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Abstract1

Background Conducting a systematic review requires great screening effort. Various tools have been2

proposed to speed up the process of screening thousands of titles and abstracts by engaging in active learning.3

In such tools, the reviewer interacts with machine learning software to identify relevant publications as4

early as possible. To gain a comprehensive understanding of active learning models for reducing workload5

in systematic reviews, the current study provides an methodical overview of such models. Active learning6

models were evaluated across four different classification techniques (naive Bayes, logistic regression, support7

vector machines, and random forest) and two different feature extraction strategies (TF-IDF and doc2vec).8

Moreover, models were evaluated across six systematic review datasets from various research areas to assess9

generalizability of active learning models across different research contexts.10

Methods Performance of the models were assessed by conducting simulations on six systematic review11

datasets. We defined desirable model performance as maximizing recall while minimizing the number of12

publications needed to screen. Model performance was evaluated by recall curves, WSS@95, RRF@10, and13

ATD.14

Results Within all datasets, the model performance exceeded screening at random order to a great degree.15

The models reduced the number of publications needed to screen by 91.7% to 63.9%.16

Conclusions Active learning models for screening prioritization show great potential in reducing the17

workload in systematic reviews. Overall, the Naive Bayes + TF-IDF model performed the best.18
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Systematic Review registrations Not applicable.19

Keywords: systematic reviews, active learning, screening prioritization, researcher-in-the-loop, title-and-20

abstract screening, automation, text mining.21



Background22

Systematic reviews are top of the bill in research. A systematic review brings together all available studies23

relevant to answer a specific research question [1]. Systematic reviews inform practice and policy [2] and24

are key in developing clinical guidelines [3]. However, systematic reviews are costly because to identify25

publications relevant to answering the research question, they among else involve the manual screening of26

thousands of titles and abstracts.27

Conducting a systematic review typically requires over a year of work by a team of researchers [4]. Nevertheless,28

systematic reviewers are often bound to a limited budget and timeframe. Currently, the demand for systematic29

reviews exceeds the available time and resources by far [5]. Especially when answering the research question30

at hand is urgent, it is extremely challenging to provide a review that is both timely and comprehensive.31

To ensure a timely review, reducing the workload in systematic reviews is essential. With advances in machine32

learning (ML), there has been wide interest in tools to reduce the workload in systematic reviews [6]. Various33

ML models have been proposed, aiming to predict whether a given publication is relevant or irrelevant to the34

systematic review. Previous findings suggest that such models potentially reduce the workload with 30-70%35

at the cost of losing 5% of relevant publications, in else, a 95% recall [7].36

A well-established approach to increase the efficiency of title and abstract screening is screening prioritization37

[8, 9]. In screening prioritization, the ML model presents the reviewer with the publications that are most38

likely to be relevant first, thereby expediting the process of finding all of the relevant publications. Such39

an approach allows for substantial time-savings in the screening process as the reviewer can decide to stop40

screening after a sufficient number of relevant publications have been found [10]. Moreover, the early retrieval41

of relevant publications facilitates a faster transition of those publications to the next steps in the review42

process [8].43

Recent studies have demonstrated the effectiveness of screening prioritization by means of active learning44

models [10, 11, 12, 13, 14, 15, 16]. With active learning, the ML model can iteratively improve its predictions45

on unlabeled data by allowing the model to select the records from which it wants to learn [17]. The model46

proposes these records to a human annotator who provides the records with labels, which the model then47

uses to update its predictions. The general assumption is that by letting the model select which records are48

labeled, the model can achieve higher accuracy more quickly while requiring the human annotator to label as49

few records as possible [18]. Active learning has proven to be an efficient strategy in large unlabeled datasets50

where labels are expensive to obtain [18]. This makes the screening phase in systematic reviewing an ideal51

candidate solution for such models, because typically labeling a large number of publications is very costly.52



When active learning is applied in the screening phase, the reviewer screens publications that are suggested53

by an active learning model. Subsequently, the active learning model learns from the reviewers’ decision54

(‘relevant’, ‘irrelevant’) and uses this knowledge to update its predictions and to select the next publication55

to be screened by the reviewer.56

The application of active learning models in systematic reviews has been extensively studied [10, 11, 12, 15, 16].57

While previous studies have evaluated active learning models in many forms and shapes [10, 11, 12, 13, 14, 15,58

19, 20, 21], ready-to-use software tools implementing such models (Abstrackr [22], Colandr [23], FASTREAD59

[11], Rayyan [24], and RobotAnalyst [25]) currently use the same classification technique to predict relevance60

of publications, namely support vector machines (SVM). It was found [26, 27] that different classification61

techniques can serve different needs in the retrieval of relevant publications, for example the desired balance62

between recall and precision. Therefore, it is essential to evaluate different classification techniques in the63

context of active learning models. The current study investigates active learning models adopting four64

classification techniques: naive Bayes (NB), logistic regression (LR), SVM, and random forest (RF). These65

are widely adopted techniques in text classification [28] and are fit for software tools to be used in scientific66

practice due to their relatively short computation time.67

Another component that influences model performance is how the textual content of titles and abstracts is68

represented in a model, called the feature extraction strategy [19, 20, 29]. One of the more sophisticated69

