14.0 93.0 12.3 .002

Physical activity (MET-h/wk), mean (SD) 83.4 54.2 85.0 50.8 .873

Dietary alcohol (g/day), mean (SD) 22.5 35.9 15.8 20.0 .058

Education (n, %)

None/primary 68 52.7 64 49.2 .5945

Technical/professional 34 26.4 29 22.3

Secondary 6 4.7 10 7.8

University or higher 19 14.7 23 17.8

Alcohol intake pattern (n, %)

Never drinkers 9 7.0 12 9.3 .0018

Former drinkers 23 17.8 4 3.1

Drinkers only at recruitment 7 5.4 8 6.2

Always drinkers 90 69.8 105 80.8

Smoking status (n, %)

Never smokers 42 32.6 60 46.5 .0124

Former smokers 40 31.0 42 32.3

Current smokers 46 35.7 26 20.0

Hepatitis B and/or C infection (n, %)b

Yes 33 25.6 4 3.1 <.0001

HCV (n, %)

Yes 19 14.7 2 1.5 <.0001

HBV (n, %)

Yes 17 13.2 3 2.3 <.0001

Self-reported diabetes status at baseline (n, %)

Yes 12 9.3 6 4.7 .1426

Liver function score (n, %)c

0 24 18.6 75 58.1 <.0001

≥1 66 51.2 16 12.4

Note: Missing values were not excluded from percentage calculations, thus the sum of percent values across subgroups may not add up to 100%. Number

of cases and controls with missing or unknown variable value: education (controls = 3, HCC = 2), smoking status (controls = 1, HCC = 1), hepatitis infection

status (controls = 38, HCC = 38), diabetes status (self-reported, controls = 13, HCC = 11) and liver function score (controls = 38, HCC = 38). The distribu-

tion of cases by country is as follows: Denmark = 23, Germany = 32, Greece = 16, Italy = 28, the Netherlands = 4, Spain = 11 and the United Kingdom = 15.

Categorical variables are presented as numbers and percentages. Continuous variables are presented as mean and SD.

Abbreviations: HBV, hepatitis B virus; HBsAg, hepatitis B surface antigen; HCC, hepatocellular cancer; HCV, hepatitis C virus; HHCC, human hepatocellular

cancer.
aPaired t test for continuous and Fisher exact test for categorical variables were used to calculate P value.
bHepatitis B and/or C seropositivity values were detected using the ARCHITECT HBsAg and anti-HCV chemiluminescent microparticle immunoassays

(CMIAs; Abbott Diagnostics, France).
cLiver function biomarkers (ALT, AST, GGT, ALP, albumin and bilirubin) were measured on the ARCHITECT cSystems (Abbott Diagnostics). The liver func-

tion score was computed as an indicator of possible underlying liver damage. The score ranges from 0 to 6 and is based on abnormal liver function tests

(ALT > 55 U/L, AST > 34 U/L, GGT > 64 U/L for men and >36 U/L for women, ALP > 150 U/L, albumin < 34 g/L, total bilirubin > 20.5 μmol/L; values

were provided by the laboratory). For each liver function biomarker, participants with abnormal values (as defined earlier) were assigned a score of 1. Possi-

ble liver impairment category was created for the score ≥ 1.
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2.4 | Additional laboratory measures

In a large subset of subjects, a score of liver function (indicator of

underlying liver damage) was computed using additional and already

available biomarker measures34,35 (details in Table 1 footnotes).

2.5 | Dataset preparation and statistical analyses

A separate analysis was conducted for each data set from the four

analytical configurations (ie, RP +/−, HILIC +/−). In each data set,

features missing from more than 25% of all samples were excluded

to avoid extensive imputation of the data before the paired statisti-

cal analysis (see Figure 1 for details). In order to retain a maximum

number of complete case-control sets in the statistical analyses,

missing values for any feature (features not detected in a given sub-

ject) for any feature were replaced with the minimum intensity of

that feature in the dataset (Figure 1). To assess differences between

cases and controls, feature intensities were log2-transformed

(to improve data normality) and z-standardized (to better enable

comparisons across a wide intensity range), and subsequently

entered into conditional logistic regression models from which odds

ratios (OR) and 95% confidence intervals (95% CI) were computed.

Two main statistical models were applied, (a) a crude model, condi-

tioned on the matching criteria only and (b) a detailed multivariable

model with additional adjustments for continuous variables body

mass index (BMI, kg/m2), waist circumference (cm), recreational and

household physical activity (Met-h/wk), alcohol intake at recruitment

(g/d), and categories of lifetime alcohol intake pattern, smoking sta-

tus and the highest level of education attainment (for categories, see

Table 1). The Benjamini-Hochberg correction for multiple testing

was applied using the multitest procedure in SAS and a q value of

≤0.05 was considered as statistically significant. Additionally, fold

change between the median intensity for the cases vs the controls

was used to rank the features by their absolute intensity difference.

