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Abstract. We construct the unitary analogue of orthogonal calculus developed by Weiss, utilising model
categories to give a clear description of the intricacies in the equivariance and homotopy theory involved.
The subtle differences between real and complex geometry lead to subtle differences between orthogonal
and unitary calculus. To address these differences we construct unitary spectra - a variation of orthogonal
spectra - as a model for the stable homotopy category. We show through a zig-zag of Quillen equivalences that
unitary spectra with an action of the n-th unitary group models the homogeneous part of unitary calculus.
We address the issue of convergence of the Taylor tower by introducing weakly polynomial functors, which
are similar to weakly analytic functors of Goodwillie but more computationally tractable.

1. Introduction

Functor calculus was originally developed by Goodwillie [Goo90, Goo92, Goo03] to systematically study the
algebraic K-theory of spaces. The theory developed from the study of homotopy preserving endofunctors
on Top∗ to a more varied settings, such as, functors Top∗ −→ Sp, and Sp −→ Sp. Biedermann, Chorny and
Röndigs [BCR07] and Biedermann and Röndigs [BR14] provided a model category framework for Goodwillie
calculus, with Kuhn [Kuh07] developing the theory for abstract model categories. The theory has been
extended to the study of functors on suitable (∞, 1)-categories by Lurie [Lur].
As these developments of Goodwillie calculus were taking place, the general theory of a “calculus of functors”
was developing for functors with more structure. One example of this is the orthogonal calculus of Weiss
[Wei95]. This calculus gives a framework for the systematic study of functors indexed on real inner product
spaces. Key examples include BO(−) : V $−→ BO(V ) and BDiffb(M × −) : V $−→ BDiffb(M × V ) where
BDiffb(M × V ) is the classifying space of the group of bounded diffeomorphisms from M × V to itself, for
M a fixed manifold. Other examples of functor calculus include the additive functor calculus developed by
Johnson and McCarthy [JM99, JM03a, JM03b] and the manifold calculus of Goodwillie and Weiss [Wei99,
GW99, BdBW13].
Unitary calculus is the extension of orthogonal calculus to the study of functors from the category of complex
inner product space to topological spaces. The orthogonal calculus relies heavily on the real geometry of the
vector spaces, and hence the unitary calculus relies on the complex geometry involved. The subtle differences
in the geometry lead to subtle differences in the calculi.
The theory of orthogonal calculus has been developed extensively in the literature, for example in [Wei95,
MW09, MW09, BO13] and [Bar17]. Contrastingly the unitary version does not have solid foundations in
the literature despite being known to the experts. For example, in [Wei95, Example 10.3] Weiss calculates
the first derivative, of BU(−) : V $−→ BU(V ). These calculations have been taken further in [Aro02], where
Arone studies the calculus of the functor BU(−) in great detail, giving a closed formula for the derivatives
[Aro02, Theorems 2 and 3], and calculates homology approximations of the layers of the associated Taylor
tower [Aro02, §4]. Other examples where unitary calculus has been employed in the literature include
[Aro98, Aro01, ADL08] and [BE16].
Since orthogonal calculus is built from real vector spaces, and unitary calculus is built from complex vector
spaces, there should exist interesting comparisons between the calculi similar to the comparisons between
K-theory, KU, and real K-theory, KO induced by the complexification - realification adjunction between real
and complex inner product spaces. For these comparisons to be possible, a firm grasp of the unitary calculus
is essential.
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Moreover, the complex vector spaces considered in unitary calculus come with a complex conjugation, which
induces a C2 Top∗-enrichment on the category of input functors. This leads to the notion of “unitary calculus
with reality”, a version of unitary calculus which takes into account this C2-action. Furthermore, it should
then be possible to compare all three calculi allowing for the movement of computations between the calculi.
The comparisons should be similar to those between K-theory, real K-theory and the K-theory with reality
of Atiyah [Ati66]. It is precisely these questions which the author will address in future work, utilising the
solid foundations laid out in this paper.

2. Main Results and summary of Unitary Calculus

We give the main results of the paper and a summary of the calculus for easy reference.

The machinery. The orthogonal and unitary calculi are similar in that given a functor F of the appropriate
type, the calculus assigns a sequence of functors {TnF}n∈N to F . These functors are “polynomial” in
the sense that they assemble into a Taylor tower, the layers (differences between successive polynomial
approximations) of which are determined by spectra with an action of an appropriate group; an orthogonal
group for orthogonal calculus, and a unitary group for unitary calculus. For the unitary calculus case, we
have the following result, which is Theorem 8.1. Note that a functor F is n-homogeneous if it is both
n-polynomial and Tn−1F vanishes, see Definition 3.12.

Theorem A. Let F ∈ E0 be n-homogeneous for some n > 0. Then F is levelwise weakly equivalent to the
functor defined as

U $−→ Ω∞[(SnU ∧ Ψn
F )hU(n)]

where Ψn
F is a spectrum with an action of U(n) formed by the n-th derivative of F , and SnU is the one-point

compactification of Cn ⊗ U with the induced U(n)-action via the regular representation action on Cn.

For the most part, these functor calculi sit in quite strong analogy with Taylor’s Theorem from differential
calculus. We construct an n-th polynomial approximation functor Tn in Section 3, which sits an analogy
with the Taylor polynomial pn(x) from differential calculus. Moreover the n-th polynomial approximation of
an n-polynomial functor recovers the original functor, as is the case for differential calculus, see Proposition
3.7.
Given a functor F , the first derivative (see Definition 4.4) of F , F (1), has structure maps

S2 ∧ F (1)(U) −→ F (1)(U ⊕ V ),
and the second derivative has structure maps

S4 ∧ F (2)(U) −→ F (2)(U ⊕ V ).

In general, the n-th derivative has structure maps,
S2n ∧ F (n)(U) −→ F (n)(U ⊕ V ).

In Proposition 4.5 we show that adjoint structure maps give a method of calculating the n-th derivative from
the (n − 1)-st derivative.

Proposition B. There is a homotopy fibre sequence
F (n)(U) −→ F (n−1)(U) −→ Ω2(n−1)F (n−1)(U ⊕ C)

for all U ∈ Jn.

We further show in Proposition 4.7 that the derivative of a functor is a measure of how far a functor is from
being polynomial.

Proposition C. Let F ∈ E0. There is a homotopy fibre sequence
F (n+1)(U) −→ F (U) −→ τnF (U)

for all U ∈ J0.
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There is a map from the n-th polynomial approximation to the (n − 1)-st polynomial approximation, the
homotopy fibre of which is n-homogeneous, hence there is a homotopy fibre sequence

Ω∞[(SnU ∧ Ψn
F )hU(n)] −→ TnF (U) −→ Tn−1F (U).

These homotopy fibre sequences assemble into a Taylor tower approximating the functor F ,

...

rn+1

!!
TnF (U)

rn

!!

Ω∞[(SnU ∧ Ψn
F )hU(n)]""

Tn−1F (U)

rn−1!!

Ω∞[(S(n−1)U ∧ Ψn−1
F )hU(n−1)]""

...

r2

!!
T1F (U)

r1

!!

Ω∞[(SU ∧ Ψ1
F )hU(1)]""

F (U)

##

$$

%%

&& F (C∞).

Model categories for unitary calculus. In [BO13] Barnes and Oman rewrote the homotopy theory
originally developed by Weiss in [Wei95] into the language of model categories. This is advantageous as it
removed the need for “up to homotopy” statements and provided a clearer understanding of the equivariance
in the picture. In this paper we construct the theory of unitary calculus in terms of model categories. These
model categories will enable clear comparisons between the versions of the calculi.
We start with a construction of an n-polynomial model structure, which contains the homotopy theory of
n-polynomial functors. In particular weak equivalences in this model structure are detected by the n-th
polynomial approximation functor, and moreover the n-th polynomial approximation functor is a model for
a fibrant replacement functor in this model structure.
In particular we can construct a model structure, the n-homogeneous model structure, which contains
the homotopy theory of n-homogeneous functors. Here, the cofibrant-fibrant objects are precisely the n-
homogeneous functors and weak equivalences are detected by the n-th layer of their respective towers.
Using the characterisation of the n-homogeneous functors of Theorem A we further characterise the n-
homogeneous model structure, similarly to [BO13, Theorem 10.1]. We give an alternative description of
the weak equivalences as those detected by the homotopy fibre of the map TnF −→ Tn−1F rather than
equivalences detected by the derivative, and further characterise the acyclic fibrations and cofibrations.
These characterisations allow for the theory of localisations to be used computationally in the theory.
The n-homogeneous model structure is zig-zag Quillen equivalent to spectra with an action of U(n). The
zig-zag equivalence moves through an intermediate category, U(n)En. This category behaves like spectra,
but with structure maps S2n ∧ Xk −→ Xk+1, and is the natural home for the n-th derivative of a unitary
functor. It comes with a stable model structure, called the n-stable model structure, which is an alteration of
the stable model structure on spectra to take into account the unusual structure maps. The zig-zag Quillen
equivalence is proved in two steps.
The first, which appears as Theorem 6.8, demonstrates a Quillen equivalence between the intermediate
category and the category of unitary spectra with an action of U(n).

3



Theorem D. The adjoint pair

(αn)! : U(n)En
&& SpU [U(n)] : (αn)∗""

is a Quillen equivalence.

The second proves that the n-homogeneous model structure, n –homog– E0, is Quillen equivalent to the
intermediate category, U(n)En. This is Theorem 7.5 in the text.

Theorem E. The adjoint pair

resn
0 /U(n) : U(n)En

&&
n –homog– E0 : indn

0 ε∗""

is a Quillen equivalence.

Moreover, we exhibit a Quillen equivalence between unitary spectra with an action of U(n) and orthogonal
spectra with an action of U(n), via a Quillen equivalence between orthogonal and unitary spectra. We prove
this results as Theorem 6.4 and Corollary 6.5.

Theorem F. The adjoint pairs

r! : SpU && SpO : r∗"" and r! : SpU [U(n)] && SpO [U(n)] : r∗""

are Quillen equivalences.

This gives a complete picture of the model categories for unitary calculus and their relations.

n –homog– E0
indn

0 ε∗
&& U(n)En

resn
0 /U(n)

"" (αn)! && SpU [U(n)]
(αn)∗

""

r! && SpO [U(n)].
r∗

""

The added complexity in dealing with complex inner product spaces results in an extra adjunction than in
the orthogonal case [BO13, Proposition 8.3, Theorem 10.1 ].

Convergence. One gap in the literature with regards to both orthogonal and unitary calculus is the notion
of agreement and analyticity. These notions are central to convergence and play an important role in
Goodwillie calculus [Goo92, Goo03]. We define the notion of weak polynomiality, Definition 9.11, in this
context and show that when a functor is weakly polynomial its Taylor tower converges, that is, weakly
polynomial functors are weakly analytic and they allow for more straightforward computations.
We generalise a result of Barnes and Eldred [BE16, Theorem 4.1] to the setting of weak polynomial functors.
This is provided as Theorem 9.14 in the text.

Theorem G. Let E, F ∈ E0 are such that there is a homotopy fibre sequence
E(U) −→ F (U) −→ F (U ⊕ V )

for U, V ∈ J. Then

(1) If F is weakly polynomial, then E is weakly polynomial; and
(2) If E is weakly polynomial and F (U) is 1-connected whenever dim(U) ≥ ρ, then F is weakly polyno-

mial.

With this Theorem we prove that the functor BU(−) : V $−→ BU(V ) converges to BU(V ) for V with
dim(V ) ≥ 1.
In Theorem 9.17 we show that any representable functor is weakly polynomial, and hence its associated
Taylor tower converges.

