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EXECUTIVE SUMMARY 

High levels of photovoltaic (PV) power penetration pose challenges to the operational 

performance of the power system. Regional forecasts of PV power allow transmission system 

operators (TSOs) and distribution system operators (DSOs) to take appropriate measures to 

maintain balance between supply and demand.  

In this work, we compare the accuracy of several up-scaling methods for regional PV power 

forecast from 1 up to 3 days-ahead using three different case studies characterized by 

different sizes of the area of interest and located in two different countries:  

 Forecast of the aggregated PV power output of 150 PV systems in the province of Utrecht 

(Netherlands) within a controlled area of 1.4 x103 km2;  

 Forecast of the regional PV generation of six Italian macro zones (market zones) with 

controlled areas that range from 24x103 to 119x103 km2; 

 Forecast of the regional PV generation of the whole of Italy with a controlled area of  

300 x103 km2. 

The up-scaling approaches are applied to map meteorological forecasts of numerical weather 

prediction (NWP) models to regional PV power generation. All the up-scaling methods shown 

here directly predict the regional PV power generation, i.e. they consider the PV power output 

of the whole PV fleet as if it had been produced by a single “virtual” solar power plant, rather 

than predicting PV power for representative PV power plants as a basis to predict regional PV 

power. 

In order to improve regional PV power forecasts and to advance the state-of-the-art, it is 

important that researchers have access to identical datasets, so they may compare their new 

methods. To that end, this report presents three datasets for Italy and Utrecht, the 

Netherlands. More specifically, for Italy, the datasets are made of satellite derived global 

horizontal irradiance data, numerical weather forecasting of some variables affecting PV 

production and corresponding PV power data. The Utrecht dataset is comprised of NWP 

forecasts and aggregated PV power measurements of 150 systems. These datasets have 

been cleaned in order to be suitable to test different PV power forecasting methods. 

The focus of this work is on the comparison of different PV power up-scaling methods, that 

have been performed on the aforementioned datasets. Since accuracy of a PV power forecast 

model is greatly affected by the input NWP data, the same NWP forecast has been used 

within each case study. Among the benchmarks methods there are artificial neural networks, 

analog ensembles, cooperative ensembles of machine learning algorithms, quantile regression 

forests, random forests and gradient boosted regression trees. These methods use state-of-

the-art machine-learning approaches and allow researchers to compare their new models 

against each other. It should be noted that probabilistic forecast evaluation is not in the scope 

of this report, although several models presented herein are capable of producing probabilistic 

forecasts. Besides the description of the benchmark models, the report also describes several 

feature engineering techniques and pre-processing procedures aimed at improving the 

accuracy of the benchmarks presented herein. The accuracy of the benchmark models is 

assessed extensively, both quantitatively and qualitatively, allowing researchers and engineers 

to thoroughly compare their new methods against these benchmarks. 
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For the PV power forecasts at the zonal levels of Italy, the analog ensemble model achieves a 

root mean squared error (RMSE) skill score between 20% and 36% and a mean bias error 

(MBE) between -1.9% and 1.5% for all forecast horizons (i.e., 1-3 days ahead). It should be 

noted that the forecasts and measurements are normalized with respect to the installed 

capacity in the area throughout this report. Considering the 24h ahead forecasts of the entire 

PV fleet of Italy, the benchmarks achieve an RMSE skill score between 28% and 47%, while 

the MBE lies between 0.1% and 1.9%. The so called “smoothing effect” has been also 

investigated over Italy, demonstrating that the RMSE decreases with the root of the area under 

control following an exponential or hyperbolic trend and decreasing from almost 5.5% of the 

installed capacity on average over market zones down to 3.6% over Italy. In addition, blends of 

the models are also applied to this dataset, which improves the RMSE skill score from 47% 

(the best model) to 51% using a nonlinear blending technique. Finally, the benchmark models 

achieve RMSE skill scores between 42% and 44% on the PV power production forecasts over 

the province of Utrecht, the Netherlands, while the MBE lies between 0% and 0.8%. 

The comprehensive analysis presented herein shows to the interested reader the importance 

of carefully tuning all the different up-scaling steps in the PV power forecast chain in order to 

achieve the highest accuracy.  
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FOREWORD 

The International Energy Agency (IEA), founded in November 1974, is an autonomous body 

within the framework of the Organisation for Economic Co-operation and Development 

(OECD) which carries out a comprehensive programme of energy co-operation among its 

member countries 

The IEA Photovoltaic Power Systems Technology Collaboration Programme (IEA-PVPS) is 

one of the collaborative R&D agreements established within the IEA and, since 1993, its 

participants have been conducting a variety of joint projects in the applications of photovoltaic 

conversion of solar energy into electricity. 

The participating countries and organisations can be found on the www.iea-pvps.org website.  

The overall programme is headed by an Executive Committee composed of one 

representative from each participating country or organization, while the management of 

individual Tasks (research projects / activity areas) is the responsibility of Operating Agents. 

Information about the active and completed tasks can be found on the IEA-PVPS website 

www.iea-pvps.org. 

This document is the report of Task 16 “Solar Resource for High Penetration and Large Scale 

Applications”, which includes 20 participating countries from around the world and focuses 

mainly on two scientific issues: (i) high frequency variability and solar forecasts for managing 

grids with high penetration pf PV and local storage and (ii) high quality solar resource 

assessments and forecasts for solar installations notable in the multi MW class. 

The report corresponds to Subtask 3 “Evaluation of Current and Emerging Solar Forecasting 

Techniques” and specifically to Activity 3.2 “Regional Solar Power Forecasting”, which aims to 

collect and disseminate example datasets to help research activities in regional PV power 

forecasting and support the development of methods for aggregated regional PV power 

forecasting. The final goal is facilitating the penetration of distributed renewable systems into 

the electricity grid. 

  

http://www.iea-pvps.org/
http://www.iea-pvps.org/
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ABBREVIATIONS AND ACRONYMS 

AOI Angle of incidence on an equivalent plane of the array [
o
] 

DOY Day of Year 

GHICS Clear Sky Global Horizontal Irradiance 

GHI
FOR

 Forecasted Global Horizontal Irradiance 

GHISAT Global Horizontal Irradiance from Satellite 

IEA International Energy Agency 

𝐾𝐶𝑆
𝐹𝑂𝑅 Forecasted Clear Sky Index 

KPI Key Performance Index 

ML Machine Learning 

MOS Model Output Statistic 

NOCT Nominal Operating Cell Temperature 

NWP Numerical Weather Prediction 

PCA Principal Component Analysis 

POA Plane Of Array 

Pn PV capacity installed in a geographical area [MWp] 

PPV Actual PV Power Generation [MWh] 

𝑃𝑃𝑉
𝐶𝑆 Clear Sky PV Power Generation [MWh] 

𝑃𝑃𝑉
𝐹𝑂𝑅 Forecasted PV Power Generation [MWh] 

PRF Performance Factor 

𝑃𝑉𝐾𝑠𝑐 PV Clear Sky Index 

QRF Quantile Regression Forest 

Tpanel Panel Temperature 

T2m Air Temperature at 2 m above the ground 

TSO / 

DSO 

Transmission and Distribution System Operator 
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1 INTRODUCTION 

Background: Nowadays global warming poses increasing severe risks for the ecosystem, 

which is already facing impact of climate change, including for example rising sea levels and a 

higher frequency of extreme weather events. Global greenhouse gas emission is by far due to 

the intensive use of non-renewable fossil fuel energy sources, which represent today two 

thirds of greenhouse gas emission. 

In order to promptly limit global warming, countries are now adopting actions to facilitate the 

transition towards clean energy sources. While the sector of renewable energies (REs) is 

constantly increasing, this is not sufficient: in order to meet climate targets, the total share of 

RE “must rise from around 15% of the total primary energy supply in 2015 to around two-thirds 

by 2050” [1].  

Photovoltaic (PV) power represents one of the main important shares of the total REs along 

with wind power generation [1]. However, high penetration of PV power generation poses 

several challenges for stability of the electrical grid, due to the stochastic variability of the 

residual electric load, i.e. the difference between the energy need (load) and the distributed PV 

power generation, dependent on meteorological conditions and the course of the sun. In this 

context, accurate forecasting of PV power generation is highly required for a better energy 

scheduling and a proper balance between production and demand. This information is 

essential for Distribution (DSO) and Transmission System Operators (TSO), as well as 

aggregators and energy traders [2].  

Regional PV power forecasting techniques represent a hot topic in the research field and can 

be mainly grouped in physical approaches and data-driven models, requiring detailed PV plant 

information and historical power data for training and inference, respectively. Any combination 

of two or more of the previous models is often used in order to enhance further performances 

and is called hybrid model. Furthermore, sometimes the term “statistical method” is used to 

indicate a PV power generation forecasting technique based on historical data, either by 

means of a statistical analysis of the different input variables (e.g. ARMA, ARIMA, etc.) or by 

using more intelligent machine learning algorithms, able to handle also non-linear and non-

stationary data patterns [3] [4]. 

Two main strategies exist in the literature for regional PV power forecasting. The first strategy 

can be defined as “bottom-up” or accumulation approach, which consists of first predicting the 

power output for each PV site in the regional area under consideration, and subsequently 

aggregating the predictions for the whole area. This method is characterized by high 

computational burden and requires a detailed knowledge of every plant in the area and 

therefore it is not normally feasible, especially for large areas.  

The second strategy is represented by “up-scaling” methods, which may be implemented in 

two possible ways: models output average and model inputs average. In the first case the 

representative PV sites of each area (or clusters of PV plants), are sampled, then the PV 

power production forecast of such plants (or clusters) is rescaled to obtain the regional power 

prediction according to the total capacity in the area. Also in this case it would be necessary to 

estimate with high accuracy the production for the representative plants. This approach can be 

effectively applied only in presence of a significant number of representative plants evenly 

distributed on the area, otherwise the scaling will gain poor results.  

The alternative up-scaling method is based on a direct approach called model inputs average, 

which is based on the spatial smoothing of the input features. In this case the PV power 
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generation of the area is considered as a virtual power plant and prediction is made directly at 

regional level by using a historical data set of power measurements and input meteorological 

data aggregated at a lower level than regional. The main advantage of this approach is the 

possibility of obtaining a reliable power forecast without details on the installations, except for 

the total installed capacity of the area.  

In this report approaches corresponding to the method model inputs average are compared: 

the up-scaling is applied to map meteorological forecasts of NWP prediction models directly to 

regional PV power generation. Of course, the performances of up-scaling models strongly 

depend on the quality of the NWP model adopted, whose accuracy can vary depending on the 

geographical location under control, as well as on weather and climate conditions. Since the 

present work is focused on the comparison of different up-scaling methods and not on the 

impact of different NWP models on the final performance, the same NWP data has been used 

in input to the up-scaling methods for each case study. 

Objective: The objective of this work is twofold: (i) Setup of common reference data sets, 

which were shared among the participants of this study and allowed to compare their models 

on identical datasets. (ii) Setup a benchmark on the aforementioned datasets to evaluate 

performances and compare results of different regional PV power forecasting methods. The 

analysis and the conclusions achieved in the present report facilitates the investigation of new 

challenges in regional PV power generation forecasting, which will be the main subject of the 

next report of IEA Task 16 – Activity 3.2. 

Structure: The manuscript is organized as follows. Chapter 2 depicts the technical 

background, with an overview of the physical quantities involved and a brief introduction to the 

most widely used PV forecasting techniques. The datasets employed in this work are 

described in Chapter 3, whereas Chapter 4 presents the PV power forecasting models used 

for the benchmarking activity. 

Chapter 5 and 6 show the results of the benchmark for Italy and for the province of Utrecht, 

The Netherlands, respectively. Finally, Chapter 7 draws conclusions and outlines possible 

future challenges concerning PV power forecasting at regional level. 
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2 BACKGROUND INFORMATION 

The sun is the single most abundant source of energy [5]. It is possible to harvest part of this 

energy through the photovoltaic (PV) effect by converting irradiance (in Wm-2) into electricity. 

However, this poses challenges due to the fact that the irradiance that reaches the earth’s 

surface is variable, due to the presence of clouds and atmosphere components affecting the 

air transparency (aerosols), and because of the deterministic daily and seasonal course of the 

sun caused by the rotation of the earth and its orbit around the sun. Indeed, high levels of PV 

power penetration introduce a dependence on meteorological conditions into the net load 

curve, i.e. demand minus PV supply, which is the residual electric demand that should be 

covered by dispatchable energy sources, or by means of storage systems [6]. In many energy 

markets the peak demand occurs close to the sunset. As a consequence, the resulting net 

load shows a sharp increase at the beginning of the evening and resembles the shape of a 

duck. The term duck-curve  [7] has been coined for the first time in 2012 by the California 

Independent System Operator and illustrates the mismatch between electricity consumption 

and PV power production.  

PV power forecast is a cost-effective method useful to enable the integration of the solar 

power into the electricity grid. In particular it can be exploited for a better management of 

transmission scheduling in order to reduce energy imbalance and related cost of penalties. A 

regional power forecasting model is a particular type of solar prediction since it benefits from 

the so-called “ensemble smoothing effect”, i.e. the variability of spatially aggregated PV 

systems decreases with the size of the area under control, which in parallel increases the 

accuracy of the forecasts [8]. Furthermore regional PV power forecast requires a different 

strategy with respect to the classical power forecast for single plants, either extrapolating a set 

of representative PV systems to the entire regional PV fleet, or using data driven methods, in 

order to forecast the total generation of an area by means of the existing relationships 

between weather conditions in the area and the corresponding PV power production. 