Thresholds for the selection of the most discriminating features for

F IGURE 1 Flow chart of the selection procedures for metabolites and number of annotated compounds for each analytical configuration of
the UHPLC-QTOF-MS system. A total of 114 separate compounds (ie, confirmed molecules that consisted of one or more features) were
identified from the four data sets. Of these 114 separate compounds, 22 were also detected by more than at least one of the other three profiling
methods, leaving a total of 92 unique compounds. Of these 92 compounds, 46 were identified from three distinct categories: unambiguously
identified using pure standards (Level 1; n = 14), identified to a high level of confidence based on chemical features and characteristics (Level 2;

n = 23) and identified to a known chemical class (Level 3; n = 9). The remaining 46 compounds were not identified, that is, unknown. (1) After
Benjamini-Hochberg correction for multiple testing, conditioned on matching factors: age at blood collection (±1 year), sex, study center, time of
the day at blood collection (±3 hours), fasting status at blood collection (<3, 3-6 and >6 hours); among women, additionally by menopausal status
(pre-, peri- and postmenopausal), and hormone replacement therapy use at time of blood collection (yes/no). (2) After Benjamini-Hochberg
correction for multiple testing: matching factors + BMI (kg/m2, continuous), waist circumference (cm, continuous), physical activity (Met-h/wk,
continuous), alcohol intake at recruitment (g/d, continuous), lifetime alcohol intake pattern (categorical), smoking status (categorical) and attained
education (categorical). Please see Tables 2 to 4 for additional details [Color figure can be viewed at wileyonlinelibrary.com]
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annotation were based on absolute median fold change of ≥1.20.

Additional adjustments for hepatitis infection status (to correct for

this established risk factor), self-reported type-2 diabetes at baseline

(to correct for potential influence of diabetes-related metabolic dys-

function) and a composite score of liver function (to correct for the

extent of liver dysfunctionality and capacity) were applied in supple-

mentary analyses for all identified features.

Sensitivity analyses were conducted excluding first 2 and 4 years

of follow-up (n = 22 and n = 43 cases excluded, respectively) to assess

potential reverse causation. For these analyses, a P value ≤.05 was

considered statistically significant.

Pearson correlation coefficients were used to assess the corre-

lations between metabolites that were annotated (ie, those at Levels

of identification 1-3,33 but not unknown metabolites). For these

same annotated metabolites, we conducted principal component

analyses in order to illustrate the separation of profiles from base-

line over the timeline of the follow-up period (ie, from baseline

recruitment into the cohort to the date of diagnosis) between iden-

tified features of cases and controls. In addition, we then con-

structed a receiver operating characteristics (ROC) curve based

on stepwise forward selection of metabolites from the panel of

metabolites that were annotated to Level 1 (ie, the panel of metabo-

lites that were significantly different between cases and controls

and unambiguously identified using a pure standard) and those at

Levels 1 to 3.33 The final areas under the ROC curve for the identi-

fied discriminant features were obtained using leave-one-out cross-

validation.

All statistical tests were two-sided. Analyses were conducted

using SAS version 9.3 (SAS Institute, Cary, NC), R version 3.4.3

(Principal Component Analyses) or MetaboAnalyst version 4.0

(Heatmap).

3 | RESULTS

Characteristics of the HCC cases and their matched controls are pres-

ented in Table 1. Cases were primarily men, former drinkers and cur-

rent smokers, and had higher waist circumference, higher prevalence

of hepatitis B/C infection and higher degree of liver dysfunction than

matched controls. The average length of follow-up was 8.5 years for

cases and controls combined and 5.9 years for cases alone, with a

maximum follow-up length of 15 years from baseline.

TABLE 2 Associations with risk of HCC development for Level 1a identified metabolites

Identified and annotated
compoundb

Analytical
method m/z

Retention
time (min)

Absolute fold
changec

Multivariable adjustedd

OR (95% CI) q-value

Retinol RP+ 269.2273 7.27 −1.30 0.27 (0.16-0.48) 0.00060

Dehydroepiandrosterone sulfatee HILIC− 367.1561 0.80 −2.13 0.35 (0.22-0.57) 0.00350

Glycerophosphocholine RP+ 280.0920 0.64 −1.47 0.44 (0.28-0.71) 0.01080

γ-Carboxyethyl hydroxychroman RP+ 265.1428 5.31 −1.23 0.56 (0.39-0.81) 0.01970

Creatine RP+ 132.0771 0.66 −1.20 0.56 (0.37-0.83) 0.03410

N1-Acetylspermidinee HILIC+ 188.1759 6.85 1.20 2.16 (1.38-3.37) 0.01370

Isatin RP+ 148.0393 3.35 1.39 2.56 (1.53-4.29) 0.01490

p-Hydroxyphenyllactic acid HILIC− 181.0494 2.24 1.47 2.63 (1.62-4.28) 0.02200

Tyrosine RP+ 182.0816 1.28 1.20 2.77 (1.58-4.83) 0.02030

Sphingosine RP+ 300.2902 6.06 1.36 2.79 (1.66-4.71) 0.00360

L,L-Cyclo(leucylprolyl) RP+ 211.1442 3.90 2.37 3.25 (1.91-5.53) 0.00080

Glycochenodeoxycholic acide RP+ 450.3218 6.48 3.37 3.31 (1.99-5.51) 0.00050

Glycocholic acide RP+ 466.3164 6.21 3.92 4.07 (2.32-7.14) 0.00040

7-Methylguanine HILIC+ 166.0729 2.53 1.31 6.78 (3.24-14.18) 0.00030

Abbreviations: HCC, hepatocellular carcinoma; MS/MS, mass spectrometry-mass spectrometry; OR, odds ratio.
aFeatures identified with high confidence and verified by a chemical standard.
bLevel 1 identified compounds: retention time and MS/MS matches with an authentic chemical standard.33 Information for compounds identified at Level