Theorem H. Representable functors are weakly polynomial, that is, for all V ∈ J, the functor J(V, −) is
weakly polynomial.
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Organisation. In Section 3 we define polynomial functors, construct the polynomial approximation functor
and show how this data assembles into a Taylor tower.
Section 4 concerns the derivatives of unitary functors. We also construct the n-homogeneous model struc-
ture. An initial step toward the zig-zag Quillen equivalence is complete in Section 5 where we define the
intermediate category for unitary calculus and prove a Quillen equivalence between the intermediate category
and the n-homogeneous model structure.
We give a description of homotopy theory of the derivatives through a Quillen equivalence between the
intermediate category and spectra with an action of U(n) in Section 6. In Section 7 we prove that the
differentiation functor is a right Quillen functor as part of a Quillen equivalence.
In Section 8 we give a classification of n-homogeneous functors in terms of spectra with an action of U(n).
We also give further characterisations of the n-homogeneous weak equivalences, acyclic fibrations and cofi-
brations. This section ends with a short discussion on the complete Taylor tower.
The final section, Section 9, is an initial step toward understanding convergence of the Taylor tower in
unitary calculus.

Conventions and Notation. Throughout this paper the category of based compactly generated weak
Hausdorff topological spaces will be denoted Top∗. We endow Top∗ with the Quillen model structure, this
is cofibrantly generated with the set of generating cofibrations denoted I and generating acyclic cofibrations
J .
In this paper we make strong use of the theory of model categories and Bousfield localisations. These provide
us with the tools to make precise the “up to homotopy” results of Weiss. We refer to unfamiliar reader to
[DS95, Hov99] and [Hir03] for the details of the theory.

Acknowledgments. This work forms part of the authors Ph.D. project under the supervision of David
Barnes. The author wishes to thank him for thoughtful and enthusiastic discussions. The author also thanks
Greg Arone for helpful comments.

3. Polynomial Functors and the Taylor Tower

As with differential calculus, the building blocks of functor calculus are the polynomial functors. In particular
the polynomial approximations are the pieces that fit together into the Taylor tower, and in some cases
converge to the original input functor. In this section we give the constructions of polynomial functors
and polynomial approximations. We highlight the strong analogy between unitary calculus and differential
calculus and how this machinery produces a Taylor tower.

3.1. The input functors. We start with a discussion on the input functors. Let J be the category of
finite-dimensional complex inner product subspaces of C∞, with morphism the complex linear isometries.
This category is Top∗-enriched, the space of morphisms J(U, V ) is the Stiefel manifold of dim(U)-frames in
V . Let J0 be the category with the same objects as J and morphism space given by J0(U, V ) = J(U, V )+.
We denote the category of Top∗-enriched functors from J0 to Top∗ by E0. This is the input category for
unitary calculus.
Examples of such functors are abound. These include;

(1) BU(−) : V $−→ BU(V ), where BU(V ) is the classifying space of the unitary group associated to V ;
(2) BTOP(−) : V $−→ BTOP(V ), where BTOP(V ) is the classifying space of the group of homeomor-

phisms on V ; and
(3) BG(S(−)) : V $−→ BG(SV ), where BG(SV ) is the classifying space of the group-like monoid of

homotopy equivalences between SV and itself.

These examples all have orthogonal counterparts, see [Wei95]. This indicates a strong relationship between
the orthogonal and unitary calculi, induced by the strong relationship between functors of this type and
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their orthogonal versions. A deeper understanding of the unitary calculus framework will lead to a better
understanding of this relationship.
The category E0 is a diagram category in the sense of Mandell, May, Schwede and Shipley [MMSS01] and
hence comes equipped with a projective model structure, where the weak equivalences and fibrations are
defined to be the levelwise weak homotopy equivalences and levelwise Serre fibrations respectively. This a
cellular proper topological model category with generating (acyclic) cofibrations of the form J0(V, −)∧ i with
i a generating (acyclic) cofibration of Top∗, see [MMSS01, Theorem 6.5].

3.2. Polynomial functors. In differential calculus, polynomial functions are used to approximate a given
function. These polynomial functions may be used to gain insight about the original function and can
be combined in such a way to give a complete approximation of the function. Polynomial functors are a
categorification of this idea. We begin with the definition.

Definition 3.1. A functor F in E0 is polynomial of degree less than or equal to n or equivalently n-polynomial
if the canonical map

ρ : F (V ) −→ holim
0 ∕=U⊆Cn+1

F (V ⊕ U) =: τnF (V )

is a weak homotopy equivalences of spaces.

The poset of non-zero complex subspaces of Cn+1 is a category object in spaces, specifically, a category
internal to Top∗. The space of objects is topologised as a disjoint union of complex Grassmannian manifolds,
and the space of morphisms topologised as the space of complex flag manifolds of length two (or equivalently
the space of 2-simplices in the nerve of the poset). As such, the homotopy limit of Definition 3.1 must
take into account the topology of the poset. The details may be found in [Wei95, Wei98] for the orthogonal
case. The unitary case follows similar. Hollender and Vogt [HV92] and Lind [Lin09] give constructions for
homotopy limits and colimits indexed on categories internal to spaces.

Remark 3.2. In comparison to Goodwillie calculus, F : C −→ C (where C is some appropriate (∞, 1)-
category, for instance C = Top∗) is 1-excisive (linear) it if takes (homotopy) pushouts to (homotopy) pull-
backs, [AC19, Definition 1.2]. In this situation the homotopy limit is indexed on the poset of subsets of the
set of two elements, [AC19, Definition 1.1]. Our situation is significantly more complicated due to the topol-
ogy involved in the indexing poset {0 ∕= U ⊆ C2} where there is an CP 1 (∼= S2) worth of one-dimensional
complex subspaces. More generally the higher dimensional cubes of Goodwillie translate to a disjoint union
of Grassmannian manifolds in our setting. Note this is also true for orthogonal calculus, where there is an
RP 1 ∼= S1 worth of one-dimensional subspaces. Figure 1 illustrates the poset for linear functors in orthogonal
calculus (on the left) and for Goodwillie calculus (on the right).

•
R2

1-dim subspaces

{1}

{1, 2}{2}

Figure 1. Poset schematics for linear functors in orthogonal and Goodwillie calculus.

Example 3.3. A functor F is polynomial of degree zero if and only if F is homotopically constant. Indeed,
if F is 0-polynomial then, F (V ) ≃ F (U ⊕ C) for all U ∈ J0. Iterating this, we see that if F is 0-polynomial
then, F (U) ≃ F (U ⊕V ) for all U, V ∈ J0. For the converse, if F is homotopically constant, F (U) ≃ F (U ⊕C)
and hence the condition of Definition 3.1 is satisfied.
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3.3. Polynomial approximation. If E is n-polynomial then the canonical map ρ : E −→ τnE is a levelwise
weak equivalence, and hence all the morphisms in the diagram

E
ρ && τnE

ρ && · · · ρ && τk
nE

ρ && · · ·

are levelwise weak equivalences. Moreover by construction, the k-th iterate τk
n of the functor τn is determined

by its behaviour on vector spaces of dimension at least k, since
τk

nF (0) = holim
0 ∕=U1,··· ,Uk⊆Cn+1

F (U1 ⊕ · · · Uk).

Polynomial functors are said to be “determined by their behaviour at infinity”. This property motivates the
following definition.
Definition 3.4. Define the n-th polynomial approximation, TnF , of a unitary functor F to be the homotopy
colimit of the filtered diagram

F
ρ && τnF

ρ && τ2
nF

ρ && τ3
nF

ρ && · · · .

Remark 3.5. Equivalently we could have defined TnF to be the homotopy colimit of the filtered diagram

F
ρ && τnF

τn(ρ) && τ2
nF

τ2
n(ρ)
&& τ3

nF
τ3

n(ρ)
&& · · · .

The direct systems are weakly equivalent and hence define isomorphic homotopy colimits.
Example 3.6. The zeroth polynomial approximation of a unitary functor F is F (C∞). Indeed, it is clear
that

T0F (V ) = hocolimk τk
0 F (V ) = hocolimk F (V ⊕ Ck) ≃ F (C∞).

In particular, we see that the zeroth polynomial approximation of the sphere functor S : V $−→ SV is S∞ ≃ ∗,
the zeroth polynomial approximation of BU(−) is the space BU, and the zeroth polynomial approximation
of U(−) : V $−→ U(V ) is the infinite unitary group U.
The Taylor polynomials pn(x) of a function f : R −→ R are in some ways the closest polynomial functions
to f . In particular if f is n-polynomial, then f(x) = pn(x). This result has a categorification in that if F is
n-polynomial then F ≃ TnF .
Proposition 3.7. If F is n-polynomial, then the canonical map η : F −→ TnF is a levelwise weak homotopy
equivalence.

Proof. Since F is n-polynomial, ρ : F −→ τnF is a levelwise weak equivalence. Since finite homotopy limits
(particularly those defining τnF ) commute, τnF is n-polynomial when F is. It follows by the properties of
homotopy colimits that η : F −→ TnF is a levelwise weak equivalence. □

The n-th polynomial approximation is the closest n-polynomial functor to F , that is, if ν : F −→ E is a map
in E0, and E is n-polynomial, then ν factors (up to homotopy) through the map η : F −→ TnF . Possibly
the most straightforward way to see that TnF is the closest n-polynomial functor to F is the construction
of a model structure of which TnF is a model for the fibrant replacement of F . The construction of such
a model structure is similar to that of Barnes and Oman [BO13, Proposition 6.5, Proposition 6.6] in the
orthogonal calculus case. We start by showing that TnF is always n-polynomial.
Lemma 3.8. If F ∈ E0, then TnF is n-polynomial.

Proof. Since finite homotopy limits commute with filtered homotopy colimits, It suffices to show that the
vertical arrows in the diagram

F (V ) ρ &&

ρ

!!

τnF (V ) ρ &&

ρ

!!

τ2
nF (V ) ρ &&

ρ

!!

. . .

τnF (V )
τnρ
&& τ2

nF (V )
τ2

nρ

&& τ3
nF (V )

τ3
nρ

&& . . .
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induce a weak homotopy equivalence, r : TnF −→ TnτnF , between the homotopy colimits of the rows. For
each k ≥ 0, we have a commutative diagram,

τk
nF (V ) &&

ρ

!!

TnF (V )

r

!!
τk+1

n F (V ) && TnτnF (V ).

With care, the erratum [Wei98] may be extended to the unitary case, and results in a factorisation of the
above diagram,

τk
nF (V ) &&

ρ

!!

X &&

!!

TnF (V )

r

!!
τk+1

n F (V ) && Y && TnτnF (V ).

where X → Y is a weak equivalence. It follows that r is a levelwise weak equivalence. □

We now give the n-polynomial model structure.

Proposition 3.9. There is a cellular proper topological model structure on E0 where a map f : E −→ F is a
weak equivalence if Tnf : TnE −→ TnF is a levelwise weak equivalence, the cofibrations are the cofibrations
of the projective model structure and the fibrations are levelwise fibrations such that

E
f &&

ηX

!!

F

ηY

!!
TnE

Tnf
&& TnF

is a homotopy pullback square. The fibrant objects of this model structure are precisely the n-polynomial
functors and Tn is a fibrant replacement functor. We call this the n-polynomial model structure and it is
denoted n –poly– E0.