2.1 Irradiance and its Effect on Production, Consumption and Net 
Load 

Irradiance is defined as the radiant energy that reaches a surface per unit of time [9]. The term 

“irradiance” used here is synonymous with the global horizontal irradiance (GHI), which 

consists of direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI), and which is 

defined as the total solar radiation measured in the horizontal plane. More specifically, GHI is 

defined as in Eq. (1): 

𝑮𝑯𝑰 = 𝑫𝑵𝑰 ∙ 𝒄𝒐𝒔(𝒛) + 𝑫𝑯𝑰 (1) 

where z represents the solar zenith angle. While it is possible to establish a statistical 

relationship between GHI and PV power production, another approach is to calculate the in-

plane irradiance (or Plane of array POA irradiance) from which the PV power may be 

estimated using system information. Figure 1(a) and Figure 1(b) present the relevant angles 

(plane tilt , azimuth angle , latitude , longitude Lloc, zenith angle z, hour angle  and solar 

declination ) that can be used to calculate the angle of incidence , which is necessary to 

calculate the in-plane irradiance. The interested reader is referred to [10] for the mathematical 

derivation. 
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(a) (b) 

Figure 1: In (a), the relevant angles (plane tilt , azimuth angle , latitude , longitude Lloc 

and zenith angle z) that define the location and orientation of the tilted plane. In (b), the 

relevant angles (hour angle  and solar declination ) defining earth’s position relative 

to the sun that constitute the deterministic variability. Combined, these can be used to 

calculate the angle of incidence  and subsequently the plane irradiance. Copied with 

permission of the copyright owners [10]. 

GHI is affected by two types of variability: (1) the deterministic rotation of the earth and its orbit 

around the sun, and (2) the stochastic atmospheric processes such as clouds and wind. These 

types of variability play a crucial role when integrating PV power into the power system. 

Deterministic variability requires seasonal planning and diurnal ramping of traditional power 

plants.  

The deterministic variability component of the GHI time series can be strongly reduced by 

dividing GHI by the clear-sky irradiance, i.e. the horizontal irradiance without any influence 

from (2) (see [9] for the mathematical derivation). The result is an approximately stationary 

time series that has roughly constant mean and variance over time and space and that is 

typically more straightforward to forecast. Stochastic variability, on the other hand, requires 

accurate forecasts in order to schedule traditional power plants appropriately, or necessitates 

backup power plants capable of high ramp rates. Figure 2 presents electricity consumption 

and net load profiles from the California Independent System Operator (CAISO) [11], where 

the net load is defined as electricity consumption minus solar and wind power generation. The 

figure clearly shows the deterministic variability caused by the rotation of the earth and the 

stochastic variability due to clouds and other atmospheric phenomena. 
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Figure 2: Electricity consumption and net load from the California Independent System 

Operator. The net load clearly displays the deterministic variability between sunrise and 

sunset, and the stochastic variability can also be observed. Date accessed: 2018-11-04. 

2.2 Forecast Techniques and Up-scaling 

Forecast requirements depend on the spatio-temporal scale of the purpose or application. For 

instance, irradiance can be forecasted up to 30 minutes ahead at a single site using all sky-

imagers (ASI) with high accuracy, up to six hours ahead for an area using satellite images or 

satellite derived irradiance, or several days ahead for an area using numerical weather 

prediction (NWP) [12]. Figure 3 presents the spatial and temporal scales for the 

aforementioned forecasting techniques.  

Figure 3: The spatial and temporal resolutions of various forecasting techniques. 

Adapted with permission from [13] and originally inspired by [14]. 
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Considering single power plants, in order to map an irradiance forecast to a PV power 

forecast, it is common to use physical based models or data driven models. Physical based 

models describe the PV system in detail through its location and orientation in combination 

with manufacturer specifications, whereas data driven models learn the relationship between 

irradiance and PV power directly from historical data [15]. In the former case, it is common to 

add a temperature forecast due to its relationship with the efficiency of PV panels, whereas 

any related variable (e.g., past measurements, satellite derived irradiance, various NWP 

products, etc.) can be included in the latter case. 

Data driven models can also play an important role when a regional PV power forecast is 

required. In this case, they can spatially aggregate a large number of input variables to directly 

predict the regional solar power generation, providing an effective method to upscale the PV 

generation forecast from the single plant level to the regional level. Indeed usually PV power 

production data from only a small share of total installed capacity in an area is available. 

Furthermore the details on the PV plants in the area are often unknown. In order to produce 

regional PV power forecasts from this subset of PV systems, up-scaling is necessary. Local 

variability plays a minor role in regional forecasts due to the geographical smoothing effect, i.e. 

spatial averaging. In contrast, regional weather phenomena require an accurate representation 

of the spatial distribution of the PV systems in order to forecast their impact accurately [16]. 

Currently, many grid operators use measurements and forecasts of the power of some 

reference systems to estimate the regional power production [17]. Recently, however, 

researchers have investigated more sophisticated methods to estimate regional PV power 

production. For instance, [16] proposed to select a representative set based on plant location, 

technology and installed capacity to improve the resemblance to the entire set of PV systems. 

[18] included the module orientation. In a later publication, [17] compared various up-scaling 

strategies differing in consideration of module orientation, spatial interpolation and calibration 

using a loss factor. [2] clustered PV systems that acted as representative sets. Another up-

scaling method was proposed by [19], in which the PV power generation of the area was 

considered as a virtual PV power plant which can be directly forecast by mapping NWP 

forecasts to the output of the virtual power plant. It is worth noting that such up-scaling 

approach model inputs average may be applied easily to a PV fleet growing in time due to the 

poor information required, i.e. the metering time series and the total installed capacity in the 

area.   
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3 DATA SETS 

Chapter 3 describes in detail the datasets used for benchmarking.  

Before proceeding, let us introduce some useful definitions: endogenous variable is the tag 

forecasted by the model (in this case power generation) and corresponding to the model 

output. Exogenous variables are instead those determined outside the model and fed into it as 

input. 

The datasets used in the benchmarking study differ for exogenous variables, target 

geographical area under consideration, forecast horizon of NWP data, as well as spatial and 

temporal aggregation. 

After a proper evaluation, three reference datasets were selected for benchmarking activities: 

two are referred to Italy and one to the province of Utrecht, the Netherlands. 

Concerning Italy, the following datasets have been selected for benchmarking: 

 data provided by UNIROMA2/EURAC: it is exploited for benchmarking at country level; 

 data provided by RSE: it is used for benchmarking at market zone level. 

Regarding evaluation of model performances over Utrecht’s area, the following dataset has 

been selected: 

 data provided by Utrecht University: used for benchmarking at a regional level. 

Below a detailed description of the reference datasets used for benchmarking is presented.  

3.1 UNIROMA2/EURAC Data 

A brief description of the provided data is reported in the following sections: 

 Section 3.1.1, satellite retrieved Global Horizontal Irradiance (GHISAT); 

 Section 3.1.2, day ahead forecast of Global Horizontal Irradiance (GHIFOR) and 2 meters air 

temperature (𝑇2𝑚
𝐹𝑂𝑅); 

 Section 3.1.3, PV power generation (PPV) and PV capacity (Pn) over Italy ; 

The Italian surface was divided into 1'325 grid points with a spatial resolution of 12 km (see 

Figure 4). The GHI and T2m data consists in 1'325 time series of three years (2014 / 2015 

/2016) with an hourly resolution. Each time series is the irradiance or the temperature of a 

specific point of the grid.  
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Figure 4: Grid points over Italy. 

 

3.1.1 GHI Satellite Data 

The satellite derived irradiance comes from the geostationary radiative fluxes products, under 

Météo-France responsibility. It was obtained by OSI SAF SSI algorithm1 applied to the satellite 

images provided by METEOSAT-9 (MSG-3) at 0° longitude, covering 60S-60N and 60W-60E, 

at 0.05° latitude-longitude. 

 Area of interest: Italy 

 Spatial aggregation: Italy 

 Unit of measurement: W/m2 (average on the previous hour) 

 Time zone: Europe/Rome 

 Period: 2014/2015/2016 

 Granularity: 1 hour  

 Spatial resolution: 12 km  

 

                                                

1
 http://www.osi-saf.org/lml/doc/osisaf_cdop2_ss1_pum_geo_flx.pdf  

http://www.osi-saf.org/lml/doc/osisaf_cdop2_ss1_pum_geo_flx.pdf
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3.1.2 GHI and Temperature Day Ahead Numerical Weather Prediction Data 

NWP forecasts were generated by the Weather Research and Forecasting (WRF–ARW 3.8) 

mesoscale model developed by National Center of Atmospheric Research (NCAR). Data were 

provided to UNIROMA2/EURAC by the company IDEAM2. 

 Area of interest: Italy 

 Spatial aggregation: Italy 

 Unit of measurement: W/m2 (for GHI) and oC (for temperature), average on the previous 

hour 

 Time zone: Europe/Rome 

 Period: 2014/2015/2016 

 Initial and boundary data for model initialization: GSF model  

 Radiation scheme: “Rapid Radiative Transfer Model” (RRTM) 

 Forecast horizon: 24 hour  

 Granularity: 1 hour  

 Spatial resolution: 12 km  

Global Horizontal Irradiance (GHI) provided by WRF was post-processed with an original 

Model Output Statistic. 

3.1.3 PV Power Data 

The PV power generation data of the whole of Italy were downloaded from the website [20] of 

the Italian Transmission System Operator (TSO), i.e. TERNA. 

Terna does not directly measure the PV power generation but just estimates it with a method 

which is not published. The Electrical Service company (GSE) that manages the distributed 

Italian renewable energy generation collects the real solar production data, provided by the PV 

meters from a large numbers of PV plants. GSE each year publishes statistical reports3 on the 

PV generation in Italy.  

The Terna PV power generation curves have been pre-processed to make PV capacity and 

monthly solar generation coherent with the values reported by GSE.   

Finally the pre-processed curves have been synchronized with the satellite derived irradiance 

to remove time shift between the time series. 

The results of this process are high quality PV generation data, coherent with the statistical 

production values (GSE), well synchronized with the irradiance and temperature forecast 

obtained from the NWP model. 

 Area of interest: Italy 

 Spatial aggregation: Italy 

 Unit of measurement: MW (average on the previous hour) 

                                                

2
 http://www.ideameteo.com/  

3
 https://www.gse.it/Dati-e-Scenari_site/statistiche_site  

http://www.ideameteo.com/
https://www.gse.it/Dati-e-Scenari_site/statistiche_site
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 Time zone: Europe/Rome 

 Period: 2014/2015/2016 

 Granularity: 1 hour  

3.2 RSE Data 

In the following sections an overview of the RSE dataset is provided. The dataset is made up 

of observed power data for each Italian market zone, global horizontal irradiation (GHI) 

estimated from satellite data and GHI forecasted by means of a regional NWP model. 

The data refer to the years 2016 and 2017. The dataset is available to perform the benchmark 

of different solar forecasting methods on the Italian market zones.  

Data format is detailed in the next sections. 

3.2.1 PV Power Data 

Power metering data derive from Italian TSO website [20], which provides free access to 

fundamental data and information on the actual generation for different energy sources, 

including also production from PV plants. 

The power values represent the solar production on the zone during the reference hour. 

The data have the following specifications: 

 Area of interest: Italy 

 Spatial aggregation: Italian Market Zone 

 Granularity: 1 hour 

 Unit of measurement: MW (average on the previous hour) 

 Time zone: UTC (Universal Time Coordinated). 

 Period: 2015/2016 

Each market zone is identified by a name, according to the TSO terminology.  

The market zone names are listed in Table 5, whereas Figure 5 shows the geographical 

distribution. Note that Italian market zones are macro-areas defined by TERNA (Italy’s TSO), 

for security requirements of the electric power system, due to physical limits of energy 

exchange with other bordering areas. 
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Table 1: Italian Market Zones highlighted with the colours reported in Figure 5. 

Zone Name Zone description 

NORD Northern Italy 

CNOR Central-Northern Italy 

CSUD Central-Southern Italy 

SUD Southern Italy 

SICI Sicily 

SARD Sardinia 

 

Figure 5: Geographical distribution of the Italian provinces (given by black borders) and 

market zones (different colours). 
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3.2.2 Irradiance Satellite Data 

Irradiance data are estimates of the mean hourly irradiance (GHI), derived from Meteosat 

Second Generation (MSG) satellite data. The algorithm to derive the GHI has been developed 

by RSE. 

Irradiance data have the following specifications: 

 Area of interest: Italy 

 Spatial aggregation: Italian Provinces (overall number: 110)  

 Granularity: mean hourly irradiance, related to the previous hour with respect to the 

reference time 

 Unit of measurement: W/m2 

 Time zone: UTC 

 Data provider: RSE [21]  

 Period: 2015/2016 

3.2.3 Irradiance Forecast Data 

GHI forecast data derive from the NWP Model RAMS, with lead time between +12 and +84 

hours, driven by the global European model IFS of ECMWF. 

GHI forecast data have the following specifications: 

 Area of interest: Italy 

 Spatial aggregation: Italian Province (110) 

 Granularity: mean hourly data, related to the previous hour with respect to the reference 

time. 