feature extraction strategies is doc2vec (D2V), also known as paragraph vectors [30]. D2V learns continuous70

distributed vector representations for pieces of text. In distributed text representations, words are assumed71

to appear in the same context when they are similar in terms of a latent space, the “embedding”. A word72

embedding is simply a vector of scores estimated from a corpus for each word; D2V is an extension of this idea73

to document embeddings. Embeddings can sometimes outperform simpler feature extraction strategies such74

as term frequency-inverse document frequency (TF-IDF). They can be trained on large corpora to capture75

wider semantics and subsequently applied in a specific systematic reviewing application [30]. Therefore, it is76

interesting to compare models adopting D2V to models adopting TF-IDF.77

Lastly, previous studies have mainly focussed on reviews from a single scientific field, like medicine [15, 16] or78

computer science [10, 11]. To draw conclusions about the general effectiveness of active learning models, it79

is essential to evaluate models on reviews from varying research contexts [7, 31]. To our knowledge, Miwa80

et al [12] were the only researchers to make a direct comparison between systematic reviews from different81

research areas, such as the social and the medical sciences. They found that the application of active learning82

to systematic reviews was more difficult on a systematic review from the social sciences due to the different83

nature of the vocabularies used. Thus, it is of interest to evaluate model performance across different research84



contexts, namely social science, medical science and computer science.85

Taken together, for a more comprehensive understanding of active learning models in the context of systematic86

reviewing, a methodical evaluation of such models is required. The current study aims to address this issue87

by answering the following research questions:88

RQ1 What is the performance of active learning models across four classification techniques?89

RQ2 What is the performance of active learning models across two feature extraction strategies?90

RQ3 Does the performance of active learning models differ across six systematic reviews from four research91

areas?92

The purpose of this paper is to show the usefulness of active learning models for reducing workload in title93

and abstract screening in systematic reviews. We adopt four different classification techniques (NB, LR, SVM,94

and RF) and two different feature extraction strategies (TF-IDF and D2V) for the purpose of maximizing95

the number of identified relevant publications, while minimizing the number of publications needed to screen.96

Models were assessed by conducting a simulation on six systematic review datasets. To assess generalizability97

of the models across research contexts, datasets containing previous systeamtic reviews were collected from98

the fields of medical science [32, 33, 34], computer science [11], and social science [35, 36]. The models,99

datasets and simulations are implemented in a pipeline of active learning for screening prioritization, called100

ASReview [37]. ASReview is a generic open source tool, encouraging fellow researchers to replicate findings101

from previous studies. To facilitate usability and acceptability of ML-assisted title and abstract screening in102

the field of systematic review our scripts and data used are openly available.103

Methods104

Technical details105

What follows is a more detailed account of the active learning models to clarify the choices made in the106

design of the current study.107

Task description108

The screening process of a systematic review starts with all publications obtained in the search. The task is109

to identify which of these publications are relevant, by screening their titles and abstracts. In active learning110

for screening prioritization, the screening process proceeds as follows:111

• Start with the set of all unlabeled records (titles and abstracts)112



• The reviewer provides a label for a few, e.g. 5-10 records, creating a set of labeled records. The label113

can be either relevant or irrelevant.114

• The active learning cycle starts:115

1. A classifier is trained on the labeled records116

2. The classifier predicts relevancy scores for all unlabeled records117

3. Based on the predictions by the classifier, the model selects the record with the highest relevancy118

score119

4. The model requests the reviewer to screen this record120

5. The reviewer screens the record and provides a label, relevant or irrelevant.121

6. The newly labeled record is moved to the training data122

7. Back to step 1123

8. Repeat this cycle until the reviewer decides to stop [10] or until all records have been labeled124

In this active learning cycle, the model incrementally improves its predictions on the remaining unlabeled125

title and abstracts. Relevant titles and abstracts are identified as early in the process as possible. A more126

technical description of the active learning cycle can be found in Additional file 1.127

This case is an example of pool-based active learning, as the next record to be queried is selected by predicting128

relevancy for all records in a fixed pool [17]. Another form of active learning is stream-based active learning,129

in which the data is regarded as a stream instead of a fixed pool, in which the model selects one record at130

a time and then decides whether or not to query this record. This approach of active learning is preferred131

when it is expensive or impossible to exhaustively search the data for selecting the next query. A possible132

application of stream-based active learning is living systematic reviews, as the review is continually updated133

as new evidence becomes available. For an example see the study by Wynants et al. [38].134

Class imbalance problem135

Typically, only a fraction of the publications belong to the relevant class (2.94%, [4]). To some extent, this136

fraction is under the control of the researcher through the search criteria: if the researcher narrows the search137

query, it will generally result in a higher proportion of relevant publications. However, in most applications138

this practice would yield an unacceptable number of false negatives (erroneously excluded papers) in the139

querying phase of the review process. For this reason, the querying phase in most practical applications140



would yield a very low percentage of relevant publications. Because there are generally far fewer examples of141

relevant than irrelevant publications to train on, the class imbalance causes the classifier to miss relevant142

publications [7]. Moreover, classifiers can achieve high accuracy but still fail to identify any of the relevant143

publications [15].144

Previous studies have addressed the class imbalance problem by rebalancing the training data in various ways145

