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Abstract
We present an insertion-only data structure that supports k-nearest neighbors queries for a set of n

point sites in O(Q(n) log n + k) time, based on any static data structure that can perform k′-nearest
neighbors queries in O(Q(n) + k′) time. The key component is a general query algorithm that allows
us to find k-nearest neighbors spread over t substructures simultaneously, thus reducing the O(tk)
term in the query time to O(k). Applying this to the logarithmic method yields an insertion-only
data structure with both efficient insertion and query time. We apply our method in the plane
for the Euclidean and geodesic distance. We then briefly discuss the main difficulties to achieve a
similar running time in the fully dynamic case.

1 Introduction

In the k-nearest neighbors (k-NN) problem we are given a set of n point sites S in Rd, and
we wish to preprocess these points such that for a query point q and an integer k, we can
find the k sites in S ‘closest’ to q efficiently. This static problem has been studied in many
different settings [3, 4, 8, 12, 13]. In particular, for sites in R2 and the Euclidean distance
metric, Chan and Tsakalidis [8] achieved the optimal O(log n + k) query time using linear
space and O(n log n) preprocessing time. Very recently, Liu showed how to achieve the same
query time for general distance functions (in R2) using O(n log log n) space [13].

In this paper, we study the dynamic version of the k-nearest neighbors problem, in which
points can be inserted into or deleted from S, and the points lie in the plane. When we wish
to report only one nearest neighbor (i.e. 1-NN searching), several efficient fully dynamic data
structures exist [5, 7, 11]. Actually, all these data structures are variants of the same data
structure by Chan [5]. For the Euclidean distance, the current best result using linear space
achieves O(log2 n) query time and polylogarithmic update time [7]. The variant by Kaplan
et al. [11] achieves similar results for general distance functions. These data structures can
also answer k-NN queries in O(log2 n + k log n) time [5]. Recently, Liu [13] claimed that
the version of Kaplan et al. [11] can support such queries in O(log2 n + k) time. However,
we believe that there are some issues with this approach, as we briefly discuss in Section 4.
For the Euclidean distance, Chan achieves a query time of O(log2 n/ log log n + k) for k-NN
queries using O(n log n) space, by adapting his original data structure [6].

We are actually interested mostly in the insertion-only variant of the problem. Since
nearest neighbor searching is decomposable, we can directly apply the logarithmic method [14]
to turn a static k-NN searching data structure into an insertion-only data structure. However,
this again yields an unwanted O(k log n) term in the query time. Our main goal is to
reduce this term to O(k) instead. In Section 2, we show how to achieve this goal. We
present a general query algorithm that allows us to find the k-nearest neighbors spread over t

substructures in O(Q(n)t + k) time, assuming that the static data structure supports k′-NN
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Figure 1 Example of expansion. Blue elements are included in a clan, orange elements are not.
The expansion (building the next subheap) occurs when all elements have been included in a clan.

queries in O(Q(n) + k′) time. This yields a linear space data structure supporting queries in
O(log2 n + k) time and insertions in O(log2 n) time, when using the Euclidean distance.1

Our original interest in the problem stems from a setting in which S is a set of points
inside a simple polygon P with m vertices, and we use the geodesic distance as the distance
measure. In this setting, Agarwal, Arge, and Staals [2] describe an insertion-only data
structure for 1-NN queries that achieves O(log2 n log2 m) query time, and O(log n log3 m)
insertion time. As we show in Section 3, applying our machinery in this setting allows for
efficient (O(log2 n log2 m + k log m) time) k-NN queries and insertions, as well.

2 Insertion-Only Data Structure

We describe a method that transforms a static k-NN data structure with query time
O(Q(n) + k) into an insertion-only k-NN data structure with query time O(Q(n) log n + k).
Insertions take O((P (n)/n) log n) time, where P (n) is the preprocessing time of the static data
structure, and C(n) is its space usage. We assume Q(n), P (n), and C(n) are non-decreasing.