Proof. The Bousfield-Friedlander localisation [BF78, Bou01] of the projective model structure at the end-
ofunctor Tn : E0 −→ E0 yields the stated model structure. Note however, that the Bousfield-Friedlander
localisation only results in a proper topological model structure. An alternative description as the left
Bousfield localisation of the projective model structure at the set of maps

Sn = {Sγn+1(V, −)+ −→ J0(V, −) : V ∈ J0},

yields the cellular requirement. These two descriptions agree since both localisation techniques do not alter
the cofibrations and a Tn-equivalence in the sense of [BF78, Bou01] is precisely a Sn-local equivalence in the
sense of [Hir03, Definition 3.1.4]. □

Polynomial functors share many properties with polynomial functions. One such property is that an n-
polynomial functor is (n + 1)-polynomial.

Proposition 3.10. If a functor F is n-polynomial, then it is (n + 1)-polynomial.

Proof. This is the unitary version of [Wei95, Proposition 5.4]. The properties of real vector bundles used by
Weiss transfer to complex vector bundles, and hence so does the result. □

We will return to further properties of n-polynomial functors once we have introduced the notion of the
derivative of a functor.
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3.4. The Taylor Tower. With the theory of polynomial functors and polynomial approximations in place,
we can construct the Taylor tower approximating F ∈ E0. This tower is a categorification of the Taylor
series associated to a function f : R −→ R. The differential Taylor’s series is a sequence of polynomial
approximations which converges to the function f . In this case, we get a tower of polynomial approximations,
the limit of which - in nice cases - recovers the input functor. We return to the question of convergence in
Section 9.
There is an inclusion functor from the poset of non-zero subspaces of Cn−1 to the poset of non-zero subspaces
of Cn. For a functor F ∈ E0, precomposition with the inclusion defines a map

τnF (V ) = holim
0 ∕=U⊆Cn

F (U ⊕ V ) −→ holim
0 ∕=U⊆Cn−1

F (U ⊕ V ) = τn−1F (V ).

Iteration constructs a map τk
nF −→ τk

n−1F . The construction is coherent in that the diagram

holim
0 ∕=U1,··· ,Uk⊆Cn

F (U1 ⊕ · · · ⊕ Uk ⊕ V ) &&

ρ

!!

holim
0 ∕=U1,··· ,Uk⊆Cn−1

F (U1 ⊕ · · · ⊕ Uk ⊕ V )

ρ

!!
holim

0 ∕=U1,··· ,Uk+1⊆Cn
F (U1 ⊕ · · · ⊕ Uk+1 ⊕ V ) && holim

0 ∕=U1,··· ,Uk+1⊆Cn−1
F (U1 ⊕ · · · ⊕ Uk+1 ⊕ V )

commutes. As such, we get a map of homotopy colimits, rn : TnF −→ Tn−1F . Moreover rnηn = ηn−1,
where ηn : F −→ TnF . The result is a Taylor tower of the following form.

F

'' !! (( ))
· · · && Tn+1F

rn+1
&& TnF

rn

&& · · ·
r2

&& T1F
r1

&& F (C∞)

3.5. Homogeneous functors. The n-th layer of the Taylor tower is given by the homotopy fiber of

rn : TnF −→ Tn−1F.

This functor is both n-polynomial and its (n − 1)-st polynomial approximation is trivial.

Example 3.11. The homotopy fibre DnE = hofibre[TnE −→ Tn−1E] is n-polynomial and Tn−1DnE is
trivial. First note that by the Five Lemma the homotopy fibre of a map between n-polynomial objects is
n-polynomial. Since an (n − 1)-polynomial object is n-polynomial and the homotopy fibre of a map between
n-polynomial objects is n-polynomial, DnE is n-polynomial. Moreover, it is n-reduced since

Tn−1DnE = Tn−1 hofibre[TnE −→ Tn−1E] ≃ hofibre[Tn−1TnE −→ T 2
n−1E]

≃ hofibre[TnTn−1E −→ Tn−1E] ≃ hofibre[Tn−1E −→ Tn−1E] ≃ ∗.

Functors with these properties are a special subclass of n-polynomial functors, called n-homogeneous functors.
One should think of these homogeneous functors as monomial functions, representing the terms in the Taylor
series from differential calculus.

Definition 3.12. A unitary functor F is said to be n-homogeneous or equivalently homogeneous of degree
less than or equal n if F is n-polynomial and Tn−1F is levelwise weakly contractible. We will refer to a
functor with trivial (n − 1)-st polynomial approximation as being n-reduced.

4. The derivative of a functor

An important concept in any theory of calculus is that of derivative. In the differential setting, the derivatives
are used in calculating the terms of the polynomial approximations. The same remains true in the unitary
calculus setting, where the derivatives (or more precisely the spectrum formed by the derivatives) are used
to characterise the layers of the Taylor tower.
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The construction of the derivative is completely analogous to that of Weiss [Wei95] for the derivative of an
orthogonal functor. In particular, the n-th derivative of a unitary functor determines a unitary spectrum
with an action of U(n).

4.1. Derivatives. From the derivatives of a unitary functor we can construct a unitary spectrum, and hence
an orthogonal spectrum. We first define the derivative of a functor, and highlight the justification for this
construction being called a derivative, specifically, homotopically constant functors have trivial derivative,
and the (n + 1)-st derivative of an n-polynomial functor is trivial. The starting point is the construction of
“higher” versions of J1, specifically, categories Jn for all n. Sitting over the space of linear isometries J(U, V )
is the n-th complement vector bundle, with total space

γn(U, V ) = {(f, x) : f ∈ J(U, V ), x ∈ Cn ⊗ f(U)⊥}
where we have identified the cokernel of f with f(U)⊥, the orthogonal complement of f(U) in V .
The vector bundle γn(U, V ) comes with a sphere bundle Sγn(U, V ) given by the one-point compactification of
the fibres. In [Wei95, Theorem 4.1, Proposition 4.2] Weiss constructs a homeomorphism between the sphere
bundle and a particular homotopy colimit. To prove the equivalence between the intermediate category and
the n-homogeneous model structure we need a similar result, which we give here. For the proof, we will
denote by C the poset of non-zero subspaces of Cn+1.

Theorem 4.1. There is a natural homeomorphism,
hocolim

0 ∕=U⊂Cn+1
J(U ⊕ V, W ) −→ Sγn+1(V, W )

for every V, W ∈ J

Proof. The goal is to construct a homeomorphism

Ψ : Jn+1(V, W ) \ J(V, W )+ && (0, ∞) × hocolimU J(U ⊕ V, W ),

and use the identification, Jn+1(V, W ) \ J(V, W )+ ∼= (0, ∞) × Sγn+1(V, W ), to yield a homeomorphism
hocolim

0 ∕=U⊂Cn+1
J(U ⊕ V, W ) −→ Sγn+1(V, W ).

Take (f, x) ∈ Jn+1(V, W ) \ J(V, W )+, that is f ∈ J(V, W ) and 0 ∕= x ∈ (n + 1) · (W − f(V )). Since W − f(V )
and Cn+1 are finite dimensional inner product spaces we have

Cn+1 ⊗ (W − f(V )) ∼= (Cn+1)∗ ⊗ (W − f(V )) = Hom(Cn+1,C) ⊗ (W − f(V ))
∼= Hom(Cn+1, W − f(V )),

where (Cn+1)∗ is the dual space of Cn+1.
Thus we can think of x ∈ Hom(Cn+1, W − f(V )). Moreover, x has an adjoint

x∗ : W − f(V ) −→ Cn+1.

It follows that x∗x : Cn+1 −→ Cn+1 s a self adjoint map, hence normal. That is (x∗x)∗(x∗x) = (x∗x)(x∗x)∗.
By the Spectral Theorem, see for instance Friedberg, Insel, and Spence [FIS89, Theorem 6.24], Cn+1 can be
written as the direct sum of the eigenspaces corresponding to the distinct eigenvalues of x∗x, that is,

Cn+1 = ker(x∗x) ⊕ E(λ0) ⊕ · · · ⊕ E(λk)
where 0 < λ0 < λ1 < · · · < λk are the eigenvalues, and

E(λi) = {r ∈ Cn+1 : (x∗x − λi id)(r) = 0}.

is the eigenspaces corresponding the eigenvalue λi. Note that all the eigenvalues are real by [FIS89, Lemma
pg.329], and by the Spectral Theorem [FIS89, Theorem 6.24] we really mean the eigenspace, and not the
generalised eigenspace.
Hence, given (f, x) ∈ Jn+1(V, W ) \ J(V, W )+ as above, define
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1): a functor G : [k] −→ C given by
r $−→ E(λ0) ⊕ · · · ⊕ E(λk−r)

2): a linear isometry z ∈ J(G(0) ⊕ V, W ) given by

z =
!

f on V

λ
−1/2
i · x on E(λi)

Note that z is clearly an isometry on V , and z is also an isometry on each E(λi). Indeed, let
v, w ∈ E(λi). Then

〈z(v), z(w)〉 = 〈(λi)−1/2x(v), (λi)−1/2x(w)〉
= (λi)−1〈x(v), x(w)〉
= (λi)−1〈v, x∗x(w)〉
= (λi)−1〈v, λiw〉
= 〈v, w〉.

3): a point p ∈ ∆k given by the barycentric coordinates
λ−1

k · (λ0, λ1 − λ0, λ2 − λ1, . . . , λk − λk−1)
4): t = λk > 0.

By construction (see [BK72, §VIII.2.6]), hocolimU J(U ⊕V, W ) (or more specifically, the geometric realisation
of the bar construction) is a quotient of

"

k≥0

"

G:[k]−→C

J(G(0) ⊕ V, W ) × ∆k

under the identifications involving the respective face and degeneracy maps for
"

G:[k]−→C

J(G(0) ⊕ V, W )

and ∆k respectively, again, see [BK72, §VIII.2.6] for the details. It follows that the triple (G, z, p) defines a
point in hocolimU J(U ⊕ V, W ).
Define a map

Ψ : Jn+1(V, W ) \ J(V, W )+ −→ (0, ∞) × hocolimU J(U ⊕ V, W )
(f, x) $−→ (t, G, z, p)

This map is well defined since (G, z, p) defines a point in hocolimU J(U ⊕ V, W ).
Ψ is injective: Let (f, x), (g, y) ∈ Jn+1(V, W ) \ J(V, W )+ be such that

Ψ(f, x) = (t, G, z, p) = (t′, G′, z′, p′) = Ψ(g, x).

Since t = t′, x∗x and y∗y must have the same largest eigenvalue, and p = p′ together with x∗x and y∗y
having the same largest eigenvalue implies that x∗x and y∗y have the same set of non-zero eigenvalues
λ0 < λ1 < · · · < λk. Combining this with the fact that G = G′, we have that x∗x and y∗y must have the
same eigenspaces. Moreover, since z = z′, z|V = Z ′|V , and hence, f = g. Moreover z|G(0) = z′|G(0). It
follows that z|E(λi) = z′|E(λi), for every i, and by definition, we see that x = y and hence that (f, x) = (g, y)
as required.
Ψ is onto: Here there are two cases to consider. If k ≥ n + 1 we are in the degenerate case. Otherwise pick
t > 0 and let λk = t. Now choose a point in the interior of ∆k

+. If we were to choose a point in the exterior
of ∆k

+, we would be choosing a point in a face of ∆k
+, and faces are given by ∆k−1

+ and smaller. Thus choice
of a point determines

λ0 < λ1 < · · · < λk ∈ C.