2 (identified compounds with high confidence; no standard available/analyzed but matching isotope pattern, MS/MS spectra, and other supporting evi-

dence) is shown in Table 3. Information for compounds identified at Level 3 (compounds identified from a known chemical class) and Level 4 (unidentified

compounds) is shown in Table 4.
cAbsolute fold change between the median intensities of cases to their matched controls.
dThe ORs represent the risk of HCC per 1 SD of logarithm transformed value. Multivariable adjusted: matching factors + body mass index (BMI, kg/m2,

continuous), waist circumference (cm, continuous), alcohol intake at recruitment (g/d, continuous), physical activity (Met-h/wk, continuous), categories of

smoking status, alcohol intake pattern and education (for categories see Table 1).
eIndicates that a compound was detected by more than one method. The listed method is the one showing the greatest intensity for the particular com-

pound. Dehydroepiandrosterone sulfate was also detected by RP−; N1-acetylspermidine was also detected by RP+; glycochenodeoxycholic acid was also

detected by HILIC+, RP−; glycocholic acid was also detected by RP−; benzylcarnitine was also detected by RP+.
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From the combined total of 9206 molecular features provided

by the four analytical configurations of the LC-MS, 5229 (ie, 2551

(RP+), 1178 (RP-), 736 (HILIC+) and 764 (HILIC-)) were present in

at least 75% of all samples and were exported for statistical ana-

lyses (Figure 1). Initially, 333 (RP+), 20 (RP-), 68 (HILIC+) and 14

(HILIC-) features were found to be statistically significantly associ-

ated with HCC risk in multivariable models (Supplementary

Tables 1A-D, respectively). Excluding the features with a median

fold change less than 1.20 resulted in a total of 220 features from

the four analytical configurations combined. From these 220 fea-

tures, 114 individual compounds (ie, confirmed molecules that

consisted of one or more features) were observed in the four data

sets (Figure 1) and are visualized in volcano plots (Supplementary

Figure 1).

Of the 114 individual compounds, 22 were also detected by at

least one of the other three profiling configurations, leaving a total of

92 unique annotated compounds. Each profiling configuration identi-

fied at least five unique compounds, highlighting the advantages of

applying all four orthogonal analytical configurations for more com-

prehensive metabolite coverage. Identification was attempted for

each of these 92 unique compounds, ranking them according to vary-

ing levels of confidence based on the recommendations of the

TABLE 3 Associations with risk of HCC development for Level 2a identified metabolites

Identified and annotated
compoundb

Analytical
method m/z

Retention
time (min)

Absolute fold
changec

Multivariable adjustedd

OR (95% CI) q-value

LysoPC(17:0)e HILIC+ 510.3554 2.42 −1.64 0.21 (0.11-0.40) 0.00030

LysoPC(15:0)e HILIC+ 482.3251 2.60 −1.54 0.23 (0.12-0.42) 0.00030

LysoPC(20:5)e HILIC+ 564.3104 2.38 −1.52 0.23 (0.12-0.46) 0.00030

LysoPC(16:0)e RP+ 991.6772 7.03 −1.26 0.28 (0.16-0.49) 0.00060

LysoPC(20:4)e HILIC+ 544.3407 2.33 −1.40 0.31 (0.19-0.51) 0.00030

LysoPC(P-16:0)e HILIC+ 480.3460 2.12 −1.25 0.33 (0.19-0.55) 0.00030

LysoPC(22:5) HILIC+ 570.3539 2.30 −1.33 0.33 (0.20-0.54) 0.00030

PC(38:6) RP+ 806.5690 8.51 −1.29 0.36 (0.21-0.61) 0.00460

LysoPC(22:6)e HILIC+ 568.3399 2.28 −1.41 0.37 (0.23-0.58) 0.00030

LysoPC(18:2)e HILIC+ 520.3418 2.46 −1.31 0.40 (0.26-0.64) 0.00030

LysoPC(18:0)e HILIC+ 524.3712 2.34 −1.25 0.41 (0.26-0.65) 0.00250

C5 acylcarnitine HILIC+ 246.1703 3.17 −1.22 0.46 (0.29-0.73) 0.01770

DG(18:2/18:2/0:0) RP+ 639.4946 9.54 −1.39 0.47 (0.31-0.72) 0.00950

LysoPC(14:0)e HILIC+ 468.3088 2.70 −1.26 0.48 (0.31-0.72) 0.00900

LysoPC(17:1) HILIC+ 508.3406 2.46 −1.27 0.48 (0.31-0.75) 0.01530

LysoPC (18:1) HILIC+ 522.3570 2.38 −1.24 0.52 (0.34-0.78) 0.02450

LysoPC(20:3)e RP+ 546.3548 7.04 −1.21 0.56 (0.39-0.80) 0.01790

DG(18:1/18:2/0:0) RP+ 641.5106 10.10 −1.27 0.58 (0.40-0.85) 0.04060

PC(16:1/16:1/0:0) HILIC+ 730.5398 1.17 1.39 1.79 (1.22-2.64) 0.03570

Bilirubin isomer 2 RP+ 585.2687 4.34 1.26 1.89 (1.20-2.97) 0.04510

Bilirubin isomer 1 RP+ 585.2696 5.13 1.27 1.94 (1.22-3.06) 0.03850

PC(16:1/16:0/0:0)e HILIC+ 732.5552 1.16 1.54 2.01 (1.33-3.03) 0.01410

Benzoylcarnitinee HILIC+ 266.1392 3.36 1.46 2.74 (1.69-4.42) 0.00030

Abbreviations: HCC, hepatocellular carcinoma; OR, odds ratio.
aFeatures identified with high confidence.
bLevel 1 identified compounds: retention time and MS/MS matches with an authentic chemical standard (Table 2); Level 2 (identified compounds with high