 Time horizon: three days 

 Unit of measurement: W/m2  

 Time zone: UTC. 

 Numerical Weather Model: regional model RAMS run at 12 UTC with lead time between 

+12 and +84 hours, driven by the global European model IFS of ECMWF. 

 Period: 2015/2016 

3.3 Utrecht University Data 

In this section three dataset descriptions are given. In the first the dataset that consists of 

forecasts of a NWP model operated by ECMWF [22] is discussed. Thereafter the collection of 

additional variables is presented. The third dataset holds the aggregated PV output power 

measurements of the UPP sensor network in Utrecht [23]. All datasets hold hourly values for 

the period February 2014 until February 2017. 

3.3.1 NWP 

The NWP forecasts are obtained from the global European model IFS of ECMWF. By means 

of interpolation, a spatial resolution of approximately 9 kilometers is obtained. In order to keep 

low complexity, the weather predictions are collected for one grid point corresponding to KNMI 
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weather station in De Bilt, with coordinates 52.10N 5.18E. The considered archived weather 

predictions have a time horizon up to 24 hours, with a time step of 3 hours. Hourly values are 

obtained by means of Akima interpolation [24]. The 12 UTC model run is used to obtain the 

day-ahead weather predictions for 00:00-11:00. Weather predictions for 12:00-23:00 are 

collected from the 00 UTC model run.  

Consequently, weather predictions have a time horizon varying from 12 to 24 hours ahead. 

The weather prediction variables available in the dataset can be found in Table 2. 

Table 2: Weather variables available from NWP forecasts by ECMWF. 

Weather prediction variables Unit Abbreviation 

Mean sea level pressure  Pa msl 

Ambient temperature at 2 meters K t2m 

Dewpoint temperature at 2 meters K d2m 

Zonal wind vector at 10 meters m s-1 u10 

Meridional wind vector at 10 meters m s-1 v10 

GHI J m-2 ssrd 

Low cloud cover (0-1) lcc 

Mid cloud cover (0-1) mcc 

High cloud cover (0-1) hcc 

Total cloud cover (0-1) tcc 

Total precipitation m tp 

 

 Area of interest: Utrecht, the Netherlands (roughly an area of 60x60 km2) 

 Spatial aggregation: Utrecht, the Netherlands (one grid point corresponding to KNMI 

weather station) 

 Granularity: 1 hour 

 Time horizon: 24 hours 

 Time zone: UTC 

 Unit of measurement: see Table 2, (average on the successive hour) 

 Numerical Weather Model: global European model IFS of ECMWF 

 Period: February 2014/February 2017 
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3.3.1 Seasonal and Diurnal Variations 

In addition to the input variables defined above, the Clear Sky Irradiance (CSI) and solar 

zenith angle (SZA) are collected. These variables are included in order to account for seasonal 

and diurnal variations in solar irradiance. The CSI is obtained from the Ineichen-Perez Clear 

Sky Model [25].  

 Area of interest: Utrecht, the Netherlands 

 Spatial aggregation: Utrecht, the Netherlands 

 Granularity: 1 hour 

 Time zone: UTC 

 Unit of measurement: W/m2 and degrees (average on the successive hour) 

 Model: Ineichen-Perez Clear Sky Model 

 Period: February 2014/February 2017 

3.3.2 PV Power Measurements 

PV power measurements are extracted from the PV sensor network in Utrecht (UPP). The 

UPP network consists of 202 PV-systems that are distributed throughout the province of 

Utrecht, the Netherlands [26]. All these PV systems are rooftop mounted residential 

installations, and individual system sizes range from 0.5 up to 6.8 kWp [26]. 

PV power measurements expressed in W with a one-minute time resolution are extracted for 

all PV-systems. After filtering on data availability, 150 PV-systems are selected (see Figure 6). 

Subsequently, minute power measurements are converted to hourly power production values 

by averaging. The total production in kWh/kWp is calculated by: 

𝑿𝒕 = ∑
𝒑𝒌,𝒕

𝒑𝒄,𝒌

𝒏

𝒌=𝟏

, (2) 

where 𝑝𝑘,𝑡 is the production of system 𝑘 at time 𝑡, 𝑝𝑐,𝑘 is the installed capacity of system 𝑘 and 

n denotes the number of PV-systems with a power measurement at time 𝑡. 

 Area of interest: Utrecht, the Netherlands 

 Spatial aggregation: 150 PV-systems in Utrecht (see Figure 6) 

 Granularity: 1 hour 

 Time zone: UTC 

 Unit of measurement: W (mean value in the successive hour) 

 Period: February 2014/February 2017 
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Figure 6: Distribution of PV systems (red dots) and the KNMI weather station (blue 

diamond) in Utrecht, the Netherlands [23]. 
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4  UP-SCALING METHODS FOR PV POWER PRODUCTION 
FORECASTING AT REGIONAL LEVEL 

Chapter 4 gives an overview of the different approaches adopted for forecasting the PV power 

generation at regional level.  

Five partners contributed with a model (Figure 7): 

 UNIROMA2/EURAC  

 RSE  

 i-EM  

 Uppsala University  

 Utrecht University  

The models differ for the aggregation level of inputs and predicted output, forecast horizon, 

target geographical area considered (Italy and the Netherlands), as well as the algorithmic 

core used.  

Figure 7: Partners contributing with a model. 
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The method used for the benchmarking activity is schematically summarized in Figure 8 and 

Figure 9. 

The activity was conducted for three PV power datasets based on the data available and up-

scaling models developed by the participants. The schematics of the methodology for the 

benchmarks are shown in Figure 8 and Figure 9.  

Regional forecast was applied to two countries, Italy and The Netherlands. In particular, for 

Italy, two benchmarking studies were performed: one considering the forecast all over Italy 

(Figure 8a) and one considering the forecast at market zones level (Figure 8b). For the whole 

of Italy also a blending of the various models tested was performed.  

Figure 9 shows an overview on the benchmarking study by Utrecht University to forecast PV 

power production of aggregated rooftop PV systems all located in the province of Utrecht. In 

Table 3 the complete list of models available is reported. 

 

 

Figure 8: (a) schematic overview of the benchmarking study for the regional forecast all 

over Italy; (b) schematic of benchmarking study for the regional forecast at market 

zones level for Italy (for models abbreviations see Table 3 and sections 4.1, 4.2, 4.3, and 

4.4). 
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Figure 9: Schematic of the benchmarking study for the Utrecht area forecast (for 

models abbreviations see Table 3 and sections 4.1, 4.2, 4.3, and 4.4). 

 

 

Table 3: Overview of models participating to the benchmarking. 

Model’s Author Country Area Target Area Model Name 

i-EM Italy Market Zones / 

Whole of Italy 

KNN 

RSE Italy Market Zones / 

Whole of Italy 

AE 

UNIROMA2/EURAC Italy Whole of Italy MLPNN 

UNIROMA2/EURAC Italy Whole of Italy DET 

UPPSALA 

University 

Italy Whole of Italy QRF 

Utrecht University The Netherlands Utrecht K-SVM 

Utrecht University The Netherlands Utrecht RF 

Utrecht University The Netherlands Utrecht GB 

Utrecht University The Netherlands Utrecht FNN 
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For the all over Italy benchmark (Figure 8 a) a comparison between the models set up by i-

EM, RSE, UNIROMA2 and Uppsala University was carried out for 1 day-ahead forecasting. 

The different PV power up-scaling methods of the partners are applied to the same NWP 

forecast data set of GHI and temperature (section 3.1.2 WRF with MOS). The data from the 

Italian TSO TERNA for 2015 was used to train the models, while 2016 data was used as a test 

set. Data was provided by UNIROMA2 (see section 3.1). 

At market zones level (Figure 8 b) a comparison between i-EM KNN and RSE - AE models 

that forecast PV production up to three days ahead was carried out. The same NWP data 

corresponding to model RAMS were used (section 3.2.3). Data was provided by RSE (section 

3.2), where 2016 was used as training dataset and 2017 was chosen to test the models. 

Utrecht University compared the performances of different machine learning algorithms based 

on IFS forecasts by ECMWF for 1 day-ahead forecasting of 150 PV systems in the province of 

Utrecht (Figure 9), The Netherlands. Data for the period February 2014 until January 2016 

was used as training, whereas the period from February 2016 to February 2017 was used for 

testing. 

A detailed description of the models is provided below. 
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4.1 UNIROMA2/EURAC Models: an Up-scaling Method Based on a 
Deterministic Physical Model and Artificial Neural Networks 

UNIROMA2/EURAC developed two different up-scaling methods: (1) method based on chain 

of physical semi-empirical models (Direct Insolation Simulation Code [27], Isotropic 

Transposition model [28] and Sandia Array Performance model [29]) that, for sake of brevity, it 

is called SAPM; (2) hybrid method based on the parallel working of SAPM and Multi-Layer 

Perceptron Neural Network model, namely MLPNN. 

Here, the physical approach is called "Deterministic"4 method because, according to the 

definition of deterministic process, it is based on equations in which no randomness is 

involved, so that the same input variables produce always the same output. Both the methods 

make use of pre-processing and post-processing procedures.  

Figure 10 depicts a scheme of the two up-scaling methods that have been used for day ahead 

forecasting of the Italian PV generation. 

 

 

Figure 10: Overview of PV power generation forecasting methods. 

  

                                                

4
 It is worth remarking that the same terminology “deterministic” is widely used in the forecast 

community to indicate non-probabilistic forecast or “point”/”best” forecast. 
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4.1.1 Pre-processing Procedure 

The regional PV generation is considered as if it is produced by a single “virtual” power plant. 

The pre-processing procedure aims to retrieve the optimal “equivalent” plane of the array 

(POA) of this “virtual” PV system. We use the model SAPM to transform the satellite derived 

GHI averaged all over Italy into the power generated by a virtual PV system with a specific 

POA. Then, we optimize the POA minimizing the RMSE between the SAPM output and the 

measured Italian PV generation [30]. The optimal “equivalent” tilted and orientation angles are 

retrieved using the training year data and then used to predict the equivalent Angle Of 

Incidence during the test year (AOIFOR). 

4.1.2 Deterministic Forecast Up-scaling Model 

The deterministic method is just a rescaling of the physical model output (SAPM). In this case, 

SAPM makes use of the GHI and Tair from the numerical weather predictions (section 3.1.2 

WRF with MOS) and of the equivalent AOI forecast. 

Therefore, the input and output features are the following: 

 Input data:  

o Forecast of the equivalent angle of incidence (retrieved by the pre-processing procedure 

using the satellite data of the training year): AOIFOR; 

o Italy mean values of the NWP model forecasts of the irradiance and temperature: 

<GHIFOR>IT and <𝑇𝑎𝑖𝑟
𝐹𝑂𝑅>IT ; 

o Italy mean value of the clear sky irradiance: <GHICS>IT . 

 Output data:  

o The Sandia Array Performance Model power forecast over Italy normalized by the PV 

capacity: 𝑃𝑃𝑉
𝐹𝑂𝑅(𝑆𝐴𝑃𝑀)

; 

o Performance correction factor: PRF FOR. This factor was obtained by a SAPM post-

processing procedure described in the following subsection 4.1.4; 

o Italy mean value of the PV clear sky generation obtained by SAPM, normalized by the 

PV capacity: 𝑃𝑃𝑉
𝐶𝑆. 

 

The deterministic forecast of the PV power output normalized by the installed capacity, will be: 

  𝑷𝑷𝑽
𝑫𝑬𝑻𝑬𝑹𝑴𝑰𝑵𝑰𝑺𝑻𝑰𝑪 = PRF FOR * 𝑷𝑷𝑽

𝑭𝑶𝑹(𝑺𝑨𝑷𝑴)
 (3) 

This model ingests only the Italian spatial average of the horizontal irradiance and air 

temperature as input, hence it does not take into account the spatial variability of the 

irradiance and temperature or the spatial non uniform distribution of the PV capacity. 
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4.1.3 MLPNN Forecast Model 

The hybrid method makes use of the performance correction factor (PRF) of the clear sky PV 

generation obtained by SAPM and of an ensemble of artificial neural networks to predict the 

PV clear sky index KPV [31], defined as: 

 𝑲𝑷𝑽 = 𝑷𝑷𝑽/(𝑷𝑹𝑭 ∗ 𝑷𝑷𝑽
𝑪𝑺 ) (4) 

The artificial neural network architecture is a Multi-Layer Perceptron with one hidden layer 

(MLPNN). The number of neurons of the hidden layer and the number of model included in the 

ensemble are obtained by a Master Optimization Procedure described in [32]. 

The input and output features of the MLPNN model are the following: 

 Input data:  

o Forecast of the equivalent angle of incidence (retrieved by the pre-processing procedure 

using the satellite data of the training year): AOIFOR; 

o Average on the Italian market zones of the day ahead forecast of the clear sky index: 

<𝐾𝑐𝑠
𝐹𝑂𝑅>MZ, derived from NWP GHI: <𝐾𝑐𝑠

𝐹𝑂𝑅>MZ=<𝐺𝐻𝐼𝐹𝑂𝑅 𝐺𝐻𝐼𝐶𝑆⁄ >MZ 

o Standard deviation on the Italian market zones of the day ahead forecast of the clear sky 

index: 𝜎(𝐾𝑠𝑐
𝐹𝑂𝑅)MZ . 