Choose orthogonal eigenspaces for each λi, and define G : [k] −→ ∆ as above, using these chosen eigenspaces.
11



Next choose any z ∈ J(G(0) ⊕ V, W ). Then define f = z|V and x = (λi)1/2z|E(λi) on E(λi). Then
x : Cn+1 −→ W − f(V ), and Ψ(f, x) = (t, G, z, p) as required.
Ψ is continuous: This is clear from the construction of Ψ and from the fact that polynomials are continuous.
Note that the functor G depends continuously on (f, x) as the eigenvalues and hence eigenspaces depend
continuously on x.
Ψ is a homeomorphism: The reverse of the construction used to show Ψ is onto, gives the inverse to Ψ. For
the same reasons as Ψ is continuous, this inverse is continuous.
We thus have

Ψ : Jn+1(V, W ) \ J(V, W )+
∼=−−→ (0, ∞) × hocolimU J(U ⊕ V, W )

Notice that
Jn+1(V, W ) \ J(V, W )+ ∼= (0, ∞) × Sγn+1(V, W ),

and hence
(0, ∞) × hocolimU J(U ⊕ V, W ) ∼= (0, ∞) × Sγn+1(V, W ).

It follows that
hocolimU J(U ⊕ V, W ) ∼= Sγn+1(V, W ).

□

Theorem 4.1 is arguably the most important result in unitary calculus. It firstly allows us to convert the
notion of n-polynomial into geometric terms, as in [Wei95, Proposition 5.2], and secondly it allows us to
argue that the sphere bundle Sγn(U, V )+ is cofibrant in E0.

Remark 4.2. Although Theorem 4.1 looks similar to [Wei95, Proposition 4.2] there are subtle differences
from the differences between complex and real linear algebra. One such difference is the results used to
exhibit real eigenvalues.

Definition 4.3. The n-th jet category Jn is the category with the same objects as J and with morphism
space Jn(U, V ) the Thom space, Th(γn(U, V )), of the vector bundle γn(U, V ).

The inclusion of Cm into Cn onto the first m-components induces a functor in
m : Jm −→ Jn. Precomposition

with such determines a functor which restricts from En to Em.

Definition 4.4. Define the restriction functor resn
m : En −→ Em by precomposition with in

m, and define the
induction functor indn

m : Em −→ En to be the right Kan extension along in
m. Given a functor F ∈ E0 we will

call indn
0 F its n-th derivative and denote this by F (n).

Using the properties of the adjunction

resn
m : En

&&
Em : indn

m""

and the Yoneda Lemma we see that indn
m F (U) ∼= Em(Jn(V, −), F ). For the purposes of calculations there is

a more useful description.

Proposition 4.5 (Proposition B). There is a homotopy fibre sequence
resn+1

n indn+1
n F (U) −→ F (U) −→ Ω2nF (U ⊕ C)

for all F ∈ En and all U ∈ J0.

Proof. Due to the strong similarities between complex and real linear algebra, [Wei95, Proposition 1.2]
extends to the unitary setting. The result is a cofibre sequence

Jn(U ⊕ C, ) − ∧S2n −→ Jn(U, −) −→ Jn+1(U, −)
where we have identified the one-point compactification of Cn with the 2n-sphere. Applying the corepre-
sentable functor En(−, F ) yields a homotopy fibre sequence

En(Jn+1(U, −), F ) −→ En(Jn(U, −), F ) −→ En(Jn(U ⊕ C, −) ∧ S2n, F ).
12



Combining this with the definition of the induction functor, the Yoneda Lemma and (Σ, Ω)-adjunction yields
the result. □

Right Kan extensions can be constructed iteratively, particularly,
indn

0 = indn
n−1 indn−1

n−2 · · · ind1
0

hence Proposition 4.5 gives a means to iteratively calculate the derivatives.
The category E1 is equivalent to the category of spectra, see Sections 5 and 6, hence the first derivative of a
functor may be given in terms of a spectrum.

Example 4.6. The first derivative of BU(−) is the shifted unitary sphere spectrum S1 with trivial U(1)
action. The homotopy fibre sequence identifying the derivative, Proposition 4.5, is precisely the homotopy
fibre sequence

ΣSV −→ BU(V ) −→ BU(V ⊕ C).
Hence,

BU(1)(V ) ≃ S2 dim V +1,

and thus
BU(1) ≃ S1.

In differential calculus one may use the derivative of a function to determine how far a function is from being
polynomial. In particular, the (n + 1)-st derivative of an polynomial function of degree n is zero. In functor
calculus, it is also possible to use the derivative to measure the failure of a functor from being polynomial.

Proposition 4.7 (Proposition C). Let F ∈ E0. There is a homotopy fibre sequence

F (n+1)(U) −→ F (U) ρ−−→ τnF (U)
for all U ∈ J0.

Proof. This is the unitary version of [Wei95, Proposition 5.3]. The proof works in the exact same fashion.
For an alternative perspective - which also transfers easily to the unitary case - see [BO13, Lemma 5.5]. □

As a corollary we see that the (n + 1)-st derivative of an n-polynomial functor is trivial.

Corollary 4.8. If F is n-polynomial, then F (n+1) is trivial.

Remark 4.9. The condition of Corollary 4.8 is necessary for a functor F to be n-polynomial, but not
sufficient. Consider the functor F ∈ E0 defined by

F (U) =
!

S0 whenever dim U > 5
∗ otherwise.

and for f ∈ J0(U, V ), F (f) is the identity. The first derivative of E at U is given by
E(1)() = hofibre[E(U) −→ E(U ⊕ C)]

which is always contractible. So the first derivative of E vanishes. However for f : C5 −→ C6, E(f) is not a
weak homotopy equivalence as ∗ ∕≃ S0, hence E is not 0-polynomial.

A useful result for showing an object is n-polynomial is the following result relating n-polynomial objects
and their homotopy fibre. The proof of which is an application of the Five Lemma.

Lemma 4.10. Let E ∈ E0 be an n-polynomial, g : E −→ F a morphism in E0 and suppose that the
(n + 1)-st derivative of F is levelwise weakly contractible. Then the functor given by

U $−→ hofibre[E(U) gV−−→ F (U)]
is an n-polynomial.

We achieve the following corollary.
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Corollary 4.11. Let F ∈ E0. If F (n+1) is trivial, then the functor given by U $−→ ΩF (U) is n-polynomial.

An important example from orthogonal calculus [Wei95, Example 5.7] is that the functor given by

V $−→ Ω∞[(SRn⊗V ∧ Θ)hO(n)]
is n-polynomial, where Θ is a spectrum with an action of O(n). This result hold true for unitary calculus,
with a completely analogous proof.

Example 4.12. If Θ is a spectrum with an action of U(n), then the functor F given by

U $−→ Ω∞[(SCn⊗U ∧ Θ)hU(n)]
is n-polynomial.

Proof. Since F has a delooping, by Corollary 4.11, it suffices to show that F n+1 is levelwise weakly con-
tractible. From Proposition 4.5, the (n + 1)-th derivative is the homotopy fibre of

F (n)(U) −→ Ω2nF (n)(U ⊕ C).
Iterating this process gives a sequence of derivatives in E0

F (n) −→ F (n−1) −→ · · · −→ F (i) −→ · · · −→ F (1) −→ F.

We follow Weiss [Wei95], and aim to identify this sequence with a sequence
F [n] −→ F [n − 1] −→ · · · −→ F [i] −→ · · · −→ F [1] −→ F,

where F [i](U) = Ω∞[(SnU ∧ Θ)hU(n−i)], and U(n − i) fixes the first i coordinates.
Each F [i] comes with canonical inclusion maps

SiU ∧ Ω∞[(SnV ∧ Θ)hU(n−i)] ↩→ Ω∞[SiU ∧ (SnV ∧ Θ)hU(n−i)]
= Ω∞[(SiU ∧ SnV ∧ Θ)hU(n−i)]
↩→ Ω∞[(SnU ∧ SnV ∧ Θ)hU(n−i)]

→ Ω∞[(Sn(U⊕V ) ∧ Θ)hU(n−i)]

where the equality holds since U(n − i) fixes the first i-coordinates, hence fixes Ci. This series of inclusions
defines a structure map σ : SiU ∧ F [i](V ) −→ F [i](U ⊕ V ), hence F [i] ∈ Ei.
Moreover F [n] is an nΩ-spectrum (see Definition 5.5) in En, compare [Wei95, Example 2.3]. We show that
F [i + 1] is levelwise weakly equivalent to F [i](1), and since F [n] is an nΩ-spectrum, F [n](1) will vanish, and
hence so too will the (n + 1)-st derivative of F . We inductively calculate F [i](1).

F [i](1)(U) = hofibre
#
F [i](U) −→ Ω2iF [i](C ⊕ U)

$

= hofibre
%
Ω∞[(SnU ∧ Θ)hU(n−i)] −→ Ω2iΩ∞[(Sn(C⊕U) ∧ Θ)hU(n−i)]

&

= Ω∞ hofibre
%
(SnU ∧ Θ)hU(n−i) −→ Ω2i(Sn(C⊕U) ∧ Θ)hU(n−i)

&

≃ Ω∞ hofibre
#
(SnU ∧ Θ)hU(n−i) −→ Ω2i(S2n ∧ SnU ∧ Θ)hU(n−i)

$

≃ Ω∞ hofibre
%
(SnU ∧ Θ)hU(n−i) −→ Ω2i(S2i ∧ S2(n−i) ∧ SnU ∧ Θ)hU(n−i)

&

≃ Ω∞ hofibre
%
(SnU ∧ Θ)hU(n−i) −→ Ω2iΣ2i(S2(n−i) ∧ SnU ∧ Θ)hU(n−i)

&

≃ Ω∞ hofibre
%
(SnU ∧ Θ)hU(n−i) −→ (S2(n−i) ∧ SnU ∧ Θ)hU(n−i)

&

.

Now consider the map, SnU ∧ Θ −→ S2(n−i) ∧ SnU ∧ Θ. This map is

S0 ∧ SnU ∧ Θ ι∧id ∧ id−−−−−→ S2(n−i) ∧ SnU ∧ Θ,
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where ι : S0 −→ S2(n−i) is the canonical inclusion. The map ι has homotopy fibre S2(n−i)−1. Hence ι∧id ∧ id
has homotopy fibre S2(n−i)−1 ∧ SnU ∧ Θ, where U(n − i) acts on S2(n−i)−1 by identifying S2(n−i)−1 with the
unit sphere S(Cn−i) of Cn−i. Taking homotopy orbits preserves short exact sequences, so the map

(SnU ∧ Θ)hU(n−i) −→ (S2(n−i) ∧ SnU ∧ Θ)hU(n−i)

has homotopy fibre,
(S2(n−i)−1 ∧ SnU ∧ Θ)hU(n−i).

It follows that
F [i](1)(U) ≃ Ω∞[(S2(n−i)−1 ∧ SnU ∧ Θ)hU(n−i)] ≃ Ω∞[(SnU ∧ Θ)hU(n−i−1)] = F [i + 1](U).

The last weak equivalence follows since we may identify S2n−1 with U(n)/U(n − 1), and
(S(Cn)+ ∧ X)hU(n) = EU(n)+ ∧U(n) (U(n)/U(n − 1)+ ∧ X) = EU(n)+ ∧U(n−1) X

≃ EU(n − 1)+ ∧U(n−1) X ≃ XhU(n−1).

□

4.2. The n-homogeneous model structure. The n-th derivative allows for us to equip E0 with a model
structure which captures the homotopy theory of both polynomial and homogeneous functors of degree
less than or equal n. This model structure is a right Bousfield localisation (or a cellularization) of the
n-polynomial model structure.