confidence): no standard available/analyzed but matching isotope pattern, MS/MS spectra, and other supporting evidence.33 Information for compounds

identified at Level 3 (compounds identified from a known chemical class) and Level 4 (unidentified compounds) are shown in Table 4.
cAbsolute fold changes between the median intensities of cases to their matched controls.
dThe OR represents the risk of HCC per 1 SD of logarithm transformed value. Multivariable adjusted: matching factors + body mass index (BMI, kg/m2,

continuous), waist circumference (cm, continuous), alcohol intake at recruitment (g/d, continuous), physical activity (Met-h wk, continuous), categories of

smoking status, alcohol intake pattern and education (for categories see Table 1).
eIndicates that a compound was detected by more than one method. The listed method is the one showing the greatest intensity for the particular com-

pound. LysoPC(17:0) was also detected by RP+/−; LysoPC(15:0) also by RP+; LysoPC(20:5) also by HILIC-, RP+/−; LysoPC(16:0) also by HILIC-; LysoPC

(20:4) also by HILIC-, RP+/−; LysoPC(P-16:0) also by RP+; LysoPC(22:6) also by RP+/−; LysoPC(18:2) also by RP+, HILIC-; LysoPC(18:0) also by RP+,

HILIC-; LysoPC(14:0) also by RP+; LysoPC(20:3) also by HILIC-; PC(16:1/16:0/0:0) also by RP+; benzoylcarnitine also by RP+.
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TABLE 4 Associations with risk of HCC development for Level 3 identified and Level 4 unidentified metabolitesa

Level of
identificationb

Chemical class of
compound

Analytical
method m/z

Retention
time (min)

Absolute fold
changec

Multivariable adjustedd

OR (95% CI) q-value

3 C19H30O2-sulfate

(steroid-S)

HILIC− 369.1710 0.81 −3.79 0.20 (0.11-0.39) 0.00080

3 Leucyl-valine or isomer RP+ 231.1703 2.28 −2.32 0.28 (0.16–0.49) 0.00050

3 LysoPC/PC HILIC+ 633.3975 2.22 −1.67 0.35 (0.21-0.57) 0.00030

3 LysoPC(18:2) isomer HILIC− 564.3263 2.09 −1.30 0.39 (0.24-0.63) 0.01000

3 LysoPC/PC HILIC+ 609.3992 2.24 −1.38 0.41 (0.26-0.63) 0.00030

3 Tryptophyl-phenylalanine RP+ 352.1663 3.61 −1.30 0.48 (0.30-0.76) 0.01750

3 L,L-Cyclo(isoleucylprolyl) RP+ 211.1443 3.79 1.45 1.86 (1.21-2.84) 0.03600

3 C19H30O3-sulfate (OH-

steroid-S)

