
Improving Schroeppel and Shamir’s Algorithm for Subset Sum
via Orthogonal Vectors

Jesper Nederlof
∗

Utrecht University

Utrecht, The Netherlands

j.nederlof@uu.nl

Karol Węgrzycki
†

Saarland University and Max Planck Institute for

Informatics

Saarbrücken, Germany

wegrzycki@cs.uni-saarland.de

ABSTRACT
We present an𝑂∗ (20.5𝑛) time and𝑂∗ (20.249999𝑛) space randomized

algorithm for solving worst-case Subset Sum instances with 𝑛 inte-

gers. This is the first improvement over the long-standing𝑂∗ (2𝑛/2)
time and 𝑂∗ (2𝑛/4) space algorithm due to Schroeppel and Shamir

(FOCS 1979).

We breach this gap in two steps: (1) We present a space effi-

cient reduction to the Orthogonal Vectors Problem (OV), one of the

most central problem in Fine-Grained Complexity. The reduction is

established via an intricate combination of the method of Schroep-

pel and Shamir, and the representation technique introduced by

Howgrave-Graham and Joux (EUROCRYPT 2010) for designing

Subset Sum algorithms for the average case regime. (2) We provide

an algorithm for OV that detects an orthogonal pair among 𝑁 given

vectors in {0, 1}𝑑 with support size 𝑑/4 in time �̃� (𝑁 · 2𝑑/
(𝑑
𝑑/4

)
).

Our algorithm for OV is based on and refines the representative

families framework developed by Fomin, Lokshtanov, Panolan and

Saurabh (J. ACM 2016).

Our reduction uncovers a curious tight relation between Subset

Sum and OV, because any improvement of our algorithm for OV

would imply an improvement over the runtime of Schroeppel and

Shamir, which is also a long standing open problem.

CCS CONCEPTS
• Theory of computation → Parameterized complexity and
exact algorithms; Computational complexity and cryptography;
Algorithm design techniques.

∗
Supported by the project CRACKNP that has received funding from the European

Research Council (ERC) under the European Union’s Horizon 2020 research and

innovation programme (grant agreement No 853234).

†
Supported by the project TIPEA that has received funding from the European Research

Council (ERC) under the European Unions Horizon 2020 research and innovation

programme (grant agreement No. 850979). Author was also supported Foundation for

Polish Science (FNP), by the grants 2016/21/N/ST6/01468 and 2018/28/T/ST6/00084

of the Polish National Science Center and project TOTAL that has received funding

from the European Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (grant agreement No 677651).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’21, June 21–25, 2021, Virtual, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8053-9/21/06. . . $15.00

https://doi.org/10.1145/3406325.3451024

KEYWORDS
Knapsack, Subset Sum, Meet-in-the-Middle, Space Complexity, Rep-

resentation Technique

ACM Reference Format:
Jesper Nederlof and Karol Węgrzycki. 2021. Improving Schroeppel and

Shamir’s Algorithm for Subset Sum via Orthogonal Vectors. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC
’21), June 21–25, 2021, Virtual, Italy. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3406325.3451024

1 INTRODUCTION
The most natural question in computational complexity is: Can an

algorithm be improved, or is there some fundamental barrier stop-

ping us from doing so? A major theme in contemporary research

has been to study this question in a fine-grained sense: given an

algorithm using T time (and S space) on worst-case instances, can

this be improved to T 1−Y
(or S1−Y

space), for some Y > 0?

Because of the highly challenging nature of finding such im-

provements, researchers introduced several hypotheses that state

that the currently best known algorithms already hit upon a bar-

rier and therefore cannot be improved in the above sense. Under

these hypotheses, many simple algorithms for standard problems

in 𝑃 like 3-SUM, Edit Distance, or Diameter cannot be significantly

improved. The fine-grained hardness of the latter two problems

is based on the hardness of a problem that is particularly central

in the area, called Orthogonal Vectors: Given 𝑁 vectors in {0, 1}𝑑 ,
detect two orthogonal vectors. A common hypothesis is that for

𝑑 = 𝜔 (log𝑛) the problem cannot be solved in 𝑂 (𝑁 2−Y) time for

some constant Y > 0. See for example the survey [38].

For NP-complete problems the situation is slightly different: Al-

though similar fine-grained hypotheses for CNF-SAT and Set Cover

have been introduced, they did not prove sufficient yet to rule

out improvements of the currently best algorithms for basic NP-

complete problems such as Traveling Salesman, Graph Coloring

and MAX-3-SAT. See the survey [27] for some hardness results in

this regime. There may be a good reason for this: While improved

polynomial time algorithms can be naturally used as subroutines for

improved exponential time algorithms, the converse is far less nat-

ural. Therefore it is quite plausible that finding better exponential

time algorithms is much easier than finding faster polynomial time

algorithms. And indeed, in the last decade improved algorithms for

basic problems such as Undirected Hamiltonicity [11] and Graph

Coloring [13] were found. This motivates the optimism that for

many NP-complete problems the currently best known algorithms

can still be enhanced.

1670

https://doi.org/10.1145/3406325.3451024
https://doi.org/10.1145/3406325.3451024

STOC ’21, June 21–25, 2021, Virtual, Italy Nederlof and Węgrzycki

Equipped with this optimism, we study the fine-grained com-

plexity of the following important class of NP-complete problems

revolving around numbers.

Subset Sum, Knapsack and Binary Integer Programming.
In the Subset Sum problem, we are given as input a set of integers

{𝑤1, . . . ,𝑤𝑛} and a target 𝑡 . The task is to decide if there exists a

subset 𝑆 ⊆ {1, . . . , 𝑛} such that the total sum of integers 𝑤 (𝑆) :=∑
𝑖∈𝑆 𝑤𝑖 is equal to 𝑡 .

In the 1970’s, Horowitz and Sahni [23] introduced the meet-in-
the-middle strategy and solved Subset Sum in 𝑂∗ (2𝑛/2) time and

space. Since then, it has been a notorious open question to improve

their result:

Question 1: Can Subset Sum be solved in 𝑂∗ (2(1/2−Y)𝑛)
time, for Y > 0?

A few years later, Schroeppel and Shamir [37] gave an algorithm

for Subset Sum using 𝑂∗ (2𝑛/2) time and only 𝑂∗ (2𝑛/4) space. In
the last section of their paper, they ask the following:

Question 2: Can Subset Sum be solved in𝑂∗ (2𝑛/2) time and

𝑂∗ (2(1/4−Y)𝑛) space, for Y > 0?

Both questions seemed to be out of reach until 2010, when

Howgrave-Graham and Joux [24] introduced the representation
technique and used it to solve random instances of Subset Sum in

𝑂∗ (20.337𝑛) time. The main idea behind the representation tech-

nique is to artificially expand the search space such that a single

solution has an exponential number 𝑟 of representatives in the new

search space. This allows us to subsequently restrict attention to a

1/𝑟 -fraction of the search space, which in some settings can be ad-

vantageous. In the context of Subset Sum, this technique has already

inspired improved algorithms for large classes of instances [7, 8],

time-space trade-offs [6, 20] and improved polynomial space algo-

rithms [9].

Nevertheless, answers to Questions 1 and 2 for worst-case in-

stances still remained elusive.

1.1 Our Main Result and Key Insight
Our main result is a positive answer to the 40-year old open Ques-

tion 2:

Theorem 1. Every instance of Subset Sum can be solved in
𝑂∗ (2𝑛/2) time and 𝑂∗ (20.249999𝑛) space by a randomized Monte
Carlo algorithm with constant success probability.

The result implies an analogous space improvement for Knap-

sack and Binary Integer Programming (see Corollary 4). To explain

our key ideas and their combination with existing methods, the

following problem is instrumental:

Weighted Orthogonal Vectors (notation: WOV(𝑁,𝑑, ℎ))
Input: Families of 𝑁 weighted sets A,B ⊆

([𝑑]
ℎ

)
× N of

Hamming weight ℎ, target integer 𝑡 .

Task: Detect (𝐴,𝑤𝐴) ∈ A and (𝐵,𝑤𝐵) ∈ B such that 𝐴 and

𝐵 are disjoint and𝑤𝐴 +𝑤𝐵 = 𝑡 .

The starting point is the𝑂∗ (2𝑛/2) time and space algorithm [23].

Their algorithm can be seen as a reduction to an instance of WOV(

2
𝑛/2

,0,0). Since 𝑑 = 0, this is an instance of 2-SUM, and the runtime

follows by a linear time algorithm for 2-SUM.

In contrast, the representation technique [24] can also be thought

of as a reduction from instances of Subset Sum to WOV, but with

the assumption that the Subset Sum instance does not have addi-
tive structure.1 In a follow-up work, Austrin et al. [8] loosen the

assumption of [24] and show that their reduction applies whenever

there is a small subset of 𝑑 weights without additive structure. Their

work implies a reduction from every
2
instance of Subset Sum to

WOV(𝑁,𝑑, 𝑑/4), where 𝑁 = 2
𝑛/2 (𝑑

𝑑/4
)
/2𝑑 and 𝑑/𝑛 > 0 is a small

(but fixed) positive constant.

Note that the two above reductions feature an intriguing trade-off

between the size 𝑁 and the dimension 𝑑 of the produced instance,

and the natural question is how the worst-case complexities of

solving these instances as quick as possible compare. Our first step

towards proving Theorem 1 is to show that this trade-off is tight,
unless Question 1 is answered positively:

Key Insight: There is an algorithm for WOV whose run

time dependency in 𝑑 matches the instance decrease in 𝑑

in the reduction from [8]. In particular, WOV(𝑁,𝑑, 𝑑/4) can
be solved in �̃� (𝑁 · 2𝑑/

(𝑑
𝑑/4

)
) time and �̃� (𝑁 + 2

𝑑) space (see
Theorem 28).

This insight has two interesting immediate consequences. First,

it provides an avenue towards resolving Question 1, because a

positive answer to this question is implied by an improvement of

our algorithm even for the unweighted version of WOV(𝑁,𝑑, 𝑑/4).
To the best of our knowledge, such an improvement is entirely

consistent with all the known hypotheses on (low/moderate/sparse)

versions of the Orthogonal Vectors problem [18, 22]. In fact, to

answer Question 1 affirmatively we only need an improvement for

the regime 2
𝑑/

(𝑑
𝑑/4

)
≤ 𝑁 ≤ 2

𝑑
, while previous hypotheses address

the regime where 𝑑/log𝑁 tends to infinity.

Second, a combination of the reduction from [8] and our algo-

rithm for WOV(𝑁,𝑑, 𝑑/4) would give an algorithm for Subset Sum

that runs in𝑂∗ (2𝑛/2) time and𝑂∗ (2(1/2−𝛿)𝑛) space, for some small

𝛿 > 0. While this is not even close to the memory improvement

of [37], one may hope that by adding the ideas [37] on top of this

approach results in a better memory usage. Notwithstanding the

significant hurdles that need to be overcome to make these two

methods combine, this is exactly how we get the improvement in

Theorem 1.

1.2 The Representation Technique Meets
Schroeppel and Shamir’s Technique

We now give a high level proof idea of Theorem 1. While our

conceptual contribution lies in the aforementioned key insight, our

main technical effort lies in showing that indeed the representation

technique and the algorithm of Schroeppel and Shamir [37] can

be combined to get a space efficient reduction from Subset Sum to

WOV.

1
Specifically, this means that |𝑤 (2[𝑛]) | ≥ 2

(1−Y)𝑛
for some small Y > 0, where

𝑤 (2[𝑛]) denotes {𝑤 (𝑋) : 𝑋 ⊆ [𝑛] }.
2
Actually not every instance, but instances where the reduction fails can be solved

quickly by other means.

1671

Improving Schroeppel and Shamir’s Algorithm for Subset Sum via Orthogonal Vectors STOC ’21, June 21–25, 2021, Virtual, Italy

The method of Schroeppel and Shamir [37] can also be seen as a

reduction from Subset Sum to an instance of WOV(2𝑛/2, 0, 0), but it
is an implicit one: The relevant vectors of the instance can be enu-

merated quickly by decomposing the search space of 2
𝑛/2

vectors

into a Cartesian product of two sets of 2
𝑛/4

vectors, and generating

all vectors in a useful order via priority queues. See Section 3 for a

further explanation. Thus, to prove Theorem 1, we aim to generate

the relevant parts of the instance I of WOV(𝑁,𝑑, 𝑑/4) defined by

the representation technique efficiently, using priority queues of

size at most 𝑂∗ (20.249999𝑛).
Unfortunately, the vectors from the instance I defined by the

representation technique are elements of a search space of size

2
(1/2+Ω (1))𝑛

; its crux is that there are only 2
(1/2−Ω (1))𝑛

vectors

in the instance because we only have vectors with a fixed inner

product with the weight vector (𝑤1, . . . ,𝑤𝑛).3 Thus a straightfor-
ward decomposition of this space into a Cartesian product will give

priority queues of size 2
(1/4+Ω (1))𝑛

.

To circumvent this issue, we show that we can apply the repre-

sentation technique again to generate the vectors of the instance I
efficiently using priority queues of size 𝑂∗ (20.249999𝑛). While the

representation technique was already used in a multi-level fashion

in several earlier works (see e.g. [6, 24]), an important ingredient

of our algorithm is that we apply the technique in different ways

at the different levels depending on the structure of the instance.

1.3 Additional Results and Techniques
Our route towards Theorem 1 as outlined above has the following

by-products that may be considered interesting on their own. The

first one was already referred to in the ‘key insight’:

An algorithm for Orthogonal Vectors. A key subroutine in

this paper is the following algorithm for Orthogonal Vectors. We

let OV(𝑁,𝑑, ℎ) refer to the problem WOV(𝑁,𝑑, ℎ) restricted to

unweighted instances (that is all involved integers are zero).

Theorem 2. There is a Monte-Carlo algorithm for OV(𝑁,𝑑, 𝑑/4)
that uses �̃�

(
𝑁 · 2𝑑/

(𝑑
𝑑/4

))
time and �̃� (𝑁 + 2

𝑑) space.

An easy reduction shows the same runtime and space usage

can be obtained for WOV(𝑁,𝑑, 𝑑/4). Our algorithm for Orthogonal

Vectors uses the general blueprint of an algorithm by Fomin et al.

[21] (which in turn builds upon ideas from [14, 29]). However, to

ensure that the algorithm for Orthogonal Vectors combined with

our methods result in an 𝑂∗ (2𝑛/2) time algorithm for Subset Sum,

we need to refine their method and analysis.