 Output data:  

o Forecast of the PV power generation clear sky index: 𝐾𝑃𝑉
𝐹𝑂𝑅. 

Finally, the PV power generation of the whole of Italy is predicted by the equation: 

𝑷𝑷𝑽
𝑴𝑳𝑷𝑵𝑵 = PRF FOR * 𝑲𝑷𝑽

𝑭𝑶𝑹* 𝑷𝑷𝑽
𝑪𝑺  (5) 

This model takes into account both the spatial variability of the irradiance (since it inputs both 

the mean and the standard deviation of the clear sky index of each market zones) and the 

non-uniform distribution of the PV capacity (since the model will automatically weight market 

zones inputs according to PV capacity of each zones). The model is trained on the year 2015 

and tested on the year 2016. 

4.1.4 Post-processing Procedure 

The post-processing procedure aims to predict a Performance Correction Factor (PRF FOR ) 

that rescales the SAPM output. This daily rescaling factor accounts for errors in capacity 

estimation, degradation and AC losses not included in the physical model SAPM and for NWP 

bias errors. 

The performance correction factor is computed using the SAPM forecast (𝑃𝑃𝑉
𝐹𝑂𝑅(𝑆𝐴𝑃𝑀)

) and the 

PV observed generation (𝑃𝑃𝑉
𝑂𝐵𝑆 ) of the current day (𝑑𝑑): 

𝑷𝑹𝑭𝑭𝑶𝑹(𝒅𝒅 + 𝟏) = ∑ 𝑷𝑷𝑽
𝑶𝑩𝑺(𝒉|𝒅𝒅)

𝒉=𝟏,𝟐𝟒
∑ 𝑷𝑷𝑽

𝑭𝑶𝑹(𝑺𝑨𝑷𝑴)
(𝒉|𝒅𝒅)

𝒉=𝟏,𝟐𝟒
⁄  (6) 
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4.2 RSE Model: the Statistical Method Analog Ensemble 

RSE method provides the hourly solar power production on each Italian market zone with a 

time horizon of three days. The forecast system is based on the statistical technique Analog 

Ensemble (AE) [33]. The method estimates the probability distribution of the future generation 

using the measured production registered in the past when the weather scenario looked very 

similar to the forecasted one. An overview-scheme of the regional forecasting method is 

shown in Figure 11.  

The AE uses as input the forecast of the Global Horizontal Irradiation and the forecast of the 

module Temperature (𝑇𝑝𝑎𝑛𝑒𝑙).  

The GHI derives from the NWP Model Regional Atmospheric Modeling System (RAMS), with 

lead time between +12 and +84 hours, driven by the global European model Integrated 

Forecast System (IFS) of ECMWF (see also section 3.2.3). The 𝑇𝑝𝑎𝑛𝑒𝑙 is calculated on the 

basis of the air temperature at 2m above the ground and the GHI, both forecasted by RAMS, 

according to the formula: 

𝑻𝒑𝒂𝒏𝒆𝒍 = 𝑻𝟐𝒎 − 𝟏 +  𝑮𝑯𝑰 (
𝑵𝑶𝑪𝑻 − 𝟐𝟎

𝟖𝟎𝟎
) (7) 

where 𝑇2𝑚 is the air temperature at 2 metres above the ground, and NOCT is the Nominal 

Operating Cell Temperature, set to 45°C. 

The RAMS point forecast is averaged on each Italian province (see Figure 5).  

The forecasted GHI is processed in order to improve the quality of the GHI forecast. 

An AE is applied to the RAMS-GHI, using as observation the GHI estimated from satellite data 

(see section 0).  

The AE, used to forecast the solar power production is trained with the hourly forecast of the 

corrected GHI and 𝑇𝑝𝑎𝑛𝑒𝑙, together with the corresponding solar power measurements on each 

Italian market zone, referred to the year 2016, whereas the 2017 data set is used to verify the 

method (see RSE dataset in section 3.2). 
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Figure 11: Scheme of RSE method. 

 

The same up-scaling method has been used also to forecast the PV generation of the whole of 

Italy. In this case, the NWP model input data are the ones provided by the University of Rome 

“Tor Vergata” described in section 3.1. 

In both case studies the point forecast is extracted from the probability distribution of the future 

generation by using the average. 
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4.3 i-EM Model: a Cooperative Ensemble of Machine Learning 
Algorithms 

The i-EM PV forecast model is inspired by [34] and aims to predict PV power generation at 

market zone level of the Italian country, with a forecast horizon up to 4 days ahead. 

More in detail, by means of a data-driven approach, it exploits input data aggregated at 

Province level to forecast the power generation future values for the Italian market zones (see 

Figure 5).  

4.3.1 Datasets 

The input and output data of the model have the following features: 

 Input data: 

o Clear sky irradiance (GHICS ) and global horizontal irradiance (GHI) data aggregated by 

provinces of Italy (ISTAT 2016 boundaries5, see Figure 5). In particular, values retrieved 

by satellite data (see sections 3.1.1 and 3.2.2) are used to train the algorithmic core of 

the model, whereas NWP model forecasts (see sections 3.1.2 and 3.2.3) are exploited 

to predict the future power generation of Italian market zones. 

o Historical data of past power generation from market zones, used during the training 

stage of the model (see section 3.2.1). 

 Output data are future power data, aggregated by market zones of Italy. 

4.3.2 Model Workflow 

The workflow of the model is illustrated in Figure 12, where the main processing steps are 

shown. 

Figure 12: workflow of i-EM forecast model. 

The data import phase is a computationally demanding stage, since we have to load a huge 

and heterogeneous amount of data, and to parse them in a suitable form easy to access. 

                                                

5
 http://www4.istat.it/it/archivio/209722  

http://www4.istat.it/it/archivio/209722
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The pre-processing is the second stage of the algorithm and concerns training instances, that 

is the irradiance value from satellite data and the historical values of power generation; it is 

fundamental to remove outliers and prevent errors from learning wrong patterns in the training 

set. Outliers are identified by considering the mean irradiance satellite value 𝐺𝐻𝐼̅̅ ̅̅ ̅ (averaged 

over all provinces of a specific market zone) with respect to the power generation 𝑃 of the 

related area. A linear approximation is considered for the relation between 𝐺𝐻𝐼̅̅ ̅̅ ̅ and 𝑃, hence 

outliers are identified as those instances are too much discordant from this type of relation 

(see Figure 13 We also remove timestamps with missing data, because is preferable to do not 

consider these samples instead of imputing, i.e. estimating, missing data with the possibility of 

introducing wrong information during the training stage. 

Figure 13: Example of the implementation of the pre-processing procedure: the blue 

points are related to the outliers’ instance, whereas the red ones represent the good 

samples of the training set. 

The core of the model is represented by pure data-driven methodologies: k-Nearest 

Neighbours (KNN) and Quantile Regression Forest (QRF). These algorithms are trained 

independently, and both of them take as input NWP model data, and produce power 

generation forecast values. Finally, a cooperative ensemble of these two algorithms produces 

the final output of the model. More in detail, the final power value is obtained as a convex 

combination of the outputs of KNN and QRF algorithms, with an optimal configuration of 

weights. In the next sections, this ensemble will be shortly denoted as KNN (since QRF is also 

used by another model involved in the benchmarking study). 

Data used for PV power generation forecasting at market zone level are those provided by 

RSE (see section 3.2). The same up-scaling method has been used also to forecast the PV 

generation of the whole of Italy: in this case the NWP input data are the one provided by the 

University of Rome “Tor Vergata” described in section 3.1. 
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4.4 Uppsala’s University Model: Quantile Regression Forests and the 
Principal Component Analysis 

This section describes a dimension reduction technique and a probabilistic forecasting 

technique that Uppsala University applied to the data provided by the colleagues of 

UNIROMA2/EURAC. This data set contains numerical weather prediction (NWP) forecasts of 

the GHI for 24 hours ahead for the entirety of Italy and consists of 1'325 grid points (see 

Section 3.1). The dimensionality of this data set requires some form of dimensionality 

reduction technique and principal component analysis (PCA) is a relatively straightforward way 

to address the aforementioned issue. 

It is important to note that although the focus of this section lies on probabilistic forecasting by 

means of quantile regression forests (QRFs), it is still possible to acquire a point forecast, i.e. 

a unique “best” forecast trajectory. Herein, we evaluate the mean as the deterministic forecast 

although other statistics are also possible, e.g., the median. 

4.4.1 Principal Component Analysis 

In order to avoid overfitting and to reduce training time, Uppsala University exploits PCA to 

reduce the dimensionality of the data matrix 𝑿. PCA transforms the data matrix to a new 

coordinate system such that the greatest variance can be found on the first axis, which is 

referred to as the first principal component [35]. The subsequent axes, which are referred to as 

the subsequent principal components, are projected orthogonally on the preceding principal 

component and are selected such that each principal component maximizes the variance 

found in the data. This procedure results in a series of vectors that form an uncorrelated 

orthogonal basis set [35]. Readers interested in the technicalities may refer to [35]. A suitable 

number of components is determined with cross-validation, see Section 4.4.3. 

4.4.2 Quantile Regression Forests 

Uppsala University exploits QRFs to quantify the uncertainty by means of the predictive 

distribution, proposed by Meinshausen [36]. It is an extension of random forests (RFs) 

developed by Breiman [37]. A feature of regression trees is that they produce predictions with 

low bias but high variance. The aforementioned issue can be improved by bootstrap 

aggregation where the average of many trees results in the final prediction [35]. In order to 

reduce the variance, each tree is grown on a random subset of the explanatory variables. This 

allows RFs to predict with comparable accuracy as boosted trees, but more straightforward to 

train and tune [35]. The interested reader is referred to [36] for technical details. The R 

package quantregForest [38] is used to produce the probabilistic forecasts. 

4.4.3 Cross Validation 

Herein, cross validation is used to select the appropriate number of principal components to 

include in the design matrix 𝑿. In addition, the number of trees and number of randomly 

sampled variables at each split are considered in the cross-validation. To this end, training 

data is divided into K sequential train and test folds and performances are evaluated on each 

test fold by means of a numeric score. This implies that Uppsala University iterates over an 

increasing number of principal components 𝑝 ∈  {1, … , 𝑃} and over 𝑘 ∈  {1, … , 𝐾} folds. This 

results in a score—averaged over K folds—for each set of principal components 𝑝 ∈  {1, … , 𝑃}. 
Figure 14 presents the workflow of the model described herein. It should be noted that the 

cross-validation depicted in Figure 14 is first performed for the principal components and then 

for the hyperparameters (i.e., the number of trees and the number of randomly sampled 

variables) of the QRF model. The number of principal components P resulting in the lowest 



Task 16 Solar Resource – Regional Solar Power Forecasting 

37 

score is 21, while the hyperparameters had relatively little impact on the accuracy of the 

model.  

Figure 14: Workflow of the model, including data pre-processing, cross validation and 

training/testing. 

4.5 Utrecht University (UU) Model: Machine Learning Method for 
Aggregated PV-systems 

The UU Regional PV forecast model generates hourly day ahead predictions of the PV power 

production of 150 PV systems that are distributed throughout the province of Utrecht, the 

Netherlands, and covering an area of 38 by 54 kilometers (see Figure 6). The models are 

data-driven and can therefore operate online without any interference of the user. Also, no 

user inputs are needed to initialize the models.  

The regional PV power forecast models take as an input 1) weather predictions extracted from 

the NWP model IFS of the ECMWF [22] and 2) values that account for predictable seasonal 

and diurnal variations in the solar irradiance (see section 3.3).  

It is important to note that if the total installed PV capacity for the province of Utrecht is known, 

the models can be configured accordingly in order to forecast the total PV power production in 

the province. In addition, the models can be applied to other locations by changing all input 

values according to the region of interest. In order to forecast the day-ahead solar power 

production for 150 aggregated PV-systems in Utrecht several steps are taken. The model 

workflow is shown in Figure 15 and discussed in the following subsections. 

Figure 15: Workflow of the UU regional solar power forecast model. 
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4.5.1 Data Collection 

All variables of interest are described in section 3.3. 

4.5.2 Pre-Processing 

Pre-processing of the data is done in several steps. First, since weather predictions are only 

available for 3 hourly steps, hourly values are obtained by interpolating the original values with 

Akima interpolation [24]. Afterwards, outliers are removed by considering predefined minima 

and maxima per variable, which are extracted from the original values.  

The second step considers standardization of all input variables, see Eq. (8). 

𝒗𝒊,𝒕 =
𝒙𝒊,𝒕 − 𝝁𝒊

𝝈𝒊
, (8) 

where 𝑥𝑖,𝑡 is the value of variable 𝑖 at time 𝑡, 𝜇𝑖 and 𝜎 are respectively the mean and standard 

deviation of variable 𝑖. 

Furthermore, the collected PV power measurements are pre-processed. First, the one-minute 

power measurement samples are converted into hourly production values by averaging these 

minute samples for each hour. Subsequently, outliers are removed while considering the 

installed capacity of the reviewed PV systems. From the dataset missing values are also 

removed. Thereafter, the PV power production is aggregated for the 150 individual sites. 