RP− 385.1661 5.05 1.29 2.30 (1.46-3.61) 0.03050

3 C19H28O3-sulfate (OH-

DHEA-S)e
RP− 383.1505 5.48 1.87 2.59 (1.67-4.01) 0.00410

4 Unknown RP+ 551.3114 6.94 −1.32 0.22 (0.11-0.42) 0.00060

4 Unknown RP+ 571.2988 6.93 −1.30 0.24 (0.13-0.43) 0.00040

4 Unknown RP+ 794.9647 6.96 −1.35 0.31 (0.18-0.54) 0.00160

4 Unknown RP+ 268.1413 0.88 −1.34 0.33 (0.18-0.62) 0.00950

4 Unknown RP+ 239.0915 4.29 −1.76 0.35 (0.19-0.63) 0.00910

4 Unknown RP+ 543.3458 7.28 −1.27 0.39 (0.24-0.62) 0.00330

4 Unknown RP+ 203.1392 0.88 −1.52 0.39 (0.23-0.68) 0.01160

4 Unknown RP+ 169.9858 0.62 −1.34 0.41(0.23-0.71) 0.01680

4 Unknown RP+ 203.1391 1.65 −1.46 0.42 (0.24-0.72) 0.01850

4 Unknown RP+ 548.3020 6.95 −1.29 0.42 (0.27-0.66) 0.00480

4 Unknown RP+ 500.2774 6.81 −1.25 0.44 (0.27-0.70) 0.00940

4 Unknown RP+ 257.2267 6.91 −1.49 0.45 (0.29-0.70) 0.00770

4 Unknown HILIC+ 116.1064 1.69 −1.38 0.46 (0.30-0.69) 0.00390

4 Unknown RP+ 423.7686 8.82 −1.30 0.46 (0.30-0.71) 0.00850

4 Unknown RP− 228.9786 3.40 −1.31 0.47 (0.31–0.72) 0.03380

4 Unknown RP+ 536.3023 6.97 −1.29 0.47 (0.30-0.73) 0.01090

4 Unknown RP+ 283.1552 6.21 −1.36 0.48 (0.30-0.75) 0.01680

4 Unknown RP+ 541.3301 7.10 −1.20 0.48 (0.30-0.76) 0.01880

4 Unknown RP+ 401.3414 7.72 −1.21 0.53 (0.35-0.80) 0.02470

4 Unknown HILIC+ 183.1120 1.31 −1.30 0.54 (0.37-0.80) 0.02630

4 Unknown RP+ 118.0498 0.86 −1.21 0.55 (0.36-0.82) 0.02950

4 Unknown RP+ 254.0234 4.23 1.51 1.62 (1.17-2.24) 0.03190

4 Unknown RP+ 330.2464 5.98 1.22 1.78 (1.22-2.61) 0.02690

4 Unknown RP+ 243.1954 6.71 1.40 1.81 (1.24-2.63) 0.02020

4 Unknown RP+ 281.2489 6.81 1.42 1.82 (1.24-2.67) 0.02250

4 Unknown RP+ 175.0264 1.66 1.57 1.88 (1.23-2.87) 0.03130

4 Unknown HILIC+ 120.0657 1.83 1.22 1.97 (1.23-3.16) 0.04940

4 Unknown RP+ 241.1543 3.78 1.30 2.00 (1.30-3.09) 0.01880

4 Unknown RP+ 104.0710 0.64 1.27 2.05 (1.37-3.06) 0.00910

4 Unknown RP+ 202.1187 0.87 1.34 2.06 (1.30-3.25) 0.02070

4 Unknown HILIC− 308.0712 2.34 1.40 2.17 (1.42-3.31) 0.02200

4 Unknown RP+ 203.1393 0.73 1.27 2.20 (1.41-3.45) 0.00950

4 Unknown RP+ 129.0649 1.59 1.23 2.26 (1.42-3.59) 0.00990

4 Unknown RP+ 129.0661 0.65 1.28 2.34 (1.45-3.74) 0.00840

(Continues)
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Metabolomics Standards Initiative.33 Fourteen metabolites were

unambiguously identified using pure reference standards (Level 1,

Table 2), another 23 compounds were identified with a high level of

confidence based on chemical features and characteristics (Level 2,

Table 3) and 9 compounds were identified to a known chemical class

(Level 3, Table 4), summing to a total of 46 identified metabolites.

Pearson correlation coefficients between these 46 identified metabo-

lites are shown in Supplementary Figure 2. The remaining 46 metabo-

lites could not be identified and are listed as unknown (Level

4, Table 4). Intensity means, SD and medians for these 92 compounds

are shown in Supplementary Table 2A.

The multivariable-adjusted HCC-risk associations for the 14 metab-

olites identified at Level 1 are shown in Table 2. Of these 14 metabo-

lites, 5 were inversely associated with HCC risk (q-value ≤0.05): retinol

(OR = 0.27, 95% CI: 0.16-0.48), dehydroepiandrosterone sulfate

(DHEA-S; OR = 0.35, 95% CI: 0.22-0.57), glycerophosphocholine

(OR = 0.44, 95% CI: 0.28-0.71), γ-carboxyethyl hydroxychroman

(γ-CEHC; OR = 0.56, 95% CI: 0.39-0.81), creatine (OR = 0.56, 95% CI:

0.37-0.83). The remaining 9 metabolites were positively associated

with HCC risk: N1-acetylspermidine (OR = 2.16, 95% CI: 1.38-3.37),

isatin (OR = 2.56, 95% CI: 1.53-4.29), p-hydroxyphenyllactic acid

(HPLA; OR = 2.63, 95% CI: 1.62-4.28), tyrosine (OR = 2.77, 95% CI:

1.58-4.83), sphingosine (OR = 2.79, 95% CI: 1.66-4.71), L,L-cyclo

(leucylprolyl) (OR = 3.25, 95% CI: 1.91-5.53), glycochenodeoxycholic

acid (OR = 3.31, 95% CI: 1.99-5.51), glycocholic acid (OR = 4.07, 95%

CI: 2.32-7.14) and 7-methylguanine (OR = 6.78, 95% CI: 3.24-14.18).

We additionally conducted ROC discriminant analyses from the

panel of the 14 Level 1 identified metabolites. The analyses showed

that the discrimination between cases and controls was largely driven

by retinol, DHEA-S, L,L-cyclo(leucylpropyl) and 7-methylguanine.

Additional ROC analysis using leave-one-out cross-validation for

these four independent metabolites indicated a 84.6% discriminatory

accuracy, compared to a 85.0% discriminatory accuracy when all

14 Level 1 identified metabolites were modeled. This method of vali-

dation was chosen to avoid likely statistical power issues that would

arise from splitting the main data set into discovery and validation

subsets, each of which would include a smaller number of cases. Con-

versely, we applied the leave-one-out cross-validation approach to

the identified metabolites rather than at the stage of feature selection,

as would be the case in a true validation setting with training and vali-

dation subsets. Thus, the area under the curve estimate is likely to be

biased.

Multivariable-adjusted HCC-risk associations for the 23 Level

2 metabolites (largely phosphatidylcholines (PC), lysophosphatidylcholines

(lysoPC) of various chain lengths, diacylglycerols, two bilirubin metabolites

and benzoylcarnitine) are shown in Table 3. Multivariable-adjusted HCC-

risk associations for Level 3 (some glycerophosphocholines and C19

steroid sulfates) and Level 4 compounds are shown in Table 4.