To facilitate our presentation, we consider a new communication

complexity-related parameter of 1-covers of a matrix that we call

the ‘sparsity’. We show that a 1-cover of low sparsity of a specific

Disjointness Matrix implies an efficient algorithm for Orthogonal

Vectors, and we exhibit a 1-cover of low sparsity of the disjointness

matrix. We also prove that our 1-cover has nearly optimal sparsity.

This means that Question 1 cannot be resolved directly via our route

combined with improved 1-covers. Additionally, we use several

preprocessing techniques to ensure that the space usage of our

algorithm is only �̃� (𝑁 + 2
𝑑), which is crucial to Theorem 1.

3
Some knowledge of the representation technique is required to understand this in

detail; We explain the representation technique in Section 2.

Reduction to weighted 𝑃4. While we do not resolve Question 1,

our approach provides new avenues by reducing it to typical ques-

tions in the study of fine-grained complexity of problems in the

complexity class P. Our new reductions enable us to show a new

connection between Subset Sum and the following graph problem:

In the Exact Node Weighted 𝑃4 problem one is given an undirected

graph 𝐺 = (𝑉 , 𝐸) with vertex weights and the task is to decide

whether there exists a path on four vertices with weights summing

to 0 (see the full version of this paper [35]).

Theorem 3. If Exact Node Weighted 𝑃4 on a graph 𝐺 = (𝑉 , 𝐸)
can be solved in 𝑂 (|𝑉 |2.05) time, then Subset Sum can be solved in
𝑂∗ (2(0.5−𝛿)𝑛) randomized time for some 𝛿 > 0.

In comparison to the straightforward reduction from Subset Sum

to 4-SUM, our reduction creates a set of integers with an additional

path constraint. Thus a possible attack towards resolving Question 1

is to design a quadratic time algorithm for Exact Node Weighted

𝑃4 (or more particularly, only for the instances of the problem

generated by our reduction).

The naïve algorithm for Exact Node Weighted 𝑃4 works in

�̃� (|𝑉 |3) time. To the best of our knowledge the best algorithm

for this problem runs in �̃� (|𝑉 |2.5) when 𝜔 = 2 [16] (where 𝜔 is the

exponent of currently the fastest algorithm for matrix multiplica-

tion).
4
On the lower bounds side, using the ‘vertex minor’ method

from [3] it can be shown that the problem of detecting triangles

in a graph can be reduced to Exact Node Weighted 𝑃4 [1]. This

explains that obtaining a quadratic time algorithm may be hard

(since it is even hard to obtain for detecting triangles). However,

detecting triangles in a graph is known to be solvable in �̃� (|𝑉 |𝜔)
time, Therefore it is still justified to aim for a �̃� (|𝑉 |𝜔) time algo-

rithm for Exact Node Weighted 𝑃4. We leave it as an intriguing

open question whether Exact Node Weighted 𝑃4 can be solved in

�̃� (|𝑉 |𝜔) time.

More general problems. Known reductions from [34] combined

with Theorem 1 also imply the following improved algorithms for

generalizations of the Subset Sum problem (see the full version of

this paper [35] for their definitions):

Corollary 4. Any instance of Knapsack on 𝑛 items can be solved in
𝑂∗ (2𝑛/2) time and 𝑂∗ (20.249999𝑛) space, and any instance of Binary
Integer Programming with 𝑛 variables and 𝑑 constraints with maxi-
mum absolute integer value𝑚 can be solved in𝑂∗ (2𝑛/2 (log(𝑚𝑛)𝑛)𝑑)
time and 𝑂∗ (20.249999𝑛) space.

1.4 Related Work
It was shown in [37] that Subset Sum admits a time-space trade-

off, i.e. an algorithm using S space and 2
𝑛/S2

time for any S ≤
𝑂∗ (2𝑛/4). This tradeoff was improved by [6] for almost all trade-

off parameters (see also [20]). We mention in the passing that as

direct consequence of Theorem 1, the Subset Sum admits a time-

space tradeoff using 2
𝑛/S0.5/0.249999

time and S space, for any

4
Briefly described, reduce a problem instance on (𝑉 , 𝐸) to the problem of finding a

triangle in an unweighted graph on |𝑉 |2 edges: One vertex of the triangle represents
the two extreme vertices of the path and the sum of the weights of the two first vertices

on the path, and the other two vertices of the triangle represent the inner vertex. This

instance of unweighted triangle can be solved in �̃� (|𝑉 |2.5) with standard methods,

assuming 𝜔 = 2.

1672

STOC ’21, June 21–25, 2021, Virtual, Italy Nederlof and Węgrzycki

S ≤ 𝑂∗ (20.249999𝑛), but the obtained parameters are only better

than the previous works for S chosen closely to its maximum. See

the full version of this paper [35] for a proof.

In [7], the authors considered Subset Sum parametrized by the

parameter 𝛽 (which is defined as the largest number of subsets of the

input integers that yield the same sum) and obtained an algorithm

running in time𝑂∗ (20.3399𝑛𝛽4). Subsequently, [8] showed that one

can get a faster algorithm for Subset Sum than meet-in-the-middle

if 𝛽 ≤ 2
(0.5−Y)𝑛

or 𝛽 ≥ 2
0.661𝑛

. Recently, [9] gave an algorithm

for Subset Sum running in 𝑂∗ (20.86𝑛) time and polynomial space,

assuming random access to a random oracle.

From the pseudopolynomial algorithms perspective, Subset Sum

has also been subject of recent stimulative research [2, 15, 19, 25,

26, 28]. These algorithms use plethora of ingenious algorithmic

techniques, e.g., dynamic programming, color-coding and the Fast

Fourier Transform.

Average case complexity and representation technique. In
a breakthrough paper, Howgrave-Graham and Joux [24] intro-

duce the representation technique and showed 𝑂∗ (20.337𝑛) time

and𝑂∗ (20.256𝑛) space algorithm for an Subset Sum in average-case

setting. It was improved by [10] who gave an algorithm running in

𝑂∗ (20.291𝑛) time and space.

The representation technique already found several applications

in the worst-case setting for other problems (see [30, 31, 33]).

Orthogonal Vectors. Naively, the Orthogonal Vectors problem
can be solved in 𝑂 (𝑑𝑁 2) time. For large 𝑑 , only a slightly faster

algorithm that runs in time 𝑁 2−1/𝑂 (log(𝑑/log𝑁))
time is known [4,

17]. The assumption that for 𝑑 = 𝜔 (log𝑁) there is no 𝑂 (𝑁 2−Y)
time algorithm any Y > 0 is a central conjecture of fine-grained

complexity (see [38] for an overview).

In this paper, we are mainly interested in linear (in 𝑁) time

algorithms for OV. It was shown in [39] that OV cannot be solved

in 𝑂 (𝑁 2−Y · 2𝑜 (𝑑)) time for any Y > 0 assuming SETH. In [12] an

algorithm for OV was given that runs in �̃� (𝐷) time, where 𝐷 is the

total number of vectors whose support is a subset of the support of

an input vector.

1.5 Organization
In this paper we heavily build upon previous literature, and in

particular the representation technique as developed in [8, 10].

Therefore, we introduce the reader to this technique in Section 2.

At the end of Section 2, we also use the introduced terminology

of the representation technique to explain the new steps towards

proving Theorem 1.

The remainder of the paper is devoted to formally support all

claims made. Necessary preliminaries are provided in Section 3; in

Section 4 we present the proof of Theorem 1, and Section 5 contains

the proof of (a generalization of) Theorem 2.

In the full version of this paper [35] we provide various short

omitted proofs, an inequality relevant for the runtime of our al-

gorithms and the reduction to the Exact Node Weighted 𝑃4 from

Theorem 3.

2 INTRODUCTION TO THE
REPRESENTATION TECHNIQUE, AND ITS
EXTENSIONS

This section is devoted to explain the representation technique (and

its extensions from [8]) and will serve towards a warm up towards

the formal proof of Theorem 1.

2.1 The Representation Technique with a
Simplified Assumption

We fix an instance𝑤1, . . . ,𝑤𝑛, 𝑡 of Subset Sum. A perfect mixer is
a subset 𝑀 ⊆ [𝑛] such that for every distinct subsets 𝐴1, 𝐴2 ⊆ 𝑀

we have 𝑤 (𝐴1) ≠ 𝑤 (𝐴2).5 To simplify the explanation in this

introductory section, we will make the following assumption about

the Subset Sum instance:

Assumption 1. If 𝑤1, . . . ,𝑤𝑛, 𝑡 is a YES-instance of Subset Sum,
then there is a perfect mixer𝑀 ⊆ [𝑛] and a set 𝑆 with𝑤 (𝑆) = 𝑡 such
that |𝑀 ∩ 𝑆 | = |𝑀 |/2.

A mild variant of Assumption 1 can be made without loss of

generality since relatively standard extensions of themethod by [37]

can be used to solve the instance more efficiently if it does not hold.

We discuss the justification of Assumption 1 more later. We now

illustrate the representation technique by outlining proof of the

following statement:

Theorem 5. An instance of Subset Sum satisfying Assumption 1
can be reduced to an equivalent instance of

WOV

(
2
𝑛/2

(
|𝑀 |
|𝑀 |/4

)
/2 |𝑀 |, |𝑀 |, |𝑀 |/4

)
in the linear (in the size of the output) randomized time.

Algorithm :RepTechnique(𝑤1, . . . ,𝑤𝑛, 𝑡, 𝑀)

Output : Instance of weighted orthogonal vectors

1 Arbitrarily partition [𝑛] \𝑀 into 𝐿 and 𝑅 such that

|𝐿 | = |𝑅 | = (𝑛 − |𝑀 |)/2
2 Pick a random prime 𝑝 of order 2

|𝑀 |/2

3 Pick a random 𝑥 ∈ Z𝑝
4 Construct the following sets:

L :=

{
(𝐴1 ∩𝑀,𝑤 (𝐴1)) such that 𝐴1 ∈ 2

𝐿∪𝑀

and |𝐴1 ∩𝑀 | = |𝑀 |/4 and𝑤 (𝐴1) ≡𝑝 𝑥

}
R :=

{
(𝐴2 ∩𝑀,𝑤 (𝐴2)) such that 𝐴2 ∈ 2

𝑅∪𝑀

and |𝐴2 ∩𝑀 | = |𝑀 |/4 and𝑤 (𝐴2) ≡𝑝 𝑡 − 𝑥

}
5 return the instance (L,R, 𝑡) of Weighted OV

Algorithm 1: Pseudocode of Theorem 5

The reduction from Theorem 5 is described in Algorithm 1, and

uses the standard notation ≡𝑝 to denote equivalence modulo 𝑝 .

We now describe the intuition of the algorithm. For partition of

[𝑛] into 𝐿,𝑀, 𝑅, it expands the search space by looking for pairs

5
This notion will be generalized to the notion of an Y-mixer in Definition 11.

1673

Improving Schroeppel and Shamir’s Algorithm for Subset Sum via Orthogonal Vectors STOC ’21, June 21–25, 2021, Virtual, Italy

Figure 1: The green and orange regions represent a solution,
i.e., a set 𝑆 such that 𝑤 (𝑆) = 𝑡 . There are

(|𝑀∩𝑆 |
|𝑀∩𝑆 |/2

)
pairs 𝐴1 ∈

2
𝐿∪𝑀 and 𝐴2 ∈ 2

𝑅∪𝑀 , such that 𝐴1 ∪ 𝐴2 = 𝑆 and 𝐴1 ∩ 𝐴2 = ∅.
Because𝑀 is a perfect mixer, the number of possible values
that𝑤 (𝐴1 ∩𝑀) can take is also

(|𝑀∩𝑆 |
|𝑀∩𝑆 |/2

)
.

(𝐴1, 𝐴2) where 𝐴1 ∈ 2
𝐿∪𝑀

, 𝐴2 ∈ 2
𝑅∪𝑀

and both 𝐴1 and 𝐴2 use

|𝑀 |/4 elements of 𝑀 . This is useful since the assumed solution 𝑆

is represented by the

(|𝑀∩𝑆 |
|𝑀 |/4

)
≈ 2

|𝑀 |/2
partitions (𝐴1, 𝐴2) of 𝑆 that

are in the expanded search space. Together with Assumption 1, this

allows us in turn to narrow down the search space by restricting the

search to look only for pairs (𝐴1, 𝐴2) satisfying 𝑤 (𝐴1) ≡𝑝 𝑥 , and

thus𝑤 (𝐴2) ≡𝑝 𝑡 −𝑥 . Thus, the algorithm enumerates all candidates

for𝐴1 and𝐴2 in respectively L and R and the instance of weighted

orthogonal vectors detects a disjoint pair of candidates with weights

summing to 𝑡 .

One direction of the correctness of the algorithm follows directly:

If the produced instance of weighted orthogonal vectors is a YES-

instance, the union of the two found sets is a solution to the Subset

Sum instance.

Conversely, we claim that if the instance of Subset Sum is a YES-

instance and Assumption 1 holds, then with good probability the

output instance of Weighted Orthogonal Vectors is a YES-instance.

Let 𝑆 be the solution of the Subset Sum instance, so𝑤 (𝑆) = 𝑡 and

|𝑆 ∩𝑀 | = |𝑀/2| by Assumption 1. Note that

𝑊 :=
��{𝑤 (�̃�1 ∪ (𝐿 ∩ 𝑆)) : �̃�1 ∈

(
𝑀 ∩ 𝑆

|𝑀 ∩ 𝑆 |/2

)}�� = (
|𝑀 |/2
|𝑀 |/4

)
,

because there are

(|𝑀 |/2
|𝑀 |/4

)
possibilities for �̃�1 and𝑤 (�̃�1) is different

for each different �̃�1 by the perfect mixer property of𝑀 . Therefore,

there are

(|𝑀 |/2
|𝑀/4

)
possibilities for𝐴1 := 𝐴′

1
∪ (𝐿∩𝑆) and each𝑤 (𝐴1)

is different.