Finally, the input variables and PV power measurements are merged together and split into a 

separate training dataset containing two years of data, which considers the period February 

2014 until January 2016. Subsequently, the consecutive year is taken as the test dataset, from 

February 2016 until January 2017. 
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4.5.3 Model Configuration 

The models considered are Support Vector Machine (SVM), Random Forest (RF), Gradient 

Bosting (GB) and Feed-Forward Neural Network (FNN). After completing the pre-processing 

steps, the optimal configuration of the just mentioned models’ parameters are determined. For 

this, a k-fold cross validation method with K=3 is used. This step implies that the training 

dataset is split into three separate subsets. Since the test dataset is not considered here, each 

subset holds 8 months of data. The optimal parameter settings for the forecasting models are 

found by combining two of these subsets as a training set while validating the results on the 

third set, for all three possible combinations. The result of the k-fold cross validation step 

determines the optimal parameter setting for each model, which are used to initialize the 

forecast model by tuning all of the model parameters [26]. 

4.5.4 Model Run 

The models simulated include the already introduced SVM, RF, GB and FNN. After these 

models have been initialized, the input data of the test dataset is fed into the forecasting 

models. In addition, a persistence model is added such that the results can be benchmarked.  

4.5.5 Post-processing 

In this stage the output of the PV power production forecast models is post-processed. In this 

step outliers are removed from the predictions by considering minimum and maximum 

production values that could be obtained under clear sky conditions during the hour of interest.  

4.5.6 Output 

The last step in the process considers evaluation of the forecast accuracy. The machine 

learning models generates aggregated day-ahead solar power forecasts for a total of 150 PV-

systems in the province of Utrecht, the Netherlands (see Figure 6). The models produce 

forecasts with an hourly resolution. 
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4.6 Overview of Models and Benchmark Studies  

An overview of the analyzed models in three different benchmarking studies is given inTable 4. 

 

Table 4: Overview of benchmarking studies and models. 

FORECASTING 

STEPS / 

ACCURACY 

(1) 

DATA PRE-

PROCESSING 

(2) 

NWP 

(3) 

INPUTS 

AGGREGATION  

(4) 

PV POWER UP-

SCALING 

MODELS 

(5) 

POST-

PROCESSING  

SIZE OF 

THE 

AREA 

[103 km2] 

UP-SCALING 

METHOD 

NAME 

CASE STUDIES 

PROVINCE OF 

UTRECHT 

(test period 

from February 

2016 to 

February 2017) 

SPATIAL AND 

TEMPORAL 

INTERPOLATION 

OF NWP 

TIME 

AGGREGATION 

AND EXCLUSION 

OF OUTLIERS 

FROM POWER 

MEASUREMENTS 

IFS OF 

ECMWF 

 

- 

SUPPORT 

VECTOR 

MACHINE 

REMOVE 

OUTLIERS FOR 

POWER 

PREDICTIONS 

1.4  

K-SVM 

RANDOM 

FOREST 

RF 

GRADIENT 

BOOSTING 

GB 

FEED FORWARD 

NEURAL 

NETWORK 

(MLP) 

FNN 

MARKET ZONES 

OF  

ITALY 

(test period 

2017) 

EXCLUSION OF 

OUTLIERS FROM 

POWER 

MEASUREMENTS 

MESOSCALE 

MODEL 

(RAMS)  

+ 

MOS 

 

AGGREGATION 

BY PROVINCES 

ANALOG 

ENSEMBLE 
- 

50 

(zones 

average) 

AE 

KNN + 

QUANTILE 

REGRESSION 

FORESTS 

POWER 

OUTPUT 

RESCALING 

KNN 

ITALY 

(test period 

2016) 

- 

MESOSCALE 

MODEL 

(WRF)  

+ 

MOS 

PRINCIPAL 

COMPONENT 

ANALYSIS 

QUANTILE 

REGRESSION 

FORESTS 

- 

300 

QRF 

- 
AGGREGATION 

BY PROVINCES 

KNN + 

QUANTILE 

REGRESSION 

FORESTS 

POWER 

OUTPUT 

RESCALING 

KNN 

RETRIEVE 

EQUIVALENT 

POA  

AGGREGATION 

BY ITALY 

DETERMINISTIC 

(SAPM) 

PERFORMANCE 

RESCALING 

DETERMINISTIC 

- 
AGGREGATION 

BY PROVINCES 

ANALOG 

ENSEMBLE 
- 

AE 

RETRIEVE 

EQUIVALENT 

POA 

AGGREGATION 

BY MARKET 

ZONES 

FEED FORWARD 

NEURAL 

NETWORK 

ENSEMBLE 

(MLPNN) 

PER-

FORMANCE 

RESCALING 

MLPNN 

4.7 Models Blending  

Models blending methods or Multi-model approach is a method to properly combine different 

forecasts. Recent papers show that it can improve forecast accuracy [39, 40, 41, 42, 43]. 

Nevertheless, this method is not fully investigated. 
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The simplest method is the linear blending: 

𝑷𝒃𝒍𝒆𝒏𝒅
𝒇𝒐𝒓

=  ∑ 𝑾𝒊

𝑵

𝒊=𝟏

∗  𝑷𝒊
𝒇𝒐𝒓

 (9) 

where, N is the number of the predictions in the ensemble, 𝑃𝑖
𝑓𝑜𝑟

 is the forecast of the model (i) 

of the ensemble and 𝑊𝑖 is the weight associated to this model according to the condition: 
∑ 𝑊𝑖 = 1.𝑁

𝑖=1   

If the models are bias free (i.e. if MBEi= 0 for all models i), it can be easily proven that: 

𝑹𝑴𝑺𝑬𝒃𝒍𝒆𝒏𝒅 ≅ √ ∑ ∑ (𝑾𝒊 ∗ 𝑾𝒋 ∗ 𝑹𝑴𝑺𝑬𝒊 ∗ 𝑹𝑴𝑺𝑬𝒋 ∗ 𝝆𝒊𝒋)

𝒋=𝟏,𝑵𝒊=𝟏,𝑵

 (10) 

where, 𝑅𝑀𝑆𝐸𝑖 is the root mean square error of the prediction (i) and 𝜌𝑖𝑗 is the correlation 

between the error of the model (i) and of the model (j). Thus, the accuracy of a linear blending 

depends on the accuracy (RMSE) of the models included in the ensemble and on the error 

correlation together with the assigned weights. If 𝑊𝑖 =
1

𝑁
(with i = 1, N), the linear blend in Eq. 

(9) is the simple average of the predictions. 

More complex methods are based on a non-linear function of the forecast trajectories: 

𝑃𝑏𝑙𝑒𝑛𝑑
𝑓𝑜𝑟

=  𝑓( 𝑃𝑖
𝑓𝑜𝑟

). In this case, the accuracy of these methods cannot be computed a priori. 

In this work, we develop different methods to blend day-ahead predictions of the PV 

generation all over Italy. 

The first method is the simple forecast average (avg): 

𝑷𝒂𝒗𝒈 𝒃𝒍𝒆𝒏𝒅
𝒇𝒐𝒓

=  ∑ 𝑷𝒊
𝒇𝒐𝒓

𝑵

𝒊=𝟏

𝑵⁄  (11) 

The second method is a smart linear blend (SL) in which the weights depend on 𝐾𝑃𝑉
𝑓𝑜𝑟

 

predicted by the best forecast of the ensemble: 

𝑷𝑺𝑳 𝒃𝒍𝒆𝒏𝒅
𝒇𝒐𝒓

=  (∑ 𝑾𝒊(𝑲𝑷𝑽
𝒃𝒆𝒔𝒕 𝒇𝒐𝒓

)

𝑵

𝒊=𝟏

∗  𝑲𝑷𝑽
𝒇𝒐𝒓(𝒊)

) ∗ 𝑷𝒄𝒔 (12) 

where, 𝐾𝑃𝑉
𝑏𝑒𝑠𝑡 𝑓𝑜𝑟

 is the forecast of the PV clear sky index obtained by the MLPNN model, 

𝐾𝑃𝑉
𝑓𝑜𝑟(𝑖)

 is the PV clear sky index predicted by the model (i) and 𝑃𝑐𝑠 is the clear sky PV power 

output (average all over Italy). For each 𝐾𝑃𝑉
𝑏𝑒𝑠𝑡 𝑓𝑜𝑟

 interval (< 0.2, 0.2 − 0.4, 0.4 − 0.6, 0.6 − 0.8, >
0.8) the weights 𝑊𝑖(𝐾𝑃𝑉

𝑏𝑒𝑠𝑡 𝑓𝑜𝑟
) have been computed through a brute force minimization that 

searches the minimum 𝑅𝑀𝑆𝐸 of the blend over 206 possible Wi values. Therefore, globally the 

brute force algorithm explores 5x206 possible Wi values. 

The third method (NN) is based on an artificial neural network non-linear function of the 

prediction included into the ensemble: 

{
𝑷𝑵𝑵 𝒃𝒍𝒆𝒏𝒅

𝒇𝒐𝒓
=  𝑲𝑷𝑽

𝑵𝑵 𝒃𝒍𝒆𝒏𝒅 ∗ 𝑷𝒄𝒔                      

  𝑲𝑷𝑽
𝑵𝑵 𝒃𝒍𝒆𝒏𝒅  =  𝒇 (𝟐)(𝑾(𝟐)𝒇 (𝟏)(𝑾(𝟏)𝑲𝑷𝑽

𝒇𝒐𝒓
+ 𝒃(𝟏)) + 𝒃(𝟐))

 (13) 
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where (i= 1, 2) is the layer index, f (i) are transfer functions, (W(i)) are the weights matrices, 

(b(i)) are the bias vectors and 𝐾𝑃𝑉
𝑓𝑜𝑟

 is the vector of the predicted PV clear sky index (used as 

NN input).  

Since only one year of forecast data was available for test (year 2016), for the training, 

validation and test of the SL and NN blending methods, a K-folder cross validation procedure 

was used (with K= 10). Therefore, data have been divided in 10 distinct sets and for ten times, 

9 sets were used for training and validation of the model (with proportions 70% - 30%, 

respectively) and 1 set for test. In this way, all the 10 test sets represent the blending forecast 

of the whole year 2016 obtained by 10 different models (always trained and validated on a 

data set different from the test set). 
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5 RESULTS OF BENCHMARK FOR ITALY 

5.1 Performance Metrics 

In order to evaluate the PV power forecasting results independently of the installed capacity, 

the forecasts and measurements are normalized to the installed capacity in the area.  

The error at a given hour and in a specific geographical area is obtained as: 

𝒆𝒊 =
𝑷𝒊

𝒇𝒐𝒓
− 𝑷𝒊

𝑷𝒏
,      [𝑴𝑾/𝑴𝑾𝒑] (14) 

where 𝑷𝒊
𝒇𝒐𝒓

 and 𝑃𝑖 are the forecasted and measured power production corresponding to i-th 

hourly instance, respectively, and 𝑃𝑛 is the hourly installed capacity in the area. 

The following error metrics are used as Key Performance Indicators (KPIs) for the evaluation 

of the forecasting performance. They are the Pearson Correlation (CORR), the Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), Mean Bias Error (MBE) and the Skill Score 

(SS) here: 

𝑪𝑶𝑹𝑹 =
𝑪𝑶𝑽(𝑿𝑭𝑶𝑹, 𝑿𝑶𝑩𝑺)

𝝈𝑿𝑭𝑶𝑹  𝝈𝑿𝑶𝑩𝑺
 [−] (15) 

𝑹𝑴𝑺𝑬 = 𝟏𝟎𝟎 × √
𝟏

𝑵
∑ 𝒆𝒊

𝟐,

𝑵

𝒊=𝟏

   [% 𝒐𝒇 𝑷𝒏] 

(16) 

𝑴𝑨𝑬 = 𝟏𝟎𝟎 ×
𝟏

𝑵
∑|𝒆𝒊|

𝑵

𝒊=𝟏

,    [% 𝒐𝒇 𝑷𝒏 
(17) 

𝑩𝑬 = 𝟏𝟎𝟎 ×
𝟏

𝑵
∑ 𝒆𝒊

𝑵

𝒊=𝟏

,     [% 𝒐𝒇 𝑷𝒏] 
(18) 

𝑺𝒌𝒊𝒍𝒍 𝑺𝒄𝒐𝒓𝒆= 100 × (
𝑹𝑴𝑺𝑬(𝒓𝒆𝒇) − 𝑹𝑴𝑺𝑬(𝒇𝒐𝒓)

𝑹𝑴𝑺𝑬(𝒓𝒆𝒇)
)  ,    [%]  

(19) 

where 𝑁 is the number of daylight hours in a year. Night values with no irradiance have been 

discarded from the evaluation, as common in the literature, since the only effect they produce 

is a decrease of the error metrics. The persistence obtained by propagating the last day 

available prior to the test day for the whole forecast horizon is considered as the reference 

(ref) forecasting method. 
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5.2 Benchmark Results of the Day-ahead Forecasts of the PV 
Generation of all the Italian Market Zones 

Two models are compared for the Italian Market zones here: the Analog Ensemble (AE) model 

of RSE and the ensemble of kNN and QRF (shortly denoted as KNN here) by i-EM.  

The Italian TSO divided Italy in six market zones (Figure 16a) characterized by bottlenecks of 

the transmission grid. For this reason, these zones are often subjected to power congestions 

and constraints on power capacity.  

 

Figure 16: Italian market zones and PV capacity at 2017 (a); Distribution of the PV power 

generation in each market zone (b). For definition of variability see Eq. (20). 