TABLE 4 (Continued)

Level of
identificationb

Chemical class of
compound

Analytical
method m/z

Retention
time (min)

Absolute fold
changec

Multivariable adjustedd

OR (95% CI) q-value

4 Unknown RP− 71.0501 2.78 1.23 2.35 (1.44-3.82) 0.03690

4 Unknown RP− 475.3034 6.86 1.41 2.37 (1.57-3.60) 0.00680

4 Unknown RP+ 163.0752 2.09 1.20 2.38 (1.46-3.88) 0.00890

4 Unknown RP+ 203.0214 2.78 1.20 2.46 (1.43-4.24) 0.01470

4 Unknown HILIC+ 203.1395 5.32 1.37 2.51 (1.55-4.05) 0.00390

4 Unknown RP− 146.0448 0.65 1.34 2.56 (1.53–4.29) 0.03120

4 Unknown RP+ 619.5268 7.00 1.49 2.57 (1.61-4.13) 0.00280

4 Unknown RP+ 182.0814 0.87 1.25 2.63 (1.62–4.28) 0.00290

4 Unknown HILIC+ 126.0662 3.35 1.20 2.67 (1.59-4.48) 0.00390

4 Unknown RP+ 431.3169 6.85 1.38 2.80 (1.76-4.47) 0.00090

4 Unknown RP+ 389.2650 6.37 1.77 3.22 (1.77-5.85) 0.00380

4 Unknown RP+ 614.5721 7.00 1.25 3.75 (1.99-7.05) 0.00190

Note: LysoPC means lysophosphatidylcholine; unknown means not identifiable; identity or chemical class not ascertainable.

Abbreviations: HCC, hepatocellular carcinoma; OR, odds ratio.
aFeatures that are identified at the level of the chemical class (Level 3) or unknown (Level 4).33

bCompounds identified at Level 3 (compound from a known chemical class) and Level 4 (unknown compounds) are shown here.33 Information for com-

pounds identified at Level 1 (retention time and MS/MS matches with an authentic chemical standard) and Level 2 (no standard available/analyzed but

matching isotope pattern, MS/MS spectra and other supporting evidence) is shown in Tables 2 and 3, respectively.
cAbsolute fold change between the median intensities of cases to their matched controls.
dThe OR values represent the risk of HCC per 1 SD of logarithm transformed value. Multivariable adjusted: matching factors + body mass index (BMI, kg/

m2, continuous), waist circumference (cm, continuous), alcohol intake at recruitment (g/d, continuous), physical activity (Met-h wk, continuous), categories

of smoking status, alcohol intake pattern and education (for categories see Table 1).
eIndicates that a compound was detected by more than one method, also listed. Data are provided only for the method that showed the greatest intensity

for the particular compound: C19H28O3-sulfate (OH-DHEA-S) was also detected by HILIC-ve.
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F IGURE 2 Principal component (PC) analyses based on metabolites associated with HCC risk for (1) the 46 metabolites associated with HCC
risk and identified at Levels 1 to 333 and (2) the 14 metabolites associated with HCC risk and identified at Level 1 only, that is, unambiguous
identification using pure standards.33 HCC cases are shown by green circles and matched controls by mauve triangles. A, Score plots of PC
analyses differentiating cases and controls; B, plot of scores on PC1 vs follow-up time (all years, number of HCC case and matched control
sets = 129; and excluding cases with 4 or less years of follow-up, number of HCC case and matched control sets = 87); C, relative contributions of
identified metabolites to PC1 and PC2. For A1, the proportion of variability is 29.86% for PC1 vs 11.12% for PC2. For A2, the values are 29.18%
for PC1 and 11.16% for PC2 [Color figure can be viewed at wileyonlinelibrary.com]
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Results for the crude models conditioned on the matching criteria

only are shown in Supplementary Table 2B. Supplementary analyses

with additional adjustments for hepatitis B and/or C infection status,

self-reported diabetes status at baseline (Supplementary Table 2C)

and a score of liver functionality within the multivariable analysis

model did not materially alter the findings (Supplementary Table 2D).

In sensitivity analyses, the observed associations, particularly for

Levels 1 and 2 compounds, were unaltered after exclusion of case-

F IGURE 2 (Continued)
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control pairs where the case participant was diagnosed within either

the first 2 or 4 years of follow-up (Supplementary Table 2E).

We conducted two principal component analyses: one based on

the 46 metabolites identified to Levels 1-3 and a second one

restricted to the 14 metabolites identified to Level 1 (Figure 2). These

analyses show distinct differences between metabolic profiles of HCC

cases compared to control participants, up to 10 years prior to diagno-

sis. Additional sensitivity analyses excluding case-control pairs where

the case was diagnosed within the first 4 years of enrollment into the

cohort did not alter the clear distinction in metabolite profiles

between HCC cases vs controls (Figure 2).

Detailed information on metabolite identification with chro-

matograms and spectra is provided in Supplementary Materials

(Identification of Metabolites).