By standard properties of hashing modulo random prime num-

bers (see e.g. Lemma 7 for a general statement), we have that the

expected size of {𝑦 mod 𝑝 : 𝑦 ∈𝑊 } is also approximately of car-

dinality

(|𝑀 |/2
|𝑀 |/4

)
.
6
Therefore the probability that 𝑥 is chosen such

that 𝑥 ≡𝑝 𝑦 for some 𝑦 ∈𝑊 is

(|𝑀 |/2
|𝑀 |/4

)
/2 |𝑀 |/2 ≥ Ω(1

|𝑀 |). If we let
𝐴1 ∈ L be the set with 𝑤 (𝐴1) = 𝑦 then since 𝑤 (𝑆 \ 𝐴1) ≡𝑝 𝑡 − 𝑦,

𝑆 \𝐴1 ∈ R and the pair (𝐴1, 𝑆 \𝐴2) is a solution to the weighted or-

thogonal vectors problem. In general this happens with probability

at least 1/𝑛.
Now we discuss the runtime and output size. At Line 4 we con-

structL andR. Since the number of possibilities of𝐴1 is 2
|𝐿 | (|𝑀 |

|𝑀 |/4
)

and each such 𝐴1 satisfies 𝑤 (𝐴1) ≡𝑝 𝑥 with probability 𝑝 (taken

6
This uses that all numbers are single-exponential in 𝑛, but this can be assured with a

standard hashing argument.

over the random choices of 𝑥), we have that the expected sizes of

L (and similarly, of R) is 2
𝑛/2 (|𝑀 |

|𝑀 |/4
)
/2 |𝑀 |

, as claimed. By standard

pseudo-polynomial dynamic programming techniques (see e.g. [8]),

Line 4 can be performed in 𝑂 (𝑝 + |L| + |R|) time, and thus the

claimed run time follows.

2.2 Representation Technique with
Non-Simplified Assumption

Assumption 1 is oversimplifying our actual assumptions, and actu-

ally only a weaker assumption is needed to apply the representation

method. We call any set𝑀 that satisfies |𝑤 (2𝑀) | = 2
(1−Y) |𝑀 |

an Y-
mixer (see also Definition 11). Denoting𝑤 (F) for {𝑤 (𝑋) : 𝑋 ∈ F },
the assumption is

Assumption 2. If 𝑤1, . . . ,𝑤𝑛, 𝑡 is a YES-instance of Subset Sum,
then there is an Y-mixer 𝑀 , and a set 𝑆 with 𝑤 (𝑆) = 𝑡 such that
| (1
2
− Y ′) |𝑀 | ≤ |𝑀 ∩ 𝑆 | ≤ (1

2
+ Y ′) |𝑀 |, for some small positive Y, Y ′.

To note that the representation technique introduced above still

works with these relaxed assumptions, we remark that it can be

shown that if,𝑀 is an Y-mixer, then𝑤 (
(𝑀∩𝑆

𝑖

)
) ≥ 2

(1−𝑓 (Y,Y′)) |𝑀∩𝑆 |

for some Y, Y ′ and unknown 𝑖 . Thus in the representation technique

we can split the solution in sets 𝐴1, 𝐴2 where |𝐴1 ∩ 𝑀 | = 𝑖 and

|𝐴2 ∩𝑀 | = |𝑆 ∩𝑀 | − 𝑖 and use a prime 𝑝 of order 2
(1−𝑓 (Y,Y′)) |𝑀∩𝑆 |

for some function 𝑓 that tends to 0 when Y and Y ′ tend to 0.

The advantage of the relaxed assumptions in Assumption 2 is that

the methods from [23, 37] can be extended such that it solves any

instance that does not satisfy the assumptions exponentially better

in terms of time and space than in the worst-case. This allows us

to make these assumptions without loss of generality when aiming

for general exponential improvements in the run time (or space

bound).

For example, in the approach by Schroeppel and Shamir [37], in

some steps of the algorithm we only need to enumerate subsets

of cardinality bounded away from half of the underlying universe;

or in some other steps of the algorithm we can maintain smaller

lists with sums generated by subsets. While these extensions are

not entirely direct, we skip a detailed explanation of them in this

introductory section (see Section 3 for formal statements).

2.3 Our Extensions of the Representation
Technique Towards Theorem 1

Having described the representation technique, we now explain

our approach in more detail.

Setting up the representation technique to reduce the space
usage. Now, we present the intuition behind the space reduc-

tion of Theorem 1. In the previous subsection we constructed

an instance L,R of weighted orthogonal vectors of expected size

𝑂∗ (2𝑛/2−Ω (|𝑀 |)) such that with good probability there exist𝐴1 ∈ L
and 𝐴2 ∈ R with 𝑤 (𝐴1 ∪ 𝐴2) = 𝑡 and 𝐴1 ∩ 𝐴2 = ∅ (if the an-

swer to Subset Sum is yes). We combine this approach with the

approach from [37] and aim to efficiently enumerate this instance

of weighted orthogonal vectors instance. To do so, we apply the

representation method two times more, and are able to construct 4

sets L1,L2,R1,R2 ⊆ 2
[𝑛]

with the following properties:

1674

STOC ’21, June 21–25, 2021, Virtual, Italy Nederlof and Węgrzycki

(i) With good probability there exist pairwise disjoint 𝐴1 ∈
L1, 𝐴2 ∈ L2, 𝐴3 ∈ R2, 𝐴4 ∈ R1, such that𝑤 (𝐴1 ∪𝐴2 ∪𝐴3 ∪
𝐴4) = 𝑡 , if the Subset Sum instance is a YES-instance,

(ii) The expected size of each L1,L2,R1,R2 is𝑂
∗ (2𝑛/4−Ω (|𝑀 |)).

The sets will have the property that elements in L are formed by

pairs from L1 × L2 and elements in R are formed by pairs from

R1 ×R2. But in contrast to the technique from [37], the lists L and

R can not be easily decomposed into a Cartesian product of two

sets of size

√︁
|L| and

√︁
|R |. To overcome this issue, we apply the

representation method again to enumerate the elements of L and

R quickly. In particular, to construct the sets L1,L2,R1,R2, we

Figure 2: The decomposition of the instance into [𝑛] = 𝐿 ⊎
𝑀𝐿 ⊎𝑀 ⊎𝑀𝑅 ⊎ 𝑅 and decomposition of the solution 𝑆 = 𝐴1 ⊎
𝐴2 ⊎𝐴3 ⊎𝐴4.

partition the instance into 𝐿,𝑀𝐿, 𝑀,𝑀𝑅, 𝑅. See also Figure 2. Here

𝑀 is assumed to be an Y-mixer that is used for the representation

technique on ‘first level’: at this level we check whether a pairL×R
forms a solution. The set𝑀𝐿 is assumed to be an Y𝐿-mixer and the

set 𝑀𝑅 is assumed to be an Y𝑅-mixer, and these sets are used for

two applications of the representation technique on the ‘second

level’: At this level we check whether a pair in L1 × L2 forms

an element of L (and similarly, whether a pair in R1 × R2 forms

an element of R). If any of the assumptions fail, relatively direct

extensions of the methods from [37] can again solve the instance

more efficiently in a way similar to how we justified Assumption 2,

so these assumptions are without loss of generality.

Maintaining the 𝑂∗ (2𝑛/2) time bound. After we construct

sets L1,L2,R2,R1 as claimed in property (i) we combine the ap-

proach of [37] with our Orthogonal Vectors algorithm to obtain

the 𝑂∗ (2𝑛/2) running time. In particular, we store the elements of

L1,L2,R1,R2 in priority queues ordered by the weight in order to

enumerate the elements of L and R in the correct order. By our

applications of the representation technique, we only need to assure

disjointness between pairs between L1 ×L2, R1 ×R2 and L2 ×R2

and therefore the time to check disjointness is the same as in the

normal application of the representation technique as described at

the beginning of this section.

Unfortunately, the relaxed assumptions fromAssumption 2 cause

issues here because we need to consider unbalanced partitions of

𝑀 ∩ 𝑆 , 𝑀𝐿 ∩ 𝑆 , 𝑀𝑅 ∩ 𝑆 and the constants Y, Y𝐿, Y𝑀 give rise to

different primes in our application of the representation technique.

Without additional care, the overhead in the runtime implied by

these issues would lead to an undesired time bound of𝑂∗ (2(0.5+Y)𝑛)
for arbitrarily small constant Y > 0.

To address these complications, we analyse our algorithm in

such a way that if |𝑤 (2𝑀𝐿) | or |𝑤 (2𝑀𝑅) | is significantly smaller

than |𝑤 (2𝑀) |, then we get an improved runtime. Note this can

be assumed by switching the roles of𝑀𝐿, 𝑀𝑅, 𝑀 . Additionally, we

provide a general runtime for solvingWeighted Orthogonal Vectors

instances with vectors with general support size.

3 PRELIMINARIES
Throughout the paper we use the 𝑂∗ (·) notation to hide factors

polynomial in the input size and the �̃� (·) notation to hide polylog-

arithmic factors in the input size; which input this refers to will

always be clear from the context. We also use [𝑛] to denote the

set {1, . . . , 𝑛}. We use the binomial coefficient notation for sets, i.e.,

for a set 𝑆 the symbol

(𝑆
𝑘

)
denotes the set of all subsets of the set

𝑆 of size exactly 𝑘 . For a modulus𝑚 ∈ Z≥1 and 𝑥,𝑦 ∈ Z we write
𝑥 ≡𝑚 𝑦 to indicate that 𝑚 divides 𝑥 − 𝑦. If 𝑋 ⊆ [𝑛], we denote

𝑤 (𝑋) := ∑
𝑖∈𝑋 𝑤𝑖 , which is extended to set families F ⊆ 2

[𝑛]
by

denoting 𝑤 (F) := {𝑤 (𝑋) : 𝑋 ∈ F }. We use 𝐴 ⊎ 𝐵 = 𝐶 to denote

that 𝐴, 𝐵 form a partition of 𝐶 .

Prime numbers and hashing. We use the following folklore

theorem on prime numbers:

Lemma 6 (Folklore). For every sufficiently large integer 𝑟 the fol-
lowing holds. If 𝑝 is a prime between 𝑟 and 2𝑟 selected uniformly at
random and x is a nonzero integer, then p divides x with probability
at most (log

2
𝑥)/𝑟 .

The following Lemma already appeared in [8], but since we need

slightly different parameters we repeat its proof.

Lemma 7 (cf., Proposition 3.5 in [8]). Let 𝑤1, . . . ,𝑤𝑛 be 𝑛 inte-
gers bounded by 2

𝑂 (𝑛) . Suppose 𝑄 ⊆ [𝑛] with |𝑄 | = Θ(𝑛). Let
𝑊1, . . . ,𝑊𝑐 be integers and let𝑊 =

∏𝑐
𝑖=1𝑊𝑖 such that𝑊 ≤ |𝑤 (2𝑄) |.

For 𝑖 = 1, . . . , 𝑐 , let 𝑝𝑖 be prime numbers selected uniformly at
random from [𝑊𝑖/2,𝑊𝑖]. Let 𝑠0 be the smallest integer such that(|𝑄 |
𝑠0

)
≥ |𝑤 (2𝑄) |/|𝑄 |. Denoting 𝑝 :=

∏𝑐
𝑖=1 𝑝𝑖 , we have

P
[���{𝑎 mod 𝑝 : 𝑋 ⊆ 𝑄, |𝑋 | ∈ [𝑠0, |𝑄 |/2], 𝑤 (𝑋) = 𝑎

}��� ≥ Ω
(𝑝
𝑛𝑐

)]
is greater or equal to 0.9.

We present the technical proof of Lemma 7 in the full version of

this paper [35].

Shroeppel-Shamir’s sumset enumeration. We recall some of

the basic building blocks of previous work on Subset Sum. In [37]

the authors used the following data structure to obtain an �̃� (𝑛2)
time and �̃� (𝑛) space algorithm for 4-SUM.

Lemma 8. Let𝐴, 𝐵 ⊆ Z be two sets of integers, and let𝐶 := 𝐴+𝐵 :=

{𝑎 + 𝑏 : 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵} be their sumset. Let 𝑐1, . . . , 𝑐𝑚 be elements of
𝐶 in increasing order. There is a data structure inc := inc(𝐴, 𝐵) that
takes �̃� (|𝐴|+|𝐵 |) preprocessing time and supports a query inc.next()
that in the 𝑖’th (for 1 ≤ 𝑖 ≤ 𝑚) call outputs (𝑃𝑙𝑐𝑖 , 𝑐𝑖), and in the
subsequent calls outputs EMPTY. Here 𝑃𝑙𝑐𝑖 is the set {(𝑎, 𝑏) : 𝑎 ∈ 𝐴,𝑏 ∈
𝐵, 𝑎 + 𝑏 = 𝑐𝑖 }.

Moreover, the total time needed to execute all𝑚 calls to inc.next()
is �̃� (|𝐴| |𝐵 |) and the maximum space usage of the data structure is
�̃� (|𝐴| + |𝐵 |).

Similarly, there is a data structure dec := dec(𝐴, 𝐵) that outputs
pairs of elements of 𝐴 and 𝐵 in order of their decreasing sum.

1675

Improving Schroeppel and Shamir’s Algorithm for Subset Sum via Orthogonal Vectors STOC ’21, June 21–25, 2021, Virtual, Italy

The data structure crucially relies on priority queues. We in-

cluded the proof of this Lemma in the full version of this paper [35].

Binomial coefficients. We will frequently use the binary en-

tropy function ℎ(𝑝) := −𝑝 log
2
(𝑝) − (1 − 𝑝) log

2
(1 − 𝑝). Its main

use is via the following estimate of binomial coefficients:

Ω(𝑑−1/2)2𝑑ℎ (𝛼) ≤
(
𝑑

𝛼𝑑

)
≤ 2

𝑑ℎ (𝛼) . (1)

We also consider the inverse of the binary entropy. Since ℎ(𝛼) is
strictly increasing in [0, 0.5] we can define ℎ−1 : [0, 1] → [0, 0.5],
with condition that ℎ−1 (𝛼) = 𝛽 iff ℎ(𝛽) = 𝛼 .

For every 𝛼 ∈ [0, 0.5] we have the following inequality on the

entropy function:

1 − 4𝛼2 ≤ ℎ(1/2 − 𝛼) ≤ 1 − 2𝛼2/ln 2 (2)

Moreover by the concavity of binary entropy we know that for all

𝛼, 𝑥,𝑦 ∈ [0, 1]:
𝛼ℎ(𝑥) + (1 − 𝛼)ℎ(𝑦) ≤ ℎ(𝛼𝑥 + (1 − 𝛼)𝑦) (3)

In particular it means that ℎ(𝜎_) + ℎ((1 − 𝜎)_) ≤ 2ℎ(_/2) for any
0 ≤ 𝜎 ≤ 1.

Our runtime analysis crucially relies on the following highly

technical inequality on binomial coefficients.

Lemma 9. For large enough 𝑛 and _ ∈ [0.4, 0.5] and 𝜎 ∈ [0.4, 0.6]
the following inequality holds:

min

𝑥

{ (
1−_𝜎
𝑥−_𝜎

)
𝑛
+

(
1−(1−𝜎)_

𝑥

)
𝑛(

1−_
𝑥−_𝜎

)
𝑛

}
≤ 2

𝑛 (1/2+_−ℎ (_/2))𝑛𝑂 (1) .