[7]. To decrease the class imbalance in the training data, we rebalance the training set by a technique we146

propose to call “dynamic resampling” (DR). DR undersamples the number of irrelevant publications in the147

training data, whereas the number of relevant publications are oversampled such that the size of the training148

data remains the same. The ratio between relevant and irrelevant publications in the rebalanced training149

data is not fixed, but dynamically updated and depends on the number of publications in the available150

training data, the total number of publications in the dataset, and the ratio between relevant and irrelevant151

publications in the available training data. Additional file 2 provides a detailed script to perform DR.152

Classification153

To make relevancy predictions on the unlabeled publications, a classifier is trained on features from the154

training data. The performance of the following four classifiers is explored:155

• Support vector machines (SVM) - SVMs separate the data into classes by finding a multidimensional156

hyperplane [39, 40].157

• L2-regularized logistic regression (LR) - models the probabilities describing the possible outcomes158

by a logistic function. The classifier uses regularization, shrinking coefficients of features with small159

contributions to the solution towards zero.160

• Naive Bayes (NB) is a supervised learning algorithm often used in text classification. Based on Bayes’161

theorem, with the ‘naive’ assumption that all features are independent given the class value [41].162

• Random forests (RF) is a supervised learning algorithm where a large number of decision trees are fit163

on samples obtained from the original data by sampling both rows (bootstrapped samples) and columns164

(feature samples). In prediction mode, each tree casts a vote on the class, and the final prediction is the165

class that received the most votes [42].166

Feature extraction167

To predict relevance of a given publication, the classifier uses information from the publications in the dataset.168

Examples of information are titles and abstracts. However, a model cannot make predictions from the titles169



and abstracts as they are; their textual content needs to be represented numerically as feature vectors. This170

process of numerically representing textual content is referred to as ‘feature extraction’.171

TF-IDF is a specific way of assigning scores to the cells of the “document-term matrix” used in all bag-of-words172

representations. That is, the rows of the document-term matrix represent the documents (titles and abstracts)173

and the columns represent all words in the dictionary. Instead of simply counting the number of times each174

word occurred in the given document, TF-IDF assigns a score to a word relative to the number of documents175

the word occurs. The idea behind weighting words by their rarity is that surprising word choices should176

subsequently make for more discriminative features [43]. A disadvantage of TF-IDF and other bag-of-words177

methods is that they do not take the ordering of words into account, thereby ignoring syntax. However, in178

practice, TF-IDF is often found to be a strong baseline [44].179

In recent years, a range of modern methods have been developed that often outperform bag-of-words180

approaches. Here, we consider doc2vec, an extension of the classic word2vec embedding [30]. In word181

embedding models, whether a word did or did not happen to appear in a specific context is predicted by182

its similarity to that context in a latent space - the “embedding”. The context is usually a sliding window183

across training sentences. For example, if the window “child ate cookies” occurs in the training data, this184

might be compared with a random ‘negative’ window that did not occur, such as “child lovely cookies”. The185

tokens “child” and “cookies” are then assigned scores (vectors) that give a higher inner product with the186

“child” vector, and a smaller product with “lovely”. The word vectors of “ate” and “lovely” are similarly187

updated. Typically the embedding dimension is a few hundred, i.e. each word vector contains some two188

hundred scores. Note that if “cookies” previously co-occurred frequently with “spinach”, then the above189

also indirectly makes “ate” more similar to “spinach”, even if these two words have not been observed yet190

in the same context. Thus, the distributed representation learns something of the meaning of these words191

through their occurrence in similar contexts. D2V performs such a procedure while including a paragraph192

identifier, allowing for paragraph embeddings - or, in our case, embeddings for titles and abstracts. In short,193

D2V converts each abstract into a vector of a few hundred scores, which can be used to predict relevancy.194

Query strategy195

The active learning model can adopt different strategies in selecting the next publication to be screened by196

the reviewer. A strategy mentioned before is selecting the publication with the highest probability of being197

relevant. In the active learning literature this is referred to as certainty-based active learning [17]. Another198

well-known strategy is uncertainty-based active learning, where the instances that are presented next are199

those instances on which the model’s classifications are the least certain, i.e. close to 0.5 probability [17].200



Further strategies include selecting the next instance to optimize for various criteria, including: model fit201

(MLI), model change (MMC), parameter estimate accuracy (EVR), and expected (EER) or worst-case (MER)202

prediction accuracy [45]. Although uncertainty sampling is not explicitly motivated by the optimization of203

any particular criterion, intuitively it can be seen as attempting to improve the model’s accuracy by reducing204

uncertainty about its parameter estimates.205

Simulation-based comparisons of these methods across different domains have yielded an ambiguous picture206

of their relative strengths [12, 45]. What has become clear from such studies is that the features of the task207

at hand determine the effectiveness of active learning strategies (“no free active lunch”). For example, if208

a linear classifier is used for a task that also happens to have a Bayes optimal linear decision boundary, a209

model-based approach such as Fisher information reduction can be expected to perform well, whereas the210

same technique can be disastrous when the model is misspecified - a fact that cannot be known in advance.211

