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Abstract. In this paper, a proof-theoretic method to prove uniform
Lyndon interpolation for non-normal modal logics is introduced and
applied to show that the logics E, M, MC, EN, MN have that property. In
particular, these logics have uniform interpolation. Although for some of
them the latter is known, the fact that they have uniform Lyndon inter-
polation is new. Also, the proof-theoretic proofs of these facts are new, as
well as the constructive way to explicitly compute the interpolants that
they provide. It is also shown that the non-normal modal logics EC and
ECN do not have Craig interpolation, and whence no uniform (Lyndon)
interpolation.
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1 Introduction

Uniform interpolation (UIP), a strengthening of interpolation in which the inter-
polant only depends on the premise or the conclusion of an implication, is an
intriguing logical property. One of the reasons is that it is hard to predict which
logic does have the property and which does not. Well-behaved logics like K and
KD have it, but then, other well-known modal logics, such as K4, do not. Early
results on the subject were by Shavrukov [17], who proved UIP for the modal
logic GL, and by Ghilardi [4] and Visser [19], who independently proved the same
for K, followed later by B́ılková, who showed that KT has the property as well
[2]. Surprisingly, K4 and S4 do not have UIP, although they do have interpola-
tion [2,4]. Pitts provided the first proof-theoretic proof of UIP, for intuitionistic
propositional logic, IPC, the smallest intermediate logic [13]. Results from [5,9]
imply that there are exactly seven intermediate logics with interpolation and
that they are exactly the intermediate logics with UIP. Pitts’ result is especially
important to us, as also in our paper the approach is proof-theoretic.

The study of UIP in the context of non-normal modal logics has a more
recent history. The area is less explored than its normal counterpart, but for
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several well-known non-normal logics UIP has been established, for example, for
the monotone logic M [14], a result later extended in [12,15] to other non-normal
modal and conditional logics, such as E and basic conditional logic CK.
Non-normal modal logics are modal logics in which the K-axiom, i.e. the axiom
�(ϕ → ψ) → (�ϕ → �ψ), does not hold but a weaker version that is given by
the following E-rule does:

ϕ ↔ ψ

�ϕ ↔ �ψ

Thus the minimal non-normal modal logic, E, is propositional logic plus the
E-rule above. Over the last decades non-normal modal logics have emerged in
various fields, such as game theory and epistemic and deontic logic [3]. Two well-
known non-normal modal logics that are investigated in this paper are natural
weakenings of the principle �(ϕ ∧ ψ) ↔ (�ϕ ∧ �ψ) that implies K over E.
Namely, the two principles:

(M) �(ϕ ∧ ψ) → (�ϕ ∧ �ψ) (C) (�ϕ ∧ �ψ) → �(ϕ ∧ ψ).

Because the K-axiom holds in the traditional relational semantics for modal
logic, non-normal modal logics require different semantics, of which the most
well-known is neighborhood semantics. As we do not need semantics in this
paper, we refer the interested reader to the textbook [11].

Our interest in the property of UIP for non-normal modal logics lies in the
fact that it can be used as a tool in what we would like to call universal proof
theory, the area where one is concerned with the general behavior of proof sys-
tems, investigating problems such as the existence problem (when does a theory
have a certain type of proof system?) and the equivalence problem (when are two
proof systems equivalent?). The value of UIP for the existence problem has been
addressed in a series of recent papers in which a method is developed to prove
UIP that applies to many intermediate, (intuitionistic) modal, and substructural
(modal) logics [1,6,7]. The proof-theoretic method makes use of sequent calculi,
and shows that general conditions on the calculi imply UIP for the corresponding
logic. Thus implying that any logic without UIP cannot have a sequent calcu-
lus satisfying these conditions. The generality of the conditions, such as closure
under weakening, makes this into a powerful tool, especially for those classes of
logics in which UIP is rare, such as intermediate logics. Note that in principle
other regular properties than UIP could be used in this method, as long as the
property is sufficiently rare to be of use.
In this paper we do not focus on the connection with the existence problem as
just described, but rather aim to show the flexibility and utility of our method
to prove UIP by showing that it can be extended to (yet) another class of logics,
namely the class of non-normal modal logics, that it is constructive and can be
easily adapted to prove not only UIP but even uniform Lyndon interpolation.
Uniform Lyndon interpolation (ULIP) is a strengthening of UIP in which the
interpolant respects the polarity of propositional variables (a definition follows in
the next section). It first occurred in [8], where it was shown that several normal
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modal logics, including K and KD, have that property. In this paper we show that
the non-normal modal logics E, M, MC, EN, MN have uniform Lyndon interpola-
tion and the interpolant can be constructed explicitly from the proof. In the last
part of this paper we show that the non-normal modal logics EC and ECN do not
have interpolation, and whence no uniform (Lyndon) interpolation either. This
surprising fact makes EC and ECN potential candidates for our approach to the
existence problem discussed above, but that we have to leave for another paper.

Our proof-theoretic method to prove UIP makes use of sequent calculi for
non-normal modal logics that are equivalent or equal to calculi introduced in [10].
In this paper it is also shown that E, M, MC, EN, MN have Craig interpolation.
The proof that these logics have UIP is not a mere extension of the proof that
they have interpolation but requires a very different approach. That the logics
E and M have UIP has already been established in [12,14], but that they have
uniform Lyndon interpolation is, as far as we know, a new insight. Interestingly,
for logics with LIP, that fact does not always follow easily from the proof that
they have IP, as is for example the case for GL [16]. But for our method this
indeed is the case: the proof of UIP easily implies ULIP. Thus the hard work
lies in proving the former, in a way that turns out to imply the latter. Therefore
we consider the proof-theoretic method to prove uniform interpolation for non-
normal modal logics the main contribution of this paper, as until now such proofs
have always been semantical in nature. In [15] the search for proof-theoretic
techniques to prove uniform interpolation in the setting of non-normal modal
logics is explicitly mentioned in the conclusion of that paper.

2 Preliminaries

Set L = {∧,∨,→,⊥,�} as the language of modal logics. We use � and ¬A
as abbreviations for ⊥ → ⊥ and A → ⊥, respectively, and write ϕ ∈ L to
indicate that ϕ is a formula in the language L. The weight of a formula is
defined inductively by: w(⊥) = w(p) = 0, for any atomic p and w(A 	 B) =
w(A) + w(B) + 1, for any 	 ∈ {∧,∨,→}, and w(�A) = w(A) + 1.