The proof of Lemma 9 is provided in the fullversion of this

paper [35].

The following standard concentration lemma will be useful to

control the intersection of the solution with certain subsets of the

weights of the subset sum instance:

Lemma 10. Let 𝐴 ⊆ [𝑑] be any set with |𝐴| = 𝛼𝑑 , and let 𝐵 ⊆ [𝑑]
be uniformly sampled over all subsets with |𝐵 | = 𝛽𝑑 and 𝛼𝛽𝑑 be an
integer. Then the following holds:

P [|𝐴 ∩ 𝐵 | = 𝛼𝛽𝑑] ≥ Ω∗ (1) .
We provide the proof of Lemma 10 in the full version of this

paper [35].

Preprocessing algorithms. We now present several simple pro-

cedures that allow us to make assumptions about the given Subset

Sum instance in the proof of Theorem 1. Throughout this paper

𝑤1, . . . ,𝑤𝑛, 𝑡 denotes an instance of Subset Sum. We can assume

that the integers𝑤1, . . . ,𝑤𝑛, 𝑡 are positive and𝑤1+. . .+𝑤𝑛+𝑡 ≤ 2
10𝑛

(see [8, Lemma 2.1]). Throughout the paper we will introduce cer-

tain constants close to 0 and assume that 𝑛 is big enough, so the

product of 𝑛 with these constants is an integer.

The following notion that was already discussed in Section 2

corresponds to the number of distinct sums of the subsets of a given

set.

Definition 11 (Y-mixer). A set𝑀 ⊆ [𝑛] is an Y-mixer if |𝑤 (2𝑀) | =
2
(1−Y) |𝑀 | .

Lemma 12. Given a set𝑀 , one can in𝑂∗ (2 |𝑀 |) time and𝑂∗ (2 |𝑀 |)
space determine the Y such that𝑀 is an Y-mixer.

Proof. Iterate over every possible subset of𝑀 and store𝑤 (2𝑀).
Afterwards sort 𝑤 (2𝑀), determine the size of 𝑀 and output Y :=

(1 − log
2
(|𝑤 (2𝑀) |)/|𝑀 |). □

Lemma 13. For any constants Y0 > 0 and ` ∈ (0, 1/4), there is
an algorithm that, given a Subset Sum instance𝑤1, . . . ,𝑤𝑛, 𝑡 and an
Y-mixer𝑀 satisfying |𝑀 | = `𝑛 and Y > Y0, solves the instance in time
𝑂∗ (2(1−Y0`)𝑛/2) and 𝑂∗ (2(1−Y0`)𝑛/4) space.
Lemma 14. Suppose a Subset Sum instance 𝑤1, . . . ,𝑤𝑛, 𝑡 with
promise that there is a solution of size _𝑛 is given. Then we can
find 𝑆 ⊆ [𝑛] with𝑤 (𝑆) = 𝑡 in randomized 𝑂∗ (2ℎ (_)𝑛/2 + 2

𝑛/4) time
and 𝑂∗ (2ℎ (_)𝑛/4) space.

The proofs of Lemma 13 and Lemma 14 are a straightforward

application of the algorithm for 4-SUM and we defer them to the

full version of this paper [35].

4 IMPROVING SCHROEPPEL AND SHAMIR:
PROOF OF THEOREM 1

This section is devoted to the proof of Theorem 1. The main techni-

cal effort, done in Subsections 4.1 to 4.2, is to prove the following

lemma.

Lemma 15 (Main Lemma). Let _0 := 0.495, Y0 := 0.00002. Let _ ∈
[_0, 0.5], Y𝑅 ∈ [0, Y0], ` ∈ (0.21, 0.25) and let 𝑀𝐿, 𝑀,𝑀𝑅 ⊆ [𝑛] be
disjoint sets such that |𝑀 | = |𝑀𝐿 | = |𝑀𝑅 | = `𝑛. Let 0 ≤ Y ≤ Y𝐿 ≤ Y𝑅
be such that 𝑀𝐿 is an Y𝐿-mixer, 𝑀 is an Y-mixer and 𝑀𝑅 is an Y𝑅-
mixer. Let 𝑆 ⊆ [𝑛] be such that𝑤 (𝑆) = 𝑡 and |𝑀𝐿 ∩ 𝑆 | = |𝑀 ∩ 𝑆 | =
|𝑀𝑅 ∩ 𝑆 | = _`𝑛.

There is a Monte Carlo algorithm for Subset Sum that, given the
instance𝑤1, . . . ,𝑤𝑛, 𝑡 , the sets𝑀𝐿, 𝑀,𝑀𝑅 , and _, Y𝐿, Y𝑅 , runs in time
𝑂∗ (2𝑛/2) and space

𝑂∗
(
2
(1/2−` (3/2+_−ℎ (1/4)))𝑛+0.02`𝑛 + 2

`𝑛 (2ℎ (1/4)−_)+0.02`𝑛 + 2
`𝑛

)
.

The performance of the algorithm depends on the parameters _,

`, Y𝐿 and Y𝑅 . It is instructive to think about Y𝐿 = Y𝑅 = 0 and _ = 1/2.
First, we prove the main result of the paper assuming Lemma 15

by using the elementary preprocessing algorithms provided in Sec-

tion 3.

Proof Theorem 1 assuming Lemma 15. Set ` := 0.217. With

polynomial overhead we can guess |𝑆 | = _𝑛. If _ < _0 then we use

Theorem 14 to solve Subset Sum in 𝑂∗ (2ℎ (_)𝑛/4) ≤ 𝑂∗ (20.249982𝑛)
space and 𝑂∗ (2𝑛/2) time. Hence, we can assume that _ ≥ _0. We

can also assume that _ ≤ 1/2 by looking for [𝑛] \ 𝑆 instead of 𝑆 by

changing 𝑡 to𝑤 ([𝑛]) − 𝑡 .

Next, randomly select pairwise disjoint sets𝑀,𝑀𝐿, 𝑀𝑅 ∈
([𝑛]
`𝑛

)
.

For each of them we use Lemma 12 to determine the Y, Y𝐿, Y𝑅 such

that𝑀 is an Y-mixer,𝑀𝐿 is an Y𝐿-mixer and𝑀𝑅 is an Y𝑅-mixer. If

at least one of Y, Y𝐿, Y𝑅 is at least Y0, use Theorem 13 to solve the

instance in 𝑂∗ (2(1−`Y0)𝑛/4) ≤ 𝑂∗ (20.24999892) space and 𝑂∗ (2𝑛/2)
time. Hence we can assume Y, Y𝐿, Y𝑅 < Y0.

Finally, Lemma 15 applies and it solves the instance in time

𝑂∗ (2𝑛/2). For our choice of the parameters we get that the space is

at most 𝑂∗ (20.2491𝑛).
In total, the space complexity of our algorithm is bounded by

𝑂∗ (20.249999𝑛) as claimed. □

1676

STOC ’21, June 21–25, 2021, Virtual, Italy Nederlof and Węgrzycki

The rest of this section is devoted to the proof of Lemma 15. This

lemma is an extension of Theorem 5 combined with a fast OV algo-

rithm. As mentioned in Subsection 2.3, we apply the representation

technique on 2 levels and therefore we need 3 sets𝑀𝐿, 𝑀,𝑀𝑅 . More-

over, the assumption 0 < Y ≤ Y𝐿, Y𝑅 is to avoid the aforementioned

undesired 𝑂∗ (2(0.5+𝑂 (Y))𝑛) running time.

4.1 The Algorithm for Lemma 15

Algorithm :SubsetSum(𝑤1, . . . ,𝑤𝑛, 𝑡, 𝑀𝐿, 𝑀,𝑀𝑅, _, Y𝐿, Y𝑅)

Output :Set 𝑆 with𝑤 (𝑆) = 𝑡 and |𝑀𝐿 ∩ 𝑆 |,|𝑀 ∩ 𝑆 |,
|𝑀𝑅 ∩ 𝑆 | = _ |𝑀 |, if it exists

1 Partition [𝑛] \ (𝑀𝐿 ∪𝑀 ∪𝑀𝑅) = 𝐿 ⊎ 𝑅 to satisfy (5)

2 Pick random prime 𝑝𝑅 ∈ Θ(2(_−Y𝑅) |𝑀 |)
3 Pick random prime 𝑝 ′ ∈ Θ(2(Y𝑅−Y𝐿) |𝑀 |)
4 Set 𝑝𝐿 = 𝑝 ′ · 𝑝𝑅
5 Pick random 𝑥𝐿 ∈ Z𝑝𝐿 , 𝑥 ∈ Z𝑝𝐿 , 𝑥𝑅 ∈ Z𝑝𝑅
6 foreach 𝜎, 𝜎𝐿, 𝜎𝑅 with bounded ℎ(𝜎), ℎ(𝜎𝐿), ℎ(𝜎𝑅) do
7 Construct L1,L2,R1,R2 as in Equations (6) to (9)

8 if WeightedOV(L1,L2,R1,R2, 𝑀, 𝑡) then
9 return true

10 return false

Algorithm 2: Pseudocode of the algorithm for Lemma 15

Algorithm 2 presents the pseudocode of Lemma 15. The

WeightedOV subroutine decides whether there exists (𝐴1, . . . , 𝐴4) ∈
L1 × L2 × R1 × R2 with𝑤 (𝐴1 ∪ . . . ∪𝐴4) = 𝑡 and 𝐴𝑖 ∩𝐴 𝑗 = ∅ for

all 𝑖 ≠ 𝑗 . This subroutine will be provided and analysed later in the

Section 4.2.

On a high level, Algorithm 2 has the same structure as Algo-

rithm 1, with one major difference: The sets L and R are gener-

ated implicitly. To generate these lists we combine the technique

from [37] as summarized in Lemma 8 with two more applications

of the representation technique used to generate L and R.7
The algorithm iterates over every possible choice of parameters

𝜎, 𝜎𝐿, 𝜎𝑅 ∈ [0, 1], such that ℎ(𝜎), ℎ(𝜎𝐿) ≥ 1 − Y𝐿/_ − log
2
𝑛

𝑛 and

ℎ(𝜎𝑅) ≥ 1 − Y𝑅/_ − log
2
𝑛

𝑛 in Line 6. The precision of 𝜎, 𝜎𝑅, 𝜎𝐿 is

polynomial, since these parameter describe the size of possible

subsets of𝑀,𝑀𝑅, 𝑀𝐿 . The purpose of one iteration of this loop is

summarized in the following lemma, which is also illustrated in

Figure 3:

Lemma 16. Consider an iteration of the loop at Line 6 of Algorithm 2
with parameters 𝜎, 𝜎𝐿, 𝜎𝑅 . Suppose there exists a set 𝑆 ∈

([𝑛]
_𝑛

)
with

𝑤 (𝑆) = 𝑡 that has a partition 𝑆 = 𝑆1 ⊎ 𝑆2 ⊎ · · · ⊎ 𝑆8 satisfying the

7
Note that, formally speaking, the list L from Algorithm 1 is not the same as the set

of elements of list L of Algorithm 2, but since the two are almost identical we kept

the same notation.

Figure 3: The decomposition of the solution 𝑆 = 𝑆1 ⊎ . . . ⊎ 𝑆8
as formalized in Lemma 16.

following properties:

𝑆1 ⊆ 𝐿, 𝑆2 ∈
(

𝑀𝐿

𝜎𝐿_ |𝑀 |

)
,

𝑆8 ⊆ 𝑅, 𝑆7 ∈
(

𝑀𝑅

𝜎𝑅_ |𝑀 |

)
,

𝑆3 ∈
(

𝑀𝐿

(1 − 𝜎𝐿)_ |𝑀 |

)
, 𝑆4 ∈

(
𝑀

𝜎_ |𝑀 |

)
,

𝑆6 ∈
(

𝑀𝑅

(1 − 𝜎𝑅)_ |𝑀 |

)
, 𝑆5 ∈

(
𝑀

(1 − 𝜎)_ |𝑀 |

)
, (4)

𝑤 (𝑆1 ∪ 𝑆2) ≡𝑝𝐿 𝑥𝐿, 𝑤 (𝑆3 ∪ 𝑆4) ≡𝑝𝐿 𝑥 − 𝑥𝐿,

𝑤 (𝑆5 ∪ 𝑆6) ≡𝑝𝑅 𝑥𝑅, 𝑤 (𝑆7 ∪ 𝑆8) ≡𝑝𝑅 𝑡 − 𝑥 − 𝑥𝑅,

𝑤 (𝑆1 ∪ 𝑆2 ∪ 𝑆3 ∪ 𝑆4) ≡𝑝𝐿 𝑥,

𝑤 (𝑆5 ∪ 𝑆6 ∪ 𝑆7 ∪ 𝑆8) ≡𝑝𝑅 𝑡 − 𝑥 .

Then during this iteration the Algorithm 2 returns true.

The (relatively straightforward) proof of Lemma 16 will be given

in Subsection 4.3 where we prove the correctness of the algorithm.

To obtain a relatively fast algorithm in the case that Y is bounded

away from 0 or _ is bounded away from 1/2, we need to carefully

define the lists L1,L2,R1,R2 in order to not slow down the run

time to beyond 𝑂∗ (2𝑛/2). To do so, we use the following balance

parameter

𝛽 = 𝛽 (_, 𝜎) := ℎ(𝜎_) − ℎ((1 − 𝜎)_) .

Intuitively, 𝛽 expresses the difference of the expected list sizes

{L(𝑎)}𝑎 and {R(𝑏)}𝑏 when we would have set |𝐿 | = |𝑅 |. Observe
that if Y = 0 and _ = 1/2, then 𝜎𝐿, 𝜎, 𝜎𝑅 = 1/2 and indeed 𝛽 = 0.

All elements of [𝑛] not in𝑀𝐿∪𝑀∪𝑀𝑅 are arbitrarily partitioned

into 𝐿 and 𝑅 on Line 1 where |𝐿 | and |𝑅 | are chosen to compensate

for imbalance caused by Y, 𝜎, _ as follows:

|𝐿 | = (1 − 3` − 𝛽`)𝑛
2

, |𝑅 | = (1 − 3` + 𝛽`)𝑛
2

. (5)

Observe that |𝛽 | ≤ 1, and since ` ≤ 1/4 we have that |𝐿 |, |𝑅 | > 0.

Now we define the four lists that play a similar role in our algo-

rithm as the four lists in the original algorithm of [37].