In 2017 the total PV installed capacity in Italy was 19.7 GWp, almost 45% is installed in the 

North (NORD), 12% and 14% in the centre North and South (CNORD and CSUD), 19% in the 

South and 7% and 4% in the islands (SICI and SARD) . The minimum energy yield is in the 

Northern zone with 851 MWh/MWp during the year 2017, where a flat generation probability 

(that occurs during the mid-day hours) appears between 0.25 and 0.4 MW/MWp (Figure 16b). 

The maximum yield is in the Southern zone with 1273 MWh/MWp and a prevalent PV 

generation between 0.4 and 0.55 MW/MWp. The lowest weather variability conditions are 

found in the North and in Sicily with 6.4% and 7.1% of the PV installed capacity, respectively 

(Figure 16b). The first because there are many subsequent days with overcast conditions, 

while the second because of many subsequent days with clear sky conditions. The highest PV 

generation variability is found in the Centre South zone (8.8 % of the PV installed capacity) 

where a more frequent change of weather conditions occurs from one day to the next. 

In order to analyse the performance of the different methods in forecasting the hourly 

production on each Italian market zone, a suitable graph is the Taylor diagram.  
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The Taylor diagram in Figure 17 shows, for each market zone, the Pearson correlation 

between forecasts and observations and the standard deviation of the observation and of the 

corresponding forecast. The standard deviations are all between 0.15 and 0.2 MW/MWp, in 

agreement with Figure 16b, the minimum is in the North (low maximum power generation) and 

the maximum is in the South (high maximum power generation). The correlation between 

forecasts provided by the two models AE and KNN and observations range between 0.92 and 

0.96. The closer the points in the diagram are to the observations point of the corresponding 

market zones, the more accurate are the predictions. The two forecasts always outperform the 

persistence. The Analog Ensemble (AE) model provides the more accurate prediction in all the 

zones with the exception of the Centre North (CNORD) area. Nevertheless, this model 

underestimates the variability of the PV generation both in the North and in the South, 

predicting a standard deviation lower than the observed one. 

 

Figure 17: Taylor diagram of the performance of the forecast models AE and KNN in 

each market zone. 
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The scatter plots in Figure 18 show a remarkable pattern in the forecast errors of the KNN 

model in all the market zones. The model predicts a constant power out at high PV generation 

levels. A similar behaviour is found in Sicily also for the AE model but the upper limit is higher 

than for the KNN model. Generally, the scatter is larger for the KNN model than for the AE 

model.  

Figure 18: Scatter plots of the 1 day-ahead PV power forecasts of each market zone 

obtained by the AE and KNN models. The metrics RMSE, MAE, MBE and Kolmogorov-

Smirnov (KS) index are also shown. 

The KNN forecast overestimates the observations with a MBE between 1.2% (CSUD) and 4% 

(SARD) of the PV capacity and the RMSE ranges between 5.3% (NORD) and 7.4% (SUD). 

The AE forecast obtains a MBE and RMSE that range from -1.9% (CNOR) to 1.5% (SARD) 

and from 4.1% (NORD) to 6.6% (CNORD), respectively (Figure 18).  

With the exception of the Centre North (CNOR) zone, the AE forecast always shows a lower 

RMSE and correspondingly also reaches a better skill score (Figure 19).  
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Figure 19: RMSE of the forecasts (top) and skill score (bottom) with respect to the 

persistence.  

Figure 20 shows the forecast errors of the two models at different forecast horizons: 1, 2 and 3 

days ahead. It shows that the forecast errors do not notably change when the forecast horizon 

changes from 1 to 3 days. Thus, the value of the one day-ahead prediction accuracy can be 

considered representative of the forecast performance in the whole horizon range. 

Figure 20: RMSE of the PV power forecasts of each market zone obtained by the AE and 

KNN models at different horizons. 



Task 16 Solar Resource – Regional Solar Power Forecasting 

48 

5.2.1 Dependency of Forecast Errors on Area Size 

A high forecast accuracy can be reached by simply enlarging the foot print of forecast 

controlled area [44, 45, 46, 47, 48]. This phenomenon is called “smoothing effect” and it is 

related to the correlation of the forecast errors of different locations. The more the regions 

include a wide range of locations with different irradiance variability, the more the solar 

forecast errors will be uncorrelated and the higher will be the accuracy of the regional PV 

power forecast. Figure 21 depicts the day-ahead forecast accuracy that can be reached 

predicting the PV generation of different control areas. The RMSE of the persistence model 

represents the PV power variability in each zone (as defined in [48]): 

𝝈(∆𝑷∆𝒕) = √〈(∆𝑷∆𝒕 − 〈∆𝑷∆𝒕〉)𝟐〉 = √〈(〈𝒆𝑷𝑴〉 − 𝒆𝑷𝑴)𝟐〉 = √〈(𝒆𝑷𝑴)𝟐〉
= 𝑹𝑴𝑺𝑬(𝒑𝒆𝒓𝒔𝒊𝒔𝒕𝒆𝒏𝒄𝒆) (20) 

where ∆𝑡 is the ramp rate (in this case 24 hours), 𝑃(𝑡) is the PV power output at the time t (in 

this case hour), 𝑃𝑃𝑀(𝑡) = 𝑃(𝑡 − ∆𝑡) is the PV power forecast of the Persistence Model (PM) 

with horizon ∆𝑡 and ∆𝑃∆𝑡 = 𝑃(𝑡) − 𝑃(𝑡 − ∆𝑡) = 𝑃(𝑡) − 𝑃𝑃𝑀(𝑡) = −𝑒𝑃𝑀(𝑡). In Eq. (20) it is 

assumed 〈𝑒𝑃𝑀〉 = 0. 

Both the variability and the forecast errors decrease with the size of the region. They can be 

well fitted either by a hyperbolic function (similar to one proposed by Perez et al. in [48]) or by 

an exponential function (similar to the one proposed by Lorenz et al. in [46] [49]): 

𝑹𝑴𝑺𝑬(𝑺𝒖𝒓𝒇) ≅ 𝒂 (𝟏 + 𝒃√𝑺𝒖𝒓𝒇𝒂𝒄𝒆⁄ ) (21) 

𝑹𝑴𝑺𝑬(𝑺𝒖𝒓𝒇) ≅ 𝒂𝒆−𝒃√𝑺𝒖𝒓𝒇𝒂𝒄𝒆 
(22) 

Enlarging the footprint of the forecast passing from the prediction of the PV generation in each 

market zones to the prediction of the PV generation all over Italy, will decrease the RMSE from 

5.5% (market zones average) to 3.6% for the AE model. 

Figure 21: Smoothing effect all over Italy (full dots are the RMSE of the AE forecast of 

the PV generation of each market zone, while empty dots are the RMSE that could be 

reached merging two or more adjacent market zones). 
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Therefore, the expansion of the transmission grid to manage the power generation of whole of 

Italy not only reduces congestions and constraints on production capacity between the market 

zones (as required by the National Energy Strategy plan) but also increases the forecast 

accuracy by 34% (relative value). For this reason, it is important to develop models able to 

predict directly the solar generation of the whole Italian PV fleet. 

5.3 Benchmark Results of the Day-ahead Forecasts of the PV 
Generation all over Italy 

For the benchmarking study for all of Italy five different PV Power up-scaling models are 

compared, all applied to the same NWP data set (WRF with MOS). The models include again 

the AE model of RSE and the kNN model by i-EM, and additionally the MLPNN and the 

“Deterministic”model by Uni Roma2/Eurac and the QRF model by Uni Uppsala. 

The Taylor diagram in Figure 22 shows the Pearson correlation between forecasts and 

observations and the standard deviation of each forecast normalized by the standard deviation 

of the observations. The outperforming forecast model is the MLPNN followed by the AE. Both 

the models provided forecasts with 0.98 of correlation and a standard deviation almost equal 

to the observations. The least accurate model again is persistence that is used as reference. 

Figure 22: Taylor diagram of the forecast models performance. Green dashed lines 

represent the standard deviation of the forecast errors (expressed as fraction of the 

standard deviation of the observed data). 

Except for KNN and Deterministic, the other models produce a forecast with very similar 

positive and negative errors distributions (Figure 23). All predictions are almost unbiased apart 

from KNN. KNN model provides a remarkably over forecast with a positive mean bias error of 

1.9% of the nominal capacity (Pn). On the other hand, it should be possible to improve the 

forecast accuracy of this model just removing the systematic error. 

The QRF, KNN and deterministic models obtain a RMSE ranging between 5% and 4% of Pn 

and a MAE between 3.6% and 3% of Pn (Figure 24). KNN is less accurate than the 

deterministic model in terms of RMSE, but is outperforming in terms of MAE. This indicates 
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that the KNN forecast has more outliers than the deterministic forecast. The cumulative 

density function (CDF) of the QRF forecast differs from the observed CDF at different PV 

generation levels with a maximum absolute difference of 0.036 (Kolmogorov-Smirnov index 

(KS) [50]).  

Figure 23: Probabilistic Density Distribution (PDF) of the forecast bias errors. In the top 

subplot the MBE value (red) is also shown in % of the installed capacity. 

 

The CDF of KNN forecast is constantly underestimating with a KS of 0.048. Indeed, since the 

KNN model provides a systematic over-forecast, the probability to find a predicted PV 

generation lower than the specific value is always lower than the observed probability. 
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Figure 24: Scatter plots (top) and Cumulative Density Function (CDF, bottom) of the 

forecasts. 

The CDF of deterministic forecast is lower than the observed CDF at low PV generation values 

while is higher at high PV generation level. The greatest absolute difference between the 

forecast and the observed CDF is at PV generation near to zero. This means that in the early 

morning and in the late afternoon, the model provides a constant over-forecast. For this 

reason, the high KS of almost 0.1 is less representative than the second maximum of the 

absolute CDF difference around 0.5 that indicates an under-forecast around noon. The 

accuracy of the AE and the MLPNN models are very similar both in terms of RMSE and MAE 

and in term of CDF. The two models achieve a RMSE of 3.8% and 3.7% and a MAE of 2.5% 

and 2.45%, respectively. The CDF of the forecasts are very similar to the CDF of the 

observations with KS indexes of 0.02 and 0.017, respectively. 

The daily KPV index is the equivalent of the daily clear-sky index for PV generation [51], 

defined as the ratio between the measured daily PV generation and the theoretical PV 

production during clear-sky conditions, derived from a clear-sky irradiance model by the SAPM 

[31]. As the clear sky index, the daily KPV can be used for meteorological classification: 

overcast days with 0 < daily KPV ≤ 0.4, variable with 0.4 < daily KPV ≤ 0.8 and clear sky days 

with daily KPV > 0.8. 

Dividing the daily KPV into bins of width 0.1, we define the daily RMSE and MBE as the RMSE 

and MBE of each day averaged over all the days belonging to the same daily KPV bin. Figure 

25 shows the daily RMSE and MBE obtained during overcast, variable and clear sky days. All 

the forecasts show the same trend of MBE, from an over-forecast during overcast days to an 

under-forecast during clear sky days. Nevertheless, coherently with the previous analysis, the 

KNN prediction is predominantly positive biased. The shape of the daily RMSE of the QRF and 

the deterministic predictions are similar, even if the latter obtains smaller errors. In the same 

way, also the KNN, AE and MLPNN forecasts show similar daily RMSE trends, with greater 

errors during overcast days and smaller errors during clear sky days. As expected, the RMSE 
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obtained by AE and MLPNN models is almost the same with the exception of the overcast 

days with KPV ≤ 0.4, where MLPNN performs better. Nevertheless, these days are only 30 on 

366.  

 

Figure 25: Daily RMSE (left) and MBE (right) of the forecast (i.e. the RMSE and MBE of 

each day averaged over all the days belonging to the same daily KPV bin). 
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Figure 26 summarizes the values of the Key Performance Indexes (KPIs). The improvement of 

the forecasts with respect to the persistence prediction ranges from 27.5% to 46.6%.  

 

Figure 26: Main Key Performance Indexes (KPIs) of the forecasts. 

The accuracy values of the outperforming models are coherent with the accuracy found in 

literature for other countries (Table 5). 
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Table 5: Comparison between the day-ahead forecast accuracy of the present models 

and some other approaches reported in literature. 

Country Regions size 

[km2] 

RMSE 

[% of Pn] 

Skill score 

[%] 

Italian outperforming forecast 300 x 103 (whole of 

Italy) 

3.6 46.6 

Germany  

[45] 

214 x 103 - 104 x 103  

(two regions) 

4.1 - 4.3  48 – 52.8 

Italian outperforming forecast 50 x 103  

(average market zones) 

5.5 31 

NORD 119.5 x 103 4.1 35.8 

CNORD 41 x 103 6.6 20.3 

CSUD 41.5 x 103 5.8 33.7 

SUD 49 x 103 5.6 34.7 

SICI 26 x 103 5.1 27 

SARD 24 x 103 5.5 31 

Japan 

[47, 52] 

32.4 x 103 – 72.6 x 103 

(two regions) 

6 - 7 50 - 60 

 

5.4 Blending the Day-ahead Forecasts of the PV Generation All over 
Italy  

We test the three methods: avg, SL and NN (Equations (11), (12) and (13) in section 4.7) to 

blend the day-ahead predictions obtained by the six models: MLPNN, AE, Deterministic, KNN, 

QRF and persistence, comparing the accuracy of the blending with the performance of the 

best prediction of the ensemble (MLPNN).  