Furthermore, the criteria mentioned above differ from the task of title and abstract screening in systematic212

reviews: here, the aim is not to obtain an accurate model, but rather to end up with a list of records belonging213

to the relevant class [46]. This is the criterion corresponding intuitively to certainty-based sampling. For this214

reason, we choose to focus on certainty-based sampling strategies as the baseline strategy for active learning215

in systematic reviewing. However, different strategies may outperform our baseline in specific applications.216

Simulation study217

This section describes the simulation study that was carried out to answer the research questions.218

Set-up219

To address RQ1, four models were investigated combining each classifier with TF-IDF feature extraction:220

1. SVM + TF-IDF221

2. NB + TF-IDF222

3. RF + TF-IDF223

4. LR + TF-IDF224

To address RQ2, the classifiers were combined with D2V feature extraction, leading to the following three225

combinations:226

5. SVM + D2V227

6. RF + D2V228

7. LR + D2V229



The combination NB + D2V could not be tested because the multinomial naive Bayes classifier1 requires230

a feature matrix with positive values, whereas the D2V feature extraction approach2 produces a feature231

matrix that can contain negative values. The performance of the seven models was evaluated by simulating232

every model on six systematic review datasets, addressing RQ3. Hence, 42 simulations were carried out,233

representing all model-dataset combinations.234

Instead of having a human reviewer label publications manually, the screening process was simulated by235

retrieving the labels in the data. Each simulation started with an initial training set of one relevant and one236

irrelevant publication to represent a challenging scenario where the reviewer has very little prior knowledge237

on the publications in the data. The model was retrained each time after a publication had been labeled. A238

simulation ended after all publications in the dataset had been labeled. To account for sampling variance,239

every simulation was repeated 15 times. To account for bias due to the content of the initial publications,240

the initial training set was randomly sampled from the dataset for each of the 15 trials. Although varying241

over trials, the 15 initial training sets were kept constant for each dataset to allow for a direct comparison of242

models within datasets. A seed value was set to ensure reproducibility. The simulation study was carried out243

using the ASReview simulation extension [47]. For each simulation, hyperparameters were optimized through244

a Tree of Parzen Estimators (TPE) algorithm [48] to arrive at maximum model performance.245

Simulations were carried out in ASReview version 0.9.3 [47]. Analyses were carried out using R version 3.6.1246

[49]. The simulations were carried out on Cartesius, the Dutch national supercomputer.247

Datasets248

The models were simulated on a convenience sample of six systematic review datasets. The data selection249

process was driven by two factors. Firstly, datasets are collected from various research areas to assess250

generalizability of the models across research contexts (RQ3). Secondly, all original data files have to be251

openly published with a CC-BY license. Datasets are available through ASReview’s systematic review252

datasets GitHub3.253

The Wilson dataset [50] - from the field of medicine - is from a review on the effectiveness and safety of254

treatments of Wilson Disease, a rare genetic disorder of copper metabolism [33]. From the same field, the255

ACE dataset contains publications on the efficacy of Angiotensin-converting enzyme (ACE) inhibitors, a256

treatment drug for heart disease [32]. Additionally, the Virus dataset is from a systematic review on studies257

1https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.Multi
nomialNB

2https://radimrehurek.com/gensim/models/doc2vec.html
3https://github.com/asreview/systematic-review-datasets

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB
https://radimrehurek.com/gensim/models/doc2vec.html
https://github.com/asreview/systematic-review-datasets


that performed viral Metagenomic Next-Generation Sequencing (mNGS) in farm animals [34]. From the field258

of computer science, the Software dataset contains publications from a review on fault prediction in software259

engineering [51]. The Nudging dataset [52] belongs to a systematic review on nudging healthcare professionals260

[35], stemming from the social sciences. From the same research area, the PTSD dataset contains publications261

on studies applying latent trajectory analyses on posttraumatic stress after exposure to traumatic events262

[36]. Of these six datasets, ACE and Software have been used for model simulations in previous studies on263

ML-aided title and abstract screening [11, 32].264

Data were preprocessed from their original source into a dataset, containing title and abstract of the265

publications obtained in the initial search. Duplicates and publications with missing abstracts were removed266

from the data. Datasets were labeled to indicate which candidate publications were included in the systematic267

review, thereby denoting relevant publications. All datasets consisted of thousands of candidate publications,268

of which only a fraction was deemed relevant to the systematic review. For the Virus and the Nudging269

dataset, this proportion was about 5 percent. For the remaining six datasets, the proportions of relevant270

publications were centered around 1-2 percent. (Table 1).271

Evaluating performance272

Model performance was assessed by three different measures, Work Saved over Sampling (WSS), Relevant273

References Found (RRF), and Average Time to Discovery (ATD). WSS indicates the reduction in publications274

needed to be screened, at a given level of recall [32]. Typically measured at a recall level of 95%, WSS@95275

yields an estimate of the amount of work that can be saved at the cost of failing to identify 5% of relevant276

publications. In the current study, WSS is computed at 95% recall. RRF@10 represents the proportion of277

relevant publications that are found after screening 10% of all publications.278

Both RRF and WSS are sensitive to the position of the cutoff value and the distribution of the data.279

