

EGU21-9164

https://doi.org/10.5194/egusphere-egu21-9164 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Fractionation of clumped isotopes of CO₂ during photosynthesis

Getachew A. Adnew¹, Magdalena E.G. Hofmann¹, Thijs L. Pons², Gerbrand Koren³, Martin Ziegler⁴, Lucas J. Lourens⁴, Wouter Peters^{3,5}, and Thomas Röckmann¹

¹Utrecht University, Institute for Marine and Atmospheric Research Utrecht (IMAU), Physics and Astronomy, Utrecht, Netherlands (g.a.adnew@uu.nl)

Stable isotope (δ^{13} C and δ^{18} O) and mole fraction measurements of CO₂ are used to constrain the carbon cycle. However, the gross fluxes of the carbon cycle, especially photosynthesis and respiration, remain uncertain due to the challenging task of distinguishing individual flux terms from each other. The clumped isotope composition (Δ_{47}) of CO₂ has been suggested as an additional tracer for gross CO₂ fluxes since it depends mainly on temperature but not on the bulk isotopic composition of leaf, soil and surface water, unlike δ^{18} O of CO₂.

In this study, we quantify the effect of photosynthetic gas exchange on Δ_{47} of CO₂ using leaf cuvette experiments with two C₃ and one C₄ plants and discuss challenges and possible applications of clumped isotope measurements. The experimental results are supported by calculations with a leaf cuvette model. Our results demonstrate how the effect of gas exchange on Δ_{47} is controlled by CO₂-H₂O isotope exchange (using plants with different carbonic anhydrase activity), and kinetic fractionation as CO₂ diffuses into and out of the leaf (using plants with different stomatal and mesophyll conductance). We experimentally confirm the previously suggested dependence of Δ_{47} on the stomatal conductance and back-diffusion flux.

²Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands

³Meteorology and Air Quality Group, Wageningen University, Wageningen, The Netherlands

⁴Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands

⁵Centre for Isotope Research, University of Groningen, The Netherlands