Definition 1. The sets of positive and negative variables of a formula ϕ ∈ L,
denoted by V +(ϕ) and V −(ϕ), respectively, are defined recursively by:

• V +(p) = {p}, V −(p) = V +(�) = V −(�) = V +(⊥) = V −(⊥) = ∅, for atom
p,

• V +(ϕ 	 ψ) = V +(ϕ) ∪ V +(ψ) and V −(ϕ 	 ψ) = V −(ϕ) ∪ V −(ψ), for 	 ∈
{∧,∨},

• V +(ϕ → ψ) = V −(ϕ) ∪ V +(ψ) and V −(ϕ → ψ) = V +(ϕ) ∪ V −(ψ),
• V +(�ϕ) = V +(ϕ) and V −(�ϕ) = V −(ϕ).

Define V (ϕ) as V +(ϕ)∪V −(ϕ). For an atomic formula p, a formula ϕ is called
p+-free (p−-free), if p /∈ V +(ϕ) (p /∈ V −(ϕ)). It is called p-free if p /∈ V (ϕ).
Note that a formula is p-free iff p occurs nowhere in it.
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For the sake of brevity, when we want to refer to both V +(ϕ) and V −(ϕ),
we use the notation V †(ϕ) with the condition “for any † ∈ {+,−}”. If we want
to refer to one of V +(ϕ) and V −(ϕ) and its dual, we write V ◦(ϕ) for the one
we intend and V �(ϕ)1 for the other one. For instance, if we state that for any
atomic formula p, any ◦ ∈ {+,−} and any p◦-free formula ϕ, there is a p�-free
formula ψ such that ϕ∨ψ ∈ L, we are actually stating that if ϕ is p+-free, there
is a p−-free ψ such that ϕ ∨ ψ ∈ L and if ϕ is p−-free, there is a p+-free ψ such
that ϕ ∨ ψ ∈ L.

Definition 2. A logic L is a set of formulas in L extending the set of classical
tautologies, CPC, and closed under substitution and modus ponens ϕ,ϕ → ψ 
ψ.

Definition 3. A logic L has Lyndon interpolation property (LIP) if for any
formulas ϕ,ψ ∈ L such that L  ϕ → ψ, there is a formula θ ∈ L such that
V †(θ) ⊆ V †(ϕ) ∩ V †(ψ), for any † ∈ {+,−} and L  ϕ → θ and L  θ → ψ.
A logic has Craig interpolation (CIP) if it has the above properties, omitting all
the superscripts † ∈ {+,−}.
Definition 4. A logic L has uniform Lyndon interpolation property (ULIP) if
for any formula ϕ ∈ L, atom p, and ◦ ∈ {+,−}, there are p◦-free formulas,
∀◦pϕ and ∃◦pϕ, such that V †(∃◦pϕ) ⊆ V †(ϕ) and V †(∀◦pϕ) ⊆ V †(ϕ), for any
† ∈ {+,−} and

(i) L  ∀◦pϕ → ϕ,
(ii) for any p◦-free formula ψ if L  ψ → ϕ then L  ψ → ∀◦pϕ,

(iii) L  ϕ → ∃◦pϕ, and
(iv) for any p◦-free formula ψ if L  ϕ → ψ then L  ∃◦pϕ → ψ.

A logic has uniform interpolation property (UIP) if it has all the above proper-
ties, omitting the superscripts ◦, † ∈ {+,−}, everywhere.

Remark 1. As the formulas ∀◦pϕ and ∃◦pϕ are provably unique, using the func-
tional notation of writing ∀◦pϕ and ∃◦pϕ as the functions with the arguments
◦ ∈ {+,−}, p and ϕ is allowed.

Theorem 1. If a logic L has ULIP, then it has both LIP and UIP.

Proof. For UIP, set ∀pϕ = ∀+p∀−pϕ and ∃pϕ = ∃+p∃−pϕ. We only prove the
claim for ∀pϕ, as the case for ∃pϕ is similar. First, it is clear that V †(∀pϕ) ⊆
V †(ϕ), for any † ∈ {+,−}. Hence, we have V (∀pϕ) ⊆ V (ϕ). Moreover, ∀pϕ
is p-free. Because ∀−pϕ is p−-free by definition and as V −(∀pϕ) ⊆ V −(∀−pϕ),
the formula ∀+p∀−pϕ is also p−-free. As ∀+p∀−pϕ is p+-free by definition, we
have p /∈ V (∀pϕ) = V +(∀pϕ) ∪ V −(∀pϕ). For condition (i) in Definition 4, as
L  ∀+p∀−pϕ → ∀−pϕ and L  ∀−pϕ → ϕ, we have L  ∀pϕ → ϕ. For condition
(ii), if L  ψ → ϕ, for a p-free ψ, then ψ is also p−-free and hence L  ψ → ∀−pϕ.
As ψ is also p+-free, we have L  ψ → ∀+p∀−pϕ.
1 The label � has nothing to do with the modal operator ♦ = ¬�¬.
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For LIP, assume L  ϕ → ψ. For any † ∈ {+,−}, set P † = V †(ϕ) − [V †(ϕ) ∩
V †(ψ)]. Define θ = ∃+P+∃−P−ϕ, where by ∃†{p1, . . . , pn}† we mean ∃p†

1 . . . ∃p†
n.

Since θ is p†-free for any p ∈ P † and any † ∈ {+,−}, we have V †(θ) ⊆ V †(ϕ) −
P † ⊆ V †(ϕ) ∩ V †(ψ). For the provability condition, it is clear that L  ϕ → θ
and as ψ is p†-free for any p ∈ P †, we have L  θ → ψ.