Moreover, WSS makes assumptions about the acceptable recall level whereas this level might depend on the280

research question at hand [7]. Therefore, we introduce the ATD, the average fraction of non-reviewed relevant281

publications during the review (except the relevant publications in the initial training set). The ATD is an282

indicator of performance throughout the entire screening process instead of performance at some arbitrary283

cutoff value. The ATD is computed by taking the average of the Time to Discovery (TD) of all relevant284

publications. The TD for a given relevant publication i is computed as the fraction of publications needed to285

screen to detect i. Additional file 3 provides a detailed script to compute the ATD.286

Furthermore, model performance was visualized by plotting recall curves. Plotting recall as a function of287

the proportion of screened publications offers insight in model performance throughout the entire screening288

mailto:WSS@95
mailto:RRF@10


process [11, 13]. The curves give information in two directions. On the one hand they display the number of289

publications that need to be screened to achieve a certain level of recall, but on the other hand they present290

how many relevant publications are identified after screening a certain proportion of all publications (RRF).291

For each simulation, the RRF@10, WSS@95, and ATD are reported as means over 15 trials. To indicate the292

spread of performance within simulations, the means are accompanied by an estimated standard deviation293

ŝ. To compare the overall performance across datasets, median performance is reported for every dataset,294

accompanied by the Median Absolute Deviation (MAD), indicating variability between models within a295

certain dataset. Recall curves are plotted for each simulation, representing the average recall over 15 trials ±296

the standard error of the mean.297

Results298

This section proceeds as follows: Firstly, as an example the results of the Nudging dataset are discussed in299

detail to provide a basis for answering the research questions. Secondly, the results are presented for each300

research question over all datasets.301

Evaluation on the Nudging dataset302

Figure 1a shows the recall curves for all simulations on the Nudging dataset. As described in the previous303

section, these curves plot recall as a function of the proportion of publications screened. The curves represent304

the average recall over 15 trials ± the standard error of the mean in the direction of the y-axis. The x-axis305

is cut off at 40% since at this point in screening all models had already reached 95% recall. The dashed306

horizontal lines indicate the RRF@10 values, the dashed vertical lines the WSS@95 values. The dashed black307

diagonal line corresponds to the expected recall curve when publications are screened in a random order.308

The recall curves were used to examine model performance throughout the entire screening process and309

to make a visual comparison between models within datasets. For example in Figure 1a, after screening310

about 30% of the publications all models had already found 95% of the relevant publications. Moreover,311

after screening 5% the green curve - representing the RF + TF-IDF model - splits away from the others312

and remains to be the lowest of all curves until about 30% of publications have been screened. Hence, from313

screening 5 to 30 percent of publications, the RF + TF- IDF model was the slowest in finding the relevant314

publications. The ordering of the remaining recall curves changes throughout the screening process, but315

maintain relatively similar performance at face value.316

Figure 1b shows a subset of the recall curves in Figure 1a, namely the curves of the first four models to317
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allow for a visual comparison across classification techniques adopting the TF-IDF feature extraction strategy.318

Figure 1c shows recall curves for the remaining three models to compare the models using D2V feature319

extraction. Figures 1d to 1f compare recall curves for models adopting the TF-IDF feature extraction strategy320

to recall curves for their D2V-using counterparts.321

It can be seen from Table 2 that in terms of ATD, the best performing models on the Nudging dataset were322

SVM + D2V and LR + D2V, both with an ATD of 8.8%. This indicates that the average proportion of323

publications needed to screen to find a relevant publication was 8.8% for both models. In the SVM + D2V324

model, the standard deviation was 0.33, whereas for the LR + D2V model ŝ = 0.47. This indicates that for325

the SVM + D2V model, the ATD values of individual trials were closer to the overall mean compared to326

the LR + D2V model, meaning that the SVM + D2V model performed more stable across different initial327

training datasets. Median ATD for this dataset was 9.5% with an MAD of 1.05, indicating that for half of328

the models, the ATD was within 1.05 percentage point distance from the median ATD.329

As Table 3 shows, the highest WSS@95 value on the Nudging dataset was achieved by the NB + TF-IDF330

model with a mean of 71.7%, meaning that this model reduced the number of publications needed to screen331

by 71.7% at the cost of losing 5% of relevant publications. The estimated standard deviation of 1.37 indicates332

that in terms of WSS@95, this model performed the most stable across trials. The model with the lowest333

WSS@95 value was RF + TF-IDF (x̄ = 64.9%, ŝ = 2.50). Median WSS@95 of these models was 66.9%, with334

a MAD of 3.05, indicating that of all datasets, the WSS@95 values of the models simulated on the Nudging335

dataset varied the most within the Nudging dataset.336

As can be seen from the data in Table 4, LR + D2V was the best performing model in terms of RRF@10,337

with a mean of 67.5% indicating that after screening 10% of publications, on average 67.5% of all relevant338

publications had been identified, with a standard deviation of 2.59. The worst performing model was RF +339

TF-IDF (x̄ = 53.6%, ŝ = 2.71). Median performance was 62.6%, with an MAD of 3.89 indicating again that340

of all datasets, the RRF@10 values were most dispersed for models simulated on the Nudging dataset.341

Overall evaluation342

Recall curves for the simulations on the five remaining datasets are presented in Figure 2. For the sake of343

conciseness, recall curves are only plotted once per dataset, like in Figure 1a for the Nudging dataset. Please344

refer to Additional file 4 for figures presenting subsets of recall curves for the remaining datasets, like in345