Proposition 4.13. There is a topological model structure on E0 where the weak equivalences are those maps
f such that indn

0 Tnf is a weak equivalence in E0, the fibrations are the fibrations of the n-polynomial model
structure and the cofibrations are those maps with the left lifting property with respect to the acyclic fibra-
tions. The fibrant objects are n-polynomial and the cofibrant-fibrant objects are the projectively cofibrant
n-homogeneous functors.

Proof. Right Bousfield localising n –poly– E0 at the set of objects,
Kn = {Th(γn(U, −)) : U ∈ J},

we achieve the stated model structure. □

We call this the n-homogeneous model structure and denote this model structure by n –homog– E0. This
is the unitary version of the model structure given by Barnes and Oman [BO13, Proposition 6.9]. We
further characterise the n-homogeneous model structure in Section 8 once we have a classification of the
n-homogeneous functors.

5. An intermediate category

In [Wei95], Weiss gives a (zig-zag) equivalence up to homotopy between the categories of n-homogeneous
functors and orthogonal spectra with an action of O(n). Barnes and Oman give a more concrete description
of this equivalence in [BO13] via the use of model categories. They construct an intermediate model category
which is the natural home for the n-th derivatives of orthogonal functors. They proceed to show that the
intermediate category is both Quillen equivalent to the category of orthogonal spectra with an action of O(n),
and the n-homogeneous model structure. Their use of model structures formalises the “up to homotopy”
approach of Weiss.
We start by giving the definition of the unitary intermediate category, U(n)En, and extending the restriction-
induction adjunction into an adjunction between these intermediate categories. From this we construct
Quillen equivalences analogous to those constructed by Barnes and Oman.
The category Jn is U(n) Top∗-enriched via the induced action of U(n) on Jn(U, V ) by the regular represen-
tation action of U(n) on Cn.

Definition 5.1. The intermediate category U(n)En is the category of U(n) Top∗-enriched functors from Jn

to U(n) Top∗.
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Define nS : Jn −→ Top∗ to be the functor given by U $−→ SnU . Note that nS(U) = Jn(0, U). Using the
standard Day convolution product, one can verify that nS is a commutative monoid in I-spaces. Moreover,
this multiplication is U(n)-equivariant and hence nS is also a commutative monoid in U(n)ITop∗, the category
of U(n)-equivariant I-spaces.

Proposition 5.2. The category En is equivalent to the category of nS-modules in I-spaces, and the category
U(n)En is equivalent to the category of nS-modules in U(n)-equivariant I-spaces.

Proof. By [MMSS01], the category of nS-modules is a diagram category indexed on Jn, where Jn is the
category with the same objects as Jn and morphism spaces given by the enriched coend

Jn(V, W ) ∼=
' U∈I

I(U ⊕ V, W ) ∧ SnU .

It is then straightforward to check that the map specified by
I(U ⊕ V, W ) ∧ SnU −→ Jn(V, W ), (f, u) $−→ (f |V , (Cn ⊗ f)(u))

is a suitably U(n)-equivariant isomorphism. □

5.1. The n-stable model structure. This description as a category of modules allows for a stable model
structure to be placed on U(n)En similar to the stable model structure on spectra. For this we define the
weak equivalences and fibrant objects. The constructions are as in [MMSS01]. The model structure is a left
Bousfield localisation of the projective model structure given below.

Lemma 5.3. There is a cellular, proper, topological model structure on the category U(n)En with weak
equivalences and fibrations defined as levelwise weak homotopy equivalences and Serre fibrations respectively.
The generating (acyclic) cofibrations are of the form

Jn(U, −) ∧ U(n)+ ∧ i

for U ∈ Jn and i a generating (acyclic) cofibration.

Proof. This is essentially [MMSS01, Theorem 6.5] but the diagrams are in U(n) Top∗ rather than Top∗. □

The weak equivalences are an alternation of the π∗-isomorphisms of spectra to take into account the structure
maps S2 ∧ Xk −→ Xk+1.

Definition 5.4. For X ∈ U(n)En define the n-homotopy groups of X as
nπkX = colim

q
π2nq+kX(Cq).

for all k ∈ Z. A map f : X −→ Y in U(n)En is a nπ∗-isomorphism if it induces an isomorphism on all
n-homotopy groups.

The fibrant objects will be similar to Ω-spectra but take into account the structure maps of nS-modules.

Definition 5.5. An object X ∈ U(n)En is an nΩ-spectrum if the adjoint structure maps
X(V ) −→ ΩnW X(V ⊕ W )

are weak homotopy equivalences for all V, W ∈ Jn.

Denote the restricted composition map by
λn

U,V : Jn(U ⊕ V, −) ∧ SnV −→ Jn(U, −).
We factor λn

U,V into a cofibration

kn
U,V : Jn(U ⊕ V, −) ∧ SnV −→ Mλn

U,V ,

where Mλn
U,V is the mapping cylinder of λn

U,V , and a deformation retraction
rn

U,V : Mλn
U,V −→ Jn(U, −).
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Denote by kn
U,V □i the pushout product

kn
U,V □i : Jn(U ⊕ V, −) ∧ SnV ∧ B) ∪Jn(U⊕V,−)∧SnV ∧A) (Mλn

U,V ∧ A) −→ Mλn
U,V ∧ B

of the map kn
U,V : Jn(U ⊕ V, −) ∧ SnV −→ Mλn

U,V with i : A −→ B.

Proposition 5.6 ([MMSS01, Theorem 9.2]). There is a cofibrantly generated, proper, stable, topological
model structure on the category U(n)En, where the weak equivalences are the nπ∗-isomorphisms, the cofi-
brations are the q-cofibrations and the fibrations are those maps which satisfy the right lifting property with
respect to the acyclic q-cofibrations. The generating cofibrations are those of the projective model structure
and the generating acyclic cofibrations are the union of the projective generating acyclic cofibrations together
with the set

Kn
V,W□IU(n) Top∗ := {kn

V,W□i : i ∈ IU(n) Top∗ , V, W ∈ I}
where IU(n) Top∗ is the set of generating cofibrations for the underlying model structure on U(n) Top∗.

We call this the n-stable model structure. It is homotopically compactly generated by U(n)+ ∧ nS.
The derivatives of n-polynomial objects are well behaved with respect to the n-stable model structure, in
that they are nΩ-spectra. Since nΩ-spectra are the fibrant objects in the n-stable model structure, the
following result indicates that the n-stable model structure gives homotopical control over the derivatives.
The orthogonal version of this may be found in [BO13, Proposition 5.12] or [Wei95, Proposition 5.12].

Lemma 5.7. If E is an n-polynomial in E0, then for any V ∈ J0, the map
E(n)(V ) −→ Ω2nE(n)(V ⊕ C)

is a weak homotopy equivalence.

6. The intermediate category as a category of spectra

The intermediate category, U(n)En is Quillen equivalent to spectra with an action of U(n). We digress from
discussing the Taylor tower to discuss this equivalence. It will allow us to reduce the proof of the equivalence
between the intermediate category and the n-homogeneous model structure to the consideration of spectra,
see Theorem 7.5. We start with a discussion of unitary spectra, which is a version of the diagram spectra of
Mandell et al. [MMSS01].

6.1. Unitary spectra. Let I be the category with the same objects as J and morphisms the complex linear
isometric isomorphisms. The category of unitary spectra is the category of diagram spectra over I, [MMSS01,
Definition 1.9]. That is, a unitary spectrum X is an S-module in the category of I-spaces, where S is the
sphere functor which sends a complex inner product space to its one-point compactification. We will denote
the category of unitary spectra as SpU .

Remark 6.1. Unitary spectra appear in the literature [Sch12, §§7.2] under the guise of a sequence of spaces
{Xn}n∈N such that U(n) acts on Xn, together with structure maps

Xn ∧ S2 −→ Xn+1

such that the iterated structure maps
Xn ∧ S2m −→ Xn+m

are (U(n) × U(m))-equivariant.

Using the vector bundle construction of spectra, we can think of unitary spectra as the category of Top∗
enriched functors from J1 to Top∗, see [Sch19, Remark 2.7], where Schwede gives an equivalence of cate-
gories between orthogonal G-spectra defined similar to unitary spectra in Remark 6.1 and the definition of
orthogonal G-spectra used by Mandell and May [MM02].

Denote evaluation at U ∈ J1 by EvU : SpU −→ Top∗, and its left adjoint by FU . The category I satisfies
all the required properties of a diagram category from [MMSS01]. We can thus talk about diagram spectra
indexed on I or diagram spaces indexed on J1. These categories are isomorphic by [MMSS01, Theorem 2.2].

17



We now give it a stable model structure. Similarly to [MMSS01, Definition 8.4] define a map
λU,V : FU⊕V SV −→ FU S0,

to be the map adjoint to the canonical inclusion
SV −→ (FU S0)(U ⊕ V ) ≃ U(U ⊕ V )+ ∧U(V ) SW , w $−→ e ∧ w

where e ∈ U(U ⊕V ) is the identity element, and the equivalence follows from the unitary version of [MMSS01,
Example 4.4].

Definition 6.2. Let MλU,V be the mapping cylinder of λU,V . Then λU,V factors as the composite of a
q-cofibration

kU,V : FU⊕V SV −→ MλU,V

and a deformation retraction rU,V : MλU,V −→ FU S0. Let KU,V □I be the set of maps of the form kU,V □i
for i ∈ I. Define K to the union of the generating acyclic cofibrations of the projective model structure

FJ = {FU j : j ∈ J, U ∈ I}
with the sets KU,V □I.

The π∗-isomorphisms for unitary spectra have to take into account the suspension coordinate S2 of the
structure maps. Hence for a unitary spectrum X and k ∈ Z, the k-th homotopy group of X is defined as:

πkX = colim
q

π2q+kX(Cq).

Proposition 6.3 ([MMSS01, Theorem 9.2]). The category SpU of unitary spectra is a cofibrantly generated
stable model category with respect to the π∗-isomorphisms q-fibrations and q-cofibrations. The set of
generating q-cofibrations is the set

FI = {FU i : i ∈ I, U ∈ I}
and set of generating acyclic q-cofibrations is the set K defined above.

Let JO be the category of finite-dimensional real inner product subspaces of R∞ with morphisms real linear
isometries. There is a realification (decomplexification) functor r : J −→ JO given by forgetting the complex
structure, that is, r(Ck) = R2k. Precomposition with r gives a functor r∗ : SpO −→ SpU , which we call
pre-realification.
Pre-realification has a left adjoint r! : SpU −→ SpO given by the left Kan extension along r, that is,

r!(X)(V ) =
' U∈J

JO
1 (r(U), V ) ∧ X(U).

Theorem 6.4 (Theorem F). The adjoint pair

r! : SpU && SpO : r∗""

is a Quillen equivalence.

Proof. The right adjoint preserves acyclic fibrations (which are levelwise acyclic fibrations of based spaces,
see [MMSS01, Proposition 9.9]) and fibrant objects. Moreover a standard cofinality argument shows that
the right adjoint is homotopically conservative, that is, reflects weak equivalences. It is left to show that the
derived unit of the adjunction is an isomorphism. Note that the left adjoint preserves coproducts. Then,
since the stable model structure on unitary spectra is homotopically compactly generated by the unitary
sphere spectrum S and both SpU and SpO are stable model categories, it suffices to show that the unit is
an equivalence on the generator S. Seeing this is simply a matter of applying the definition of the left Kan
extension r! as a coend. □
Corollary 6.5. The adjoint pair

r! : SpU [U(n)] && SpO [U(n)] : r∗""

is a Quillen equivalence.
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Remark 6.6. This relation between orthogonal and unitary spectra hints at a bigger relation between the
two calculi. The pre-realification functor defines a functor between the orthogonal calculus input category
and the unitary calculus input category. In future work we will examine how the pre-realification functor
behaves with respect to n-polynomial and n-homogeneous functors.