4 | DISCUSSION

In this case-control study nested within a large, multinational observa-

tional prospective cohort, we applied a powerful MS-based

untargeted metabolomics approach to explore metabolic perturba-

tions underlying HCC development. The cases in our observational

cohort were enrolled at the baseline period (ie, data and blood sam-

ples collected upon recruitment) when the participants where under

apparent health. Later, at various time points postrecruitment, some

of the cohort participants were diagnosed with HCC. Thus, the cases

in our study originate from different time points after baseline recruit-

ment. In the subgroup of cases who were diagnosed closer to base-

line, it is likely that the processes of HCC were already underway

even though undiagnosed, possibly within a background of other liver

pathologies. However, in the subgroup of subjects where the HCC

was diagnosed later on during the cohort follow-up, the baseline

blood samples are likely to have been collected in the absence of HCC

or at its earlier stages. Due to the liver's central metabolic roles, it is

thought that metabolic disturbances are early events in the develop-

ment of chronic liver diseases and HCC.36 This premise underscores

the rationale behind our study, conducted within the setting of an

observational prospective cohort. We were able to determine 92 dis-

tinct metabolites whose relative concentrations were different

between HCC cases and their matched controls in prediagnostic blood

samples. Of these 92 compounds, we were able to identify 46 of

which 14 were unambiguous (Level 133) and an additional 23 and

9 with high degrees of confidence (Levels 2 and 3, respectively33). We

show, using principal component analyses, that the differences

between HCC cases and controls are apparent as far back as 10 years

prior to diagnosis, even with exclusion of cases diagnosed within the

first 2 or 4 years of follow-up. We observed perturbations in general

classes of metabolites, such as amino acids and bile acids, but also in

xenobiotics as indicators of lifestyle exposures, as well as some com-

pounds with purported roles in immune function, hormone metabo-

lism, gut microbiome activity and liver fat content—underscoring the

complexity of metabolic disturbances in HCC development. The

metabolites identified may be involved directly and/or be markers of

various exposures associated with cancer risk. Moreover, we

accounted for established etiologies of HCC such as hepatitis infec-

tion, high alcohol consumption and smoking in our statistical analysis

models. Our observations were mostly unchanged with these adjust-

ments, suggesting that metabolic perturbations in HCC may be largely

similar, irrespective of the main underlying etiology of the tumor.

Of the 46 metabolites that we could identify in our study, 14 were

confirmed using authentic chemical standards. Several of these appear

to be related to dietary and lifestyle habits. Specifically, we observed

inverse HCC-risk associations for retinol (biologically active form of

vitamin A) and γ-CEHC (a product of liver metabolism of γ-tocoph-

erol).37,38 Retinol has a plausible role in liver carcinogenesis (eg, modu-

lation of immune function, cell growth).39 Its potential association

with liver cancer has been previously assessed in two prospective

studies, a Finnish cohort of male smokers40 and a cohort of Chinese

men,41 both of whose findings are in line with our own observations.

γ-CEHC shows some antioxidant and anti-inflammatory properties,

similar to γ-tocopherol.38,42 It has been purported as a treatment of

nonalcoholic steatohepatitis, a precursor of liver cirrhosis and risk fac-

tor for HCC development,43 but little other data are available on any

specific HCC protective roles for this compound.

We also observed inverse HCC-risk associations for

glycerophosphocholine, several lysoPCs, creatine and DHEA-S, a ste-

roid hormone. Interestingly, decreased glycerophosphocholine level

has been observed to be predictive of higher circulating vitamin D

concentrations,44 which would be in line with our earlier observation

of a strong inverse HCC-risk association with higher circulating vita-

min D in these same subjects.45 Inverse HCC-risk associations with

higher circulating lysoPCs are consistent with other reports.10,15,46

The observed association with creatine may reflect decreased liver

functionality and lower creatine synthesis in HCC development,

although it has also been ascribed to both antioxidant and oxidative

properties.47 Our observation of an inverse association with DHEA-S

is intriguing because androgen receptor activity, with which DHEA-S

interacts, has been implicated in HCC development,48,49 and the pro-

motion of HCC by androgens has been put forward as one explana-

tion for its higher incidence in men.50 On the other hand, liver

cirrhosis has been linked to hormonal imbalances between estrogens

and androgens resulting in a higher relative concentration of estro-

gens.50 Some animal data even suggest that DHEA-S may protect

against development of liver lesions.51 Thus, our observations merit

more detailed assessment of hormonal factors and circulating

concentrations.

In an earlier study based on NMR spectroscopy within the same

subjects, we found a positive HCC-risk association for the amino acid

tyrosine.16 Similar observations have been made in a Korean prospec-

tive cohort25 and the Alpha-Tocopherol, Beta-Carotene Cancer Pre-

vention (ATBC) cohort composed of Finnish male smokers.18 Our

observations in the present study were similar for tyrosine along with

HPLA, a tyrosine metabolite. Tyrosine is found in several foods (eg,

cheeses, which incidentally have also been associated with increased

HCC risk in our data52) and is produced endogenously from phenylala-

nine. Tyrosine levels are known to be altered in liver disease53 while
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HPLA has demonstrated carcinogenic activity after long-term subcu-

taneous injection in mice,54 and its urinary levels have been observed

to be elevated in breast cancer patients.55

Positive HCC-risk associations were also observed for isatin, L,

L-cyclo(leucylprolyl), N1-acetylspermidine and sphingosine—although,

very little is known about any physiological roles for these compounds

in HCC development. Isatin is a biologically active endogenous metab-

olite with antioxidant and antiviral effects56—properties that may be

considered as cancer protective rather than explanatory of our

observed positive HCC-risk association. However, isatin can also be

derived from gut microbial metabolism,56 and we can speculate that

its higher circulating concentrations in HCC cases may be due to leak-

age from the gut across a dysfunctional colonic barrier, something

which we have previously observed in the same HCC cases.57 For its

part, L,L-cyclo(leucylprolyl) has been associated with increased liver fat

content in a German general population sample,58 possibly suggesting

a link with fatty liver disease in some of our cases. There is sparse data

on the possible roles of N1-acetylspermidine (a polyamine) and sphin-

gosine (an aminodiol which can form ceramides, parent structures to

sphingolipids) in HCC. The former may be affected by liver functional-

ity59 and its serum levels have been shown to be higher in liver cancer

patients,60 whereas sphingosine has been observed to be elevated in

chronic liver diseases, such as NAFLD and chronic hepatitis C infec-

tion.61 Thus, alterations in circulating levels of these metabolites may

be indicative of liver dysfunctionality and possibly early HCC

development.