Figure 1b-f.346

First of all, as the recall curves exceed the expected recall at screening at random order by far for all datasets,347
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the models were able to detect the relevant publications much faster compared to when screening publications348

at random order. Even the worst results outperform this reference condition. Across simulations, the ATD349

was at maximum 11.8% (in the Nudging dataset), the WSS@95 at least 63.9% (in the Virus dataset), and350

the lowest RRF@10 was 53.6% (in the Nudging dataset). Interestingly, all these values were achieved by the351

RF + TF-IDF model.352

Similar to the simulations on the Nudging dataset (Figure 1a), the ordering of recall curves changes throughout353

the screening process, indicating that some models perform better at the start of the screening phase whereas354

others models take the lead later on. Moreover, the ordering of models in the Nudging dataset (Figure 1a) is355

not replicated in the remaining five datasets (Figure 2).356

RQ1 - Comparison across classification techniques357

The first research question was aimed at evaluating the four models adopting either the NB, SVM, LR or358

RF classification technique combined with TF-IDF feature extraction. When comparing ATD-values of the359

models (Table 2), the NB + TF-IDF model ranked first in the ACE, Virus, and Wilson dataset, shared first360

in the PTSD and Software dataset, and second in the Nudging dataset in which the SVM + D2V and LR +361

D2V models achieved the lowest ATD value. The RF + TF-IDF ranked last in all of the datasets except for362

the ACE and the Wilson dataset, in which the RF + D2V model achieved the highest ATD-value.363

Additionally, in terms of WSS@95 (Table 3) the ranking of models was strikingly similar across all datasets.364

In the Nudging, ACE, and Virus dataset, the highest WSS@95 value was always achieved by the NB +365

TF-IDF model, followed by LR + TF-IDF, SVM + TF-IDF, and RF + TF-IDF. In the PTSD and the366

Software dataset this ranking applied as well, except that two models showed the same WSS@95 value. The367

ordering of the models for the Wilson dataset was NB + TF-IDF, RF + TF-IDF, LR + TF-IDF and SVM +368

TF-IDF.369

Moreover, in terms of RRF@10 (Table 4) the NB + TF-IDF model achieved the highest RRF@10 value in the370

ACE and Virus dataset. Within the PTSD dataset, LR + TF-IDF was the best performing model, for the371

Software and Wilson dataset this was SVM + D2V, and for the Nudging dataset LR + D2V performed best.372

Taken together, these results show that while all four models perform quite well, the NB + TF-IDF model373

demonstrates high performance on all measures across all datasets, whereas the RF + TF-IDF model never374

performed best on any of the measures across all datasets.375
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RQ2 - Comparison across feature extraction techniques376

This section is concerned with the question of how models using different feature extraction strategies relate377

to each other. The recall curves for the Nudging dataset (Figure 1d-f) show a clear trend of the models378

adopting D2V feature extraction outperforming their TF-IDF counterparts. This trend also shows from379

the WSS@95 and RRF@10 values indicated by the vertical and horizontal lines in the figure. Likewise, the380

ATD values (Table 2) indicate that for the models adopting a particular classification technique, the models381

adopting D2V feature extraction always achieved a lower ATD-value than the model adopting TF-IDF feature382

extraction.383

In contrast, this pattern of models adopting D2V outperforming their TF-IDF counterparts in the Nudging384

dataset is not replicated across other datasets. Whether evaluated in terms of recall curves, WSS@95,385

RRF@10, or ATD, the findings were mixed. Neither one of the feature extraction strategies showed superior386

performance within certain datasets nor within certain classification techniques.387

RQ3 - Comparison across research contexts388

First of all, models showed much higher recall curves for some datasets than for others. While performance389

of the PTSD (Figure 2a) and Software datasets (Figure 2b) was quite high, performance was much lower390

across models for the Nudging (Figure 1a) and Virus (Figure 2d) datasets. The models simulated on the391

PTSD and Software datasets also demonstrated high performances in terms of the median ATD, WSS@95,392

and RRF@10 values for these models (Table 2, 3, and 4).393

Secondly, variability of between-model performance differed across datasets. For the PTSD (Figure 2a),394

Software (Figure 2b), and the Virus (Figure 2d) datasets, recall curves form a tight group meaning that within395

these datasets, the models performed similarly. In contrast, for the Nudging (Figure 1a), ACE (Figure 2c),396

and Wilson (Figure 2e) dataset, the recall curves are much further apart, indicating that model performance397

was more dependent on the adopted classification technique and feature extraction strategy. The MAD values398

of the ATD, WSS@95 and RRF@10 confirm that model performance is less spread out within the PTSD,399

Software, and Virus datasets than within the Nudging, ACE, and Wilson datasets. Moreover, the curves for400

the ACE (Figure 2c) and Wilson (Figure 2e) datasets show a larger standard error of the mean compared the401

other datasets.402

Taken together, although model performance is very data-dependent, there does not seem to be a distinction403

in performance between the datasets from the biomedical sciences (ACE, Virus, and Wilson) and datasets404

from other fields (Nudging, PTSD, and Software).405

mailto:WSS@95
mailto:RRF@10
mailto:WSS@95
mailto:RRF@10
mailto:WSS@95
mailto:RRF@10
mailto:WSS@95
mailto:RRF@10