6.2. The Quillen equivalence. The intermediate category is Quillen equivalent to the stable model struc-
ture on the category of orthogonal spectra with an action of U(n). To construct the required adjunc-
tion we first construct a U(n) Top∗-enriched functor αn : Jn −→ ε∗J1, where ε∗J1 is the 1-st jet category
equipped with the trivial U(n)-action. On objects, define αn(V ) = Cn ⊗ V = nV . On morphisms, define
αn(f, x) = (Cn ⊗ f, x). This defines a U(n) Top∗-enriched functor αn : Jn −→ ε∗J1.
The adjunction is given as follows

Proposition 6.7. There is an adjoint pair

(αn)! : U(n)En
&& SpU [U(n)] : (αn)∗""

with α∗
nΘ(V ) = Θ(nV ), and (αn)! is the left Kan extension along αn.

Proof. Precomposition with αn defines a functor

(αn)∗ : SpU [U(n)] −→ U(n)En,

where U(n)-acts on (αn)∗Θ(V ) = Θ(nV ) by composition of the internal U(n)-action via the regular rep-
resentation of U(n) on Cn ⊗ V and the external U(n)-action of Θ(nV ) ∈ U(n) Top∗. By definition of X
these actions commute. Checking that this action gives a well defined object of U(n)En follows as for the
orthogonal version [BO13, §8].
The left Kan extension along αn, denoted (αn)!, may be written as the coend

(αn)!Y (V ) =
' U∈Jn

Y (U) ∧ J1(nU, V )

which is suitably enriched since J1 acts on the left of J1(nU, V ) by the composition

J1(V, W ) ∧ J1(nU, V ) −→ J1(nU, W )

and Jn acts on the right via the composition

J1(nU, V ) ∧ Jn(W, U) −→ J1(nU, V ) ∧ J1(nW, nU) −→ J1(nW, V )
((g, y), (f, x)) $−→ ((g, y), (Cn ⊗ f, x)) $−→ (g ◦ (Cn ⊗ f), y + (idCn ⊗g)(x)).

The adjunction then follows by a straightforward calculus of coends argument. □

Theorem 6.8 (Theorem D). The adjoint pair

(αn)! : U(n)En
&& SpU [U(n)] : (αn)∗""

is a Quillen equivalence.

Proof. As it is defined by precomposition, the right adjoint preserves acyclic fibrations and fibrant objects.
Suppose f : Θ −→ Ψ is a map of spectra such that (αn)∗f : (αn)∗Θ −→ (αn)∗Ψ is a nπ∗-isomorphism. Then

πkΘ = colim
q

π2q+kΘ(Cq) ∼= colim
q

π2nq+kΘ(Cnq) ∼= colim
q

π2q+kΘ(nCq) = nπk(αn)∗Θ.

A similar calculation shows that πkΨ ∼= nπk(αn)∗Ψ, and hence the right adjoint is homotopically conserva-
tive.
Since both model categories are stable and the left adjoint commutes with coproducts, it suffices to show
that the (derived) unit is an isomorphism on the homotopical compact generator U(n)+ ∧nS of U(n)En. This
is similar to Theorem 6.4, where we write the left adjoint as a coend and work through the definitions. □
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Corollary 6.9. The adjoint pair

(αn ◦ r)! : U(n)En
&& SpO [U(n)] : (αn ◦ r)∗""

is a Quillen equivalence.

Proof. This is Theorem 6.8 and Theorem 6.4, together with the fact that composition of left (resp. right)
Quillen functors is a left (resp. right) Quillen functor. □

7. Differentiation as a Quillen functor

We construct a Quillen equivalence between the intermediate category and the n-homogeneous model struc-
ture on E0, which allows for a slicker proof of the characterisation of n-homogeneous functors than the
orthogonal version of Weiss [Wei95, Theorem 7.3].
There is an adjunction

resn
0 : En

&&
E0 : indn

0""

which we want to extend to an adjunction between U(n)En and E0. To do this, we combine the restriction-
induction adjunction with the change of group adjunctions from [MM02].

Definition 7.1. Define the restriction-orbit functor
resm

n /U(n − m) : U(n)En −→ U(m)Em

as X −→ (X ◦ in
m)/U(n − m), where ((X ◦ in

m)/U(n − m))(V ) = X(V )/U(n − m).

The U(n − m)-orbits functor (−)/U(n − m) : U(n) Top∗ −→ U(m) Top∗ has a right adjoint. Let A be a
U(m)-space, then A is a (U(m) × U(n − m))-space by letting U(n − m) act trivially. To distinguish we
denote the (U(m) × U(n − m))-space A by ε∗A. Letting F (−, −) denote the internal function object in
(U(m) × U(n − m))-spaces, we define the inflation of A as

CIn
mA = FU(m)×U(n−m)(U(n)+, ε∗A)

where U(m) ⊂ U(n) acts on the first m-coordinates and U(n − m) acts on the latter (n − m)-coordinates.

Definition 7.2. Define the inflation-induction functor indn
m CI : U(m)Em −→ U(n)En to be

(indn
m CI(X))(V ) = U(m)Em(Jn(V, −), CIn

mX).

In particular, there is an adjunction

resn
0 /U(n) : U(n)En

&&
E0 : indn

0 ε∗""

where ε is the inclusion of the trivial subgroup into U(n). This adjunction is a Quillen adjunction.

Proposition 7.3. The adjoint pair

resn
0 /U(n) : U(n)En

&&
n –homog– E0 : indn

0 ε∗""

is a Quillen adjunction when U(n)En is equipped with the n-stable model structure.

Proof. The projective model structure on U(n)En is cofibrantly generated, hence by [Hov99, Lemma 2.1.20]
it suffices to show that the left adjoint preserves the generating (acyclic) cofibrations. Restriction-orbits
applied to a generating (acyclic) cofibration yeilds Jn(V, −) ∧ i where i is a generating (acyclic) cofibration
of Top∗.
Since the projective model structure on E0 is cofibrantly generated, J0(V, −) is cofibrant. The sphere bundle
Sγn(V, −)+ is homeomorphic to the homotopy colimit

hocolim
0 ∕=U⊂Cn+1

J0(U ⊕ V, −),

and hence Sγn(V, −)+ is cofibrant by [Hir03, Theorem 18.5.2(1)]. Since Sγn(V, −)+ and J0(V, −) are both
cofibrant, and the mapping cone of a map between cofibrant objects are cofibrant, it follows that Jn+1(V, −)
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is cofibrant, as the mapping cone of Sγn(V, −)+ −→ J0(V, −). Hence, Jn(V, −) ∧ i is an (acyclic) cofibration
in E0, and there is a Quillen adjunction

resn
0 /U(n) : U(n)En

&&
E0 : indn

0 ε∗""

when U(n)En is equipped with the projective model structure.
Composition of left (resp. right) Quillen functors is well behaved, see [Hov99, §1.3.1], hence the Quillen
adjunction between projective model structures extends through the Quillen adjunction

: E0
&&
n –poly– E0 :"" ,

to a Quillen adjunction
resn

0 /U(n) : U(n)En
&&
n –poly– E0 : indn

0 ε∗"" .

The n-stable model structure is a left Bousfield localisation of U(n)En, hence to extend to a Quillen adjunction
on the n-stable model structure it suffices by [Hir03, Theorem 3.1.6, Proposition 3.3.18] to show that indn

0 ε∗

sends fibrant objects in n –poly– E0 to fibrant objects in U(n)En. By Proposition 3.9 and Proposition 5.6,
this reduces to showing that inflation-induction sends an n-polynomial object to a nΩ-spectrum. This is
precisely the content of Lemma 5.7.
We now extend to the n-homogeneous model structure - which is a right Bousfield localisation of n –poly– E0
- using [Hir03, Proposition 3.3.18]. Suppose f : E −→ F is a Kn-cellular equivalence between fibrant
(n-polynomial) objects, then

indn
0 ε∗E(V ) = E0(Jn(V, −), E) −→ E0(Jn(V, −), F ) = indn

0 ε∗F (V )
is a weak homotopy equivalence. It follows by definition that that indn

0 ε∗f is a levelwise weak equivalence
hence a n-stable equivalence. An application of [Hir03, Proposition 3.3.18] yields the result. □

We now give the desired Quillen equivalence. We give a different proof to that of Barnes and Oman [BO13,
Theorem 10.1] for the orthogonal calculus case. We begin with an example which will be useful. The proof
of which may be found in [Wei95, Example 6.4].

Example 7.4. Let Θ be a spectrum with U(n)-action. The functors E and F , given by the formulae
E(U) = [Ω∞(SnU ∧ Θ)]hU(n)

F (U) = Ω∞[(SnU ∧ Θ)hU(n)]
are weakly equivalent in n –poly– E0, that is TnE −→ TnF is a levelwise weak equivalence.

Theorem 7.5 (Theorem E). The adjoint pair

resn
0 /U(n) : U(n)En

&&
n –homog– E0 : indn

0 ε∗""

is a Quillen equivalence.

Proof. We use [Hov99, Corollary 1.3.16]. The right adjoint reflects weak equivalences between fibrant objects.
Indeed, let f : E −→ F be a map in E0 such that indn

0 ε∗f : indn
0 ε∗E −→ indn

0 ε∗F is an nπ∗-isomorphism.
Without loss in generality we may assume that both E and F are n-polynomial. It follows that

indn
0 ε∗Tnf : indn

0 ε∗TnE −→ indn
0 ε∗TnF

is a levelwise weak equivalence.
It is left to show that the derived unit of the adjunction is an equivalence on cofibrant objects. By Corollary
6.9 each cofibrant X ∈ U(n)En is nπ∗-isomorphic to (αn ◦ r)∗Θ where Θ is an orthogonal Ω-spectrum with
action of U(n). In particular, Θ = R(αn ◦r)!X, where R denotes fibrant replacement in SpO [U(n)]. It suffices
to show that the derived unit is an equivalence on (αn ◦ r)∗Θ. Furthermore, we can assume that (αn ◦ r)∗Θ
is cofibrant in U(n)En.
The unit maps is given by

(αn ◦ r)∗Θ ✤ & indn
0 ε∗Tn resn

0 ((αn ◦ r)∗Θ)/U(n).
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At U ∈ J, (αn ◦ r)∗Θ(U) = Θ(r(nU)) ≃ Ω∞(SnU ∧ Θ), hence resn
0 ((αn ◦ r)∗Θ)/U(n) is levelwise weakly

equivalent to the functor given by
U $−→ [Ω∞(SnU ∧ Θ)]/U(n)

which, since (αn ◦ r)∗Θ is cofibrant, is levelwise weakly equivalent to the functor given by

U $−→ [Ω∞(SnU ∧ Θ)]hU(n).

By Example 7.4 this last is Tn-equivalent to the functor given by

U $−→ [Ω∞(SnU ∧ Θ)hU(n)].

Example 4.12 calculates the n-th derivative of this functor as the functor given by

U $−→ Ω∞(SnU ∧ Θ)

which in turn is levelwise weakly equivalent to (αn ◦ r)∗Θ, and the result follows. □

8. The classification of homogeneous functors

We return now to discussing the Taylor tower. We have seen that the layers of the tower are homogeneous.
We now show that n-homogeneous functors (in particular the layers of the tower) are completely determined
by spectra with an action of U(n). This result is an extension of [Wei95, Theorem 7.3]. Here, Weiss shows
that an orthogonal n-homogeneous functor E is levelwise weakly equivalent to the functor

V $−→ Ω∞[(SRn⊗V ∧ Θn
E)hO(n)].