2.1 Sequent Calculi

We use capital Greek letters and the bar notation in ϕ̄ and C̄ to denote multisets.
A sequent is an expression in the form Γ ⇒ Δ, where Γ (the antecedent) and Δ
(the succedent) are multisets of formulas. It is interpreted as

∧
Γ → ∨

Δ. For
sequents S = (Γ ⇒ Δ) and T = (Π ⇒ Λ) we denote the sequent Γ,Π ⇒ Δ,Λ
by S ·T , and the multisets Γ and Δ by Sa and Ss, respectively. Define V +(S) =
V −(Sa) ∪ V +(Ss) and V −(S) = V +(Sa) ∪ V −(Ss) and the weight of a sequent
as the sum of the weights of the formulas occurring in that sequent. A sequent
S is lower than a sequent T , if the weight of S is less than the weight of T .

Fig. 1. The sequent calculus G3cp. In the axiom, p must be an atomic formula.

In this paper we are interested in modal extensions of the well-known sequent
calculus G3cp from [18] (Fig. 1) for classical logic CPC and its extension by the
following two weakening rules, denoted by G3W:

Γ ⇒ Δ
Lw

Γ,ϕ ⇒ Δ
Γ ⇒ Δ

Rw
Γ ⇒ ϕ,Δ

In each rule in G3W, the multiset Γ (res. Δ) is called the left (res. right) con-
text, the formulas outside Γ ∪ Δ are called the active formulas of the rule and
the only formula in the conclusion outside Γ ∪ Δ is called the main formula.
If S is the conclusion of an instance of a rule R, we say that R is backwards
applicable to S. The modal rules by which we extend G3cp or G3W are given
in Fig. 2. For any such rule (X) except (EC), (N) and (NW ), if we add it
to G3W we denote the resulting system by GX, and if we add (N) to that
system we get GXN. Note that GMCN is the usual system for the logic K.
If we add (EC) to G3cp, we get GEC and if we also add the rule (NW ),
we get GECN. Note that GEC and GECN have no explicit weakening rules.
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The systems GEC and GECN are introduced in [10]. The others are equivalent
to the systems introduced in [10]. The only difference is that in our representa-
tion, the weakening rules are explicitly present, while the extra context in the
conclusion of the modal rules are omitted. We will present the systems as such
for convenience in our later proofs. As the systems GE, GM, GMC, GEN and
GMN are equivalent to the systems introduced in [10], they all admit the cut
rule and the contraction rules. Moreover, the logics of these systems, i.e., the
sets of formulas ϕ for which the systems prove (⇒ ϕ) are the well-known basic
non-normal modal logics E, M, MC, EN and MN, respectively. The logics of the
systems GEC and GECN are the logics EC and ECN, respectively [10].

Fig. 2. The modal rules

Here are some remarks about the rules introduced above. First, for any rule
the weight of each premise is less than the weight of its conclusion. Specifically,
the weight of Γ,Σ ⇒ Δ,Λ is less than the weight of �Γ,Σ ⇒ �Δ,Λ, as long as
Γ ∪ Δ is non-empty. Second, in any rule in G3W, if we add a multiset, both to
the antecedent (succedent) of the premises and to the antecedent (succedent) of
the conclusion, the result remains an instance of the rule. We call this property
the context extension property. Conversely, if a multiset is a sub-multiset of the
left (right) context of the rule, then if we eliminate this multiset both from
the premises and the conclusion, the result remains an instance of the rule. We
call this property the context restriction property. Third, for any rule in G3W
and any ◦ ∈ {+,−}, if the main formula ϕ is in the antecedent, then for any
active formula α in the antecedent of a premise and any active formula β in
the succedent of a premise, we have V ◦(α) ∪ V �(β) ⊆ V ◦(ϕ), and if ϕ is in the
succedent, we have V �(α) ∪ V ◦(β) ⊆ V ◦(ϕ) (note the use of ◦ and �). We call
this property, the variable preserving property. As a consequence of this property
for the rule S1 . . . Sn

S
in G3W, we have

⋃n
i=1 V ◦(Si) ⊆ V ◦(S).

3 Uniform Lyndon Interpolation

In this section, we prove ULIP for the logics E, M, MC, EN, and MN. To this
end, we need to first extend the notion to the sequent calculi of these logics.
Since all these logics are classical, we only define the universal quantifier, as the
existential quantifier is constructed by the universal quantifier and negation.
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Definition 5. Let G be one of the sequent calculi introduced in Preliminaries.
G has uniform Lyndon interpolation property (ULIP) if for any sequent S, any
atom p and any ◦ ∈ {+,−}, there exists a formula ∀◦pS such that:

(var) ∀◦pS is p◦-free and V †(∀◦pS) ⊆ V †(S), for any † ∈ {+,−},
(i) S · (∀◦pS ⇒) is derivable in G,

(ii) for any sequent Γ ⇒ Δ such that p /∈ V �(Γ ⇒ Δ), if S · (Γ ⇒ Δ) is
derivable in G then (Γ ⇒ ∀◦pS,Δ) is derivable in G.

∀◦pS is called a uniform ∀◦
p-interpolant of S in G. For any set of rules R of G,

a formula ∀◦
RpS is called a uniform ∀◦

p-interpolant of S with respect to R, if it
satisfies the conditions (var) and (i), when ∀◦pS is replaced by ∀◦

RpS, and:

(ii′) for any sequent Γ ⇒ Δ such that p /∈ V �(Γ ⇒ Δ), if there is a derivation
of S · (Γ ⇒ Δ) in G whose last inference rule is an instance of a rule in R,
then (Γ ⇒ ∀◦

RpS,Δ) is derivable in G.

Remark 2. As the formula ∀◦pS is provably unique, using the functional notation
of writing ∀◦pS as a function with the arguments ◦ ∈ {+,−}, p and S is allowed.
The same does not hold for ∀◦

RpS. However, as there is no risk of confusion and
we will be specific about the construction of the formula ∀◦

RpS, we will also use
the functional notation in this case.

The following theorem connects ULIP for sequent calculi to the original ver-
sion.

Theorem 2. Let G be one of the sequent calculi introduced in Preliminaries and
L be its logic. Then, G has ULIP iff L has ULIP.

Proof. If G has ULIP, set ∀◦pA = ∀◦p(⇒ A) and ∃◦pA = ¬∀�p¬A. Conversely,
if L has ULIP, set ∀◦p(Γ ⇒ Δ) = ∀◦p(

∧
Γ → ∨

Δ).