Discussion406

The current study evaluates the performance of active learning models for the purpose of identifying relevant407

publications in systematic review datasets. It has been one of the first attempts to examine different408

classification strategies and feature extraction strategies in active learning models for systematic reviews.409

Moreover, this study has provided a deeper insight into the performance of active learning models across410

research contexts.411

Active learning-based screening prioritization412

All models were able to detect 95% of the relevant publications after screening less than 40% of the total413

number of publications, indicating that active learning models can save more than half of the workload in414

the screening process. In a previous study, the ACE dataset was used to simulate a model that did not use415

active learning, finding a WSS@95 value of 56.61% [32], whereas the models in the current study achieved416

far superior WSS@95 values varying from 68.6% to 82.9% in this dataset. In another study [11] that did417

use active learning, the Software dataset was used for simulation and a WSS@95 value of 91% was reached,418

strikingly similar to the values found in the current study which ranged from 90.5% to 92.3%.419

Classification techniques420

The first research question in this study sought to evaluate models adopting different classification techniques.421

The most important finding to emerge from these evaluations was that the NB + TF-IDF model consistently422

performed as one of the best models. Our results suggest that while SVM performed fairly well, the LR and423

NB classification techniques are good if not superior alternatives to this default classifier in software tools.424

Note that LR and NB were always good methods for text classification tasks [53].425

Feature extraction strategy426

The overall results on models adopting D2V versus TF-IDF feature extraction strategy remain inconclusive.427

According to our findings, models adopting D2V do not outperform models adopting the well-established428

TF-IDF feature extraction strategy. Given these results, preference goes out to the TF-IDF feature extraction429

technique as this relatively simple technique will lead to a model that is easier to interpret. Another advantage430

of this technique is its short computation time.431
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Research contexts432

Difficulty of applying active learning is not confined to any particular research area. The suggestion that433

active learning is more difficult for datasets from the social sciences compared to data from the medical434

sciences [12] does not seem to be the case. A possible explanation for this is that this difficulty has to be435

attributed to factors more directly related to the systematic review at hand, such as the proportion of relevant436

publications or the complexity of inclusion criteria used to identify relevant publications [16, 54]. Although437

the current study did not investigate the inclusion criteria of systematic reviews, the datasets on which the438

active learning models performed worst, Nudging and Virus, were interestingly also the datasets with the439

highest proportion of relevant publications, 5.4% and 5.0%, respectively.440

Limitations and future research441

When applied to systematic reviews, the success of active learning models stands or falls with the gener-442

alizability of model performance across unseen datasets. In our study, is important to bear in mind that443

model hyperparameters were optimized for each model-dataset combination. Thus, the observed results444

reflect the maximum model performance for each presented datasets. The question remains whether model445

performance generalizes to datasets for which the hyperparameters are not optimized. Further research446

should be undertaken to determine the sensitivity of model performance to the hyperparameter values.447

Additionally, while the sample of datasets in the current study is diverse compared to previous studies, the448

sample size (n=6) does not allow for investigating how model performance relates to characteristics of the449

data, such as the proportion of relevant publications. To build more confidence in active learning models for450

screening publications, it is essential to identify how data characteristics affect model performance. Such a451

study requires more data on systematic reviews. Thus, a more thorough study depends on researchers to452

openly publish their systematic review datasets.453

Moreover, the runtime of simulations varied widely across models, indicating that some models take longer454

to retrain after a publication has been labeled than other models. This has important implications for the455

practical application of such models, as an efficient model should be able to keep up with the decision-making456

speed of the reviewer. Further studies should take into account the retraining time of models.457

Conclusions458

Overall, the findings confirm the great potential of active learning models to reduce the workload for systematic459

reviews. The results shed new light on the performance of different classification techniques, indicating that460



the NB classification technique is superior to the widely used SVM. As model performance differs vastly461

across datasets, this study raises the question which factors cause models to yield more workload savings for462

some systematic review datasets than for others. In order to facilitate the applicability of active learning463

models in systematic review practice, it is essential to identify how dataset characteristics relate to model464

performance.465
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Figures

Figure 1: Recall curves of different models for the Nudging dataset, indicating how fast the model finds

relevant publications during the process of screening publications. Figure a displays curves for all seven

models at once. Figures b to f display curves for several subsets of those models to allow for a more detailed

inspection of model performance.

Figure 2: Recall curves of all seven models for (a) the PTSD, (b) Software, (c) ACE, (d) Virus, and (e)

Wilson dataset.

Tables

Table 1: Statistics on the datasets obtained from six original systematic reviews.

Dataset Candidate publications Relevant publications Proportion relevant (%)
Nudging 1,847 100 5.4
PTSD 5,031 38 0.8
Software 8,896 104 1.2
ACE 2,235 41 1.8
Virus 2,304 114 5.0
Wilson 2,333 23 1.0

Table 2: ATD values (x̄(ŝ)) for all model-dataset combinations. For every dataset, the best results are in

bold. Median (MAD) is given for all datasets.