L1 :=

{
𝑆1 ∪ 𝑆2 such that𝑤 (𝑆1 ∪ 𝑆2) ≡𝑝𝐿 𝑥𝐿, (6)

𝑆1 ⊆ 𝐿, 𝑆2 ∈
(

𝑀𝐿

𝜎𝐿_ |𝑀 |

)}
,

1677

Improving Schroeppel and Shamir’s Algorithm for Subset Sum via Orthogonal Vectors STOC ’21, June 21–25, 2021, Virtual, Italy

R1 :=

{
𝑆7 ∪ 𝑆8 such that 𝑆8 ⊆ 𝑅, 𝑆7 ∈

(
𝑀𝑅

𝜎𝑅_ |𝑀 |

)
, (7)

𝑤 (𝑆7 ∪ 𝑆8) ≡𝑝𝑅 𝑡 − 𝑥 − 𝑥𝑅

}
,

L2 :=

{
𝑆3 ∪ 𝑆4 such that 𝑆3 ∈

(
𝑀𝐿

(1 − 𝜎𝐿)_ |𝑀 |

)
, (8)

𝑆4 ∈
(

𝑀

𝜎_ |𝑀 |

)
,𝑤 (𝑆3 ∪ 𝑆4) ≡𝑝𝐿 𝑥 − 𝑥𝐿

}
,

R2 :=

{
𝑆5 ∪ 𝑆6 such that𝑤 (𝑆5 ∪ 𝑆6) ≡𝑝𝑅 𝑥𝑅, (9)

𝑆5 ∈
(

𝑀

(1 − 𝜎)_ |𝑀 |

)
, 𝑆6 ∈

(
𝑀𝑅

(1 − 𝜎𝑅)_ |𝑀 |

)}
.

Using a straightforward algorithm, we can construct each list

using �̃� (|L1 | + |L2 | + |R1 | + |R2 | + 2
`𝑛) time and space (see the

full version of this paper [35]).

4.2 The Weighted Orthogonal Vectors
Subroutine

Now we describe the WeightedOV subroutine (in the full-version of

this paper [35]we provide the pseudocode). The algorithm is heavily

based on the data structures from [37] as described in Lemma 8. First

we initialize the queue inc for enumerating𝑤 (L1) +𝑤 (L2) in the

increasing order and the queue dec for enumerating𝑤 (R1)+𝑤 (R2)
in the decreasing order. With these queues, we enumerate all groups

L(𝑎) ⊆ 𝑀 with the property that if 𝑆4 ∈ L(𝑎) then there exist 𝑋 ∈
L1 and 𝑌 ∈ L2 with 𝑌 ∩𝑀 = 𝑆4, 𝑋 ∩𝑌 = ∅ and𝑤 (𝑋) +𝑤 (𝑌) = 𝑎.

Similarly, we enumerate all groupsR(𝑎) ⊆ 𝑀 with the property that

if 𝑆5 ∈ R(𝑏) then there exist 𝑋 ∈ R1 and 𝑌 ∈ R2 with 𝑌 ∩𝑀 = 𝑆5,

𝑋 ∩ 𝑌 = ∅ and 𝑤 (𝑋) +𝑤 (𝑌) = 𝑏. In the end we execute a Monte-

Carlo algorithm OV that solves the unweighted orthogonal vectors

problem that will be described in Theorem 28.

We now analyse the correctness and space usage of this algo-

rithm. The time analysis will be intertwined with the time analysis

of Algorithm 2 and is therefore postponed to Subsection 4.5.

Lemma 17. Algorithm WeightedOV is a correct Monte-Carlo algo-
rithm for the Weighted Orthogonal Vectors Problem.

Proof. If the algorithm outputs true, there exist 𝐴1 ∈ L1, 𝐴2 ∈
L2, 𝐴3 ∈ R2, 𝐴4 ∈ R1 such that𝑤 (𝐴1)+𝑤 (𝐴2)+𝑤 (𝐴3)+𝑤 (𝐴4) = 𝑡 .

First, note that by the construction of setsL1,L2,R1,R2 it has to

be that𝐴2∩𝐴3 ⊆ 𝑀 . Since the OV algorithm checks for disjointness

on 𝑀 we have that 𝐴2 ∩ 𝐴3 ∩ 𝑀 = ∅, hence 𝐴2 ∩ 𝐴3 = ∅. Also,
𝐴1 ∩ 𝐴2 = ∅ because (𝑋,𝑌) ∈ L(𝑎) means 𝑋 ∩ 𝑌 = ∅. Similarly

𝐴3 ∩𝐴4 = ∅ because (𝑋,𝑌) ∈ R(𝑏) means that 𝑋 ∩ 𝑌 = ∅ . By the

construction of the lists L1,L2,R1,R2 the sets 𝐴1, . . . , 𝐴4 are thus

mutually disjoint and indeed the instance of Weighted Orthogonal

Vectors is a YES-instance.

For the other direction, assume the desired𝐴1, . . . , 𝐴4 quadruple

exists. Let 𝑡𝐿 := 𝑤 (𝐴1 ∪ 𝐴2). Then 𝑡𝐿 ∈ 𝑤 (L1) + 𝑤 (L2) and 𝑡 −
𝑡𝐿 = 𝑤 (𝐴3 ∪𝐴4) ∈ 𝑤 (R1) +𝑤 (R2). By Lemma 8 inc enumerates

𝑤 (L1) +𝑤 (L2), and dec enumerates𝑤 (R1) +𝑤 (R2) in decreasing

order. Therefore, since the loop is a basic linear search routine, it

sets 𝑎 to 𝑡𝐿 and 𝑏 to 𝑡 − 𝑡𝐿 in some iteration: If 𝑎 is set to 𝑡𝐿 before 𝑏

is set to 𝑡 − 𝑡𝐿 , then 𝑏 is in this iteration larger than 𝑡 − 𝑡𝐿 and it will

be decreased in the next iterations until it is set to 𝑡 − 𝑡𝐿 . Similarly,

if 𝑏 is set to 𝑡 − 𝑡𝐿 before 𝑎 is set to 𝑡𝐿 , in this iteration 𝑎 is smaller

than 𝑡𝐿 and it will be increased in the next iterations until it is set

to 𝑡𝐿 .

In the iterationwith𝑎 = 𝑡𝐿 and𝑏 = 𝑡−𝑡𝐿 we have that 𝑃𝑙𝑎 contains
the pair (𝑤 (𝐴1),𝑤 (𝐴2)) and 𝑃𝑟𝑏 contains the pair (𝑤 (𝐴4),𝑤 (𝐴3)).
Therefore L(𝑎) contains𝐴2 ∩𝑀 = 𝑆4 and L(𝑏) contains𝐴4 ∩𝑀 =

𝑆5. Since 𝑆4 and 𝑆5 are disjoint a solution will be detected by the

OV subroutine with at least constant probability. □

Lemma 18. Algorithm WeightedOV uses at most𝑂∗ (|L1 | + |L2 | +
|R1 | + |R2 | + 2

|𝑀 |) space.

Proof. The datastructures inc and dec use at most �̃� (|L1 | +
|L2 | + |R1 | + |R2 |) space by Lemma 8, and the sets L(𝑎) and R(𝑏)
are of cardinality at most 2

|𝑀 |
. The statement follows since, as we

will show in Theorem 28, the subroutine OV(A,B) uses at most

�̃� (|A| + |B| + 2
|𝑀 |) space. □

4.3 Correctness of Algorithm 2
We now focus on the correctness of the entire algorithm. First

notice that if the algorithm finds a solution on Line 8, it is always

correct since it found pairwise disjoint sets𝐴1, 𝐴2, 𝐴3, 𝐴4 satisfying

𝑤 (𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4) = 𝑡 . Thus 𝑆 := 𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 is a valid

solution. The proof of the reverse implication is less easy and its

proof is therefore split in two parts with the help of Lemma 16.

Note that because the partition [𝑛] = 𝐿 ⊎ 𝑀𝐿 ⊎ 𝑀 ⊎ 𝑀𝑅 ⊎
𝑅 is selected at random, the solution is well-balanced in sets

𝐿,𝑀𝐿, 𝑀,𝑀𝑅, 𝑅. The following is a direct consequence of Lemma 10:

Observation 19. Let 𝑆 be the solution to the Subset Sum instance
with |𝑆 | = _𝑛. Then, with Ω∗ (1) probability, the following holds:
|𝑆 ∩𝑀𝐿 | = _ |𝑀𝐿 |, |𝑆 ∩𝑀 | = _ |𝑀 |, |𝑆 ∩𝑀𝑅 | = _ |𝑀𝑅 |.

Now we show that if the above event was successful, the condi-

tions of Lemma 16 apply with good probability:

Lemma 20. Suppose there exists a solution 𝑆 ⊆ [𝑛] be such that
𝑤 (𝑆) = 𝑡 and |𝑀𝐿 ∩ 𝑆 | = |𝑀 ∩ 𝑆 | = |𝑀𝑅 ∩ 𝑆 | = _`𝑛. Then with
probability Ω∗ (1), there exists a partition 𝑆 = 𝑆1 ⊎ · · · ⊎𝑆8 satisfying
all conditions in (4).

Proof. We select 𝑆1 = 𝐿 ∩ 𝑆 , 𝑆8 = 𝑅 ∩ 𝑆 , and 𝑎, 𝑏 be such that

let 𝑎 ≡𝑝𝐿 𝑤 (𝑆1) and 𝑏 ≡𝑝𝑅 𝑤 (𝑆8). Next we prove that, because the
subsets of𝑀 generate many distinct sums, the same holds for the

solution intersected with𝑀 :

Claim 21. The set𝑀 ∩𝑆 is an Y ′-mixer for some Y ′ ≤ Y/_. Similarly,
𝑀𝐿 ∩ 𝑆 is an Y ′

𝐿
-mixer for Y ′

𝐿
≤ Y𝐿/_, and𝑀𝑅 ∩ 𝑆 is an Y ′

𝑅
-mixer for

some Y ′
𝑅
≤ Y𝑅/_.

Proof of Claim 21. Focus on𝑀 ∩ 𝑆 (the result for𝑀𝐿 and𝑀𝑅

is analogous). Because𝑀 is an Y-mixer, we know that 2
(1−Y𝐿) |𝑀 | ≤

|𝑤 (2𝑀) | ≤ |𝑤 (2𝑀∩𝑆) | |𝑤 (2𝑀\𝑆) |. Since |𝑤 (2𝑀\𝑆) | ≤ 2
(1−_) |𝑀 |

we

have that |𝑤 (2𝑀∩𝑆) | ≥ 2
(_−Y) |𝑀 | = 2

(1−Y/_) |𝑀∩𝑆 |
. □

Now we know that 𝑄 = 𝑀𝐿 ∩ 𝑆 is a good mixer. We can use

Lemma 7 for 𝑄 = 𝑀𝐿 ∩ 𝑆 and 𝑝 = 𝑝𝐿 · 𝑝 ′, since |𝑤 (2 |𝑀𝐿∩𝑆 |) | ≥

1678

STOC ’21, June 21–25, 2021, Virtual, Italy Nederlof and Węgrzycki

2
(1−Y𝐿/_) |𝑀𝐿∩𝑆 | = 2

(_−Y𝐿) |𝑀𝐿 |
. Because 𝑥𝐿 was chosen randomly,

Lemma 7 guarantees that with Ω∗ (1) probability, there exists 𝑆2 ⊆
𝑀𝐿 ∩𝑆 , such that𝑤 (𝑆2) ≡𝑝𝐿 𝑥𝐿 −𝑎. Moreover Lemma 7 guarantees

that |𝑆2 | ∈ [𝑠0, _`𝑛/2], where 𝑠0 is the smallest integer such that(𝑄
𝑠0

)
≥ 𝑤 (2𝑄)/|𝑄 |. If we take the logarithm of both sides this is

equivalent to

_`𝑛 · ℎ
(
𝑠0

|𝑄 |

)
≥ log

2

(���𝑤 (2(𝑀𝐿∩𝑆))
���) − log

2
𝑛

𝑛

≥ (1 − Y𝐿/_)_`𝑛 −
log

2
𝑛

𝑛
.

Because we have checked all 𝜎𝐿 that satisfy ℎ(𝜎𝐿) ≥ (1−Y𝐿/_) −
log

2
𝑛

𝑛 the algorithm will eventually guess the correct 𝑠0 (and the

same reasoning holds for 𝜎 and 𝜎𝑅). We select 𝑆3 = (𝑀𝐿 ∩ 𝑆) \ 𝑆2
with |𝑆3 | = (1 − 𝜎𝐿)`𝑛.

In a similar manner we can prove that with Ω∗ (1) probability
there exists 𝑆7 ⊆ 𝑀𝑅 ∩ 𝑆 , such that 𝑤 (𝑆7) ≡𝑝𝑅 (𝑡 − 𝑥 − 𝑥𝑅) − 𝑏

with |𝑆7 | = 𝜎𝑅`𝑛 and ℎ(𝜎𝑅) ≥ 1 − Y𝑅/_ − log
2
𝑛

𝑛 (we need to apply

Lemma 7 with𝑄 = 𝑀𝑅∩𝑆 and prime 𝑝𝑅). Moreover, this probability

only depends on 𝑥𝑅 which is independent of all other random

variables and events. If this happens, we select 𝑆6 = (𝑀𝑅 ∩ 𝑆) \ 𝑆7
with |𝑆6 | = (1 − 𝜎𝑅)`𝑛.

Conditioned on the existence of 𝑆1, 𝑆2, 𝑆3, 𝑆6, 𝑆7, 𝑆8, now we

prove there exist 𝑆4 and 𝑆5 with Ω∗ (1) probability. Let 𝑐 = 𝑤 (𝑆1 ∪
𝑆2 ∪ 𝑆3) and 𝑑 = 𝑤 (𝑆6 ∪ 𝑆7 ∪ 𝑆8). We again use Lemma 7, but

this time with 𝑄 = 𝑀 ∩ 𝑆 and 𝑝 = 𝑝𝑅 · 𝑝 ′. It assures that with
high probability there exist 𝑆4 ⊆ 𝑀 ∩ 𝑆 , with 𝑤 (𝑆4) ≡𝑝𝐿 𝑥 − 𝑐

and |𝑆4 | = 𝜎`𝑛 with ℎ(𝜎) ≥ 1 − Y𝐿/_ − log
2
𝑛

𝑛 . And indeed, again

this probability only depends on 𝑥𝑅 which is independent of all

other random variables and events. If this event happens, we select

𝑆5 = (𝑀 ∩ 𝑆) \ 𝑆4.
Now we use the fact that 𝑝𝑅 divides 𝑝𝐿 : If 𝑥 ≡𝑝𝐿 𝑎 then 𝑥 ≡𝑝𝑅 𝑎

because (𝑥 − 𝑎) = 𝑘 · 𝑝 ′ · 𝑝𝑅 for some 𝑘 ∈ Z. Hence𝑤 (𝑆5) + 𝑑 ≡𝑝𝑅
𝑤 (𝑆)−𝑥 , which means that𝑤 (𝑆5∪𝑆6∪𝑆7∪𝑆8) ≡𝑝𝑅 𝑡−𝑥 . Moreover

it holds that |𝑆5 | = (1 − 𝜎)`𝑛, thus 𝑆5 also satisfies the desired

conditions. To conclude observe that the constructed sets 𝑆1, . . . , 𝑆8
are disjoint. □

Finally, we prove the Lemma 16. Namely, we show that the

existence of the tuple (𝑆1, . . . , 𝑆8) implies that a solution is detected.