Our strategy to prove ULIP for the logics E, M, MC, EN, and MN is to prove
ULIP for their sequent calculi. From now on, up to Subsect. 3.1, we assume that
G is one of GE, GM, GMC, GEN, and GMN. As stated previously, backward
applications of the rules decreases the weight of the sequent. Using this property
and recursion on the weight of the sequents, for any given sequent S = (Γ ⇒ Δ),
any atom p and any ◦ ∈ {+,−}, we first define a p◦-free formula ∀◦pS and then
by induction on the weight of S, we prove that ∀◦pS meets the conditions in
Definition 5. Towards that end, both in the definition of ∀◦pS and in the proof
of its properties, we must address all the rules of the system G, one by one. To
make the presentation uniform, modular, and more clear, we divide the rules of
G into two families: the rules of G3W and the modal rules specific for G. The
rules in the first class has one of the following forms:

{Γ, ϕ̄i ⇒ ψ̄i,Δ}i

Γ, ϕ ⇒ Δ

{Γ, ϕ̄i ⇒ ψ̄i,Δ}i

Γ ⇒ ϕ,Δ
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where Γ and Δ are free for all multiset substitutions, and ϕ̄i’s and ψ̄i’s are mul-
tisets of formulas (possibly empty). The rules have the variable preserving condi-
tion, i.e., given ◦ ∈ {+,−}, for the left rule

⋃
i

⋃
θ∈ϕ̄i

V ◦(θ) ∪ ⋃
i

⋃
θ∈ψ̄i

V �(θ) ⊆
V ◦(ϕ), and for the right one

⋃
i

⋃
θ∈ϕ̄i

V �(θ) ∪ ⋃
i

⋃
θ∈ψ̄i

V ◦(θ) ⊆ V ◦(ϕ).
Rather than addressing each rule in G3W, we simply address these two forms.

Lemma 1. For any sequent S, atom p and ◦ ∈ {+,−}, a uniform ∀◦
p-interpolant

of S with respect to the set of all axioms of G exists.

Proof. Let us define a formula ∀◦
axpS: if S is provable, define it as �, otherwise,

define it as the disjunction of all p◦-free formulas in Ss and the negation of all
p�-free formulas in Sa. We show that ∀◦

axpS is the uniform ∀◦
p-interpolant of S

with respect to the set of axioms of G. It is easy to see that ∀◦
axpS is p◦-free,

V †(∀◦
axpS) ⊆ V †(S), for † ∈ {+,−} and S ·(∀◦

axpS ⇒) is provable in G. To prove
the condition (ii′) in Definition 5, if S is provable, then as ∀◦

axpS = �, we have
C̄ ⇒ ∀◦

axpS, D̄. If S is not provable, then let S · (C̄ ⇒ D̄) be an axiom. There
are two cases to consider. First, if S · (C̄ ⇒ D̄) is in the form Γ, q ⇒ q,Δ, where
q is an atomic formula. Then, if q /∈ C̄ and q /∈ D̄, we have q ∈ Γ ∩ Δ and hence
the sequent S is provable which contradicts our assumption. Therefore, either
q ∈ C̄ or q ∈ D̄. If q ∈ C̄ ∩ D̄, then C̄ ⇒ ∀◦

axpS, D̄ is provable. Hence, we assume
either q ∈ C̄ and q /∈ D̄ or q /∈ C̄ and q ∈ D̄. In the first case, if q ∈ C̄, it is
p◦-free and since it occurs in Δ, it is a disjunct in ∀◦

axpS. Hence, C̄ ⇒ ∀◦
axpS, D̄

is provable. In the second case, if q ∈ D̄, it is p�-free and as q ∈ Γ , its negation
occurs in ∀◦

axpS. Therefore C̄ ⇒ ∀◦
axpS, D̄ is provable.

If S · (C̄ ⇒ D̄) is in the form Γ,⊥ ⇒ Δ, then ⊥ ∈ C̄, because otherwise, ⊥ ∈ Γ
and hence S will be provable. Now, since ⊥ ∈ C̄, we have C̄ ⇒ ∀◦

axpS, D̄.

Definition 6. Let U◦
p (S) be the statement that “all sequents lower than S have

uniform ∀◦
p-interpolants”. A calculus G has MUIP if for any sequent S, atom p,

and ◦ ∈ {+,−}, there exists a formula ∀◦
mpS such that if U◦

p (S), then ∀◦
mpS is

a uniform ∀◦
p-interpolant for S with respect to the set of modal rules of G.

Theorem 3. If a sequent calculus G has MUIP, then it has ULIP.

Proof. Define a formula ∀◦pS by recursion on the weight of S: if S is provable
define it as �, otherwise, define it as:

∨

R

(
∧

i

∀◦pSi) ∨ (∀◦
axpS) ∨ (∀◦

mpS)

where the first disjunction is over all rules R in G3W backward applicable to
S, where S is the consequence and Si’s are the premises. ∀◦

axpS is a uniform ∀◦
p-

interpolant of S with respect to the set of axioms of G that Lemma 1 provides.
∀◦

mpS is the formula that MUIP provides. To prove that ∀◦pS is a ∀◦
p-interpolant

for S, we use induction on the weight of S to prove:

(var) ∀◦pS is p◦-free and V †(∀◦pS) ⊆ V †(S), for any † ∈ {+,−},
(i) S · (∀◦pS ⇒) is provable in G,
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(ii) for any p�-free sequent C̄ ⇒ D̄, if S · (C̄ ⇒ D̄) is derivable in G then
C̄ ⇒ ∀◦pS, D̄ is derivable in G.

By induction hypothesis, (var), (i), and (ii) hold for all sequents T lower than
S. Now, (var) also holds for ∀◦pS, because both ∀◦

axpS and ∀◦
mpS satisfy (var)

and all rules in G3W have the variable preserving property.
To prove (i), it is enough to show that the following are provable in G:

S · (
∧

i

∀◦pSi ⇒) (1) , S · (∀◦
axpS ⇒) (2) , S · (∀◦

mpS ⇒) (3).