Nudging PTSD Software ACE Virus Wilson
SVM + TF-IDF 10.1 (0.18) 2.1 (0.13) 1.9 (0.04) 7.1 (1.15) 8.5 (0.17) 4.0 (0.32)
NB + TF-IDF 9.3 (0.29) 1.7 (0.11) 1.4 (0.03) 4.9 (0.51) 8.2 (0.22) 3.9 (0.35)
RF + TF-IDF 11.7 (0.44) 3.3 (0.26) 2.0 (0.09) 6.8 (0.74) 10.5 (0.42) 5.6 (1.15)
LR + TF-IDF 9.5 (0.19) 1.7 (0.10) 1.4 (0.01) 5.9 (1.17) 8.3 (0.24) 4.3 (0.32)
SVM + D2V 8.8 (0.33) 2.1 (0.15) 1.4 (0.05) 6.1 (0.33) 8.4 (0.21) 4.5 (0.30)
RF + D2V 10.3 (0.87) 3.0 (0.33) 1.6 (0.09) 7.2 (1.26) 9.2 (0.43) 7.2 (1.49)
LR + D2V 8.8 (0.47) 1.9 (0.16) 1.4 (0.04) 5.4 (0.18) 8.3 (0.40) 4.7 (0.30)

median (MAD) 9.5 (1.05) 2.1 (0.48) 1.4 (0.12) 6.1 (1.11) 8.4 (0.18) 4.5 (0.64)

Table 3: WSS@95 values (x̄(ŝ)) for all model-dataset combinations. For every dataset, the best results are in

bold. Median (MAD) is given for all datasets.



Nudging PTSD Software ACE Virus Wilson
SVM + TF-IDF 66.2 (2.90) 91.0 (0.41) 92.0 (0.10) 75.8 (1.95) 69.7 (0.81) 79.9 (2.09)
NB + TF-IDF 71.7 (1.37) 91.7 (0.27) 92.3 (0.08) 82.9 (0.99) 71.2 (0.62) 83.4 (0.89)
RF + TF-IDF 64.9 (2.50) 84.5 (3.38) 90.5 (0.34) 71.3 (4.03) 63.9 (3.54) 81.6 (3.35)
LR + TF-IDF 66.9 (4.01) 91.7 (0.18) 92.0 (0.10) 81.1 (1.31) 70.3 (0.65) 80.5 (0.65)
SVM + D2V 70.9 (1.68) 90.6 (0.73) 92.0 (0.21) 78.3 (1.92) 70.7 (1.76) 82.7 (1.44)
RF + D2V 66.3 (3.25) 88.2 (3.23) 91.0 (0.55) 68.6 (7.11) 67.2 (3.44) 77.9 (3.43)
LR + D2V 71.6 (1.66) 90.1 (0.63) 91.7 (0.13) 77.4 (1.03) 70.4 (1.34) 84.0 (0.77)

median (MAD) 66.9 (3.05) 90.6 (1.53) 92.0 (0.47) 77.4 (5.51) 70.3 (0.90) 81.6 (2.48)

Table 4: RRF@10 values (x̄, (ŝ)) for all model-dataset combinations. For every dataset, the best results are

in bold. Median (MAD) is given for all datasets.

Nudging PTSD Software ACE Virus Wilson
SVM + TF-IDF 60.2 (3.12) 98.6 (1.40) 99.0 (0.00) 86.2 (5.25) 73.4 (1.62) 90.6 (1.17)
NB + TF-IDF 65.3 (2.61) 99.6 (0.95) 98.2 (0.34) 90.5 (1.40) 73.9 (1.70) 87.3 (2.55)
RF + TF-IDF 53.6 (2.71) 94.8 (1.60) 99.0 (0.00) 82.3 (2.75) 62.1 (3.19) 86.7 (5.82)
LR + TF-IDF 62.1 (2.59) 99.8 (0.70) 99.0 (0.00) 88.5 (5.16) 73.7 (1.48) 89.1 (2.30)
SVM + D2V 67.3 (3.00) 97.8 (1.12) 99.3 (0.44) 84.2 (2.78) 73.6 (2.54) 91.5 (4.16)
RF + D2V 62.6 (5.47) 97.1 (1.90) 99.2 (0.34) 80.8 (5.72) 67.3 (3.19) 75.5 (14.35)
LR + D2V 67.5 (2.59) 98.6 (1.40) 99.0 (0.00) 81.7 (1.81) 70.6 (2.21) 90.6 (5.00)

median (MAD) 62.6 (3.89) 98.6 (1.60) 99.0 (0.00) 84.2 (3.71) 73.4 (0.70) 89.1 (2.70)

Additional files

Additional file 1 — The active learning cycle

additional-file-1-active-learning-cycle.pdf. Description: The active learning cycle for screening prioritization

in systematic reviews.

Additional file 2 — Dynamic Resampling

additional-file-2-DR.pdf. Description: Algorithm describing how to rebalance training data by the Dynamic

Resampling (DR) strategy.

Additional file 3 — Average Time to Discovery

additional-file-3-ATD.pdf. Description: Definition of the Average Time to Discovery (ATD), a metric to

assess the model performance.



Additional file 4 — Recall curves

additional-file-4-recall-curves.pdf. Description: Various subsets of recall curves for the PTSD, Software, ACE,

Virus, and Wilson datasets, like Figure 1 presents curves for the Nudging dataset.
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