8.1. Classification of homogeneous functors. The above Quillen equivalence gives an equivalence be-
tween the homotopy category of the n-homogeneous model structure and the homotopy category of the
n-stable model structure. It follows that for an object F ∈ E0, inflation-induction and the left adjoint to
(αn ◦ r)∗ determine a spectrum Ψn

F with an action of U(n). That is, Ψn
F = (αn ◦ r)! indn

0 ε∗F .
With this we can classify n-homogeneous functors, analogous to Weiss [Wei95, Theorem 7.3] and Barnes-
Oman [BO13, Theorem 10.3]. The proof here - aided by the language of model categories and localisations
- is significantly more straightforward that than of [Wei95, Theorem 7.3], yet still rather technical.

Theorem 8.1 (Theorem A). Let F ∈ E0 be n-homogeneous for some n > 0. Then F is levelwise weakly
equivalent to the functor defined as

U $−→ Ω∞[(SnU ∧ Ψn
F )hU(n)].

Proof. Let F be n-homogeneous and define a new functor E to be E(U) = (indn
0 ε∗F (U))hU(n). This functor

is Tn-equivalent to the functor G defined as

G(U) = Ω∞[(SnU ∧ Ψn
F )hU(n)],

which is n-polynomial by Example 4.12. Indeed, the Tn-equivalence follows since

E(U) = (indn
0 ε∗F (U))hU(n) = (Ψn

F (r(nU)))hU(n) ≃ [Ω∞(SnU ∧ Ψn
F )]hU(n).

By Example 7.4, the functor E (through the above equivalence) is in turn Tn-equivalent to the functor G

U $−→ Ω∞[(SnU ∧ Ψn
F )hU(n)].

Since G is levelwise weakly equivalent to TnG, it follows that TnE is levelwise weakly equivalent to G.
Since indn

0 ε∗ is a right Quillen functor, indn
0 ε∗TnE is levelwise weakly equivalent to indn

0 ε∗G. By Example
4.12, we may identify the n-th derivative of G, indn

0 ε∗G, with the functor G[n], given by

U $−→ Ω∞(SnU ∧ Ψn
F ).

This last is levelwise weakly equivalent to indn
0 ε∗F , since the above functor is n-stably equivalent to indn

0 ε∗F
and both are fibrant in U(n)En.
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Since G is levelwise weakly equivalent to TnE, it follows that indn
0 ε∗TnE is levelwise weakly equivalent

to indn
0 ε∗TnF . A double application of Whiteheads’ Theorem [Hir03, Theorem 3.2.13], for right and left

Bousfield localisations respectively yields the result. □

8.2. Characterising the n-homogeneous model structure. With this classification result we can fur-
ther characterise the weak equivalences and cofibrations of the n-homogeneous model structure. This new
characterisation is also true in the orthogonal calculus setting. These results are similar to those for Good-
willie calculus [BR14] since the construction of the model categories are similar. However there are substantial
differences, for example the (homotopy) cross effect functor plays an important role in Goodwillie calculus,
and the model structures of [BR14], but has no natural analogue in our theory.
We start with the weak equivalences. The construction of the derivative is quite complex, hence detecting
weak equivalences via indn

0 Tn can be laborious. We show, using the classification theorem for n-homogeneous
functors, Theorem 8.1, that weak equivalences are detected by Dn, where

DnF = hofibre[TnF −→ Tn−1F ].

Proposition 8.2. A map f : E −→ F is an indn
0 Tn-equivalence if and only if Dnf : DnE −→ DnF is a

levelwise weak equivalence.

Proof. Suppose that Dnf is a levelwise weak equivalence. Since indn
0 preserves levelwise weak equivalences,

indn
0 Dnf is a levelwise weak equivalence. Moreover as the n-th derivative of an (n − 1)-polynomial object

is levelwise weakly contractible, indn
0 Tn−1E and indn

0 Tn−1F are both levelwise weakly contractible and
hence levelwise weakly equivalent. The following diagram made from the homotopy fibre sequences defining
DnE and DnF together with an application of the Five Lemma implies that indn

0 Tnf is a levelwise weak
equivalence.

indn
0 DnE &&

indn
0 Dnf

!!

indn
0 TnE &&

indn
0 Tnf

!!

indn
0 Tn−1E

indn
0 Tn−1f

!!
indn

0 DnF && indn
0 TnF && indn

0 Tn−1F

Conversely suppose that indn
0 Tnf is a levelwise weak equivalence. Then the spectra Ψn

E and Ψn
F are stably

equivalent. As such the spectra (SnV ∧ Ψn
E)hU(n) and (SnV ∧ Ψn

F )hU(n) are stably equivalent for every V ∈ J.
Since for any spectrum Θ, πnΘ = πnΩ∞Θ, we have that Ω∞[(SnV ∧ Ψn

E)hU(n)] and Ω∞[(SnV ∧ Ψn
F )hU(n)]

are weakly homotopy equivalent. By the classification of n-homogeneous functors it follows that DnE and
DnF are levelwise weakly equivalent. □

It is also possible to characterise the acyclic fibrations.

Proposition 8.3. A map f : E −→ F is an acyclic fibration in the n-homogeneous model structure if and
only if it is a fibration in the (n − 1)-polynomial model structure and an indn

0 Tn-equivalence.

Proof. A map is a fibration in the (n − 1)-polynomial model structure if and only if it is a levelwise fibration
and the square

E &&

f

!!

Tn−1E

Tn−1f

!!
F && Tn−1F

is a homotopy pullback square. Consider the diagram

E &&

f

!!

TnE

Tnf

!!

&& Tn−1E

Tn−1f

!!
F && TnF && Tn−1F.
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If f : E −→ F is an acyclic fibration in the n-homogeneous model structure, then it is an indn
0 Tn-equivalence

and a fibration in in n-polynomial model structure, since n –homog– E0 is a right Bousfield localisation of
n –poly– E0. It follows that the left hand square is a homotopy pullback. The right hand square in the
above diagram is also homotopy pullback since the horizontal (homotopy) fibres are levelwise equivalent, see
[MV15, Proposition 3.3.18]. By the Pasting Lemma [Hir03, Proposition 13.3.15], the outer rectangle is a
homotopy pullback and hence f is a fibration in the (n − 1)-polynomial model structure.
Conversely if f is a fibration in the (n− 1)-polynomial model structure then the outer rectangle in the above
diagram is a homotopy pullback. Moreover, f being an indn

0 Tn-equivalence yields the right hand square
as a homotopy pullback, again by [MV15, Proposition 3.3.18]. Another application of the Pasting Lemma
yields that the left hand square is a homotopy pullback and hence f is a fibration in the n-polynomial model
structure, and hence a fibration in the n-homogeneous model structure. □

This allows us to characterise the acyclic fibrations between fibrant objects.

Corollary 8.4. A map f : E −→ F between n-polynomial objects is an acyclic fibration in the n-
homogeneous model structure if and only if it is a fibration in the (n − 1)-polynomial model structure.

Proof. By Proposition 8.3 it suffices to show that a fibration in (n − 1) –poly– E0 between n-polynomial
objects is an n-homogeneous equivalence. Let f : E −→ F be a fibration in (n − 1) –poly– E0 and E and F ,
n-polynomial. Then we have a diagram

E &&

f

!!

TnE

Tnf

!!

&& Tn−1E

Tn−1f

!!
F && TnF && Tn−1F.

as in Proposition 8.3. The outer square of this diagram is a homotopy pullback since f : E −→ F is a fibration
in (n−1) –poly– E0. Since E and F are n-polynomial, the left-hand horizontal maps are levelwise equivalences
and the right-hand square is a homotopy pullback. The result then follows by [MV15, Proposition 3.3.18]
and Proposition 8.2. □

We now turn our attention to the cofibrations.

Lemma 8.5. A map f : X −→ Y is a cofibration in the n-homogeneous model structure if and only if it is
a projective cofibration and an (n − 1)-polynomial equivalence.

Proof. By definition, f : X −→ Y is a n-homogeneous cofibration if and only if it has the left lifting
property with respect to n-homogeneous acyclic fibrations. By right properness of n –homog– E0 and [Hir03,
Proposition 13.2.1], this is equivalent to f : X −→ Y having the left lifting property with respect to acyclic
fibrations between fibrant objects. By Lemma 8.4 this is equivalent to having the left lifting property with
respect to fibrations in the (n − 1)-polynomial model structure. It follows that f : X −→ Y is a cofibration
in n –homog– E0 if and only if it is an acyclic cofibration in (n − 1) –poly– E0, that is, if and only if it is a
projective cofibration and an (n − 1)-polynomial equivalence. □

Corollary 8.6. The cofibrant objects of the n-homogeneous model structure are precisely those n-reduced
projectively cofibrant objects.

Proof. Let E be cofibrant in n –homog– E0 and apply Lemma 8.5 to the map ∗ −→ E. □
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8.3. The complete Taylor tower. The description of the n-homogeneous functors in particular gives a
description of the layers of the Taylor tower. Hence at U ∈ J0, the Taylor tower of F ∈ E0 is

...

rn+1

!!
TnF (U)

rn

!!

Ω∞[(SnU ∧ Ψn
F )hU(n)]""

Tn−1F (U)

rn−1!!

Ω∞[(S(n−1)U ∧ Ψn−1
F )hU(n−1)]""

...

r2

!!
T1F (U)

r1

!!

Ω∞[(SU ∧ Ψ1
F )hU(1)]""

F (U)

##

$$

%%

&& F (C∞).

9. Analyticity and convergence

One of the big questions in any version of functor calculus is that of convergence of the Taylor tower. This
question is really two-fold; does the tower converge? And, if so, what is does the tower converge to?

Definition 9.1. The Taylor tower of a functor F ∈ E0 converges at U ∈ J0 if the induced map

F (U) −→ holim
n

TnF (U)

is a weak homotopy equivalence. We say that F is weakly ρ-analytic if its Taylor tower converges at U with
dim(U) ≥ ρ.

Before we talk about special classes of functors for which the Taylor tower is known to converge, there is a
classical approach. Since we have a homotopy fibre sequence

Ω∞[(SnU ∧ Ψn
F )hU(n)] −→ TnF (U) −→ Tn−1F (U)

for all U ∈ J0, we can apply [BK72, Section IX.4].

Definition 9.2. Let F ∈ E0. The Weiss spectral sequence associated to F at U ∈ J0 is the homotopy spectral
sequence of the tower of pointed spaces {TnF (U)}n∈N with E1-page

E1
s,t

∼= πt−sΩ∞[(SsU ∧ Ψs
F )hU(s)] ∼= πt−s(SsU ∧ Ψs

F )hU(s),

and converges to
π∗holim

n
TnF (U).

This spectral sequence indicates why studying the layers of the tower is important, a firm grasp of the layers
gives a firm grasp on the spectral sequence and hence on its limit.

Remark 9.3. Bousfield and Kan [BK72] provide a method of comparison between this spectral sequence
for different towers of fibrations. It would be interesting to see how this Bousfield-Kan map of spectral
sequences interacts with the comparison functors between orthogonal and unitary calculi.
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9.1. Agreement. We start with the notion of agreement to order n. This is the unitary version of order n
agreement from Goodwillie calculus [Goo03, Definition 1.2]. These connectivity estimates played a crucial
role in both Goodwillie calculus [Goo90, Proposition 1.17] and orthogonal calculus [Wei98].