The performance of the avg and NN blending methods depends on number of the forecasts 

included in the ensemble. On the contrary, the SL blending automatically selects the models to 

include in the ensemble. Indeed, during the training phase, the brute force optimization 

provides weight (𝑊𝑖) different from zero only for the forecast models that contribute to the 

outperforming blend. 



Task 16 Solar Resource – Regional Solar Power Forecasting 

55 

The avg blend outperforms the best forecast of the ensemble only if the difference between 

the RMSE of the best and worst forecast is lower than 1% of Pn (Figure 27). Same results 

were found in [42]. In this case, the highest accuracy of the avg blend method is reached 

averaging just the first two most accurate forecasts (obtained by the MLPNN and AE models). 

This method (avg 2 models blend) increases the skill score with respect to the persistence 

from the 46.6% of the MLPNN to almost 50%. Unlike the avg blend, the performance of the 

non-linear NN blending increases with the number of the forecasts included in the ensemble, 

even if the difference between the RMSE of the best and the worst prediction is greater than 

3%. In this case, the NN blend that inputs all the 6 forecast trajectories (MLPNN, AE, 

Deterministic, KNN, QRF and persistence) is the outperforming blending method, enhancing 

the skill score from 46.6% to 51.3%. The smart linear blend does not obtain better 

performance than the avg 2 models blend. Afterward, we will explain this paradox. 

 

Figure 27: RMSE (left) and skill score (right) of the different blending methods versus 

the difference between the minimum and the maximum RMSE of the forecast 

trajectories included in the ensemble. Each points of the curves related to avg. models 

blend and NN blend correspond, from left to right, to an increasing number of forecast 

trajectories included in the blending in the order of increasing RMSE (exploiting RMSE 

values available in Figure 26): from an ensemble of two models (first point, MLPNN + 

AE) to an ensemble of six models (fifth point, MLPNN + AE + Deterministic + KNN + QRF 

+ persistence). 

The accuracy of the linear blending (such as the avg and SL methods) depends on the 

difference between the accuracy of each member of the ensemble and on the pair correlation 

between the forecast errors of all the predicted trajectories included in the ensemble (see Eq. 

(10). The lower the RMSE differences and the errors pair correlations, the higher is the 

accuracy of the blend. The extreme example is when we use two forecasts with no bias and 

same RMSE, but perfectly anti-correlated. In this case, the simple average will produce a 

perfect forecast.  

The average is the simplest linear blending model and it should be the first model to test. 
Given N available forecasts, to identify which forecasts should be included in the ensemble to 
produce the outperforming average blending, all the possible ensemble including the best 
forecast should be tested and this could not be an easy task. Indeed, given N available 

forecasts there are ((𝑁 − 1) + ∑
(𝐍−𝟏)!

(𝒌−𝟏)!(𝑵−𝒌!)
𝑵
𝒌=𝟑 ) possible average, where k= 2, …, N is the # of 

predictions that should be included in the ensemble together with the outperforming one. 
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To reduce the number of attempts, we define the “average blending factor” (BF): 

 

𝑩𝑭𝒊(𝑵) = (
𝑹𝑴𝑺𝑬𝒊

𝟐

𝑹𝑴𝑺𝑬𝟏
𝟐 + 𝟐 ∗

𝑹𝑴𝑺𝑬𝟏 ∗ 𝑹𝑴𝑺𝑬𝒊

𝑹𝑴𝑺𝑬𝟏
𝟐 ∗ 𝝆𝟏𝒊 + ∑

𝑹𝑴𝑺𝑬𝒊 ∗ 𝑹𝑴𝑺𝑬𝒋

𝑹𝑴𝑺𝑬𝟏
𝟐 ∗ 𝝆𝒋𝒊

𝟐,𝑵

𝒋≠𝒊

) (𝑵 + 𝟏)⁄  (23) 

where 𝑁 is number of available forecasts, 𝑅𝑀𝑆𝐸1 and 𝑅𝑀𝑆𝐸𝑖 are the root mean square errors 

of the outperforming forecast and of i-th forecast while 𝜌𝑗𝑖 is the Pearson correlation between 

all the forecast errors.  

This factor measures the average between the loss (with respect the best forecast) in blending 
a forecast with a lower accuracy (1 term: 𝑅𝑀𝑆𝐸𝑖

2 𝑅𝑀𝑆𝐸1
2⁄ ) and the possible gains in blending 

the i-th forecast with low inter-correlated errors (N terms:  

𝟐 ∗
𝑹𝑴𝑺𝑬𝟏 ∗ 𝑹𝑴𝑺𝑬𝒊

𝑹𝑴𝑺𝑬𝟏
𝟐 ∗ 𝝆𝟏𝒊 + ∑

𝑹𝑴𝑺𝑬𝒊 ∗ 𝑹𝑴𝑺𝑬𝒋

𝑹𝑴𝑺𝑬𝟏
𝟐 ∗ 𝝆𝒋𝒊

𝟐,𝑵

𝒋≠𝒊

 (24) 

The only forecasts that, for sure, will have a positive impact on the 𝑁 average blending 

accuracy are the ones who have an Average Blending Factor lower than one and the lower 

are the 𝐵𝐹𝑖(𝑁) the more accurate will be the simple average. Indeed, in case of the simple 

average, we can write Eq. (10) as in the following: 

𝑹𝑴𝑺𝑬𝒂𝒗𝒈(𝑵) ≅ √ ∑ ∑ (𝑹𝑴𝑺𝑬𝒊 ∗ 𝑹𝑴𝑺𝑬𝒋 ∗ 𝝆𝒊𝒋)

𝒋=𝟏,𝑵𝒊=𝟏,𝑵

𝑵𝟐⁄ = 

= 𝑹𝑴𝑺𝑬𝟏√[𝟏 + (𝑵𝟐 − 𝟏) (
∑ 𝑩𝑭𝒊(𝑵)𝑵

𝒊=𝟐

𝑵 − 𝟏
)] 𝑵𝟐⁄ = 𝑹𝑴𝑺𝑬𝟏√[𝟏 + (𝑵𝟐 − 𝟏)〈𝑩𝑭𝒊(𝑵)〉] 𝑵𝟐⁄  

(25) 

where N is the number of the available forecasts, 𝑅𝑀𝑆𝐸1is the RMSE of the outperforming 

forecast and 𝐵𝐹𝑖 is the Blending Factor of the forecasts (with i > 1). The RMSE of the average 

of 𝑁 forecasts is proportional to root of the mean Blending Factor: 〈𝐵𝐹𝑖(𝑁)〉. 

It is worth noting that if all the blending factors of the N forecasts are equal to one, then 

𝑅𝑀𝑆𝐸𝑎𝑣𝑔(𝑁) =  𝑅𝑀𝑆𝐸1. In contrast, as long as the forecast errors are all positive correlated 

one to the other (𝜌𝑖𝑗 > 0), the only forecasts that will have a positive impact on the 𝑁 average 

accuracy are the 𝑁1 ones who have an Average Blending Factor lower than one (with 𝑁1 ≤ 𝑁) 

and the lower is the 𝐵𝐹𝑖(𝑁) the more accurate will be the average. 

Theoretically, the pair-correlation between the forecast errors (𝜌𝑖𝑗) could be also negative but 

this is very unlikely since the physics laws underlying the numerical weather prediction models 

are the same. 

Furthermore, it is possible to iterate the process computing again 𝐵𝐹𝑖(𝑁1) (with i > 1) and 

verify if all the 𝑁1 selected forecasts still have a blending factor 𝐵𝐹𝑖(𝑁1) lower than one. 

Otherwise it should be selected only the 𝑁2 with 𝐵𝐹𝑖(𝑁1) < 1 (with 𝑁2 < 𝑁1) , and so on. 

Finally, once 𝐵𝐹𝑖(𝑁2) < 1 (for 𝑖 = 1, … , 𝑁2) between the 𝑁2 forecasts there is certainly an 

average that outperforms the “best” forecast and all the other possible average blendings, at 

least the average between the “best” forecast and the forecast with the lowest blending factor 

(𝐵𝐹2(𝑁2) = 𝑚𝑖𝑛{𝐵𝐹𝑖(𝑁2)}𝑁2). 
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Therefore, the outperforming average blending should be chosen among the ensemble of only 

the 𝑁2 ≤ 𝑁 forecasts with blending factor lower than one and it should be adopted as 

reference blending model. 

In our case, only the AE model provides a 𝐵𝐹2(6) less than one (Figure 28a), and for this 

reason the simple average of the MLPNN and AE predictions provides the outperforming 

average, while the accuracy of average models blending decreases when the other forecasts 

are included in the ensemble (Figure 27).  

Moreover, Figure 28(c) also shows the forecast accuracy of the average models blend of a 

part of the possible forecast ensembles including the best prediction (MLPNN): ensemble from 

2 to maximum 6 members. For instance, the elements of the first row are the RMSE obtained 

by the blend of the ensembles that include two, three, four, five and six forecasts. It can be 

observed that the exclusion of the AE forecasts (with 𝐵𝐹2(6) < 1) from the ensemble will never 

lead to a better blending performance even if the error correlation of the other members is 

lower (Figure 28(b)).  

Using the blending factor approach we are able to immediately find the reference prediction 

without testing all the 31 possible average combinations. 

 

Figure 28: RMSE and Blending Factor of each forecast of the ensemble, (a); matrix of 

the Pearson cross correlation between the forecasts errors of each ensemble member, 

(b); RMSE of the average blend of all the possible forecast ensembles that include the 

best model (MLPNN), (c). 

Nevertheless, by setting suitable weights and/or suitable forecast partitions the predictions 

with blending factor greater than one can also effectively contribute to improve the blend 

accuracy. 

Figure 29 shows the weight coefficients (Wi) for each KPV
best for intervals (forecast partitions) of 

the smart linear method obtained by the brute force optimization procedure.  
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Figure 29: Weight coefficients (𝑾𝒊) for each 𝑲𝑷𝑽
𝒃𝒆𝒔𝒕 𝒇𝒐𝒓

 intervals of the smart linear method 

obtained by the brute force optimization procedure. 

The SL method uses a complex combination of the forecast models only during very overcast 

(KPV
best for < 0.2) or very clear sky (KPV

best for > 0.8) predicted conditions. It is interesting to note 

that under these weather conditions the persistence model provides a remarkable contribution. 

Indeed, during consecutive very overcast or very clear sky days, persistence model can 

provide an accurate forecast. Nevertheless, the majority of the PV generation occurs at 

overcast (0.2 < KPV
best for < 0.4) or variable/fine (0.4 < KPV

best for < 0.8) weather conditions. During 

these conditions the brute force optimization mainly selects the first two models of the 

ensemble (MLPNN and AE) with an average weight close to 50% and 50% (exactly the same 

of the avg 2 models blend). Furthermore, the brute force optimization of SL model that 

provides the best linear combination of all forecast trajectories of the training set is affected by 

under or over fitting problems. Thus, the SL blending method, when applied on the test set, 

could obtain also worse performance than the simple average (that does not need any 

training). Indeed, to reduce these problems, different KPV
best for interval partitions have been 

tested: few intervals produce under-fitting while too many intervals generate overfitting. For 

these reasons, the SL blend obtains almost the same accuracy of the average of the first two 

outperforming forecasts. 

For the non-linear blending methods, the accuracy of the forecast included in the ensemble is 

less important. Indeed the performance of the NN blend increases with the number of the 

ensemble members regardless of the RMSE of each prediction. Nevertheless, a low pair 

correlation between the forecast errors of each ensemble member becomes much more 

important. Indeed, for any data driven method (ANN, SVR, QRF, etc.) the use of high 

correlated inputs can completely threaten the performance since the input features do not 

bring relevant information, while the model complexity increases dramatically with the inputs 

number. Thus the performance of a non-linear blend based on any machine learning 

technique that inputs highly correlated forecasts can be easily lower than the accuracy of the 

best member of the ensemble. Low correlated PV generation forecast errors can be generated 

only by the use of completely different prediction models, i.e. different NWP models, as well as 

different up-scaling methods and/or different machine learning forecast techniques. Perez et 
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al. [39, 40, 41] developed a smart linear method to blend the GHI forecasts of 4 different NWP 

and the resulting forecast was identified by EPRI as the most accurate among thirteen 

operational models, after an independent evaluation in two climatically distinct US regions. 

The blend of the day-ahead forecast reduces the MAE of best forecast member by 15% 

(relative reduction). Similar results were found by Huertas-Tato et al. [53] that blended four 

different GHI predictions in four cities (in Spain and Portugal). They achieved by non-linear 

blending (SVM) an improvement of best prediction MAE ranging from 12% to 14% depending 

on the city and a RMSE improvement of 11%-16% (MAE/RMSE relative reduction). Pierro et 

al. [42], combining six PV power forecasts of a single plant generation obtained by 6 different 

data-driven models and two different NWP, obtained an RMSE improvement of 6% just with 

the simple average blending method. They also showed that averaging only the forecast 

obtained through the same NWP the improvement will be reduced to 3%. Gigoni et al. [43] 

combined five different day-ahead forecasts of 32 PV plants generation in Italy, obtained by 

five data-driven models. In this case, they used a smart-linear blending model which, in 

average on the 32 PV power generations, obtained a MAE and RMSE improvement of 1.9% 

and 0.6%. This small improvement probably depends on the use of the same NWP as models 

input, so that the five forecasts were all strongly correlated one to the other. 