Another interesting observation from our study is the positive

HCC-risk association of glycochenodeoxycholic acid and glycocholic

acid—both of which are glycine conjugates of primary bile acids

formed in the liver.62 Their circulating concentrations have been

shown to be increased in various liver diseases, including

HCC.10,15,25,46,63,64 In general, proinflammatory and carcinogenic

properties have been ascribed to bile acids and as such they have a

plausible role in HCC development.65 Perturbations in serum bile acid

metabolism have been previously observed in other settings, such as

in largely hepatitis-positive Chinese populations,66,67 and specifically

for glycochenodeoxycholic acid and glycocholic acid in the ATBC

cohort.18 The liver is central to bile acid metabolism, and hence per-

turbations in bile acid profiles may be among the earliest indicators of

HCC development. A more detailed analysis of potential alterations in

the profiles of various bile acids in the different phases of this disease

would be of great interest.

In our observations, the metabolite most strongly positively asso-

ciated with HCC risk is 7-methylguanine, an indicator of exposure to

methylating agents. It has previously been observed to be higher in

the urine of smokers68 and those with unhealthy lifestyle habits69—

exposures which have also been associated with increased HCC risk

in our cohort.34,70 Higher levels of this compound have also been

associated with an increased risk of total mortality in a cohort of male

smokers.71 It may thus be a metabolite related to smoking exposure,

and so further study of its potential role in HCC development is

warranted.

Taken together, our findings relate to dietary and lifestyle expo-

sures that may be potentially HCC promoting, as well as to liver

dysfunctionality, which is central to the development of HCC and

other liver diseases.

A major limitation of our study nested within a prospective cohort

is the lack of information on the existence and severity of any other

liver diseases leading up to HCC development. For example, informa-

tion on existing liver cirrhosis would have been helpful in further char-

acterizing our HCC cases between cirrhotic and noncirrhotic

pathways of HCC development. A related critique of our study design

is the lack of a second control group composed of subjects with liver

diseases. We do not have any access to relevant clinical information

on liver diseases among our >520 000 cohort participants. However,

such a control group would have allowed us to better understand

transitions from existing liver pathologies toward early HCC. Although

this is a reasonable assertion for studies designed to assess clinical

surveillance for HCC in higher risk populations, it is less relevant to

prospective cohorts geared toward exploring cancer etiology in the

general population. Nevertheless, we have addressed these concerns

by making multivariable statistical adjustments for main HCC risk fac-

tors in our study population. These adjustments did not meaningfully

alter our findings, suggesting that different HCC etiologies—whether

related mainly to chronic hepatitis infection, alcohol abuse, smoking

or obesity—may have a large degree of overlap in terms of their meta-

bolic consequences on the liver and hence transitions toward devel-

opment of HCC. Patient cohorts comparing HCC cases to control

subjects with liver disease provide vital insight toward risk stratifica-

tion for HCC screening and identification of diagnostic biomarkers,

they have to be distinguished from findings such as ours, which are

based on large-scale prospective cohort studies and which bring

understanding of potential risk factors and metabolic perturbations in

HCC development. Another limitation is our lack of information on

any tumor-staging criteria at diagnosis or treatments postdiagnosis.

We did not consider survival and we cannot discount some degree of

confounding by stage at diagnosis—but it must be noted that biologi-

cal samples in our cohort were collected at recruitment, prediagnosis.

In randomized clinical trials, allocation of exposure and prognostic fac-

tors would be random, but collection of data and biological samples in

the cases is not likely to be prediagnostic. Studies with these different

designs each provide crucial insight into the development of this lethal

cancer, and should all be part of the evidence base for establishment

of guidelines toward HCC prevention, as well as discovery of bio-

markers for early diagnosis. We consider the fact that our HCC cases

were derived from within an observational cohort with predi-

agnostically obtained biological samples and detailed confounder data

as a major advantage that minimize recall and reverse causality biases

adding another degree of robustness to our observations. At the same

time, we acknowledge that our study design does not allow insight

into transitions from existing liver pathologies toward HCC.

Another important design advantage of this work is that we

applied an agnostic metabolomics approach using high-resolution mass

spectrometry with four complementary analytical configurations,72
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enabling us to maximize the number of metabolites measured for a more

complete assessment of metabolic profile changes between the HCC

cases and their matched controls. We identified many metabolites with

very high confidence, and we also observed a number which we could

not identify despite our best efforts. We believe that the high number of

metabolites observed to be associated with HCC risk, both identified

and unknown, highlights the depth of metabolic perturbation in this dis-

ease. The magnitude of some of the risk associations for the unidentified

metabolites, whether inverse or positive, shows that we still have much

to learn about the processes of HCC development. The unidentified

metabolites provide considerable potential for discovery of additional

novel exposure, diagnostic and prognostic biomarkers in other studies.

Our findings on specific identified metabolites and metabolic pathways

involved in HCC development may be followed up with experimental

studies to more carefully query their functionality and mechanisms of

action. Additionally, it would be of great interest to determine whether

any of our observed metabolites may serve as early diagnostic markers.

In summary, we show statistically significant associations

between 46 identified metabolites, which could be either directly

involved in HCC development or be the consequence of liver dysfunc-

tion caused by tumorigenesis in the liver. Our observations, based on

prediagnostically collected blood samples, contribute toward a more

in-depth understanding of HCC risk factors and underlying mecha-

nisms of HCC development. They contribute to the evidence base

that may be used toward public health guidelines for HCC prevention,

but they should also be replicated in other prospective cohorts from

different world regions with emphasis on comparing metabolic

changes over time from the earliest phases of HCC development.
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