Definition 9.4. A map p : F −→ G in E0 is an order n unitary agreement if there is some ρ ∈ N and b ∈ Z
such that pU : F (U) −→ G(U) is (2(n + 1) dim(U) − b)-connected for all U ∈ J0, satisfying dim(U) ≥ ρ. We
will say that F agrees with G to order n if there is an order n unitary agreement p : F −→ G between them.

When two functors agree to a given order, their Taylor tower agree to a prescribed level. The first result in
that direction is the unitary analogue of [Wei98, Lemma e.3].

Lemma 9.5. let p : G −→ F be a map in E0. Suppose that there is b ∈ Z such that pU : G(U) −→ F (U) is
(2(n + 1) dim(U) − b)-connected for all U ∈ J0. Then

τn(p)U : τn(G(U)) −→ τn(F (U))

is (2(n + 1) dim(U) − b + 1)-connected for all U ∈ J0.

Iterating this result, gives the following.

Lemma 9.6. If p : F −→ G is an order n unitary agreement, then TkF −→ TkG is a levelwise weak
equivalence for k ≤ n.

Proof. If p : F −→ G is an order n unitary agreement, then by Lemma 9.5,

τn(p)U : τnF (U) −→ τnG(U)

is (2(n + 1) dim(U) − b + 1)-connected. Repeated application of Lemma 9.5 yields the result for k = n since
TkF (U) = hocolimi τ i

kF (U). The result follows for k < n since if a map f : X −→ Y is k-connected, then it
is (k − 1)-connected. □

Example 9.7. The functor nS : J0 −→ Top∗ is k-reduced for all k ≤ n. Indeed, the map ∗ −→ SnU is
(2n dim(U) − 1)-connected for all U ∈ J0, hence by Lemma 9.5, τn−1(∗) −→ τn−1(nS(U)) is (2n dim(U))-
connected for all V ∈ J. It follows from Lemma 9.6 that ∗ ≃ Tn−1(∗) −→ (Tn−1nS)(U) is a weak homotopy
equivalence. The result for k ≤ n − 1 follows since a k-connected map is k − 1-connected.

The connectivity estimate of Lemma 9.5 gives conditions for the Taylor tower to be trivial to a prescribed
level.

Lemma 9.8. If F ∈ E0 is such that F (U) has connectivity (2(n + 1) dim U − b) for some constant b, then
the Taylor tower of F (U) is trivial up to and including level n.

Proof. If F (U) has such a connectivity, then the map ∗ −→ F (U) is (2(n + 1) dim(U) − b)-connected. An
application of Lemma 9.6 yields that ∗ −→ TkF (U) is a weak homotopy equivalence for all k ≤ n. □

Example 9.9. The n-sphere functor nS : U $−→ SnU satisfied the conditions of Lemma 9.8, as SnU is
(2n dim(U) − 1)-connected. Hence the first non-trivial polynomial approximation to nS is the n-th approxi-
mation TnnS.

Agreement with the n-polynomial approximation functor for all n ≥ 0 gives convergence of the Taylor tower.

Lemma 9.10. If for all n ≥ 0, a unitary functor F agrees with TnF to order n then the Taylor tower
associated to F converges to F (U) at U with dim(U) ≥ ρ.

Proof. Since F agrees with TnF to order n for all n, the map η : F (U) −→ TnF (U) is (2(n + 1) dim(U) − b)-
connected for all n and all U with dim U ≥ ρ. It follows that the map F (U) −→ holim TnF (U) is a weak
homotopy equivalence. □
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9.2. Weakly Polynomial. The class of functors with this property are called weakly polynomial. They are
an important class of functors in that they are weakly analytic, but defined in simpler terms. In particular
weakly polynomial functors are more tractable for computations.

Definition 9.11. A unitary functor F is weakly (ρ, n)-polynomial if the map η : F (U) −→ TnF (U) is an
agreement of order n whenever dim(U) ≥ ρ. A functor is weakly polynomial if it is weakly (ρ, n)-polynomial
for all n ≥ 0.

We start with a few examples.

Example 9.12. The sphere functor S : U $−→ SU is weakly polynomial.

Proof. The identity functor Id : Top∗ −→ Top∗ is 1-analytic in the Goodwillie sense, [Goo92, Example 4.3].
Barnes and Eldred [BE16, Example 3.7] shows that S = S∗Id is weakly 2-polynomial, specifically, that the
map S∗Id(V ) −→ TnS∗Id(V ) is an agreement of order n for all n ≥ 0, where S : V $−→ SV is the orthogonal
sphere functor. Their proof may be extended to the unitary calculus case giving that S = S∗Id is weakly
polynomial for dim(V ) ≥ 1. □

Example 9.13. Fix a constant k ≥ 0. Then the functor given by V $−→ SU+2k is weakly polynomial. This
follows from Example 9.12 since V $−→ SU+2k is equivalent to S(U ⊕ Ck).

The following result is an alteration of [BE16, Theorem 4.1] for weakly polynomial functors.

Theorem 9.14 (Theorem G). Let E, F ∈ E0 are such that there is a homotopy fibre sequence

E(U) && F (U) && F (U ⊕ V )

for U, V ∈ J. Then

(1) If F is weakly (ρ, n)-polynomial, then E is weakly (ρ, n)-polynomial; and
(2) If E is weakly (ρ, n)-polynomial and F (U) is 1-connected whenever dim(U) ≥ ρ, then F is weakly

(ρ, n)-polynomial.

Proof. For (1), simply note that Tn preserves fibre sequence, hence there is a commutative diagram

E(U) &&

!!

F (U) &&

!!

F (U ⊕ V )

!!
TnE(U) && TnF (U) && TnF (U ⊕ V ).

It follows that since the middle and right hand vertical maps are agreements of order n, that the left hand
vertical map is also an agreement of order n.
For (2) it suffices to consider a fibre sequence

E(Cρ) && F (Cρ) && F (Cρ+1).

We achieve the same map of fibre sequences,

E(Cρ) &&

!!

F (Cρ) &&

!!

F (Cρ+1)

!!
TnE(Cρ) && TnF (Cρ) && TnF (Cρ+1)
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in which the left hand vertical map is (2(n + 1)ρ − b)-connected. Taking vertical fibres on the above diagram
gives a diagram,

FE(Cρ) &&

!!

FF (Cρ) &&

!!

FF (Cρ+1)

!!
E(Cρ) &&

!!

F (Cρ) &&

!!

F (Cρ+1)

!!
TnE(Cρ) && TnF (Cρ) && TnF (Cρ+1).

Since the lower left hand vertical map is (2(n + 1)ρ − b)-connected, FE(Cρ) is (2(n + 1)ρ − b − 1)-connected,
hence the top right hand horizontal map is (2(n + 1)ρ − b)-connected. It follows by [MV15, Proposition
3.3.18] and the fact that F (Cρ) and F (Cρ+1) are path connected, that the lower right hand square is
(2(n + 1)ρ − b)-cartesian.
Applying [MV15, Proposition 3.3.20] to the sequence of (2(n + 1)ρ − b)-cartesian squares,

F (Cρ) &&

!!

F (Cρ+1)

!!

&& F (Cρ+2)

!!

&& . . .

TnF (Cρ) && TnF (Cρ+1) && F (Cρ+2) && . . . .

yields for all q ≥ ρ and all k ≥ 1 a (2(n + 1)ρ − b)-cartesian square

F (Cq) &&

!!

F (Cq+k)

!!
TnF (Cq) && TnF (Cq+k)

Filtered homotopy colimits preserve (2(n + 1)ρ − b)-cartesian squares, hence the square

F (Cq) &&

!!

F (C∞)

!!
TnF (Cq) && TnF (C∞)

is (2(n + 1)ρ − b)-cartesian. The unitary version of [Wei95, Lemma 5.14], which holds since finite homotopy
limits commute with filtered homotopy colimits, gives that F (C∞) −→ TnF (C∞) is a weak equivalence, in
particular, it is (2(n + 1)ρ − b)-connected. It follows by [MV15, Proposition 3.3.11] that the map

F (Cq) −→ TnF (Cq)

is (2(n + 1)ρ − b)-connected, hence and agreement of order n. □

This recovers a version [BE16, Theorem 4.1] as a corollary.

Corollary 9.15. Let F ∈ E0. If F (1) is weakly (ρ, n)-polynomial and F (U) is 1-connected whenever
dim(U) ≥ ρ, then F is weakly (ρ, n)-polynomial.

Proof. Apply Theorem 9.14 to the fibre sequence

F (1)(U) −→ F (U) −→ F (U ⊕ C). □

Example 9.16. The Taylor tower associated to BU(−) : V $−→ BU(V ) converges to BU(V ) at V with
dim(V ) ≥ 1.
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Proof. By Example 9.12, the first derivative of BU(−) is the sphere functor S which is weakly polynomial
for dim(V ) ≥ 1 by Example 9.12. An application of Corollary 9.15 yields the result upon noting that BU(V )
is 1-connected for V in the given range. □

We end this section with one of the main results, which shows that the Taylor tower of any representable
functor converges. This theorem yields convergence results for many interesting functors.

Theorem 9.17 (Theorem H). Representable functors are weakly polynomial, that is, for all U ∈ J, the
functor J(U, −) is weakly polynomial.

Proof. As linear isometries are in particular injections, it suffices to prove that the functor
U $−→ J(Cn,Cn ⊕ U)

is weakly polynomial. The coset quotient projection U(n − 1) −→ U(n) −→ S2n−1 induces a fibre sequence

J(Cn−1,Cn−1 ⊕ U) −→ J(Cn,Cn ⊕ U) −→ S2(dim(U)+n)−1.

By induction on n, it suffices to prove that S2(dim(U)+n)−1 is weakly 1-polynomial for all n ≥ 0, since Tn

preserves fibre sequences. This follows for n ≥ 0 by Example 9.13. □

Example 9.18. The n-sphere functor nS : U $−→ SnU ∼= J(0, nU) is weakly 1-polynomial.

Example 9.19. The functor U(−) : V $−→ U(V ) is weakly 1–polynomial via the identification U(V ) ∼=
J(V, V ).

Lemma 9.20. Let F be a weakly ρ-polynomial functor. Then, ΩF is weakly ρ-polynomial.

Proof. We calculate the connectivity of ΩF (U) −→ TnΩF (U) for U with dim(U) ≥ ρ, given that
F (U) −→ TnF (U)

is (2(n + 1) dim(U) − b)-connected. As finite homotopy limits commute with filtered homotopy limits, it is
enough to calculate the connectivity of the map ΩF (U) −→ ΩTnF (U). This map is (2(n+1) dim(U)−b−1)-
connected. □

Corollary 9.21. If the Taylor tower associated to F ∈ E0 converges to F , then the Taylor tower associated
to ΩF converges to ΩF .

We now give an alternative proof that the Taylor tower associated to U(−) : V $−→ U(V ) converges to U(V )

Example 9.22 (Example B). The Taylor tower associated to U(−) : V $−→ U(V ) converges to U(−) for
dim(V ) ≥ 1.

Proof. By Example 9.16, the Taylor tower associated to BU(−) : V $−→ BU(V ) converges to BU(−) for
dim(V ) ≥ 1. It follows by Corollary 9.21 that the Taylor tower associated to ΩBU(−) : V $−→ ΩBU(V )
converges to ΩBU(−) for dim(V ) ≥ 1. This last functor is levelwise weakly equivalent (in fact homotopy
equivalent) to U(−) : V $−→ U(V ). □
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