To support insertions, we use the logarithmic method [14]. We partition the sites into
O(log n) groups S1, .., SO(logn) with |Si| = 2i for i ∈ {1, .., O(log n)}. To insert a site s, a new
group containing only s is created. When there are two groups of size 2i, these are removed
and a new group of size 2i+1 is created. For each group we store the sites in the static k-NN
data structure. This results in an amortized insertion time of O((P (n)/n) log n). This bound
can also be made worst-case [14]. The main remaining issue is then how to support queries
in O(Q(n) log n + k) time, thus avoiding an O(k log n) term in the query time.

Query algorithm. Let q be the query point and k the number of nearest neighbors we wish
to find. We use the heap selection algorithm of Frederickson [9] to answer k-NN queries
efficiently. This algorithm finds the k smallest elements of a binary min-heap of size N � k in
O(k) time by forming groups of elements, called clans, in the original heap. Representatives
of these clans are then added to another heap, and smaller clans are created from larger clans
and organised in heaps recursively. For our purposes, we (only) need to consider how clans
are formed in the original heap, because we do not build the entire heap we query before
starting the algorithm. Instead, the heap is expanded during the query when necessary, see
Figure 1 for an example. Note that any (non-root) element of the heap will only be included
in a clan by the Frederickson algorithm after its parent has been included in a clan.

The heap H, on which we call the heap selection algorithm, contains all sites s ∈ S

exactly once, with the distance d(s, q) as key for each site. Let S1, .., St be a partition of S

1 With a slight variation of this method we can match the O(log2 n/ log log n + k) query time of Chan’s [6]
fully dynamic data structure for planes. However, this increases the insertion time to O(log2+ε / log log n).
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Figure 2 The heap that we construct for the k-nearest neighbors query. The subheaps of which
all elements have been included in a clan are indicated in blue. The subheaps that have been built,
but for which not all elements have been included in a clan, are indicated in orange. The white
subheaps have not been built so far, because not all elements of their predecessor are in a clan yet.

into t disjoint sets. For each set of sites Sj , j ∈ {1, .., t}, we define a heap H(Sj) containing
all sites in Sj . We then “connect” these t heaps by building a dummy heap H0 of size O(t)
that has the roots of all H(Sj) as leaves. We set the keys of the elements of H0 to −∞. Let
H be the complete data structure (heap) that we obtain this way, see Figure 2. It follows
that we can now compute the k sites closest to q by finding the |H0|+ k smallest elements in
the resulting heap H and reporting only the non-dummy sites.

What remains is how to (incrementally) build the heaps H(Sj) while running the heap se-
lection algorithm. Each such heap consists of a hierarchy of subheaps H1(Sj), .., HO(logn)(Sj),
such that every element of Sj appears in exactly one Hi(Sj). Moreover, since the sets S1, .., Sj
are pairwise disjoint, this holds for any s ∈ S, i.e. s appears in exactly one Hi(Sj). Each
heap H1(Sj) consists of the k1 = Q(n) sites in Sj closest to q, which we find by querying the
static data structure of that group. We call these the level 1 heaps. The subheap Hi(Sj) at
level i > 1 is built only after the last element e of Hi−1(Sj) is included in a clan, i.e. e is
considered by the heap selection algorithm. When e is included, we add a pointer from e to
the root of Hi(Sj), such that the root of Hi(Sj) becomes a child of e, as in Figure 1.

To construct a subheap Hi(Sj) at level i > 1, we query the static data structure of Sj
using ki = k12i−1. The new subheap is built using all sites returned by the query that have
not been encountered earlier. It follows that all elements of Hi(Sj) are larger than any of
the elements in H1(Sj), .., Hi−1(Sj). Thus, the heap property is preserved.

Analysis of query time. As stated before, finding the k-smallest non-dummy elements of
H takes O(k + |H0|) time [9]. In this section, we analyse the time used to construct H.

First, the level 0 and level 1 heaps are built. To build the level 1 heaps, we query each of
the substructures using k1 = Q(n). In total these queries take O((Q(n) + k1)t) = O(Q(n)t)
time. Building H0 takes only O(t) time. Retrieving the next ki elements to build Hi(Sj) for
i > 1 requires a single query and thus takes O(Q(n) + ki) time. To bound the time used to
build all heaps at level greater than 1, we first prove the following two lemmas.