Proof of Lemma 16. By the construction of L1,L2,R1,R2 and

the assumed properties of the lemma, we have that 𝐴1 := 𝑆1 ∪
𝑆2 ∈ L1, 𝐴2 := 𝑆3 ∪ 𝑆4 ∈ L2, 𝐴3 := 𝑆5 ∪ 𝑆6 ∈ R2, and 𝐴4 :=

𝑆7 ∪ 𝑆8 ∈ R1. Since the sets 𝑆1, . . . , 𝑆8 are pairwise disjoint and

satisfy

∑
8

𝑖=1𝑤 (𝑆𝑖) = 𝑡 , the sets 𝐴1, . . . , 𝐴4 certify that our instance

of Weighted Orthogonal Vectors instance is true. □

The correctness of Algorithm 2 directly follows by combining

Lemma 20 and Lemma 16.

4.4 Space Usage of Algorithm 2
The bulk of the analysis of the space usage consists of computing

the expected sizes of the lists L1,L2,R1,R2. This requires us to

look closely into the setting of the parameters.

Useful bounds on parameters. Recall, that we defined the fol-

lowing constants _0 := 0.495 and Y0 := 0.00002. Then, we assumed

that Y, Y𝐿, Y𝑅 ≤ Y0 and _ ∈ [_0, 0.5]. Moreover, we have chosen

𝜎, 𝜎𝐿, 𝜎𝑅 , such that:

0.99995 < 1 − Y0/_0 −
log

2
𝑛

𝑛
≤ ℎ(𝜎), ℎ(𝜎𝐿), ℎ(𝜎𝑅)

Which means that (for Y0 and _0 and large enough 𝑛):

𝜎, 𝜎𝐿, 𝜎𝑅 ∈ [0.495, 0.505] . (10)

because ℎ(0.495) = ℎ(0.505) ≈ 0.999928. Next, observe that

ℎ(𝜎_), ℎ((1 − 𝜎)_) ≤ ℎ(1/4) + 0.004. (11)

because the entropy function is increasing in [0, 0.5] and ℎ(0.5 ·
0.505)−ℎ(1/4) < 0.004. For the next inequality, recall that 𝛽 (𝜎, _) =
ℎ(𝜎_) − ℎ((1 − 𝜎)_).

−0.012 ≤ 𝛽 (𝜎, _) ≤ 0.012 (12)

because |𝛽 | < ℎ(0.505 · 0.5) − ℎ(0.495 · _0) < 0.012.

Bounds on the list sizes.

Claim 22. E [|L1 |] ≤ 𝑂∗
(
2
(1/2−` (3/2+_−ℎ (1/4)−0.02))𝑛

)
.

Proof. Let 𝑊𝐿 be the number of possible different elements

from L1. It is

𝑊𝐿 := 2
|𝐿 |

(
`𝑛

_𝜎𝐿`𝑛

)
.

The expected size of L1 over the random choices of 𝑥𝐿 is ≤ 𝑊𝐿

𝑝𝐿
. If

we plug in the definition of |𝐿 |, we have:
(log

2
(E [|L1 |])/𝑛) ≤ 1/2 − ` (3/2 + _ − ℎ(_𝜎𝐿)) + ` (Y𝐿 − 𝛽/2) .

By (11) we have that ℎ(𝜎𝐿_) ≤ ℎ(1/4) + 0.004. By (12) we have that
|𝛽 | ≤ 0.012 and Y𝐿 < 0.01. Hence:

(log
2
(E [|L1 |])/𝑛) ≤ 1/2 − ` (3/2 + _ − ℎ(1/4)) + 0.02 · `. □

By symmetry
8
the same bound holds for E [|R1 |].

Claim 23. E [|R1 |] ≤ 𝑂∗
(
2
(1/2−` (3/2+_−ℎ (1/4)−0.02))𝑛

)
.

Next we bound |L2 | and |R2 |:

Claim 24. E [|L2 |] ≤ 𝑂∗ (2`𝑛 (2ℎ (1/4)−_)+0.02`𝑛).

Proof. Let𝑊𝐿 be the number of possibilities of selecting 𝑆 . It is

𝑊𝐿 :=

(
`𝑛

𝜎_`𝑛

) (
`𝑛

(1 − 𝜎𝐿)_`𝑛

)
The expected size of |L2 | over the random choices of 𝑥𝐿 and 𝑝𝐿 is

E [|L2 |] ≤ 𝑊𝐿

𝑝𝐿
. Hence,

(log
2
(E [|L2 |]))/𝑛 ≤ ` (ℎ(_𝜎) + ℎ(_(1 − 𝜎𝐿)) − _ + Y𝐿).

We use Inequality 11 and have ℎ((1− 𝜎)_), ℎ(𝜎_) ≤ ℎ(1/4) + 0.004.

Hence we can roughly bound:

(log
2
(E [|L2 |]))/𝑛 ≤ ` (2ℎ(1/4) − _) + 0.02 · `. □

By symmetry, the same bound holds for |R2 |:

Claim 25. E [|R2 |] ≤ 𝑂∗ (2`𝑛 (2ℎ (1/4)−_)+0.02`𝑛).
8
The only difference being that 𝛽 shows up positively rather than negatively, but this

does not matter since we bound its absolute value.

1679

Improving Schroeppel and Shamir’s Algorithm for Subset Sum via Orthogonal Vectors STOC ’21, June 21–25, 2021, Virtual, Italy

As mentioned in Subsection 4.1, the subroutine WeightedOV uses
𝑂∗ (|L1 | + |L2 | + |R1 | + |R2 | + 2 |𝑀 |) space. By the above claims, we

see that this is at most

𝑂∗
(
2
(1/2−` (3/2+_−ℎ (1/4)))𝑛+0.02`𝑛 + 2

`𝑛 (2ℎ (1/4)−_)+0.02`𝑛 + 2
`𝑛

)
as promised.

Remark 26. The constant 0.02 is based on our choice of Y0 and _0.
When Y → 0 and _0 → 1/2 it goes to 0. With more complicated
inequalities and a tighter choice of parameters we were able to get
𝑂∗ (20.249936𝑛) space usage. We decided to skip the details for the
simplicity of the presentation.

Remark 27. In this section we showed that expected sizes of L1,L2,
R1,R2 are bounded by 2

(0.25−𝛿)𝑛 for some constant 𝛿 > 0. With a
standardMarkov’s inequality and union bound one can show that with
Ω∗ (1) probability it holds that sizes of L1,L2,R1,R2 are bounded
by 2

(0.25−𝛿)𝑛 for some constant 𝛿 > 0.

4.5 Runtime of Algorithm 2
Now, we prove that the runtime of Algorithm 2 is 𝑂∗ (2𝑛/2). By
Lemma 8, the total runtime of all queries to inc.next() is 𝑂∗ (|L1 |
|L2 |), and the total runtime of all the queries to dec.next() is
𝑂∗ (|R1 | |R2 |). This is upper bounded by 𝑂∗ (2𝑛/2) by the analysis

of Subsection 4.4.

The main bottleneck of the algorithm comes from all the calls to

OV subroutine. To facilitate the analysis, we define sets A,B that

represent the total input to the OV subroutine: For every 𝑎 ∈ N,
such that 𝑎 ≡𝑝𝐿 𝑥 and each 𝑋 ∈ L(𝑎), add the pair (𝑋 ∩𝑀,𝑎) toA
(without repetitions). Similarly, for each 𝑌 ∈ R(𝑡 − 𝑎), add the pair

(𝑌 ∩𝑀, 𝑡 − 𝑎) to B. Hence the total input for OV generated by is:

A :=

{
(𝑋, 𝑎) : 𝑋 ∈

(
𝑀

𝜎_`𝑛

)
, 𝑎 −𝑤 (𝑋) ∈ 𝑤 (2𝐿∪𝑀𝐿), 𝑎 ≡𝑝𝐿 𝑥

}
,

B :=

{
(𝑌,𝑏) : 𝑌 ∈

(
𝑀

(1 − 𝜎)_`𝑛

)
, 𝑏 −𝑤 (𝑌) ∈ 𝑤 (2𝑅∪𝑀𝑅),

𝑏 ≡𝑝𝑅 𝑡 − 𝑥

}
.

Now, let us calculate the expected size ofA. The number of possibili-

ties of selecting possible elements inA is the number of possibilities

of selecting 𝑋 from𝑀 and 𝑎 from𝑤 (2𝐿∪𝑀𝐿). Since the probability
that 𝑎 ≡𝑝𝐿 𝑥 is 1/𝑝𝐿 , we obtain

E [|A|] ≤
(

𝑀

𝜎_`𝑛

)
|𝑤 (2𝐿∪𝑀𝐿) |/𝑝𝐿 .

Similarly, the probability that 𝑏 ≡𝑝𝑅 𝑡 − 𝑥 is 1/𝑝𝑅 . To see this recall
that 𝑥 is chosen uniformly at random from 𝑍𝑝𝐿 , but since 𝑝𝐿 is a

multiple of 𝑝𝑅 , integer 𝑥 mod 𝑝𝑅 is also uniformly distributed in

Z𝑝𝑅 .

E [|B|] ≤
(

𝑀

(1 − 𝜎)_`𝑛

)
|𝑤 (2𝑅∪𝑀𝑅) |/𝑝𝑅 .

Recall that 𝑀𝐿 is an Y𝐿-mixer, hence |𝑤 (2𝐿∪𝑀𝐿) | ≤ |𝑤 (2 |𝐿 |) |
2
(1−Y𝐿)`𝑛

, and similarly𝑀𝑅 is an Y𝑅-mixer. Hence:

log
2
(E [|A|]) ≤ |𝐿 | + (1 − Y𝐿)`𝑛 + ℎ(𝜎_)`𝑛 − (_ − Y𝐿)`𝑛

=

(
1 − 3` − 𝛽`

2

+ ` − _` + ℎ(𝜎_)`
)
𝑛,

=

(
1

2

− `

(
1

2

+ _ + 𝛽/2 − ℎ(𝜎_)
))

𝑛,

and similarly:

log
2
(E [|B|]) ≤ |𝑅 | + (1 − Y𝑅)`𝑛 + ℎ((1 − 𝜎)_)`𝑛 − (_ − Y𝑅)`𝑛

=

(
1 − 3` + 𝛽`

2

+ ` − _` + ℎ((1 − 𝜎)_)`
)
𝑛

=

(
1

2

− `

(
1

2

+ _ − 𝛽/2 − ℎ((1 − 𝜎)_)
))

𝑛.

Now it becomes clear that we have chosen the balancing parameter

𝛽 in the sizes |𝐿 |, |𝑅 | to match the sizes of A,B: Observe that

𝛽/2 − ℎ(𝜎_) = −ℎ(𝜎_) + ℎ((1 − 𝜎)_)
2

= −𝛽/2 − ℎ((1 − 𝜎)_),

and thus we obtain that log
2
(E [|A|]) and log

2
(E [|B|]) are less

or equal to (
1

2

− `

(
1

2

+ _ − ℎ(𝜎_) + ℎ((1 − 𝜎)_)
2

))
𝑛.

By the concavity of binary entropy function (see (3)), we know that

ℎ(𝜎_) + ℎ((1 − 𝜎)_) ≤ 2ℎ(_/2). Hence:
E [|A|] ,E [|B|] ≤ 𝑂∗ (2𝑛/2−`𝑛 (1/2+_−ℎ (_/2))) . (13)

The OV subroutine (see Theorem 28) takes A and B as an input

with dimension 𝑑 = `𝑛. Note that the condition _ ∈ [0.4, 0.5] in
Theorem 28 is satisfied by the assumption in the Lemma 15 and

𝜎 ∈ [0.4, 0.6] is satisfied because for our choice of parameters

𝜎 ∈ [0.495, 0.505] (see (10)). Since the run time of the OV subroutine
is linear in the input size, all calls to the OV algorithms jointly take

the following total run time:

𝑂∗
(
(|A| + |B|) 2`𝑛 (1/2+_−ℎ (_/2))

)
.

Thus the algorithm runs in 𝑂∗ (2𝑛/2) time by (13).

5 ORTHOGONAL VECTORS VIA
REPRESENTATIVE SETS

In this section we present and discuss our algorithm for Orthogonal

Vectors. As discussed in the introduction it should be noted that

the proof strategy is similar to the one from [21] (which is heavily

inspired on Bollobás’s Theorem [14]), but we obtain improvements

that are crucial for the main result of this paper. We compare our

methods with existing literature at the end of this section.

Theorem 28 (OV-algorithm, Generalization of Theorem 2).

For any _ ∈ [0.4, 0.5] and 𝜎 ∈ [0.4, 0.6], there is a Monte-Carlo
algorithm that is given A ⊆

(𝑑
𝜎_𝑑

)
and B ⊆

(𝑑
(1−𝜎)_𝑑

)
, detects if

there exist 𝐴 ∈ A and 𝐵 ∈ B with 𝐴 ∩ 𝐵 = ∅ in time

�̃�

(
(|A| + |B|) 2𝑑 (1/2+_−ℎ (_/2))

)
and space �̃� (|A| + |B| + 2

𝑑).

1680

STOC ’21, June 21–25, 2021, Virtual, Italy Nederlof and Węgrzycki

We can assume that _ ≤ 0.5 by a subset complementation trick.

The bound 𝜎 ∈ [0.4, 0.6] is an artifact of technical methods we used

in the proof of Lemma 9. In the proof of this lemma the parameters

_ and 𝜎 lost their meaning from Section 4. Hence, to simplify, we

let 𝑝 := 𝜎_𝑛 and 𝑞 := (1 − 𝜎)_𝑛, and let A ⊆
([𝑑]
𝑝

)
and B ⊆

([𝑑]
𝑞

)
.