Sequent (3) is provable by induction hypothesis and the assumption that G has
MUIP. Sequent (2) is proved in Lemma 1. For the sequent (1), assume that
the rule R of G3W is backward applicable to S, i.e., the premises of R are
Si’s and its conclusion S. As Si’s are lower than S, by induction hypothesis we
have Si · (∀◦pSi ⇒). Therefore, by weakening, we have Si · ({∀◦pSi}i ⇒ ). Since
any rule in G3W has the context extension property, we can add {∀◦pSi}i to
the antecedent of both premises and conclusion and by the rule itself, we have
S · ({∀◦pSi}i ⇒ ) and hence S · (

∧
i ∀◦pSi ⇒ ).

For (ii), we use induction on the length of the proof of S ·(C̄ ⇒ D̄). Let S ·(C̄ ⇒
D̄) be derivable in G. If it is an axiom, we have C̄ ⇒ D̄,∀◦

axpS by Lemma 1,
and hence C̄ ⇒ D̄,∀◦pS. If the last rule is a rule in G3W of the form:

{Γ, ϕ̄i ⇒ ψ̄i,Δ}i

Γ, ϕ ⇒ Δ
,

then there are two cases to consider, i.e., either ϕ ∈ C̄ or ϕ ∈ Sa. If ϕ ∈ C̄, then
set C̄ ′ = C̄ − {ϕ}. Since ϕ ∈ C̄, it is p◦-free by the assumption and ϕi’s are all
p◦-free and ψi’s are all p�-free by the variable preserving property. By induction
hypothesis, as (C̄ ′, ϕ̄i ⇒ ψ̄i, D̄) is p�-free and S · (C̄ ′, ϕ̄i ⇒ ψ̄i, D̄) has a shorter
proof, we have C̄ ′, ϕ̄i ⇒ ∀◦pS, ψ̄i, D̄. By using the rule itself, we have

{C̄ ′, ϕ̄i ⇒ ψ̄i,∀◦pS, D̄}i

C̄ ′, ϕ ⇒ ∀◦pS, D̄

which implies C̄ ⇒ ∀◦pS, D̄.
If ϕ /∈ C̄, then both C̄ and D̄ do not contain any active formula of the rule and
hence the last rule is in form

{C̄, Γ, ϕ̄i ⇒ ψ̄i, D̄,Δ}i

C̄, Γ, ϕ ⇒ D̄,Δ
.

By context restriction property, if we erase C̄ and D̄ both on the premises and
the consequence of the last rule, the rule remains valid and it changes to:

{Γ, ϕ̄i ⇒ ψ̄i,Δ}i

Γ, ϕ ⇒ Δ
.

Therefore, the rule is backward applicable to S = (Γ, ϕ ⇒ Δ). Set Si = (Γ, ϕ̄i ⇒
ψ̄i,Δ). As the weight of Si’s are less than the weight of S and Si · (C̄ ⇒ D̄)
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are provable, by induction hypothesis, we have C̄ ⇒ ∀◦pSi, D̄. Hence, C̄ ⇒∧
i ∀◦pSi, D̄ and as

∧
i ∀◦pSi is a disjunct in ∀◦pS, we have C̄ ⇒ ∀◦pS, D̄.

The case where the last rule is in GW3 with its main formula in the antecedent is
similar. For the modal rules, by induction hypothesis U◦

p (S) and the assumption
that G has MUIP, we get that ∀◦

mpS is a uniform ∀◦
p-interpolant for S with

respect to the set of modal rules of G. By (ii′) in Definition 5, this gives C̄ ⇒
∀◦

mpS, D̄ and hence C̄ ⇒ ∀◦pS, D̄.

In the upcoming subsections, for the following choices of the system G, we
show that it has MUIP. Therefore, by Theorem 3 and Theorem 2, we will have:

Theorem 4. Logics E, M, MC, EN and MN have ULIP, hence UIP and LIP.

3.1 Modal Logics M and MN

Let G be either GM or GMN. We will show that G has MUIP. To define ∀◦
mpS,

if ¬U◦
p (S), define ∀◦

mpS as ⊥. If U◦
p (S), (i.e., for any sequent T lower than S a

uniform ∀◦
p-interpolant, denoted by ∀◦pT , exists), define ∀◦

mpS in the following
way: if S is provable, define it as �, otherwise, if it is of the form (�ϕ ⇒),
define ∀◦

mpS = ¬�¬∀◦pS′, where S′ = (ϕ ⇒), if S is of the form (⇒ �ψ), define
∀◦

mpS = �∀◦pS′′, where S′′ = (⇒ ψ), and otherwise, define ∀◦
mpS = ⊥. Note

that ∀◦
mpS is well-defined as we have U◦

p (S) and S′ and S′′ are lower than S.
To show that G has MUIP, we assume U◦

p (S) to prove the three conditions (var),
(i) and (ii′) in Definition 5 for ∀◦

mpS. First, note that using U◦
p (S) on (ϕ ⇒)

and (⇒ ψ) that are lower than (�ϕ ⇒) and (⇒ �ψ), respectively, the variable
conditions are implied from (var) for S′ and S′′, respectively.
For (i), if S is provable, there is nothing to prove. Otherwise, if S = (�ϕ ⇒)
then ∀◦

mpS = ¬�¬∀◦pS′. As S′ is lower than S, we have (ϕ,∀◦pS′ ⇒) by U◦
p (S),

which implies (ϕ ⇒ ¬∀◦pS′). Using the rule (M), we get (�ϕ ⇒ �¬∀◦pS′),
which is equivalent to (�ϕ,¬�¬∀◦pS′ ⇒). Hence, S · (∀◦

mpS ⇒) is provable.
If S is not provable and S = (⇒ �ψ), we have ∀◦

mpS = �∀◦pS′′. Using U◦
p (S)

on S′′ and the fact that S′′ is lower than S, we have (∀◦pS′′ ⇒ ψ) and by the
rule (M), we can show that S · (�∀◦pS′′ ⇒) is provable in G. If S is not provable
and has none of the mentioned forms, as ∀◦

mpS = ⊥, there is nothing to prove.
For (ii′), let S · (C̄ ⇒ D̄) be derivable in G for a p�-free sequent C̄ ⇒ D̄ and the
last rule is a modal rule. We want to show that C̄ ⇒ ∀◦

mpS, D̄ is derivable in G.
If the last rule used in the proof of S · (C̄ ⇒ D̄) is (M), the sequent must have
the form (�ϕ ⇒ �ψ) and the rule must be in form:

ϕ ⇒ ψ
M�ϕ ⇒ �ψ

If S is provable, as ∀◦
mpS = �, we clearly have C̄ ⇒ ∀◦

mpS, D̄. Assume S is not
provable and hence C̄ ∪ D̄ cannot be empty. Therefore, there are three cases to
consider, either C̄ is �ϕ or D̄ is �ψ or both. First, if C̄ = �ϕ and D̄ = ∅, then,
S = (⇒ �ψ) and ϕ is p◦-free. Set S′′ = (⇒ ψ). Then ∀◦

mpS = �∀pS′′. As S′′
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is lower than S, by U◦
p (S) we have (ϕ ⇒ ∀◦pS′′). Using the modal rule (M), we

have (�ϕ ⇒ �∀◦pS′′) and hence (C̄ ⇒ ∀◦
mpS, D̄).

In the second case, assume C̄ = ∅ and D̄ = �ψ. Hence, S = (�ϕ ⇒) and ψ is
p�-free. Set S′ = (ϕ ⇒). Hence, ∀◦

mpS = ¬�¬∀◦pS′. Since (ϕ ⇒ ψ) is provable
in G and S′ is lower than S, by U◦

p we have (⇒ ∀◦pS′, ψ), or equivalently
(¬∀◦pS′ ⇒ ψ). Using the rule (M), we get (�¬∀◦pS′ ⇒ �ψ) or equivalently
(⇒ ¬�¬∀◦pS′,�ψ). Therefore, we have (⇒ ∀◦

mpS,�ψ) or (C̄ ⇒ ∀◦
mpS, D̄).

In the third case, if C̄ = �ϕ and D̄ = �ψ, then S is the empty sequent and
C̄ ⇒ D̄ is provable. Hence, C̄ ⇒ ∀◦

mpS, D̄ is also provable.
For the case G = GMN, if S · (C̄ ⇒ D̄) = (⇒ �ψ) is proved by the rule (N),
it must have the following form:

⇒ ψ
N⇒ �ψ

Then C̄ = ∅ and there are two cases to consider. The first case is when S =
(⇒ �ψ) and D̄ = ∅. Then, it means that S is provable which contradicts our
assumption. The second case is when S = (⇒) and D̄ = �ψ. Hence, C̄ ⇒ D̄ is
provable and we have the provability of C̄ ⇒ ∀◦

mpS, D̄ in G.

3.2 Modal Logic MC

Similar to the argument of the previous subsection, to define ∀◦
mpS, if ¬U◦

p (S),
define ∀◦

mpS as ⊥. If U◦
p (S), (i.e., for any sequent T lower than S the uniform

∀◦
p-interpolant, denoted by ∀◦pT , exists), define ∀◦

mpS as the following: if S is
provable, define ∀◦

mpS = �. Otherwise, if S is of the form (�ϕ1, · · · ,�ϕi ⇒),
for some i ≥ 1, define ∀◦

mpS = ¬�¬∀◦pS′, where S′ = (ϕ1, · · · , ϕi ⇒). If S
is of the form (⇒ �ψ), define ∀◦

mpS = �∀◦pS′′, where S′′ = (⇒ ψ). If S is
of the form (�ϕ1, · · · ,�ϕi ⇒ �ψ), for some i ≥ 1, define ∀◦

mpS = �∀◦pS′′,
where S′′ = (ϕ1, · · · , ϕi ⇒ ψ). Otherwise, define ∀◦

mpS = ⊥. Note that ∀◦
mpS is

well-defined as we assumed U◦
p (S) and in each case S′ or S′′ are lower than S.

To show that GMC has MUIP, we assume U◦
p (S) to prove the three conditions

(var), (i) and (ii′) in Definition 5 for ∀◦
mpS. The condition (var) is an immediate

consequence of U◦
p (S) and the fact that S′ or S′′ are lower than S. For (i), if

S is provable, there is nothing to prove. If S is of the form (�ϕ1, · · · ,�ϕi ⇒)
and ∀◦

mpS = ¬�¬∀◦pS′, where S′ = (ϕ1, · · · , ϕi ⇒), as S′ is lower than S, by
U◦

p (S) we have (ϕ1, · · · , ϕi,∀◦pS′ ⇒) or equivalently (ϕ1, · · · , ϕi ⇒ ¬∀◦pS′).
Using the rule (MC), we get (�ϕ1, · · · ,�ϕi ⇒ �¬∀◦pS′), which is equivalent
to (�ϕ1, · · · ,�ϕi,¬�¬∀◦pS′ ⇒) and hence S · (∀◦

mpS ⇒).
If S is of the form (⇒ �ψ) and S′′ = (⇒ ψ), or S is of the form (�ϕ1, · · · ,�ϕi ⇒
�ψ), for some i ≥ 1 and S′′ is of the form (ϕ1, · · · , ϕi ⇒ ψ), we have
∀◦

mpS = �∀◦pS′′. In both cases, using U◦
p (S) on S′′, we have either ∀◦pS′′ ⇒ ψ

or ϕ1, · · · , ϕi,∀◦pS′′ ⇒ ψ, respectively. In both cases, using the rule (MC), we
can show that S · (�∀◦pS′′ ⇒) is provable and hence S · (∀◦

mpS ⇒).
For (ii′), let S · (C̄ ⇒ D̄) be derivable in GMC and the last rule is the modal
rule (MC), for a p�-free sequent C̄ ⇒ D̄. We want to show that C̄ ⇒ ∀◦

mpS, D̄
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is derivable in GMC. If S is provable, as ∀◦
mpS = �, we have C̄ ⇒ ∀◦

mpS, D̄.
Therefore, we assume that S is not provable. As the last rule used in the proof
of S · (C̄ ⇒ D̄) is (MC), the sequent must have the form (�ϕ1, · · · ,�ϕn ⇒ �ψ)
and the rule is:

ϕ1, · · · , ϕn ⇒ ψ
MC�ϕ1, · · · ,�ϕn ⇒ �ψ

Then, there are two cases to consider, either D̄ = �ψ or D̄ = ∅. First, assume
S is of the form (�ϕ1, · · · ,�ϕi ⇒), for i ≤ n, then C̄ = �ϕi+1, · · · ,�ϕn and
D̄ = �ψ and hence ϕi+1, · · · , ϕn ⇒ ψ is p�-free. Set S′ = (ϕ1, · · · , ϕi ⇒). By
the form of S, we have ∀◦

mpS = ¬�¬∀◦pS′. As S′ is lower than S, by U◦
p (S), we

have (ϕi+1, · · · , ϕn ⇒ ∀◦pS′, ψ). Hence, by moving ∀◦pS′ to the left, applying
the rule (MC) and moving back, we have (�ϕi+1, · · · ,�ϕn ⇒ ¬�¬∀◦pS′,�ψ)
or equivalently (C̄ ⇒ ∀◦

mpS, D̄).
If S is of the form �ϕ1, · · · ,�ϕi ⇒ �ψ, for some i ≤ n, we must have
C̄ = �ϕi+1, · · · ,�ϕn and D̄ = ∅. Hence, ϕi+1, · · · , ϕn are p◦-free. Note that
i < n, because if i = n, then S will be provable that contradicts our assump-
tion. Set S′′ = (ϕ1, · · · , ϕi ⇒ ψ). As S′′ is lower than S, by U◦

p (S) we have
ϕi+1, · · · , ϕn ⇒ ∀◦pS′′. By the fact that i < n, we can apply the rule (MC) to
prove �ϕi+1, · · · ,�ϕn ⇒ �∀◦pS′′ and hence (C̄ ⇒ ∀◦

mpS, D̄).

3.3 Modal Logics E and EN

Let G be GE or GEN. Similar to the argument of the previous subsection, if
¬U◦

p (S), define ∀◦
mpS as ⊥. If U◦

p (S), then: if S is provable in G, define ∀◦
mpS =

�. Otherwise, if S = (�ϕ ⇒) and both (¬∀◦pS′ ⇒ ϕ) and (ϕ ⇒ ¬∀◦pS′) are
provable in G, define ∀◦

mpS = ¬�¬∀◦pS′ for S′ = (ϕ ⇒). If S has the form
(⇒ �ψ) and both (∀◦pS′′ ⇒ ψ) and (ψ ⇒ ∀◦pS′′) are provable in G, define
∀◦

mpS = �∀◦pS′′ for S′′ = (⇒ ψ). Otherwise, define ∀◦
mpS = ⊥. Note that ∀◦pS

is well-defined as S′ and S′′ are lower than S and we assumed U◦
p (S).

To show that G has MUIP we assume U◦
p (S) to prove (var), (i) and (ii′) in

Definition 5 for ∀◦
mpS. Condition (var) is a consequence of U◦

p (S) and that S′

or S′′ are lower than S. For (i), if S is provable, there is nothing to prove. If
S = (�ϕ ⇒) and S′ = (ϕ ⇒) and both (¬∀◦pS′ ⇒ ϕ) and (ϕ ⇒ ¬∀◦pS′) are
provable in G, then using the rule (E), we have (�ϕ ⇒ �¬∀◦pS′) which implies
(�ϕ,¬�¬∀◦pS′ ⇒) and hence S · (∀◦

mpS ⇒) is provable in G.
If S = (⇒ �ψ) and S′′ = (⇒ ψ) and both (∀◦pS′′ ⇒ ψ) and (ψ ⇒ ∀◦pS′′)
are provable in G, then using the rule (E), we have (�∀◦pS′′ ⇒ �ψ) and hence
S · (∀◦

mpS ⇒) is provable in G. If ∀◦
mpS = ⊥, there is nothing to prove.

For (ii′), if S is provable, then ∀◦
mpS = � and hence C̄ ⇒ ∀◦

mpS, D̄. Therefore,
assume that S is not provable. If the last rule used in the proof of S · (C̄ ⇒ D̄)
is the rule (E), the sequent S · (C̄ ⇒ D̄) is of the form �ϕ ⇒ �ψ. There are
four cases to consider based on if C̄ or D̄ are empty or not. First, if C̄ = D̄ = ∅,
then S is provable which contradicts our assumption. If S is the empty sequent
(⇒), then C̄ ⇒ D̄ is provable and hence C̄ ⇒ ∀◦

mpS, D̄ is provable.
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If S = (�ϕ ⇒), then C̄ = ∅ and D̄ = �ψ and hence ψ is p�-free. Set S′ = (ϕ ⇒)
and as the last rule is (E), both ϕ ⇒ ψ and ψ ⇒ ϕ are provable. By U◦

p (S) and
the fact that S′ is lower than S, we have (ϕ,∀◦pS′ ⇒) or equivalently, (ϕ ⇒
¬∀◦pS′). Again by U◦

p (S) for S′, the provability of S′ ·(⇒ D̄) = (ϕ ⇒ ψ) and the
fact that (⇒ ψ) is p�-free, we have (⇒ ∀◦pS′, ψ) or equivalently, (¬∀◦pS′ ⇒ ψ).
Since (ϕ ⇒ ψ) and (ψ ⇒ ϕ) are provable, by cut we can prove the equivalence
between ϕ, ψ and ¬∀◦pS′. Using this fact, we have:

ψ ⇒ ¬∀◦pS′ ¬∀◦pS′ ⇒ ψ
E�¬∀◦pS′ ⇒ �ψ

Hence, (⇒ ¬�¬∀◦pS′,�ψ). Then, as S = (�ϕ ⇒) and both (¬∀◦pS′ ⇒ ϕ) and
(ϕ ⇒ ¬∀◦pS′) are provable in G, by definition we have ∀◦

mpS = ¬�¬∀◦pS′ and
hence (⇒ ¬�¬∀◦pS′,�ψ) = (C̄ ⇒ ∀◦

mpS, D̄) is provable in G. The last case
where S = (⇒ �ψ) and C̄ = �ϕ and D̄ = ∅ is similar.
For the case G = GEN, if S · (C̄ ⇒ D̄) = (⇒ �ψ) is proved by the rule (N), it

must have the form
⇒ ψ

N⇒ �ψ
. Then C̄ = ∅ and there are two cases. First,

S = (⇒ �ψ) and D̄ = ∅, which means that S is provable which contradicts our
assumption. Second, if S = (⇒) and D̄ = �ψ, and hence C̄ ⇒ D̄ is provable,
we have the provability of C̄ ⇒ ∀◦

mpS, D̄ in G.