I Lemma 1. The size of a subheap Hi(Sj), j ∈ {1, .., t}, at level i > 1 is exactly k12i−2.
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Proof. To create Hi(Sj), we query the static data structure of Sj to find the k12i−1 sites
closest to q. Of these sites, only the ones that have been not been included in any of the lower
level subheaps are included in Hi(Sj). The sites previously encountered are exactly the k12i−2

sites returned in the previous query. It follows that |Hi(Sj)| = k1(2i−1 − 2i−2) = k12i−2. J

I Lemma 2. The total size of all subheaps Hi(Sj) at level i > 1 is O(k).

Proof. There are essentially two types of subheaps: complete subheaps, of which all elements
have been included in a clan (shown blue in Figure 2), and incomplete subheaps, of which
only part of the elements has been included (shown orange in Figure 2). Note that the heap
Hi(Sj), i > 1, is only built when all elements of Hi−1(Sj) have been included in a clan. In
total, O(k) elements (not in H0) are included in a clan, so the total size of all complete
subheaps is O(k). Because the size of a subheap is at most twice the size of its predecessor,
it follows that the total size of all incomplete heaps at level greater than 1 is also O(k). J

Building Hi(Sj) takes O(Q(n)+ki) time. To pay for this, we charge O(1) to each element
of Hi−1(Sj). Because we choose k1 = Q(n), Lemma 1 implies that |Hi−1(Sj)| = Ω(Q(n)),
and that ki = k12i−1 = 22k12i−3 = O(|Hi−1(Sj)|). From Lemma 2, and the fact that all
subheaps are disjoint, it follows that we charge O(1) to only O(k) sites. We then have:

I Lemma 3. Let S1, .., St be disjoint sets of point sites of sizes n1, .., nt, each stored in a data
structure that supports k-NN queries in O(Q(ni) + k) time. There is a k-NN data structure
on

⋃
i Si that supports queries in O(Q(n)t + k) time. The data structure uses O(

∑
i C(ni))

space, where C(ni) is the space required by the k-NN structure on Si.

Applying Lemma 3 to the logarithmic method, we obtain the following result.

I Theorem 4. Let S be a set of n point sites, and let D be a static k-NN data structure of
size O(C(n)), that can be built in O(P (n)) time, and that can answer queries in O(Q(n) + k)
time. There is an insertion-only k-NN data structure on S of size O(C(n)) that supports
queries in O(Q(n) log n + k) time. Inserting a new site in S takes O((P (n)/n) log n) time.

Throughout this section, we used the standard assumption that for any two points p, q

their distance d(p, q) can be computed in constant time. When evaluating d(p, q) takes T

time, our technique achieves a query time of O(T (Q(n) log n + k)).

3 Applications

Points in R2. In the Euclidean metric, k-nearest neighbors queries in the plane can be
answered in O(log n + k) time, using O(n) space and O(n log n) preprocessing time [1, 8].

I Corollary 5. There is an insertion-only data structure of size O(n) that stores a set of n

sites in R2, allows for k-NNs queries in O(log2 n + k) time, and insertions in O(log2 n) time.

By using the logarithmic method with only O(logb n) groups, where |Si| = bi, we can
improve the query time to O(logb n log n + k), at the cost of increasing the insertion time
to O(b logb n log n). Setting b = logε n, we match the O(log2 n/ log log n + k) query time of
Chan [6] and still achieve an insertion time of O(log2+ε / log log n). For general distance
functions we achieve the same query time using Liu’s data structure [13], using O(n log log n)
space and expected O(polylog n) insertion time.
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Figure 3 A partial decomposition of P and the corresponding heap used in a k-NN query for q.