Also in this work, all the forecast results from the use of the same NWP but very different up-

scaling approaches have been adopted. The pair correlation of the forecast errors ranged from 

0.81 to 0.54 (Figure 28(b)), so that the NN blend could reduce the MAE and the RMSE of the 

best forecast by 8.6% and 7.1%, values comparable with the ones of [41, 53, 42].  

Figure 30 shows scatter plots and the Cumulative Density Function (CDF) of the best forecast 

model and of the blending forecast methods. The avg. 2 model and the smart linear blend 

methods improve the RMSE of the best forecast member of the ensemble by almost 6% (as in 

[8]). The NN 6 models blend is almost unbiased and obtains 7% of improvement, as 

mentioned above. Furthermore, this method provides a CDF of the PV generation more similar 

to the one observed with a KS index of 0.012 with respect to 0.017 of the best forecast. 
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Figure 30: Scatter plots (top) and Cumulative Density Function (CDF, bottom) of the 

best forecast model and of the blending forecast methods. 

The NN blend method reduces the daily RMSE and MBE during overcast days and provides a 

RMSE lower than the best forecast model during variable and clear sky days. On the contrary, 

the best forecast is outperforming only during perfect clear sky days (Figure 31). 

 

Figure 31: Daily RMSE (left) and MBE (right) of the best forecast model and of the 

blending forecast methods. 

It is worth noticing, from Figure 31, that the performance of the 2avg and SL models are 

basically the same other than during the very clear sky days in which SL obtains a lower bias 

but an even higher RMSE. Nevertheless, 2avg model is the simplest possible blending while 
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SL is a remarkably complex model obtained by a brute force optimization of 30 weight 

coefficients. 

This theoretical and experimental study leads to an important general result: to assess the 

quality of a blending method is not enough to compare the obtained accuracy with the one 

achieved by the best forecast of the ensemble, but it is also essential to benchmark the 

performance with the simplest blending model i.e. the average. In particular, to select the 

outperforming reference model, it should be used the outperforming average chosen among 

all the forecasts that has a blending factor lower than one . Any blending method should 

outperform this reference model, otherwise the use of a more complex approach cannot be 

justified. 

In our case, the outperforming reference model is the 2avg that obtains a SS with respect to 

the RMSE of the best forecast of 5.7% (Table 6). The smart linear blending SL achieves a SS 

with respect to the best forecast of 6%, improving the performance of the reference model of 

0.3% only (relative value). The NN non-linear blending gets a skill scores of 7.1% and 1.4% 

with respect to the best forecast and the reference blending, respectively. Therefore only the 

NN method could be an acceptable alternative to the simple average blending. 

Table 6: Summary of model performances. 

Methods MBE  
[% of Pn] 

MAE  
[% of Pn] 

RMSE  
[% of Pn] 

SS (best for) 
[%] 

SS (2avg)  
[%] 

best forecast 0.313 2.45 3.67 0.0 -6.1 

2avg (reference) 0.338 2.28 3.46 5.7 0.0 

SL 0.243 2.27 3.45 6.0 0.3 

NN 0.095 2.24 3.41 7.1 1.4 

 

It is worth noting that none of the aforementioned works [39, 40, 41, 53, 43] have used a 

simple reference blending model.   
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6 RESULTS OF BENCHMARK FOR UTRECHT (THE 
NETHERLANDS) 

6.1 Performance Metrics 

The error metrics used to evaluate the results are given by equations (16), (17), (18) and (19) 

as defined in section 5.1. The only difference here is that the Pn is constant during the studied 

period, and equal to the combined installed capacity of the 150 PV systems.  

6.2 Utrecht PV Production 

The PV-systems have a combined installed capacity of 301 kWp [26]. The average annual 

energy yield of these systems in the period 2014-2016 is 1'039 kWh/kWp (see Table 7). In this 

same period, the yield of individual systems is found to differ between 799 and 1’271 

kWh/kWp per year.  

Table 7: Average annual power production of 150 PV-systems / unit of installed 

capacity. 

Year Yield [kWh/kWp] 

2014 1'042 

2015 1'073 

2016  1'003 

Average  1'039 

Figure 32a shows the monthly energy yield for all systems combined during the period studied. 

The figure indicates variations both in the PV power yield per month and interannual 

variations. On an annual basis most power is produced in the months April to August. The 

difference in the PV yield from one month or year to another can be explained by fluctuations 

in the global horizontal irradiance, which is highly dependent on the cloud cover. For example, 

the limited production in June 2016 compared to the PV yield during the same month in 2014 

and 2015 is due to a lower observed irradiance in that month [54]. 

In addition, Figure 32b shows the distribution of the hourly PV generation in Utrecht for 

daylight hours only. The maximum PV power generation observed in an hour is 0.93 kW/kWp, 

whereas in 90% of time production is found to be below 0.70 kW/kWp.  

 

Figure 32: monthly PV power yield for all 150 PV systems (a); Distribution of the PV 

power generation (b). 
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6.3 Benchmark Results of Day-ahead Forecasts of PV Generation for 
150 PV-systems in Utrecht 

The regional forecasts generated consider day-ahead, hourly PV power forecasts for the 

combined production of 150 PV-systems in Utrecht. Figure 33 shows a scatterplot holding the 

measurements and predictions for all forecasting models. The evaluation of the forecasting 

results in terms of the RMSE, MAE, MBE and Skill Score can be found in Figure 34 and Figure 

35. It is important to note that the results only consider diurnal hours for the period February 

2016 until February 2017. 

From Figure 34 it can be found that the results obtained for the K-SVM, RF, GB and FNN 

model are very similar. Moreover, based on the MAE and RMSE these models prove to be 

very competitive. From these models, RF is found to have the best performance when 

considering the MAE, with an error of 6.5%. Furthermore, when assessing the RMSE, K-SVM 

model is found to outperform all other models with an error of 9.9%. In particular, a lower MAE 

score and a higher RMSE value indicates that the RF model generates more outliers 

compared to K-SVM. From these 4 models, the poorest results are observed for the FNN 

model. Finally, Figure 34 shows that all four models significantly outperform the classical 

persistence model. 

Figure 35 presents the model performance results in terms of the Skill Score. Since the Skill 

Score is directly dependent on the RMSE (see equation (19)), the K-SVM model also achieves 

the best results in terms of the Skill Score. Moreover, compared to the RMSE and MAE, the 

observed difference between the obtained Skill Scores per model is more significant. RF and 

GB achieve more or less similar results and, similar to RMSE, the poorest performance is 

found for the FNN model.  

From Figure 34 it can also be observed that all models, except RF, have a positive bias. This 

indicates that these models overestimate the PV power production in the validation year 

(February 2016 until January 2017). This deviation could be explained by inter-annual 

variations in the PV power production. Moreover, the total power production is found to be 

approximately 6% lower in the validation year compared to the average of the model training 

years [26]. The stronger bias of the K-SVM and FNN models indicate that these models are 

more affected by these inter annual deviations. 

As the order of best performing models differ per error metric considered, the preferred model 

depends on its application and therefore the interest of the user. 

 

 

Figure 33: scatterplot of the forecasts. 
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Figure 34: Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Bias 

Error (MBE) of the K-SVM, RF, GB, FNN and Persistence forecasting models. All values 

are given in percentages. 

 
Figure 35: the Skill Score of the K-SVM, RF, GB and FNN forecasting models relative to 

Classical Persistence. 
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7 CONCLUSION 

In this work, we compare the accuracy of several up-scaling methods for regional PV power 

forecast from 1 up to 3 days-ahead using three different case studies characterized by 

different size of the area of interest and located in two different countries:  

 Forecast of the aggregated PV power output of 150 PV systems in the province of Utrecht 

(Netherlands) within a controlled area of 1.4 x103 km2;  

 Forecast of the regional PV generation of six Italian macro zones6 (market zones) with 

controlled areas that range from 24x103 to 119x103 km2; 

 Forecast of the regional PV generation of the whole of Italy with a controlled area of 

300 x103 km2. 

All the tested up-scaling methods directly predict the regional PV power generation, i.e. 

consider the PV power output of the whole PV fleet as if it had been produced by a single 

“virtual” solar power plant.  

The examined models gain different performances depending on the following: input and 

power measurements pre-processing, numerical weather prediction (NWP) used as forecast 

model inputs, aggregation methods adopted for input dimensionality reduction, PV forecast 

models, post-processing correction, forecast horizon and size of the area under examination.  

Table 8 summarizes the main features of all the benchmark methods, for each case study and 

reports the obtained ranges of the day-ahead forecast accuracy.  

For all the case studies, the tested approaches obtain a wide range of accuracy. The greater 

the differences between the up-scaling steps of each method, the larger is the range of 

accuracy that can be obtained. In the regional power forecast for the small area of the Utrecht 

province, the examined methods differ only in the data-driven forecast models using all the IFS 

forecast by ECMWF as a basis and the same post-processing and pre-processing steps . The 

skill score ranges from 42.1% to 43.7%: this marks a relative performance increase of almost 

4% for the best approach with respect to the worst.  

In the PV power forecast of the Italian market zones, the skill score ranges from 16% to 

30.5%, with almost 49% of relative improvement. In this case, the two tested methods differ in 

the PV forecasting models and in the post-processing technique.  

With regard to the forecast of the PV generation for the whole of Italy, we obtained skill scores 

from 27.5% to 46.7%, hence almost 43% of difference. Also in this case, there are many 

differences between the forecasting procedures, even if the same NWP data (WRF with IFS – 

ECMWF boundary conditions) were used as methods inputs: input aggregation methods, 

forecasting models and output post-processing.  

These results indicate that, in regional PV power forecast, there is a wide margin of 

performance improvement achievable. All the forecasting steps should be carefully tuned to 

get the highest accuracy. 

                                                

6
 Nowadays, the Italian TSO has divided Italy in these six macro regions since between these zones 

there are bottlenecks of the National grid. In each of these regions, the Energy Markets take place. For 

this reason, the aggregated PV power generation of each market zone is currently predicted by the 

Italian TSO. 
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We also show that the accuracy does not remarkably change passing from one day to three 

days-ahead forecast horizon. Indeed, considering the outperforming up-scaling method, the 

average RMSE of the day-ahead forecast of the market zones PV generation is 5.5% of Pn, 

while the accuracy of the three days-ahead forecast is 5.6% of Pn. This is because the 

accuracy of the NWP used as models input does changes slowly in this horizon range. This 

result is confirmed by literature (for instance in [55]). 

It is well known, that the performance of the regional PV power forecast improves with the size 

of the forecast footprint because of the “smoothing effect”. We study this effect on Italy proving 

that the forecast error (RMSE) decreases with the root of controlled area following an 

exponential or hyperbolic trend (similar results could be found in [35, 37]). As a result, the 

RMSE of the forecast of the Italian PV generation can be reduced by 34% passing from the 

prediction of the market zones solar generation to the prediction of the national solar 

production (test period 2017). Indeed, we found that mean RMSE of the market zones PV 

power forecast is 5.5% of Pn, while the RMSE of the Italian PV power generation is 3.6%. 

Finally, we investigate the accuracy improvement that can be reached by blending the different 

predictions of the Italian PV generation. Thus, instead of simply selecting the outperforming 

forecast, we studied how the different predictions can be combined to increase the accuracy of 

the Italian PV power forecast. We studied both linear and non-linear combinations. We proved 

that the simplest linear blending method, i.e. the forecasts average, has an accuracy strongly 

dependent on the RMSE of the forecasts included in the blending ensemble. Conversely, 

Smart linear blending methods can suitably combine any forecast regardless of their RMSE. 

Also, Non-linear model performance is not affected by the RMSE of the forecasts to be 

blended but depends on the pair-correlation between the forecast errors. Non-linear blending 

models that combine forecasts with highly correlated errors can easily obtain an accuracy 

lower than the one of the outperforming forecast of the blending ensemble.  

We further showed that, in order to assess the quality of a blending method, it is not enough to 

compare its accuracy with the one of the best forecast of the ensemble, but also the 

outperforming simple average must be used as reference. To identify this reference model, we 

defined a new index, called “average blending factor” (BF) proving that the outperforming 

average blending should be chosen among all the possible averages of all the forecasts that 

have a blending factor lower than one. Any blending method should outperform both the best 

forecast and this reference blending. 

In our case, the reference model was the average of only two forecasts over six available (with 

BF equal to 1 and 0.92). It improves the RMSE of the best forecast of 5.7%. The smart linear 

blending model (SL) improves the accuracy of the best forecast of just 6% while the non-linear 

model (NN) of 7.1%. Therefore, the model SL, in spite of its much higher complexity, does not 

achieve a significant performance improvement compared to the simple reference model. In 

contrast, NN is the outperforming method. 

We conclude that the accuracy of regional forecasts can be further improved by a blending 

model that appropriately combines the output of different up-scaling approaches, provided that 

these approaches are based on quite different procedures, so that their forecasting errors 

have a low correlation with each other. 
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Table 8: Summary of the process of the benchmark up-scaling methods and accuracy 

results (day-ahead forecast horizon). 
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SCORE 

[%] 
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