We use the following standard definitions from communication

complexity (see for example [36]):

Definition 29 ((𝑝, 𝑞, 𝑑)-Disjointness Matrix). For integers 𝑝, 𝑞, 𝑑
the Disjointness matrix Disj𝑝,𝑞,𝑑 has its rows indexed by

([𝑑]
𝑝

)
and

its columns indexed by
([𝑑]
𝑞

)
. For 𝐴 ∈

([𝑑]
𝑝

)
and 𝐵 ∈

([𝑑]
𝑞

)
we define

Disj𝑝,𝑞,𝑑 [𝐴, 𝐵] =
{
1 if 𝐴 ∩ 𝐵 = ∅,
0 otherwise.

Definition 30 (Monochromatic Rectangle, 1-Cover). A monochro-

matic rectangle of a matrix𝑀 is subset 𝑋 of rows and subset 𝑌 of the
columns such that𝑀 [𝑖, 𝑗] = 𝑀 [𝑖 ′, 𝑗 ′] for every 𝑖, 𝑖 ′ ∈ 𝑋 and 𝑗, 𝑗 ′ ∈ 𝑌 .
A family of monochromatic rectangles M = (𝑋1, 𝑌1), . . . , (𝑋𝑧 , 𝑌𝑧) is
called a 1-cover if for every 𝑖, 𝑗 such that 𝑀 [𝑖, 𝑗] = 1, there exists
𝑘 ∈ [𝑧], such that 𝑖 ∈ 𝑋𝑘 and 𝑗 ∈ 𝑌𝑘 .

A natural goal in the field of communication complexity is to find

‘good’ 1-covers. The natural parameter that quantifies such ‘good-

ness’ is 𝑧 (intuitively the smaller 𝑧 the better a 1-cover we have).

The parameter 𝑧 is sometimes called the Boolean rank
9
and it is

known to be equal to 2
nc(𝑀)

where nc(𝑀) is the ‘non-deterministic

communication complexity’ of𝑀 (see e.g. [36]).

Such 1-covers of the Disjointness matrix can be used in algo-

rithms for the Orthogonal Vectors problem: An orthogonal pair

is a 1 in the submatrix of the Disjointness induced by the rows

and columns from the families A and B, and we can search for

such a 1 via searching for the associated monochromatic rectangle

that covers it (see Lemma 32 for a related approach). For the case

that 𝑝 = 𝑞, it is well known that Disj𝑝,𝑞,𝑑 admits a 1-cover with

𝑂 (22𝑝𝑝 ln𝑑) rectangles [36, Claim 1.37]. When applied naïvely, this

1-cover would imply an �̃� ((|A| + |B|)2𝑑/2) time algorithm for the

setting of Theorem 2 with 𝑝 = 𝑞 = 𝑑/4.
In order to get a faster algorithm we introduce the following

new parameter of a 1-cover:

Definition 31 (Sparsity). The sparsity of a 1-coverM =(𝑋1, 𝑌1),
. . .,(𝑋𝑧 , 𝑌𝑧) of an 𝑛 ×𝑚 matrix is defined as

∑
𝑖 |𝑋𝑖 |/𝑛 + ∑

𝑖 |𝑌𝑖 |/𝑚.

A 1-cover of sparsity Ψ of a matrix can be understood as a fac-

torization of 𝑀 = 𝐿 · 𝑅 over the Boolean semi-ring such that the

average number of 1’s in a row 𝐿 plus the average number of 1’s in

a column of 𝑅 is at most Ψ. Our notion of sparsity is related to the

degree of the data structure called 𝑛-𝑝-𝑞-separating collection [21].

For a further discussion about sparse factorizations see [32, Section

5.1])

We present the algorithmic usefulness of the notion of the spar-

sity of 1-cover with the following statement.

Lemma 32 (Orthogonal Vectors Parameterized by the Sparsity).
For any constant integer 𝑐 and integers 𝑝, 𝑞, 𝑑 such that 𝑐 divides
𝑝, 𝑞, 𝑑 , there is an algorithm that takes as an input a 1-cover M
9
The name ‘Boolean rank’ is used because a 1-cover of𝑀 with𝑧 rectangles is equivalent

to a factorization𝑀 = 𝐿 · 𝑅 over the Boolean semi-ring of rank 𝑧.

of Disj𝑝/𝑐,𝑞/𝑐,𝑑/𝑐 of sparsity Ψ and two set families A ⊆
([𝑑]
𝑝

)
,

B ⊆
([𝑑]
𝑞

)
with the following properties: It outputs a pair 𝐴 ∈ A and

𝐵 ∈ B such that𝐴∩𝐵 = ∅ with constant non-zero probability if such
a pair exists. Moreover, it uses �̃� ((|A| + |B|)Ψ𝑐 + 2

2𝑑/𝑐) time and
�̃� (22𝑑/𝑐 + 𝑧𝑐) space, where 𝑧 is the number of rectangles ofM.

Proof. Denote the 1-cover to beM = (𝑋1, 𝑌1), . . . , (𝑋𝑧 , 𝑌𝑧). Ob-
serve, that if 𝐴 ∩ 𝐵 = ∅ then it suffices to find ℓ ∈ [𝑧] such that

𝐴 ∈ 𝑋ℓ and 𝐵 ∈ 𝑌ℓ since M forms a 1-cover. In the bird’s eye view,

the algorithm will find such an ℓ . We need to make sure that the

space usage of our algorithm is low. We will use parameter 𝑐 to

achieve that (it is instructive for a reader to assume 𝑐 = 1). In the

full version of this paper [35] we present a pseudocode with an

overview of the proof.

First, randomly partition [𝑑] into blocks𝑈1, . . . ,𝑈𝑐 with |𝑈𝑑 | =
𝑑/𝑐 . By Lemma 10, if we repeat the algorithm𝑑𝑂 (𝑐)

times with prob-

ably at least 1/𝑑𝑂 (𝑐)
this partition is good, i.e., for some orthogonal

pair 𝐴, 𝐵 it holds that |𝐴 ∩𝑈𝑖 | = 𝑝/𝑐 and |𝐵 ∩𝑈𝑖 | = 𝑞/𝑐 .
Next, we map the given factorization 𝑋1, . . . , 𝑋𝑧 , 𝑌1, . . . , 𝑌𝑧 of

Disj𝑝/𝑐,𝑞/𝑐,𝑑/𝑐 , to the set 𝑈𝑖 by unifying 𝑈𝑖 with [𝑑] a uniformly

random permutation.

Now we present a processing step of the algorithm. For every

𝑖 ∈ [𝑐] we create and store two lists 𝐿 and 𝑅. The purpose of these

lists is to give every element in𝐴 and 𝐵 fast access to corresponding

rectangles from the 1-cover that contain it (i.e., given 𝐴 we need to

find all 𝑋𝑖 , such that 𝐴 ∈ 𝑋𝑖 in �̃� (𝑧) time). Specifically, for every

𝑖 ∈ [𝑐] construct:

For every 𝑄 ∈
(
[𝑑/𝑐]
𝑝/𝑐

)
construct 𝐿𝑖 (𝑄) := { 𝑗 ∈ [𝑧] : 𝑄 ∈ 𝑋 𝑗 }.

And similarly for all 𝑖 ∈ [𝑐]:

For every 𝑄 ∈
(
[𝑑/𝑐]
𝑞/𝑐

)
construct 𝑅𝑖 (𝑄) := { 𝑗 ∈ [𝑧] : 𝐵 ∈ 𝑌𝑗 }.

Because

(𝑑/𝑐
𝑝/𝑐

)
≤ 2

𝑑/𝑐
we can construct and store all 𝐿𝑖 (𝑄) and

𝑅𝑖 (𝑄) in �̃� (22𝑑/𝑐 + 2
𝑑/𝑐𝑧) time and space. Additionally, initialize a

table𝑇 [𝑖1, . . . , 𝑖𝑐] := false for every 𝑖1, . . . , 𝑖𝑐 ∈ [𝑐]. This table will
store which sets 𝑋𝑖 , 𝑌𝑖 have been seen by elements in A. Observe

that so far we did not look at the input A and B; we just prepro-

cessed the 1-cover, so the next steps can be computed efficiently.

Now iterate over every element 𝐴 ∈ A and check if we can

afford to process it, i.e., if |𝐿1 (𝐴 ∩𝑈1) | · · · |𝐿𝑐 (𝐴 ∩𝑈𝑐) | > (4𝑐Ψ)𝑐
we simply ignore it (later we will prove that for a disjoint pair 𝐴

and 𝐵 this situation happens with low probability). If indeed we

can afford it, then we mark it in table 𝑇 : For every (𝑖1, . . . , 𝑖𝑐) ∈
𝐿1 (𝐴 ∩ 𝑈1) × . . . × 𝐿𝑐 (𝐴 ∩ 𝑈𝑐) we mark 𝑇 (𝑖1, . . . , 𝑖𝑐) to be true.
Clearly this step takes �̃� (|A|Ψ𝑐) time.

Next, we treat B in a similar way: We iterate over every element

𝐵 ∈ B and check if |𝑅1 (𝐵 ∩ 𝑈1) | · · · |𝑅𝑐 (𝐵 ∩ 𝑈𝑐) | ≤ (4𝑐Ψ)𝑐 . If so,
we iterate over every (𝑖1, . . . , 𝑖𝑐) ∈ 𝑅1 (𝐵 ∩𝑈1) × . . . × 𝑅𝑐 (𝐵 ∩𝑈𝑐)
and check if 𝑇 (𝑖1, . . . , 𝑖𝑐) = true. If this happens, then it means

there exists 𝐴 ∈ A that is orthogonal to the current 𝐵 and we can

return true. If this never happens, we return false. Clearly, the
total running time of the algorithm is �̃� ((|A| + |B|)Ψ𝑐) and extra

amount of working memory is �̃� (22𝑑/𝑐 + 𝑧𝑐). Hence we focus on
correctness.

1681

Improving Schroeppel and Shamir’s Algorithm for Subset Sum via Orthogonal Vectors STOC ’21, June 21–25, 2021, Virtual, Italy

Note that if true is returned, indeed there must exist disjoint𝐴 ∈
A and 𝐵 ∈ B becauseM is 1-cover. For the other direction, suppose

that there exist orthogonal 𝐴 ∈ A and 𝐵 ∈ B. As mentioned this

implies by Lemma 10 that with 1/𝑑𝑐 we have that for each 𝑖 it holds
that |𝐴∩𝑈𝑖 | = 𝑝/𝑐 and |𝐵 ∩𝑈𝑖 | = 𝑝/𝑐 . Because we unified [𝑑] with
𝑈𝑖 with a random permutation, E[|𝐿𝑖 (𝐴∩𝑈𝑖) |],E[|𝑅𝑖 (𝐴∩𝑈𝑖) |] = Ψ,
and by Markov’s inequality and a union bound there will be no

𝑖 with |𝐿𝑖 (𝐴 ∩ 𝑈𝑖) | + |𝑅𝑖 (𝐵 ∩ 𝑈𝑖) | ≥ 4𝑐Ψ, and therefore |𝐿1 (𝐴 ∩
𝑈1) | · · · |𝐿𝑐 (𝐴 ∩𝑈𝑐) | ≤ (4𝑐Ψ)𝑐 and |𝑅1 (𝐵 ∩𝑈1) | · · · |𝑅𝑐 (𝐵 ∩𝑈𝑐) | ≤
(4𝑐Ψ)𝑐 . If this happens, the orthogonal pair will be detected since

(𝑋1, 𝑌1), . . . , (𝑋𝑧 , 𝑌𝑧) is a 1-cover. □

Lemma 33 (Construction of 1-cover with small sparsity). Let 𝑝, 𝑞
and 𝑑 be integers such that 𝑝 ≤ 𝑞 and 𝑝 + 𝑞 ≤ 𝑑/2. There is
a randomized algorithm that in 𝑂 (2𝑑) time and space, constructs
𝑋1, . . . , 𝑋𝑧 ⊆

([𝑑]
𝑝

)
and 𝑌1, . . . , 𝑌𝑧 ⊆

([𝑑]
𝑝

)
, where 𝑧 is at most 2𝑑 .

All pairs of sets (𝑋1, 𝑌1), . . . , (𝑋𝑧 , 𝑌𝑧) form monochromatic rect-
angles in Disj𝑝,𝑞,𝑑 and with probability at least 3/4, it holds that
(𝑋1, 𝑌1) . . . , (𝑋𝑧 , 𝑌𝑧) is a 1-cover of Disj𝑝,𝑞,𝑑 with sparsity

𝑑𝑂 (1) · 2𝑑/2+𝑝+𝑞−𝑑 ·ℎ
(
𝑝+𝑞
2𝑑

)
.

Proof. Let 𝑙 = 𝑝 +𝑞 and let𝐴 ∈ A, 𝐵 ∈ B be an orthogonal pair.

Let 𝑥 be some parameter that we will determine later (think about

𝑥 ≈ 𝑑/2). Note that����{𝑆 ∈
(
[𝑑]
𝑥

)
: 𝐴 ⊆ 𝑆 and 𝑆 ∩ 𝐵 = ∅

}���� = (
𝑑 − 𝑙

𝑥 − 𝑝

)
.

Let S := {𝑆1, . . . , 𝑆𝑧 } ⊆
([𝑑]
𝑥

)
be obtained by including each set

from

([𝑑]
𝑥

)
with probability 2𝑑

(𝑑−𝑙
𝑥−𝑝

)−1
(assuming 𝑥 > 𝑝 +Ω(1), this

probability is indeed in the interval [0, 1]).
Thus, if𝐴 and 𝐵 are disjoint sets, with good probability there is a

certificate set 𝑆 ∈ S, such that 𝐴 ⊆ 𝑆 and 𝑆 ∩ 𝐵 = ∅. More formally:

P
[
�𝑆 ∈ S : 𝐴 ⊆ 𝑆 and 𝑆 ∩ 𝐵 = ∅ | 𝐴 ∩ 𝐵 = ∅

]
= (14)

=

(
1 − 2𝑑

(
𝑑 − 𝑙

𝑥 − 𝑝

)−1) (𝑑−𝑙𝑥−𝑝)
≤ exp(−2𝑑),

(where the last inequality is due to the standard inequality 1 + 𝛼 ≤
exp(𝛼)). Now we define a 1-cover based on the family S:

For every 𝑖 ∈ [𝑧] : 𝑋𝑖 :=

(
𝑆𝑖

𝑝

)
and 𝑌𝑖 :=

(
[𝑑] \ 𝑆𝑖

𝑞

)
.