Points in a simple polygon. In the geodesic k-nearest neighbors problem, S is a set of
sites inside a simple polygon P with m vertices. For any two points p and q the distance
d(p, q) is defined as the length of the shortest path between p and q fully contained within P .
The input polygon P can be preprocessed in O(m) time so that the geodesic distance d(p, q)
between any two points p, q ∈ P can be computed in O(log m) time [10].

We recursively partition the polygon P into two subpolygons Pr and P` of roughly the
same size [2]. We denote by Sr and S` the sites in Pr and P`, respectively. This results
in a decomposition of the polygon of O(log m) levels. For both sets, and at each of the
levels, we again use the logarithmic method to support insertions. At every level, we store
S` in the static k-NN query data structure of Theorem 22 of [2]. It requires O(n log n)
space, excluding the size of the polygon, and finds the k-nearest neighbors among S` for
a point q ∈ Pr in O((log n + k) log m) expected time. Building the data structure takes
O(n(log n log m + log2 m)) time. Insertions using the logarithmic method therefore take
O(log2 n log2 m + log n log3 m) time, as there are O(log m) levels in the decomposition of P .

During a k-NN query, we have a partition of S into O(log n log m) disjoint groups Sj , as
we consider one set of sites (S` or Sr) for each level of the decomposition. An example is
shown in Figure 3. Lemma 3 thus states that there is a data structure that allows for k-NN
queries in O(log2 n log3 m + k log m) time. We can reduce this by setting k1 = log n instead
of log n log m and charging O(log m) to each site of Hi−1(Sj) to pay for building Hi(Sj).

I Theorem 6. Let P be a simple polygon with m vertices. There is an insertion-only data
structure of size O(n log n log m + m) that stores a set of n point sites in P , allows for
geodesic k-NN queries in O(log2 n log2 m + k log m) expected time, and inserting a site in
O(log2 n log2 m + log n log3 m) time.

4 Supporting Deletions

The data structures for 1-NN queries also supporting deletions in O(polylog n) time are all
based on an idea of Chan [5]. Liu [13] recently claimed that this data structure (in particular
the version of Kaplan et al. [11]) also supports k-NN queries in O(log2 n + k) time. We
believe there are some issues with this approach, which we sketch below.

EuroCG’21



14:6 A Dynamic Data Structure for k-Nearest Neighbors Queries

The key ingredient for dynamic 1-NN searching is an algorithm that takes a subset S of n

of the sites and produces an (abstract) data structure T storing S, and a partition of S into
a set “good” sites G and a set of “bad” sites B. The key properties are that every site in S is
stored at most O(log n) times in T , and that G has size Ω(n). By recursively applying this
algorithm on the bad sites, we obtain a partition of S into r = O(log n) good sets G1, .., Gr.
Each good set Gi is stored in a static 1-NN searching data structure Di, and thus we can
answer queries by querying each of these O(log n) data structures. Deleting a site may cause
some sites in these good sets to become marked as bad. These sites are reinserted into the
structure of B, hence we essentially move some sites from a Gi to a new good set Gj . It
can be shown that the total number of good sets remains O(log n). When a query in some
static data structure Di returns a site marked as bad we simply discard it. Chan shows
that this still allows us to answer queries correctly, and that deletions (and insertions) take
O(polylog n) amortized time [5, 11]. Note that the data structures T1, .., Tr are used only to
collect which functions become bad when performing deletions, not to answer queries.2

Liu claims that this data structure can also support k-NN queries in O(log2 n+k) time [13].
Presumably, by replacing the 1-NN data structures D1, ..,Dr by k-NN data structures (all
details are omitted). However, the sites in D1, .., Dr are not pairwise disjoint, and thus we
may encounter a site in the output to a query in multiple Di’s. This yields an O(k log n)
term in the query time, which matches the bound given by Chan [5].

To answer k-NN queries efficiently, Chan adapted his original data structure to accomodate
k-NN queries. By using the data structures T1, .., Tr to answer queries, and deleting planes
that are removed from these structures explicitly, a query time of O(log2 n/ log log n + k) is
achieved. However, it is not straightforward how to generalize this approach for more general
distance functions (for example the geodesic distance function). We are currently working
on this problem.
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