4 Modal Logics EC and ECN

In this section we prove that the logics EC and ECN do not enjoy the Craig
interpolation property. To this end, we set ϕ = �(¬q∧r) and ψ = �(p∧q) → �⊥,
where p, q, and r are three distinct atomic formulas and show that if L is either
EC or ECN, the formula ϕ → ψ is provable in L, while there is no formula θ such
that V (θ) ⊆ {q} and both formulas ϕ → θ and θ → ψ are provable in L.

To show that ϕ → ψ is in EC and hence ECN, we use the following proof tree
in GEC:

p ∧ q,¬q ∧ r ⇒ ⊥ ⊥ ⇒ p ∧ q ⊥ ⇒ ¬q ∧ r
EC�(p ∧ q),�(¬q ∧ r) ⇒ �⊥

Now, for the sake of contradiction, assume that the interpolant θ for ϕ → ψ
exists. Let G be either GEC or GECN. Hence, both �(¬q ∧ r) ⇒ θ and
�(p ∧ q), θ ⇒ �⊥ are provable in G. We first analyse the general form of θ.

First, note that by a simple induction on the structure of the formulas in the
language L, it is possible to show that any formula A is G3cp-equivalent to a
CNF-style formula

∧
i∈I

∨
j∈Ji

Lij , where I and Ji’s are (possibly empty) finite
sets, V (Lij) ⊆ V (A), and each Lij is either an atomic formula, the negation of
an atomic formula, �C or ¬�C, for a formula C. In particular, the formula θ
is G3cp-equivalent to a CNF-style formula in the form

∧
i∈I

∨
j∈Ji

Lij . W.l.o.g,
assume that for any i ∈ I, it is impossible to have both an atomic formula and
its negation in {Lij}j∈Ji

, and that none of sequents (⇒ Lij) or (Lij ⇒) are
provable in G.
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Back to the main argument, as ϕ ⇒ θ is provable in G, we have ϕ ⇒∧
i∈I

∨
j∈Ji

Lij which means that for every i ∈ I, we have ϕ ⇒ ∨
j∈Ji

Lij . Based
on the form of each Lij , we can transform the sequent to a provable sequent of the
form ϕ,P,�Γ ⇒ Q,�Δ, where P and Q are multisets of atomic formulas and Γ
and Δ are multisets of formulas. We claim that for any i ∈ I, the corresponding
Γ is non-empty. Suppose Γ = ∅. Then, we have ϕ,P ⇒ Q,�Δ. This sequent
must have been the conclusion of the rule (EC), because for G = GEC, the other
possible case is being an axiom which implies either ⊥ ∈ P or the existence of an
atomic s in P ∩Q. Both contradict the structure of

∨
j∈Ji

Lij . For G = GECN,
the same holds. Moreover, if the last rule is (NW ), then for an element δ ∈ Δ,
the sequent (⇒ δ) and hence (⇒ �δ) must be provable in G which contradicts
the structure of Lij ’s again. Therefore, T = (ϕ,P ⇒ Q,�Δ) is the consequence
of (EC) and hence, it has the form (Σ,�α1, · · · ,�αn ⇒ �β,Λ) and the last
rule is:

α1, · · · , αn ⇒ β β ⇒ α1 · · · β ⇒ αn
EC

Σ,�α1, · · · ,�αn ⇒ �β,Λ

Now there are two cases, either ϕ ∈ Σ or ϕ /∈ Σ. In the first case, as the formulas
outside Σ are either atomic or boxed, we must have no boxed formula outside
Σ. This is impossible, as the form of the rule (EC) dictates that we must have
at least one boxed formula in the antecedent of the conclusion. Hence, ϕ /∈ Σ.
As all formulas in T a (except ϕ) are atomic, we must have only one boxed formula
in T a, which is ϕ. Therefore, in the premises of the rule, we have ¬q∧r ⇒ β and
β ⇒ ¬q ∧ r. Since V (β) ⊆ V (θ) ⊆ {q}, then β is r-free. If we once substitute ⊥
for r and then ¬q for r, as β remains intact, we will have β ⇔ ⊥ and β ⇔ ¬q,
which implies the contradictory ⊥ ⇔ ¬q. Hence, Γ cannot be empty.

So far, we have proved that Γ is non-empty, for any i ∈ I. Let Di be a
formula in Γ and note that ¬�Di occurs as one of the Lij ’s. Now, as �(p ∧
q), θ ⇒ �⊥ or equivalently �(p ∧ q),

∧
i∈I

∨
j∈Ji

Lij ⇒ �⊥ is provable in G,
we have �(p ∧ q), {¬�Di}i∈I ⇒ �⊥ is provable in G. Define D = {Di}i∈I .
Thus S = (�(p ∧ q) ⇒ �D,�⊥) is provable. As all the formulas are boxed,
this must have been the conclusion of the rule (EC). The reason is that G has
no weakening rules, and for G = GEC, the only modal rule is (EC) and for
G = GECN, the last rule cannot be the rule (NW ) as it implies that for one
D ∈ D the sequent (⇒ D) is provable in G which means that (⇒ �D) and
hence (¬�D ⇒) is provable. The last contradicts with the structure of Lij ’s.
This implies that the last inference is of the form:

α1, · · · , αn ⇒ β β ⇒ α1 · · · β ⇒ αn
EC

Σ,�α1, · · · ,�αn ⇒ �β,Λ

Similar as before, there are two cases, either β = ⊥ or β ∈ D. If β = ⊥, in the
premises we must have p∧ q ⇔ ⊥ which is impossible. If β ∈ D, it means that in
the premises we had p∧ q ⇔ β. Note that as β ∈ D we have V (β) ⊆ V (θ) ⊆ {q}.
Hence β is p-free. Substituting once ⊥ and then q for p, leave β intact and hence
we get ⊥ ⇔ β and q ⇔ β which implies q ⇔ ⊥, which is impossible.
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Theorem 5. Logics EC and ECN do not have CIP, hence not UIP or ULIP
either.
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