First let us prove that with good probability 𝑋1, 𝑌1 . . . , 𝑋𝑧 , 𝑌𝑧 is

1-cover. There are at most 3
𝑑
disjoint pairs 𝐴, 𝐵. Hence by Equa-

tion 14 and the union bound on all disjoint pairs 𝐴, 𝐵, we have that

(𝑋1, 𝑌1), . . . , (𝑋𝑧 , 𝑌𝑧) is a 1-cover with probability at least 3/4.
Next, we bound the sparsity of (𝑋1, 𝑌1), . . . , (𝑋𝑧 , 𝑌𝑧). By

Markov’s inequality, 𝑧 ≤ 4𝑑
(𝑑
𝑥

) (𝑑−𝑙
𝑥−𝑝

)−1
with probability at least

1/2. Hence with probability at least 1/2 our 1-cover has sparsity at

most:

4𝑑

(
𝑑

𝑥

) (
𝑑 − 𝑙

𝑥 − 𝑝

)−1 (
|𝑋𝑖 |/

(
𝑑

𝑝

)
+ |𝑌𝑖 |/

(
𝑑

𝑞

))
=

4𝑑

(
𝑑

𝑥

) (
𝑑 − 𝑙

𝑥 − 𝑝

)−1 ((
𝑥

𝑝

) (
𝑑

𝑝

)−1
+

(
𝑑 − 𝑥

𝑞

) (
𝑑

𝑞

)−1)
=

4𝑑

((
𝑑 − 𝑝

𝑥 − 𝑝

)
+

(
𝑑 − 𝑞

𝑥

)) (
𝑑 − 𝑙

𝑥 − 𝑝

)−1
,

(15)

where the second equality follows from using

(𝑎
𝑏+𝑐

) (𝑏+𝑐
𝑐

)
=

(𝑎
𝑏,𝑐

)
=(𝑎

𝑐

) (𝑎−𝑐
𝑏

)
twice.

Next, we use Lemma 9with:𝑑 = 𝑛, 𝑝 = 𝜎_𝑛,𝑞 = (1−𝜎)_𝑛 and 𝑝+
𝑞 = _𝑛. Note that we assumed that 𝜎 ∈ [0.4, 0.6] and _ ∈ [0.4, 0.5]
hence conditions for Lemma 9 are satisfied. We obtain that for the

choice of 𝑥 := 𝑑 (1/2 + (𝜎 − 1/2) (log
2
(3)/2) + (1/2 − 𝜎) (1/2 − _))

expression (15) is bounded from above with

𝑑𝑂 (1) · 2𝑑/2+𝑝+𝑞−𝑑 ·ℎ (
𝑝+𝑞
2𝑑

) ,

as required. □

Now the main statement of this section follows by a straightfor-

ward combination of the previous lemmas:

Proof of Theorem 28. Let 𝑝 := 𝜎_𝑑 and 𝑞 := (1 − 𝜎)_𝑑 . Set
𝑐 = 20 and assume that integers 𝑝, 𝑞, 𝑑 are multiples of 𝑐 (by padding

the instance if needed).

Next, use Lemma 33 with 𝑑/𝑐 , 𝑝/𝑐 and 𝑞/𝑐 to construct a 1-cover
M of sparsity

Ψ = 𝑑𝑂 (1) · 2
𝑑/2+𝑝+𝑞−𝑑ℎ ((𝑝+𝑞)/(2𝑑))

𝑐 ,

with good probability. Subsequently, apply Lemma 32 with this

1-coverM to detect a disjoint pair𝐴 ∈ A and 𝐵 ∈ B with constant

probability. Note that the runtime is:

�̃�

(
(|A| + |B|) (4𝑐Ψ)𝑐 + 2

2𝑑/𝑐
)
.

This is equal to

�̃�

(
(|A| + |B|) 2𝑑/2+𝑝+𝑞−𝑑ℎ ((𝑝+𝑞)/2𝑑)

)
.

Hence, the running time is �̃�

(
(|A| + |B|) 2𝑑 (1/2+_−ℎ (_/2))

)
. The

main bottleneck in the space usage comes from the 𝑧𝑐 factor in

Lemma 32 which gives the 2
𝑑
factor. □

Lower bound on sparsity. One might be tempted to try to get

even better bounds on the sparsity of the disjointness matrix. Here

we show that the sparsity bound from Lemma 33 is essentially

optimal with a fairly straightforward counting argument. It means

that new techniques would have to be developed to improve an

algorithm for Orthogonal Vectors in the worst case 𝜎 = 1/2 and
_ = 1/2, and in consequence improve the meet-in-middle algorithm

for Subset Sum.

Theorem 34. Any 1-cover of Disj𝑑/4,𝑑/4,𝑑/2 has sparsity at least

Ω∗
(
2
𝑑/

(𝑑
𝑑/4

))
.

We defer the proof of this statement to the full version of the

paper [35].

1682

STOC ’21, June 21–25, 2021, Virtual, Italy Nederlof and Węgrzycki

Relation of techniques in this section with existing meth-
ods. The idea for constructing the 1-cover is relatively standard in

communication complexity (see e.g., the aforementioned [36, Claim

1.37]). It was also used in some proofs of Bollobás’s Theorem [14].

The idea of randomly partitioning the universe to get a structured

1-cover is very similar to the derandomization of the color-coding

approach from [5].

Both ideas were also used by [21]. They also start with a prob-

abilistic construction (c.f., [21, Lemma 4.5]) on a small universe

that is repeatedly applied, and use it to set up a data structure

of ‘𝑛-𝑝-𝑞-separating collections’ that is similar to our lists.
10

The

small but crucial difference, however is that (in our language)

they obtain a monochromatic rectangle by sampling a random

set 𝑆 ⊆ [𝑑] (in contrast to our random sampling 𝑆 ∈
([𝑑]
𝑑/4

)
in the

case 𝑝 = 𝑞 = 𝑑/4), and in the case 𝑝 = 𝑞 = 𝑑/4 this would lead to

sparsity 2
3𝑑/4/2𝑑/4 ≫ 2

𝑑/
(𝑑
𝑑/4

)
.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their insightful comments

and suggestions. The first author would like to thank Per Austrin,

Nikhil Bansal, Petteri Kaski, Mikko Koivisto for several inspiring

discussions about reductions from Subset Sum to Orthogonal Vec-

tors. The second author would like to thank Marcin Mucha and

Jakub Pawlewicz for useful discussions.

REFERENCES
[1] Amir Abboud. 2020. personal communication.

[2] Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. 2019. SETH-

Based Lower Bounds for Subset Sum and Bicriteria Path. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019. 41–
57.

[3] Amir Abboud and Kevin Lewi. 2013. Exact Weight Subgraphs and the k-Sum

Conjecture. In Automata, Languages, and Programming - 40th International Col-
loquium, ICALP 2013 (Lecture Notes in Computer Science, Vol. 7965). Springer,
1–12.

[4] Amir Abboud, Richard RyanWilliams, andHuacheng Yu. 2015. More Applications

of the Polynomial Method to Algorithm Design. In Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015. SIAM,

218–230.

[5] Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-Coding. J. ACM 42, 4

(1995), 844–856.

[6] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jussi Määttä. 2013. Space-Time

Tradeoffs for Subset Sum: An Improved Worst Case Algorithm. In Automata,
Languages, and Programming - 40th International Colloquium, ICALP 2013. 45–56.

[7] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. 2015. Subset Sum

in the Absence of Concentration. In 32nd International Symposium on Theoretical
Aspects of Computer Science, STACS 2015. 48–61.

[8] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. 2016. Dense

Subset Sum May Be the Hardest. In 33rd Symposium on Theoretical Aspects of
Computer Science, STACS 2016. 13:1–13:14.

[9] Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. 2018. Faster

Space-Efficient Algorithms for Subset Sum, k-Sum, and Related Problems. SIAM
J. Comput. 47, 5 (2018), 1755–1777.

[10] Anja Becker, Jean-Sébastien Coron, and Antoine Joux. 2011. Improved Generic Al-

gorithms for Hard Knapsacks. InAdvances in Cryptology - EUROCRYPT 2011 - 30th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Proceedings. 364–385.

[11] Andreas Björklund. 2014. Determinant Sums for Undirected Hamiltonicity. SIAM
J. Comput. 43, 1 (2014), 280–299.

[12] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. 2009.

Counting Paths and Packings in Halves. In Algorithms - ESA 2009, 17th Annual
European Symposium. Proceedings, Amos Fiat and Peter Sanders (Eds.).

10
Additionally they derandomize their construction by using brute-force to find the

probabilistic construction and use splitters to derandomize the step of splitting the

universe into 𝑐 blocks.

[13] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. 2009. Set Partitioning

via Inclusion-Exclusion. SIAM J. Comput. 39, 2 (2009), 546–563.
[14] Béla Bollobás. 1965. On generalized graphs. Acta Mathematica Academiae

Scientiarum Hungarica 16, 3-4 (1965), 447–452.
[15] Karl Bringmann. 2017. A Near-linear Pseudopolynomial Time Algorithm for

Subset Sum. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017. 1073–1084.

[16] Karl Bringmann. 2020. personal communication.

[17] Timothy M. Chan and Ryan Williams. 2016. Deterministic APSP, Orthogonal

Vectors, and More: Quickly Derandomizing Razborov-Smolensky. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016. SIAM, 1246–1255.

[18] Lijie Chen and Ryan Williams. 2019. An Equivalence Class for Orthogonal

Vectors. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019.

[19] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof,

Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström.

2016. On Problems as Hard as CNF-SAT. ACM Trans. Algorithms 12, 3 (2016),
41:1–41:24.

[20] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. 2012. Efficient Dis-

section of Composite Problems, with Applications to Cryptanalysis, Knapsacks,

and Combinatorial Search Problems. In Advances in Cryptology - CRYPTO 2012 -
32nd Annual Cryptology Conference. Proceedings.

[21] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. 2016. Effi-

cient Computation of Representative Families with Applications in Parameterized

and Exact Algorithms. J. ACM 63, 4 (2016), 29:1–29:60.

[22] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. 2019.

Completeness for First-order Properties on Sparse Structures with Algorithmic

Applications. ACM Trans. Algorithms 15, 2 (2019), 23:1–23:35.
[23] Ellis Horowitz and Sartaj Sahni. 1974. Computing Partitions with Applications

to the Knapsack Problem. J. ACM 21, 2 (1974), 277–292.

[24] Nick Howgrave-Graham and Antoine Joux. 2010. New Generic Algorithms for

Hard Knapsacks. In Advances in Cryptology - EUROCRYPT 2010, 29th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
Proceedings. 235–256.

[25] Ce Jin and Hongxun Wu. 2019. A Simple Near-Linear Pseudopolynomial Time

Randomized Algorithm for Subset Sum. In 2nd Symposium on Simplicity in Algo-
rithms, SOSA@SODA 2019. 17:1–17:6.

[26] Konstantinos Koiliaris and Chao Xu. 2017. A Faster Pseudopolynomial Time

Algorithm for Subset Sum. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017.

[27] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. 2011. Lower bounds based

on the exponential time hypothesis. Bulletin of the European Association for
Theoretical Computer Science EATCS 105 (01 2011).

[28] Daniel Lokshtanov and Jesper Nederlof. 2010. Saving Space by Algebraization.

In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010.
321–330.

[29] Burkhard Monien. 1983. The Complexity of Determining Paths of Length k. In

Proceedings of the WG ’83, International Workshop on Graphtheoretic Concepts in
Computer Science. 241–251.

[30] Marcin Mucha, Jesper Nederlof, Jakub Pawlewicz, and Karol Węgrzycki. 2019.

Equal-Subset-Sum Faster Than the Meet-in-the-Middle. In 27th Annual European
Symposium on Algorithms, ESA 2019.

[31] Jesper Nederlof. 2016. Finding Large Set Covers Faster via the Representation

Method. In 24th Annual European Symposium on Algorithms, ESA 2016.
[32] Jesper Nederlof. 2020. Algorithms for NP-Hard Problems via Rank-related Param-

eters of Matrices. In Festschrift Dedicated to the 60th Birthday of Hans Bodlaender.
Springer.

[33] Jesper Nederlof, Jakub Pawlewicz, Céline M.F. Swennenhuis, and Karol Węgrzy-

cki. 2021. A Faster Exponential Time Algorithm for Bin Packing With a Constant

Number of Bins via Additive Combinatorics. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM, 1682–1701.

[34] Jesper Nederlof, Erik Jan van Leeuwen, and Ruben van der Zwaan. 2012. Reducing

a Target Interval to a Few Exact Queries. InMathematical Foundations of Computer
Science 2012 - 37th International Symposium, MFCS 2012. 718–727.

[35] Jesper Nederlof and Karol Węgrzycki. 2020. Improving Schroeppel and Shamir’s

Algorithm for Subset Sum via Orthogonal Vectors. (2020). arXiv:2010.08576

https://arxiv.org/abs/2010.08576

[36] Anup Rao and Amir Yehudayoff. 2020. Communication Complexity: and Applica-
tions. Cambridge University Press.

[37] Richard Schroeppel and Adi Shamir. 1981. A T=𝑂 (2𝑛/2) , S=𝑂 (2𝑛/4) Algorithm
for Certain NP-Complete Problems. SIAM J. Comput. 10, 3 (1981), 456–464.

[38] Virginia Vassilevska-Williams. 2018. On Some Fine-Grained Questions in Algo-

rithms and Complexity. In Proceedings of the International Congress of Mathemati-
cians (ICM 2018). 3447–34.

[39] Ryan Williams. 2005. A new algorithm for optimal 2-constraint satisfaction and

its implications. Theor. Comput. Sci. 348, 2-3 (2005), 357–365.

1683

https://arxiv.org/abs/2010.08576
https://arxiv.org/abs/2010.08576

	Abstract
	1 Introduction
	1.1 Our Main Result and Key Insight
	1.2 The Representation Technique Meets Schroeppel and Shamir's Technique
	1.3 Additional Results and Techniques
	1.4 Related Work
	1.5 Organization

	2 Introduction to the Representation Technique, and its Extensions
	2.1 The Representation Technique with a Simplified Assumption
	2.2 Representation Technique with Non-Simplified Assumption
	2.3 Our Extensions of the Representation Technique Towards Theorem 1

	3 Preliminaries
	4 Improving Schroeppel and Shamir: Proof of Theorem 1
	4.1 The Algorithm for Lemma 15
	4.2 The Weighted Orthogonal Vectors Subroutine
	4.3 Correctness of Algorithm 2
	4.4 Space Usage of Algorithm 2
	4.5 Runtime of Algorithm 2

	5 Orthogonal Vectors via Representative Sets
	References

